drm/i915: Introduce for_each_ring() macro
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
35  * framebuffer contents in-memory, aiming at reducing the required bandwidth
36  * during in-memory transfers and, therefore, reduce the power packet.
37  *
38  * The benefits of FBC are mostly visible with solid backgrounds and
39  * variation-less patterns.
40  *
41  * FBC-related functionality can be enabled by the means of the
42  * i915.i915_enable_fbc parameter
43  */
44
45 static void i8xx_disable_fbc(struct drm_device *dev)
46 {
47         struct drm_i915_private *dev_priv = dev->dev_private;
48         u32 fbc_ctl;
49
50         /* Disable compression */
51         fbc_ctl = I915_READ(FBC_CONTROL);
52         if ((fbc_ctl & FBC_CTL_EN) == 0)
53                 return;
54
55         fbc_ctl &= ~FBC_CTL_EN;
56         I915_WRITE(FBC_CONTROL, fbc_ctl);
57
58         /* Wait for compressing bit to clear */
59         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
60                 DRM_DEBUG_KMS("FBC idle timed out\n");
61                 return;
62         }
63
64         DRM_DEBUG_KMS("disabled FBC\n");
65 }
66
67 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
68 {
69         struct drm_device *dev = crtc->dev;
70         struct drm_i915_private *dev_priv = dev->dev_private;
71         struct drm_framebuffer *fb = crtc->fb;
72         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
73         struct drm_i915_gem_object *obj = intel_fb->obj;
74         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
75         int cfb_pitch;
76         int plane, i;
77         u32 fbc_ctl, fbc_ctl2;
78
79         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
80         if (fb->pitches[0] < cfb_pitch)
81                 cfb_pitch = fb->pitches[0];
82
83         /* FBC_CTL wants 64B units */
84         cfb_pitch = (cfb_pitch / 64) - 1;
85         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
86
87         /* Clear old tags */
88         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
89                 I915_WRITE(FBC_TAG + (i * 4), 0);
90
91         /* Set it up... */
92         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
93         fbc_ctl2 |= plane;
94         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
95         I915_WRITE(FBC_FENCE_OFF, crtc->y);
96
97         /* enable it... */
98         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
99         if (IS_I945GM(dev))
100                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
101         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
102         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
103         fbc_ctl |= obj->fence_reg;
104         I915_WRITE(FBC_CONTROL, fbc_ctl);
105
106         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
107                       cfb_pitch, crtc->y, intel_crtc->plane);
108 }
109
110 static bool i8xx_fbc_enabled(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = dev->dev_private;
113
114         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
115 }
116
117 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
118 {
119         struct drm_device *dev = crtc->dev;
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         struct drm_framebuffer *fb = crtc->fb;
122         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
123         struct drm_i915_gem_object *obj = intel_fb->obj;
124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
125         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
126         unsigned long stall_watermark = 200;
127         u32 dpfc_ctl;
128
129         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
130         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
131         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
132
133         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
134                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
135                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
136         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
137
138         /* enable it... */
139         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
140
141         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
142 }
143
144 static void g4x_disable_fbc(struct drm_device *dev)
145 {
146         struct drm_i915_private *dev_priv = dev->dev_private;
147         u32 dpfc_ctl;
148
149         /* Disable compression */
150         dpfc_ctl = I915_READ(DPFC_CONTROL);
151         if (dpfc_ctl & DPFC_CTL_EN) {
152                 dpfc_ctl &= ~DPFC_CTL_EN;
153                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
154
155                 DRM_DEBUG_KMS("disabled FBC\n");
156         }
157 }
158
159 static bool g4x_fbc_enabled(struct drm_device *dev)
160 {
161         struct drm_i915_private *dev_priv = dev->dev_private;
162
163         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
164 }
165
166 static void sandybridge_blit_fbc_update(struct drm_device *dev)
167 {
168         struct drm_i915_private *dev_priv = dev->dev_private;
169         u32 blt_ecoskpd;
170
171         /* Make sure blitter notifies FBC of writes */
172         gen6_gt_force_wake_get(dev_priv);
173         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
174         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
175                 GEN6_BLITTER_LOCK_SHIFT;
176         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
177         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
178         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
180                          GEN6_BLITTER_LOCK_SHIFT);
181         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
182         POSTING_READ(GEN6_BLITTER_ECOSKPD);
183         gen6_gt_force_wake_put(dev_priv);
184 }
185
186 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
187 {
188         struct drm_device *dev = crtc->dev;
189         struct drm_i915_private *dev_priv = dev->dev_private;
190         struct drm_framebuffer *fb = crtc->fb;
191         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
192         struct drm_i915_gem_object *obj = intel_fb->obj;
193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
194         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
195         unsigned long stall_watermark = 200;
196         u32 dpfc_ctl;
197
198         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
199         dpfc_ctl &= DPFC_RESERVED;
200         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
201         /* Set persistent mode for front-buffer rendering, ala X. */
202         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
203         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
204         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
205
206         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
207                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
208                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
209         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
210         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
211         /* enable it... */
212         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
213
214         if (IS_GEN6(dev)) {
215                 I915_WRITE(SNB_DPFC_CTL_SA,
216                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
217                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
218                 sandybridge_blit_fbc_update(dev);
219         }
220
221         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
222 }
223
224 static void ironlake_disable_fbc(struct drm_device *dev)
225 {
226         struct drm_i915_private *dev_priv = dev->dev_private;
227         u32 dpfc_ctl;
228
229         /* Disable compression */
230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231         if (dpfc_ctl & DPFC_CTL_EN) {
232                 dpfc_ctl &= ~DPFC_CTL_EN;
233                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
234
235                 DRM_DEBUG_KMS("disabled FBC\n");
236         }
237 }
238
239 static bool ironlake_fbc_enabled(struct drm_device *dev)
240 {
241         struct drm_i915_private *dev_priv = dev->dev_private;
242
243         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
244 }
245
246 bool intel_fbc_enabled(struct drm_device *dev)
247 {
248         struct drm_i915_private *dev_priv = dev->dev_private;
249
250         if (!dev_priv->display.fbc_enabled)
251                 return false;
252
253         return dev_priv->display.fbc_enabled(dev);
254 }
255
256 static void intel_fbc_work_fn(struct work_struct *__work)
257 {
258         struct intel_fbc_work *work =
259                 container_of(to_delayed_work(__work),
260                              struct intel_fbc_work, work);
261         struct drm_device *dev = work->crtc->dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263
264         mutex_lock(&dev->struct_mutex);
265         if (work == dev_priv->fbc_work) {
266                 /* Double check that we haven't switched fb without cancelling
267                  * the prior work.
268                  */
269                 if (work->crtc->fb == work->fb) {
270                         dev_priv->display.enable_fbc(work->crtc,
271                                                      work->interval);
272
273                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
274                         dev_priv->cfb_fb = work->crtc->fb->base.id;
275                         dev_priv->cfb_y = work->crtc->y;
276                 }
277
278                 dev_priv->fbc_work = NULL;
279         }
280         mutex_unlock(&dev->struct_mutex);
281
282         kfree(work);
283 }
284
285 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
286 {
287         if (dev_priv->fbc_work == NULL)
288                 return;
289
290         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
291
292         /* Synchronisation is provided by struct_mutex and checking of
293          * dev_priv->fbc_work, so we can perform the cancellation
294          * entirely asynchronously.
295          */
296         if (cancel_delayed_work(&dev_priv->fbc_work->work))
297                 /* tasklet was killed before being run, clean up */
298                 kfree(dev_priv->fbc_work);
299
300         /* Mark the work as no longer wanted so that if it does
301          * wake-up (because the work was already running and waiting
302          * for our mutex), it will discover that is no longer
303          * necessary to run.
304          */
305         dev_priv->fbc_work = NULL;
306 }
307
308 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
309 {
310         struct intel_fbc_work *work;
311         struct drm_device *dev = crtc->dev;
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         if (!dev_priv->display.enable_fbc)
315                 return;
316
317         intel_cancel_fbc_work(dev_priv);
318
319         work = kzalloc(sizeof *work, GFP_KERNEL);
320         if (work == NULL) {
321                 dev_priv->display.enable_fbc(crtc, interval);
322                 return;
323         }
324
325         work->crtc = crtc;
326         work->fb = crtc->fb;
327         work->interval = interval;
328         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
329
330         dev_priv->fbc_work = work;
331
332         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
333
334         /* Delay the actual enabling to let pageflipping cease and the
335          * display to settle before starting the compression. Note that
336          * this delay also serves a second purpose: it allows for a
337          * vblank to pass after disabling the FBC before we attempt
338          * to modify the control registers.
339          *
340          * A more complicated solution would involve tracking vblanks
341          * following the termination of the page-flipping sequence
342          * and indeed performing the enable as a co-routine and not
343          * waiting synchronously upon the vblank.
344          */
345         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
346 }
347
348 void intel_disable_fbc(struct drm_device *dev)
349 {
350         struct drm_i915_private *dev_priv = dev->dev_private;
351
352         intel_cancel_fbc_work(dev_priv);
353
354         if (!dev_priv->display.disable_fbc)
355                 return;
356
357         dev_priv->display.disable_fbc(dev);
358         dev_priv->cfb_plane = -1;
359 }
360
361 /**
362  * intel_update_fbc - enable/disable FBC as needed
363  * @dev: the drm_device
364  *
365  * Set up the framebuffer compression hardware at mode set time.  We
366  * enable it if possible:
367  *   - plane A only (on pre-965)
368  *   - no pixel mulitply/line duplication
369  *   - no alpha buffer discard
370  *   - no dual wide
371  *   - framebuffer <= 2048 in width, 1536 in height
372  *
373  * We can't assume that any compression will take place (worst case),
374  * so the compressed buffer has to be the same size as the uncompressed
375  * one.  It also must reside (along with the line length buffer) in
376  * stolen memory.
377  *
378  * We need to enable/disable FBC on a global basis.
379  */
380 void intel_update_fbc(struct drm_device *dev)
381 {
382         struct drm_i915_private *dev_priv = dev->dev_private;
383         struct drm_crtc *crtc = NULL, *tmp_crtc;
384         struct intel_crtc *intel_crtc;
385         struct drm_framebuffer *fb;
386         struct intel_framebuffer *intel_fb;
387         struct drm_i915_gem_object *obj;
388         int enable_fbc;
389
390         DRM_DEBUG_KMS("\n");
391
392         if (!i915_powersave)
393                 return;
394
395         if (!I915_HAS_FBC(dev))
396                 return;
397
398         /*
399          * If FBC is already on, we just have to verify that we can
400          * keep it that way...
401          * Need to disable if:
402          *   - more than one pipe is active
403          *   - changing FBC params (stride, fence, mode)
404          *   - new fb is too large to fit in compressed buffer
405          *   - going to an unsupported config (interlace, pixel multiply, etc.)
406          */
407         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
408                 if (tmp_crtc->enabled && tmp_crtc->fb) {
409                         if (crtc) {
410                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
411                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
412                                 goto out_disable;
413                         }
414                         crtc = tmp_crtc;
415                 }
416         }
417
418         if (!crtc || crtc->fb == NULL) {
419                 DRM_DEBUG_KMS("no output, disabling\n");
420                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
421                 goto out_disable;
422         }
423
424         intel_crtc = to_intel_crtc(crtc);
425         fb = crtc->fb;
426         intel_fb = to_intel_framebuffer(fb);
427         obj = intel_fb->obj;
428
429         enable_fbc = i915_enable_fbc;
430         if (enable_fbc < 0) {
431                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
432                 enable_fbc = 1;
433                 if (INTEL_INFO(dev)->gen <= 6)
434                         enable_fbc = 0;
435         }
436         if (!enable_fbc) {
437                 DRM_DEBUG_KMS("fbc disabled per module param\n");
438                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
439                 goto out_disable;
440         }
441         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
442                 DRM_DEBUG_KMS("framebuffer too large, disabling "
443                               "compression\n");
444                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
445                 goto out_disable;
446         }
447         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
448             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
449                 DRM_DEBUG_KMS("mode incompatible with compression, "
450                               "disabling\n");
451                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
452                 goto out_disable;
453         }
454         if ((crtc->mode.hdisplay > 2048) ||
455             (crtc->mode.vdisplay > 1536)) {
456                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
457                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
458                 goto out_disable;
459         }
460         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
461                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
462                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
463                 goto out_disable;
464         }
465
466         /* The use of a CPU fence is mandatory in order to detect writes
467          * by the CPU to the scanout and trigger updates to the FBC.
468          */
469         if (obj->tiling_mode != I915_TILING_X ||
470             obj->fence_reg == I915_FENCE_REG_NONE) {
471                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
472                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
473                 goto out_disable;
474         }
475
476         /* If the kernel debugger is active, always disable compression */
477         if (in_dbg_master())
478                 goto out_disable;
479
480         /* If the scanout has not changed, don't modify the FBC settings.
481          * Note that we make the fundamental assumption that the fb->obj
482          * cannot be unpinned (and have its GTT offset and fence revoked)
483          * without first being decoupled from the scanout and FBC disabled.
484          */
485         if (dev_priv->cfb_plane == intel_crtc->plane &&
486             dev_priv->cfb_fb == fb->base.id &&
487             dev_priv->cfb_y == crtc->y)
488                 return;
489
490         if (intel_fbc_enabled(dev)) {
491                 /* We update FBC along two paths, after changing fb/crtc
492                  * configuration (modeswitching) and after page-flipping
493                  * finishes. For the latter, we know that not only did
494                  * we disable the FBC at the start of the page-flip
495                  * sequence, but also more than one vblank has passed.
496                  *
497                  * For the former case of modeswitching, it is possible
498                  * to switch between two FBC valid configurations
499                  * instantaneously so we do need to disable the FBC
500                  * before we can modify its control registers. We also
501                  * have to wait for the next vblank for that to take
502                  * effect. However, since we delay enabling FBC we can
503                  * assume that a vblank has passed since disabling and
504                  * that we can safely alter the registers in the deferred
505                  * callback.
506                  *
507                  * In the scenario that we go from a valid to invalid
508                  * and then back to valid FBC configuration we have
509                  * no strict enforcement that a vblank occurred since
510                  * disabling the FBC. However, along all current pipe
511                  * disabling paths we do need to wait for a vblank at
512                  * some point. And we wait before enabling FBC anyway.
513                  */
514                 DRM_DEBUG_KMS("disabling active FBC for update\n");
515                 intel_disable_fbc(dev);
516         }
517
518         intel_enable_fbc(crtc, 500);
519         return;
520
521 out_disable:
522         /* Multiple disables should be harmless */
523         if (intel_fbc_enabled(dev)) {
524                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
525                 intel_disable_fbc(dev);
526         }
527 }
528
529 static void i915_pineview_get_mem_freq(struct drm_device *dev)
530 {
531         drm_i915_private_t *dev_priv = dev->dev_private;
532         u32 tmp;
533
534         tmp = I915_READ(CLKCFG);
535
536         switch (tmp & CLKCFG_FSB_MASK) {
537         case CLKCFG_FSB_533:
538                 dev_priv->fsb_freq = 533; /* 133*4 */
539                 break;
540         case CLKCFG_FSB_800:
541                 dev_priv->fsb_freq = 800; /* 200*4 */
542                 break;
543         case CLKCFG_FSB_667:
544                 dev_priv->fsb_freq =  667; /* 167*4 */
545                 break;
546         case CLKCFG_FSB_400:
547                 dev_priv->fsb_freq = 400; /* 100*4 */
548                 break;
549         }
550
551         switch (tmp & CLKCFG_MEM_MASK) {
552         case CLKCFG_MEM_533:
553                 dev_priv->mem_freq = 533;
554                 break;
555         case CLKCFG_MEM_667:
556                 dev_priv->mem_freq = 667;
557                 break;
558         case CLKCFG_MEM_800:
559                 dev_priv->mem_freq = 800;
560                 break;
561         }
562
563         /* detect pineview DDR3 setting */
564         tmp = I915_READ(CSHRDDR3CTL);
565         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
566 }
567
568 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
569 {
570         drm_i915_private_t *dev_priv = dev->dev_private;
571         u16 ddrpll, csipll;
572
573         ddrpll = I915_READ16(DDRMPLL1);
574         csipll = I915_READ16(CSIPLL0);
575
576         switch (ddrpll & 0xff) {
577         case 0xc:
578                 dev_priv->mem_freq = 800;
579                 break;
580         case 0x10:
581                 dev_priv->mem_freq = 1066;
582                 break;
583         case 0x14:
584                 dev_priv->mem_freq = 1333;
585                 break;
586         case 0x18:
587                 dev_priv->mem_freq = 1600;
588                 break;
589         default:
590                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
591                                  ddrpll & 0xff);
592                 dev_priv->mem_freq = 0;
593                 break;
594         }
595
596         dev_priv->r_t = dev_priv->mem_freq;
597
598         switch (csipll & 0x3ff) {
599         case 0x00c:
600                 dev_priv->fsb_freq = 3200;
601                 break;
602         case 0x00e:
603                 dev_priv->fsb_freq = 3733;
604                 break;
605         case 0x010:
606                 dev_priv->fsb_freq = 4266;
607                 break;
608         case 0x012:
609                 dev_priv->fsb_freq = 4800;
610                 break;
611         case 0x014:
612                 dev_priv->fsb_freq = 5333;
613                 break;
614         case 0x016:
615                 dev_priv->fsb_freq = 5866;
616                 break;
617         case 0x018:
618                 dev_priv->fsb_freq = 6400;
619                 break;
620         default:
621                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
622                                  csipll & 0x3ff);
623                 dev_priv->fsb_freq = 0;
624                 break;
625         }
626
627         if (dev_priv->fsb_freq == 3200) {
628                 dev_priv->c_m = 0;
629         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
630                 dev_priv->c_m = 1;
631         } else {
632                 dev_priv->c_m = 2;
633         }
634 }
635
636 static const struct cxsr_latency cxsr_latency_table[] = {
637         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
638         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
639         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
640         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
641         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
642
643         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
644         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
645         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
646         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
647         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
648
649         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
650         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
651         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
652         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
653         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
654
655         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
656         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
657         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
658         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
659         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
660
661         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
662         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
663         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
664         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
665         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
666
667         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
668         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
669         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
670         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
671         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
672 };
673
674 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
675                                                          int is_ddr3,
676                                                          int fsb,
677                                                          int mem)
678 {
679         const struct cxsr_latency *latency;
680         int i;
681
682         if (fsb == 0 || mem == 0)
683                 return NULL;
684
685         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
686                 latency = &cxsr_latency_table[i];
687                 if (is_desktop == latency->is_desktop &&
688                     is_ddr3 == latency->is_ddr3 &&
689                     fsb == latency->fsb_freq && mem == latency->mem_freq)
690                         return latency;
691         }
692
693         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
694
695         return NULL;
696 }
697
698 static void pineview_disable_cxsr(struct drm_device *dev)
699 {
700         struct drm_i915_private *dev_priv = dev->dev_private;
701
702         /* deactivate cxsr */
703         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
704 }
705
706 /*
707  * Latency for FIFO fetches is dependent on several factors:
708  *   - memory configuration (speed, channels)
709  *   - chipset
710  *   - current MCH state
711  * It can be fairly high in some situations, so here we assume a fairly
712  * pessimal value.  It's a tradeoff between extra memory fetches (if we
713  * set this value too high, the FIFO will fetch frequently to stay full)
714  * and power consumption (set it too low to save power and we might see
715  * FIFO underruns and display "flicker").
716  *
717  * A value of 5us seems to be a good balance; safe for very low end
718  * platforms but not overly aggressive on lower latency configs.
719  */
720 static const int latency_ns = 5000;
721
722 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725         uint32_t dsparb = I915_READ(DSPARB);
726         int size;
727
728         size = dsparb & 0x7f;
729         if (plane)
730                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
731
732         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
733                       plane ? "B" : "A", size);
734
735         return size;
736 }
737
738 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
739 {
740         struct drm_i915_private *dev_priv = dev->dev_private;
741         uint32_t dsparb = I915_READ(DSPARB);
742         int size;
743
744         size = dsparb & 0x1ff;
745         if (plane)
746                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
747         size >>= 1; /* Convert to cachelines */
748
749         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
750                       plane ? "B" : "A", size);
751
752         return size;
753 }
754
755 static int i845_get_fifo_size(struct drm_device *dev, int plane)
756 {
757         struct drm_i915_private *dev_priv = dev->dev_private;
758         uint32_t dsparb = I915_READ(DSPARB);
759         int size;
760
761         size = dsparb & 0x7f;
762         size >>= 2; /* Convert to cachelines */
763
764         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
765                       plane ? "B" : "A",
766                       size);
767
768         return size;
769 }
770
771 static int i830_get_fifo_size(struct drm_device *dev, int plane)
772 {
773         struct drm_i915_private *dev_priv = dev->dev_private;
774         uint32_t dsparb = I915_READ(DSPARB);
775         int size;
776
777         size = dsparb & 0x7f;
778         size >>= 1; /* Convert to cachelines */
779
780         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
781                       plane ? "B" : "A", size);
782
783         return size;
784 }
785
786 /* Pineview has different values for various configs */
787 static const struct intel_watermark_params pineview_display_wm = {
788         PINEVIEW_DISPLAY_FIFO,
789         PINEVIEW_MAX_WM,
790         PINEVIEW_DFT_WM,
791         PINEVIEW_GUARD_WM,
792         PINEVIEW_FIFO_LINE_SIZE
793 };
794 static const struct intel_watermark_params pineview_display_hplloff_wm = {
795         PINEVIEW_DISPLAY_FIFO,
796         PINEVIEW_MAX_WM,
797         PINEVIEW_DFT_HPLLOFF_WM,
798         PINEVIEW_GUARD_WM,
799         PINEVIEW_FIFO_LINE_SIZE
800 };
801 static const struct intel_watermark_params pineview_cursor_wm = {
802         PINEVIEW_CURSOR_FIFO,
803         PINEVIEW_CURSOR_MAX_WM,
804         PINEVIEW_CURSOR_DFT_WM,
805         PINEVIEW_CURSOR_GUARD_WM,
806         PINEVIEW_FIFO_LINE_SIZE,
807 };
808 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
809         PINEVIEW_CURSOR_FIFO,
810         PINEVIEW_CURSOR_MAX_WM,
811         PINEVIEW_CURSOR_DFT_WM,
812         PINEVIEW_CURSOR_GUARD_WM,
813         PINEVIEW_FIFO_LINE_SIZE
814 };
815 static const struct intel_watermark_params g4x_wm_info = {
816         G4X_FIFO_SIZE,
817         G4X_MAX_WM,
818         G4X_MAX_WM,
819         2,
820         G4X_FIFO_LINE_SIZE,
821 };
822 static const struct intel_watermark_params g4x_cursor_wm_info = {
823         I965_CURSOR_FIFO,
824         I965_CURSOR_MAX_WM,
825         I965_CURSOR_DFT_WM,
826         2,
827         G4X_FIFO_LINE_SIZE,
828 };
829 static const struct intel_watermark_params valleyview_wm_info = {
830         VALLEYVIEW_FIFO_SIZE,
831         VALLEYVIEW_MAX_WM,
832         VALLEYVIEW_MAX_WM,
833         2,
834         G4X_FIFO_LINE_SIZE,
835 };
836 static const struct intel_watermark_params valleyview_cursor_wm_info = {
837         I965_CURSOR_FIFO,
838         VALLEYVIEW_CURSOR_MAX_WM,
839         I965_CURSOR_DFT_WM,
840         2,
841         G4X_FIFO_LINE_SIZE,
842 };
843 static const struct intel_watermark_params i965_cursor_wm_info = {
844         I965_CURSOR_FIFO,
845         I965_CURSOR_MAX_WM,
846         I965_CURSOR_DFT_WM,
847         2,
848         I915_FIFO_LINE_SIZE,
849 };
850 static const struct intel_watermark_params i945_wm_info = {
851         I945_FIFO_SIZE,
852         I915_MAX_WM,
853         1,
854         2,
855         I915_FIFO_LINE_SIZE
856 };
857 static const struct intel_watermark_params i915_wm_info = {
858         I915_FIFO_SIZE,
859         I915_MAX_WM,
860         1,
861         2,
862         I915_FIFO_LINE_SIZE
863 };
864 static const struct intel_watermark_params i855_wm_info = {
865         I855GM_FIFO_SIZE,
866         I915_MAX_WM,
867         1,
868         2,
869         I830_FIFO_LINE_SIZE
870 };
871 static const struct intel_watermark_params i830_wm_info = {
872         I830_FIFO_SIZE,
873         I915_MAX_WM,
874         1,
875         2,
876         I830_FIFO_LINE_SIZE
877 };
878
879 static const struct intel_watermark_params ironlake_display_wm_info = {
880         ILK_DISPLAY_FIFO,
881         ILK_DISPLAY_MAXWM,
882         ILK_DISPLAY_DFTWM,
883         2,
884         ILK_FIFO_LINE_SIZE
885 };
886 static const struct intel_watermark_params ironlake_cursor_wm_info = {
887         ILK_CURSOR_FIFO,
888         ILK_CURSOR_MAXWM,
889         ILK_CURSOR_DFTWM,
890         2,
891         ILK_FIFO_LINE_SIZE
892 };
893 static const struct intel_watermark_params ironlake_display_srwm_info = {
894         ILK_DISPLAY_SR_FIFO,
895         ILK_DISPLAY_MAX_SRWM,
896         ILK_DISPLAY_DFT_SRWM,
897         2,
898         ILK_FIFO_LINE_SIZE
899 };
900 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
901         ILK_CURSOR_SR_FIFO,
902         ILK_CURSOR_MAX_SRWM,
903         ILK_CURSOR_DFT_SRWM,
904         2,
905         ILK_FIFO_LINE_SIZE
906 };
907
908 static const struct intel_watermark_params sandybridge_display_wm_info = {
909         SNB_DISPLAY_FIFO,
910         SNB_DISPLAY_MAXWM,
911         SNB_DISPLAY_DFTWM,
912         2,
913         SNB_FIFO_LINE_SIZE
914 };
915 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
916         SNB_CURSOR_FIFO,
917         SNB_CURSOR_MAXWM,
918         SNB_CURSOR_DFTWM,
919         2,
920         SNB_FIFO_LINE_SIZE
921 };
922 static const struct intel_watermark_params sandybridge_display_srwm_info = {
923         SNB_DISPLAY_SR_FIFO,
924         SNB_DISPLAY_MAX_SRWM,
925         SNB_DISPLAY_DFT_SRWM,
926         2,
927         SNB_FIFO_LINE_SIZE
928 };
929 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
930         SNB_CURSOR_SR_FIFO,
931         SNB_CURSOR_MAX_SRWM,
932         SNB_CURSOR_DFT_SRWM,
933         2,
934         SNB_FIFO_LINE_SIZE
935 };
936
937
938 /**
939  * intel_calculate_wm - calculate watermark level
940  * @clock_in_khz: pixel clock
941  * @wm: chip FIFO params
942  * @pixel_size: display pixel size
943  * @latency_ns: memory latency for the platform
944  *
945  * Calculate the watermark level (the level at which the display plane will
946  * start fetching from memory again).  Each chip has a different display
947  * FIFO size and allocation, so the caller needs to figure that out and pass
948  * in the correct intel_watermark_params structure.
949  *
950  * As the pixel clock runs, the FIFO will be drained at a rate that depends
951  * on the pixel size.  When it reaches the watermark level, it'll start
952  * fetching FIFO line sized based chunks from memory until the FIFO fills
953  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
954  * will occur, and a display engine hang could result.
955  */
956 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
957                                         const struct intel_watermark_params *wm,
958                                         int fifo_size,
959                                         int pixel_size,
960                                         unsigned long latency_ns)
961 {
962         long entries_required, wm_size;
963
964         /*
965          * Note: we need to make sure we don't overflow for various clock &
966          * latency values.
967          * clocks go from a few thousand to several hundred thousand.
968          * latency is usually a few thousand
969          */
970         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
971                 1000;
972         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
973
974         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
975
976         wm_size = fifo_size - (entries_required + wm->guard_size);
977
978         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
979
980         /* Don't promote wm_size to unsigned... */
981         if (wm_size > (long)wm->max_wm)
982                 wm_size = wm->max_wm;
983         if (wm_size <= 0)
984                 wm_size = wm->default_wm;
985         return wm_size;
986 }
987
988 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
989 {
990         struct drm_crtc *crtc, *enabled = NULL;
991
992         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
993                 if (crtc->enabled && crtc->fb) {
994                         if (enabled)
995                                 return NULL;
996                         enabled = crtc;
997                 }
998         }
999
1000         return enabled;
1001 }
1002
1003 static void pineview_update_wm(struct drm_device *dev)
1004 {
1005         struct drm_i915_private *dev_priv = dev->dev_private;
1006         struct drm_crtc *crtc;
1007         const struct cxsr_latency *latency;
1008         u32 reg;
1009         unsigned long wm;
1010
1011         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1013         if (!latency) {
1014                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015                 pineview_disable_cxsr(dev);
1016                 return;
1017         }
1018
1019         crtc = single_enabled_crtc(dev);
1020         if (crtc) {
1021                 int clock = crtc->mode.clock;
1022                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024                 /* Display SR */
1025                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1026                                         pineview_display_wm.fifo_size,
1027                                         pixel_size, latency->display_sr);
1028                 reg = I915_READ(DSPFW1);
1029                 reg &= ~DSPFW_SR_MASK;
1030                 reg |= wm << DSPFW_SR_SHIFT;
1031                 I915_WRITE(DSPFW1, reg);
1032                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034                 /* cursor SR */
1035                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036                                         pineview_display_wm.fifo_size,
1037                                         pixel_size, latency->cursor_sr);
1038                 reg = I915_READ(DSPFW3);
1039                 reg &= ~DSPFW_CURSOR_SR_MASK;
1040                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041                 I915_WRITE(DSPFW3, reg);
1042
1043                 /* Display HPLL off SR */
1044                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045                                         pineview_display_hplloff_wm.fifo_size,
1046                                         pixel_size, latency->display_hpll_disable);
1047                 reg = I915_READ(DSPFW3);
1048                 reg &= ~DSPFW_HPLL_SR_MASK;
1049                 reg |= wm & DSPFW_HPLL_SR_MASK;
1050                 I915_WRITE(DSPFW3, reg);
1051
1052                 /* cursor HPLL off SR */
1053                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054                                         pineview_display_hplloff_wm.fifo_size,
1055                                         pixel_size, latency->cursor_hpll_disable);
1056                 reg = I915_READ(DSPFW3);
1057                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059                 I915_WRITE(DSPFW3, reg);
1060                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062                 /* activate cxsr */
1063                 I915_WRITE(DSPFW3,
1064                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066         } else {
1067                 pineview_disable_cxsr(dev);
1068                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069         }
1070 }
1071
1072 static bool g4x_compute_wm0(struct drm_device *dev,
1073                             int plane,
1074                             const struct intel_watermark_params *display,
1075                             int display_latency_ns,
1076                             const struct intel_watermark_params *cursor,
1077                             int cursor_latency_ns,
1078                             int *plane_wm,
1079                             int *cursor_wm)
1080 {
1081         struct drm_crtc *crtc;
1082         int htotal, hdisplay, clock, pixel_size;
1083         int line_time_us, line_count;
1084         int entries, tlb_miss;
1085
1086         crtc = intel_get_crtc_for_plane(dev, plane);
1087         if (crtc->fb == NULL || !crtc->enabled) {
1088                 *cursor_wm = cursor->guard_size;
1089                 *plane_wm = display->guard_size;
1090                 return false;
1091         }
1092
1093         htotal = crtc->mode.htotal;
1094         hdisplay = crtc->mode.hdisplay;
1095         clock = crtc->mode.clock;
1096         pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098         /* Use the small buffer method to calculate plane watermark */
1099         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101         if (tlb_miss > 0)
1102                 entries += tlb_miss;
1103         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104         *plane_wm = entries + display->guard_size;
1105         if (*plane_wm > (int)display->max_wm)
1106                 *plane_wm = display->max_wm;
1107
1108         /* Use the large buffer method to calculate cursor watermark */
1109         line_time_us = ((htotal * 1000) / clock);
1110         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111         entries = line_count * 64 * pixel_size;
1112         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113         if (tlb_miss > 0)
1114                 entries += tlb_miss;
1115         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116         *cursor_wm = entries + cursor->guard_size;
1117         if (*cursor_wm > (int)cursor->max_wm)
1118                 *cursor_wm = (int)cursor->max_wm;
1119
1120         return true;
1121 }
1122
1123 /*
1124  * Check the wm result.
1125  *
1126  * If any calculated watermark values is larger than the maximum value that
1127  * can be programmed into the associated watermark register, that watermark
1128  * must be disabled.
1129  */
1130 static bool g4x_check_srwm(struct drm_device *dev,
1131                            int display_wm, int cursor_wm,
1132                            const struct intel_watermark_params *display,
1133                            const struct intel_watermark_params *cursor)
1134 {
1135         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136                       display_wm, cursor_wm);
1137
1138         if (display_wm > display->max_wm) {
1139                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140                               display_wm, display->max_wm);
1141                 return false;
1142         }
1143
1144         if (cursor_wm > cursor->max_wm) {
1145                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146                               cursor_wm, cursor->max_wm);
1147                 return false;
1148         }
1149
1150         if (!(display_wm || cursor_wm)) {
1151                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152                 return false;
1153         }
1154
1155         return true;
1156 }
1157
1158 static bool g4x_compute_srwm(struct drm_device *dev,
1159                              int plane,
1160                              int latency_ns,
1161                              const struct intel_watermark_params *display,
1162                              const struct intel_watermark_params *cursor,
1163                              int *display_wm, int *cursor_wm)
1164 {
1165         struct drm_crtc *crtc;
1166         int hdisplay, htotal, pixel_size, clock;
1167         unsigned long line_time_us;
1168         int line_count, line_size;
1169         int small, large;
1170         int entries;
1171
1172         if (!latency_ns) {
1173                 *display_wm = *cursor_wm = 0;
1174                 return false;
1175         }
1176
1177         crtc = intel_get_crtc_for_plane(dev, plane);
1178         hdisplay = crtc->mode.hdisplay;
1179         htotal = crtc->mode.htotal;
1180         clock = crtc->mode.clock;
1181         pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183         line_time_us = (htotal * 1000) / clock;
1184         line_count = (latency_ns / line_time_us + 1000) / 1000;
1185         line_size = hdisplay * pixel_size;
1186
1187         /* Use the minimum of the small and large buffer method for primary */
1188         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189         large = line_count * line_size;
1190
1191         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192         *display_wm = entries + display->guard_size;
1193
1194         /* calculate the self-refresh watermark for display cursor */
1195         entries = line_count * pixel_size * 64;
1196         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197         *cursor_wm = entries + cursor->guard_size;
1198
1199         return g4x_check_srwm(dev,
1200                               *display_wm, *cursor_wm,
1201                               display, cursor);
1202 }
1203
1204 static bool vlv_compute_drain_latency(struct drm_device *dev,
1205                                      int plane,
1206                                      int *plane_prec_mult,
1207                                      int *plane_dl,
1208                                      int *cursor_prec_mult,
1209                                      int *cursor_dl)
1210 {
1211         struct drm_crtc *crtc;
1212         int clock, pixel_size;
1213         int entries;
1214
1215         crtc = intel_get_crtc_for_plane(dev, plane);
1216         if (crtc->fb == NULL || !crtc->enabled)
1217                 return false;
1218
1219         clock = crtc->mode.clock;       /* VESA DOT Clock */
1220         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1221
1222         entries = (clock / 1000) * pixel_size;
1223         *plane_prec_mult = (entries > 256) ?
1224                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226                                                      pixel_size);
1227
1228         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1229         *cursor_prec_mult = (entries > 256) ?
1230                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233         return true;
1234 }
1235
1236 /*
1237  * Update drain latency registers of memory arbiter
1238  *
1239  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240  * to be programmed. Each plane has a drain latency multiplier and a drain
1241  * latency value.
1242  */
1243
1244 static void vlv_update_drain_latency(struct drm_device *dev)
1245 {
1246         struct drm_i915_private *dev_priv = dev->dev_private;
1247         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250                                                         either 16 or 32 */
1251
1252         /* For plane A, Cursor A */
1253         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254                                       &cursor_prec_mult, &cursora_dl)) {
1255                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260                 I915_WRITE(VLV_DDL1, cursora_prec |
1261                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1262                                 planea_prec | planea_dl);
1263         }
1264
1265         /* For plane B, Cursor B */
1266         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267                                       &cursor_prec_mult, &cursorb_dl)) {
1268                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273                 I915_WRITE(VLV_DDL2, cursorb_prec |
1274                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1275                                 planeb_prec | planeb_dl);
1276         }
1277 }
1278
1279 #define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281 static void valleyview_update_wm(struct drm_device *dev)
1282 {
1283         static const int sr_latency_ns = 12000;
1284         struct drm_i915_private *dev_priv = dev->dev_private;
1285         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286         int plane_sr, cursor_sr;
1287         unsigned int enabled = 0;
1288
1289         vlv_update_drain_latency(dev);
1290
1291         if (g4x_compute_wm0(dev, 0,
1292                             &valleyview_wm_info, latency_ns,
1293                             &valleyview_cursor_wm_info, latency_ns,
1294                             &planea_wm, &cursora_wm))
1295                 enabled |= 1;
1296
1297         if (g4x_compute_wm0(dev, 1,
1298                             &valleyview_wm_info, latency_ns,
1299                             &valleyview_cursor_wm_info, latency_ns,
1300                             &planeb_wm, &cursorb_wm))
1301                 enabled |= 2;
1302
1303         plane_sr = cursor_sr = 0;
1304         if (single_plane_enabled(enabled) &&
1305             g4x_compute_srwm(dev, ffs(enabled) - 1,
1306                              sr_latency_ns,
1307                              &valleyview_wm_info,
1308                              &valleyview_cursor_wm_info,
1309                              &plane_sr, &cursor_sr))
1310                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311         else
1312                 I915_WRITE(FW_BLC_SELF_VLV,
1313                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316                       planea_wm, cursora_wm,
1317                       planeb_wm, cursorb_wm,
1318                       plane_sr, cursor_sr);
1319
1320         I915_WRITE(DSPFW1,
1321                    (plane_sr << DSPFW_SR_SHIFT) |
1322                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324                    planea_wm);
1325         I915_WRITE(DSPFW2,
1326                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1328         I915_WRITE(DSPFW3,
1329                    (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330 }
1331
1332 static void g4x_update_wm(struct drm_device *dev)
1333 {
1334         static const int sr_latency_ns = 12000;
1335         struct drm_i915_private *dev_priv = dev->dev_private;
1336         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337         int plane_sr, cursor_sr;
1338         unsigned int enabled = 0;
1339
1340         if (g4x_compute_wm0(dev, 0,
1341                             &g4x_wm_info, latency_ns,
1342                             &g4x_cursor_wm_info, latency_ns,
1343                             &planea_wm, &cursora_wm))
1344                 enabled |= 1;
1345
1346         if (g4x_compute_wm0(dev, 1,
1347                             &g4x_wm_info, latency_ns,
1348                             &g4x_cursor_wm_info, latency_ns,
1349                             &planeb_wm, &cursorb_wm))
1350                 enabled |= 2;
1351
1352         plane_sr = cursor_sr = 0;
1353         if (single_plane_enabled(enabled) &&
1354             g4x_compute_srwm(dev, ffs(enabled) - 1,
1355                              sr_latency_ns,
1356                              &g4x_wm_info,
1357                              &g4x_cursor_wm_info,
1358                              &plane_sr, &cursor_sr))
1359                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360         else
1361                 I915_WRITE(FW_BLC_SELF,
1362                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365                       planea_wm, cursora_wm,
1366                       planeb_wm, cursorb_wm,
1367                       plane_sr, cursor_sr);
1368
1369         I915_WRITE(DSPFW1,
1370                    (plane_sr << DSPFW_SR_SHIFT) |
1371                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373                    planea_wm);
1374         I915_WRITE(DSPFW2,
1375                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1377         /* HPLL off in SR has some issues on G4x... disable it */
1378         I915_WRITE(DSPFW3,
1379                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381 }
1382
1383 static void i965_update_wm(struct drm_device *dev)
1384 {
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386         struct drm_crtc *crtc;
1387         int srwm = 1;
1388         int cursor_sr = 16;
1389
1390         /* Calc sr entries for one plane configs */
1391         crtc = single_enabled_crtc(dev);
1392         if (crtc) {
1393                 /* self-refresh has much higher latency */
1394                 static const int sr_latency_ns = 12000;
1395                 int clock = crtc->mode.clock;
1396                 int htotal = crtc->mode.htotal;
1397                 int hdisplay = crtc->mode.hdisplay;
1398                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1399                 unsigned long line_time_us;
1400                 int entries;
1401
1402                 line_time_us = ((htotal * 1000) / clock);
1403
1404                 /* Use ns/us then divide to preserve precision */
1405                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406                         pixel_size * hdisplay;
1407                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408                 srwm = I965_FIFO_SIZE - entries;
1409                 if (srwm < 0)
1410                         srwm = 1;
1411                 srwm &= 0x1ff;
1412                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413                               entries, srwm);
1414
1415                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416                         pixel_size * 64;
1417                 entries = DIV_ROUND_UP(entries,
1418                                           i965_cursor_wm_info.cacheline_size);
1419                 cursor_sr = i965_cursor_wm_info.fifo_size -
1420                         (entries + i965_cursor_wm_info.guard_size);
1421
1422                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1423                         cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426                               "cursor %d\n", srwm, cursor_sr);
1427
1428                 if (IS_CRESTLINE(dev))
1429                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430         } else {
1431                 /* Turn off self refresh if both pipes are enabled */
1432                 if (IS_CRESTLINE(dev))
1433                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434                                    & ~FW_BLC_SELF_EN);
1435         }
1436
1437         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438                       srwm);
1439
1440         /* 965 has limitations... */
1441         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442                    (8 << 16) | (8 << 8) | (8 << 0));
1443         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444         /* update cursor SR watermark */
1445         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446 }
1447
1448 static void i9xx_update_wm(struct drm_device *dev)
1449 {
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         const struct intel_watermark_params *wm_info;
1452         uint32_t fwater_lo;
1453         uint32_t fwater_hi;
1454         int cwm, srwm = 1;
1455         int fifo_size;
1456         int planea_wm, planeb_wm;
1457         struct drm_crtc *crtc, *enabled = NULL;
1458
1459         if (IS_I945GM(dev))
1460                 wm_info = &i945_wm_info;
1461         else if (!IS_GEN2(dev))
1462                 wm_info = &i915_wm_info;
1463         else
1464                 wm_info = &i855_wm_info;
1465
1466         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467         crtc = intel_get_crtc_for_plane(dev, 0);
1468         if (crtc->enabled && crtc->fb) {
1469                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1470                                                wm_info, fifo_size,
1471                                                crtc->fb->bits_per_pixel / 8,
1472                                                latency_ns);
1473                 enabled = crtc;
1474         } else
1475                 planea_wm = fifo_size - wm_info->guard_size;
1476
1477         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478         crtc = intel_get_crtc_for_plane(dev, 1);
1479         if (crtc->enabled && crtc->fb) {
1480                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481                                                wm_info, fifo_size,
1482                                                crtc->fb->bits_per_pixel / 8,
1483                                                latency_ns);
1484                 if (enabled == NULL)
1485                         enabled = crtc;
1486                 else
1487                         enabled = NULL;
1488         } else
1489                 planeb_wm = fifo_size - wm_info->guard_size;
1490
1491         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493         /*
1494          * Overlay gets an aggressive default since video jitter is bad.
1495          */
1496         cwm = 2;
1497
1498         /* Play safe and disable self-refresh before adjusting watermarks. */
1499         if (IS_I945G(dev) || IS_I945GM(dev))
1500                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501         else if (IS_I915GM(dev))
1502                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504         /* Calc sr entries for one plane configs */
1505         if (HAS_FW_BLC(dev) && enabled) {
1506                 /* self-refresh has much higher latency */
1507                 static const int sr_latency_ns = 6000;
1508                 int clock = enabled->mode.clock;
1509                 int htotal = enabled->mode.htotal;
1510                 int hdisplay = enabled->mode.hdisplay;
1511                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1512                 unsigned long line_time_us;
1513                 int entries;
1514
1515                 line_time_us = (htotal * 1000) / clock;
1516
1517                 /* Use ns/us then divide to preserve precision */
1518                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519                         pixel_size * hdisplay;
1520                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522                 srwm = wm_info->fifo_size - entries;
1523                 if (srwm < 0)
1524                         srwm = 1;
1525
1526                 if (IS_I945G(dev) || IS_I945GM(dev))
1527                         I915_WRITE(FW_BLC_SELF,
1528                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529                 else if (IS_I915GM(dev))
1530                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531         }
1532
1533         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534                       planea_wm, planeb_wm, cwm, srwm);
1535
1536         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537         fwater_hi = (cwm & 0x1f);
1538
1539         /* Set request length to 8 cachelines per fetch */
1540         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541         fwater_hi = fwater_hi | (1 << 8);
1542
1543         I915_WRITE(FW_BLC, fwater_lo);
1544         I915_WRITE(FW_BLC2, fwater_hi);
1545
1546         if (HAS_FW_BLC(dev)) {
1547                 if (enabled) {
1548                         if (IS_I945G(dev) || IS_I945GM(dev))
1549                                 I915_WRITE(FW_BLC_SELF,
1550                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551                         else if (IS_I915GM(dev))
1552                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1554                 } else
1555                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1556         }
1557 }
1558
1559 static void i830_update_wm(struct drm_device *dev)
1560 {
1561         struct drm_i915_private *dev_priv = dev->dev_private;
1562         struct drm_crtc *crtc;
1563         uint32_t fwater_lo;
1564         int planea_wm;
1565
1566         crtc = single_enabled_crtc(dev);
1567         if (crtc == NULL)
1568                 return;
1569
1570         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571                                        dev_priv->display.get_fifo_size(dev, 0),
1572                                        crtc->fb->bits_per_pixel / 8,
1573                                        latency_ns);
1574         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575         fwater_lo |= (3<<8) | planea_wm;
1576
1577         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579         I915_WRITE(FW_BLC, fwater_lo);
1580 }
1581
1582 #define ILK_LP0_PLANE_LATENCY           700
1583 #define ILK_LP0_CURSOR_LATENCY          1300
1584
1585 /*
1586  * Check the wm result.
1587  *
1588  * If any calculated watermark values is larger than the maximum value that
1589  * can be programmed into the associated watermark register, that watermark
1590  * must be disabled.
1591  */
1592 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593                                 int fbc_wm, int display_wm, int cursor_wm,
1594                                 const struct intel_watermark_params *display,
1595                                 const struct intel_watermark_params *cursor)
1596 {
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606                 /* fbc has it's own way to disable FBC WM */
1607                 I915_WRITE(DISP_ARB_CTL,
1608                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609                 return false;
1610         }
1611
1612         if (display_wm > display->max_wm) {
1613                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615                 return false;
1616         }
1617
1618         if (cursor_wm > cursor->max_wm) {
1619                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621                 return false;
1622         }
1623
1624         if (!(fbc_wm || display_wm || cursor_wm)) {
1625                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626                 return false;
1627         }
1628
1629         return true;
1630 }
1631
1632 /*
1633  * Compute watermark values of WM[1-3],
1634  */
1635 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636                                   int latency_ns,
1637                                   const struct intel_watermark_params *display,
1638                                   const struct intel_watermark_params *cursor,
1639                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1640 {
1641         struct drm_crtc *crtc;
1642         unsigned long line_time_us;
1643         int hdisplay, htotal, pixel_size, clock;
1644         int line_count, line_size;
1645         int small, large;
1646         int entries;
1647
1648         if (!latency_ns) {
1649                 *fbc_wm = *display_wm = *cursor_wm = 0;
1650                 return false;
1651         }
1652
1653         crtc = intel_get_crtc_for_plane(dev, plane);
1654         hdisplay = crtc->mode.hdisplay;
1655         htotal = crtc->mode.htotal;
1656         clock = crtc->mode.clock;
1657         pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659         line_time_us = (htotal * 1000) / clock;
1660         line_count = (latency_ns / line_time_us + 1000) / 1000;
1661         line_size = hdisplay * pixel_size;
1662
1663         /* Use the minimum of the small and large buffer method for primary */
1664         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665         large = line_count * line_size;
1666
1667         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668         *display_wm = entries + display->guard_size;
1669
1670         /*
1671          * Spec says:
1672          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673          */
1674         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676         /* calculate the self-refresh watermark for display cursor */
1677         entries = line_count * pixel_size * 64;
1678         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679         *cursor_wm = entries + cursor->guard_size;
1680
1681         return ironlake_check_srwm(dev, level,
1682                                    *fbc_wm, *display_wm, *cursor_wm,
1683                                    display, cursor);
1684 }
1685
1686 static void ironlake_update_wm(struct drm_device *dev)
1687 {
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         int fbc_wm, plane_wm, cursor_wm;
1690         unsigned int enabled;
1691
1692         enabled = 0;
1693         if (g4x_compute_wm0(dev, 0,
1694                             &ironlake_display_wm_info,
1695                             ILK_LP0_PLANE_LATENCY,
1696                             &ironlake_cursor_wm_info,
1697                             ILK_LP0_CURSOR_LATENCY,
1698                             &plane_wm, &cursor_wm)) {
1699                 I915_WRITE(WM0_PIPEA_ILK,
1700                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702                               " plane %d, " "cursor: %d\n",
1703                               plane_wm, cursor_wm);
1704                 enabled |= 1;
1705         }
1706
1707         if (g4x_compute_wm0(dev, 1,
1708                             &ironlake_display_wm_info,
1709                             ILK_LP0_PLANE_LATENCY,
1710                             &ironlake_cursor_wm_info,
1711                             ILK_LP0_CURSOR_LATENCY,
1712                             &plane_wm, &cursor_wm)) {
1713                 I915_WRITE(WM0_PIPEB_ILK,
1714                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716                               " plane %d, cursor: %d\n",
1717                               plane_wm, cursor_wm);
1718                 enabled |= 2;
1719         }
1720
1721         /*
1722          * Calculate and update the self-refresh watermark only when one
1723          * display plane is used.
1724          */
1725         I915_WRITE(WM3_LP_ILK, 0);
1726         I915_WRITE(WM2_LP_ILK, 0);
1727         I915_WRITE(WM1_LP_ILK, 0);
1728
1729         if (!single_plane_enabled(enabled))
1730                 return;
1731         enabled = ffs(enabled) - 1;
1732
1733         /* WM1 */
1734         if (!ironlake_compute_srwm(dev, 1, enabled,
1735                                    ILK_READ_WM1_LATENCY() * 500,
1736                                    &ironlake_display_srwm_info,
1737                                    &ironlake_cursor_srwm_info,
1738                                    &fbc_wm, &plane_wm, &cursor_wm))
1739                 return;
1740
1741         I915_WRITE(WM1_LP_ILK,
1742                    WM1_LP_SR_EN |
1743                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1745                    (plane_wm << WM1_LP_SR_SHIFT) |
1746                    cursor_wm);
1747
1748         /* WM2 */
1749         if (!ironlake_compute_srwm(dev, 2, enabled,
1750                                    ILK_READ_WM2_LATENCY() * 500,
1751                                    &ironlake_display_srwm_info,
1752                                    &ironlake_cursor_srwm_info,
1753                                    &fbc_wm, &plane_wm, &cursor_wm))
1754                 return;
1755
1756         I915_WRITE(WM2_LP_ILK,
1757                    WM2_LP_EN |
1758                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1760                    (plane_wm << WM1_LP_SR_SHIFT) |
1761                    cursor_wm);
1762
1763         /*
1764          * WM3 is unsupported on ILK, probably because we don't have latency
1765          * data for that power state
1766          */
1767 }
1768
1769 static void sandybridge_update_wm(struct drm_device *dev)
1770 {
1771         struct drm_i915_private *dev_priv = dev->dev_private;
1772         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1773         u32 val;
1774         int fbc_wm, plane_wm, cursor_wm;
1775         unsigned int enabled;
1776
1777         enabled = 0;
1778         if (g4x_compute_wm0(dev, 0,
1779                             &sandybridge_display_wm_info, latency,
1780                             &sandybridge_cursor_wm_info, latency,
1781                             &plane_wm, &cursor_wm)) {
1782                 val = I915_READ(WM0_PIPEA_ILK);
1783                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784                 I915_WRITE(WM0_PIPEA_ILK, val |
1785                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787                               " plane %d, " "cursor: %d\n",
1788                               plane_wm, cursor_wm);
1789                 enabled |= 1;
1790         }
1791
1792         if (g4x_compute_wm0(dev, 1,
1793                             &sandybridge_display_wm_info, latency,
1794                             &sandybridge_cursor_wm_info, latency,
1795                             &plane_wm, &cursor_wm)) {
1796                 val = I915_READ(WM0_PIPEB_ILK);
1797                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798                 I915_WRITE(WM0_PIPEB_ILK, val |
1799                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801                               " plane %d, cursor: %d\n",
1802                               plane_wm, cursor_wm);
1803                 enabled |= 2;
1804         }
1805
1806         if ((dev_priv->num_pipe == 3) &&
1807             g4x_compute_wm0(dev, 2,
1808                             &sandybridge_display_wm_info, latency,
1809                             &sandybridge_cursor_wm_info, latency,
1810                             &plane_wm, &cursor_wm)) {
1811                 val = I915_READ(WM0_PIPEC_IVB);
1812                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1813                 I915_WRITE(WM0_PIPEC_IVB, val |
1814                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1815                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1816                               " plane %d, cursor: %d\n",
1817                               plane_wm, cursor_wm);
1818                 enabled |= 3;
1819         }
1820
1821         /*
1822          * Calculate and update the self-refresh watermark only when one
1823          * display plane is used.
1824          *
1825          * SNB support 3 levels of watermark.
1826          *
1827          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1828          * and disabled in the descending order
1829          *
1830          */
1831         I915_WRITE(WM3_LP_ILK, 0);
1832         I915_WRITE(WM2_LP_ILK, 0);
1833         I915_WRITE(WM1_LP_ILK, 0);
1834
1835         if (!single_plane_enabled(enabled) ||
1836             dev_priv->sprite_scaling_enabled)
1837                 return;
1838         enabled = ffs(enabled) - 1;
1839
1840         /* WM1 */
1841         if (!ironlake_compute_srwm(dev, 1, enabled,
1842                                    SNB_READ_WM1_LATENCY() * 500,
1843                                    &sandybridge_display_srwm_info,
1844                                    &sandybridge_cursor_srwm_info,
1845                                    &fbc_wm, &plane_wm, &cursor_wm))
1846                 return;
1847
1848         I915_WRITE(WM1_LP_ILK,
1849                    WM1_LP_SR_EN |
1850                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1852                    (plane_wm << WM1_LP_SR_SHIFT) |
1853                    cursor_wm);
1854
1855         /* WM2 */
1856         if (!ironlake_compute_srwm(dev, 2, enabled,
1857                                    SNB_READ_WM2_LATENCY() * 500,
1858                                    &sandybridge_display_srwm_info,
1859                                    &sandybridge_cursor_srwm_info,
1860                                    &fbc_wm, &plane_wm, &cursor_wm))
1861                 return;
1862
1863         I915_WRITE(WM2_LP_ILK,
1864                    WM2_LP_EN |
1865                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1867                    (plane_wm << WM1_LP_SR_SHIFT) |
1868                    cursor_wm);
1869
1870         /* WM3 */
1871         if (!ironlake_compute_srwm(dev, 3, enabled,
1872                                    SNB_READ_WM3_LATENCY() * 500,
1873                                    &sandybridge_display_srwm_info,
1874                                    &sandybridge_cursor_srwm_info,
1875                                    &fbc_wm, &plane_wm, &cursor_wm))
1876                 return;
1877
1878         I915_WRITE(WM3_LP_ILK,
1879                    WM3_LP_EN |
1880                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1882                    (plane_wm << WM1_LP_SR_SHIFT) |
1883                    cursor_wm);
1884 }
1885
1886 static void
1887 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1888                                  struct drm_display_mode *mode)
1889 {
1890         struct drm_i915_private *dev_priv = dev->dev_private;
1891         u32 temp;
1892
1893         temp = I915_READ(PIPE_WM_LINETIME(pipe));
1894         temp &= ~PIPE_WM_LINETIME_MASK;
1895
1896         /* The WM are computed with base on how long it takes to fill a single
1897          * row at the given clock rate, multiplied by 8.
1898          * */
1899         temp |= PIPE_WM_LINETIME_TIME(
1900                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1901
1902         /* IPS watermarks are only used by pipe A, and are ignored by
1903          * pipes B and C.  They are calculated similarly to the common
1904          * linetime values, except that we are using CD clock frequency
1905          * in MHz instead of pixel rate for the division.
1906          *
1907          * This is a placeholder for the IPS watermark calculation code.
1908          */
1909
1910         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1911 }
1912
1913 static bool
1914 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1915                               uint32_t sprite_width, int pixel_size,
1916                               const struct intel_watermark_params *display,
1917                               int display_latency_ns, int *sprite_wm)
1918 {
1919         struct drm_crtc *crtc;
1920         int clock;
1921         int entries, tlb_miss;
1922
1923         crtc = intel_get_crtc_for_plane(dev, plane);
1924         if (crtc->fb == NULL || !crtc->enabled) {
1925                 *sprite_wm = display->guard_size;
1926                 return false;
1927         }
1928
1929         clock = crtc->mode.clock;
1930
1931         /* Use the small buffer method to calculate the sprite watermark */
1932         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1933         tlb_miss = display->fifo_size*display->cacheline_size -
1934                 sprite_width * 8;
1935         if (tlb_miss > 0)
1936                 entries += tlb_miss;
1937         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1938         *sprite_wm = entries + display->guard_size;
1939         if (*sprite_wm > (int)display->max_wm)
1940                 *sprite_wm = display->max_wm;
1941
1942         return true;
1943 }
1944
1945 static bool
1946 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1947                                 uint32_t sprite_width, int pixel_size,
1948                                 const struct intel_watermark_params *display,
1949                                 int latency_ns, int *sprite_wm)
1950 {
1951         struct drm_crtc *crtc;
1952         unsigned long line_time_us;
1953         int clock;
1954         int line_count, line_size;
1955         int small, large;
1956         int entries;
1957
1958         if (!latency_ns) {
1959                 *sprite_wm = 0;
1960                 return false;
1961         }
1962
1963         crtc = intel_get_crtc_for_plane(dev, plane);
1964         clock = crtc->mode.clock;
1965         if (!clock) {
1966                 *sprite_wm = 0;
1967                 return false;
1968         }
1969
1970         line_time_us = (sprite_width * 1000) / clock;
1971         if (!line_time_us) {
1972                 *sprite_wm = 0;
1973                 return false;
1974         }
1975
1976         line_count = (latency_ns / line_time_us + 1000) / 1000;
1977         line_size = sprite_width * pixel_size;
1978
1979         /* Use the minimum of the small and large buffer method for primary */
1980         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1981         large = line_count * line_size;
1982
1983         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1984         *sprite_wm = entries + display->guard_size;
1985
1986         return *sprite_wm > 0x3ff ? false : true;
1987 }
1988
1989 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1990                                          uint32_t sprite_width, int pixel_size)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1994         u32 val;
1995         int sprite_wm, reg;
1996         int ret;
1997
1998         switch (pipe) {
1999         case 0:
2000                 reg = WM0_PIPEA_ILK;
2001                 break;
2002         case 1:
2003                 reg = WM0_PIPEB_ILK;
2004                 break;
2005         case 2:
2006                 reg = WM0_PIPEC_IVB;
2007                 break;
2008         default:
2009                 return; /* bad pipe */
2010         }
2011
2012         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2013                                             &sandybridge_display_wm_info,
2014                                             latency, &sprite_wm);
2015         if (!ret) {
2016                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2017                               pipe);
2018                 return;
2019         }
2020
2021         val = I915_READ(reg);
2022         val &= ~WM0_PIPE_SPRITE_MASK;
2023         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2024         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2025
2026
2027         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2028                                               pixel_size,
2029                                               &sandybridge_display_srwm_info,
2030                                               SNB_READ_WM1_LATENCY() * 500,
2031                                               &sprite_wm);
2032         if (!ret) {
2033                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2034                               pipe);
2035                 return;
2036         }
2037         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2038
2039         /* Only IVB has two more LP watermarks for sprite */
2040         if (!IS_IVYBRIDGE(dev))
2041                 return;
2042
2043         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2044                                               pixel_size,
2045                                               &sandybridge_display_srwm_info,
2046                                               SNB_READ_WM2_LATENCY() * 500,
2047                                               &sprite_wm);
2048         if (!ret) {
2049                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2050                               pipe);
2051                 return;
2052         }
2053         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2054
2055         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2056                                               pixel_size,
2057                                               &sandybridge_display_srwm_info,
2058                                               SNB_READ_WM3_LATENCY() * 500,
2059                                               &sprite_wm);
2060         if (!ret) {
2061                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2062                               pipe);
2063                 return;
2064         }
2065         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2066 }
2067
2068 /**
2069  * intel_update_watermarks - update FIFO watermark values based on current modes
2070  *
2071  * Calculate watermark values for the various WM regs based on current mode
2072  * and plane configuration.
2073  *
2074  * There are several cases to deal with here:
2075  *   - normal (i.e. non-self-refresh)
2076  *   - self-refresh (SR) mode
2077  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2078  *   - lines are small relative to FIFO size (buffer can hold more than 2
2079  *     lines), so need to account for TLB latency
2080  *
2081  *   The normal calculation is:
2082  *     watermark = dotclock * bytes per pixel * latency
2083  *   where latency is platform & configuration dependent (we assume pessimal
2084  *   values here).
2085  *
2086  *   The SR calculation is:
2087  *     watermark = (trunc(latency/line time)+1) * surface width *
2088  *       bytes per pixel
2089  *   where
2090  *     line time = htotal / dotclock
2091  *     surface width = hdisplay for normal plane and 64 for cursor
2092  *   and latency is assumed to be high, as above.
2093  *
2094  * The final value programmed to the register should always be rounded up,
2095  * and include an extra 2 entries to account for clock crossings.
2096  *
2097  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2098  * to set the non-SR watermarks to 8.
2099  */
2100 void intel_update_watermarks(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103
2104         if (dev_priv->display.update_wm)
2105                 dev_priv->display.update_wm(dev);
2106 }
2107
2108 void intel_update_linetime_watermarks(struct drm_device *dev,
2109                 int pipe, struct drm_display_mode *mode)
2110 {
2111         struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113         if (dev_priv->display.update_linetime_wm)
2114                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2115 }
2116
2117 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2118                                     uint32_t sprite_width, int pixel_size)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122         if (dev_priv->display.update_sprite_wm)
2123                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2124                                                    pixel_size);
2125 }
2126
2127 static struct drm_i915_gem_object *
2128 intel_alloc_context_page(struct drm_device *dev)
2129 {
2130         struct drm_i915_gem_object *ctx;
2131         int ret;
2132
2133         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2134
2135         ctx = i915_gem_alloc_object(dev, 4096);
2136         if (!ctx) {
2137                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2138                 return NULL;
2139         }
2140
2141         ret = i915_gem_object_pin(ctx, 4096, true);
2142         if (ret) {
2143                 DRM_ERROR("failed to pin power context: %d\n", ret);
2144                 goto err_unref;
2145         }
2146
2147         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2148         if (ret) {
2149                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2150                 goto err_unpin;
2151         }
2152
2153         return ctx;
2154
2155 err_unpin:
2156         i915_gem_object_unpin(ctx);
2157 err_unref:
2158         drm_gem_object_unreference(&ctx->base);
2159         mutex_unlock(&dev->struct_mutex);
2160         return NULL;
2161 }
2162
2163 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2164 {
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         u16 rgvswctl;
2167
2168         rgvswctl = I915_READ16(MEMSWCTL);
2169         if (rgvswctl & MEMCTL_CMD_STS) {
2170                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2171                 return false; /* still busy with another command */
2172         }
2173
2174         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2175                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2176         I915_WRITE16(MEMSWCTL, rgvswctl);
2177         POSTING_READ16(MEMSWCTL);
2178
2179         rgvswctl |= MEMCTL_CMD_STS;
2180         I915_WRITE16(MEMSWCTL, rgvswctl);
2181
2182         return true;
2183 }
2184
2185 void ironlake_enable_drps(struct drm_device *dev)
2186 {
2187         struct drm_i915_private *dev_priv = dev->dev_private;
2188         u32 rgvmodectl = I915_READ(MEMMODECTL);
2189         u8 fmax, fmin, fstart, vstart;
2190
2191         /* Enable temp reporting */
2192         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2193         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2194
2195         /* 100ms RC evaluation intervals */
2196         I915_WRITE(RCUPEI, 100000);
2197         I915_WRITE(RCDNEI, 100000);
2198
2199         /* Set max/min thresholds to 90ms and 80ms respectively */
2200         I915_WRITE(RCBMAXAVG, 90000);
2201         I915_WRITE(RCBMINAVG, 80000);
2202
2203         I915_WRITE(MEMIHYST, 1);
2204
2205         /* Set up min, max, and cur for interrupt handling */
2206         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2207         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2208         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2209                 MEMMODE_FSTART_SHIFT;
2210
2211         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2212                 PXVFREQ_PX_SHIFT;
2213
2214         dev_priv->fmax = fmax; /* IPS callback will increase this */
2215         dev_priv->fstart = fstart;
2216
2217         dev_priv->max_delay = fstart;
2218         dev_priv->min_delay = fmin;
2219         dev_priv->cur_delay = fstart;
2220
2221         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2222                          fmax, fmin, fstart);
2223
2224         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2225
2226         /*
2227          * Interrupts will be enabled in ironlake_irq_postinstall
2228          */
2229
2230         I915_WRITE(VIDSTART, vstart);
2231         POSTING_READ(VIDSTART);
2232
2233         rgvmodectl |= MEMMODE_SWMODE_EN;
2234         I915_WRITE(MEMMODECTL, rgvmodectl);
2235
2236         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2237                 DRM_ERROR("stuck trying to change perf mode\n");
2238         msleep(1);
2239
2240         ironlake_set_drps(dev, fstart);
2241
2242         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2243                 I915_READ(0x112e0);
2244         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2245         dev_priv->last_count2 = I915_READ(0x112f4);
2246         getrawmonotonic(&dev_priv->last_time2);
2247 }
2248
2249 void ironlake_disable_drps(struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         u16 rgvswctl = I915_READ16(MEMSWCTL);
2253
2254         /* Ack interrupts, disable EFC interrupt */
2255         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2256         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2257         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2258         I915_WRITE(DEIIR, DE_PCU_EVENT);
2259         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2260
2261         /* Go back to the starting frequency */
2262         ironlake_set_drps(dev, dev_priv->fstart);
2263         msleep(1);
2264         rgvswctl |= MEMCTL_CMD_STS;
2265         I915_WRITE(MEMSWCTL, rgvswctl);
2266         msleep(1);
2267
2268 }
2269
2270 void gen6_set_rps(struct drm_device *dev, u8 val)
2271 {
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273         u32 swreq;
2274
2275         swreq = (val & 0x3ff) << 25;
2276         I915_WRITE(GEN6_RPNSWREQ, swreq);
2277 }
2278
2279 void gen6_disable_rps(struct drm_device *dev)
2280 {
2281         struct drm_i915_private *dev_priv = dev->dev_private;
2282
2283         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2284         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2285         I915_WRITE(GEN6_PMIER, 0);
2286         /* Complete PM interrupt masking here doesn't race with the rps work
2287          * item again unmasking PM interrupts because that is using a different
2288          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2289          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2290
2291         spin_lock_irq(&dev_priv->rps_lock);
2292         dev_priv->pm_iir = 0;
2293         spin_unlock_irq(&dev_priv->rps_lock);
2294
2295         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2296 }
2297
2298 int intel_enable_rc6(const struct drm_device *dev)
2299 {
2300         /*
2301          * Respect the kernel parameter if it is set
2302          */
2303         if (i915_enable_rc6 >= 0)
2304                 return i915_enable_rc6;
2305
2306         /*
2307          * Disable RC6 on Ironlake
2308          */
2309         if (INTEL_INFO(dev)->gen == 5)
2310                 return 0;
2311
2312         /* Sorry Haswell, no RC6 for you for now. */
2313         if (IS_HASWELL(dev))
2314                 return 0;
2315
2316         /*
2317          * Disable rc6 on Sandybridge
2318          */
2319         if (INTEL_INFO(dev)->gen == 6) {
2320                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2321                 return INTEL_RC6_ENABLE;
2322         }
2323         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2324         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2325 }
2326
2327 void gen6_enable_rps(struct drm_i915_private *dev_priv)
2328 {
2329         struct intel_ring_buffer *ring;
2330         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2331         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2332         u32 pcu_mbox, rc6_mask = 0;
2333         u32 gtfifodbg;
2334         int cur_freq, min_freq, max_freq;
2335         int rc6_mode;
2336         int i;
2337
2338         /* Here begins a magic sequence of register writes to enable
2339          * auto-downclocking.
2340          *
2341          * Perhaps there might be some value in exposing these to
2342          * userspace...
2343          */
2344         I915_WRITE(GEN6_RC_STATE, 0);
2345         mutex_lock(&dev_priv->dev->struct_mutex);
2346
2347         /* Clear the DBG now so we don't confuse earlier errors */
2348         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2349                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2350                 I915_WRITE(GTFIFODBG, gtfifodbg);
2351         }
2352
2353         gen6_gt_force_wake_get(dev_priv);
2354
2355         /* disable the counters and set deterministic thresholds */
2356         I915_WRITE(GEN6_RC_CONTROL, 0);
2357
2358         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2359         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2360         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2361         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2362         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2363
2364         for_each_ring(ring, dev_priv, i)
2365                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2366
2367         I915_WRITE(GEN6_RC_SLEEP, 0);
2368         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2369         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2370         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2371         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2372
2373         rc6_mode = intel_enable_rc6(dev_priv->dev);
2374         if (rc6_mode & INTEL_RC6_ENABLE)
2375                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2376
2377         if (rc6_mode & INTEL_RC6p_ENABLE)
2378                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2379
2380         if (rc6_mode & INTEL_RC6pp_ENABLE)
2381                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2382
2383         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2384                         (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2385                         (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2386                         (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2387
2388         I915_WRITE(GEN6_RC_CONTROL,
2389                    rc6_mask |
2390                    GEN6_RC_CTL_EI_MODE(1) |
2391                    GEN6_RC_CTL_HW_ENABLE);
2392
2393         I915_WRITE(GEN6_RPNSWREQ,
2394                    GEN6_FREQUENCY(10) |
2395                    GEN6_OFFSET(0) |
2396                    GEN6_AGGRESSIVE_TURBO);
2397         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2398                    GEN6_FREQUENCY(12));
2399
2400         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2401         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2402                    18 << 24 |
2403                    6 << 16);
2404         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2405         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2406         I915_WRITE(GEN6_RP_UP_EI, 100000);
2407         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2408         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2409         I915_WRITE(GEN6_RP_CONTROL,
2410                    GEN6_RP_MEDIA_TURBO |
2411                    GEN6_RP_MEDIA_HW_MODE |
2412                    GEN6_RP_MEDIA_IS_GFX |
2413                    GEN6_RP_ENABLE |
2414                    GEN6_RP_UP_BUSY_AVG |
2415                    GEN6_RP_DOWN_IDLE_CONT);
2416
2417         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2418                      500))
2419                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2420
2421         I915_WRITE(GEN6_PCODE_DATA, 0);
2422         I915_WRITE(GEN6_PCODE_MAILBOX,
2423                    GEN6_PCODE_READY |
2424                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2425         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2426                      500))
2427                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2428
2429         min_freq = (rp_state_cap & 0xff0000) >> 16;
2430         max_freq = rp_state_cap & 0xff;
2431         cur_freq = (gt_perf_status & 0xff00) >> 8;
2432
2433         /* Check for overclock support */
2434         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2435                      500))
2436                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2437         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2438         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2439         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2440                      500))
2441                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2442         if (pcu_mbox & (1<<31)) { /* OC supported */
2443                 max_freq = pcu_mbox & 0xff;
2444                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2445         }
2446
2447         /* In units of 100MHz */
2448         dev_priv->max_delay = max_freq;
2449         dev_priv->min_delay = min_freq;
2450         dev_priv->cur_delay = cur_freq;
2451
2452         /* requires MSI enabled */
2453         I915_WRITE(GEN6_PMIER,
2454                    GEN6_PM_MBOX_EVENT |
2455                    GEN6_PM_THERMAL_EVENT |
2456                    GEN6_PM_RP_DOWN_TIMEOUT |
2457                    GEN6_PM_RP_UP_THRESHOLD |
2458                    GEN6_PM_RP_DOWN_THRESHOLD |
2459                    GEN6_PM_RP_UP_EI_EXPIRED |
2460                    GEN6_PM_RP_DOWN_EI_EXPIRED);
2461         spin_lock_irq(&dev_priv->rps_lock);
2462         WARN_ON(dev_priv->pm_iir != 0);
2463         I915_WRITE(GEN6_PMIMR, 0);
2464         spin_unlock_irq(&dev_priv->rps_lock);
2465         /* enable all PM interrupts */
2466         I915_WRITE(GEN6_PMINTRMSK, 0);
2467
2468         gen6_gt_force_wake_put(dev_priv);
2469         mutex_unlock(&dev_priv->dev->struct_mutex);
2470 }
2471
2472 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2473 {
2474         int min_freq = 15;
2475         int gpu_freq, ia_freq, max_ia_freq;
2476         int scaling_factor = 180;
2477
2478         max_ia_freq = cpufreq_quick_get_max(0);
2479         /*
2480          * Default to measured freq if none found, PCU will ensure we don't go
2481          * over
2482          */
2483         if (!max_ia_freq)
2484                 max_ia_freq = tsc_khz;
2485
2486         /* Convert from kHz to MHz */
2487         max_ia_freq /= 1000;
2488
2489         mutex_lock(&dev_priv->dev->struct_mutex);
2490
2491         /*
2492          * For each potential GPU frequency, load a ring frequency we'd like
2493          * to use for memory access.  We do this by specifying the IA frequency
2494          * the PCU should use as a reference to determine the ring frequency.
2495          */
2496         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2497              gpu_freq--) {
2498                 int diff = dev_priv->max_delay - gpu_freq;
2499
2500                 /*
2501                  * For GPU frequencies less than 750MHz, just use the lowest
2502                  * ring freq.
2503                  */
2504                 if (gpu_freq < min_freq)
2505                         ia_freq = 800;
2506                 else
2507                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2508                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2509
2510                 I915_WRITE(GEN6_PCODE_DATA,
2511                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2512                            gpu_freq);
2513                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2514                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2515                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2516                               GEN6_PCODE_READY) == 0, 10)) {
2517                         DRM_ERROR("pcode write of freq table timed out\n");
2518                         continue;
2519                 }
2520         }
2521
2522         mutex_unlock(&dev_priv->dev->struct_mutex);
2523 }
2524
2525 static void ironlake_teardown_rc6(struct drm_device *dev)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528
2529         if (dev_priv->renderctx) {
2530                 i915_gem_object_unpin(dev_priv->renderctx);
2531                 drm_gem_object_unreference(&dev_priv->renderctx->base);
2532                 dev_priv->renderctx = NULL;
2533         }
2534
2535         if (dev_priv->pwrctx) {
2536                 i915_gem_object_unpin(dev_priv->pwrctx);
2537                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
2538                 dev_priv->pwrctx = NULL;
2539         }
2540 }
2541
2542 void ironlake_disable_rc6(struct drm_device *dev)
2543 {
2544         struct drm_i915_private *dev_priv = dev->dev_private;
2545
2546         if (I915_READ(PWRCTXA)) {
2547                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2548                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2549                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2550                          50);
2551
2552                 I915_WRITE(PWRCTXA, 0);
2553                 POSTING_READ(PWRCTXA);
2554
2555                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2556                 POSTING_READ(RSTDBYCTL);
2557         }
2558
2559         ironlake_teardown_rc6(dev);
2560 }
2561
2562 static int ironlake_setup_rc6(struct drm_device *dev)
2563 {
2564         struct drm_i915_private *dev_priv = dev->dev_private;
2565
2566         if (dev_priv->renderctx == NULL)
2567                 dev_priv->renderctx = intel_alloc_context_page(dev);
2568         if (!dev_priv->renderctx)
2569                 return -ENOMEM;
2570
2571         if (dev_priv->pwrctx == NULL)
2572                 dev_priv->pwrctx = intel_alloc_context_page(dev);
2573         if (!dev_priv->pwrctx) {
2574                 ironlake_teardown_rc6(dev);
2575                 return -ENOMEM;
2576         }
2577
2578         return 0;
2579 }
2580
2581 void ironlake_enable_rc6(struct drm_device *dev)
2582 {
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2585         int ret;
2586
2587         /* rc6 disabled by default due to repeated reports of hanging during
2588          * boot and resume.
2589          */
2590         if (!intel_enable_rc6(dev))
2591                 return;
2592
2593         mutex_lock(&dev->struct_mutex);
2594         ret = ironlake_setup_rc6(dev);
2595         if (ret) {
2596                 mutex_unlock(&dev->struct_mutex);
2597                 return;
2598         }
2599
2600         /*
2601          * GPU can automatically power down the render unit if given a page
2602          * to save state.
2603          */
2604         ret = intel_ring_begin(ring, 6);
2605         if (ret) {
2606                 ironlake_teardown_rc6(dev);
2607                 mutex_unlock(&dev->struct_mutex);
2608                 return;
2609         }
2610
2611         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2612         intel_ring_emit(ring, MI_SET_CONTEXT);
2613         intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2614                         MI_MM_SPACE_GTT |
2615                         MI_SAVE_EXT_STATE_EN |
2616                         MI_RESTORE_EXT_STATE_EN |
2617                         MI_RESTORE_INHIBIT);
2618         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2619         intel_ring_emit(ring, MI_NOOP);
2620         intel_ring_emit(ring, MI_FLUSH);
2621         intel_ring_advance(ring);
2622
2623         /*
2624          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2625          * does an implicit flush, combined with MI_FLUSH above, it should be
2626          * safe to assume that renderctx is valid
2627          */
2628         ret = intel_wait_ring_idle(ring);
2629         if (ret) {
2630                 DRM_ERROR("failed to enable ironlake power power savings\n");
2631                 ironlake_teardown_rc6(dev);
2632                 mutex_unlock(&dev->struct_mutex);
2633                 return;
2634         }
2635
2636         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2637         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2638         mutex_unlock(&dev->struct_mutex);
2639 }
2640
2641 static unsigned long intel_pxfreq(u32 vidfreq)
2642 {
2643         unsigned long freq;
2644         int div = (vidfreq & 0x3f0000) >> 16;
2645         int post = (vidfreq & 0x3000) >> 12;
2646         int pre = (vidfreq & 0x7);
2647
2648         if (!pre)
2649                 return 0;
2650
2651         freq = ((div * 133333) / ((1<<post) * pre));
2652
2653         return freq;
2654 }
2655
2656 static const struct cparams {
2657         u16 i;
2658         u16 t;
2659         u16 m;
2660         u16 c;
2661 } cparams[] = {
2662         { 1, 1333, 301, 28664 },
2663         { 1, 1066, 294, 24460 },
2664         { 1, 800, 294, 25192 },
2665         { 0, 1333, 276, 27605 },
2666         { 0, 1066, 276, 27605 },
2667         { 0, 800, 231, 23784 },
2668 };
2669
2670 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2671 {
2672         u64 total_count, diff, ret;
2673         u32 count1, count2, count3, m = 0, c = 0;
2674         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2675         int i;
2676
2677         diff1 = now - dev_priv->last_time1;
2678
2679         /* Prevent division-by-zero if we are asking too fast.
2680          * Also, we don't get interesting results if we are polling
2681          * faster than once in 10ms, so just return the saved value
2682          * in such cases.
2683          */
2684         if (diff1 <= 10)
2685                 return dev_priv->chipset_power;
2686
2687         count1 = I915_READ(DMIEC);
2688         count2 = I915_READ(DDREC);
2689         count3 = I915_READ(CSIEC);
2690
2691         total_count = count1 + count2 + count3;
2692
2693         /* FIXME: handle per-counter overflow */
2694         if (total_count < dev_priv->last_count1) {
2695                 diff = ~0UL - dev_priv->last_count1;
2696                 diff += total_count;
2697         } else {
2698                 diff = total_count - dev_priv->last_count1;
2699         }
2700
2701         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2702                 if (cparams[i].i == dev_priv->c_m &&
2703                     cparams[i].t == dev_priv->r_t) {
2704                         m = cparams[i].m;
2705                         c = cparams[i].c;
2706                         break;
2707                 }
2708         }
2709
2710         diff = div_u64(diff, diff1);
2711         ret = ((m * diff) + c);
2712         ret = div_u64(ret, 10);
2713
2714         dev_priv->last_count1 = total_count;
2715         dev_priv->last_time1 = now;
2716
2717         dev_priv->chipset_power = ret;
2718
2719         return ret;
2720 }
2721
2722 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2723 {
2724         unsigned long m, x, b;
2725         u32 tsfs;
2726
2727         tsfs = I915_READ(TSFS);
2728
2729         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2730         x = I915_READ8(TR1);
2731
2732         b = tsfs & TSFS_INTR_MASK;
2733
2734         return ((m * x) / 127) - b;
2735 }
2736
2737 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2738 {
2739         static const struct v_table {
2740                 u16 vd; /* in .1 mil */
2741                 u16 vm; /* in .1 mil */
2742         } v_table[] = {
2743                 { 0, 0, },
2744                 { 375, 0, },
2745                 { 500, 0, },
2746                 { 625, 0, },
2747                 { 750, 0, },
2748                 { 875, 0, },
2749                 { 1000, 0, },
2750                 { 1125, 0, },
2751                 { 4125, 3000, },
2752                 { 4125, 3000, },
2753                 { 4125, 3000, },
2754                 { 4125, 3000, },
2755                 { 4125, 3000, },
2756                 { 4125, 3000, },
2757                 { 4125, 3000, },
2758                 { 4125, 3000, },
2759                 { 4125, 3000, },
2760                 { 4125, 3000, },
2761                 { 4125, 3000, },
2762                 { 4125, 3000, },
2763                 { 4125, 3000, },
2764                 { 4125, 3000, },
2765                 { 4125, 3000, },
2766                 { 4125, 3000, },
2767                 { 4125, 3000, },
2768                 { 4125, 3000, },
2769                 { 4125, 3000, },
2770                 { 4125, 3000, },
2771                 { 4125, 3000, },
2772                 { 4125, 3000, },
2773                 { 4125, 3000, },
2774                 { 4125, 3000, },
2775                 { 4250, 3125, },
2776                 { 4375, 3250, },
2777                 { 4500, 3375, },
2778                 { 4625, 3500, },
2779                 { 4750, 3625, },
2780                 { 4875, 3750, },
2781                 { 5000, 3875, },
2782                 { 5125, 4000, },
2783                 { 5250, 4125, },
2784                 { 5375, 4250, },
2785                 { 5500, 4375, },
2786                 { 5625, 4500, },
2787                 { 5750, 4625, },
2788                 { 5875, 4750, },
2789                 { 6000, 4875, },
2790                 { 6125, 5000, },
2791                 { 6250, 5125, },
2792                 { 6375, 5250, },
2793                 { 6500, 5375, },
2794                 { 6625, 5500, },
2795                 { 6750, 5625, },
2796                 { 6875, 5750, },
2797                 { 7000, 5875, },
2798                 { 7125, 6000, },
2799                 { 7250, 6125, },
2800                 { 7375, 6250, },
2801                 { 7500, 6375, },
2802                 { 7625, 6500, },
2803                 { 7750, 6625, },
2804                 { 7875, 6750, },
2805                 { 8000, 6875, },
2806                 { 8125, 7000, },
2807                 { 8250, 7125, },
2808                 { 8375, 7250, },
2809                 { 8500, 7375, },
2810                 { 8625, 7500, },
2811                 { 8750, 7625, },
2812                 { 8875, 7750, },
2813                 { 9000, 7875, },
2814                 { 9125, 8000, },
2815                 { 9250, 8125, },
2816                 { 9375, 8250, },
2817                 { 9500, 8375, },
2818                 { 9625, 8500, },
2819                 { 9750, 8625, },
2820                 { 9875, 8750, },
2821                 { 10000, 8875, },
2822                 { 10125, 9000, },
2823                 { 10250, 9125, },
2824                 { 10375, 9250, },
2825                 { 10500, 9375, },
2826                 { 10625, 9500, },
2827                 { 10750, 9625, },
2828                 { 10875, 9750, },
2829                 { 11000, 9875, },
2830                 { 11125, 10000, },
2831                 { 11250, 10125, },
2832                 { 11375, 10250, },
2833                 { 11500, 10375, },
2834                 { 11625, 10500, },
2835                 { 11750, 10625, },
2836                 { 11875, 10750, },
2837                 { 12000, 10875, },
2838                 { 12125, 11000, },
2839                 { 12250, 11125, },
2840                 { 12375, 11250, },
2841                 { 12500, 11375, },
2842                 { 12625, 11500, },
2843                 { 12750, 11625, },
2844                 { 12875, 11750, },
2845                 { 13000, 11875, },
2846                 { 13125, 12000, },
2847                 { 13250, 12125, },
2848                 { 13375, 12250, },
2849                 { 13500, 12375, },
2850                 { 13625, 12500, },
2851                 { 13750, 12625, },
2852                 { 13875, 12750, },
2853                 { 14000, 12875, },
2854                 { 14125, 13000, },
2855                 { 14250, 13125, },
2856                 { 14375, 13250, },
2857                 { 14500, 13375, },
2858                 { 14625, 13500, },
2859                 { 14750, 13625, },
2860                 { 14875, 13750, },
2861                 { 15000, 13875, },
2862                 { 15125, 14000, },
2863                 { 15250, 14125, },
2864                 { 15375, 14250, },
2865                 { 15500, 14375, },
2866                 { 15625, 14500, },
2867                 { 15750, 14625, },
2868                 { 15875, 14750, },
2869                 { 16000, 14875, },
2870                 { 16125, 15000, },
2871         };
2872         if (dev_priv->info->is_mobile)
2873                 return v_table[pxvid].vm;
2874         else
2875                 return v_table[pxvid].vd;
2876 }
2877
2878 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2879 {
2880         struct timespec now, diff1;
2881         u64 diff;
2882         unsigned long diffms;
2883         u32 count;
2884
2885         if (dev_priv->info->gen != 5)
2886                 return;
2887
2888         getrawmonotonic(&now);
2889         diff1 = timespec_sub(now, dev_priv->last_time2);
2890
2891         /* Don't divide by 0 */
2892         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2893         if (!diffms)
2894                 return;
2895
2896         count = I915_READ(GFXEC);
2897
2898         if (count < dev_priv->last_count2) {
2899                 diff = ~0UL - dev_priv->last_count2;
2900                 diff += count;
2901         } else {
2902                 diff = count - dev_priv->last_count2;
2903         }
2904
2905         dev_priv->last_count2 = count;
2906         dev_priv->last_time2 = now;
2907
2908         /* More magic constants... */
2909         diff = diff * 1181;
2910         diff = div_u64(diff, diffms * 10);
2911         dev_priv->gfx_power = diff;
2912 }
2913
2914 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2915 {
2916         unsigned long t, corr, state1, corr2, state2;
2917         u32 pxvid, ext_v;
2918
2919         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2920         pxvid = (pxvid >> 24) & 0x7f;
2921         ext_v = pvid_to_extvid(dev_priv, pxvid);
2922
2923         state1 = ext_v;
2924
2925         t = i915_mch_val(dev_priv);
2926
2927         /* Revel in the empirically derived constants */
2928
2929         /* Correction factor in 1/100000 units */
2930         if (t > 80)
2931                 corr = ((t * 2349) + 135940);
2932         else if (t >= 50)
2933                 corr = ((t * 964) + 29317);
2934         else /* < 50 */
2935                 corr = ((t * 301) + 1004);
2936
2937         corr = corr * ((150142 * state1) / 10000 - 78642);
2938         corr /= 100000;
2939         corr2 = (corr * dev_priv->corr);
2940
2941         state2 = (corr2 * state1) / 10000;
2942         state2 /= 100; /* convert to mW */
2943
2944         i915_update_gfx_val(dev_priv);
2945
2946         return dev_priv->gfx_power + state2;
2947 }
2948
2949 /* Global for IPS driver to get at the current i915 device */
2950 static struct drm_i915_private *i915_mch_dev;
2951 /*
2952  * Lock protecting IPS related data structures
2953  *   - i915_mch_dev
2954  *   - dev_priv->max_delay
2955  *   - dev_priv->min_delay
2956  *   - dev_priv->fmax
2957  *   - dev_priv->gpu_busy
2958  */
2959 static DEFINE_SPINLOCK(mchdev_lock);
2960
2961 /**
2962  * i915_read_mch_val - return value for IPS use
2963  *
2964  * Calculate and return a value for the IPS driver to use when deciding whether
2965  * we have thermal and power headroom to increase CPU or GPU power budget.
2966  */
2967 unsigned long i915_read_mch_val(void)
2968 {
2969         struct drm_i915_private *dev_priv;
2970         unsigned long chipset_val, graphics_val, ret = 0;
2971
2972         spin_lock(&mchdev_lock);
2973         if (!i915_mch_dev)
2974                 goto out_unlock;
2975         dev_priv = i915_mch_dev;
2976
2977         chipset_val = i915_chipset_val(dev_priv);
2978         graphics_val = i915_gfx_val(dev_priv);
2979
2980         ret = chipset_val + graphics_val;
2981
2982 out_unlock:
2983         spin_unlock(&mchdev_lock);
2984
2985         return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2988
2989 /**
2990  * i915_gpu_raise - raise GPU frequency limit
2991  *
2992  * Raise the limit; IPS indicates we have thermal headroom.
2993  */
2994 bool i915_gpu_raise(void)
2995 {
2996         struct drm_i915_private *dev_priv;
2997         bool ret = true;
2998
2999         spin_lock(&mchdev_lock);
3000         if (!i915_mch_dev) {
3001                 ret = false;
3002                 goto out_unlock;
3003         }
3004         dev_priv = i915_mch_dev;
3005
3006         if (dev_priv->max_delay > dev_priv->fmax)
3007                 dev_priv->max_delay--;
3008
3009 out_unlock:
3010         spin_unlock(&mchdev_lock);
3011
3012         return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3015
3016 /**
3017  * i915_gpu_lower - lower GPU frequency limit
3018  *
3019  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3020  * frequency maximum.
3021  */
3022 bool i915_gpu_lower(void)
3023 {
3024         struct drm_i915_private *dev_priv;
3025         bool ret = true;
3026
3027         spin_lock(&mchdev_lock);
3028         if (!i915_mch_dev) {
3029                 ret = false;
3030                 goto out_unlock;
3031         }
3032         dev_priv = i915_mch_dev;
3033
3034         if (dev_priv->max_delay < dev_priv->min_delay)
3035                 dev_priv->max_delay++;
3036
3037 out_unlock:
3038         spin_unlock(&mchdev_lock);
3039
3040         return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3043
3044 /**
3045  * i915_gpu_busy - indicate GPU business to IPS
3046  *
3047  * Tell the IPS driver whether or not the GPU is busy.
3048  */
3049 bool i915_gpu_busy(void)
3050 {
3051         struct drm_i915_private *dev_priv;
3052         bool ret = false;
3053
3054         spin_lock(&mchdev_lock);
3055         if (!i915_mch_dev)
3056                 goto out_unlock;
3057         dev_priv = i915_mch_dev;
3058
3059         ret = dev_priv->busy;
3060
3061 out_unlock:
3062         spin_unlock(&mchdev_lock);
3063
3064         return ret;
3065 }
3066 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3067
3068 /**
3069  * i915_gpu_turbo_disable - disable graphics turbo
3070  *
3071  * Disable graphics turbo by resetting the max frequency and setting the
3072  * current frequency to the default.
3073  */
3074 bool i915_gpu_turbo_disable(void)
3075 {
3076         struct drm_i915_private *dev_priv;
3077         bool ret = true;
3078
3079         spin_lock(&mchdev_lock);
3080         if (!i915_mch_dev) {
3081                 ret = false;
3082                 goto out_unlock;
3083         }
3084         dev_priv = i915_mch_dev;
3085
3086         dev_priv->max_delay = dev_priv->fstart;
3087
3088         if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3089                 ret = false;
3090
3091 out_unlock:
3092         spin_unlock(&mchdev_lock);
3093
3094         return ret;
3095 }
3096 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3097
3098 /**
3099  * Tells the intel_ips driver that the i915 driver is now loaded, if
3100  * IPS got loaded first.
3101  *
3102  * This awkward dance is so that neither module has to depend on the
3103  * other in order for IPS to do the appropriate communication of
3104  * GPU turbo limits to i915.
3105  */
3106 static void
3107 ips_ping_for_i915_load(void)
3108 {
3109         void (*link)(void);
3110
3111         link = symbol_get(ips_link_to_i915_driver);
3112         if (link) {
3113                 link();
3114                 symbol_put(ips_link_to_i915_driver);
3115         }
3116 }
3117
3118 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3119 {
3120         spin_lock(&mchdev_lock);
3121         i915_mch_dev = dev_priv;
3122         dev_priv->mchdev_lock = &mchdev_lock;
3123         spin_unlock(&mchdev_lock);
3124
3125         ips_ping_for_i915_load();
3126 }
3127
3128 void intel_gpu_ips_teardown(void)
3129 {
3130         spin_lock(&mchdev_lock);
3131         i915_mch_dev = NULL;
3132         spin_unlock(&mchdev_lock);
3133 }
3134
3135 void intel_init_emon(struct drm_device *dev)
3136 {
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138         u32 lcfuse;
3139         u8 pxw[16];
3140         int i;
3141
3142         /* Disable to program */
3143         I915_WRITE(ECR, 0);
3144         POSTING_READ(ECR);
3145
3146         /* Program energy weights for various events */
3147         I915_WRITE(SDEW, 0x15040d00);
3148         I915_WRITE(CSIEW0, 0x007f0000);
3149         I915_WRITE(CSIEW1, 0x1e220004);
3150         I915_WRITE(CSIEW2, 0x04000004);
3151
3152         for (i = 0; i < 5; i++)
3153                 I915_WRITE(PEW + (i * 4), 0);
3154         for (i = 0; i < 3; i++)
3155                 I915_WRITE(DEW + (i * 4), 0);
3156
3157         /* Program P-state weights to account for frequency power adjustment */
3158         for (i = 0; i < 16; i++) {
3159                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3160                 unsigned long freq = intel_pxfreq(pxvidfreq);
3161                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3162                         PXVFREQ_PX_SHIFT;
3163                 unsigned long val;
3164
3165                 val = vid * vid;
3166                 val *= (freq / 1000);
3167                 val *= 255;
3168                 val /= (127*127*900);
3169                 if (val > 0xff)
3170                         DRM_ERROR("bad pxval: %ld\n", val);
3171                 pxw[i] = val;
3172         }
3173         /* Render standby states get 0 weight */
3174         pxw[14] = 0;
3175         pxw[15] = 0;
3176
3177         for (i = 0; i < 4; i++) {
3178                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3179                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3180                 I915_WRITE(PXW + (i * 4), val);
3181         }
3182
3183         /* Adjust magic regs to magic values (more experimental results) */
3184         I915_WRITE(OGW0, 0);
3185         I915_WRITE(OGW1, 0);
3186         I915_WRITE(EG0, 0x00007f00);
3187         I915_WRITE(EG1, 0x0000000e);
3188         I915_WRITE(EG2, 0x000e0000);
3189         I915_WRITE(EG3, 0x68000300);
3190         I915_WRITE(EG4, 0x42000000);
3191         I915_WRITE(EG5, 0x00140031);
3192         I915_WRITE(EG6, 0);
3193         I915_WRITE(EG7, 0);
3194
3195         for (i = 0; i < 8; i++)
3196                 I915_WRITE(PXWL + (i * 4), 0);
3197
3198         /* Enable PMON + select events */
3199         I915_WRITE(ECR, 0x80000019);
3200
3201         lcfuse = I915_READ(LCFUSE02);
3202
3203         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3204 }
3205
3206 static void ironlake_init_clock_gating(struct drm_device *dev)
3207 {
3208         struct drm_i915_private *dev_priv = dev->dev_private;
3209         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3210
3211         /* Required for FBC */
3212         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3213                 DPFCRUNIT_CLOCK_GATE_DISABLE |
3214                 DPFDUNIT_CLOCK_GATE_DISABLE;
3215         /* Required for CxSR */
3216         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3217
3218         I915_WRITE(PCH_3DCGDIS0,
3219                    MARIUNIT_CLOCK_GATE_DISABLE |
3220                    SVSMUNIT_CLOCK_GATE_DISABLE);
3221         I915_WRITE(PCH_3DCGDIS1,
3222                    VFMUNIT_CLOCK_GATE_DISABLE);
3223
3224         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3225
3226         /*
3227          * According to the spec the following bits should be set in
3228          * order to enable memory self-refresh
3229          * The bit 22/21 of 0x42004
3230          * The bit 5 of 0x42020
3231          * The bit 15 of 0x45000
3232          */
3233         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3234                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3235                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3236         I915_WRITE(ILK_DSPCLK_GATE,
3237                    (I915_READ(ILK_DSPCLK_GATE) |
3238                     ILK_DPARB_CLK_GATE));
3239         I915_WRITE(DISP_ARB_CTL,
3240                    (I915_READ(DISP_ARB_CTL) |
3241                     DISP_FBC_WM_DIS));
3242         I915_WRITE(WM3_LP_ILK, 0);
3243         I915_WRITE(WM2_LP_ILK, 0);
3244         I915_WRITE(WM1_LP_ILK, 0);
3245
3246         /*
3247          * Based on the document from hardware guys the following bits
3248          * should be set unconditionally in order to enable FBC.
3249          * The bit 22 of 0x42000
3250          * The bit 22 of 0x42004
3251          * The bit 7,8,9 of 0x42020.
3252          */
3253         if (IS_IRONLAKE_M(dev)) {
3254                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3255                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3256                            ILK_FBCQ_DIS);
3257                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3258                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3259                            ILK_DPARB_GATE);
3260                 I915_WRITE(ILK_DSPCLK_GATE,
3261                            I915_READ(ILK_DSPCLK_GATE) |
3262                            ILK_DPFC_DIS1 |
3263                            ILK_DPFC_DIS2 |
3264                            ILK_CLK_FBC);
3265         }
3266
3267         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3268                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3269                    ILK_ELPIN_409_SELECT);
3270         I915_WRITE(_3D_CHICKEN2,
3271                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3272                    _3D_CHICKEN2_WM_READ_PIPELINED);
3273 }
3274
3275 static void gen6_init_clock_gating(struct drm_device *dev)
3276 {
3277         struct drm_i915_private *dev_priv = dev->dev_private;
3278         int pipe;
3279         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3280
3281         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3282
3283         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3284                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3285                    ILK_ELPIN_409_SELECT);
3286
3287         I915_WRITE(WM3_LP_ILK, 0);
3288         I915_WRITE(WM2_LP_ILK, 0);
3289         I915_WRITE(WM1_LP_ILK, 0);
3290
3291         I915_WRITE(CACHE_MODE_0,
3292                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3293
3294         I915_WRITE(GEN6_UCGCTL1,
3295                    I915_READ(GEN6_UCGCTL1) |
3296                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3297                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3298
3299         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3300          * gating disable must be set.  Failure to set it results in
3301          * flickering pixels due to Z write ordering failures after
3302          * some amount of runtime in the Mesa "fire" demo, and Unigine
3303          * Sanctuary and Tropics, and apparently anything else with
3304          * alpha test or pixel discard.
3305          *
3306          * According to the spec, bit 11 (RCCUNIT) must also be set,
3307          * but we didn't debug actual testcases to find it out.
3308          */
3309         I915_WRITE(GEN6_UCGCTL2,
3310                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3311                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3312
3313         /* Bspec says we need to always set all mask bits. */
3314         I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3315                    _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3316
3317         /*
3318          * According to the spec the following bits should be
3319          * set in order to enable memory self-refresh and fbc:
3320          * The bit21 and bit22 of 0x42000
3321          * The bit21 and bit22 of 0x42004
3322          * The bit5 and bit7 of 0x42020
3323          * The bit14 of 0x70180
3324          * The bit14 of 0x71180
3325          */
3326         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3327                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3328                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3329         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3330                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3331                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3332         I915_WRITE(ILK_DSPCLK_GATE,
3333                    I915_READ(ILK_DSPCLK_GATE) |
3334                    ILK_DPARB_CLK_GATE  |
3335                    ILK_DPFD_CLK_GATE);
3336
3337         for_each_pipe(pipe) {
3338                 I915_WRITE(DSPCNTR(pipe),
3339                            I915_READ(DSPCNTR(pipe)) |
3340                            DISPPLANE_TRICKLE_FEED_DISABLE);
3341                 intel_flush_display_plane(dev_priv, pipe);
3342         }
3343 }
3344
3345 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3346 {
3347         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3348
3349         reg &= ~GEN7_FF_SCHED_MASK;
3350         reg |= GEN7_FF_TS_SCHED_HW;
3351         reg |= GEN7_FF_VS_SCHED_HW;
3352         reg |= GEN7_FF_DS_SCHED_HW;
3353
3354         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3355 }
3356
3357 static void ivybridge_init_clock_gating(struct drm_device *dev)
3358 {
3359         struct drm_i915_private *dev_priv = dev->dev_private;
3360         int pipe;
3361         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3362
3363         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3364
3365         I915_WRITE(WM3_LP_ILK, 0);
3366         I915_WRITE(WM2_LP_ILK, 0);
3367         I915_WRITE(WM1_LP_ILK, 0);
3368
3369         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3370          * This implements the WaDisableRCZUnitClockGating workaround.
3371          */
3372         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3373
3374         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3375
3376         I915_WRITE(IVB_CHICKEN3,
3377                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3378                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3379
3380         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3381         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3382                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3383
3384         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3385         I915_WRITE(GEN7_L3CNTLREG1,
3386                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3387         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3388                         GEN7_WA_L3_CHICKEN_MODE);
3389
3390         /* This is required by WaCatErrorRejectionIssue */
3391         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3392                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3393                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3394
3395         for_each_pipe(pipe) {
3396                 I915_WRITE(DSPCNTR(pipe),
3397                            I915_READ(DSPCNTR(pipe)) |
3398                            DISPPLANE_TRICKLE_FEED_DISABLE);
3399                 intel_flush_display_plane(dev_priv, pipe);
3400         }
3401
3402         gen7_setup_fixed_func_scheduler(dev_priv);
3403
3404         /* WaDisable4x2SubspanOptimization */
3405         I915_WRITE(CACHE_MODE_1,
3406                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3407 }
3408
3409 static void valleyview_init_clock_gating(struct drm_device *dev)
3410 {
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412         int pipe;
3413         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3414
3415         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3416
3417         I915_WRITE(WM3_LP_ILK, 0);
3418         I915_WRITE(WM2_LP_ILK, 0);
3419         I915_WRITE(WM1_LP_ILK, 0);
3420
3421         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3422          * This implements the WaDisableRCZUnitClockGating workaround.
3423          */
3424         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3425
3426         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3427
3428         I915_WRITE(IVB_CHICKEN3,
3429                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3430                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3431
3432         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3433         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3434                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3435
3436         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3437         I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3438         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3439
3440         /* This is required by WaCatErrorRejectionIssue */
3441         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3442                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3443                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3444
3445         for_each_pipe(pipe) {
3446                 I915_WRITE(DSPCNTR(pipe),
3447                            I915_READ(DSPCNTR(pipe)) |
3448                            DISPPLANE_TRICKLE_FEED_DISABLE);
3449                 intel_flush_display_plane(dev_priv, pipe);
3450         }
3451
3452         I915_WRITE(CACHE_MODE_1,
3453                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3454 }
3455
3456 static void g4x_init_clock_gating(struct drm_device *dev)
3457 {
3458         struct drm_i915_private *dev_priv = dev->dev_private;
3459         uint32_t dspclk_gate;
3460
3461         I915_WRITE(RENCLK_GATE_D1, 0);
3462         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3463                    GS_UNIT_CLOCK_GATE_DISABLE |
3464                    CL_UNIT_CLOCK_GATE_DISABLE);
3465         I915_WRITE(RAMCLK_GATE_D, 0);
3466         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3467                 OVRUNIT_CLOCK_GATE_DISABLE |
3468                 OVCUNIT_CLOCK_GATE_DISABLE;
3469         if (IS_GM45(dev))
3470                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3471         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3472 }
3473
3474 static void crestline_init_clock_gating(struct drm_device *dev)
3475 {
3476         struct drm_i915_private *dev_priv = dev->dev_private;
3477
3478         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3479         I915_WRITE(RENCLK_GATE_D2, 0);
3480         I915_WRITE(DSPCLK_GATE_D, 0);
3481         I915_WRITE(RAMCLK_GATE_D, 0);
3482         I915_WRITE16(DEUC, 0);
3483 }
3484
3485 static void broadwater_init_clock_gating(struct drm_device *dev)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488
3489         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3490                    I965_RCC_CLOCK_GATE_DISABLE |
3491                    I965_RCPB_CLOCK_GATE_DISABLE |
3492                    I965_ISC_CLOCK_GATE_DISABLE |
3493                    I965_FBC_CLOCK_GATE_DISABLE);
3494         I915_WRITE(RENCLK_GATE_D2, 0);
3495 }
3496
3497 static void gen3_init_clock_gating(struct drm_device *dev)
3498 {
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         u32 dstate = I915_READ(D_STATE);
3501
3502         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3503                 DSTATE_DOT_CLOCK_GATING;
3504         I915_WRITE(D_STATE, dstate);
3505
3506         if (IS_PINEVIEW(dev))
3507                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3508 }
3509
3510 static void i85x_init_clock_gating(struct drm_device *dev)
3511 {
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513
3514         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3515 }
3516
3517 static void i830_init_clock_gating(struct drm_device *dev)
3518 {
3519         struct drm_i915_private *dev_priv = dev->dev_private;
3520
3521         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3522 }
3523
3524 static void ibx_init_clock_gating(struct drm_device *dev)
3525 {
3526         struct drm_i915_private *dev_priv = dev->dev_private;
3527
3528         /*
3529          * On Ibex Peak and Cougar Point, we need to disable clock
3530          * gating for the panel power sequencer or it will fail to
3531          * start up when no ports are active.
3532          */
3533         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3534 }
3535
3536 static void cpt_init_clock_gating(struct drm_device *dev)
3537 {
3538         struct drm_i915_private *dev_priv = dev->dev_private;
3539         int pipe;
3540
3541         /*
3542          * On Ibex Peak and Cougar Point, we need to disable clock
3543          * gating for the panel power sequencer or it will fail to
3544          * start up when no ports are active.
3545          */
3546         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3547         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3548                    DPLS_EDP_PPS_FIX_DIS);
3549         /* Without this, mode sets may fail silently on FDI */
3550         for_each_pipe(pipe)
3551                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3552 }
3553
3554 void intel_init_clock_gating(struct drm_device *dev)
3555 {
3556         struct drm_i915_private *dev_priv = dev->dev_private;
3557
3558         dev_priv->display.init_clock_gating(dev);
3559
3560         if (dev_priv->display.init_pch_clock_gating)
3561                 dev_priv->display.init_pch_clock_gating(dev);
3562 }
3563
3564 static void gen6_sanitize_pm(struct drm_device *dev)
3565 {
3566         struct drm_i915_private *dev_priv = dev->dev_private;
3567         u32 limits, delay, old;
3568
3569         gen6_gt_force_wake_get(dev_priv);
3570
3571         old = limits = I915_READ(GEN6_RP_INTERRUPT_LIMITS);
3572         /* Make sure we continue to get interrupts
3573          * until we hit the minimum or maximum frequencies.
3574          */
3575         limits &= ~(0x3f << 16 | 0x3f << 24);
3576         delay = dev_priv->cur_delay;
3577         if (delay < dev_priv->max_delay)
3578                 limits |= (dev_priv->max_delay & 0x3f) << 24;
3579         if (delay > dev_priv->min_delay)
3580                 limits |= (dev_priv->min_delay & 0x3f) << 16;
3581
3582         if (old != limits) {
3583                 DRM_ERROR("Power management discrepancy: GEN6_RP_INTERRUPT_LIMITS expected %08x, was %08x\n",
3584                           limits, old);
3585                 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3586         }
3587
3588         gen6_gt_force_wake_put(dev_priv);
3589 }
3590
3591 void intel_sanitize_pm(struct drm_device *dev)
3592 {
3593         struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595         if (dev_priv->display.sanitize_pm)
3596                 dev_priv->display.sanitize_pm(dev);
3597 }
3598
3599 /* Starting with Haswell, we have different power wells for
3600  * different parts of the GPU. This attempts to enable them all.
3601  */
3602 void intel_init_power_wells(struct drm_device *dev)
3603 {
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         unsigned long power_wells[] = {
3606                 HSW_PWR_WELL_CTL1,
3607                 HSW_PWR_WELL_CTL2,
3608                 HSW_PWR_WELL_CTL4
3609         };
3610         int i;
3611
3612         if (!IS_HASWELL(dev))
3613                 return;
3614
3615         mutex_lock(&dev->struct_mutex);
3616
3617         for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3618                 int well = I915_READ(power_wells[i]);
3619
3620                 if ((well & HSW_PWR_WELL_STATE) == 0) {
3621                         I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3622                         if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3623                                 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3624                 }
3625         }
3626
3627         mutex_unlock(&dev->struct_mutex);
3628 }
3629
3630 /* Set up chip specific power management-related functions */
3631 void intel_init_pm(struct drm_device *dev)
3632 {
3633         struct drm_i915_private *dev_priv = dev->dev_private;
3634
3635         if (I915_HAS_FBC(dev)) {
3636                 if (HAS_PCH_SPLIT(dev)) {
3637                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3638                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
3639                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
3640                 } else if (IS_GM45(dev)) {
3641                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3642                         dev_priv->display.enable_fbc = g4x_enable_fbc;
3643                         dev_priv->display.disable_fbc = g4x_disable_fbc;
3644                 } else if (IS_CRESTLINE(dev)) {
3645                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3646                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
3647                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
3648                 }
3649                 /* 855GM needs testing */
3650         }
3651
3652         /* For cxsr */
3653         if (IS_PINEVIEW(dev))
3654                 i915_pineview_get_mem_freq(dev);
3655         else if (IS_GEN5(dev))
3656                 i915_ironlake_get_mem_freq(dev);
3657
3658         /* For FIFO watermark updates */
3659         if (HAS_PCH_SPLIT(dev)) {
3660                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
3661                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
3662
3663                 /* IVB configs may use multi-threaded forcewake */
3664                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3665                         u32     ecobus;
3666
3667                         /* A small trick here - if the bios hasn't configured MT forcewake,
3668                          * and if the device is in RC6, then force_wake_mt_get will not wake
3669                          * the device and the ECOBUS read will return zero. Which will be
3670                          * (correctly) interpreted by the test below as MT forcewake being
3671                          * disabled.
3672                          */
3673                         mutex_lock(&dev->struct_mutex);
3674                         __gen6_gt_force_wake_mt_get(dev_priv);
3675                         ecobus = I915_READ_NOTRACE(ECOBUS);
3676                         __gen6_gt_force_wake_mt_put(dev_priv);
3677                         mutex_unlock(&dev->struct_mutex);
3678
3679                         if (ecobus & FORCEWAKE_MT_ENABLE) {
3680                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
3681                                 dev_priv->display.force_wake_get =
3682                                         __gen6_gt_force_wake_mt_get;
3683                                 dev_priv->display.force_wake_put =
3684                                         __gen6_gt_force_wake_mt_put;
3685                         }
3686                 }
3687
3688                 if (HAS_PCH_IBX(dev))
3689                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3690                 else if (HAS_PCH_CPT(dev))
3691                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3692
3693                 if (IS_GEN5(dev)) {
3694                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3695                                 dev_priv->display.update_wm = ironlake_update_wm;
3696                         else {
3697                                 DRM_DEBUG_KMS("Failed to get proper latency. "
3698                                               "Disable CxSR\n");
3699                                 dev_priv->display.update_wm = NULL;
3700                         }
3701                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3702                 } else if (IS_GEN6(dev)) {
3703                         if (SNB_READ_WM0_LATENCY()) {
3704                                 dev_priv->display.update_wm = sandybridge_update_wm;
3705                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3706                         } else {
3707                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3708                                               "Disable CxSR\n");
3709                                 dev_priv->display.update_wm = NULL;
3710                         }
3711                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3712                         dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3713                 } else if (IS_IVYBRIDGE(dev)) {
3714                         /* FIXME: detect B0+ stepping and use auto training */
3715                         if (SNB_READ_WM0_LATENCY()) {
3716                                 dev_priv->display.update_wm = sandybridge_update_wm;
3717                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3718                         } else {
3719                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3720                                               "Disable CxSR\n");
3721                                 dev_priv->display.update_wm = NULL;
3722                         }
3723                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3724                         dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3725                 } else if (IS_HASWELL(dev)) {
3726                         if (SNB_READ_WM0_LATENCY()) {
3727                                 dev_priv->display.update_wm = sandybridge_update_wm;
3728                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3729                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3730                         } else {
3731                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3732                                               "Disable CxSR\n");
3733                                 dev_priv->display.update_wm = NULL;
3734                         }
3735                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3736                         dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3737                 } else
3738                         dev_priv->display.update_wm = NULL;
3739         } else if (IS_VALLEYVIEW(dev)) {
3740                 dev_priv->display.update_wm = valleyview_update_wm;
3741                 dev_priv->display.init_clock_gating =
3742                         valleyview_init_clock_gating;
3743                 dev_priv->display.force_wake_get = vlv_force_wake_get;
3744                 dev_priv->display.force_wake_put = vlv_force_wake_put;
3745         } else if (IS_PINEVIEW(dev)) {
3746                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3747                                             dev_priv->is_ddr3,
3748                                             dev_priv->fsb_freq,
3749                                             dev_priv->mem_freq)) {
3750                         DRM_INFO("failed to find known CxSR latency "
3751                                  "(found ddr%s fsb freq %d, mem freq %d), "
3752                                  "disabling CxSR\n",
3753                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
3754                                  dev_priv->fsb_freq, dev_priv->mem_freq);
3755                         /* Disable CxSR and never update its watermark again */
3756                         pineview_disable_cxsr(dev);
3757                         dev_priv->display.update_wm = NULL;
3758                 } else
3759                         dev_priv->display.update_wm = pineview_update_wm;
3760                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3761         } else if (IS_G4X(dev)) {
3762                 dev_priv->display.update_wm = g4x_update_wm;
3763                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3764         } else if (IS_GEN4(dev)) {
3765                 dev_priv->display.update_wm = i965_update_wm;
3766                 if (IS_CRESTLINE(dev))
3767                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3768                 else if (IS_BROADWATER(dev))
3769                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3770         } else if (IS_GEN3(dev)) {
3771                 dev_priv->display.update_wm = i9xx_update_wm;
3772                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3773                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3774         } else if (IS_I865G(dev)) {
3775                 dev_priv->display.update_wm = i830_update_wm;
3776                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3777                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
3778         } else if (IS_I85X(dev)) {
3779                 dev_priv->display.update_wm = i9xx_update_wm;
3780                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3781                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3782         } else {
3783                 dev_priv->display.update_wm = i830_update_wm;
3784                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
3785                 if (IS_845G(dev))
3786                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
3787                 else
3788                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
3789         }
3790
3791         /* We attempt to init the necessary power wells early in the initialization
3792          * time, so the subsystems that expect power to be enabled can work.
3793          */
3794         intel_init_power_wells(dev);
3795 }
3796