d2facba16aab98049919f38a5607346544502f3b
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dev_priv->fbc.threshold++;
233
234         switch (dev_priv->fbc.threshold) {
235         case 4:
236         case 3:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
238                 break;
239         case 2:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
241                 break;
242         case 1:
243                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
244                 break;
245         }
246         dpfc_ctl |= DPFC_CTL_FENCE_EN;
247         if (IS_GEN5(dev))
248                 dpfc_ctl |= obj->fence_reg;
249
250         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
251         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
252         /* enable it... */
253         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
254
255         if (IS_GEN6(dev)) {
256                 I915_WRITE(SNB_DPFC_CTL_SA,
257                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
258                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
259                 sandybridge_blit_fbc_update(dev);
260         }
261
262         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
263 }
264
265 static void ironlake_disable_fbc(struct drm_device *dev)
266 {
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         u32 dpfc_ctl;
269
270         /* Disable compression */
271         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
272         if (dpfc_ctl & DPFC_CTL_EN) {
273                 dpfc_ctl &= ~DPFC_CTL_EN;
274                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
275
276                 DRM_DEBUG_KMS("disabled FBC\n");
277         }
278 }
279
280 static bool ironlake_fbc_enabled(struct drm_device *dev)
281 {
282         struct drm_i915_private *dev_priv = dev->dev_private;
283
284         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
285 }
286
287 static void gen7_enable_fbc(struct drm_crtc *crtc)
288 {
289         struct drm_device *dev = crtc->dev;
290         struct drm_i915_private *dev_priv = dev->dev_private;
291         struct drm_framebuffer *fb = crtc->primary->fb;
292         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
293         struct drm_i915_gem_object *obj = intel_fb->obj;
294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
295         u32 dpfc_ctl;
296
297         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
298         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
299                 dev_priv->fbc.threshold++;
300
301         switch (dev_priv->fbc.threshold) {
302         case 4:
303         case 3:
304                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
305                 break;
306         case 2:
307                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
308                 break;
309         case 1:
310                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
311                 break;
312         }
313
314         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
315
316         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
317
318         if (IS_IVYBRIDGE(dev)) {
319                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
320                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
321                            I915_READ(ILK_DISPLAY_CHICKEN1) |
322                            ILK_FBCQ_DIS);
323         } else {
324                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
325                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
326                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
327                            HSW_FBCQ_DIS);
328         }
329
330         I915_WRITE(SNB_DPFC_CTL_SA,
331                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
332         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
333
334         sandybridge_blit_fbc_update(dev);
335
336         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
337 }
338
339 bool intel_fbc_enabled(struct drm_device *dev)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342
343         if (!dev_priv->display.fbc_enabled)
344                 return false;
345
346         return dev_priv->display.fbc_enabled(dev);
347 }
348
349 static void intel_fbc_work_fn(struct work_struct *__work)
350 {
351         struct intel_fbc_work *work =
352                 container_of(to_delayed_work(__work),
353                              struct intel_fbc_work, work);
354         struct drm_device *dev = work->crtc->dev;
355         struct drm_i915_private *dev_priv = dev->dev_private;
356
357         mutex_lock(&dev->struct_mutex);
358         if (work == dev_priv->fbc.fbc_work) {
359                 /* Double check that we haven't switched fb without cancelling
360                  * the prior work.
361                  */
362                 if (work->crtc->primary->fb == work->fb) {
363                         dev_priv->display.enable_fbc(work->crtc);
364
365                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
366                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
367                         dev_priv->fbc.y = work->crtc->y;
368                 }
369
370                 dev_priv->fbc.fbc_work = NULL;
371         }
372         mutex_unlock(&dev->struct_mutex);
373
374         kfree(work);
375 }
376
377 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
378 {
379         if (dev_priv->fbc.fbc_work == NULL)
380                 return;
381
382         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
383
384         /* Synchronisation is provided by struct_mutex and checking of
385          * dev_priv->fbc.fbc_work, so we can perform the cancellation
386          * entirely asynchronously.
387          */
388         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
389                 /* tasklet was killed before being run, clean up */
390                 kfree(dev_priv->fbc.fbc_work);
391
392         /* Mark the work as no longer wanted so that if it does
393          * wake-up (because the work was already running and waiting
394          * for our mutex), it will discover that is no longer
395          * necessary to run.
396          */
397         dev_priv->fbc.fbc_work = NULL;
398 }
399
400 static void intel_enable_fbc(struct drm_crtc *crtc)
401 {
402         struct intel_fbc_work *work;
403         struct drm_device *dev = crtc->dev;
404         struct drm_i915_private *dev_priv = dev->dev_private;
405
406         if (!dev_priv->display.enable_fbc)
407                 return;
408
409         intel_cancel_fbc_work(dev_priv);
410
411         work = kzalloc(sizeof(*work), GFP_KERNEL);
412         if (work == NULL) {
413                 DRM_ERROR("Failed to allocate FBC work structure\n");
414                 dev_priv->display.enable_fbc(crtc);
415                 return;
416         }
417
418         work->crtc = crtc;
419         work->fb = crtc->primary->fb;
420         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
421
422         dev_priv->fbc.fbc_work = work;
423
424         /* Delay the actual enabling to let pageflipping cease and the
425          * display to settle before starting the compression. Note that
426          * this delay also serves a second purpose: it allows for a
427          * vblank to pass after disabling the FBC before we attempt
428          * to modify the control registers.
429          *
430          * A more complicated solution would involve tracking vblanks
431          * following the termination of the page-flipping sequence
432          * and indeed performing the enable as a co-routine and not
433          * waiting synchronously upon the vblank.
434          *
435          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
436          */
437         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
438 }
439
440 void intel_disable_fbc(struct drm_device *dev)
441 {
442         struct drm_i915_private *dev_priv = dev->dev_private;
443
444         intel_cancel_fbc_work(dev_priv);
445
446         if (!dev_priv->display.disable_fbc)
447                 return;
448
449         dev_priv->display.disable_fbc(dev);
450         dev_priv->fbc.plane = -1;
451 }
452
453 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
454                               enum no_fbc_reason reason)
455 {
456         if (dev_priv->fbc.no_fbc_reason == reason)
457                 return false;
458
459         dev_priv->fbc.no_fbc_reason = reason;
460         return true;
461 }
462
463 /**
464  * intel_update_fbc - enable/disable FBC as needed
465  * @dev: the drm_device
466  *
467  * Set up the framebuffer compression hardware at mode set time.  We
468  * enable it if possible:
469  *   - plane A only (on pre-965)
470  *   - no pixel mulitply/line duplication
471  *   - no alpha buffer discard
472  *   - no dual wide
473  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
474  *
475  * We can't assume that any compression will take place (worst case),
476  * so the compressed buffer has to be the same size as the uncompressed
477  * one.  It also must reside (along with the line length buffer) in
478  * stolen memory.
479  *
480  * We need to enable/disable FBC on a global basis.
481  */
482 void intel_update_fbc(struct drm_device *dev)
483 {
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct drm_crtc *crtc = NULL, *tmp_crtc;
486         struct intel_crtc *intel_crtc;
487         struct drm_framebuffer *fb;
488         struct intel_framebuffer *intel_fb;
489         struct drm_i915_gem_object *obj;
490         const struct drm_display_mode *adjusted_mode;
491         unsigned int max_width, max_height;
492
493         if (!HAS_FBC(dev)) {
494                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
495                 return;
496         }
497
498         if (!i915.powersave) {
499                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
500                         DRM_DEBUG_KMS("fbc disabled per module param\n");
501                 return;
502         }
503
504         /*
505          * If FBC is already on, we just have to verify that we can
506          * keep it that way...
507          * Need to disable if:
508          *   - more than one pipe is active
509          *   - changing FBC params (stride, fence, mode)
510          *   - new fb is too large to fit in compressed buffer
511          *   - going to an unsupported config (interlace, pixel multiply, etc.)
512          */
513         for_each_crtc(dev, tmp_crtc) {
514                 if (intel_crtc_active(tmp_crtc) &&
515                     to_intel_crtc(tmp_crtc)->primary_enabled) {
516                         if (crtc) {
517                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
518                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
519                                 goto out_disable;
520                         }
521                         crtc = tmp_crtc;
522                 }
523         }
524
525         if (!crtc || crtc->primary->fb == NULL) {
526                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
527                         DRM_DEBUG_KMS("no output, disabling\n");
528                 goto out_disable;
529         }
530
531         intel_crtc = to_intel_crtc(crtc);
532         fb = crtc->primary->fb;
533         intel_fb = to_intel_framebuffer(fb);
534         obj = intel_fb->obj;
535         adjusted_mode = &intel_crtc->config.adjusted_mode;
536
537         if (i915.enable_fbc < 0) {
538                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
539                         DRM_DEBUG_KMS("disabled per chip default\n");
540                 goto out_disable;
541         }
542         if (!i915.enable_fbc) {
543                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
544                         DRM_DEBUG_KMS("fbc disabled per module param\n");
545                 goto out_disable;
546         }
547         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
548             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
549                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
550                         DRM_DEBUG_KMS("mode incompatible with compression, "
551                                       "disabling\n");
552                 goto out_disable;
553         }
554
555         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
556                 max_width = 4096;
557                 max_height = 4096;
558         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
559                 max_width = 4096;
560                 max_height = 2048;
561         } else {
562                 max_width = 2048;
563                 max_height = 1536;
564         }
565         if (intel_crtc->config.pipe_src_w > max_width ||
566             intel_crtc->config.pipe_src_h > max_height) {
567                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
568                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
569                 goto out_disable;
570         }
571         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
572             intel_crtc->plane != PLANE_A) {
573                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
574                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
575                 goto out_disable;
576         }
577
578         /* The use of a CPU fence is mandatory in order to detect writes
579          * by the CPU to the scanout and trigger updates to the FBC.
580          */
581         if (obj->tiling_mode != I915_TILING_X ||
582             obj->fence_reg == I915_FENCE_REG_NONE) {
583                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
584                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
585                 goto out_disable;
586         }
587
588         /* If the kernel debugger is active, always disable compression */
589         if (in_dbg_master())
590                 goto out_disable;
591
592         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size,
593                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
594                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
595                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
596                 goto out_disable;
597         }
598
599         /* If the scanout has not changed, don't modify the FBC settings.
600          * Note that we make the fundamental assumption that the fb->obj
601          * cannot be unpinned (and have its GTT offset and fence revoked)
602          * without first being decoupled from the scanout and FBC disabled.
603          */
604         if (dev_priv->fbc.plane == intel_crtc->plane &&
605             dev_priv->fbc.fb_id == fb->base.id &&
606             dev_priv->fbc.y == crtc->y)
607                 return;
608
609         if (intel_fbc_enabled(dev)) {
610                 /* We update FBC along two paths, after changing fb/crtc
611                  * configuration (modeswitching) and after page-flipping
612                  * finishes. For the latter, we know that not only did
613                  * we disable the FBC at the start of the page-flip
614                  * sequence, but also more than one vblank has passed.
615                  *
616                  * For the former case of modeswitching, it is possible
617                  * to switch between two FBC valid configurations
618                  * instantaneously so we do need to disable the FBC
619                  * before we can modify its control registers. We also
620                  * have to wait for the next vblank for that to take
621                  * effect. However, since we delay enabling FBC we can
622                  * assume that a vblank has passed since disabling and
623                  * that we can safely alter the registers in the deferred
624                  * callback.
625                  *
626                  * In the scenario that we go from a valid to invalid
627                  * and then back to valid FBC configuration we have
628                  * no strict enforcement that a vblank occurred since
629                  * disabling the FBC. However, along all current pipe
630                  * disabling paths we do need to wait for a vblank at
631                  * some point. And we wait before enabling FBC anyway.
632                  */
633                 DRM_DEBUG_KMS("disabling active FBC for update\n");
634                 intel_disable_fbc(dev);
635         }
636
637         intel_enable_fbc(crtc);
638         dev_priv->fbc.no_fbc_reason = FBC_OK;
639         return;
640
641 out_disable:
642         /* Multiple disables should be harmless */
643         if (intel_fbc_enabled(dev)) {
644                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
645                 intel_disable_fbc(dev);
646         }
647         i915_gem_stolen_cleanup_compression(dev);
648 }
649
650 static void i915_pineview_get_mem_freq(struct drm_device *dev)
651 {
652         struct drm_i915_private *dev_priv = dev->dev_private;
653         u32 tmp;
654
655         tmp = I915_READ(CLKCFG);
656
657         switch (tmp & CLKCFG_FSB_MASK) {
658         case CLKCFG_FSB_533:
659                 dev_priv->fsb_freq = 533; /* 133*4 */
660                 break;
661         case CLKCFG_FSB_800:
662                 dev_priv->fsb_freq = 800; /* 200*4 */
663                 break;
664         case CLKCFG_FSB_667:
665                 dev_priv->fsb_freq =  667; /* 167*4 */
666                 break;
667         case CLKCFG_FSB_400:
668                 dev_priv->fsb_freq = 400; /* 100*4 */
669                 break;
670         }
671
672         switch (tmp & CLKCFG_MEM_MASK) {
673         case CLKCFG_MEM_533:
674                 dev_priv->mem_freq = 533;
675                 break;
676         case CLKCFG_MEM_667:
677                 dev_priv->mem_freq = 667;
678                 break;
679         case CLKCFG_MEM_800:
680                 dev_priv->mem_freq = 800;
681                 break;
682         }
683
684         /* detect pineview DDR3 setting */
685         tmp = I915_READ(CSHRDDR3CTL);
686         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
687 }
688
689 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
690 {
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         u16 ddrpll, csipll;
693
694         ddrpll = I915_READ16(DDRMPLL1);
695         csipll = I915_READ16(CSIPLL0);
696
697         switch (ddrpll & 0xff) {
698         case 0xc:
699                 dev_priv->mem_freq = 800;
700                 break;
701         case 0x10:
702                 dev_priv->mem_freq = 1066;
703                 break;
704         case 0x14:
705                 dev_priv->mem_freq = 1333;
706                 break;
707         case 0x18:
708                 dev_priv->mem_freq = 1600;
709                 break;
710         default:
711                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
712                                  ddrpll & 0xff);
713                 dev_priv->mem_freq = 0;
714                 break;
715         }
716
717         dev_priv->ips.r_t = dev_priv->mem_freq;
718
719         switch (csipll & 0x3ff) {
720         case 0x00c:
721                 dev_priv->fsb_freq = 3200;
722                 break;
723         case 0x00e:
724                 dev_priv->fsb_freq = 3733;
725                 break;
726         case 0x010:
727                 dev_priv->fsb_freq = 4266;
728                 break;
729         case 0x012:
730                 dev_priv->fsb_freq = 4800;
731                 break;
732         case 0x014:
733                 dev_priv->fsb_freq = 5333;
734                 break;
735         case 0x016:
736                 dev_priv->fsb_freq = 5866;
737                 break;
738         case 0x018:
739                 dev_priv->fsb_freq = 6400;
740                 break;
741         default:
742                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
743                                  csipll & 0x3ff);
744                 dev_priv->fsb_freq = 0;
745                 break;
746         }
747
748         if (dev_priv->fsb_freq == 3200) {
749                 dev_priv->ips.c_m = 0;
750         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
751                 dev_priv->ips.c_m = 1;
752         } else {
753                 dev_priv->ips.c_m = 2;
754         }
755 }
756
757 static const struct cxsr_latency cxsr_latency_table[] = {
758         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
759         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
760         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
761         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
762         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
763
764         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
765         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
766         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
767         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
768         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
769
770         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
771         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
772         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
773         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
774         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
775
776         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
777         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
778         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
779         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
780         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
781
782         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
783         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
784         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
785         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
786         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
787
788         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
789         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
790         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
791         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
792         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
793 };
794
795 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
796                                                          int is_ddr3,
797                                                          int fsb,
798                                                          int mem)
799 {
800         const struct cxsr_latency *latency;
801         int i;
802
803         if (fsb == 0 || mem == 0)
804                 return NULL;
805
806         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
807                 latency = &cxsr_latency_table[i];
808                 if (is_desktop == latency->is_desktop &&
809                     is_ddr3 == latency->is_ddr3 &&
810                     fsb == latency->fsb_freq && mem == latency->mem_freq)
811                         return latency;
812         }
813
814         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
815
816         return NULL;
817 }
818
819 static void pineview_disable_cxsr(struct drm_device *dev)
820 {
821         struct drm_i915_private *dev_priv = dev->dev_private;
822
823         /* deactivate cxsr */
824         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
825 }
826
827 /*
828  * Latency for FIFO fetches is dependent on several factors:
829  *   - memory configuration (speed, channels)
830  *   - chipset
831  *   - current MCH state
832  * It can be fairly high in some situations, so here we assume a fairly
833  * pessimal value.  It's a tradeoff between extra memory fetches (if we
834  * set this value too high, the FIFO will fetch frequently to stay full)
835  * and power consumption (set it too low to save power and we might see
836  * FIFO underruns and display "flicker").
837  *
838  * A value of 5us seems to be a good balance; safe for very low end
839  * platforms but not overly aggressive on lower latency configs.
840  */
841 static const int latency_ns = 5000;
842
843 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
844 {
845         struct drm_i915_private *dev_priv = dev->dev_private;
846         uint32_t dsparb = I915_READ(DSPARB);
847         int size;
848
849         size = dsparb & 0x7f;
850         if (plane)
851                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
852
853         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854                       plane ? "B" : "A", size);
855
856         return size;
857 }
858
859 static int i830_get_fifo_size(struct drm_device *dev, int plane)
860 {
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         uint32_t dsparb = I915_READ(DSPARB);
863         int size;
864
865         size = dsparb & 0x1ff;
866         if (plane)
867                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
868         size >>= 1; /* Convert to cachelines */
869
870         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
871                       plane ? "B" : "A", size);
872
873         return size;
874 }
875
876 static int i845_get_fifo_size(struct drm_device *dev, int plane)
877 {
878         struct drm_i915_private *dev_priv = dev->dev_private;
879         uint32_t dsparb = I915_READ(DSPARB);
880         int size;
881
882         size = dsparb & 0x7f;
883         size >>= 2; /* Convert to cachelines */
884
885         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
886                       plane ? "B" : "A",
887                       size);
888
889         return size;
890 }
891
892 /* Pineview has different values for various configs */
893 static const struct intel_watermark_params pineview_display_wm = {
894         .fifo_size = PINEVIEW_DISPLAY_FIFO,
895         .max_wm = PINEVIEW_MAX_WM,
896         .default_wm = PINEVIEW_DFT_WM,
897         .guard_size = PINEVIEW_GUARD_WM,
898         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
899 };
900 static const struct intel_watermark_params pineview_display_hplloff_wm = {
901         .fifo_size = PINEVIEW_DISPLAY_FIFO,
902         .max_wm = PINEVIEW_MAX_WM,
903         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
904         .guard_size = PINEVIEW_GUARD_WM,
905         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
906 };
907 static const struct intel_watermark_params pineview_cursor_wm = {
908         .fifo_size = PINEVIEW_CURSOR_FIFO,
909         .max_wm = PINEVIEW_CURSOR_MAX_WM,
910         .default_wm = PINEVIEW_CURSOR_DFT_WM,
911         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
912         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
913 };
914 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
915         .fifo_size = PINEVIEW_CURSOR_FIFO,
916         .max_wm = PINEVIEW_CURSOR_MAX_WM,
917         .default_wm = PINEVIEW_CURSOR_DFT_WM,
918         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
919         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
920 };
921 static const struct intel_watermark_params g4x_wm_info = {
922         .fifo_size = G4X_FIFO_SIZE,
923         .max_wm = G4X_MAX_WM,
924         .default_wm = G4X_MAX_WM,
925         .guard_size = 2,
926         .cacheline_size = G4X_FIFO_LINE_SIZE,
927 };
928 static const struct intel_watermark_params g4x_cursor_wm_info = {
929         .fifo_size = I965_CURSOR_FIFO,
930         .max_wm = I965_CURSOR_MAX_WM,
931         .default_wm = I965_CURSOR_DFT_WM,
932         .guard_size = 2,
933         .cacheline_size = G4X_FIFO_LINE_SIZE,
934 };
935 static const struct intel_watermark_params valleyview_wm_info = {
936         .fifo_size = VALLEYVIEW_FIFO_SIZE,
937         .max_wm = VALLEYVIEW_MAX_WM,
938         .default_wm = VALLEYVIEW_MAX_WM,
939         .guard_size = 2,
940         .cacheline_size = G4X_FIFO_LINE_SIZE,
941 };
942 static const struct intel_watermark_params valleyview_cursor_wm_info = {
943         .fifo_size = I965_CURSOR_FIFO,
944         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
945         .default_wm = I965_CURSOR_DFT_WM,
946         .guard_size = 2,
947         .cacheline_size = G4X_FIFO_LINE_SIZE,
948 };
949 static const struct intel_watermark_params i965_cursor_wm_info = {
950         .fifo_size = I965_CURSOR_FIFO,
951         .max_wm = I965_CURSOR_MAX_WM,
952         .default_wm = I965_CURSOR_DFT_WM,
953         .guard_size = 2,
954         .cacheline_size = I915_FIFO_LINE_SIZE,
955 };
956 static const struct intel_watermark_params i945_wm_info = {
957         .fifo_size = I945_FIFO_SIZE,
958         .max_wm = I915_MAX_WM,
959         .default_wm = 1,
960         .guard_size = 2,
961         .cacheline_size = I915_FIFO_LINE_SIZE,
962 };
963 static const struct intel_watermark_params i915_wm_info = {
964         .fifo_size = I915_FIFO_SIZE,
965         .max_wm = I915_MAX_WM,
966         .default_wm = 1,
967         .guard_size = 2,
968         .cacheline_size = I915_FIFO_LINE_SIZE,
969 };
970 static const struct intel_watermark_params i830_wm_info = {
971         .fifo_size = I855GM_FIFO_SIZE,
972         .max_wm = I915_MAX_WM,
973         .default_wm = 1,
974         .guard_size = 2,
975         .cacheline_size = I830_FIFO_LINE_SIZE,
976 };
977 static const struct intel_watermark_params i845_wm_info = {
978         .fifo_size = I830_FIFO_SIZE,
979         .max_wm = I915_MAX_WM,
980         .default_wm = 1,
981         .guard_size = 2,
982         .cacheline_size = I830_FIFO_LINE_SIZE,
983 };
984
985 /**
986  * intel_calculate_wm - calculate watermark level
987  * @clock_in_khz: pixel clock
988  * @wm: chip FIFO params
989  * @pixel_size: display pixel size
990  * @latency_ns: memory latency for the platform
991  *
992  * Calculate the watermark level (the level at which the display plane will
993  * start fetching from memory again).  Each chip has a different display
994  * FIFO size and allocation, so the caller needs to figure that out and pass
995  * in the correct intel_watermark_params structure.
996  *
997  * As the pixel clock runs, the FIFO will be drained at a rate that depends
998  * on the pixel size.  When it reaches the watermark level, it'll start
999  * fetching FIFO line sized based chunks from memory until the FIFO fills
1000  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1001  * will occur, and a display engine hang could result.
1002  */
1003 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1004                                         const struct intel_watermark_params *wm,
1005                                         int fifo_size,
1006                                         int pixel_size,
1007                                         unsigned long latency_ns)
1008 {
1009         long entries_required, wm_size;
1010
1011         /*
1012          * Note: we need to make sure we don't overflow for various clock &
1013          * latency values.
1014          * clocks go from a few thousand to several hundred thousand.
1015          * latency is usually a few thousand
1016          */
1017         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1018                 1000;
1019         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1020
1021         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1022
1023         wm_size = fifo_size - (entries_required + wm->guard_size);
1024
1025         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1026
1027         /* Don't promote wm_size to unsigned... */
1028         if (wm_size > (long)wm->max_wm)
1029                 wm_size = wm->max_wm;
1030         if (wm_size <= 0)
1031                 wm_size = wm->default_wm;
1032         return wm_size;
1033 }
1034
1035 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1036 {
1037         struct drm_crtc *crtc, *enabled = NULL;
1038
1039         for_each_crtc(dev, crtc) {
1040                 if (intel_crtc_active(crtc)) {
1041                         if (enabled)
1042                                 return NULL;
1043                         enabled = crtc;
1044                 }
1045         }
1046
1047         return enabled;
1048 }
1049
1050 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1051 {
1052         struct drm_device *dev = unused_crtc->dev;
1053         struct drm_i915_private *dev_priv = dev->dev_private;
1054         struct drm_crtc *crtc;
1055         const struct cxsr_latency *latency;
1056         u32 reg;
1057         unsigned long wm;
1058
1059         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1060                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1061         if (!latency) {
1062                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1063                 pineview_disable_cxsr(dev);
1064                 return;
1065         }
1066
1067         crtc = single_enabled_crtc(dev);
1068         if (crtc) {
1069                 const struct drm_display_mode *adjusted_mode;
1070                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1071                 int clock;
1072
1073                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1074                 clock = adjusted_mode->crtc_clock;
1075
1076                 /* Display SR */
1077                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1078                                         pineview_display_wm.fifo_size,
1079                                         pixel_size, latency->display_sr);
1080                 reg = I915_READ(DSPFW1);
1081                 reg &= ~DSPFW_SR_MASK;
1082                 reg |= wm << DSPFW_SR_SHIFT;
1083                 I915_WRITE(DSPFW1, reg);
1084                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1085
1086                 /* cursor SR */
1087                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1088                                         pineview_display_wm.fifo_size,
1089                                         pixel_size, latency->cursor_sr);
1090                 reg = I915_READ(DSPFW3);
1091                 reg &= ~DSPFW_CURSOR_SR_MASK;
1092                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1093                 I915_WRITE(DSPFW3, reg);
1094
1095                 /* Display HPLL off SR */
1096                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1097                                         pineview_display_hplloff_wm.fifo_size,
1098                                         pixel_size, latency->display_hpll_disable);
1099                 reg = I915_READ(DSPFW3);
1100                 reg &= ~DSPFW_HPLL_SR_MASK;
1101                 reg |= wm & DSPFW_HPLL_SR_MASK;
1102                 I915_WRITE(DSPFW3, reg);
1103
1104                 /* cursor HPLL off SR */
1105                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1106                                         pineview_display_hplloff_wm.fifo_size,
1107                                         pixel_size, latency->cursor_hpll_disable);
1108                 reg = I915_READ(DSPFW3);
1109                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1110                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1111                 I915_WRITE(DSPFW3, reg);
1112                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1113
1114                 /* activate cxsr */
1115                 I915_WRITE(DSPFW3,
1116                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1117                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1118         } else {
1119                 pineview_disable_cxsr(dev);
1120                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1121         }
1122 }
1123
1124 static bool g4x_compute_wm0(struct drm_device *dev,
1125                             int plane,
1126                             const struct intel_watermark_params *display,
1127                             int display_latency_ns,
1128                             const struct intel_watermark_params *cursor,
1129                             int cursor_latency_ns,
1130                             int *plane_wm,
1131                             int *cursor_wm)
1132 {
1133         struct drm_crtc *crtc;
1134         const struct drm_display_mode *adjusted_mode;
1135         int htotal, hdisplay, clock, pixel_size;
1136         int line_time_us, line_count;
1137         int entries, tlb_miss;
1138
1139         crtc = intel_get_crtc_for_plane(dev, plane);
1140         if (!intel_crtc_active(crtc)) {
1141                 *cursor_wm = cursor->guard_size;
1142                 *plane_wm = display->guard_size;
1143                 return false;
1144         }
1145
1146         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1147         clock = adjusted_mode->crtc_clock;
1148         htotal = adjusted_mode->crtc_htotal;
1149         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1150         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1151
1152         /* Use the small buffer method to calculate plane watermark */
1153         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1154         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1155         if (tlb_miss > 0)
1156                 entries += tlb_miss;
1157         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1158         *plane_wm = entries + display->guard_size;
1159         if (*plane_wm > (int)display->max_wm)
1160                 *plane_wm = display->max_wm;
1161
1162         /* Use the large buffer method to calculate cursor watermark */
1163         line_time_us = max(htotal * 1000 / clock, 1);
1164         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1165         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1166         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1167         if (tlb_miss > 0)
1168                 entries += tlb_miss;
1169         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1170         *cursor_wm = entries + cursor->guard_size;
1171         if (*cursor_wm > (int)cursor->max_wm)
1172                 *cursor_wm = (int)cursor->max_wm;
1173
1174         return true;
1175 }
1176
1177 /*
1178  * Check the wm result.
1179  *
1180  * If any calculated watermark values is larger than the maximum value that
1181  * can be programmed into the associated watermark register, that watermark
1182  * must be disabled.
1183  */
1184 static bool g4x_check_srwm(struct drm_device *dev,
1185                            int display_wm, int cursor_wm,
1186                            const struct intel_watermark_params *display,
1187                            const struct intel_watermark_params *cursor)
1188 {
1189         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1190                       display_wm, cursor_wm);
1191
1192         if (display_wm > display->max_wm) {
1193                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1194                               display_wm, display->max_wm);
1195                 return false;
1196         }
1197
1198         if (cursor_wm > cursor->max_wm) {
1199                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1200                               cursor_wm, cursor->max_wm);
1201                 return false;
1202         }
1203
1204         if (!(display_wm || cursor_wm)) {
1205                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1206                 return false;
1207         }
1208
1209         return true;
1210 }
1211
1212 static bool g4x_compute_srwm(struct drm_device *dev,
1213                              int plane,
1214                              int latency_ns,
1215                              const struct intel_watermark_params *display,
1216                              const struct intel_watermark_params *cursor,
1217                              int *display_wm, int *cursor_wm)
1218 {
1219         struct drm_crtc *crtc;
1220         const struct drm_display_mode *adjusted_mode;
1221         int hdisplay, htotal, pixel_size, clock;
1222         unsigned long line_time_us;
1223         int line_count, line_size;
1224         int small, large;
1225         int entries;
1226
1227         if (!latency_ns) {
1228                 *display_wm = *cursor_wm = 0;
1229                 return false;
1230         }
1231
1232         crtc = intel_get_crtc_for_plane(dev, plane);
1233         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1234         clock = adjusted_mode->crtc_clock;
1235         htotal = adjusted_mode->crtc_htotal;
1236         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1237         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1238
1239         line_time_us = max(htotal * 1000 / clock, 1);
1240         line_count = (latency_ns / line_time_us + 1000) / 1000;
1241         line_size = hdisplay * pixel_size;
1242
1243         /* Use the minimum of the small and large buffer method for primary */
1244         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1245         large = line_count * line_size;
1246
1247         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1248         *display_wm = entries + display->guard_size;
1249
1250         /* calculate the self-refresh watermark for display cursor */
1251         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1252         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1253         *cursor_wm = entries + cursor->guard_size;
1254
1255         return g4x_check_srwm(dev,
1256                               *display_wm, *cursor_wm,
1257                               display, cursor);
1258 }
1259
1260 static bool vlv_compute_drain_latency(struct drm_device *dev,
1261                                      int plane,
1262                                      int *plane_prec_mult,
1263                                      int *plane_dl,
1264                                      int *cursor_prec_mult,
1265                                      int *cursor_dl)
1266 {
1267         struct drm_crtc *crtc;
1268         int clock, pixel_size;
1269         int entries;
1270
1271         crtc = intel_get_crtc_for_plane(dev, plane);
1272         if (!intel_crtc_active(crtc))
1273                 return false;
1274
1275         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1276         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1277
1278         entries = (clock / 1000) * pixel_size;
1279         *plane_prec_mult = (entries > 256) ?
1280                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1281         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1282                                                      pixel_size);
1283
1284         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1285         *cursor_prec_mult = (entries > 256) ?
1286                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1287         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1288
1289         return true;
1290 }
1291
1292 /*
1293  * Update drain latency registers of memory arbiter
1294  *
1295  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1296  * to be programmed. Each plane has a drain latency multiplier and a drain
1297  * latency value.
1298  */
1299
1300 static void vlv_update_drain_latency(struct drm_device *dev)
1301 {
1302         struct drm_i915_private *dev_priv = dev->dev_private;
1303         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1304         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1305         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1306                                                         either 16 or 32 */
1307
1308         /* For plane A, Cursor A */
1309         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1310                                       &cursor_prec_mult, &cursora_dl)) {
1311                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1312                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1313                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1314                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1315
1316                 I915_WRITE(VLV_DDL1, cursora_prec |
1317                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1318                                 planea_prec | planea_dl);
1319         }
1320
1321         /* For plane B, Cursor B */
1322         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1323                                       &cursor_prec_mult, &cursorb_dl)) {
1324                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1325                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1326                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1327                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1328
1329                 I915_WRITE(VLV_DDL2, cursorb_prec |
1330                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1331                                 planeb_prec | planeb_dl);
1332         }
1333 }
1334
1335 #define single_plane_enabled(mask) is_power_of_2(mask)
1336
1337 static void valleyview_update_wm(struct drm_crtc *crtc)
1338 {
1339         struct drm_device *dev = crtc->dev;
1340         static const int sr_latency_ns = 12000;
1341         struct drm_i915_private *dev_priv = dev->dev_private;
1342         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1343         int plane_sr, cursor_sr;
1344         int ignore_plane_sr, ignore_cursor_sr;
1345         unsigned int enabled = 0;
1346
1347         vlv_update_drain_latency(dev);
1348
1349         if (g4x_compute_wm0(dev, PIPE_A,
1350                             &valleyview_wm_info, latency_ns,
1351                             &valleyview_cursor_wm_info, latency_ns,
1352                             &planea_wm, &cursora_wm))
1353                 enabled |= 1 << PIPE_A;
1354
1355         if (g4x_compute_wm0(dev, PIPE_B,
1356                             &valleyview_wm_info, latency_ns,
1357                             &valleyview_cursor_wm_info, latency_ns,
1358                             &planeb_wm, &cursorb_wm))
1359                 enabled |= 1 << PIPE_B;
1360
1361         if (single_plane_enabled(enabled) &&
1362             g4x_compute_srwm(dev, ffs(enabled) - 1,
1363                              sr_latency_ns,
1364                              &valleyview_wm_info,
1365                              &valleyview_cursor_wm_info,
1366                              &plane_sr, &ignore_cursor_sr) &&
1367             g4x_compute_srwm(dev, ffs(enabled) - 1,
1368                              2*sr_latency_ns,
1369                              &valleyview_wm_info,
1370                              &valleyview_cursor_wm_info,
1371                              &ignore_plane_sr, &cursor_sr)) {
1372                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1373         } else {
1374                 I915_WRITE(FW_BLC_SELF_VLV,
1375                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1376                 plane_sr = cursor_sr = 0;
1377         }
1378
1379         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1380                       planea_wm, cursora_wm,
1381                       planeb_wm, cursorb_wm,
1382                       plane_sr, cursor_sr);
1383
1384         I915_WRITE(DSPFW1,
1385                    (plane_sr << DSPFW_SR_SHIFT) |
1386                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1387                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1388                    planea_wm);
1389         I915_WRITE(DSPFW2,
1390                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1391                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1392         I915_WRITE(DSPFW3,
1393                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1394                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1395 }
1396
1397 static void g4x_update_wm(struct drm_crtc *crtc)
1398 {
1399         struct drm_device *dev = crtc->dev;
1400         static const int sr_latency_ns = 12000;
1401         struct drm_i915_private *dev_priv = dev->dev_private;
1402         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1403         int plane_sr, cursor_sr;
1404         unsigned int enabled = 0;
1405
1406         if (g4x_compute_wm0(dev, PIPE_A,
1407                             &g4x_wm_info, latency_ns,
1408                             &g4x_cursor_wm_info, latency_ns,
1409                             &planea_wm, &cursora_wm))
1410                 enabled |= 1 << PIPE_A;
1411
1412         if (g4x_compute_wm0(dev, PIPE_B,
1413                             &g4x_wm_info, latency_ns,
1414                             &g4x_cursor_wm_info, latency_ns,
1415                             &planeb_wm, &cursorb_wm))
1416                 enabled |= 1 << PIPE_B;
1417
1418         if (single_plane_enabled(enabled) &&
1419             g4x_compute_srwm(dev, ffs(enabled) - 1,
1420                              sr_latency_ns,
1421                              &g4x_wm_info,
1422                              &g4x_cursor_wm_info,
1423                              &plane_sr, &cursor_sr)) {
1424                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1425         } else {
1426                 I915_WRITE(FW_BLC_SELF,
1427                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1428                 plane_sr = cursor_sr = 0;
1429         }
1430
1431         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1432                       planea_wm, cursora_wm,
1433                       planeb_wm, cursorb_wm,
1434                       plane_sr, cursor_sr);
1435
1436         I915_WRITE(DSPFW1,
1437                    (plane_sr << DSPFW_SR_SHIFT) |
1438                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1439                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1440                    planea_wm);
1441         I915_WRITE(DSPFW2,
1442                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1443                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1444         /* HPLL off in SR has some issues on G4x... disable it */
1445         I915_WRITE(DSPFW3,
1446                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1447                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1448 }
1449
1450 static void i965_update_wm(struct drm_crtc *unused_crtc)
1451 {
1452         struct drm_device *dev = unused_crtc->dev;
1453         struct drm_i915_private *dev_priv = dev->dev_private;
1454         struct drm_crtc *crtc;
1455         int srwm = 1;
1456         int cursor_sr = 16;
1457
1458         /* Calc sr entries for one plane configs */
1459         crtc = single_enabled_crtc(dev);
1460         if (crtc) {
1461                 /* self-refresh has much higher latency */
1462                 static const int sr_latency_ns = 12000;
1463                 const struct drm_display_mode *adjusted_mode =
1464                         &to_intel_crtc(crtc)->config.adjusted_mode;
1465                 int clock = adjusted_mode->crtc_clock;
1466                 int htotal = adjusted_mode->crtc_htotal;
1467                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1468                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1469                 unsigned long line_time_us;
1470                 int entries;
1471
1472                 line_time_us = max(htotal * 1000 / clock, 1);
1473
1474                 /* Use ns/us then divide to preserve precision */
1475                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1476                         pixel_size * hdisplay;
1477                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1478                 srwm = I965_FIFO_SIZE - entries;
1479                 if (srwm < 0)
1480                         srwm = 1;
1481                 srwm &= 0x1ff;
1482                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1483                               entries, srwm);
1484
1485                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1486                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1487                 entries = DIV_ROUND_UP(entries,
1488                                           i965_cursor_wm_info.cacheline_size);
1489                 cursor_sr = i965_cursor_wm_info.fifo_size -
1490                         (entries + i965_cursor_wm_info.guard_size);
1491
1492                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1493                         cursor_sr = i965_cursor_wm_info.max_wm;
1494
1495                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1496                               "cursor %d\n", srwm, cursor_sr);
1497
1498                 if (IS_CRESTLINE(dev))
1499                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1500         } else {
1501                 /* Turn off self refresh if both pipes are enabled */
1502                 if (IS_CRESTLINE(dev))
1503                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1504                                    & ~FW_BLC_SELF_EN);
1505         }
1506
1507         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1508                       srwm);
1509
1510         /* 965 has limitations... */
1511         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1512                    (8 << 16) | (8 << 8) | (8 << 0));
1513         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1514         /* update cursor SR watermark */
1515         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1516 }
1517
1518 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1519 {
1520         struct drm_device *dev = unused_crtc->dev;
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         const struct intel_watermark_params *wm_info;
1523         uint32_t fwater_lo;
1524         uint32_t fwater_hi;
1525         int cwm, srwm = 1;
1526         int fifo_size;
1527         int planea_wm, planeb_wm;
1528         struct drm_crtc *crtc, *enabled = NULL;
1529
1530         if (IS_I945GM(dev))
1531                 wm_info = &i945_wm_info;
1532         else if (!IS_GEN2(dev))
1533                 wm_info = &i915_wm_info;
1534         else
1535                 wm_info = &i830_wm_info;
1536
1537         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1538         crtc = intel_get_crtc_for_plane(dev, 0);
1539         if (intel_crtc_active(crtc)) {
1540                 const struct drm_display_mode *adjusted_mode;
1541                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1542                 if (IS_GEN2(dev))
1543                         cpp = 4;
1544
1545                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1546                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547                                                wm_info, fifo_size, cpp,
1548                                                latency_ns);
1549                 enabled = crtc;
1550         } else
1551                 planea_wm = fifo_size - wm_info->guard_size;
1552
1553         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554         crtc = intel_get_crtc_for_plane(dev, 1);
1555         if (intel_crtc_active(crtc)) {
1556                 const struct drm_display_mode *adjusted_mode;
1557                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1558                 if (IS_GEN2(dev))
1559                         cpp = 4;
1560
1561                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1562                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563                                                wm_info, fifo_size, cpp,
1564                                                latency_ns);
1565                 if (enabled == NULL)
1566                         enabled = crtc;
1567                 else
1568                         enabled = NULL;
1569         } else
1570                 planeb_wm = fifo_size - wm_info->guard_size;
1571
1572         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1573
1574         if (IS_I915GM(dev) && enabled) {
1575                 struct intel_framebuffer *fb;
1576
1577                 fb = to_intel_framebuffer(enabled->primary->fb);
1578
1579                 /* self-refresh seems busted with untiled */
1580                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1581                         enabled = NULL;
1582         }
1583
1584         /*
1585          * Overlay gets an aggressive default since video jitter is bad.
1586          */
1587         cwm = 2;
1588
1589         /* Play safe and disable self-refresh before adjusting watermarks. */
1590         if (IS_I945G(dev) || IS_I945GM(dev))
1591                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1592         else if (IS_I915GM(dev))
1593                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1594
1595         /* Calc sr entries for one plane configs */
1596         if (HAS_FW_BLC(dev) && enabled) {
1597                 /* self-refresh has much higher latency */
1598                 static const int sr_latency_ns = 6000;
1599                 const struct drm_display_mode *adjusted_mode =
1600                         &to_intel_crtc(enabled)->config.adjusted_mode;
1601                 int clock = adjusted_mode->crtc_clock;
1602                 int htotal = adjusted_mode->crtc_htotal;
1603                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1604                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1605                 unsigned long line_time_us;
1606                 int entries;
1607
1608                 line_time_us = max(htotal * 1000 / clock, 1);
1609
1610                 /* Use ns/us then divide to preserve precision */
1611                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1612                         pixel_size * hdisplay;
1613                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1614                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1615                 srwm = wm_info->fifo_size - entries;
1616                 if (srwm < 0)
1617                         srwm = 1;
1618
1619                 if (IS_I945G(dev) || IS_I945GM(dev))
1620                         I915_WRITE(FW_BLC_SELF,
1621                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1622                 else if (IS_I915GM(dev))
1623                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1624         }
1625
1626         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1627                       planea_wm, planeb_wm, cwm, srwm);
1628
1629         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1630         fwater_hi = (cwm & 0x1f);
1631
1632         /* Set request length to 8 cachelines per fetch */
1633         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1634         fwater_hi = fwater_hi | (1 << 8);
1635
1636         I915_WRITE(FW_BLC, fwater_lo);
1637         I915_WRITE(FW_BLC2, fwater_hi);
1638
1639         if (HAS_FW_BLC(dev)) {
1640                 if (enabled) {
1641                         if (IS_I945G(dev) || IS_I945GM(dev))
1642                                 I915_WRITE(FW_BLC_SELF,
1643                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1644                         else if (IS_I915GM(dev))
1645                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1646                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1647                 } else
1648                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1649         }
1650 }
1651
1652 static void i845_update_wm(struct drm_crtc *unused_crtc)
1653 {
1654         struct drm_device *dev = unused_crtc->dev;
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656         struct drm_crtc *crtc;
1657         const struct drm_display_mode *adjusted_mode;
1658         uint32_t fwater_lo;
1659         int planea_wm;
1660
1661         crtc = single_enabled_crtc(dev);
1662         if (crtc == NULL)
1663                 return;
1664
1665         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1666         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1667                                        &i845_wm_info,
1668                                        dev_priv->display.get_fifo_size(dev, 0),
1669                                        4, latency_ns);
1670         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1671         fwater_lo |= (3<<8) | planea_wm;
1672
1673         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1674
1675         I915_WRITE(FW_BLC, fwater_lo);
1676 }
1677
1678 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1679                                     struct drm_crtc *crtc)
1680 {
1681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1682         uint32_t pixel_rate;
1683
1684         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1685
1686         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1687          * adjust the pixel_rate here. */
1688
1689         if (intel_crtc->config.pch_pfit.enabled) {
1690                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1691                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1692
1693                 pipe_w = intel_crtc->config.pipe_src_w;
1694                 pipe_h = intel_crtc->config.pipe_src_h;
1695                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1696                 pfit_h = pfit_size & 0xFFFF;
1697                 if (pipe_w < pfit_w)
1698                         pipe_w = pfit_w;
1699                 if (pipe_h < pfit_h)
1700                         pipe_h = pfit_h;
1701
1702                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1703                                      pfit_w * pfit_h);
1704         }
1705
1706         return pixel_rate;
1707 }
1708
1709 /* latency must be in 0.1us units. */
1710 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1711                                uint32_t latency)
1712 {
1713         uint64_t ret;
1714
1715         if (WARN(latency == 0, "Latency value missing\n"))
1716                 return UINT_MAX;
1717
1718         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1719         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1720
1721         return ret;
1722 }
1723
1724 /* latency must be in 0.1us units. */
1725 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1726                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1727                                uint32_t latency)
1728 {
1729         uint32_t ret;
1730
1731         if (WARN(latency == 0, "Latency value missing\n"))
1732                 return UINT_MAX;
1733
1734         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1735         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1736         ret = DIV_ROUND_UP(ret, 64) + 2;
1737         return ret;
1738 }
1739
1740 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1741                            uint8_t bytes_per_pixel)
1742 {
1743         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1744 }
1745
1746 struct ilk_pipe_wm_parameters {
1747         bool active;
1748         uint32_t pipe_htotal;
1749         uint32_t pixel_rate;
1750         struct intel_plane_wm_parameters pri;
1751         struct intel_plane_wm_parameters spr;
1752         struct intel_plane_wm_parameters cur;
1753 };
1754
1755 struct ilk_wm_maximums {
1756         uint16_t pri;
1757         uint16_t spr;
1758         uint16_t cur;
1759         uint16_t fbc;
1760 };
1761
1762 /* used in computing the new watermarks state */
1763 struct intel_wm_config {
1764         unsigned int num_pipes_active;
1765         bool sprites_enabled;
1766         bool sprites_scaled;
1767 };
1768
1769 /*
1770  * For both WM_PIPE and WM_LP.
1771  * mem_value must be in 0.1us units.
1772  */
1773 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1774                                    uint32_t mem_value,
1775                                    bool is_lp)
1776 {
1777         uint32_t method1, method2;
1778
1779         if (!params->active || !params->pri.enabled)
1780                 return 0;
1781
1782         method1 = ilk_wm_method1(params->pixel_rate,
1783                                  params->pri.bytes_per_pixel,
1784                                  mem_value);
1785
1786         if (!is_lp)
1787                 return method1;
1788
1789         method2 = ilk_wm_method2(params->pixel_rate,
1790                                  params->pipe_htotal,
1791                                  params->pri.horiz_pixels,
1792                                  params->pri.bytes_per_pixel,
1793                                  mem_value);
1794
1795         return min(method1, method2);
1796 }
1797
1798 /*
1799  * For both WM_PIPE and WM_LP.
1800  * mem_value must be in 0.1us units.
1801  */
1802 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1803                                    uint32_t mem_value)
1804 {
1805         uint32_t method1, method2;
1806
1807         if (!params->active || !params->spr.enabled)
1808                 return 0;
1809
1810         method1 = ilk_wm_method1(params->pixel_rate,
1811                                  params->spr.bytes_per_pixel,
1812                                  mem_value);
1813         method2 = ilk_wm_method2(params->pixel_rate,
1814                                  params->pipe_htotal,
1815                                  params->spr.horiz_pixels,
1816                                  params->spr.bytes_per_pixel,
1817                                  mem_value);
1818         return min(method1, method2);
1819 }
1820
1821 /*
1822  * For both WM_PIPE and WM_LP.
1823  * mem_value must be in 0.1us units.
1824  */
1825 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1826                                    uint32_t mem_value)
1827 {
1828         if (!params->active || !params->cur.enabled)
1829                 return 0;
1830
1831         return ilk_wm_method2(params->pixel_rate,
1832                               params->pipe_htotal,
1833                               params->cur.horiz_pixels,
1834                               params->cur.bytes_per_pixel,
1835                               mem_value);
1836 }
1837
1838 /* Only for WM_LP. */
1839 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1840                                    uint32_t pri_val)
1841 {
1842         if (!params->active || !params->pri.enabled)
1843                 return 0;
1844
1845         return ilk_wm_fbc(pri_val,
1846                           params->pri.horiz_pixels,
1847                           params->pri.bytes_per_pixel);
1848 }
1849
1850 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1851 {
1852         if (INTEL_INFO(dev)->gen >= 8)
1853                 return 3072;
1854         else if (INTEL_INFO(dev)->gen >= 7)
1855                 return 768;
1856         else
1857                 return 512;
1858 }
1859
1860 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1861                                          int level, bool is_sprite)
1862 {
1863         if (INTEL_INFO(dev)->gen >= 8)
1864                 /* BDW primary/sprite plane watermarks */
1865                 return level == 0 ? 255 : 2047;
1866         else if (INTEL_INFO(dev)->gen >= 7)
1867                 /* IVB/HSW primary/sprite plane watermarks */
1868                 return level == 0 ? 127 : 1023;
1869         else if (!is_sprite)
1870                 /* ILK/SNB primary plane watermarks */
1871                 return level == 0 ? 127 : 511;
1872         else
1873                 /* ILK/SNB sprite plane watermarks */
1874                 return level == 0 ? 63 : 255;
1875 }
1876
1877 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1878                                           int level)
1879 {
1880         if (INTEL_INFO(dev)->gen >= 7)
1881                 return level == 0 ? 63 : 255;
1882         else
1883                 return level == 0 ? 31 : 63;
1884 }
1885
1886 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1887 {
1888         if (INTEL_INFO(dev)->gen >= 8)
1889                 return 31;
1890         else
1891                 return 15;
1892 }
1893
1894 /* Calculate the maximum primary/sprite plane watermark */
1895 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1896                                      int level,
1897                                      const struct intel_wm_config *config,
1898                                      enum intel_ddb_partitioning ddb_partitioning,
1899                                      bool is_sprite)
1900 {
1901         unsigned int fifo_size = ilk_display_fifo_size(dev);
1902
1903         /* if sprites aren't enabled, sprites get nothing */
1904         if (is_sprite && !config->sprites_enabled)
1905                 return 0;
1906
1907         /* HSW allows LP1+ watermarks even with multiple pipes */
1908         if (level == 0 || config->num_pipes_active > 1) {
1909                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1910
1911                 /*
1912                  * For some reason the non self refresh
1913                  * FIFO size is only half of the self
1914                  * refresh FIFO size on ILK/SNB.
1915                  */
1916                 if (INTEL_INFO(dev)->gen <= 6)
1917                         fifo_size /= 2;
1918         }
1919
1920         if (config->sprites_enabled) {
1921                 /* level 0 is always calculated with 1:1 split */
1922                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1923                         if (is_sprite)
1924                                 fifo_size *= 5;
1925                         fifo_size /= 6;
1926                 } else {
1927                         fifo_size /= 2;
1928                 }
1929         }
1930
1931         /* clamp to max that the registers can hold */
1932         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1933 }
1934
1935 /* Calculate the maximum cursor plane watermark */
1936 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1937                                       int level,
1938                                       const struct intel_wm_config *config)
1939 {
1940         /* HSW LP1+ watermarks w/ multiple pipes */
1941         if (level > 0 && config->num_pipes_active > 1)
1942                 return 64;
1943
1944         /* otherwise just report max that registers can hold */
1945         return ilk_cursor_wm_reg_max(dev, level);
1946 }
1947
1948 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1949                                     int level,
1950                                     const struct intel_wm_config *config,
1951                                     enum intel_ddb_partitioning ddb_partitioning,
1952                                     struct ilk_wm_maximums *max)
1953 {
1954         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1955         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1956         max->cur = ilk_cursor_wm_max(dev, level, config);
1957         max->fbc = ilk_fbc_wm_reg_max(dev);
1958 }
1959
1960 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1961                                         int level,
1962                                         struct ilk_wm_maximums *max)
1963 {
1964         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1965         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1966         max->cur = ilk_cursor_wm_reg_max(dev, level);
1967         max->fbc = ilk_fbc_wm_reg_max(dev);
1968 }
1969
1970 static bool ilk_validate_wm_level(int level,
1971                                   const struct ilk_wm_maximums *max,
1972                                   struct intel_wm_level *result)
1973 {
1974         bool ret;
1975
1976         /* already determined to be invalid? */
1977         if (!result->enable)
1978                 return false;
1979
1980         result->enable = result->pri_val <= max->pri &&
1981                          result->spr_val <= max->spr &&
1982                          result->cur_val <= max->cur;
1983
1984         ret = result->enable;
1985
1986         /*
1987          * HACK until we can pre-compute everything,
1988          * and thus fail gracefully if LP0 watermarks
1989          * are exceeded...
1990          */
1991         if (level == 0 && !result->enable) {
1992                 if (result->pri_val > max->pri)
1993                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1994                                       level, result->pri_val, max->pri);
1995                 if (result->spr_val > max->spr)
1996                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1997                                       level, result->spr_val, max->spr);
1998                 if (result->cur_val > max->cur)
1999                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2000                                       level, result->cur_val, max->cur);
2001
2002                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2003                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2004                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2005                 result->enable = true;
2006         }
2007
2008         return ret;
2009 }
2010
2011 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2012                                  int level,
2013                                  const struct ilk_pipe_wm_parameters *p,
2014                                  struct intel_wm_level *result)
2015 {
2016         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2017         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2018         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2019
2020         /* WM1+ latency values stored in 0.5us units */
2021         if (level > 0) {
2022                 pri_latency *= 5;
2023                 spr_latency *= 5;
2024                 cur_latency *= 5;
2025         }
2026
2027         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2028         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2029         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2030         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2031         result->enable = true;
2032 }
2033
2034 static uint32_t
2035 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2036 {
2037         struct drm_i915_private *dev_priv = dev->dev_private;
2038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2040         u32 linetime, ips_linetime;
2041
2042         if (!intel_crtc_active(crtc))
2043                 return 0;
2044
2045         /* The WM are computed with base on how long it takes to fill a single
2046          * row at the given clock rate, multiplied by 8.
2047          * */
2048         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2049                                      mode->crtc_clock);
2050         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2051                                          intel_ddi_get_cdclk_freq(dev_priv));
2052
2053         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2054                PIPE_WM_LINETIME_TIME(linetime);
2055 }
2056
2057 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2058 {
2059         struct drm_i915_private *dev_priv = dev->dev_private;
2060
2061         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2062                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2063
2064                 wm[0] = (sskpd >> 56) & 0xFF;
2065                 if (wm[0] == 0)
2066                         wm[0] = sskpd & 0xF;
2067                 wm[1] = (sskpd >> 4) & 0xFF;
2068                 wm[2] = (sskpd >> 12) & 0xFF;
2069                 wm[3] = (sskpd >> 20) & 0x1FF;
2070                 wm[4] = (sskpd >> 32) & 0x1FF;
2071         } else if (INTEL_INFO(dev)->gen >= 6) {
2072                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2073
2074                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2075                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2076                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2077                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2078         } else if (INTEL_INFO(dev)->gen >= 5) {
2079                 uint32_t mltr = I915_READ(MLTR_ILK);
2080
2081                 /* ILK primary LP0 latency is 700 ns */
2082                 wm[0] = 7;
2083                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2084                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2085         }
2086 }
2087
2088 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2089 {
2090         /* ILK sprite LP0 latency is 1300 ns */
2091         if (INTEL_INFO(dev)->gen == 5)
2092                 wm[0] = 13;
2093 }
2094
2095 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2096 {
2097         /* ILK cursor LP0 latency is 1300 ns */
2098         if (INTEL_INFO(dev)->gen == 5)
2099                 wm[0] = 13;
2100
2101         /* WaDoubleCursorLP3Latency:ivb */
2102         if (IS_IVYBRIDGE(dev))
2103                 wm[3] *= 2;
2104 }
2105
2106 int ilk_wm_max_level(const struct drm_device *dev)
2107 {
2108         /* how many WM levels are we expecting */
2109         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2110                 return 4;
2111         else if (INTEL_INFO(dev)->gen >= 6)
2112                 return 3;
2113         else
2114                 return 2;
2115 }
2116
2117 static void intel_print_wm_latency(struct drm_device *dev,
2118                                    const char *name,
2119                                    const uint16_t wm[5])
2120 {
2121         int level, max_level = ilk_wm_max_level(dev);
2122
2123         for (level = 0; level <= max_level; level++) {
2124                 unsigned int latency = wm[level];
2125
2126                 if (latency == 0) {
2127                         DRM_ERROR("%s WM%d latency not provided\n",
2128                                   name, level);
2129                         continue;
2130                 }
2131
2132                 /* WM1+ latency values in 0.5us units */
2133                 if (level > 0)
2134                         latency *= 5;
2135
2136                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2137                               name, level, wm[level],
2138                               latency / 10, latency % 10);
2139         }
2140 }
2141
2142 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2143                                     uint16_t wm[5], uint16_t min)
2144 {
2145         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2146
2147         if (wm[0] >= min)
2148                 return false;
2149
2150         wm[0] = max(wm[0], min);
2151         for (level = 1; level <= max_level; level++)
2152                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2153
2154         return true;
2155 }
2156
2157 static void snb_wm_latency_quirk(struct drm_device *dev)
2158 {
2159         struct drm_i915_private *dev_priv = dev->dev_private;
2160         bool changed;
2161
2162         /*
2163          * The BIOS provided WM memory latency values are often
2164          * inadequate for high resolution displays. Adjust them.
2165          */
2166         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2167                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2168                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2169
2170         if (!changed)
2171                 return;
2172
2173         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2174         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2175         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2176         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2177 }
2178
2179 static void ilk_setup_wm_latency(struct drm_device *dev)
2180 {
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182
2183         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2184
2185         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2186                sizeof(dev_priv->wm.pri_latency));
2187         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2188                sizeof(dev_priv->wm.pri_latency));
2189
2190         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2191         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2192
2193         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2194         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2195         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2196
2197         if (IS_GEN6(dev))
2198                 snb_wm_latency_quirk(dev);
2199 }
2200
2201 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2202                                       struct ilk_pipe_wm_parameters *p)
2203 {
2204         struct drm_device *dev = crtc->dev;
2205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2206         enum pipe pipe = intel_crtc->pipe;
2207         struct drm_plane *plane;
2208
2209         if (!intel_crtc_active(crtc))
2210                 return;
2211
2212         p->active = true;
2213         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2214         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2215         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2216         p->cur.bytes_per_pixel = 4;
2217         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2218         p->cur.horiz_pixels = intel_crtc->cursor_width;
2219         /* TODO: for now, assume primary and cursor planes are always enabled. */
2220         p->pri.enabled = true;
2221         p->cur.enabled = true;
2222
2223         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2224                 struct intel_plane *intel_plane = to_intel_plane(plane);
2225
2226                 if (intel_plane->pipe == pipe) {
2227                         p->spr = intel_plane->wm;
2228                         break;
2229                 }
2230         }
2231 }
2232
2233 static void ilk_compute_wm_config(struct drm_device *dev,
2234                                   struct intel_wm_config *config)
2235 {
2236         struct intel_crtc *intel_crtc;
2237
2238         /* Compute the currently _active_ config */
2239         for_each_intel_crtc(dev, intel_crtc) {
2240                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2241
2242                 if (!wm->pipe_enabled)
2243                         continue;
2244
2245                 config->sprites_enabled |= wm->sprites_enabled;
2246                 config->sprites_scaled |= wm->sprites_scaled;
2247                 config->num_pipes_active++;
2248         }
2249 }
2250
2251 /* Compute new watermarks for the pipe */
2252 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2253                                   const struct ilk_pipe_wm_parameters *params,
2254                                   struct intel_pipe_wm *pipe_wm)
2255 {
2256         struct drm_device *dev = crtc->dev;
2257         const struct drm_i915_private *dev_priv = dev->dev_private;
2258         int level, max_level = ilk_wm_max_level(dev);
2259         /* LP0 watermark maximums depend on this pipe alone */
2260         struct intel_wm_config config = {
2261                 .num_pipes_active = 1,
2262                 .sprites_enabled = params->spr.enabled,
2263                 .sprites_scaled = params->spr.scaled,
2264         };
2265         struct ilk_wm_maximums max;
2266
2267         pipe_wm->pipe_enabled = params->active;
2268         pipe_wm->sprites_enabled = params->spr.enabled;
2269         pipe_wm->sprites_scaled = params->spr.scaled;
2270
2271         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2272         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2273                 max_level = 1;
2274
2275         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2276         if (params->spr.scaled)
2277                 max_level = 0;
2278
2279         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2280
2281         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2282                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2283
2284         /* LP0 watermarks always use 1/2 DDB partitioning */
2285         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2286
2287         /* At least LP0 must be valid */
2288         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2289                 return false;
2290
2291         ilk_compute_wm_reg_maximums(dev, 1, &max);
2292
2293         for (level = 1; level <= max_level; level++) {
2294                 struct intel_wm_level wm = {};
2295
2296                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2297
2298                 /*
2299                  * Disable any watermark level that exceeds the
2300                  * register maximums since such watermarks are
2301                  * always invalid.
2302                  */
2303                 if (!ilk_validate_wm_level(level, &max, &wm))
2304                         break;
2305
2306                 pipe_wm->wm[level] = wm;
2307         }
2308
2309         return true;
2310 }
2311
2312 /*
2313  * Merge the watermarks from all active pipes for a specific level.
2314  */
2315 static void ilk_merge_wm_level(struct drm_device *dev,
2316                                int level,
2317                                struct intel_wm_level *ret_wm)
2318 {
2319         const struct intel_crtc *intel_crtc;
2320
2321         ret_wm->enable = true;
2322
2323         for_each_intel_crtc(dev, intel_crtc) {
2324                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2325                 const struct intel_wm_level *wm = &active->wm[level];
2326
2327                 if (!active->pipe_enabled)
2328                         continue;
2329
2330                 /*
2331                  * The watermark values may have been used in the past,
2332                  * so we must maintain them in the registers for some
2333                  * time even if the level is now disabled.
2334                  */
2335                 if (!wm->enable)
2336                         ret_wm->enable = false;
2337
2338                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2339                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2340                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2341                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2342         }
2343 }
2344
2345 /*
2346  * Merge all low power watermarks for all active pipes.
2347  */
2348 static void ilk_wm_merge(struct drm_device *dev,
2349                          const struct intel_wm_config *config,
2350                          const struct ilk_wm_maximums *max,
2351                          struct intel_pipe_wm *merged)
2352 {
2353         int level, max_level = ilk_wm_max_level(dev);
2354         int last_enabled_level = max_level;
2355
2356         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2357         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2358             config->num_pipes_active > 1)
2359                 return;
2360
2361         /* ILK: FBC WM must be disabled always */
2362         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2363
2364         /* merge each WM1+ level */
2365         for (level = 1; level <= max_level; level++) {
2366                 struct intel_wm_level *wm = &merged->wm[level];
2367
2368                 ilk_merge_wm_level(dev, level, wm);
2369
2370                 if (level > last_enabled_level)
2371                         wm->enable = false;
2372                 else if (!ilk_validate_wm_level(level, max, wm))
2373                         /* make sure all following levels get disabled */
2374                         last_enabled_level = level - 1;
2375
2376                 /*
2377                  * The spec says it is preferred to disable
2378                  * FBC WMs instead of disabling a WM level.
2379                  */
2380                 if (wm->fbc_val > max->fbc) {
2381                         if (wm->enable)
2382                                 merged->fbc_wm_enabled = false;
2383                         wm->fbc_val = 0;
2384                 }
2385         }
2386
2387         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2388         /*
2389          * FIXME this is racy. FBC might get enabled later.
2390          * What we should check here is whether FBC can be
2391          * enabled sometime later.
2392          */
2393         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2394                 for (level = 2; level <= max_level; level++) {
2395                         struct intel_wm_level *wm = &merged->wm[level];
2396
2397                         wm->enable = false;
2398                 }
2399         }
2400 }
2401
2402 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2403 {
2404         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2405         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2406 }
2407
2408 /* The value we need to program into the WM_LPx latency field */
2409 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412
2413         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2414                 return 2 * level;
2415         else
2416                 return dev_priv->wm.pri_latency[level];
2417 }
2418
2419 static void ilk_compute_wm_results(struct drm_device *dev,
2420                                    const struct intel_pipe_wm *merged,
2421                                    enum intel_ddb_partitioning partitioning,
2422                                    struct ilk_wm_values *results)
2423 {
2424         struct intel_crtc *intel_crtc;
2425         int level, wm_lp;
2426
2427         results->enable_fbc_wm = merged->fbc_wm_enabled;
2428         results->partitioning = partitioning;
2429
2430         /* LP1+ register values */
2431         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2432                 const struct intel_wm_level *r;
2433
2434                 level = ilk_wm_lp_to_level(wm_lp, merged);
2435
2436                 r = &merged->wm[level];
2437
2438                 /*
2439                  * Maintain the watermark values even if the level is
2440                  * disabled. Doing otherwise could cause underruns.
2441                  */
2442                 results->wm_lp[wm_lp - 1] =
2443                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2444                         (r->pri_val << WM1_LP_SR_SHIFT) |
2445                         r->cur_val;
2446
2447                 if (r->enable)
2448                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2449
2450                 if (INTEL_INFO(dev)->gen >= 8)
2451                         results->wm_lp[wm_lp - 1] |=
2452                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2453                 else
2454                         results->wm_lp[wm_lp - 1] |=
2455                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2456
2457                 /*
2458                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2459                  * level is disabled. Doing otherwise could cause underruns.
2460                  */
2461                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2462                         WARN_ON(wm_lp != 1);
2463                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2464                 } else
2465                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2466         }
2467
2468         /* LP0 register values */
2469         for_each_intel_crtc(dev, intel_crtc) {
2470                 enum pipe pipe = intel_crtc->pipe;
2471                 const struct intel_wm_level *r =
2472                         &intel_crtc->wm.active.wm[0];
2473
2474                 if (WARN_ON(!r->enable))
2475                         continue;
2476
2477                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2478
2479                 results->wm_pipe[pipe] =
2480                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2481                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2482                         r->cur_val;
2483         }
2484 }
2485
2486 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2487  * case both are at the same level. Prefer r1 in case they're the same. */
2488 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2489                                                   struct intel_pipe_wm *r1,
2490                                                   struct intel_pipe_wm *r2)
2491 {
2492         int level, max_level = ilk_wm_max_level(dev);
2493         int level1 = 0, level2 = 0;
2494
2495         for (level = 1; level <= max_level; level++) {
2496                 if (r1->wm[level].enable)
2497                         level1 = level;
2498                 if (r2->wm[level].enable)
2499                         level2 = level;
2500         }
2501
2502         if (level1 == level2) {
2503                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2504                         return r2;
2505                 else
2506                         return r1;
2507         } else if (level1 > level2) {
2508                 return r1;
2509         } else {
2510                 return r2;
2511         }
2512 }
2513
2514 /* dirty bits used to track which watermarks need changes */
2515 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2516 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2517 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2518 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2519 #define WM_DIRTY_FBC (1 << 24)
2520 #define WM_DIRTY_DDB (1 << 25)
2521
2522 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2523                                          const struct ilk_wm_values *old,
2524                                          const struct ilk_wm_values *new)
2525 {
2526         unsigned int dirty = 0;
2527         enum pipe pipe;
2528         int wm_lp;
2529
2530         for_each_pipe(pipe) {
2531                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2532                         dirty |= WM_DIRTY_LINETIME(pipe);
2533                         /* Must disable LP1+ watermarks too */
2534                         dirty |= WM_DIRTY_LP_ALL;
2535                 }
2536
2537                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2538                         dirty |= WM_DIRTY_PIPE(pipe);
2539                         /* Must disable LP1+ watermarks too */
2540                         dirty |= WM_DIRTY_LP_ALL;
2541                 }
2542         }
2543
2544         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2545                 dirty |= WM_DIRTY_FBC;
2546                 /* Must disable LP1+ watermarks too */
2547                 dirty |= WM_DIRTY_LP_ALL;
2548         }
2549
2550         if (old->partitioning != new->partitioning) {
2551                 dirty |= WM_DIRTY_DDB;
2552                 /* Must disable LP1+ watermarks too */
2553                 dirty |= WM_DIRTY_LP_ALL;
2554         }
2555
2556         /* LP1+ watermarks already deemed dirty, no need to continue */
2557         if (dirty & WM_DIRTY_LP_ALL)
2558                 return dirty;
2559
2560         /* Find the lowest numbered LP1+ watermark in need of an update... */
2561         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2562                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2563                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2564                         break;
2565         }
2566
2567         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2568         for (; wm_lp <= 3; wm_lp++)
2569                 dirty |= WM_DIRTY_LP(wm_lp);
2570
2571         return dirty;
2572 }
2573
2574 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2575                                unsigned int dirty)
2576 {
2577         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2578         bool changed = false;
2579
2580         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2581                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2582                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2583                 changed = true;
2584         }
2585         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2586                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2587                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2588                 changed = true;
2589         }
2590         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2591                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2592                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2593                 changed = true;
2594         }
2595
2596         /*
2597          * Don't touch WM1S_LP_EN here.
2598          * Doing so could cause underruns.
2599          */
2600
2601         return changed;
2602 }
2603
2604 /*
2605  * The spec says we shouldn't write when we don't need, because every write
2606  * causes WMs to be re-evaluated, expending some power.
2607  */
2608 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2609                                 struct ilk_wm_values *results)
2610 {
2611         struct drm_device *dev = dev_priv->dev;
2612         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2613         unsigned int dirty;
2614         uint32_t val;
2615
2616         dirty = ilk_compute_wm_dirty(dev, previous, results);
2617         if (!dirty)
2618                 return;
2619
2620         _ilk_disable_lp_wm(dev_priv, dirty);
2621
2622         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2623                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2624         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2625                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2626         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2627                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2628
2629         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2630                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2631         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2632                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2633         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2634                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2635
2636         if (dirty & WM_DIRTY_DDB) {
2637                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2638                         val = I915_READ(WM_MISC);
2639                         if (results->partitioning == INTEL_DDB_PART_1_2)
2640                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2641                         else
2642                                 val |= WM_MISC_DATA_PARTITION_5_6;
2643                         I915_WRITE(WM_MISC, val);
2644                 } else {
2645                         val = I915_READ(DISP_ARB_CTL2);
2646                         if (results->partitioning == INTEL_DDB_PART_1_2)
2647                                 val &= ~DISP_DATA_PARTITION_5_6;
2648                         else
2649                                 val |= DISP_DATA_PARTITION_5_6;
2650                         I915_WRITE(DISP_ARB_CTL2, val);
2651                 }
2652         }
2653
2654         if (dirty & WM_DIRTY_FBC) {
2655                 val = I915_READ(DISP_ARB_CTL);
2656                 if (results->enable_fbc_wm)
2657                         val &= ~DISP_FBC_WM_DIS;
2658                 else
2659                         val |= DISP_FBC_WM_DIS;
2660                 I915_WRITE(DISP_ARB_CTL, val);
2661         }
2662
2663         if (dirty & WM_DIRTY_LP(1) &&
2664             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2665                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2666
2667         if (INTEL_INFO(dev)->gen >= 7) {
2668                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2669                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2670                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2671                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2672         }
2673
2674         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2675                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2676         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2677                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2678         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2679                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2680
2681         dev_priv->wm.hw = *results;
2682 }
2683
2684 static bool ilk_disable_lp_wm(struct drm_device *dev)
2685 {
2686         struct drm_i915_private *dev_priv = dev->dev_private;
2687
2688         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2689 }
2690
2691 static void ilk_update_wm(struct drm_crtc *crtc)
2692 {
2693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2694         struct drm_device *dev = crtc->dev;
2695         struct drm_i915_private *dev_priv = dev->dev_private;
2696         struct ilk_wm_maximums max;
2697         struct ilk_pipe_wm_parameters params = {};
2698         struct ilk_wm_values results = {};
2699         enum intel_ddb_partitioning partitioning;
2700         struct intel_pipe_wm pipe_wm = {};
2701         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2702         struct intel_wm_config config = {};
2703
2704         ilk_compute_wm_parameters(crtc, &params);
2705
2706         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2707
2708         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2709                 return;
2710
2711         intel_crtc->wm.active = pipe_wm;
2712
2713         ilk_compute_wm_config(dev, &config);
2714
2715         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2716         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2717
2718         /* 5/6 split only in single pipe config on IVB+ */
2719         if (INTEL_INFO(dev)->gen >= 7 &&
2720             config.num_pipes_active == 1 && config.sprites_enabled) {
2721                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2722                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2723
2724                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2725         } else {
2726                 best_lp_wm = &lp_wm_1_2;
2727         }
2728
2729         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2730                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2731
2732         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2733
2734         ilk_write_wm_values(dev_priv, &results);
2735 }
2736
2737 static void ilk_update_sprite_wm(struct drm_plane *plane,
2738                                      struct drm_crtc *crtc,
2739                                      uint32_t sprite_width, int pixel_size,
2740                                      bool enabled, bool scaled)
2741 {
2742         struct drm_device *dev = plane->dev;
2743         struct intel_plane *intel_plane = to_intel_plane(plane);
2744
2745         intel_plane->wm.enabled = enabled;
2746         intel_plane->wm.scaled = scaled;
2747         intel_plane->wm.horiz_pixels = sprite_width;
2748         intel_plane->wm.bytes_per_pixel = pixel_size;
2749
2750         /*
2751          * IVB workaround: must disable low power watermarks for at least
2752          * one frame before enabling scaling.  LP watermarks can be re-enabled
2753          * when scaling is disabled.
2754          *
2755          * WaCxSRDisabledForSpriteScaling:ivb
2756          */
2757         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2758                 intel_wait_for_vblank(dev, intel_plane->pipe);
2759
2760         ilk_update_wm(crtc);
2761 }
2762
2763 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2764 {
2765         struct drm_device *dev = crtc->dev;
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2770         enum pipe pipe = intel_crtc->pipe;
2771         static const unsigned int wm0_pipe_reg[] = {
2772                 [PIPE_A] = WM0_PIPEA_ILK,
2773                 [PIPE_B] = WM0_PIPEB_ILK,
2774                 [PIPE_C] = WM0_PIPEC_IVB,
2775         };
2776
2777         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2778         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2779                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2780
2781         active->pipe_enabled = intel_crtc_active(crtc);
2782
2783         if (active->pipe_enabled) {
2784                 u32 tmp = hw->wm_pipe[pipe];
2785
2786                 /*
2787                  * For active pipes LP0 watermark is marked as
2788                  * enabled, and LP1+ watermaks as disabled since
2789                  * we can't really reverse compute them in case
2790                  * multiple pipes are active.
2791                  */
2792                 active->wm[0].enable = true;
2793                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2794                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2795                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2796                 active->linetime = hw->wm_linetime[pipe];
2797         } else {
2798                 int level, max_level = ilk_wm_max_level(dev);
2799
2800                 /*
2801                  * For inactive pipes, all watermark levels
2802                  * should be marked as enabled but zeroed,
2803                  * which is what we'd compute them to.
2804                  */
2805                 for (level = 0; level <= max_level; level++)
2806                         active->wm[level].enable = true;
2807         }
2808 }
2809
2810 void ilk_wm_get_hw_state(struct drm_device *dev)
2811 {
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2814         struct drm_crtc *crtc;
2815
2816         for_each_crtc(dev, crtc)
2817                 ilk_pipe_wm_get_hw_state(crtc);
2818
2819         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2820         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2821         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2822
2823         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2824         if (INTEL_INFO(dev)->gen >= 7) {
2825                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2826                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2827         }
2828
2829         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2830                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2831                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2832         else if (IS_IVYBRIDGE(dev))
2833                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2834                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2835
2836         hw->enable_fbc_wm =
2837                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2838 }
2839
2840 /**
2841  * intel_update_watermarks - update FIFO watermark values based on current modes
2842  *
2843  * Calculate watermark values for the various WM regs based on current mode
2844  * and plane configuration.
2845  *
2846  * There are several cases to deal with here:
2847  *   - normal (i.e. non-self-refresh)
2848  *   - self-refresh (SR) mode
2849  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2850  *   - lines are small relative to FIFO size (buffer can hold more than 2
2851  *     lines), so need to account for TLB latency
2852  *
2853  *   The normal calculation is:
2854  *     watermark = dotclock * bytes per pixel * latency
2855  *   where latency is platform & configuration dependent (we assume pessimal
2856  *   values here).
2857  *
2858  *   The SR calculation is:
2859  *     watermark = (trunc(latency/line time)+1) * surface width *
2860  *       bytes per pixel
2861  *   where
2862  *     line time = htotal / dotclock
2863  *     surface width = hdisplay for normal plane and 64 for cursor
2864  *   and latency is assumed to be high, as above.
2865  *
2866  * The final value programmed to the register should always be rounded up,
2867  * and include an extra 2 entries to account for clock crossings.
2868  *
2869  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2870  * to set the non-SR watermarks to 8.
2871  */
2872 void intel_update_watermarks(struct drm_crtc *crtc)
2873 {
2874         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2875
2876         if (dev_priv->display.update_wm)
2877                 dev_priv->display.update_wm(crtc);
2878 }
2879
2880 void intel_update_sprite_watermarks(struct drm_plane *plane,
2881                                     struct drm_crtc *crtc,
2882                                     uint32_t sprite_width, int pixel_size,
2883                                     bool enabled, bool scaled)
2884 {
2885         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2886
2887         if (dev_priv->display.update_sprite_wm)
2888                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2889                                                    pixel_size, enabled, scaled);
2890 }
2891
2892 static struct drm_i915_gem_object *
2893 intel_alloc_context_page(struct drm_device *dev)
2894 {
2895         struct drm_i915_gem_object *ctx;
2896         int ret;
2897
2898         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2899
2900         ctx = i915_gem_alloc_object(dev, 4096);
2901         if (!ctx) {
2902                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2903                 return NULL;
2904         }
2905
2906         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2907         if (ret) {
2908                 DRM_ERROR("failed to pin power context: %d\n", ret);
2909                 goto err_unref;
2910         }
2911
2912         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2913         if (ret) {
2914                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2915                 goto err_unpin;
2916         }
2917
2918         return ctx;
2919
2920 err_unpin:
2921         i915_gem_object_ggtt_unpin(ctx);
2922 err_unref:
2923         drm_gem_object_unreference(&ctx->base);
2924         return NULL;
2925 }
2926
2927 /**
2928  * Lock protecting IPS related data structures
2929  */
2930 DEFINE_SPINLOCK(mchdev_lock);
2931
2932 /* Global for IPS driver to get at the current i915 device. Protected by
2933  * mchdev_lock. */
2934 static struct drm_i915_private *i915_mch_dev;
2935
2936 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2937 {
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         u16 rgvswctl;
2940
2941         assert_spin_locked(&mchdev_lock);
2942
2943         rgvswctl = I915_READ16(MEMSWCTL);
2944         if (rgvswctl & MEMCTL_CMD_STS) {
2945                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2946                 return false; /* still busy with another command */
2947         }
2948
2949         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2950                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2951         I915_WRITE16(MEMSWCTL, rgvswctl);
2952         POSTING_READ16(MEMSWCTL);
2953
2954         rgvswctl |= MEMCTL_CMD_STS;
2955         I915_WRITE16(MEMSWCTL, rgvswctl);
2956
2957         return true;
2958 }
2959
2960 static void ironlake_enable_drps(struct drm_device *dev)
2961 {
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         u32 rgvmodectl = I915_READ(MEMMODECTL);
2964         u8 fmax, fmin, fstart, vstart;
2965
2966         spin_lock_irq(&mchdev_lock);
2967
2968         /* Enable temp reporting */
2969         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2970         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2971
2972         /* 100ms RC evaluation intervals */
2973         I915_WRITE(RCUPEI, 100000);
2974         I915_WRITE(RCDNEI, 100000);
2975
2976         /* Set max/min thresholds to 90ms and 80ms respectively */
2977         I915_WRITE(RCBMAXAVG, 90000);
2978         I915_WRITE(RCBMINAVG, 80000);
2979
2980         I915_WRITE(MEMIHYST, 1);
2981
2982         /* Set up min, max, and cur for interrupt handling */
2983         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2984         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2985         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2986                 MEMMODE_FSTART_SHIFT;
2987
2988         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2989                 PXVFREQ_PX_SHIFT;
2990
2991         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2992         dev_priv->ips.fstart = fstart;
2993
2994         dev_priv->ips.max_delay = fstart;
2995         dev_priv->ips.min_delay = fmin;
2996         dev_priv->ips.cur_delay = fstart;
2997
2998         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2999                          fmax, fmin, fstart);
3000
3001         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3002
3003         /*
3004          * Interrupts will be enabled in ironlake_irq_postinstall
3005          */
3006
3007         I915_WRITE(VIDSTART, vstart);
3008         POSTING_READ(VIDSTART);
3009
3010         rgvmodectl |= MEMMODE_SWMODE_EN;
3011         I915_WRITE(MEMMODECTL, rgvmodectl);
3012
3013         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3014                 DRM_ERROR("stuck trying to change perf mode\n");
3015         mdelay(1);
3016
3017         ironlake_set_drps(dev, fstart);
3018
3019         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3020                 I915_READ(0x112e0);
3021         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3022         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3023         getrawmonotonic(&dev_priv->ips.last_time2);
3024
3025         spin_unlock_irq(&mchdev_lock);
3026 }
3027
3028 static void ironlake_disable_drps(struct drm_device *dev)
3029 {
3030         struct drm_i915_private *dev_priv = dev->dev_private;
3031         u16 rgvswctl;
3032
3033         spin_lock_irq(&mchdev_lock);
3034
3035         rgvswctl = I915_READ16(MEMSWCTL);
3036
3037         /* Ack interrupts, disable EFC interrupt */
3038         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3039         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3040         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3041         I915_WRITE(DEIIR, DE_PCU_EVENT);
3042         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3043
3044         /* Go back to the starting frequency */
3045         ironlake_set_drps(dev, dev_priv->ips.fstart);
3046         mdelay(1);
3047         rgvswctl |= MEMCTL_CMD_STS;
3048         I915_WRITE(MEMSWCTL, rgvswctl);
3049         mdelay(1);
3050
3051         spin_unlock_irq(&mchdev_lock);
3052 }
3053
3054 /* There's a funny hw issue where the hw returns all 0 when reading from
3055  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3056  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3057  * all limits and the gpu stuck at whatever frequency it is at atm).
3058  */
3059 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3060 {
3061         u32 limits;
3062
3063         /* Only set the down limit when we've reached the lowest level to avoid
3064          * getting more interrupts, otherwise leave this clear. This prevents a
3065          * race in the hw when coming out of rc6: There's a tiny window where
3066          * the hw runs at the minimal clock before selecting the desired
3067          * frequency, if the down threshold expires in that window we will not
3068          * receive a down interrupt. */
3069         limits = dev_priv->rps.max_freq_softlimit << 24;
3070         if (val <= dev_priv->rps.min_freq_softlimit)
3071                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3072
3073         return limits;
3074 }
3075
3076 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3077 {
3078         int new_power;
3079
3080         new_power = dev_priv->rps.power;
3081         switch (dev_priv->rps.power) {
3082         case LOW_POWER:
3083                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3084                         new_power = BETWEEN;
3085                 break;
3086
3087         case BETWEEN:
3088                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3089                         new_power = LOW_POWER;
3090                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3091                         new_power = HIGH_POWER;
3092                 break;
3093
3094         case HIGH_POWER:
3095                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3096                         new_power = BETWEEN;
3097                 break;
3098         }
3099         /* Max/min bins are special */
3100         if (val == dev_priv->rps.min_freq_softlimit)
3101                 new_power = LOW_POWER;
3102         if (val == dev_priv->rps.max_freq_softlimit)
3103                 new_power = HIGH_POWER;
3104         if (new_power == dev_priv->rps.power)
3105                 return;
3106
3107         /* Note the units here are not exactly 1us, but 1280ns. */
3108         switch (new_power) {
3109         case LOW_POWER:
3110                 /* Upclock if more than 95% busy over 16ms */
3111                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3112                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3113
3114                 /* Downclock if less than 85% busy over 32ms */
3115                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3116                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3117
3118                 I915_WRITE(GEN6_RP_CONTROL,
3119                            GEN6_RP_MEDIA_TURBO |
3120                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3121                            GEN6_RP_MEDIA_IS_GFX |
3122                            GEN6_RP_ENABLE |
3123                            GEN6_RP_UP_BUSY_AVG |
3124                            GEN6_RP_DOWN_IDLE_AVG);
3125                 break;
3126
3127         case BETWEEN:
3128                 /* Upclock if more than 90% busy over 13ms */
3129                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3130                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3131
3132                 /* Downclock if less than 75% busy over 32ms */
3133                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3134                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3135
3136                 I915_WRITE(GEN6_RP_CONTROL,
3137                            GEN6_RP_MEDIA_TURBO |
3138                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3139                            GEN6_RP_MEDIA_IS_GFX |
3140                            GEN6_RP_ENABLE |
3141                            GEN6_RP_UP_BUSY_AVG |
3142                            GEN6_RP_DOWN_IDLE_AVG);
3143                 break;
3144
3145         case HIGH_POWER:
3146                 /* Upclock if more than 85% busy over 10ms */
3147                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3148                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3149
3150                 /* Downclock if less than 60% busy over 32ms */
3151                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3152                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3153
3154                 I915_WRITE(GEN6_RP_CONTROL,
3155                            GEN6_RP_MEDIA_TURBO |
3156                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3157                            GEN6_RP_MEDIA_IS_GFX |
3158                            GEN6_RP_ENABLE |
3159                            GEN6_RP_UP_BUSY_AVG |
3160                            GEN6_RP_DOWN_IDLE_AVG);
3161                 break;
3162         }
3163
3164         dev_priv->rps.power = new_power;
3165         dev_priv->rps.last_adj = 0;
3166 }
3167
3168 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3169 {
3170         u32 mask = 0;
3171
3172         if (val > dev_priv->rps.min_freq_softlimit)
3173                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3174         if (val < dev_priv->rps.max_freq_softlimit)
3175                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3176
3177         /* IVB and SNB hard hangs on looping batchbuffer
3178          * if GEN6_PM_UP_EI_EXPIRED is masked.
3179          */
3180         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3181                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3182
3183         if (IS_GEN8(dev_priv->dev))
3184                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3185
3186         return ~mask;
3187 }
3188
3189 /* gen6_set_rps is called to update the frequency request, but should also be
3190  * called when the range (min_delay and max_delay) is modified so that we can
3191  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3192 void gen6_set_rps(struct drm_device *dev, u8 val)
3193 {
3194         struct drm_i915_private *dev_priv = dev->dev_private;
3195
3196         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3197         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3198         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3199
3200         /* min/max delay may still have been modified so be sure to
3201          * write the limits value.
3202          */
3203         if (val != dev_priv->rps.cur_freq) {
3204                 gen6_set_rps_thresholds(dev_priv, val);
3205
3206                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3207                         I915_WRITE(GEN6_RPNSWREQ,
3208                                    HSW_FREQUENCY(val));
3209                 else
3210                         I915_WRITE(GEN6_RPNSWREQ,
3211                                    GEN6_FREQUENCY(val) |
3212                                    GEN6_OFFSET(0) |
3213                                    GEN6_AGGRESSIVE_TURBO);
3214         }
3215
3216         /* Make sure we continue to get interrupts
3217          * until we hit the minimum or maximum frequencies.
3218          */
3219         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3220         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3221
3222         POSTING_READ(GEN6_RPNSWREQ);
3223
3224         dev_priv->rps.cur_freq = val;
3225         trace_intel_gpu_freq_change(val * 50);
3226 }
3227
3228 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3229  *
3230  * * If Gfx is Idle, then
3231  * 1. Mask Turbo interrupts
3232  * 2. Bring up Gfx clock
3233  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3234  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3235  * 5. Unmask Turbo interrupts
3236 */
3237 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3238 {
3239         struct drm_device *dev = dev_priv->dev;
3240
3241         /* Latest VLV doesn't need to force the gfx clock */
3242         if (dev->pdev->revision >= 0xd) {
3243                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3244                 return;
3245         }
3246
3247         /*
3248          * When we are idle.  Drop to min voltage state.
3249          */
3250
3251         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3252                 return;
3253
3254         /* Mask turbo interrupt so that they will not come in between */
3255         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3256
3257         vlv_force_gfx_clock(dev_priv, true);
3258
3259         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3260
3261         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3262                                         dev_priv->rps.min_freq_softlimit);
3263
3264         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3265                                 & GENFREQSTATUS) == 0, 5))
3266                 DRM_ERROR("timed out waiting for Punit\n");
3267
3268         vlv_force_gfx_clock(dev_priv, false);
3269
3270         I915_WRITE(GEN6_PMINTRMSK,
3271                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3272 }
3273
3274 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3275 {
3276         struct drm_device *dev = dev_priv->dev;
3277
3278         mutex_lock(&dev_priv->rps.hw_lock);
3279         if (dev_priv->rps.enabled) {
3280                 if (IS_VALLEYVIEW(dev))
3281                         vlv_set_rps_idle(dev_priv);
3282                 else
3283                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3284                 dev_priv->rps.last_adj = 0;
3285         }
3286         mutex_unlock(&dev_priv->rps.hw_lock);
3287 }
3288
3289 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3290 {
3291         struct drm_device *dev = dev_priv->dev;
3292
3293         mutex_lock(&dev_priv->rps.hw_lock);
3294         if (dev_priv->rps.enabled) {
3295                 if (IS_VALLEYVIEW(dev))
3296                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3297                 else
3298                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3299                 dev_priv->rps.last_adj = 0;
3300         }
3301         mutex_unlock(&dev_priv->rps.hw_lock);
3302 }
3303
3304 void valleyview_set_rps(struct drm_device *dev, u8 val)
3305 {
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307
3308         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3309         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3310         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3311
3312         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3313                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3314                          dev_priv->rps.cur_freq,
3315                          vlv_gpu_freq(dev_priv, val), val);
3316
3317         if (val != dev_priv->rps.cur_freq)
3318                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3319
3320         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3321
3322         dev_priv->rps.cur_freq = val;
3323         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3324 }
3325
3326 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3327 {
3328         struct drm_i915_private *dev_priv = dev->dev_private;
3329
3330         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3331         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3332                                    ~dev_priv->pm_rps_events);
3333         /* Complete PM interrupt masking here doesn't race with the rps work
3334          * item again unmasking PM interrupts because that is using a different
3335          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3336          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3337          * gen8_enable_rps will clean up. */
3338
3339         spin_lock_irq(&dev_priv->irq_lock);
3340         dev_priv->rps.pm_iir = 0;
3341         spin_unlock_irq(&dev_priv->irq_lock);
3342
3343         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3344 }
3345
3346 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3347 {
3348         struct drm_i915_private *dev_priv = dev->dev_private;
3349
3350         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3351         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3352                                 ~dev_priv->pm_rps_events);
3353         /* Complete PM interrupt masking here doesn't race with the rps work
3354          * item again unmasking PM interrupts because that is using a different
3355          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3356          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3357
3358         spin_lock_irq(&dev_priv->irq_lock);
3359         dev_priv->rps.pm_iir = 0;
3360         spin_unlock_irq(&dev_priv->irq_lock);
3361
3362         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3363 }
3364
3365 static void gen6_disable_rps(struct drm_device *dev)
3366 {
3367         struct drm_i915_private *dev_priv = dev->dev_private;
3368
3369         I915_WRITE(GEN6_RC_CONTROL, 0);
3370         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3371
3372         if (IS_BROADWELL(dev))
3373                 gen8_disable_rps_interrupts(dev);
3374         else
3375                 gen6_disable_rps_interrupts(dev);
3376 }
3377
3378 static void cherryview_disable_rps(struct drm_device *dev)
3379 {
3380         struct drm_i915_private *dev_priv = dev->dev_private;
3381
3382         I915_WRITE(GEN6_RC_CONTROL, 0);
3383 }
3384
3385 static void valleyview_disable_rps(struct drm_device *dev)
3386 {
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388
3389         I915_WRITE(GEN6_RC_CONTROL, 0);
3390
3391         gen6_disable_rps_interrupts(dev);
3392 }
3393
3394 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3395 {
3396         if (IS_VALLEYVIEW(dev)) {
3397                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3398                         mode = GEN6_RC_CTL_RC6_ENABLE;
3399                 else
3400                         mode = 0;
3401         }
3402         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3403                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3404                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3405                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3406 }
3407
3408 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3409 {
3410         /* No RC6 before Ironlake */
3411         if (INTEL_INFO(dev)->gen < 5)
3412                 return 0;
3413
3414         /* RC6 is only on Ironlake mobile not on desktop */
3415         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3416                 return 0;
3417
3418         /* Respect the kernel parameter if it is set */
3419         if (enable_rc6 >= 0) {
3420                 int mask;
3421
3422                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3423                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3424                                INTEL_RC6pp_ENABLE;
3425                 else
3426                         mask = INTEL_RC6_ENABLE;
3427
3428                 if ((enable_rc6 & mask) != enable_rc6)
3429                         DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3430                                  enable_rc6 & mask, enable_rc6, mask);
3431
3432                 return enable_rc6 & mask;
3433         }
3434
3435         /* Disable RC6 on Ironlake */
3436         if (INTEL_INFO(dev)->gen == 5)
3437                 return 0;
3438
3439         if (IS_IVYBRIDGE(dev))
3440                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3441
3442         return INTEL_RC6_ENABLE;
3443 }
3444
3445 int intel_enable_rc6(const struct drm_device *dev)
3446 {
3447         return i915.enable_rc6;
3448 }
3449
3450 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3451 {
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453
3454         spin_lock_irq(&dev_priv->irq_lock);
3455         WARN_ON(dev_priv->rps.pm_iir);
3456         bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3457         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3458         spin_unlock_irq(&dev_priv->irq_lock);
3459 }
3460
3461 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3462 {
3463         struct drm_i915_private *dev_priv = dev->dev_private;
3464
3465         spin_lock_irq(&dev_priv->irq_lock);
3466         WARN_ON(dev_priv->rps.pm_iir);
3467         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3468         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3469         spin_unlock_irq(&dev_priv->irq_lock);
3470 }
3471
3472 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3473 {
3474         /* All of these values are in units of 50MHz */
3475         dev_priv->rps.cur_freq          = 0;
3476         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3477         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3478         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3479         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3480         /* XXX: only BYT has a special efficient freq */
3481         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3482         /* hw_max = RP0 until we check for overclocking */
3483         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3484
3485         /* Preserve min/max settings in case of re-init */
3486         if (dev_priv->rps.max_freq_softlimit == 0)
3487                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3488
3489         if (dev_priv->rps.min_freq_softlimit == 0)
3490                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3491 }
3492
3493 static void gen8_enable_rps(struct drm_device *dev)
3494 {
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         struct intel_engine_cs *ring;
3497         uint32_t rc6_mask = 0, rp_state_cap;
3498         int unused;
3499
3500         /* 1a: Software RC state - RC0 */
3501         I915_WRITE(GEN6_RC_STATE, 0);
3502
3503         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3504          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3505         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3506
3507         /* 2a: Disable RC states. */
3508         I915_WRITE(GEN6_RC_CONTROL, 0);
3509
3510         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3511         parse_rp_state_cap(dev_priv, rp_state_cap);
3512
3513         /* 2b: Program RC6 thresholds.*/
3514         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3515         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3516         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3517         for_each_ring(ring, dev_priv, unused)
3518                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3519         I915_WRITE(GEN6_RC_SLEEP, 0);
3520         if (IS_BROADWELL(dev))
3521                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3522         else
3523                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3524
3525         /* 3: Enable RC6 */
3526         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3527                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3528         intel_print_rc6_info(dev, rc6_mask);
3529         if (IS_BROADWELL(dev))
3530                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3531                                 GEN7_RC_CTL_TO_MODE |
3532                                 rc6_mask);
3533         else
3534                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3535                                 GEN6_RC_CTL_EI_MODE(1) |
3536                                 rc6_mask);
3537
3538         /* 4 Program defaults and thresholds for RPS*/
3539         I915_WRITE(GEN6_RPNSWREQ,
3540                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3541         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3542                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3543         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3544         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3545
3546         /* Docs recommend 900MHz, and 300 MHz respectively */
3547         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3548                    dev_priv->rps.max_freq_softlimit << 24 |
3549                    dev_priv->rps.min_freq_softlimit << 16);
3550
3551         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3552         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3553         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3554         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3555
3556         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3557
3558         /* 5: Enable RPS */
3559         I915_WRITE(GEN6_RP_CONTROL,
3560                    GEN6_RP_MEDIA_TURBO |
3561                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3562                    GEN6_RP_MEDIA_IS_GFX |
3563                    GEN6_RP_ENABLE |
3564                    GEN6_RP_UP_BUSY_AVG |
3565                    GEN6_RP_DOWN_IDLE_AVG);
3566
3567         /* 6: Ring frequency + overclocking (our driver does this later */
3568
3569         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3570
3571         gen8_enable_rps_interrupts(dev);
3572
3573         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3574 }
3575
3576 static void gen6_enable_rps(struct drm_device *dev)
3577 {
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         struct intel_engine_cs *ring;
3580         u32 rp_state_cap;
3581         u32 gt_perf_status;
3582         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3583         u32 gtfifodbg;
3584         int rc6_mode;
3585         int i, ret;
3586
3587         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3588
3589         /* Here begins a magic sequence of register writes to enable
3590          * auto-downclocking.
3591          *
3592          * Perhaps there might be some value in exposing these to
3593          * userspace...
3594          */
3595         I915_WRITE(GEN6_RC_STATE, 0);
3596
3597         /* Clear the DBG now so we don't confuse earlier errors */
3598         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3599                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3600                 I915_WRITE(GTFIFODBG, gtfifodbg);
3601         }
3602
3603         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3604
3605         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3606         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3607
3608         parse_rp_state_cap(dev_priv, rp_state_cap);
3609
3610         /* disable the counters and set deterministic thresholds */
3611         I915_WRITE(GEN6_RC_CONTROL, 0);
3612
3613         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3614         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3615         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3616         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3617         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3618
3619         for_each_ring(ring, dev_priv, i)
3620                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3621
3622         I915_WRITE(GEN6_RC_SLEEP, 0);
3623         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3624         if (IS_IVYBRIDGE(dev))
3625                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3626         else
3627                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3628         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3629         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3630
3631         /* Check if we are enabling RC6 */
3632         rc6_mode = intel_enable_rc6(dev_priv->dev);
3633         if (rc6_mode & INTEL_RC6_ENABLE)
3634                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3635
3636         /* We don't use those on Haswell */
3637         if (!IS_HASWELL(dev)) {
3638                 if (rc6_mode & INTEL_RC6p_ENABLE)
3639                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3640
3641                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3642                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3643         }
3644
3645         intel_print_rc6_info(dev, rc6_mask);
3646
3647         I915_WRITE(GEN6_RC_CONTROL,
3648                    rc6_mask |
3649                    GEN6_RC_CTL_EI_MODE(1) |
3650                    GEN6_RC_CTL_HW_ENABLE);
3651
3652         /* Power down if completely idle for over 50ms */
3653         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3654         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3655
3656         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3657         if (ret)
3658                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3659
3660         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3661         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3662                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3663                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3664                                  (pcu_mbox & 0xff) * 50);
3665                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3666         }
3667
3668         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3669         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3670
3671         gen6_enable_rps_interrupts(dev);
3672
3673         rc6vids = 0;
3674         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3675         if (IS_GEN6(dev) && ret) {
3676                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3677         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3678                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3679                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3680                 rc6vids &= 0xffff00;
3681                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3682                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3683                 if (ret)
3684                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3685         }
3686
3687         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3688 }
3689
3690 static void __gen6_update_ring_freq(struct drm_device *dev)
3691 {
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693         int min_freq = 15;
3694         unsigned int gpu_freq;
3695         unsigned int max_ia_freq, min_ring_freq;
3696         int scaling_factor = 180;
3697         struct cpufreq_policy *policy;
3698
3699         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3700
3701         policy = cpufreq_cpu_get(0);
3702         if (policy) {
3703                 max_ia_freq = policy->cpuinfo.max_freq;
3704                 cpufreq_cpu_put(policy);
3705         } else {
3706                 /*
3707                  * Default to measured freq if none found, PCU will ensure we
3708                  * don't go over
3709                  */
3710                 max_ia_freq = tsc_khz;
3711         }
3712
3713         /* Convert from kHz to MHz */
3714         max_ia_freq /= 1000;
3715
3716         min_ring_freq = I915_READ(DCLK) & 0xf;
3717         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3718         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3719
3720         /*
3721          * For each potential GPU frequency, load a ring frequency we'd like
3722          * to use for memory access.  We do this by specifying the IA frequency
3723          * the PCU should use as a reference to determine the ring frequency.
3724          */
3725         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3726              gpu_freq--) {
3727                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3728                 unsigned int ia_freq = 0, ring_freq = 0;
3729
3730                 if (INTEL_INFO(dev)->gen >= 8) {
3731                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3732                         ring_freq = max(min_ring_freq, gpu_freq);
3733                 } else if (IS_HASWELL(dev)) {
3734                         ring_freq = mult_frac(gpu_freq, 5, 4);
3735                         ring_freq = max(min_ring_freq, ring_freq);
3736                         /* leave ia_freq as the default, chosen by cpufreq */
3737                 } else {
3738                         /* On older processors, there is no separate ring
3739                          * clock domain, so in order to boost the bandwidth
3740                          * of the ring, we need to upclock the CPU (ia_freq).
3741                          *
3742                          * For GPU frequencies less than 750MHz,
3743                          * just use the lowest ring freq.
3744                          */
3745                         if (gpu_freq < min_freq)
3746                                 ia_freq = 800;
3747                         else
3748                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3749                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3750                 }
3751
3752                 sandybridge_pcode_write(dev_priv,
3753                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3754                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3755                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3756                                         gpu_freq);
3757         }
3758 }
3759
3760 void gen6_update_ring_freq(struct drm_device *dev)
3761 {
3762         struct drm_i915_private *dev_priv = dev->dev_private;
3763
3764         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3765                 return;
3766
3767         mutex_lock(&dev_priv->rps.hw_lock);
3768         __gen6_update_ring_freq(dev);
3769         mutex_unlock(&dev_priv->rps.hw_lock);
3770 }
3771
3772 int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3773 {
3774         u32 val, rp0;
3775
3776         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3777         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3778
3779         return rp0;
3780 }
3781
3782 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3783 {
3784         u32 val, rpe;
3785
3786         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3787         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3788
3789         return rpe;
3790 }
3791
3792 int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3793 {
3794         u32 val, rpn;
3795
3796         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3797         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3798         return rpn;
3799 }
3800
3801 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3802 {
3803         u32 val, rp0;
3804
3805         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3806
3807         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3808         /* Clamp to max */
3809         rp0 = min_t(u32, rp0, 0xea);
3810
3811         return rp0;
3812 }
3813
3814 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3815 {
3816         u32 val, rpe;
3817
3818         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3819         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3820         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3821         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3822
3823         return rpe;
3824 }
3825
3826 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3827 {
3828         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3829 }
3830
3831 /* Check that the pctx buffer wasn't move under us. */
3832 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3833 {
3834         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3835
3836         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3837                              dev_priv->vlv_pctx->stolen->start);
3838 }
3839
3840
3841 /* Check that the pcbr address is not empty. */
3842 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3843 {
3844         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3845
3846         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3847 }
3848
3849 static void cherryview_setup_pctx(struct drm_device *dev)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         unsigned long pctx_paddr, paddr;
3853         struct i915_gtt *gtt = &dev_priv->gtt;
3854         u32 pcbr;
3855         int pctx_size = 32*1024;
3856
3857         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3858
3859         pcbr = I915_READ(VLV_PCBR);
3860         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3861                 paddr = (dev_priv->mm.stolen_base +
3862                          (gtt->stolen_size - pctx_size));
3863
3864                 pctx_paddr = (paddr & (~4095));
3865                 I915_WRITE(VLV_PCBR, pctx_paddr);
3866         }
3867 }
3868
3869 static void valleyview_setup_pctx(struct drm_device *dev)
3870 {
3871         struct drm_i915_private *dev_priv = dev->dev_private;
3872         struct drm_i915_gem_object *pctx;
3873         unsigned long pctx_paddr;
3874         u32 pcbr;
3875         int pctx_size = 24*1024;
3876
3877         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3878
3879         pcbr = I915_READ(VLV_PCBR);
3880         if (pcbr) {
3881                 /* BIOS set it up already, grab the pre-alloc'd space */
3882                 int pcbr_offset;
3883
3884                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3885                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3886                                                                       pcbr_offset,
3887                                                                       I915_GTT_OFFSET_NONE,
3888                                                                       pctx_size);
3889                 goto out;
3890         }
3891
3892         /*
3893          * From the Gunit register HAS:
3894          * The Gfx driver is expected to program this register and ensure
3895          * proper allocation within Gfx stolen memory.  For example, this
3896          * register should be programmed such than the PCBR range does not
3897          * overlap with other ranges, such as the frame buffer, protected
3898          * memory, or any other relevant ranges.
3899          */
3900         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3901         if (!pctx) {
3902                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3903                 return;
3904         }
3905
3906         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3907         I915_WRITE(VLV_PCBR, pctx_paddr);
3908
3909 out:
3910         dev_priv->vlv_pctx = pctx;
3911 }
3912
3913 static void valleyview_cleanup_pctx(struct drm_device *dev)
3914 {
3915         struct drm_i915_private *dev_priv = dev->dev_private;
3916
3917         if (WARN_ON(!dev_priv->vlv_pctx))
3918                 return;
3919
3920         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3921         dev_priv->vlv_pctx = NULL;
3922 }
3923
3924 static void valleyview_init_gt_powersave(struct drm_device *dev)
3925 {
3926         struct drm_i915_private *dev_priv = dev->dev_private;
3927
3928         valleyview_setup_pctx(dev);
3929
3930         mutex_lock(&dev_priv->rps.hw_lock);
3931
3932         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3933         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3934         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3935                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3936                          dev_priv->rps.max_freq);
3937
3938         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3939         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3940                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3941                          dev_priv->rps.efficient_freq);
3942
3943         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3944         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3945                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3946                          dev_priv->rps.min_freq);
3947
3948         /* Preserve min/max settings in case of re-init */
3949         if (dev_priv->rps.max_freq_softlimit == 0)
3950                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3951
3952         if (dev_priv->rps.min_freq_softlimit == 0)
3953                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3954
3955         mutex_unlock(&dev_priv->rps.hw_lock);
3956 }
3957
3958 static void cherryview_init_gt_powersave(struct drm_device *dev)
3959 {
3960         struct drm_i915_private *dev_priv = dev->dev_private;
3961
3962         cherryview_setup_pctx(dev);
3963
3964         mutex_lock(&dev_priv->rps.hw_lock);
3965
3966         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
3967         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3968         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3969                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3970                          dev_priv->rps.max_freq);
3971
3972         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
3973         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3974                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3975                          dev_priv->rps.efficient_freq);
3976
3977         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
3978         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3979                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3980                          dev_priv->rps.min_freq);
3981
3982         /* Preserve min/max settings in case of re-init */
3983         if (dev_priv->rps.max_freq_softlimit == 0)
3984                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3985
3986         if (dev_priv->rps.min_freq_softlimit == 0)
3987                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3988
3989         mutex_unlock(&dev_priv->rps.hw_lock);
3990 }
3991
3992 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3993 {
3994         valleyview_cleanup_pctx(dev);
3995 }
3996
3997 static void cherryview_enable_rps(struct drm_device *dev)
3998 {
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000         struct intel_engine_cs *ring;
4001         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4002         int i;
4003
4004         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4005
4006         gtfifodbg = I915_READ(GTFIFODBG);
4007         if (gtfifodbg) {
4008                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4009                                  gtfifodbg);
4010                 I915_WRITE(GTFIFODBG, gtfifodbg);
4011         }
4012
4013         cherryview_check_pctx(dev_priv);
4014
4015         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4016          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4017         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4018
4019         /* 2a: Program RC6 thresholds.*/
4020         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4021         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4022         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4023
4024         for_each_ring(ring, dev_priv, i)
4025                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4026         I915_WRITE(GEN6_RC_SLEEP, 0);
4027
4028         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4029
4030         /* allows RC6 residency counter to work */
4031         I915_WRITE(VLV_COUNTER_CONTROL,
4032                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4033                                       VLV_MEDIA_RC6_COUNT_EN |
4034                                       VLV_RENDER_RC6_COUNT_EN));
4035
4036         /* For now we assume BIOS is allocating and populating the PCBR  */
4037         pcbr = I915_READ(VLV_PCBR);
4038
4039         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4040
4041         /* 3: Enable RC6 */
4042         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4043                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4044                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4045
4046         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4047
4048         /* 4 Program defaults and thresholds for RPS*/
4049         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4050         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4051         I915_WRITE(GEN6_RP_UP_EI, 66000);
4052         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4053
4054         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4055
4056         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4057         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4058         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4059
4060         /* 5: Enable RPS */
4061         I915_WRITE(GEN6_RP_CONTROL,
4062                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4063                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4064                    GEN6_RP_ENABLE |
4065                    GEN6_RP_UP_BUSY_AVG |
4066                    GEN6_RP_DOWN_IDLE_AVG);
4067
4068         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4069
4070         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4071         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4072
4073         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4074         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4075                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4076                          dev_priv->rps.cur_freq);
4077
4078         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4079                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4080                          dev_priv->rps.efficient_freq);
4081
4082         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4083
4084         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4085 }
4086
4087 static void valleyview_enable_rps(struct drm_device *dev)
4088 {
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090         struct intel_engine_cs *ring;
4091         u32 gtfifodbg, val, rc6_mode = 0;
4092         int i;
4093
4094         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4095
4096         valleyview_check_pctx(dev_priv);
4097
4098         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4099                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4100                                  gtfifodbg);
4101                 I915_WRITE(GTFIFODBG, gtfifodbg);
4102         }
4103
4104         /* If VLV, Forcewake all wells, else re-direct to regular path */
4105         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4106
4107         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4108         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4109         I915_WRITE(GEN6_RP_UP_EI, 66000);
4110         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4111
4112         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4113
4114         I915_WRITE(GEN6_RP_CONTROL,
4115                    GEN6_RP_MEDIA_TURBO |
4116                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4117                    GEN6_RP_MEDIA_IS_GFX |
4118                    GEN6_RP_ENABLE |
4119                    GEN6_RP_UP_BUSY_AVG |
4120                    GEN6_RP_DOWN_IDLE_CONT);
4121
4122         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4123         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4124         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4125
4126         for_each_ring(ring, dev_priv, i)
4127                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4128
4129         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4130
4131         /* allows RC6 residency counter to work */
4132         I915_WRITE(VLV_COUNTER_CONTROL,
4133                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4134                                       VLV_MEDIA_RC6_COUNT_EN |
4135                                       VLV_RENDER_RC6_COUNT_EN));
4136         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4137                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4138
4139         intel_print_rc6_info(dev, rc6_mode);
4140
4141         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4142
4143         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4144
4145         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4146         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4147
4148         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4149         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4150                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4151                          dev_priv->rps.cur_freq);
4152
4153         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4154                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4155                          dev_priv->rps.efficient_freq);
4156
4157         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4158
4159         gen6_enable_rps_interrupts(dev);
4160
4161         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4162 }
4163
4164 void ironlake_teardown_rc6(struct drm_device *dev)
4165 {
4166         struct drm_i915_private *dev_priv = dev->dev_private;
4167
4168         if (dev_priv->ips.renderctx) {
4169                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4170                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4171                 dev_priv->ips.renderctx = NULL;
4172         }
4173
4174         if (dev_priv->ips.pwrctx) {
4175                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4176                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4177                 dev_priv->ips.pwrctx = NULL;
4178         }
4179 }
4180
4181 static void ironlake_disable_rc6(struct drm_device *dev)
4182 {
4183         struct drm_i915_private *dev_priv = dev->dev_private;
4184
4185         if (I915_READ(PWRCTXA)) {
4186                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4187                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4188                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4189                          50);
4190
4191                 I915_WRITE(PWRCTXA, 0);
4192                 POSTING_READ(PWRCTXA);
4193
4194                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4195                 POSTING_READ(RSTDBYCTL);
4196         }
4197 }
4198
4199 static int ironlake_setup_rc6(struct drm_device *dev)
4200 {
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202
4203         if (dev_priv->ips.renderctx == NULL)
4204                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4205         if (!dev_priv->ips.renderctx)
4206                 return -ENOMEM;
4207
4208         if (dev_priv->ips.pwrctx == NULL)
4209                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4210         if (!dev_priv->ips.pwrctx) {
4211                 ironlake_teardown_rc6(dev);
4212                 return -ENOMEM;
4213         }
4214
4215         return 0;
4216 }
4217
4218 static void ironlake_enable_rc6(struct drm_device *dev)
4219 {
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4222         bool was_interruptible;
4223         int ret;
4224
4225         /* rc6 disabled by default due to repeated reports of hanging during
4226          * boot and resume.
4227          */
4228         if (!intel_enable_rc6(dev))
4229                 return;
4230
4231         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4232
4233         ret = ironlake_setup_rc6(dev);
4234         if (ret)
4235                 return;
4236
4237         was_interruptible = dev_priv->mm.interruptible;
4238         dev_priv->mm.interruptible = false;
4239
4240         /*
4241          * GPU can automatically power down the render unit if given a page
4242          * to save state.
4243          */
4244         ret = intel_ring_begin(ring, 6);
4245         if (ret) {
4246                 ironlake_teardown_rc6(dev);
4247                 dev_priv->mm.interruptible = was_interruptible;
4248                 return;
4249         }
4250
4251         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4252         intel_ring_emit(ring, MI_SET_CONTEXT);
4253         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4254                         MI_MM_SPACE_GTT |
4255                         MI_SAVE_EXT_STATE_EN |
4256                         MI_RESTORE_EXT_STATE_EN |
4257                         MI_RESTORE_INHIBIT);
4258         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4259         intel_ring_emit(ring, MI_NOOP);
4260         intel_ring_emit(ring, MI_FLUSH);
4261         intel_ring_advance(ring);
4262
4263         /*
4264          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4265          * does an implicit flush, combined with MI_FLUSH above, it should be
4266          * safe to assume that renderctx is valid
4267          */
4268         ret = intel_ring_idle(ring);
4269         dev_priv->mm.interruptible = was_interruptible;
4270         if (ret) {
4271                 DRM_ERROR("failed to enable ironlake power savings\n");
4272                 ironlake_teardown_rc6(dev);
4273                 return;
4274         }
4275
4276         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4277         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4278
4279         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4280 }
4281
4282 static unsigned long intel_pxfreq(u32 vidfreq)
4283 {
4284         unsigned long freq;
4285         int div = (vidfreq & 0x3f0000) >> 16;
4286         int post = (vidfreq & 0x3000) >> 12;
4287         int pre = (vidfreq & 0x7);
4288
4289         if (!pre)
4290                 return 0;
4291
4292         freq = ((div * 133333) / ((1<<post) * pre));
4293
4294         return freq;
4295 }
4296
4297 static const struct cparams {
4298         u16 i;
4299         u16 t;
4300         u16 m;
4301         u16 c;
4302 } cparams[] = {
4303         { 1, 1333, 301, 28664 },
4304         { 1, 1066, 294, 24460 },
4305         { 1, 800, 294, 25192 },
4306         { 0, 1333, 276, 27605 },
4307         { 0, 1066, 276, 27605 },
4308         { 0, 800, 231, 23784 },
4309 };
4310
4311 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4312 {
4313         u64 total_count, diff, ret;
4314         u32 count1, count2, count3, m = 0, c = 0;
4315         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4316         int i;
4317
4318         assert_spin_locked(&mchdev_lock);
4319
4320         diff1 = now - dev_priv->ips.last_time1;
4321
4322         /* Prevent division-by-zero if we are asking too fast.
4323          * Also, we don't get interesting results if we are polling
4324          * faster than once in 10ms, so just return the saved value
4325          * in such cases.
4326          */
4327         if (diff1 <= 10)
4328                 return dev_priv->ips.chipset_power;
4329
4330         count1 = I915_READ(DMIEC);
4331         count2 = I915_READ(DDREC);
4332         count3 = I915_READ(CSIEC);
4333
4334         total_count = count1 + count2 + count3;
4335
4336         /* FIXME: handle per-counter overflow */
4337         if (total_count < dev_priv->ips.last_count1) {
4338                 diff = ~0UL - dev_priv->ips.last_count1;
4339                 diff += total_count;
4340         } else {
4341                 diff = total_count - dev_priv->ips.last_count1;
4342         }
4343
4344         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4345                 if (cparams[i].i == dev_priv->ips.c_m &&
4346                     cparams[i].t == dev_priv->ips.r_t) {
4347                         m = cparams[i].m;
4348                         c = cparams[i].c;
4349                         break;
4350                 }
4351         }
4352
4353         diff = div_u64(diff, diff1);
4354         ret = ((m * diff) + c);
4355         ret = div_u64(ret, 10);
4356
4357         dev_priv->ips.last_count1 = total_count;
4358         dev_priv->ips.last_time1 = now;
4359
4360         dev_priv->ips.chipset_power = ret;
4361
4362         return ret;
4363 }
4364
4365 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4366 {
4367         struct drm_device *dev = dev_priv->dev;
4368         unsigned long val;
4369
4370         if (INTEL_INFO(dev)->gen != 5)
4371                 return 0;
4372
4373         spin_lock_irq(&mchdev_lock);
4374
4375         val = __i915_chipset_val(dev_priv);
4376
4377         spin_unlock_irq(&mchdev_lock);
4378
4379         return val;
4380 }
4381
4382 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4383 {
4384         unsigned long m, x, b;
4385         u32 tsfs;
4386
4387         tsfs = I915_READ(TSFS);
4388
4389         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4390         x = I915_READ8(TR1);
4391
4392         b = tsfs & TSFS_INTR_MASK;
4393
4394         return ((m * x) / 127) - b;
4395 }
4396
4397 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4398 {
4399         struct drm_device *dev = dev_priv->dev;
4400         static const struct v_table {
4401                 u16 vd; /* in .1 mil */
4402                 u16 vm; /* in .1 mil */
4403         } v_table[] = {
4404                 { 0, 0, },
4405                 { 375, 0, },
4406                 { 500, 0, },
4407                 { 625, 0, },
4408                 { 750, 0, },
4409                 { 875, 0, },
4410                 { 1000, 0, },
4411                 { 1125, 0, },
4412                 { 4125, 3000, },
4413                 { 4125, 3000, },
4414                 { 4125, 3000, },
4415                 { 4125, 3000, },
4416                 { 4125, 3000, },
4417                 { 4125, 3000, },
4418                 { 4125, 3000, },
4419                 { 4125, 3000, },
4420                 { 4125, 3000, },
4421                 { 4125, 3000, },
4422                 { 4125, 3000, },
4423                 { 4125, 3000, },
4424                 { 4125, 3000, },
4425                 { 4125, 3000, },
4426                 { 4125, 3000, },
4427                 { 4125, 3000, },
4428                 { 4125, 3000, },
4429                 { 4125, 3000, },
4430                 { 4125, 3000, },
4431                 { 4125, 3000, },
4432                 { 4125, 3000, },
4433                 { 4125, 3000, },
4434                 { 4125, 3000, },
4435                 { 4125, 3000, },
4436                 { 4250, 3125, },
4437                 { 4375, 3250, },
4438                 { 4500, 3375, },
4439                 { 4625, 3500, },
4440                 { 4750, 3625, },
4441                 { 4875, 3750, },
4442                 { 5000, 3875, },
4443                 { 5125, 4000, },
4444                 { 5250, 4125, },
4445                 { 5375, 4250, },
4446                 { 5500, 4375, },
4447                 { 5625, 4500, },
4448                 { 5750, 4625, },
4449                 { 5875, 4750, },
4450                 { 6000, 4875, },
4451                 { 6125, 5000, },
4452                 { 6250, 5125, },
4453                 { 6375, 5250, },
4454                 { 6500, 5375, },
4455                 { 6625, 5500, },
4456                 { 6750, 5625, },
4457                 { 6875, 5750, },
4458                 { 7000, 5875, },
4459                 { 7125, 6000, },
4460                 { 7250, 6125, },
4461                 { 7375, 6250, },
4462                 { 7500, 6375, },
4463                 { 7625, 6500, },
4464                 { 7750, 6625, },
4465                 { 7875, 6750, },
4466                 { 8000, 6875, },
4467                 { 8125, 7000, },
4468                 { 8250, 7125, },
4469                 { 8375, 7250, },
4470                 { 8500, 7375, },
4471                 { 8625, 7500, },
4472                 { 8750, 7625, },
4473                 { 8875, 7750, },
4474                 { 9000, 7875, },
4475                 { 9125, 8000, },
4476                 { 9250, 8125, },
4477                 { 9375, 8250, },
4478                 { 9500, 8375, },
4479                 { 9625, 8500, },
4480                 { 9750, 8625, },
4481                 { 9875, 8750, },
4482                 { 10000, 8875, },
4483                 { 10125, 9000, },
4484                 { 10250, 9125, },
4485                 { 10375, 9250, },
4486                 { 10500, 9375, },
4487                 { 10625, 9500, },
4488                 { 10750, 9625, },
4489                 { 10875, 9750, },
4490                 { 11000, 9875, },
4491                 { 11125, 10000, },
4492                 { 11250, 10125, },
4493                 { 11375, 10250, },
4494                 { 11500, 10375, },
4495                 { 11625, 10500, },
4496                 { 11750, 10625, },
4497                 { 11875, 10750, },
4498                 { 12000, 10875, },
4499                 { 12125, 11000, },
4500                 { 12250, 11125, },
4501                 { 12375, 11250, },
4502                 { 12500, 11375, },
4503                 { 12625, 11500, },
4504                 { 12750, 11625, },
4505                 { 12875, 11750, },
4506                 { 13000, 11875, },
4507                 { 13125, 12000, },
4508                 { 13250, 12125, },
4509                 { 13375, 12250, },
4510                 { 13500, 12375, },
4511                 { 13625, 12500, },
4512                 { 13750, 12625, },
4513                 { 13875, 12750, },
4514                 { 14000, 12875, },
4515                 { 14125, 13000, },
4516                 { 14250, 13125, },
4517                 { 14375, 13250, },
4518                 { 14500, 13375, },
4519                 { 14625, 13500, },
4520                 { 14750, 13625, },
4521                 { 14875, 13750, },
4522                 { 15000, 13875, },
4523                 { 15125, 14000, },
4524                 { 15250, 14125, },
4525                 { 15375, 14250, },
4526                 { 15500, 14375, },
4527                 { 15625, 14500, },
4528                 { 15750, 14625, },
4529                 { 15875, 14750, },
4530                 { 16000, 14875, },
4531                 { 16125, 15000, },
4532         };
4533         if (INTEL_INFO(dev)->is_mobile)
4534                 return v_table[pxvid].vm;
4535         else
4536                 return v_table[pxvid].vd;
4537 }
4538
4539 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4540 {
4541         struct timespec now, diff1;
4542         u64 diff;
4543         unsigned long diffms;
4544         u32 count;
4545
4546         assert_spin_locked(&mchdev_lock);
4547
4548         getrawmonotonic(&now);
4549         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4550
4551         /* Don't divide by 0 */
4552         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4553         if (!diffms)
4554                 return;
4555
4556         count = I915_READ(GFXEC);
4557
4558         if (count < dev_priv->ips.last_count2) {
4559                 diff = ~0UL - dev_priv->ips.last_count2;
4560                 diff += count;
4561         } else {
4562                 diff = count - dev_priv->ips.last_count2;
4563         }
4564
4565         dev_priv->ips.last_count2 = count;
4566         dev_priv->ips.last_time2 = now;
4567
4568         /* More magic constants... */
4569         diff = diff * 1181;
4570         diff = div_u64(diff, diffms * 10);
4571         dev_priv->ips.gfx_power = diff;
4572 }
4573
4574 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4575 {
4576         struct drm_device *dev = dev_priv->dev;
4577
4578         if (INTEL_INFO(dev)->gen != 5)
4579                 return;
4580
4581         spin_lock_irq(&mchdev_lock);
4582
4583         __i915_update_gfx_val(dev_priv);
4584
4585         spin_unlock_irq(&mchdev_lock);
4586 }
4587
4588 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4589 {
4590         unsigned long t, corr, state1, corr2, state2;
4591         u32 pxvid, ext_v;
4592
4593         assert_spin_locked(&mchdev_lock);
4594
4595         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4596         pxvid = (pxvid >> 24) & 0x7f;
4597         ext_v = pvid_to_extvid(dev_priv, pxvid);
4598
4599         state1 = ext_v;
4600
4601         t = i915_mch_val(dev_priv);
4602
4603         /* Revel in the empirically derived constants */
4604
4605         /* Correction factor in 1/100000 units */
4606         if (t > 80)
4607                 corr = ((t * 2349) + 135940);
4608         else if (t >= 50)
4609                 corr = ((t * 964) + 29317);
4610         else /* < 50 */
4611                 corr = ((t * 301) + 1004);
4612
4613         corr = corr * ((150142 * state1) / 10000 - 78642);
4614         corr /= 100000;
4615         corr2 = (corr * dev_priv->ips.corr);
4616
4617         state2 = (corr2 * state1) / 10000;
4618         state2 /= 100; /* convert to mW */
4619
4620         __i915_update_gfx_val(dev_priv);
4621
4622         return dev_priv->ips.gfx_power + state2;
4623 }
4624
4625 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4626 {
4627         struct drm_device *dev = dev_priv->dev;
4628         unsigned long val;
4629
4630         if (INTEL_INFO(dev)->gen != 5)
4631                 return 0;
4632
4633         spin_lock_irq(&mchdev_lock);
4634
4635         val = __i915_gfx_val(dev_priv);
4636
4637         spin_unlock_irq(&mchdev_lock);
4638
4639         return val;
4640 }
4641
4642 /**
4643  * i915_read_mch_val - return value for IPS use
4644  *
4645  * Calculate and return a value for the IPS driver to use when deciding whether
4646  * we have thermal and power headroom to increase CPU or GPU power budget.
4647  */
4648 unsigned long i915_read_mch_val(void)
4649 {
4650         struct drm_i915_private *dev_priv;
4651         unsigned long chipset_val, graphics_val, ret = 0;
4652
4653         spin_lock_irq(&mchdev_lock);
4654         if (!i915_mch_dev)
4655                 goto out_unlock;
4656         dev_priv = i915_mch_dev;
4657
4658         chipset_val = __i915_chipset_val(dev_priv);
4659         graphics_val = __i915_gfx_val(dev_priv);
4660
4661         ret = chipset_val + graphics_val;
4662
4663 out_unlock:
4664         spin_unlock_irq(&mchdev_lock);
4665
4666         return ret;
4667 }
4668 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4669
4670 /**
4671  * i915_gpu_raise - raise GPU frequency limit
4672  *
4673  * Raise the limit; IPS indicates we have thermal headroom.
4674  */
4675 bool i915_gpu_raise(void)
4676 {
4677         struct drm_i915_private *dev_priv;
4678         bool ret = true;
4679
4680         spin_lock_irq(&mchdev_lock);
4681         if (!i915_mch_dev) {
4682                 ret = false;
4683                 goto out_unlock;
4684         }
4685         dev_priv = i915_mch_dev;
4686
4687         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4688                 dev_priv->ips.max_delay--;
4689
4690 out_unlock:
4691         spin_unlock_irq(&mchdev_lock);
4692
4693         return ret;
4694 }
4695 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4696
4697 /**
4698  * i915_gpu_lower - lower GPU frequency limit
4699  *
4700  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4701  * frequency maximum.
4702  */
4703 bool i915_gpu_lower(void)
4704 {
4705         struct drm_i915_private *dev_priv;
4706         bool ret = true;
4707
4708         spin_lock_irq(&mchdev_lock);
4709         if (!i915_mch_dev) {
4710                 ret = false;
4711                 goto out_unlock;
4712         }
4713         dev_priv = i915_mch_dev;
4714
4715         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4716                 dev_priv->ips.max_delay++;
4717
4718 out_unlock:
4719         spin_unlock_irq(&mchdev_lock);
4720
4721         return ret;
4722 }
4723 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4724
4725 /**
4726  * i915_gpu_busy - indicate GPU business to IPS
4727  *
4728  * Tell the IPS driver whether or not the GPU is busy.
4729  */
4730 bool i915_gpu_busy(void)
4731 {
4732         struct drm_i915_private *dev_priv;
4733         struct intel_engine_cs *ring;
4734         bool ret = false;
4735         int i;
4736
4737         spin_lock_irq(&mchdev_lock);
4738         if (!i915_mch_dev)
4739                 goto out_unlock;
4740         dev_priv = i915_mch_dev;
4741
4742         for_each_ring(ring, dev_priv, i)
4743                 ret |= !list_empty(&ring->request_list);
4744
4745 out_unlock:
4746         spin_unlock_irq(&mchdev_lock);
4747
4748         return ret;
4749 }
4750 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4751
4752 /**
4753  * i915_gpu_turbo_disable - disable graphics turbo
4754  *
4755  * Disable graphics turbo by resetting the max frequency and setting the
4756  * current frequency to the default.
4757  */
4758 bool i915_gpu_turbo_disable(void)
4759 {
4760         struct drm_i915_private *dev_priv;
4761         bool ret = true;
4762
4763         spin_lock_irq(&mchdev_lock);
4764         if (!i915_mch_dev) {
4765                 ret = false;
4766                 goto out_unlock;
4767         }
4768         dev_priv = i915_mch_dev;
4769
4770         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4771
4772         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4773                 ret = false;
4774
4775 out_unlock:
4776         spin_unlock_irq(&mchdev_lock);
4777
4778         return ret;
4779 }
4780 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4781
4782 /**
4783  * Tells the intel_ips driver that the i915 driver is now loaded, if
4784  * IPS got loaded first.
4785  *
4786  * This awkward dance is so that neither module has to depend on the
4787  * other in order for IPS to do the appropriate communication of
4788  * GPU turbo limits to i915.
4789  */
4790 static void
4791 ips_ping_for_i915_load(void)
4792 {
4793         void (*link)(void);
4794
4795         link = symbol_get(ips_link_to_i915_driver);
4796         if (link) {
4797                 link();
4798                 symbol_put(ips_link_to_i915_driver);
4799         }
4800 }
4801
4802 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4803 {
4804         /* We only register the i915 ips part with intel-ips once everything is
4805          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4806         spin_lock_irq(&mchdev_lock);
4807         i915_mch_dev = dev_priv;
4808         spin_unlock_irq(&mchdev_lock);
4809
4810         ips_ping_for_i915_load();
4811 }
4812
4813 void intel_gpu_ips_teardown(void)
4814 {
4815         spin_lock_irq(&mchdev_lock);
4816         i915_mch_dev = NULL;
4817         spin_unlock_irq(&mchdev_lock);
4818 }
4819
4820 static void intel_init_emon(struct drm_device *dev)
4821 {
4822         struct drm_i915_private *dev_priv = dev->dev_private;
4823         u32 lcfuse;
4824         u8 pxw[16];
4825         int i;
4826
4827         /* Disable to program */
4828         I915_WRITE(ECR, 0);
4829         POSTING_READ(ECR);
4830
4831         /* Program energy weights for various events */
4832         I915_WRITE(SDEW, 0x15040d00);
4833         I915_WRITE(CSIEW0, 0x007f0000);
4834         I915_WRITE(CSIEW1, 0x1e220004);
4835         I915_WRITE(CSIEW2, 0x04000004);
4836
4837         for (i = 0; i < 5; i++)
4838                 I915_WRITE(PEW + (i * 4), 0);
4839         for (i = 0; i < 3; i++)
4840                 I915_WRITE(DEW + (i * 4), 0);
4841
4842         /* Program P-state weights to account for frequency power adjustment */
4843         for (i = 0; i < 16; i++) {
4844                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4845                 unsigned long freq = intel_pxfreq(pxvidfreq);
4846                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4847                         PXVFREQ_PX_SHIFT;
4848                 unsigned long val;
4849
4850                 val = vid * vid;
4851                 val *= (freq / 1000);
4852                 val *= 255;
4853                 val /= (127*127*900);
4854                 if (val > 0xff)
4855                         DRM_ERROR("bad pxval: %ld\n", val);
4856                 pxw[i] = val;
4857         }
4858         /* Render standby states get 0 weight */
4859         pxw[14] = 0;
4860         pxw[15] = 0;
4861
4862         for (i = 0; i < 4; i++) {
4863                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4864                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4865                 I915_WRITE(PXW + (i * 4), val);
4866         }
4867
4868         /* Adjust magic regs to magic values (more experimental results) */
4869         I915_WRITE(OGW0, 0);
4870         I915_WRITE(OGW1, 0);
4871         I915_WRITE(EG0, 0x00007f00);
4872         I915_WRITE(EG1, 0x0000000e);
4873         I915_WRITE(EG2, 0x000e0000);
4874         I915_WRITE(EG3, 0x68000300);
4875         I915_WRITE(EG4, 0x42000000);
4876         I915_WRITE(EG5, 0x00140031);
4877         I915_WRITE(EG6, 0);
4878         I915_WRITE(EG7, 0);
4879
4880         for (i = 0; i < 8; i++)
4881                 I915_WRITE(PXWL + (i * 4), 0);
4882
4883         /* Enable PMON + select events */
4884         I915_WRITE(ECR, 0x80000019);
4885
4886         lcfuse = I915_READ(LCFUSE02);
4887
4888         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4889 }
4890
4891 void intel_init_gt_powersave(struct drm_device *dev)
4892 {
4893         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4894
4895         if (IS_CHERRYVIEW(dev))
4896                 cherryview_init_gt_powersave(dev);
4897         else if (IS_VALLEYVIEW(dev))
4898                 valleyview_init_gt_powersave(dev);
4899 }
4900
4901 void intel_cleanup_gt_powersave(struct drm_device *dev)
4902 {
4903         if (IS_CHERRYVIEW(dev))
4904                 return;
4905         else if (IS_VALLEYVIEW(dev))
4906                 valleyview_cleanup_gt_powersave(dev);
4907 }
4908
4909 /**
4910  * intel_suspend_gt_powersave - suspend PM work and helper threads
4911  * @dev: drm device
4912  *
4913  * We don't want to disable RC6 or other features here, we just want
4914  * to make sure any work we've queued has finished and won't bother
4915  * us while we're suspended.
4916  */
4917 void intel_suspend_gt_powersave(struct drm_device *dev)
4918 {
4919         struct drm_i915_private *dev_priv = dev->dev_private;
4920
4921         /* Interrupts should be disabled already to avoid re-arming. */
4922         WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
4923
4924         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4925
4926         cancel_work_sync(&dev_priv->rps.work);
4927 }
4928
4929 void intel_disable_gt_powersave(struct drm_device *dev)
4930 {
4931         struct drm_i915_private *dev_priv = dev->dev_private;
4932
4933         /* Interrupts should be disabled already to avoid re-arming. */
4934         WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
4935
4936         if (IS_IRONLAKE_M(dev)) {
4937                 ironlake_disable_drps(dev);
4938                 ironlake_disable_rc6(dev);
4939         } else if (INTEL_INFO(dev)->gen >= 6) {
4940                 intel_suspend_gt_powersave(dev);
4941
4942                 mutex_lock(&dev_priv->rps.hw_lock);
4943                 if (IS_CHERRYVIEW(dev))
4944                         cherryview_disable_rps(dev);
4945                 else if (IS_VALLEYVIEW(dev))
4946                         valleyview_disable_rps(dev);
4947                 else
4948                         gen6_disable_rps(dev);
4949                 dev_priv->rps.enabled = false;
4950                 mutex_unlock(&dev_priv->rps.hw_lock);
4951         }
4952 }
4953
4954 static void intel_gen6_powersave_work(struct work_struct *work)
4955 {
4956         struct drm_i915_private *dev_priv =
4957                 container_of(work, struct drm_i915_private,
4958                              rps.delayed_resume_work.work);
4959         struct drm_device *dev = dev_priv->dev;
4960
4961         mutex_lock(&dev_priv->rps.hw_lock);
4962
4963         if (IS_CHERRYVIEW(dev)) {
4964                 cherryview_enable_rps(dev);
4965         } else if (IS_VALLEYVIEW(dev)) {
4966                 valleyview_enable_rps(dev);
4967         } else if (IS_BROADWELL(dev)) {
4968                 gen8_enable_rps(dev);
4969                 __gen6_update_ring_freq(dev);
4970         } else {
4971                 gen6_enable_rps(dev);
4972                 __gen6_update_ring_freq(dev);
4973         }
4974         dev_priv->rps.enabled = true;
4975         mutex_unlock(&dev_priv->rps.hw_lock);
4976
4977         intel_runtime_pm_put(dev_priv);
4978 }
4979
4980 void intel_enable_gt_powersave(struct drm_device *dev)
4981 {
4982         struct drm_i915_private *dev_priv = dev->dev_private;
4983
4984         if (IS_IRONLAKE_M(dev)) {
4985                 mutex_lock(&dev->struct_mutex);
4986                 ironlake_enable_drps(dev);
4987                 ironlake_enable_rc6(dev);
4988                 intel_init_emon(dev);
4989                 mutex_unlock(&dev->struct_mutex);
4990         } else if (INTEL_INFO(dev)->gen >= 6) {
4991                 /*
4992                  * PCU communication is slow and this doesn't need to be
4993                  * done at any specific time, so do this out of our fast path
4994                  * to make resume and init faster.
4995                  *
4996                  * We depend on the HW RC6 power context save/restore
4997                  * mechanism when entering D3 through runtime PM suspend. So
4998                  * disable RPM until RPS/RC6 is properly setup. We can only
4999                  * get here via the driver load/system resume/runtime resume
5000                  * paths, so the _noresume version is enough (and in case of
5001                  * runtime resume it's necessary).
5002                  */
5003                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5004                                            round_jiffies_up_relative(HZ)))
5005                         intel_runtime_pm_get_noresume(dev_priv);
5006         }
5007 }
5008
5009 void intel_reset_gt_powersave(struct drm_device *dev)
5010 {
5011         struct drm_i915_private *dev_priv = dev->dev_private;
5012
5013         dev_priv->rps.enabled = false;
5014         intel_enable_gt_powersave(dev);
5015 }
5016
5017 static void ibx_init_clock_gating(struct drm_device *dev)
5018 {
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020
5021         /*
5022          * On Ibex Peak and Cougar Point, we need to disable clock
5023          * gating for the panel power sequencer or it will fail to
5024          * start up when no ports are active.
5025          */
5026         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5027 }
5028
5029 static void g4x_disable_trickle_feed(struct drm_device *dev)
5030 {
5031         struct drm_i915_private *dev_priv = dev->dev_private;
5032         int pipe;
5033
5034         for_each_pipe(pipe) {
5035                 I915_WRITE(DSPCNTR(pipe),
5036                            I915_READ(DSPCNTR(pipe)) |
5037                            DISPPLANE_TRICKLE_FEED_DISABLE);
5038                 intel_flush_primary_plane(dev_priv, pipe);
5039         }
5040 }
5041
5042 static void ilk_init_lp_watermarks(struct drm_device *dev)
5043 {
5044         struct drm_i915_private *dev_priv = dev->dev_private;
5045
5046         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5047         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5048         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5049
5050         /*
5051          * Don't touch WM1S_LP_EN here.
5052          * Doing so could cause underruns.
5053          */
5054 }
5055
5056 static void ironlake_init_clock_gating(struct drm_device *dev)
5057 {
5058         struct drm_i915_private *dev_priv = dev->dev_private;
5059         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5060
5061         /*
5062          * Required for FBC
5063          * WaFbcDisableDpfcClockGating:ilk
5064          */
5065         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5066                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5067                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5068
5069         I915_WRITE(PCH_3DCGDIS0,
5070                    MARIUNIT_CLOCK_GATE_DISABLE |
5071                    SVSMUNIT_CLOCK_GATE_DISABLE);
5072         I915_WRITE(PCH_3DCGDIS1,
5073                    VFMUNIT_CLOCK_GATE_DISABLE);
5074
5075         /*
5076          * According to the spec the following bits should be set in
5077          * order to enable memory self-refresh
5078          * The bit 22/21 of 0x42004
5079          * The bit 5 of 0x42020
5080          * The bit 15 of 0x45000
5081          */
5082         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5083                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5084                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5085         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5086         I915_WRITE(DISP_ARB_CTL,
5087                    (I915_READ(DISP_ARB_CTL) |
5088                     DISP_FBC_WM_DIS));
5089
5090         ilk_init_lp_watermarks(dev);
5091
5092         /*
5093          * Based on the document from hardware guys the following bits
5094          * should be set unconditionally in order to enable FBC.
5095          * The bit 22 of 0x42000
5096          * The bit 22 of 0x42004
5097          * The bit 7,8,9 of 0x42020.
5098          */
5099         if (IS_IRONLAKE_M(dev)) {
5100                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5101                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5102                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5103                            ILK_FBCQ_DIS);
5104                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5105                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5106                            ILK_DPARB_GATE);
5107         }
5108
5109         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5110
5111         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5112                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5113                    ILK_ELPIN_409_SELECT);
5114         I915_WRITE(_3D_CHICKEN2,
5115                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5116                    _3D_CHICKEN2_WM_READ_PIPELINED);
5117
5118         /* WaDisableRenderCachePipelinedFlush:ilk */
5119         I915_WRITE(CACHE_MODE_0,
5120                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5121
5122         /* WaDisable_RenderCache_OperationalFlush:ilk */
5123         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5124
5125         g4x_disable_trickle_feed(dev);
5126
5127         ibx_init_clock_gating(dev);
5128 }
5129
5130 static void cpt_init_clock_gating(struct drm_device *dev)
5131 {
5132         struct drm_i915_private *dev_priv = dev->dev_private;
5133         int pipe;
5134         uint32_t val;
5135
5136         /*
5137          * On Ibex Peak and Cougar Point, we need to disable clock
5138          * gating for the panel power sequencer or it will fail to
5139          * start up when no ports are active.
5140          */
5141         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5142                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5143                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5144         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5145                    DPLS_EDP_PPS_FIX_DIS);
5146         /* The below fixes the weird display corruption, a few pixels shifted
5147          * downward, on (only) LVDS of some HP laptops with IVY.
5148          */
5149         for_each_pipe(pipe) {
5150                 val = I915_READ(TRANS_CHICKEN2(pipe));
5151                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5152                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5153                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5154                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5155                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5156                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5157                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5158                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5159         }
5160         /* WADP0ClockGatingDisable */
5161         for_each_pipe(pipe) {
5162                 I915_WRITE(TRANS_CHICKEN1(pipe),
5163                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5164         }
5165 }
5166
5167 static void gen6_check_mch_setup(struct drm_device *dev)
5168 {
5169         struct drm_i915_private *dev_priv = dev->dev_private;
5170         uint32_t tmp;
5171
5172         tmp = I915_READ(MCH_SSKPD);
5173         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5174                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5175                 DRM_INFO("This can cause pipe underruns and display issues.\n");
5176                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5177         }
5178 }
5179
5180 static void gen6_init_clock_gating(struct drm_device *dev)
5181 {
5182         struct drm_i915_private *dev_priv = dev->dev_private;
5183         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5184
5185         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5186
5187         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5188                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5189                    ILK_ELPIN_409_SELECT);
5190
5191         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5192         I915_WRITE(_3D_CHICKEN,
5193                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5194
5195         /* WaSetupGtModeTdRowDispatch:snb */
5196         if (IS_SNB_GT1(dev))
5197                 I915_WRITE(GEN6_GT_MODE,
5198                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5199
5200         /* WaDisable_RenderCache_OperationalFlush:snb */
5201         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5202
5203         /*
5204          * BSpec recoomends 8x4 when MSAA is used,
5205          * however in practice 16x4 seems fastest.
5206          *
5207          * Note that PS/WM thread counts depend on the WIZ hashing
5208          * disable bit, which we don't touch here, but it's good
5209          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5210          */
5211         I915_WRITE(GEN6_GT_MODE,
5212                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5213
5214         ilk_init_lp_watermarks(dev);
5215
5216         I915_WRITE(CACHE_MODE_0,
5217                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5218
5219         I915_WRITE(GEN6_UCGCTL1,
5220                    I915_READ(GEN6_UCGCTL1) |
5221                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5222                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5223
5224         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5225          * gating disable must be set.  Failure to set it results in
5226          * flickering pixels due to Z write ordering failures after
5227          * some amount of runtime in the Mesa "fire" demo, and Unigine
5228          * Sanctuary and Tropics, and apparently anything else with
5229          * alpha test or pixel discard.
5230          *
5231          * According to the spec, bit 11 (RCCUNIT) must also be set,
5232          * but we didn't debug actual testcases to find it out.
5233          *
5234          * WaDisableRCCUnitClockGating:snb
5235          * WaDisableRCPBUnitClockGating:snb
5236          */
5237         I915_WRITE(GEN6_UCGCTL2,
5238                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5239                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5240
5241         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5242         I915_WRITE(_3D_CHICKEN3,
5243                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5244
5245         /*
5246          * Bspec says:
5247          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5248          * 3DSTATE_SF number of SF output attributes is more than 16."
5249          */
5250         I915_WRITE(_3D_CHICKEN3,
5251                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5252
5253         /*
5254          * According to the spec the following bits should be
5255          * set in order to enable memory self-refresh and fbc:
5256          * The bit21 and bit22 of 0x42000
5257          * The bit21 and bit22 of 0x42004
5258          * The bit5 and bit7 of 0x42020
5259          * The bit14 of 0x70180
5260          * The bit14 of 0x71180
5261          *
5262          * WaFbcAsynchFlipDisableFbcQueue:snb
5263          */
5264         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5265                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5266                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5267         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5268                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5269                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5270         I915_WRITE(ILK_DSPCLK_GATE_D,
5271                    I915_READ(ILK_DSPCLK_GATE_D) |
5272                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5273                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5274
5275         g4x_disable_trickle_feed(dev);
5276
5277         cpt_init_clock_gating(dev);
5278
5279         gen6_check_mch_setup(dev);
5280 }
5281
5282 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5283 {
5284         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5285
5286         /*
5287          * WaVSThreadDispatchOverride:ivb,vlv
5288          *
5289          * This actually overrides the dispatch
5290          * mode for all thread types.
5291          */
5292         reg &= ~GEN7_FF_SCHED_MASK;
5293         reg |= GEN7_FF_TS_SCHED_HW;
5294         reg |= GEN7_FF_VS_SCHED_HW;
5295         reg |= GEN7_FF_DS_SCHED_HW;
5296
5297         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5298 }
5299
5300 static void lpt_init_clock_gating(struct drm_device *dev)
5301 {
5302         struct drm_i915_private *dev_priv = dev->dev_private;
5303
5304         /*
5305          * TODO: this bit should only be enabled when really needed, then
5306          * disabled when not needed anymore in order to save power.
5307          */
5308         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5309                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5310                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5311                            PCH_LP_PARTITION_LEVEL_DISABLE);
5312
5313         /* WADPOClockGatingDisable:hsw */
5314         I915_WRITE(_TRANSA_CHICKEN1,
5315                    I915_READ(_TRANSA_CHICKEN1) |
5316                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5317 }
5318
5319 static void lpt_suspend_hw(struct drm_device *dev)
5320 {
5321         struct drm_i915_private *dev_priv = dev->dev_private;
5322
5323         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5324                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5325
5326                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5327                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5328         }
5329 }
5330
5331 static void gen8_init_clock_gating(struct drm_device *dev)
5332 {
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334         enum pipe pipe;
5335
5336         I915_WRITE(WM3_LP_ILK, 0);
5337         I915_WRITE(WM2_LP_ILK, 0);
5338         I915_WRITE(WM1_LP_ILK, 0);
5339
5340         /* FIXME(BDW): Check all the w/a, some might only apply to
5341          * pre-production hw. */
5342
5343         /* WaDisablePartialInstShootdown:bdw */
5344         I915_WRITE(GEN8_ROW_CHICKEN,
5345                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5346
5347         /* WaDisableThreadStallDopClockGating:bdw */
5348         /* FIXME: Unclear whether we really need this on production bdw. */
5349         I915_WRITE(GEN8_ROW_CHICKEN,
5350                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5351
5352         /*
5353          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5354          * pre-production hardware
5355          */
5356         I915_WRITE(HALF_SLICE_CHICKEN3,
5357                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5358         I915_WRITE(HALF_SLICE_CHICKEN3,
5359                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5360         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5361
5362         I915_WRITE(_3D_CHICKEN3,
5363                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5364
5365         I915_WRITE(COMMON_SLICE_CHICKEN2,
5366                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5367
5368         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5369                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5370
5371         /* WaDisableDopClockGating:bdw May not be needed for production */
5372         I915_WRITE(GEN7_ROW_CHICKEN2,
5373                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5374
5375         /* WaSwitchSolVfFArbitrationPriority:bdw */
5376         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5377
5378         /* WaPsrDPAMaskVBlankInSRD:bdw */
5379         I915_WRITE(CHICKEN_PAR1_1,
5380                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5381
5382         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5383         for_each_pipe(pipe) {
5384                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5385                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5386                            BDW_DPRS_MASK_VBLANK_SRD);
5387         }
5388
5389         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5390          * workaround for for a possible hang in the unlikely event a TLB
5391          * invalidation occurs during a PSD flush.
5392          */
5393         I915_WRITE(HDC_CHICKEN0,
5394                    I915_READ(HDC_CHICKEN0) |
5395                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5396
5397         /* WaVSRefCountFullforceMissDisable:bdw */
5398         /* WaDSRefCountFullforceMissDisable:bdw */
5399         I915_WRITE(GEN7_FF_THREAD_MODE,
5400                    I915_READ(GEN7_FF_THREAD_MODE) &
5401                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5402
5403         /*
5404          * BSpec recommends 8x4 when MSAA is used,
5405          * however in practice 16x4 seems fastest.
5406          *
5407          * Note that PS/WM thread counts depend on the WIZ hashing
5408          * disable bit, which we don't touch here, but it's good
5409          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5410          */
5411         I915_WRITE(GEN7_GT_MODE,
5412                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5413
5414         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5415                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5416
5417         /* WaDisableSDEUnitClockGating:bdw */
5418         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5419                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5420
5421         /* Wa4x4STCOptimizationDisable:bdw */
5422         I915_WRITE(CACHE_MODE_1,
5423                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5424 }
5425
5426 static void haswell_init_clock_gating(struct drm_device *dev)
5427 {
5428         struct drm_i915_private *dev_priv = dev->dev_private;
5429
5430         ilk_init_lp_watermarks(dev);
5431
5432         /* L3 caching of data atomics doesn't work -- disable it. */
5433         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5434         I915_WRITE(HSW_ROW_CHICKEN3,
5435                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5436
5437         /* This is required by WaCatErrorRejectionIssue:hsw */
5438         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5439                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5440                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5441
5442         /* WaVSRefCountFullforceMissDisable:hsw */
5443         I915_WRITE(GEN7_FF_THREAD_MODE,
5444                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5445
5446         /* WaDisable_RenderCache_OperationalFlush:hsw */
5447         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5448
5449         /* enable HiZ Raw Stall Optimization */
5450         I915_WRITE(CACHE_MODE_0_GEN7,
5451                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5452
5453         /* WaDisable4x2SubspanOptimization:hsw */
5454         I915_WRITE(CACHE_MODE_1,
5455                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5456
5457         /*
5458          * BSpec recommends 8x4 when MSAA is used,
5459          * however in practice 16x4 seems fastest.
5460          *
5461          * Note that PS/WM thread counts depend on the WIZ hashing
5462          * disable bit, which we don't touch here, but it's good
5463          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5464          */
5465         I915_WRITE(GEN7_GT_MODE,
5466                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5467
5468         /* WaSwitchSolVfFArbitrationPriority:hsw */
5469         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5470
5471         /* WaRsPkgCStateDisplayPMReq:hsw */
5472         I915_WRITE(CHICKEN_PAR1_1,
5473                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5474
5475         lpt_init_clock_gating(dev);
5476 }
5477
5478 static void ivybridge_init_clock_gating(struct drm_device *dev)
5479 {
5480         struct drm_i915_private *dev_priv = dev->dev_private;
5481         uint32_t snpcr;
5482
5483         ilk_init_lp_watermarks(dev);
5484
5485         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5486
5487         /* WaDisableEarlyCull:ivb */
5488         I915_WRITE(_3D_CHICKEN3,
5489                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5490
5491         /* WaDisableBackToBackFlipFix:ivb */
5492         I915_WRITE(IVB_CHICKEN3,
5493                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5494                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5495
5496         /* WaDisablePSDDualDispatchEnable:ivb */
5497         if (IS_IVB_GT1(dev))
5498                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5499                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5500
5501         /* WaDisable_RenderCache_OperationalFlush:ivb */
5502         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5503
5504         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5505         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5506                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5507
5508         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5509         I915_WRITE(GEN7_L3CNTLREG1,
5510                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5511         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5512                    GEN7_WA_L3_CHICKEN_MODE);
5513         if (IS_IVB_GT1(dev))
5514                 I915_WRITE(GEN7_ROW_CHICKEN2,
5515                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5516         else {
5517                 /* must write both registers */
5518                 I915_WRITE(GEN7_ROW_CHICKEN2,
5519                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5520                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5521                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5522         }
5523
5524         /* WaForceL3Serialization:ivb */
5525         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5526                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5527
5528         /*
5529          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5530          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5531          */
5532         I915_WRITE(GEN6_UCGCTL2,
5533                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5534
5535         /* This is required by WaCatErrorRejectionIssue:ivb */
5536         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5537                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5538                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5539
5540         g4x_disable_trickle_feed(dev);
5541
5542         gen7_setup_fixed_func_scheduler(dev_priv);
5543
5544         if (0) { /* causes HiZ corruption on ivb:gt1 */
5545                 /* enable HiZ Raw Stall Optimization */
5546                 I915_WRITE(CACHE_MODE_0_GEN7,
5547                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5548         }
5549
5550         /* WaDisable4x2SubspanOptimization:ivb */
5551         I915_WRITE(CACHE_MODE_1,
5552                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5553
5554         /*
5555          * BSpec recommends 8x4 when MSAA is used,
5556          * however in practice 16x4 seems fastest.
5557          *
5558          * Note that PS/WM thread counts depend on the WIZ hashing
5559          * disable bit, which we don't touch here, but it's good
5560          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5561          */
5562         I915_WRITE(GEN7_GT_MODE,
5563                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5564
5565         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5566         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5567         snpcr |= GEN6_MBC_SNPCR_MED;
5568         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5569
5570         if (!HAS_PCH_NOP(dev))
5571                 cpt_init_clock_gating(dev);
5572
5573         gen6_check_mch_setup(dev);
5574 }
5575
5576 static void valleyview_init_clock_gating(struct drm_device *dev)
5577 {
5578         struct drm_i915_private *dev_priv = dev->dev_private;
5579         u32 val;
5580
5581         mutex_lock(&dev_priv->rps.hw_lock);
5582         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5583         mutex_unlock(&dev_priv->rps.hw_lock);
5584         switch ((val >> 6) & 3) {
5585         case 0:
5586         case 1:
5587                 dev_priv->mem_freq = 800;
5588                 break;
5589         case 2:
5590                 dev_priv->mem_freq = 1066;
5591                 break;
5592         case 3:
5593                 dev_priv->mem_freq = 1333;
5594                 break;
5595         }
5596         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5597
5598         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5599         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5600                          dev_priv->vlv_cdclk_freq);
5601
5602         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5603
5604         /* WaDisableEarlyCull:vlv */
5605         I915_WRITE(_3D_CHICKEN3,
5606                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5607
5608         /* WaDisableBackToBackFlipFix:vlv */
5609         I915_WRITE(IVB_CHICKEN3,
5610                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5611                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5612
5613         /* WaPsdDispatchEnable:vlv */
5614         /* WaDisablePSDDualDispatchEnable:vlv */
5615         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5616                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5617                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5618
5619         /* WaDisable_RenderCache_OperationalFlush:vlv */
5620         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5621
5622         /* WaForceL3Serialization:vlv */
5623         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5624                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5625
5626         /* WaDisableDopClockGating:vlv */
5627         I915_WRITE(GEN7_ROW_CHICKEN2,
5628                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5629
5630         /* This is required by WaCatErrorRejectionIssue:vlv */
5631         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5632                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5633                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5634
5635         gen7_setup_fixed_func_scheduler(dev_priv);
5636
5637         /*
5638          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5639          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5640          */
5641         I915_WRITE(GEN6_UCGCTL2,
5642                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5643
5644         /* WaDisableL3Bank2xClockGate:vlv
5645          * Disabling L3 clock gating- MMIO 940c[25] = 1
5646          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5647         I915_WRITE(GEN7_UCGCTL4,
5648                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5649
5650         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5651
5652         /*
5653          * BSpec says this must be set, even though
5654          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5655          */
5656         I915_WRITE(CACHE_MODE_1,
5657                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5658
5659         /*
5660          * WaIncreaseL3CreditsForVLVB0:vlv
5661          * This is the hardware default actually.
5662          */
5663         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5664
5665         /*
5666          * WaDisableVLVClockGating_VBIIssue:vlv
5667          * Disable clock gating on th GCFG unit to prevent a delay
5668          * in the reporting of vblank events.
5669          */
5670         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5671 }
5672
5673 static void cherryview_init_clock_gating(struct drm_device *dev)
5674 {
5675         struct drm_i915_private *dev_priv = dev->dev_private;
5676
5677         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5678
5679         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5680
5681         /* WaDisablePartialInstShootdown:chv */
5682         I915_WRITE(GEN8_ROW_CHICKEN,
5683                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5684
5685         /* WaDisableThreadStallDopClockGating:chv */
5686         I915_WRITE(GEN8_ROW_CHICKEN,
5687                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5688
5689         /* WaVSRefCountFullforceMissDisable:chv */
5690         /* WaDSRefCountFullforceMissDisable:chv */
5691         I915_WRITE(GEN7_FF_THREAD_MODE,
5692                    I915_READ(GEN7_FF_THREAD_MODE) &
5693                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5694
5695         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5696         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5697                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5698
5699         /* WaDisableCSUnitClockGating:chv */
5700         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5701                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5702
5703         /* WaDisableSDEUnitClockGating:chv */
5704         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5705                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5706
5707         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5708         I915_WRITE(HALF_SLICE_CHICKEN3,
5709                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5710
5711         /* WaDisableGunitClockGating:chv (pre-production hw) */
5712         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5713                    GINT_DIS);
5714
5715         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5716         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5717                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5718
5719         /* WaDisableDopClockGating:chv (pre-production hw) */
5720         I915_WRITE(GEN7_ROW_CHICKEN2,
5721                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5722         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5723                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5724 }
5725
5726 static void g4x_init_clock_gating(struct drm_device *dev)
5727 {
5728         struct drm_i915_private *dev_priv = dev->dev_private;
5729         uint32_t dspclk_gate;
5730
5731         I915_WRITE(RENCLK_GATE_D1, 0);
5732         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5733                    GS_UNIT_CLOCK_GATE_DISABLE |
5734                    CL_UNIT_CLOCK_GATE_DISABLE);
5735         I915_WRITE(RAMCLK_GATE_D, 0);
5736         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5737                 OVRUNIT_CLOCK_GATE_DISABLE |
5738                 OVCUNIT_CLOCK_GATE_DISABLE;
5739         if (IS_GM45(dev))
5740                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5741         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5742
5743         /* WaDisableRenderCachePipelinedFlush */
5744         I915_WRITE(CACHE_MODE_0,
5745                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5746
5747         /* WaDisable_RenderCache_OperationalFlush:g4x */
5748         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5749
5750         g4x_disable_trickle_feed(dev);
5751 }
5752
5753 static void crestline_init_clock_gating(struct drm_device *dev)
5754 {
5755         struct drm_i915_private *dev_priv = dev->dev_private;
5756
5757         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5758         I915_WRITE(RENCLK_GATE_D2, 0);
5759         I915_WRITE(DSPCLK_GATE_D, 0);
5760         I915_WRITE(RAMCLK_GATE_D, 0);
5761         I915_WRITE16(DEUC, 0);
5762         I915_WRITE(MI_ARB_STATE,
5763                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5764
5765         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5766         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5767 }
5768
5769 static void broadwater_init_clock_gating(struct drm_device *dev)
5770 {
5771         struct drm_i915_private *dev_priv = dev->dev_private;
5772
5773         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5774                    I965_RCC_CLOCK_GATE_DISABLE |
5775                    I965_RCPB_CLOCK_GATE_DISABLE |
5776                    I965_ISC_CLOCK_GATE_DISABLE |
5777                    I965_FBC_CLOCK_GATE_DISABLE);
5778         I915_WRITE(RENCLK_GATE_D2, 0);
5779         I915_WRITE(MI_ARB_STATE,
5780                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5781
5782         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5783         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5784 }
5785
5786 static void gen3_init_clock_gating(struct drm_device *dev)
5787 {
5788         struct drm_i915_private *dev_priv = dev->dev_private;
5789         u32 dstate = I915_READ(D_STATE);
5790
5791         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5792                 DSTATE_DOT_CLOCK_GATING;
5793         I915_WRITE(D_STATE, dstate);
5794
5795         if (IS_PINEVIEW(dev))
5796                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5797
5798         /* IIR "flip pending" means done if this bit is set */
5799         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5800
5801         /* interrupts should cause a wake up from C3 */
5802         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5803
5804         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5805         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5806 }
5807
5808 static void i85x_init_clock_gating(struct drm_device *dev)
5809 {
5810         struct drm_i915_private *dev_priv = dev->dev_private;
5811
5812         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5813
5814         /* interrupts should cause a wake up from C3 */
5815         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5816                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5817 }
5818
5819 static void i830_init_clock_gating(struct drm_device *dev)
5820 {
5821         struct drm_i915_private *dev_priv = dev->dev_private;
5822
5823         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5824 }
5825
5826 void intel_init_clock_gating(struct drm_device *dev)
5827 {
5828         struct drm_i915_private *dev_priv = dev->dev_private;
5829
5830         dev_priv->display.init_clock_gating(dev);
5831 }
5832
5833 void intel_suspend_hw(struct drm_device *dev)
5834 {
5835         if (HAS_PCH_LPT(dev))
5836                 lpt_suspend_hw(dev);
5837 }
5838
5839 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5840         for (i = 0;                                                     \
5841              i < (power_domains)->power_well_count &&                   \
5842                  ((power_well) = &(power_domains)->power_wells[i]);     \
5843              i++)                                                       \
5844                 if ((power_well)->domains & (domain_mask))
5845
5846 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5847         for (i = (power_domains)->power_well_count - 1;                  \
5848              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5849              i--)                                                        \
5850                 if ((power_well)->domains & (domain_mask))
5851
5852 /**
5853  * We should only use the power well if we explicitly asked the hardware to
5854  * enable it, so check if it's enabled and also check if we've requested it to
5855  * be enabled.
5856  */
5857 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5858                                    struct i915_power_well *power_well)
5859 {
5860         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5861                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5862 }
5863
5864 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5865                                           enum intel_display_power_domain domain)
5866 {
5867         struct i915_power_domains *power_domains;
5868         struct i915_power_well *power_well;
5869         bool is_enabled;
5870         int i;
5871
5872         if (dev_priv->pm.suspended)
5873                 return false;
5874
5875         power_domains = &dev_priv->power_domains;
5876
5877         is_enabled = true;
5878
5879         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5880                 if (power_well->always_on)
5881                         continue;
5882
5883                 if (!power_well->hw_enabled) {
5884                         is_enabled = false;
5885                         break;
5886                 }
5887         }
5888
5889         return is_enabled;
5890 }
5891
5892 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5893                                  enum intel_display_power_domain domain)
5894 {
5895         struct i915_power_domains *power_domains;
5896         bool ret;
5897
5898         power_domains = &dev_priv->power_domains;
5899
5900         mutex_lock(&power_domains->lock);
5901         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5902         mutex_unlock(&power_domains->lock);
5903
5904         return ret;
5905 }
5906
5907 /*
5908  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5909  * when not needed anymore. We have 4 registers that can request the power well
5910  * to be enabled, and it will only be disabled if none of the registers is
5911  * requesting it to be enabled.
5912  */
5913 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5914 {
5915         struct drm_device *dev = dev_priv->dev;
5916         unsigned long irqflags;
5917
5918         /*
5919          * After we re-enable the power well, if we touch VGA register 0x3d5
5920          * we'll get unclaimed register interrupts. This stops after we write
5921          * anything to the VGA MSR register. The vgacon module uses this
5922          * register all the time, so if we unbind our driver and, as a
5923          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5924          * console_unlock(). So make here we touch the VGA MSR register, making
5925          * sure vgacon can keep working normally without triggering interrupts
5926          * and error messages.
5927          */
5928         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5929         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5930         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5931
5932         if (IS_BROADWELL(dev)) {
5933                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5934                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5935                            dev_priv->de_irq_mask[PIPE_B]);
5936                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5937                            ~dev_priv->de_irq_mask[PIPE_B] |
5938                            GEN8_PIPE_VBLANK);
5939                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5940                            dev_priv->de_irq_mask[PIPE_C]);
5941                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5942                            ~dev_priv->de_irq_mask[PIPE_C] |
5943                            GEN8_PIPE_VBLANK);
5944                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5945                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5946         }
5947 }
5948
5949 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5950                                struct i915_power_well *power_well, bool enable)
5951 {
5952         bool is_enabled, enable_requested;
5953         uint32_t tmp;
5954
5955         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5956         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5957         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5958
5959         if (enable) {
5960                 if (!enable_requested)
5961                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5962                                    HSW_PWR_WELL_ENABLE_REQUEST);
5963
5964                 if (!is_enabled) {
5965                         DRM_DEBUG_KMS("Enabling power well\n");
5966                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5967                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5968                                 DRM_ERROR("Timeout enabling power well\n");
5969                 }
5970
5971                 hsw_power_well_post_enable(dev_priv);
5972         } else {
5973                 if (enable_requested) {
5974                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5975                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5976                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5977                 }
5978         }
5979 }
5980
5981 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5982                                    struct i915_power_well *power_well)
5983 {
5984         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5985
5986         /*
5987          * We're taking over the BIOS, so clear any requests made by it since
5988          * the driver is in charge now.
5989          */
5990         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5991                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5992 }
5993
5994 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5995                                   struct i915_power_well *power_well)
5996 {
5997         hsw_set_power_well(dev_priv, power_well, true);
5998 }
5999
6000 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6001                                    struct i915_power_well *power_well)
6002 {
6003         hsw_set_power_well(dev_priv, power_well, false);
6004 }
6005
6006 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6007                                            struct i915_power_well *power_well)
6008 {
6009 }
6010
6011 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6012                                              struct i915_power_well *power_well)
6013 {
6014         return true;
6015 }
6016
6017 void __vlv_set_power_well(struct drm_i915_private *dev_priv,
6018                           enum punit_power_well power_well_id, bool enable)
6019 {
6020         struct drm_device *dev = dev_priv->dev;
6021         u32 mask;
6022         u32 state;
6023         u32 ctrl;
6024         enum pipe pipe;
6025
6026         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6027                 if (enable) {
6028                         /*
6029                          * Enable the CRI clock source so we can get at the
6030                          * display and the reference clock for VGA
6031                          * hotplug / manual detection.
6032                          */
6033                         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6034                                    DPLL_REFA_CLK_ENABLE_VLV |
6035                                    DPLL_INTEGRATED_CRI_CLK_VLV);
6036                         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6037                 } else {
6038                         for_each_pipe(pipe)
6039                                 assert_pll_disabled(dev_priv, pipe);
6040                         /* Assert common reset */
6041                         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) &
6042                                    ~DPIO_CMNRST);
6043                 }
6044         }
6045
6046         mask = PUNIT_PWRGT_MASK(power_well_id);
6047         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6048                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6049
6050         mutex_lock(&dev_priv->rps.hw_lock);
6051
6052 #define COND \
6053         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6054
6055         if (COND)
6056                 goto out;
6057
6058         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6059         ctrl &= ~mask;
6060         ctrl |= state;
6061         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6062
6063         if (wait_for(COND, 100))
6064                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6065                           state,
6066                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6067
6068 #undef COND
6069
6070 out:
6071         mutex_unlock(&dev_priv->rps.hw_lock);
6072
6073         /*
6074          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6075          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6076          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6077          *   b. The other bits such as sfr settings / modesel may all
6078          *      be set to 0.
6079          *
6080          * This should only be done on init and resume from S3 with
6081          * both PLLs disabled, or we risk losing DPIO and PLL
6082          * synchronization.
6083          */
6084         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable)
6085                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6086 }
6087
6088 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6089                                struct i915_power_well *power_well, bool enable)
6090 {
6091         enum punit_power_well power_well_id = power_well->data;
6092
6093         __vlv_set_power_well(dev_priv, power_well_id, enable);
6094 }
6095
6096 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6097                                    struct i915_power_well *power_well)
6098 {
6099         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6100 }
6101
6102 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6103                                   struct i915_power_well *power_well)
6104 {
6105         vlv_set_power_well(dev_priv, power_well, true);
6106 }
6107
6108 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6109                                    struct i915_power_well *power_well)
6110 {
6111         vlv_set_power_well(dev_priv, power_well, false);
6112 }
6113
6114 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6115                                    struct i915_power_well *power_well)
6116 {
6117         int power_well_id = power_well->data;
6118         bool enabled = false;
6119         u32 mask;
6120         u32 state;
6121         u32 ctrl;
6122
6123         mask = PUNIT_PWRGT_MASK(power_well_id);
6124         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6125
6126         mutex_lock(&dev_priv->rps.hw_lock);
6127
6128         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6129         /*
6130          * We only ever set the power-on and power-gate states, anything
6131          * else is unexpected.
6132          */
6133         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6134                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6135         if (state == ctrl)
6136                 enabled = true;
6137
6138         /*
6139          * A transient state at this point would mean some unexpected party
6140          * is poking at the power controls too.
6141          */
6142         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6143         WARN_ON(ctrl != state);
6144
6145         mutex_unlock(&dev_priv->rps.hw_lock);
6146
6147         return enabled;
6148 }
6149
6150 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6151                                           struct i915_power_well *power_well)
6152 {
6153         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6154
6155         vlv_set_power_well(dev_priv, power_well, true);
6156
6157         spin_lock_irq(&dev_priv->irq_lock);
6158         valleyview_enable_display_irqs(dev_priv);
6159         spin_unlock_irq(&dev_priv->irq_lock);
6160
6161         /*
6162          * During driver initialization/resume we can avoid restoring the
6163          * part of the HW/SW state that will be inited anyway explicitly.
6164          */
6165         if (dev_priv->power_domains.initializing)
6166                 return;
6167
6168         intel_hpd_init(dev_priv->dev);
6169
6170         i915_redisable_vga_power_on(dev_priv->dev);
6171 }
6172
6173 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6174                                            struct i915_power_well *power_well)
6175 {
6176         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6177
6178         spin_lock_irq(&dev_priv->irq_lock);
6179         valleyview_disable_display_irqs(dev_priv);
6180         spin_unlock_irq(&dev_priv->irq_lock);
6181
6182         vlv_set_power_well(dev_priv, power_well, false);
6183 }
6184
6185 static void check_power_well_state(struct drm_i915_private *dev_priv,
6186                                    struct i915_power_well *power_well)
6187 {
6188         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6189
6190         if (power_well->always_on || !i915.disable_power_well) {
6191                 if (!enabled)
6192                         goto mismatch;
6193
6194                 return;
6195         }
6196
6197         if (enabled != (power_well->count > 0))
6198                 goto mismatch;
6199
6200         return;
6201
6202 mismatch:
6203         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6204                   power_well->name, power_well->always_on, enabled,
6205                   power_well->count, i915.disable_power_well);
6206 }
6207
6208 void intel_display_power_get(struct drm_i915_private *dev_priv,
6209                              enum intel_display_power_domain domain)
6210 {
6211         struct i915_power_domains *power_domains;
6212         struct i915_power_well *power_well;
6213         int i;
6214
6215         intel_runtime_pm_get(dev_priv);
6216
6217         power_domains = &dev_priv->power_domains;
6218
6219         mutex_lock(&power_domains->lock);
6220
6221         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6222                 if (!power_well->count++) {
6223                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6224                         power_well->ops->enable(dev_priv, power_well);
6225                         power_well->hw_enabled = true;
6226                 }
6227
6228                 check_power_well_state(dev_priv, power_well);
6229         }
6230
6231         power_domains->domain_use_count[domain]++;
6232
6233         mutex_unlock(&power_domains->lock);
6234 }
6235
6236 void intel_display_power_put(struct drm_i915_private *dev_priv,
6237                              enum intel_display_power_domain domain)
6238 {
6239         struct i915_power_domains *power_domains;
6240         struct i915_power_well *power_well;
6241         int i;
6242
6243         power_domains = &dev_priv->power_domains;
6244
6245         mutex_lock(&power_domains->lock);
6246
6247         WARN_ON(!power_domains->domain_use_count[domain]);
6248         power_domains->domain_use_count[domain]--;
6249
6250         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6251                 WARN_ON(!power_well->count);
6252
6253                 if (!--power_well->count && i915.disable_power_well) {
6254                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6255                         power_well->hw_enabled = false;
6256                         power_well->ops->disable(dev_priv, power_well);
6257                 }
6258
6259                 check_power_well_state(dev_priv, power_well);
6260         }
6261
6262         mutex_unlock(&power_domains->lock);
6263
6264         intel_runtime_pm_put(dev_priv);
6265 }
6266
6267 static struct i915_power_domains *hsw_pwr;
6268
6269 /* Display audio driver power well request */
6270 int i915_request_power_well(void)
6271 {
6272         struct drm_i915_private *dev_priv;
6273
6274         if (!hsw_pwr)
6275                 return -ENODEV;
6276
6277         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6278                                 power_domains);
6279         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6280         return 0;
6281 }
6282 EXPORT_SYMBOL_GPL(i915_request_power_well);
6283
6284 /* Display audio driver power well release */
6285 int i915_release_power_well(void)
6286 {
6287         struct drm_i915_private *dev_priv;
6288
6289         if (!hsw_pwr)
6290                 return -ENODEV;
6291
6292         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6293                                 power_domains);
6294         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6295         return 0;
6296 }
6297 EXPORT_SYMBOL_GPL(i915_release_power_well);
6298
6299 /*
6300  * Private interface for the audio driver to get CDCLK in kHz.
6301  *
6302  * Caller must request power well using i915_request_power_well() prior to
6303  * making the call.
6304  */
6305 int i915_get_cdclk_freq(void)
6306 {
6307         struct drm_i915_private *dev_priv;
6308
6309         if (!hsw_pwr)
6310                 return -ENODEV;
6311
6312         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6313                                 power_domains);
6314
6315         return intel_ddi_get_cdclk_freq(dev_priv);
6316 }
6317 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6318
6319
6320 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6321
6322 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6323         BIT(POWER_DOMAIN_PIPE_A) |                      \
6324         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6325         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6326         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6327         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6328         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6329         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6330         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6331         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6332         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6333         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6334         BIT(POWER_DOMAIN_INIT))
6335 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6336         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6337         BIT(POWER_DOMAIN_INIT))
6338
6339 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6340         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6341         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6342 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6343         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6344         BIT(POWER_DOMAIN_INIT))
6345
6346 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6347 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6348
6349 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6350         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6351         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6352         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6353         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6354         BIT(POWER_DOMAIN_PORT_CRT) |            \
6355         BIT(POWER_DOMAIN_INIT))
6356
6357 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6358         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6359         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6360         BIT(POWER_DOMAIN_INIT))
6361
6362 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6363         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6364         BIT(POWER_DOMAIN_INIT))
6365
6366 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6367         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6368         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6369         BIT(POWER_DOMAIN_INIT))
6370
6371 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6372         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6373         BIT(POWER_DOMAIN_INIT))
6374
6375 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6376         .sync_hw = i9xx_always_on_power_well_noop,
6377         .enable = i9xx_always_on_power_well_noop,
6378         .disable = i9xx_always_on_power_well_noop,
6379         .is_enabled = i9xx_always_on_power_well_enabled,
6380 };
6381
6382 static struct i915_power_well i9xx_always_on_power_well[] = {
6383         {
6384                 .name = "always-on",
6385                 .always_on = 1,
6386                 .domains = POWER_DOMAIN_MASK,
6387                 .ops = &i9xx_always_on_power_well_ops,
6388         },
6389 };
6390
6391 static const struct i915_power_well_ops hsw_power_well_ops = {
6392         .sync_hw = hsw_power_well_sync_hw,
6393         .enable = hsw_power_well_enable,
6394         .disable = hsw_power_well_disable,
6395         .is_enabled = hsw_power_well_enabled,
6396 };
6397
6398 static struct i915_power_well hsw_power_wells[] = {
6399         {
6400                 .name = "always-on",
6401                 .always_on = 1,
6402                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6403                 .ops = &i9xx_always_on_power_well_ops,
6404         },
6405         {
6406                 .name = "display",
6407                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6408                 .ops = &hsw_power_well_ops,
6409         },
6410 };
6411
6412 static struct i915_power_well bdw_power_wells[] = {
6413         {
6414                 .name = "always-on",
6415                 .always_on = 1,
6416                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6417                 .ops = &i9xx_always_on_power_well_ops,
6418         },
6419         {
6420                 .name = "display",
6421                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6422                 .ops = &hsw_power_well_ops,
6423         },
6424 };
6425
6426 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6427         .sync_hw = vlv_power_well_sync_hw,
6428         .enable = vlv_display_power_well_enable,
6429         .disable = vlv_display_power_well_disable,
6430         .is_enabled = vlv_power_well_enabled,
6431 };
6432
6433 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6434         .sync_hw = vlv_power_well_sync_hw,
6435         .enable = vlv_power_well_enable,
6436         .disable = vlv_power_well_disable,
6437         .is_enabled = vlv_power_well_enabled,
6438 };
6439
6440 static struct i915_power_well vlv_power_wells[] = {
6441         {
6442                 .name = "always-on",
6443                 .always_on = 1,
6444                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6445                 .ops = &i9xx_always_on_power_well_ops,
6446         },
6447         {
6448                 .name = "display",
6449                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6450                 .data = PUNIT_POWER_WELL_DISP2D,
6451                 .ops = &vlv_display_power_well_ops,
6452         },
6453         {
6454                 .name = "dpio-tx-b-01",
6455                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6456                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6457                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6458                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6459                 .ops = &vlv_dpio_power_well_ops,
6460                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6461         },
6462         {
6463                 .name = "dpio-tx-b-23",
6464                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6465                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6466                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6467                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6468                 .ops = &vlv_dpio_power_well_ops,
6469                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6470         },
6471         {
6472                 .name = "dpio-tx-c-01",
6473                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6474                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6475                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6476                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6477                 .ops = &vlv_dpio_power_well_ops,
6478                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6479         },
6480         {
6481                 .name = "dpio-tx-c-23",
6482                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6483                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6484                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6485                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6486                 .ops = &vlv_dpio_power_well_ops,
6487                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6488         },
6489         {
6490                 .name = "dpio-common",
6491                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6492                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6493                 .ops = &vlv_dpio_power_well_ops,
6494         },
6495 };
6496
6497 #define set_power_wells(power_domains, __power_wells) ({                \
6498         (power_domains)->power_wells = (__power_wells);                 \
6499         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6500 })
6501
6502 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6503 {
6504         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6505
6506         mutex_init(&power_domains->lock);
6507
6508         /*
6509          * The enabling order will be from lower to higher indexed wells,
6510          * the disabling order is reversed.
6511          */
6512         if (IS_HASWELL(dev_priv->dev)) {
6513                 set_power_wells(power_domains, hsw_power_wells);
6514                 hsw_pwr = power_domains;
6515         } else if (IS_BROADWELL(dev_priv->dev)) {
6516                 set_power_wells(power_domains, bdw_power_wells);
6517                 hsw_pwr = power_domains;
6518         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6519                 set_power_wells(power_domains, vlv_power_wells);
6520         } else {
6521                 set_power_wells(power_domains, i9xx_always_on_power_well);
6522         }
6523
6524         return 0;
6525 }
6526
6527 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6528 {
6529         hsw_pwr = NULL;
6530 }
6531
6532 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6533 {
6534         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6535         struct i915_power_well *power_well;
6536         int i;
6537
6538         mutex_lock(&power_domains->lock);
6539         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6540                 power_well->ops->sync_hw(dev_priv, power_well);
6541                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6542                                                                      power_well);
6543         }
6544         mutex_unlock(&power_domains->lock);
6545 }
6546
6547 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6548 {
6549         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6550
6551         power_domains->initializing = true;
6552         /* For now, we need the power well to be always enabled. */
6553         intel_display_set_init_power(dev_priv, true);
6554         intel_power_domains_resume(dev_priv);
6555         power_domains->initializing = false;
6556 }
6557
6558 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6559 {
6560         intel_runtime_pm_get(dev_priv);
6561 }
6562
6563 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6564 {
6565         intel_runtime_pm_put(dev_priv);
6566 }
6567
6568 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6569 {
6570         struct drm_device *dev = dev_priv->dev;
6571         struct device *device = &dev->pdev->dev;
6572
6573         if (!HAS_RUNTIME_PM(dev))
6574                 return;
6575
6576         pm_runtime_get_sync(device);
6577         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6578 }
6579
6580 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6581 {
6582         struct drm_device *dev = dev_priv->dev;
6583         struct device *device = &dev->pdev->dev;
6584
6585         if (!HAS_RUNTIME_PM(dev))
6586                 return;
6587
6588         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6589         pm_runtime_get_noresume(device);
6590 }
6591
6592 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6593 {
6594         struct drm_device *dev = dev_priv->dev;
6595         struct device *device = &dev->pdev->dev;
6596
6597         if (!HAS_RUNTIME_PM(dev))
6598                 return;
6599
6600         pm_runtime_mark_last_busy(device);
6601         pm_runtime_put_autosuspend(device);
6602 }
6603
6604 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6605 {
6606         struct drm_device *dev = dev_priv->dev;
6607         struct device *device = &dev->pdev->dev;
6608
6609         if (!HAS_RUNTIME_PM(dev))
6610                 return;
6611
6612         pm_runtime_set_active(device);
6613
6614         /*
6615          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6616          * requirement.
6617          */
6618         if (!intel_enable_rc6(dev)) {
6619                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6620                 return;
6621         }
6622
6623         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6624         pm_runtime_mark_last_busy(device);
6625         pm_runtime_use_autosuspend(device);
6626
6627         pm_runtime_put_autosuspend(device);
6628 }
6629
6630 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6631 {
6632         struct drm_device *dev = dev_priv->dev;
6633         struct device *device = &dev->pdev->dev;
6634
6635         if (!HAS_RUNTIME_PM(dev))
6636                 return;
6637
6638         if (!intel_enable_rc6(dev))
6639                 return;
6640
6641         /* Make sure we're not suspended first. */
6642         pm_runtime_get_sync(device);
6643         pm_runtime_disable(device);
6644 }
6645
6646 /* Set up chip specific power management-related functions */
6647 void intel_init_pm(struct drm_device *dev)
6648 {
6649         struct drm_i915_private *dev_priv = dev->dev_private;
6650
6651         if (HAS_FBC(dev)) {
6652                 if (INTEL_INFO(dev)->gen >= 7) {
6653                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6654                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6655                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6656                 } else if (INTEL_INFO(dev)->gen >= 5) {
6657                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6658                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6659                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6660                 } else if (IS_GM45(dev)) {
6661                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6662                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6663                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6664                 } else {
6665                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6666                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6667                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6668
6669                         /* This value was pulled out of someone's hat */
6670                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6671                 }
6672         }
6673
6674         /* For cxsr */
6675         if (IS_PINEVIEW(dev))
6676                 i915_pineview_get_mem_freq(dev);
6677         else if (IS_GEN5(dev))
6678                 i915_ironlake_get_mem_freq(dev);
6679
6680         /* For FIFO watermark updates */
6681         if (HAS_PCH_SPLIT(dev)) {
6682                 ilk_setup_wm_latency(dev);
6683
6684                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6685                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6686                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6687                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6688                         dev_priv->display.update_wm = ilk_update_wm;
6689                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6690                 } else {
6691                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6692                                       "Disable CxSR\n");
6693                 }
6694
6695                 if (IS_GEN5(dev))
6696                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6697                 else if (IS_GEN6(dev))
6698                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6699                 else if (IS_IVYBRIDGE(dev))
6700                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6701                 else if (IS_HASWELL(dev))
6702                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6703                 else if (INTEL_INFO(dev)->gen == 8)
6704                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6705         } else if (IS_CHERRYVIEW(dev)) {
6706                 dev_priv->display.update_wm = valleyview_update_wm;
6707                 dev_priv->display.init_clock_gating =
6708                         cherryview_init_clock_gating;
6709         } else if (IS_VALLEYVIEW(dev)) {
6710                 dev_priv->display.update_wm = valleyview_update_wm;
6711                 dev_priv->display.init_clock_gating =
6712                         valleyview_init_clock_gating;
6713         } else if (IS_PINEVIEW(dev)) {
6714                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6715                                             dev_priv->is_ddr3,
6716                                             dev_priv->fsb_freq,
6717                                             dev_priv->mem_freq)) {
6718                         DRM_INFO("failed to find known CxSR latency "
6719                                  "(found ddr%s fsb freq %d, mem freq %d), "
6720                                  "disabling CxSR\n",
6721                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6722                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6723                         /* Disable CxSR and never update its watermark again */
6724                         pineview_disable_cxsr(dev);
6725                         dev_priv->display.update_wm = NULL;
6726                 } else
6727                         dev_priv->display.update_wm = pineview_update_wm;
6728                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6729         } else if (IS_G4X(dev)) {
6730                 dev_priv->display.update_wm = g4x_update_wm;
6731                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6732         } else if (IS_GEN4(dev)) {
6733                 dev_priv->display.update_wm = i965_update_wm;
6734                 if (IS_CRESTLINE(dev))
6735                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6736                 else if (IS_BROADWATER(dev))
6737                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6738         } else if (IS_GEN3(dev)) {
6739                 dev_priv->display.update_wm = i9xx_update_wm;
6740                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6741                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6742         } else if (IS_GEN2(dev)) {
6743                 if (INTEL_INFO(dev)->num_pipes == 1) {
6744                         dev_priv->display.update_wm = i845_update_wm;
6745                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6746                 } else {
6747                         dev_priv->display.update_wm = i9xx_update_wm;
6748                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6749                 }
6750
6751                 if (IS_I85X(dev) || IS_I865G(dev))
6752                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6753                 else
6754                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6755         } else {
6756                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6757         }
6758 }
6759
6760 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6761 {
6762         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6763
6764         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6765                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6766                 return -EAGAIN;
6767         }
6768
6769         I915_WRITE(GEN6_PCODE_DATA, *val);
6770         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6771
6772         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6773                      500)) {
6774                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6775                 return -ETIMEDOUT;
6776         }
6777
6778         *val = I915_READ(GEN6_PCODE_DATA);
6779         I915_WRITE(GEN6_PCODE_DATA, 0);
6780
6781         return 0;
6782 }
6783
6784 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6785 {
6786         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6787
6788         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6789                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6790                 return -EAGAIN;
6791         }
6792
6793         I915_WRITE(GEN6_PCODE_DATA, val);
6794         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6795
6796         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6797                      500)) {
6798                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6799                 return -ETIMEDOUT;
6800         }
6801
6802         I915_WRITE(GEN6_PCODE_DATA, 0);
6803
6804         return 0;
6805 }
6806
6807 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6808 {
6809         int div;
6810
6811         /* 4 x czclk */
6812         switch (dev_priv->mem_freq) {
6813         case 800:
6814                 div = 10;
6815                 break;
6816         case 1066:
6817                 div = 12;
6818                 break;
6819         case 1333:
6820                 div = 16;
6821                 break;
6822         default:
6823                 return -1;
6824         }
6825
6826         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6827 }
6828
6829 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6830 {
6831         int mul;
6832
6833         /* 4 x czclk */
6834         switch (dev_priv->mem_freq) {
6835         case 800:
6836                 mul = 10;
6837                 break;
6838         case 1066:
6839                 mul = 12;
6840                 break;
6841         case 1333:
6842                 mul = 16;
6843                 break;
6844         default:
6845                 return -1;
6846         }
6847
6848         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6849 }
6850
6851 void intel_pm_setup(struct drm_device *dev)
6852 {
6853         struct drm_i915_private *dev_priv = dev->dev_private;
6854
6855         mutex_init(&dev_priv->rps.hw_lock);
6856
6857         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6858                           intel_gen6_powersave_work);
6859
6860         dev_priv->pm.suspended = false;
6861         dev_priv->pm.irqs_disabled = false;
6862 }