drm/i915: Tune done rc6 enabling output
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98         int cfb_pitch;
99         int i;
100         u32 fbc_ctl;
101
102         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103         if (fb->pitches[0] < cfb_pitch)
104                 cfb_pitch = fb->pitches[0];
105
106         /* FBC_CTL wants 32B or 64B units */
107         if (IS_GEN2(dev))
108                 cfb_pitch = (cfb_pitch / 32) - 1;
109         else
110                 cfb_pitch = (cfb_pitch / 64) - 1;
111
112         /* Clear old tags */
113         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114                 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116         if (IS_GEN4(dev)) {
117                 u32 fbc_ctl2;
118
119                 /* Set it up... */
120                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124         }
125
126         /* enable it... */
127         fbc_ctl = I915_READ(FBC_CONTROL);
128         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130         if (IS_I945GM(dev))
131                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133         fbc_ctl |= obj->fence_reg;
134         I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143
144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149         struct drm_device *dev = crtc->dev;
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_framebuffer *fb = crtc->primary->fb;
152         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154         u32 dpfc_ctl;
155
156         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159         else
160                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165         /* enable it... */
166         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173         struct drm_i915_private *dev_priv = dev->dev_private;
174         u32 dpfc_ctl;
175
176         /* Disable compression */
177         dpfc_ctl = I915_READ(DPFC_CONTROL);
178         if (dpfc_ctl & DPFC_CTL_EN) {
179                 dpfc_ctl &= ~DPFC_CTL_EN;
180                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182                 DRM_DEBUG_KMS("disabled FBC\n");
183         }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189
190         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         u32 blt_ecoskpd;
197
198         /* Make sure blitter notifies FBC of writes */
199
200         /* Blitter is part of Media powerwell on VLV. No impact of
201          * his param in other platforms for now */
202         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206                 GEN6_BLITTER_LOCK_SHIFT;
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211                          GEN6_BLITTER_LOCK_SHIFT);
212         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213         POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220         struct drm_device *dev = crtc->dev;
221         struct drm_i915_private *dev_priv = dev->dev_private;
222         struct drm_framebuffer *fb = crtc->primary->fb;
223         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225         u32 dpfc_ctl;
226
227         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229                 dev_priv->fbc.threshold++;
230
231         switch (dev_priv->fbc.threshold) {
232         case 4:
233         case 3:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235                 break;
236         case 2:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238                 break;
239         case 1:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241                 break;
242         }
243         dpfc_ctl |= DPFC_CTL_FENCE_EN;
244         if (IS_GEN5(dev))
245                 dpfc_ctl |= obj->fence_reg;
246
247         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249         /* enable it... */
250         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252         if (IS_GEN6(dev)) {
253                 I915_WRITE(SNB_DPFC_CTL_SA,
254                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256                 sandybridge_blit_fbc_update(dev);
257         }
258
259         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 dpfc_ctl;
266
267         /* Disable compression */
268         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269         if (dpfc_ctl & DPFC_CTL_EN) {
270                 dpfc_ctl &= ~DPFC_CTL_EN;
271                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273                 DRM_DEBUG_KMS("disabled FBC\n");
274         }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280
281         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286         struct drm_device *dev = crtc->dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         struct drm_framebuffer *fb = crtc->primary->fb;
289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291         u32 dpfc_ctl;
292
293         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295                 dev_priv->fbc.threshold++;
296
297         switch (dev_priv->fbc.threshold) {
298         case 4:
299         case 3:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301                 break;
302         case 2:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304                 break;
305         case 1:
306                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307                 break;
308         }
309
310         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
313
314         if (IS_IVYBRIDGE(dev)) {
315                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
316                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
317                            I915_READ(ILK_DISPLAY_CHICKEN1) |
318                            ILK_FBCQ_DIS);
319         } else {
320                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
321                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
322                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
323                            HSW_FBCQ_DIS);
324         }
325
326         I915_WRITE(SNB_DPFC_CTL_SA,
327                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
328         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
329
330         sandybridge_blit_fbc_update(dev);
331
332         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
333 }
334
335 bool intel_fbc_enabled(struct drm_device *dev)
336 {
337         struct drm_i915_private *dev_priv = dev->dev_private;
338
339         if (!dev_priv->display.fbc_enabled)
340                 return false;
341
342         return dev_priv->display.fbc_enabled(dev);
343 }
344
345 static void intel_fbc_work_fn(struct work_struct *__work)
346 {
347         struct intel_fbc_work *work =
348                 container_of(to_delayed_work(__work),
349                              struct intel_fbc_work, work);
350         struct drm_device *dev = work->crtc->dev;
351         struct drm_i915_private *dev_priv = dev->dev_private;
352
353         mutex_lock(&dev->struct_mutex);
354         if (work == dev_priv->fbc.fbc_work) {
355                 /* Double check that we haven't switched fb without cancelling
356                  * the prior work.
357                  */
358                 if (work->crtc->primary->fb == work->fb) {
359                         dev_priv->display.enable_fbc(work->crtc);
360
361                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
362                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
363                         dev_priv->fbc.y = work->crtc->y;
364                 }
365
366                 dev_priv->fbc.fbc_work = NULL;
367         }
368         mutex_unlock(&dev->struct_mutex);
369
370         kfree(work);
371 }
372
373 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
374 {
375         if (dev_priv->fbc.fbc_work == NULL)
376                 return;
377
378         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
379
380         /* Synchronisation is provided by struct_mutex and checking of
381          * dev_priv->fbc.fbc_work, so we can perform the cancellation
382          * entirely asynchronously.
383          */
384         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
385                 /* tasklet was killed before being run, clean up */
386                 kfree(dev_priv->fbc.fbc_work);
387
388         /* Mark the work as no longer wanted so that if it does
389          * wake-up (because the work was already running and waiting
390          * for our mutex), it will discover that is no longer
391          * necessary to run.
392          */
393         dev_priv->fbc.fbc_work = NULL;
394 }
395
396 static void intel_enable_fbc(struct drm_crtc *crtc)
397 {
398         struct intel_fbc_work *work;
399         struct drm_device *dev = crtc->dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401
402         if (!dev_priv->display.enable_fbc)
403                 return;
404
405         intel_cancel_fbc_work(dev_priv);
406
407         work = kzalloc(sizeof(*work), GFP_KERNEL);
408         if (work == NULL) {
409                 DRM_ERROR("Failed to allocate FBC work structure\n");
410                 dev_priv->display.enable_fbc(crtc);
411                 return;
412         }
413
414         work->crtc = crtc;
415         work->fb = crtc->primary->fb;
416         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
417
418         dev_priv->fbc.fbc_work = work;
419
420         /* Delay the actual enabling to let pageflipping cease and the
421          * display to settle before starting the compression. Note that
422          * this delay also serves a second purpose: it allows for a
423          * vblank to pass after disabling the FBC before we attempt
424          * to modify the control registers.
425          *
426          * A more complicated solution would involve tracking vblanks
427          * following the termination of the page-flipping sequence
428          * and indeed performing the enable as a co-routine and not
429          * waiting synchronously upon the vblank.
430          *
431          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
432          */
433         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
434 }
435
436 void intel_disable_fbc(struct drm_device *dev)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439
440         intel_cancel_fbc_work(dev_priv);
441
442         if (!dev_priv->display.disable_fbc)
443                 return;
444
445         dev_priv->display.disable_fbc(dev);
446         dev_priv->fbc.plane = -1;
447 }
448
449 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
450                               enum no_fbc_reason reason)
451 {
452         if (dev_priv->fbc.no_fbc_reason == reason)
453                 return false;
454
455         dev_priv->fbc.no_fbc_reason = reason;
456         return true;
457 }
458
459 /**
460  * intel_update_fbc - enable/disable FBC as needed
461  * @dev: the drm_device
462  *
463  * Set up the framebuffer compression hardware at mode set time.  We
464  * enable it if possible:
465  *   - plane A only (on pre-965)
466  *   - no pixel mulitply/line duplication
467  *   - no alpha buffer discard
468  *   - no dual wide
469  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
470  *
471  * We can't assume that any compression will take place (worst case),
472  * so the compressed buffer has to be the same size as the uncompressed
473  * one.  It also must reside (along with the line length buffer) in
474  * stolen memory.
475  *
476  * We need to enable/disable FBC on a global basis.
477  */
478 void intel_update_fbc(struct drm_device *dev)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         struct drm_crtc *crtc = NULL, *tmp_crtc;
482         struct intel_crtc *intel_crtc;
483         struct drm_framebuffer *fb;
484         struct drm_i915_gem_object *obj;
485         const struct drm_display_mode *adjusted_mode;
486         unsigned int max_width, max_height;
487
488         if (!HAS_FBC(dev)) {
489                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
490                 return;
491         }
492
493         if (!i915.powersave) {
494                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
495                         DRM_DEBUG_KMS("fbc disabled per module param\n");
496                 return;
497         }
498
499         /*
500          * If FBC is already on, we just have to verify that we can
501          * keep it that way...
502          * Need to disable if:
503          *   - more than one pipe is active
504          *   - changing FBC params (stride, fence, mode)
505          *   - new fb is too large to fit in compressed buffer
506          *   - going to an unsupported config (interlace, pixel multiply, etc.)
507          */
508         for_each_crtc(dev, tmp_crtc) {
509                 if (intel_crtc_active(tmp_crtc) &&
510                     to_intel_crtc(tmp_crtc)->primary_enabled) {
511                         if (crtc) {
512                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
513                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
514                                 goto out_disable;
515                         }
516                         crtc = tmp_crtc;
517                 }
518         }
519
520         if (!crtc || crtc->primary->fb == NULL) {
521                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
522                         DRM_DEBUG_KMS("no output, disabling\n");
523                 goto out_disable;
524         }
525
526         intel_crtc = to_intel_crtc(crtc);
527         fb = crtc->primary->fb;
528         obj = intel_fb_obj(fb);
529         adjusted_mode = &intel_crtc->config.adjusted_mode;
530
531         if (i915.enable_fbc < 0) {
532                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
533                         DRM_DEBUG_KMS("disabled per chip default\n");
534                 goto out_disable;
535         }
536         if (!i915.enable_fbc) {
537                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
538                         DRM_DEBUG_KMS("fbc disabled per module param\n");
539                 goto out_disable;
540         }
541         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
542             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
543                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
544                         DRM_DEBUG_KMS("mode incompatible with compression, "
545                                       "disabling\n");
546                 goto out_disable;
547         }
548
549         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
550                 max_width = 4096;
551                 max_height = 4096;
552         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
553                 max_width = 4096;
554                 max_height = 2048;
555         } else {
556                 max_width = 2048;
557                 max_height = 1536;
558         }
559         if (intel_crtc->config.pipe_src_w > max_width ||
560             intel_crtc->config.pipe_src_h > max_height) {
561                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
562                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
563                 goto out_disable;
564         }
565         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
566             intel_crtc->plane != PLANE_A) {
567                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
568                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
569                 goto out_disable;
570         }
571
572         /* The use of a CPU fence is mandatory in order to detect writes
573          * by the CPU to the scanout and trigger updates to the FBC.
574          */
575         if (obj->tiling_mode != I915_TILING_X ||
576             obj->fence_reg == I915_FENCE_REG_NONE) {
577                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
578                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
579                 goto out_disable;
580         }
581
582         /* If the kernel debugger is active, always disable compression */
583         if (in_dbg_master())
584                 goto out_disable;
585
586         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
587                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
588                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
589                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
590                 goto out_disable;
591         }
592
593         /* If the scanout has not changed, don't modify the FBC settings.
594          * Note that we make the fundamental assumption that the fb->obj
595          * cannot be unpinned (and have its GTT offset and fence revoked)
596          * without first being decoupled from the scanout and FBC disabled.
597          */
598         if (dev_priv->fbc.plane == intel_crtc->plane &&
599             dev_priv->fbc.fb_id == fb->base.id &&
600             dev_priv->fbc.y == crtc->y)
601                 return;
602
603         if (intel_fbc_enabled(dev)) {
604                 /* We update FBC along two paths, after changing fb/crtc
605                  * configuration (modeswitching) and after page-flipping
606                  * finishes. For the latter, we know that not only did
607                  * we disable the FBC at the start of the page-flip
608                  * sequence, but also more than one vblank has passed.
609                  *
610                  * For the former case of modeswitching, it is possible
611                  * to switch between two FBC valid configurations
612                  * instantaneously so we do need to disable the FBC
613                  * before we can modify its control registers. We also
614                  * have to wait for the next vblank for that to take
615                  * effect. However, since we delay enabling FBC we can
616                  * assume that a vblank has passed since disabling and
617                  * that we can safely alter the registers in the deferred
618                  * callback.
619                  *
620                  * In the scenario that we go from a valid to invalid
621                  * and then back to valid FBC configuration we have
622                  * no strict enforcement that a vblank occurred since
623                  * disabling the FBC. However, along all current pipe
624                  * disabling paths we do need to wait for a vblank at
625                  * some point. And we wait before enabling FBC anyway.
626                  */
627                 DRM_DEBUG_KMS("disabling active FBC for update\n");
628                 intel_disable_fbc(dev);
629         }
630
631         intel_enable_fbc(crtc);
632         dev_priv->fbc.no_fbc_reason = FBC_OK;
633         return;
634
635 out_disable:
636         /* Multiple disables should be harmless */
637         if (intel_fbc_enabled(dev)) {
638                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
639                 intel_disable_fbc(dev);
640         }
641         i915_gem_stolen_cleanup_compression(dev);
642 }
643
644 static void i915_pineview_get_mem_freq(struct drm_device *dev)
645 {
646         struct drm_i915_private *dev_priv = dev->dev_private;
647         u32 tmp;
648
649         tmp = I915_READ(CLKCFG);
650
651         switch (tmp & CLKCFG_FSB_MASK) {
652         case CLKCFG_FSB_533:
653                 dev_priv->fsb_freq = 533; /* 133*4 */
654                 break;
655         case CLKCFG_FSB_800:
656                 dev_priv->fsb_freq = 800; /* 200*4 */
657                 break;
658         case CLKCFG_FSB_667:
659                 dev_priv->fsb_freq =  667; /* 167*4 */
660                 break;
661         case CLKCFG_FSB_400:
662                 dev_priv->fsb_freq = 400; /* 100*4 */
663                 break;
664         }
665
666         switch (tmp & CLKCFG_MEM_MASK) {
667         case CLKCFG_MEM_533:
668                 dev_priv->mem_freq = 533;
669                 break;
670         case CLKCFG_MEM_667:
671                 dev_priv->mem_freq = 667;
672                 break;
673         case CLKCFG_MEM_800:
674                 dev_priv->mem_freq = 800;
675                 break;
676         }
677
678         /* detect pineview DDR3 setting */
679         tmp = I915_READ(CSHRDDR3CTL);
680         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
681 }
682
683 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
684 {
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         u16 ddrpll, csipll;
687
688         ddrpll = I915_READ16(DDRMPLL1);
689         csipll = I915_READ16(CSIPLL0);
690
691         switch (ddrpll & 0xff) {
692         case 0xc:
693                 dev_priv->mem_freq = 800;
694                 break;
695         case 0x10:
696                 dev_priv->mem_freq = 1066;
697                 break;
698         case 0x14:
699                 dev_priv->mem_freq = 1333;
700                 break;
701         case 0x18:
702                 dev_priv->mem_freq = 1600;
703                 break;
704         default:
705                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
706                                  ddrpll & 0xff);
707                 dev_priv->mem_freq = 0;
708                 break;
709         }
710
711         dev_priv->ips.r_t = dev_priv->mem_freq;
712
713         switch (csipll & 0x3ff) {
714         case 0x00c:
715                 dev_priv->fsb_freq = 3200;
716                 break;
717         case 0x00e:
718                 dev_priv->fsb_freq = 3733;
719                 break;
720         case 0x010:
721                 dev_priv->fsb_freq = 4266;
722                 break;
723         case 0x012:
724                 dev_priv->fsb_freq = 4800;
725                 break;
726         case 0x014:
727                 dev_priv->fsb_freq = 5333;
728                 break;
729         case 0x016:
730                 dev_priv->fsb_freq = 5866;
731                 break;
732         case 0x018:
733                 dev_priv->fsb_freq = 6400;
734                 break;
735         default:
736                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
737                                  csipll & 0x3ff);
738                 dev_priv->fsb_freq = 0;
739                 break;
740         }
741
742         if (dev_priv->fsb_freq == 3200) {
743                 dev_priv->ips.c_m = 0;
744         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
745                 dev_priv->ips.c_m = 1;
746         } else {
747                 dev_priv->ips.c_m = 2;
748         }
749 }
750
751 static const struct cxsr_latency cxsr_latency_table[] = {
752         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
753         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
754         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
755         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
756         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
757
758         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
759         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
760         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
761         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
762         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
763
764         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
765         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
766         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
767         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
768         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
769
770         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
771         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
772         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
773         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
774         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
775
776         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
777         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
778         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
779         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
780         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
781
782         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
783         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
784         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
785         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
786         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
787 };
788
789 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
790                                                          int is_ddr3,
791                                                          int fsb,
792                                                          int mem)
793 {
794         const struct cxsr_latency *latency;
795         int i;
796
797         if (fsb == 0 || mem == 0)
798                 return NULL;
799
800         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
801                 latency = &cxsr_latency_table[i];
802                 if (is_desktop == latency->is_desktop &&
803                     is_ddr3 == latency->is_ddr3 &&
804                     fsb == latency->fsb_freq && mem == latency->mem_freq)
805                         return latency;
806         }
807
808         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
809
810         return NULL;
811 }
812
813 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
814 {
815         struct drm_device *dev = dev_priv->dev;
816         u32 val;
817
818         if (IS_VALLEYVIEW(dev)) {
819                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
820         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
821                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
822         } else if (IS_PINEVIEW(dev)) {
823                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
824                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
825                 I915_WRITE(DSPFW3, val);
826         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
827                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
828                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
829                 I915_WRITE(FW_BLC_SELF, val);
830         } else if (IS_I915GM(dev)) {
831                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
832                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
833                 I915_WRITE(INSTPM, val);
834         } else {
835                 return;
836         }
837
838         DRM_DEBUG_KMS("memory self-refresh is %s\n",
839                       enable ? "enabled" : "disabled");
840 }
841
842 /*
843  * Latency for FIFO fetches is dependent on several factors:
844  *   - memory configuration (speed, channels)
845  *   - chipset
846  *   - current MCH state
847  * It can be fairly high in some situations, so here we assume a fairly
848  * pessimal value.  It's a tradeoff between extra memory fetches (if we
849  * set this value too high, the FIFO will fetch frequently to stay full)
850  * and power consumption (set it too low to save power and we might see
851  * FIFO underruns and display "flicker").
852  *
853  * A value of 5us seems to be a good balance; safe for very low end
854  * platforms but not overly aggressive on lower latency configs.
855  */
856 static const int latency_ns = 5000;
857
858 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
859 {
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         uint32_t dsparb = I915_READ(DSPARB);
862         int size;
863
864         size = dsparb & 0x7f;
865         if (plane)
866                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
867
868         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
869                       plane ? "B" : "A", size);
870
871         return size;
872 }
873
874 static int i830_get_fifo_size(struct drm_device *dev, int plane)
875 {
876         struct drm_i915_private *dev_priv = dev->dev_private;
877         uint32_t dsparb = I915_READ(DSPARB);
878         int size;
879
880         size = dsparb & 0x1ff;
881         if (plane)
882                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
883         size >>= 1; /* Convert to cachelines */
884
885         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
886                       plane ? "B" : "A", size);
887
888         return size;
889 }
890
891 static int i845_get_fifo_size(struct drm_device *dev, int plane)
892 {
893         struct drm_i915_private *dev_priv = dev->dev_private;
894         uint32_t dsparb = I915_READ(DSPARB);
895         int size;
896
897         size = dsparb & 0x7f;
898         size >>= 2; /* Convert to cachelines */
899
900         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
901                       plane ? "B" : "A",
902                       size);
903
904         return size;
905 }
906
907 /* Pineview has different values for various configs */
908 static const struct intel_watermark_params pineview_display_wm = {
909         .fifo_size = PINEVIEW_DISPLAY_FIFO,
910         .max_wm = PINEVIEW_MAX_WM,
911         .default_wm = PINEVIEW_DFT_WM,
912         .guard_size = PINEVIEW_GUARD_WM,
913         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
914 };
915 static const struct intel_watermark_params pineview_display_hplloff_wm = {
916         .fifo_size = PINEVIEW_DISPLAY_FIFO,
917         .max_wm = PINEVIEW_MAX_WM,
918         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
919         .guard_size = PINEVIEW_GUARD_WM,
920         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
921 };
922 static const struct intel_watermark_params pineview_cursor_wm = {
923         .fifo_size = PINEVIEW_CURSOR_FIFO,
924         .max_wm = PINEVIEW_CURSOR_MAX_WM,
925         .default_wm = PINEVIEW_CURSOR_DFT_WM,
926         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
927         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
928 };
929 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
930         .fifo_size = PINEVIEW_CURSOR_FIFO,
931         .max_wm = PINEVIEW_CURSOR_MAX_WM,
932         .default_wm = PINEVIEW_CURSOR_DFT_WM,
933         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
934         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
935 };
936 static const struct intel_watermark_params g4x_wm_info = {
937         .fifo_size = G4X_FIFO_SIZE,
938         .max_wm = G4X_MAX_WM,
939         .default_wm = G4X_MAX_WM,
940         .guard_size = 2,
941         .cacheline_size = G4X_FIFO_LINE_SIZE,
942 };
943 static const struct intel_watermark_params g4x_cursor_wm_info = {
944         .fifo_size = I965_CURSOR_FIFO,
945         .max_wm = I965_CURSOR_MAX_WM,
946         .default_wm = I965_CURSOR_DFT_WM,
947         .guard_size = 2,
948         .cacheline_size = G4X_FIFO_LINE_SIZE,
949 };
950 static const struct intel_watermark_params valleyview_wm_info = {
951         .fifo_size = VALLEYVIEW_FIFO_SIZE,
952         .max_wm = VALLEYVIEW_MAX_WM,
953         .default_wm = VALLEYVIEW_MAX_WM,
954         .guard_size = 2,
955         .cacheline_size = G4X_FIFO_LINE_SIZE,
956 };
957 static const struct intel_watermark_params valleyview_cursor_wm_info = {
958         .fifo_size = I965_CURSOR_FIFO,
959         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
960         .default_wm = I965_CURSOR_DFT_WM,
961         .guard_size = 2,
962         .cacheline_size = G4X_FIFO_LINE_SIZE,
963 };
964 static const struct intel_watermark_params i965_cursor_wm_info = {
965         .fifo_size = I965_CURSOR_FIFO,
966         .max_wm = I965_CURSOR_MAX_WM,
967         .default_wm = I965_CURSOR_DFT_WM,
968         .guard_size = 2,
969         .cacheline_size = I915_FIFO_LINE_SIZE,
970 };
971 static const struct intel_watermark_params i945_wm_info = {
972         .fifo_size = I945_FIFO_SIZE,
973         .max_wm = I915_MAX_WM,
974         .default_wm = 1,
975         .guard_size = 2,
976         .cacheline_size = I915_FIFO_LINE_SIZE,
977 };
978 static const struct intel_watermark_params i915_wm_info = {
979         .fifo_size = I915_FIFO_SIZE,
980         .max_wm = I915_MAX_WM,
981         .default_wm = 1,
982         .guard_size = 2,
983         .cacheline_size = I915_FIFO_LINE_SIZE,
984 };
985 static const struct intel_watermark_params i830_wm_info = {
986         .fifo_size = I855GM_FIFO_SIZE,
987         .max_wm = I915_MAX_WM,
988         .default_wm = 1,
989         .guard_size = 2,
990         .cacheline_size = I830_FIFO_LINE_SIZE,
991 };
992 static const struct intel_watermark_params i845_wm_info = {
993         .fifo_size = I830_FIFO_SIZE,
994         .max_wm = I915_MAX_WM,
995         .default_wm = 1,
996         .guard_size = 2,
997         .cacheline_size = I830_FIFO_LINE_SIZE,
998 };
999
1000 /**
1001  * intel_calculate_wm - calculate watermark level
1002  * @clock_in_khz: pixel clock
1003  * @wm: chip FIFO params
1004  * @pixel_size: display pixel size
1005  * @latency_ns: memory latency for the platform
1006  *
1007  * Calculate the watermark level (the level at which the display plane will
1008  * start fetching from memory again).  Each chip has a different display
1009  * FIFO size and allocation, so the caller needs to figure that out and pass
1010  * in the correct intel_watermark_params structure.
1011  *
1012  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1013  * on the pixel size.  When it reaches the watermark level, it'll start
1014  * fetching FIFO line sized based chunks from memory until the FIFO fills
1015  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1016  * will occur, and a display engine hang could result.
1017  */
1018 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1019                                         const struct intel_watermark_params *wm,
1020                                         int fifo_size,
1021                                         int pixel_size,
1022                                         unsigned long latency_ns)
1023 {
1024         long entries_required, wm_size;
1025
1026         /*
1027          * Note: we need to make sure we don't overflow for various clock &
1028          * latency values.
1029          * clocks go from a few thousand to several hundred thousand.
1030          * latency is usually a few thousand
1031          */
1032         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1033                 1000;
1034         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1035
1036         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1037
1038         wm_size = fifo_size - (entries_required + wm->guard_size);
1039
1040         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1041
1042         /* Don't promote wm_size to unsigned... */
1043         if (wm_size > (long)wm->max_wm)
1044                 wm_size = wm->max_wm;
1045         if (wm_size <= 0)
1046                 wm_size = wm->default_wm;
1047         return wm_size;
1048 }
1049
1050 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1051 {
1052         struct drm_crtc *crtc, *enabled = NULL;
1053
1054         for_each_crtc(dev, crtc) {
1055                 if (intel_crtc_active(crtc)) {
1056                         if (enabled)
1057                                 return NULL;
1058                         enabled = crtc;
1059                 }
1060         }
1061
1062         return enabled;
1063 }
1064
1065 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1066 {
1067         struct drm_device *dev = unused_crtc->dev;
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         struct drm_crtc *crtc;
1070         const struct cxsr_latency *latency;
1071         u32 reg;
1072         unsigned long wm;
1073
1074         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1075                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1076         if (!latency) {
1077                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1078                 intel_set_memory_cxsr(dev_priv, false);
1079                 return;
1080         }
1081
1082         crtc = single_enabled_crtc(dev);
1083         if (crtc) {
1084                 const struct drm_display_mode *adjusted_mode;
1085                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1086                 int clock;
1087
1088                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1089                 clock = adjusted_mode->crtc_clock;
1090
1091                 /* Display SR */
1092                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1093                                         pineview_display_wm.fifo_size,
1094                                         pixel_size, latency->display_sr);
1095                 reg = I915_READ(DSPFW1);
1096                 reg &= ~DSPFW_SR_MASK;
1097                 reg |= wm << DSPFW_SR_SHIFT;
1098                 I915_WRITE(DSPFW1, reg);
1099                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1100
1101                 /* cursor SR */
1102                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1103                                         pineview_display_wm.fifo_size,
1104                                         pixel_size, latency->cursor_sr);
1105                 reg = I915_READ(DSPFW3);
1106                 reg &= ~DSPFW_CURSOR_SR_MASK;
1107                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1108                 I915_WRITE(DSPFW3, reg);
1109
1110                 /* Display HPLL off SR */
1111                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1112                                         pineview_display_hplloff_wm.fifo_size,
1113                                         pixel_size, latency->display_hpll_disable);
1114                 reg = I915_READ(DSPFW3);
1115                 reg &= ~DSPFW_HPLL_SR_MASK;
1116                 reg |= wm & DSPFW_HPLL_SR_MASK;
1117                 I915_WRITE(DSPFW3, reg);
1118
1119                 /* cursor HPLL off SR */
1120                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1121                                         pineview_display_hplloff_wm.fifo_size,
1122                                         pixel_size, latency->cursor_hpll_disable);
1123                 reg = I915_READ(DSPFW3);
1124                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1125                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1126                 I915_WRITE(DSPFW3, reg);
1127                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1128
1129                 intel_set_memory_cxsr(dev_priv, true);
1130         } else {
1131                 intel_set_memory_cxsr(dev_priv, false);
1132         }
1133 }
1134
1135 static bool g4x_compute_wm0(struct drm_device *dev,
1136                             int plane,
1137                             const struct intel_watermark_params *display,
1138                             int display_latency_ns,
1139                             const struct intel_watermark_params *cursor,
1140                             int cursor_latency_ns,
1141                             int *plane_wm,
1142                             int *cursor_wm)
1143 {
1144         struct drm_crtc *crtc;
1145         const struct drm_display_mode *adjusted_mode;
1146         int htotal, hdisplay, clock, pixel_size;
1147         int line_time_us, line_count;
1148         int entries, tlb_miss;
1149
1150         crtc = intel_get_crtc_for_plane(dev, plane);
1151         if (!intel_crtc_active(crtc)) {
1152                 *cursor_wm = cursor->guard_size;
1153                 *plane_wm = display->guard_size;
1154                 return false;
1155         }
1156
1157         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1158         clock = adjusted_mode->crtc_clock;
1159         htotal = adjusted_mode->crtc_htotal;
1160         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1161         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1162
1163         /* Use the small buffer method to calculate plane watermark */
1164         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1165         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1166         if (tlb_miss > 0)
1167                 entries += tlb_miss;
1168         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1169         *plane_wm = entries + display->guard_size;
1170         if (*plane_wm > (int)display->max_wm)
1171                 *plane_wm = display->max_wm;
1172
1173         /* Use the large buffer method to calculate cursor watermark */
1174         line_time_us = max(htotal * 1000 / clock, 1);
1175         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1176         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1177         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1178         if (tlb_miss > 0)
1179                 entries += tlb_miss;
1180         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1181         *cursor_wm = entries + cursor->guard_size;
1182         if (*cursor_wm > (int)cursor->max_wm)
1183                 *cursor_wm = (int)cursor->max_wm;
1184
1185         return true;
1186 }
1187
1188 /*
1189  * Check the wm result.
1190  *
1191  * If any calculated watermark values is larger than the maximum value that
1192  * can be programmed into the associated watermark register, that watermark
1193  * must be disabled.
1194  */
1195 static bool g4x_check_srwm(struct drm_device *dev,
1196                            int display_wm, int cursor_wm,
1197                            const struct intel_watermark_params *display,
1198                            const struct intel_watermark_params *cursor)
1199 {
1200         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1201                       display_wm, cursor_wm);
1202
1203         if (display_wm > display->max_wm) {
1204                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1205                               display_wm, display->max_wm);
1206                 return false;
1207         }
1208
1209         if (cursor_wm > cursor->max_wm) {
1210                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1211                               cursor_wm, cursor->max_wm);
1212                 return false;
1213         }
1214
1215         if (!(display_wm || cursor_wm)) {
1216                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1217                 return false;
1218         }
1219
1220         return true;
1221 }
1222
1223 static bool g4x_compute_srwm(struct drm_device *dev,
1224                              int plane,
1225                              int latency_ns,
1226                              const struct intel_watermark_params *display,
1227                              const struct intel_watermark_params *cursor,
1228                              int *display_wm, int *cursor_wm)
1229 {
1230         struct drm_crtc *crtc;
1231         const struct drm_display_mode *adjusted_mode;
1232         int hdisplay, htotal, pixel_size, clock;
1233         unsigned long line_time_us;
1234         int line_count, line_size;
1235         int small, large;
1236         int entries;
1237
1238         if (!latency_ns) {
1239                 *display_wm = *cursor_wm = 0;
1240                 return false;
1241         }
1242
1243         crtc = intel_get_crtc_for_plane(dev, plane);
1244         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1245         clock = adjusted_mode->crtc_clock;
1246         htotal = adjusted_mode->crtc_htotal;
1247         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1248         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1249
1250         line_time_us = max(htotal * 1000 / clock, 1);
1251         line_count = (latency_ns / line_time_us + 1000) / 1000;
1252         line_size = hdisplay * pixel_size;
1253
1254         /* Use the minimum of the small and large buffer method for primary */
1255         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1256         large = line_count * line_size;
1257
1258         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1259         *display_wm = entries + display->guard_size;
1260
1261         /* calculate the self-refresh watermark for display cursor */
1262         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1263         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1264         *cursor_wm = entries + cursor->guard_size;
1265
1266         return g4x_check_srwm(dev,
1267                               *display_wm, *cursor_wm,
1268                               display, cursor);
1269 }
1270
1271 static bool vlv_compute_drain_latency(struct drm_device *dev,
1272                                      int plane,
1273                                      int *plane_prec_mult,
1274                                      int *plane_dl,
1275                                      int *cursor_prec_mult,
1276                                      int *cursor_dl)
1277 {
1278         struct drm_crtc *crtc;
1279         int clock, pixel_size;
1280         int entries;
1281
1282         crtc = intel_get_crtc_for_plane(dev, plane);
1283         if (!intel_crtc_active(crtc))
1284                 return false;
1285
1286         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1287         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1288
1289         entries = (clock / 1000) * pixel_size;
1290         *plane_prec_mult = (entries > 256) ?
1291                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1292         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1293                                                      pixel_size);
1294
1295         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1296         *cursor_prec_mult = (entries > 256) ?
1297                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1298         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1299
1300         return true;
1301 }
1302
1303 /*
1304  * Update drain latency registers of memory arbiter
1305  *
1306  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1307  * to be programmed. Each plane has a drain latency multiplier and a drain
1308  * latency value.
1309  */
1310
1311 static void vlv_update_drain_latency(struct drm_device *dev)
1312 {
1313         struct drm_i915_private *dev_priv = dev->dev_private;
1314         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1315         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1316         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1317                                                         either 16 or 32 */
1318
1319         /* For plane A, Cursor A */
1320         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1321                                       &cursor_prec_mult, &cursora_dl)) {
1322                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1323                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1324                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1325                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1326
1327                 I915_WRITE(VLV_DDL1, cursora_prec |
1328                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1329                                 planea_prec | planea_dl);
1330         }
1331
1332         /* For plane B, Cursor B */
1333         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1334                                       &cursor_prec_mult, &cursorb_dl)) {
1335                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1336                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1337                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1338                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1339
1340                 I915_WRITE(VLV_DDL2, cursorb_prec |
1341                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1342                                 planeb_prec | planeb_dl);
1343         }
1344 }
1345
1346 #define single_plane_enabled(mask) is_power_of_2(mask)
1347
1348 static void valleyview_update_wm(struct drm_crtc *crtc)
1349 {
1350         struct drm_device *dev = crtc->dev;
1351         static const int sr_latency_ns = 12000;
1352         struct drm_i915_private *dev_priv = dev->dev_private;
1353         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1354         int plane_sr, cursor_sr;
1355         int ignore_plane_sr, ignore_cursor_sr;
1356         unsigned int enabled = 0;
1357         bool cxsr_enabled;
1358
1359         vlv_update_drain_latency(dev);
1360
1361         if (g4x_compute_wm0(dev, PIPE_A,
1362                             &valleyview_wm_info, latency_ns,
1363                             &valleyview_cursor_wm_info, latency_ns,
1364                             &planea_wm, &cursora_wm))
1365                 enabled |= 1 << PIPE_A;
1366
1367         if (g4x_compute_wm0(dev, PIPE_B,
1368                             &valleyview_wm_info, latency_ns,
1369                             &valleyview_cursor_wm_info, latency_ns,
1370                             &planeb_wm, &cursorb_wm))
1371                 enabled |= 1 << PIPE_B;
1372
1373         if (single_plane_enabled(enabled) &&
1374             g4x_compute_srwm(dev, ffs(enabled) - 1,
1375                              sr_latency_ns,
1376                              &valleyview_wm_info,
1377                              &valleyview_cursor_wm_info,
1378                              &plane_sr, &ignore_cursor_sr) &&
1379             g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                              2*sr_latency_ns,
1381                              &valleyview_wm_info,
1382                              &valleyview_cursor_wm_info,
1383                              &ignore_plane_sr, &cursor_sr)) {
1384                 cxsr_enabled = true;
1385         } else {
1386                 cxsr_enabled = false;
1387                 intel_set_memory_cxsr(dev_priv, false);
1388                 plane_sr = cursor_sr = 0;
1389         }
1390
1391         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392                       planea_wm, cursora_wm,
1393                       planeb_wm, cursorb_wm,
1394                       plane_sr, cursor_sr);
1395
1396         I915_WRITE(DSPFW1,
1397                    (plane_sr << DSPFW_SR_SHIFT) |
1398                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1399                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1400                    planea_wm);
1401         I915_WRITE(DSPFW2,
1402                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1403                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1404         I915_WRITE(DSPFW3,
1405                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1406                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1407
1408         if (cxsr_enabled)
1409                 intel_set_memory_cxsr(dev_priv, true);
1410 }
1411
1412 static void g4x_update_wm(struct drm_crtc *crtc)
1413 {
1414         struct drm_device *dev = crtc->dev;
1415         static const int sr_latency_ns = 12000;
1416         struct drm_i915_private *dev_priv = dev->dev_private;
1417         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1418         int plane_sr, cursor_sr;
1419         unsigned int enabled = 0;
1420         bool cxsr_enabled;
1421
1422         if (g4x_compute_wm0(dev, PIPE_A,
1423                             &g4x_wm_info, latency_ns,
1424                             &g4x_cursor_wm_info, latency_ns,
1425                             &planea_wm, &cursora_wm))
1426                 enabled |= 1 << PIPE_A;
1427
1428         if (g4x_compute_wm0(dev, PIPE_B,
1429                             &g4x_wm_info, latency_ns,
1430                             &g4x_cursor_wm_info, latency_ns,
1431                             &planeb_wm, &cursorb_wm))
1432                 enabled |= 1 << PIPE_B;
1433
1434         if (single_plane_enabled(enabled) &&
1435             g4x_compute_srwm(dev, ffs(enabled) - 1,
1436                              sr_latency_ns,
1437                              &g4x_wm_info,
1438                              &g4x_cursor_wm_info,
1439                              &plane_sr, &cursor_sr)) {
1440                 cxsr_enabled = true;
1441         } else {
1442                 cxsr_enabled = false;
1443                 intel_set_memory_cxsr(dev_priv, false);
1444                 plane_sr = cursor_sr = 0;
1445         }
1446
1447         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1448                       planea_wm, cursora_wm,
1449                       planeb_wm, cursorb_wm,
1450                       plane_sr, cursor_sr);
1451
1452         I915_WRITE(DSPFW1,
1453                    (plane_sr << DSPFW_SR_SHIFT) |
1454                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1455                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1456                    planea_wm);
1457         I915_WRITE(DSPFW2,
1458                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1459                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1460         /* HPLL off in SR has some issues on G4x... disable it */
1461         I915_WRITE(DSPFW3,
1462                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1463                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1464
1465         if (cxsr_enabled)
1466                 intel_set_memory_cxsr(dev_priv, true);
1467 }
1468
1469 static void i965_update_wm(struct drm_crtc *unused_crtc)
1470 {
1471         struct drm_device *dev = unused_crtc->dev;
1472         struct drm_i915_private *dev_priv = dev->dev_private;
1473         struct drm_crtc *crtc;
1474         int srwm = 1;
1475         int cursor_sr = 16;
1476         bool cxsr_enabled;
1477
1478         /* Calc sr entries for one plane configs */
1479         crtc = single_enabled_crtc(dev);
1480         if (crtc) {
1481                 /* self-refresh has much higher latency */
1482                 static const int sr_latency_ns = 12000;
1483                 const struct drm_display_mode *adjusted_mode =
1484                         &to_intel_crtc(crtc)->config.adjusted_mode;
1485                 int clock = adjusted_mode->crtc_clock;
1486                 int htotal = adjusted_mode->crtc_htotal;
1487                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1488                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1489                 unsigned long line_time_us;
1490                 int entries;
1491
1492                 line_time_us = max(htotal * 1000 / clock, 1);
1493
1494                 /* Use ns/us then divide to preserve precision */
1495                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1496                         pixel_size * hdisplay;
1497                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1498                 srwm = I965_FIFO_SIZE - entries;
1499                 if (srwm < 0)
1500                         srwm = 1;
1501                 srwm &= 0x1ff;
1502                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1503                               entries, srwm);
1504
1505                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1506                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1507                 entries = DIV_ROUND_UP(entries,
1508                                           i965_cursor_wm_info.cacheline_size);
1509                 cursor_sr = i965_cursor_wm_info.fifo_size -
1510                         (entries + i965_cursor_wm_info.guard_size);
1511
1512                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1513                         cursor_sr = i965_cursor_wm_info.max_wm;
1514
1515                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1516                               "cursor %d\n", srwm, cursor_sr);
1517
1518                 cxsr_enabled = true;
1519         } else {
1520                 cxsr_enabled = false;
1521                 /* Turn off self refresh if both pipes are enabled */
1522                 intel_set_memory_cxsr(dev_priv, false);
1523         }
1524
1525         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1526                       srwm);
1527
1528         /* 965 has limitations... */
1529         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1530                    (8 << 16) | (8 << 8) | (8 << 0));
1531         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1532         /* update cursor SR watermark */
1533         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1534
1535         if (cxsr_enabled)
1536                 intel_set_memory_cxsr(dev_priv, true);
1537 }
1538
1539 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1540 {
1541         struct drm_device *dev = unused_crtc->dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         const struct intel_watermark_params *wm_info;
1544         uint32_t fwater_lo;
1545         uint32_t fwater_hi;
1546         int cwm, srwm = 1;
1547         int fifo_size;
1548         int planea_wm, planeb_wm;
1549         struct drm_crtc *crtc, *enabled = NULL;
1550
1551         if (IS_I945GM(dev))
1552                 wm_info = &i945_wm_info;
1553         else if (!IS_GEN2(dev))
1554                 wm_info = &i915_wm_info;
1555         else
1556                 wm_info = &i830_wm_info;
1557
1558         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1559         crtc = intel_get_crtc_for_plane(dev, 0);
1560         if (intel_crtc_active(crtc)) {
1561                 const struct drm_display_mode *adjusted_mode;
1562                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1563                 if (IS_GEN2(dev))
1564                         cpp = 4;
1565
1566                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1567                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568                                                wm_info, fifo_size, cpp,
1569                                                latency_ns);
1570                 enabled = crtc;
1571         } else
1572                 planea_wm = fifo_size - wm_info->guard_size;
1573
1574         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1575         crtc = intel_get_crtc_for_plane(dev, 1);
1576         if (intel_crtc_active(crtc)) {
1577                 const struct drm_display_mode *adjusted_mode;
1578                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1579                 if (IS_GEN2(dev))
1580                         cpp = 4;
1581
1582                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1583                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1584                                                wm_info, fifo_size, cpp,
1585                                                latency_ns);
1586                 if (enabled == NULL)
1587                         enabled = crtc;
1588                 else
1589                         enabled = NULL;
1590         } else
1591                 planeb_wm = fifo_size - wm_info->guard_size;
1592
1593         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1594
1595         if (IS_I915GM(dev) && enabled) {
1596                 struct drm_i915_gem_object *obj;
1597
1598                 obj = intel_fb_obj(enabled->primary->fb);
1599
1600                 /* self-refresh seems busted with untiled */
1601                 if (obj->tiling_mode == I915_TILING_NONE)
1602                         enabled = NULL;
1603         }
1604
1605         /*
1606          * Overlay gets an aggressive default since video jitter is bad.
1607          */
1608         cwm = 2;
1609
1610         /* Play safe and disable self-refresh before adjusting watermarks. */
1611         intel_set_memory_cxsr(dev_priv, false);
1612
1613         /* Calc sr entries for one plane configs */
1614         if (HAS_FW_BLC(dev) && enabled) {
1615                 /* self-refresh has much higher latency */
1616                 static const int sr_latency_ns = 6000;
1617                 const struct drm_display_mode *adjusted_mode =
1618                         &to_intel_crtc(enabled)->config.adjusted_mode;
1619                 int clock = adjusted_mode->crtc_clock;
1620                 int htotal = adjusted_mode->crtc_htotal;
1621                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1622                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1623                 unsigned long line_time_us;
1624                 int entries;
1625
1626                 line_time_us = max(htotal * 1000 / clock, 1);
1627
1628                 /* Use ns/us then divide to preserve precision */
1629                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1630                         pixel_size * hdisplay;
1631                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1632                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1633                 srwm = wm_info->fifo_size - entries;
1634                 if (srwm < 0)
1635                         srwm = 1;
1636
1637                 if (IS_I945G(dev) || IS_I945GM(dev))
1638                         I915_WRITE(FW_BLC_SELF,
1639                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1640                 else if (IS_I915GM(dev))
1641                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1642         }
1643
1644         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1645                       planea_wm, planeb_wm, cwm, srwm);
1646
1647         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1648         fwater_hi = (cwm & 0x1f);
1649
1650         /* Set request length to 8 cachelines per fetch */
1651         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1652         fwater_hi = fwater_hi | (1 << 8);
1653
1654         I915_WRITE(FW_BLC, fwater_lo);
1655         I915_WRITE(FW_BLC2, fwater_hi);
1656
1657         if (enabled)
1658                 intel_set_memory_cxsr(dev_priv, true);
1659 }
1660
1661 static void i845_update_wm(struct drm_crtc *unused_crtc)
1662 {
1663         struct drm_device *dev = unused_crtc->dev;
1664         struct drm_i915_private *dev_priv = dev->dev_private;
1665         struct drm_crtc *crtc;
1666         const struct drm_display_mode *adjusted_mode;
1667         uint32_t fwater_lo;
1668         int planea_wm;
1669
1670         crtc = single_enabled_crtc(dev);
1671         if (crtc == NULL)
1672                 return;
1673
1674         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1675         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1676                                        &i845_wm_info,
1677                                        dev_priv->display.get_fifo_size(dev, 0),
1678                                        4, latency_ns);
1679         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1680         fwater_lo |= (3<<8) | planea_wm;
1681
1682         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1683
1684         I915_WRITE(FW_BLC, fwater_lo);
1685 }
1686
1687 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1688                                     struct drm_crtc *crtc)
1689 {
1690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1691         uint32_t pixel_rate;
1692
1693         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1694
1695         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1696          * adjust the pixel_rate here. */
1697
1698         if (intel_crtc->config.pch_pfit.enabled) {
1699                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1700                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1701
1702                 pipe_w = intel_crtc->config.pipe_src_w;
1703                 pipe_h = intel_crtc->config.pipe_src_h;
1704                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1705                 pfit_h = pfit_size & 0xFFFF;
1706                 if (pipe_w < pfit_w)
1707                         pipe_w = pfit_w;
1708                 if (pipe_h < pfit_h)
1709                         pipe_h = pfit_h;
1710
1711                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1712                                      pfit_w * pfit_h);
1713         }
1714
1715         return pixel_rate;
1716 }
1717
1718 /* latency must be in 0.1us units. */
1719 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1720                                uint32_t latency)
1721 {
1722         uint64_t ret;
1723
1724         if (WARN(latency == 0, "Latency value missing\n"))
1725                 return UINT_MAX;
1726
1727         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1728         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1729
1730         return ret;
1731 }
1732
1733 /* latency must be in 0.1us units. */
1734 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1735                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1736                                uint32_t latency)
1737 {
1738         uint32_t ret;
1739
1740         if (WARN(latency == 0, "Latency value missing\n"))
1741                 return UINT_MAX;
1742
1743         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1744         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1745         ret = DIV_ROUND_UP(ret, 64) + 2;
1746         return ret;
1747 }
1748
1749 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1750                            uint8_t bytes_per_pixel)
1751 {
1752         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1753 }
1754
1755 struct ilk_pipe_wm_parameters {
1756         bool active;
1757         uint32_t pipe_htotal;
1758         uint32_t pixel_rate;
1759         struct intel_plane_wm_parameters pri;
1760         struct intel_plane_wm_parameters spr;
1761         struct intel_plane_wm_parameters cur;
1762 };
1763
1764 struct ilk_wm_maximums {
1765         uint16_t pri;
1766         uint16_t spr;
1767         uint16_t cur;
1768         uint16_t fbc;
1769 };
1770
1771 /* used in computing the new watermarks state */
1772 struct intel_wm_config {
1773         unsigned int num_pipes_active;
1774         bool sprites_enabled;
1775         bool sprites_scaled;
1776 };
1777
1778 /*
1779  * For both WM_PIPE and WM_LP.
1780  * mem_value must be in 0.1us units.
1781  */
1782 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1783                                    uint32_t mem_value,
1784                                    bool is_lp)
1785 {
1786         uint32_t method1, method2;
1787
1788         if (!params->active || !params->pri.enabled)
1789                 return 0;
1790
1791         method1 = ilk_wm_method1(params->pixel_rate,
1792                                  params->pri.bytes_per_pixel,
1793                                  mem_value);
1794
1795         if (!is_lp)
1796                 return method1;
1797
1798         method2 = ilk_wm_method2(params->pixel_rate,
1799                                  params->pipe_htotal,
1800                                  params->pri.horiz_pixels,
1801                                  params->pri.bytes_per_pixel,
1802                                  mem_value);
1803
1804         return min(method1, method2);
1805 }
1806
1807 /*
1808  * For both WM_PIPE and WM_LP.
1809  * mem_value must be in 0.1us units.
1810  */
1811 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1812                                    uint32_t mem_value)
1813 {
1814         uint32_t method1, method2;
1815
1816         if (!params->active || !params->spr.enabled)
1817                 return 0;
1818
1819         method1 = ilk_wm_method1(params->pixel_rate,
1820                                  params->spr.bytes_per_pixel,
1821                                  mem_value);
1822         method2 = ilk_wm_method2(params->pixel_rate,
1823                                  params->pipe_htotal,
1824                                  params->spr.horiz_pixels,
1825                                  params->spr.bytes_per_pixel,
1826                                  mem_value);
1827         return min(method1, method2);
1828 }
1829
1830 /*
1831  * For both WM_PIPE and WM_LP.
1832  * mem_value must be in 0.1us units.
1833  */
1834 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1835                                    uint32_t mem_value)
1836 {
1837         if (!params->active || !params->cur.enabled)
1838                 return 0;
1839
1840         return ilk_wm_method2(params->pixel_rate,
1841                               params->pipe_htotal,
1842                               params->cur.horiz_pixels,
1843                               params->cur.bytes_per_pixel,
1844                               mem_value);
1845 }
1846
1847 /* Only for WM_LP. */
1848 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1849                                    uint32_t pri_val)
1850 {
1851         if (!params->active || !params->pri.enabled)
1852                 return 0;
1853
1854         return ilk_wm_fbc(pri_val,
1855                           params->pri.horiz_pixels,
1856                           params->pri.bytes_per_pixel);
1857 }
1858
1859 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1860 {
1861         if (INTEL_INFO(dev)->gen >= 8)
1862                 return 3072;
1863         else if (INTEL_INFO(dev)->gen >= 7)
1864                 return 768;
1865         else
1866                 return 512;
1867 }
1868
1869 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1870                                          int level, bool is_sprite)
1871 {
1872         if (INTEL_INFO(dev)->gen >= 8)
1873                 /* BDW primary/sprite plane watermarks */
1874                 return level == 0 ? 255 : 2047;
1875         else if (INTEL_INFO(dev)->gen >= 7)
1876                 /* IVB/HSW primary/sprite plane watermarks */
1877                 return level == 0 ? 127 : 1023;
1878         else if (!is_sprite)
1879                 /* ILK/SNB primary plane watermarks */
1880                 return level == 0 ? 127 : 511;
1881         else
1882                 /* ILK/SNB sprite plane watermarks */
1883                 return level == 0 ? 63 : 255;
1884 }
1885
1886 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1887                                           int level)
1888 {
1889         if (INTEL_INFO(dev)->gen >= 7)
1890                 return level == 0 ? 63 : 255;
1891         else
1892                 return level == 0 ? 31 : 63;
1893 }
1894
1895 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1896 {
1897         if (INTEL_INFO(dev)->gen >= 8)
1898                 return 31;
1899         else
1900                 return 15;
1901 }
1902
1903 /* Calculate the maximum primary/sprite plane watermark */
1904 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1905                                      int level,
1906                                      const struct intel_wm_config *config,
1907                                      enum intel_ddb_partitioning ddb_partitioning,
1908                                      bool is_sprite)
1909 {
1910         unsigned int fifo_size = ilk_display_fifo_size(dev);
1911
1912         /* if sprites aren't enabled, sprites get nothing */
1913         if (is_sprite && !config->sprites_enabled)
1914                 return 0;
1915
1916         /* HSW allows LP1+ watermarks even with multiple pipes */
1917         if (level == 0 || config->num_pipes_active > 1) {
1918                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1919
1920                 /*
1921                  * For some reason the non self refresh
1922                  * FIFO size is only half of the self
1923                  * refresh FIFO size on ILK/SNB.
1924                  */
1925                 if (INTEL_INFO(dev)->gen <= 6)
1926                         fifo_size /= 2;
1927         }
1928
1929         if (config->sprites_enabled) {
1930                 /* level 0 is always calculated with 1:1 split */
1931                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1932                         if (is_sprite)
1933                                 fifo_size *= 5;
1934                         fifo_size /= 6;
1935                 } else {
1936                         fifo_size /= 2;
1937                 }
1938         }
1939
1940         /* clamp to max that the registers can hold */
1941         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1942 }
1943
1944 /* Calculate the maximum cursor plane watermark */
1945 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1946                                       int level,
1947                                       const struct intel_wm_config *config)
1948 {
1949         /* HSW LP1+ watermarks w/ multiple pipes */
1950         if (level > 0 && config->num_pipes_active > 1)
1951                 return 64;
1952
1953         /* otherwise just report max that registers can hold */
1954         return ilk_cursor_wm_reg_max(dev, level);
1955 }
1956
1957 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1958                                     int level,
1959                                     const struct intel_wm_config *config,
1960                                     enum intel_ddb_partitioning ddb_partitioning,
1961                                     struct ilk_wm_maximums *max)
1962 {
1963         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1964         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1965         max->cur = ilk_cursor_wm_max(dev, level, config);
1966         max->fbc = ilk_fbc_wm_reg_max(dev);
1967 }
1968
1969 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1970                                         int level,
1971                                         struct ilk_wm_maximums *max)
1972 {
1973         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1974         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1975         max->cur = ilk_cursor_wm_reg_max(dev, level);
1976         max->fbc = ilk_fbc_wm_reg_max(dev);
1977 }
1978
1979 static bool ilk_validate_wm_level(int level,
1980                                   const struct ilk_wm_maximums *max,
1981                                   struct intel_wm_level *result)
1982 {
1983         bool ret;
1984
1985         /* already determined to be invalid? */
1986         if (!result->enable)
1987                 return false;
1988
1989         result->enable = result->pri_val <= max->pri &&
1990                          result->spr_val <= max->spr &&
1991                          result->cur_val <= max->cur;
1992
1993         ret = result->enable;
1994
1995         /*
1996          * HACK until we can pre-compute everything,
1997          * and thus fail gracefully if LP0 watermarks
1998          * are exceeded...
1999          */
2000         if (level == 0 && !result->enable) {
2001                 if (result->pri_val > max->pri)
2002                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2003                                       level, result->pri_val, max->pri);
2004                 if (result->spr_val > max->spr)
2005                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2006                                       level, result->spr_val, max->spr);
2007                 if (result->cur_val > max->cur)
2008                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2009                                       level, result->cur_val, max->cur);
2010
2011                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2012                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2013                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2014                 result->enable = true;
2015         }
2016
2017         return ret;
2018 }
2019
2020 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2021                                  int level,
2022                                  const struct ilk_pipe_wm_parameters *p,
2023                                  struct intel_wm_level *result)
2024 {
2025         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2026         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2027         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2028
2029         /* WM1+ latency values stored in 0.5us units */
2030         if (level > 0) {
2031                 pri_latency *= 5;
2032                 spr_latency *= 5;
2033                 cur_latency *= 5;
2034         }
2035
2036         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2037         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2038         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2039         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2040         result->enable = true;
2041 }
2042
2043 static uint32_t
2044 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2045 {
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2048         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2049         u32 linetime, ips_linetime;
2050
2051         if (!intel_crtc_active(crtc))
2052                 return 0;
2053
2054         /* The WM are computed with base on how long it takes to fill a single
2055          * row at the given clock rate, multiplied by 8.
2056          * */
2057         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2058                                      mode->crtc_clock);
2059         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2060                                          intel_ddi_get_cdclk_freq(dev_priv));
2061
2062         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2063                PIPE_WM_LINETIME_TIME(linetime);
2064 }
2065
2066 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2067 {
2068         struct drm_i915_private *dev_priv = dev->dev_private;
2069
2070         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2071                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2072
2073                 wm[0] = (sskpd >> 56) & 0xFF;
2074                 if (wm[0] == 0)
2075                         wm[0] = sskpd & 0xF;
2076                 wm[1] = (sskpd >> 4) & 0xFF;
2077                 wm[2] = (sskpd >> 12) & 0xFF;
2078                 wm[3] = (sskpd >> 20) & 0x1FF;
2079                 wm[4] = (sskpd >> 32) & 0x1FF;
2080         } else if (INTEL_INFO(dev)->gen >= 6) {
2081                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2082
2083                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2084                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2085                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2086                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2087         } else if (INTEL_INFO(dev)->gen >= 5) {
2088                 uint32_t mltr = I915_READ(MLTR_ILK);
2089
2090                 /* ILK primary LP0 latency is 700 ns */
2091                 wm[0] = 7;
2092                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2093                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2094         }
2095 }
2096
2097 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2098 {
2099         /* ILK sprite LP0 latency is 1300 ns */
2100         if (INTEL_INFO(dev)->gen == 5)
2101                 wm[0] = 13;
2102 }
2103
2104 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2105 {
2106         /* ILK cursor LP0 latency is 1300 ns */
2107         if (INTEL_INFO(dev)->gen == 5)
2108                 wm[0] = 13;
2109
2110         /* WaDoubleCursorLP3Latency:ivb */
2111         if (IS_IVYBRIDGE(dev))
2112                 wm[3] *= 2;
2113 }
2114
2115 int ilk_wm_max_level(const struct drm_device *dev)
2116 {
2117         /* how many WM levels are we expecting */
2118         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2119                 return 4;
2120         else if (INTEL_INFO(dev)->gen >= 6)
2121                 return 3;
2122         else
2123                 return 2;
2124 }
2125
2126 static void intel_print_wm_latency(struct drm_device *dev,
2127                                    const char *name,
2128                                    const uint16_t wm[5])
2129 {
2130         int level, max_level = ilk_wm_max_level(dev);
2131
2132         for (level = 0; level <= max_level; level++) {
2133                 unsigned int latency = wm[level];
2134
2135                 if (latency == 0) {
2136                         DRM_ERROR("%s WM%d latency not provided\n",
2137                                   name, level);
2138                         continue;
2139                 }
2140
2141                 /* WM1+ latency values in 0.5us units */
2142                 if (level > 0)
2143                         latency *= 5;
2144
2145                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2146                               name, level, wm[level],
2147                               latency / 10, latency % 10);
2148         }
2149 }
2150
2151 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2152                                     uint16_t wm[5], uint16_t min)
2153 {
2154         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2155
2156         if (wm[0] >= min)
2157                 return false;
2158
2159         wm[0] = max(wm[0], min);
2160         for (level = 1; level <= max_level; level++)
2161                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2162
2163         return true;
2164 }
2165
2166 static void snb_wm_latency_quirk(struct drm_device *dev)
2167 {
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169         bool changed;
2170
2171         /*
2172          * The BIOS provided WM memory latency values are often
2173          * inadequate for high resolution displays. Adjust them.
2174          */
2175         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2176                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2177                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2178
2179         if (!changed)
2180                 return;
2181
2182         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2183         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2184         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2185         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2186 }
2187
2188 static void ilk_setup_wm_latency(struct drm_device *dev)
2189 {
2190         struct drm_i915_private *dev_priv = dev->dev_private;
2191
2192         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2193
2194         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2195                sizeof(dev_priv->wm.pri_latency));
2196         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2197                sizeof(dev_priv->wm.pri_latency));
2198
2199         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2200         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2201
2202         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2203         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2204         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2205
2206         if (IS_GEN6(dev))
2207                 snb_wm_latency_quirk(dev);
2208 }
2209
2210 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2211                                       struct ilk_pipe_wm_parameters *p)
2212 {
2213         struct drm_device *dev = crtc->dev;
2214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2215         enum pipe pipe = intel_crtc->pipe;
2216         struct drm_plane *plane;
2217
2218         if (!intel_crtc_active(crtc))
2219                 return;
2220
2221         p->active = true;
2222         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2223         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2224         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2225         p->cur.bytes_per_pixel = 4;
2226         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2227         p->cur.horiz_pixels = intel_crtc->cursor_width;
2228         /* TODO: for now, assume primary and cursor planes are always enabled. */
2229         p->pri.enabled = true;
2230         p->cur.enabled = true;
2231
2232         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2233                 struct intel_plane *intel_plane = to_intel_plane(plane);
2234
2235                 if (intel_plane->pipe == pipe) {
2236                         p->spr = intel_plane->wm;
2237                         break;
2238                 }
2239         }
2240 }
2241
2242 static void ilk_compute_wm_config(struct drm_device *dev,
2243                                   struct intel_wm_config *config)
2244 {
2245         struct intel_crtc *intel_crtc;
2246
2247         /* Compute the currently _active_ config */
2248         for_each_intel_crtc(dev, intel_crtc) {
2249                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2250
2251                 if (!wm->pipe_enabled)
2252                         continue;
2253
2254                 config->sprites_enabled |= wm->sprites_enabled;
2255                 config->sprites_scaled |= wm->sprites_scaled;
2256                 config->num_pipes_active++;
2257         }
2258 }
2259
2260 /* Compute new watermarks for the pipe */
2261 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2262                                   const struct ilk_pipe_wm_parameters *params,
2263                                   struct intel_pipe_wm *pipe_wm)
2264 {
2265         struct drm_device *dev = crtc->dev;
2266         const struct drm_i915_private *dev_priv = dev->dev_private;
2267         int level, max_level = ilk_wm_max_level(dev);
2268         /* LP0 watermark maximums depend on this pipe alone */
2269         struct intel_wm_config config = {
2270                 .num_pipes_active = 1,
2271                 .sprites_enabled = params->spr.enabled,
2272                 .sprites_scaled = params->spr.scaled,
2273         };
2274         struct ilk_wm_maximums max;
2275
2276         pipe_wm->pipe_enabled = params->active;
2277         pipe_wm->sprites_enabled = params->spr.enabled;
2278         pipe_wm->sprites_scaled = params->spr.scaled;
2279
2280         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2281         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2282                 max_level = 1;
2283
2284         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2285         if (params->spr.scaled)
2286                 max_level = 0;
2287
2288         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2289
2290         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2291                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2292
2293         /* LP0 watermarks always use 1/2 DDB partitioning */
2294         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2295
2296         /* At least LP0 must be valid */
2297         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2298                 return false;
2299
2300         ilk_compute_wm_reg_maximums(dev, 1, &max);
2301
2302         for (level = 1; level <= max_level; level++) {
2303                 struct intel_wm_level wm = {};
2304
2305                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2306
2307                 /*
2308                  * Disable any watermark level that exceeds the
2309                  * register maximums since such watermarks are
2310                  * always invalid.
2311                  */
2312                 if (!ilk_validate_wm_level(level, &max, &wm))
2313                         break;
2314
2315                 pipe_wm->wm[level] = wm;
2316         }
2317
2318         return true;
2319 }
2320
2321 /*
2322  * Merge the watermarks from all active pipes for a specific level.
2323  */
2324 static void ilk_merge_wm_level(struct drm_device *dev,
2325                                int level,
2326                                struct intel_wm_level *ret_wm)
2327 {
2328         const struct intel_crtc *intel_crtc;
2329
2330         ret_wm->enable = true;
2331
2332         for_each_intel_crtc(dev, intel_crtc) {
2333                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2334                 const struct intel_wm_level *wm = &active->wm[level];
2335
2336                 if (!active->pipe_enabled)
2337                         continue;
2338
2339                 /*
2340                  * The watermark values may have been used in the past,
2341                  * so we must maintain them in the registers for some
2342                  * time even if the level is now disabled.
2343                  */
2344                 if (!wm->enable)
2345                         ret_wm->enable = false;
2346
2347                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2348                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2349                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2350                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2351         }
2352 }
2353
2354 /*
2355  * Merge all low power watermarks for all active pipes.
2356  */
2357 static void ilk_wm_merge(struct drm_device *dev,
2358                          const struct intel_wm_config *config,
2359                          const struct ilk_wm_maximums *max,
2360                          struct intel_pipe_wm *merged)
2361 {
2362         int level, max_level = ilk_wm_max_level(dev);
2363         int last_enabled_level = max_level;
2364
2365         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2366         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2367             config->num_pipes_active > 1)
2368                 return;
2369
2370         /* ILK: FBC WM must be disabled always */
2371         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2372
2373         /* merge each WM1+ level */
2374         for (level = 1; level <= max_level; level++) {
2375                 struct intel_wm_level *wm = &merged->wm[level];
2376
2377                 ilk_merge_wm_level(dev, level, wm);
2378
2379                 if (level > last_enabled_level)
2380                         wm->enable = false;
2381                 else if (!ilk_validate_wm_level(level, max, wm))
2382                         /* make sure all following levels get disabled */
2383                         last_enabled_level = level - 1;
2384
2385                 /*
2386                  * The spec says it is preferred to disable
2387                  * FBC WMs instead of disabling a WM level.
2388                  */
2389                 if (wm->fbc_val > max->fbc) {
2390                         if (wm->enable)
2391                                 merged->fbc_wm_enabled = false;
2392                         wm->fbc_val = 0;
2393                 }
2394         }
2395
2396         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2397         /*
2398          * FIXME this is racy. FBC might get enabled later.
2399          * What we should check here is whether FBC can be
2400          * enabled sometime later.
2401          */
2402         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2403                 for (level = 2; level <= max_level; level++) {
2404                         struct intel_wm_level *wm = &merged->wm[level];
2405
2406                         wm->enable = false;
2407                 }
2408         }
2409 }
2410
2411 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2412 {
2413         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2414         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2415 }
2416
2417 /* The value we need to program into the WM_LPx latency field */
2418 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2419 {
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421
2422         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2423                 return 2 * level;
2424         else
2425                 return dev_priv->wm.pri_latency[level];
2426 }
2427
2428 static void ilk_compute_wm_results(struct drm_device *dev,
2429                                    const struct intel_pipe_wm *merged,
2430                                    enum intel_ddb_partitioning partitioning,
2431                                    struct ilk_wm_values *results)
2432 {
2433         struct intel_crtc *intel_crtc;
2434         int level, wm_lp;
2435
2436         results->enable_fbc_wm = merged->fbc_wm_enabled;
2437         results->partitioning = partitioning;
2438
2439         /* LP1+ register values */
2440         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2441                 const struct intel_wm_level *r;
2442
2443                 level = ilk_wm_lp_to_level(wm_lp, merged);
2444
2445                 r = &merged->wm[level];
2446
2447                 /*
2448                  * Maintain the watermark values even if the level is
2449                  * disabled. Doing otherwise could cause underruns.
2450                  */
2451                 results->wm_lp[wm_lp - 1] =
2452                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2453                         (r->pri_val << WM1_LP_SR_SHIFT) |
2454                         r->cur_val;
2455
2456                 if (r->enable)
2457                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2458
2459                 if (INTEL_INFO(dev)->gen >= 8)
2460                         results->wm_lp[wm_lp - 1] |=
2461                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2462                 else
2463                         results->wm_lp[wm_lp - 1] |=
2464                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2465
2466                 /*
2467                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2468                  * level is disabled. Doing otherwise could cause underruns.
2469                  */
2470                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2471                         WARN_ON(wm_lp != 1);
2472                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2473                 } else
2474                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2475         }
2476
2477         /* LP0 register values */
2478         for_each_intel_crtc(dev, intel_crtc) {
2479                 enum pipe pipe = intel_crtc->pipe;
2480                 const struct intel_wm_level *r =
2481                         &intel_crtc->wm.active.wm[0];
2482
2483                 if (WARN_ON(!r->enable))
2484                         continue;
2485
2486                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2487
2488                 results->wm_pipe[pipe] =
2489                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2490                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2491                         r->cur_val;
2492         }
2493 }
2494
2495 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2496  * case both are at the same level. Prefer r1 in case they're the same. */
2497 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2498                                                   struct intel_pipe_wm *r1,
2499                                                   struct intel_pipe_wm *r2)
2500 {
2501         int level, max_level = ilk_wm_max_level(dev);
2502         int level1 = 0, level2 = 0;
2503
2504         for (level = 1; level <= max_level; level++) {
2505                 if (r1->wm[level].enable)
2506                         level1 = level;
2507                 if (r2->wm[level].enable)
2508                         level2 = level;
2509         }
2510
2511         if (level1 == level2) {
2512                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2513                         return r2;
2514                 else
2515                         return r1;
2516         } else if (level1 > level2) {
2517                 return r1;
2518         } else {
2519                 return r2;
2520         }
2521 }
2522
2523 /* dirty bits used to track which watermarks need changes */
2524 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2525 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2526 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2527 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2528 #define WM_DIRTY_FBC (1 << 24)
2529 #define WM_DIRTY_DDB (1 << 25)
2530
2531 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2532                                          const struct ilk_wm_values *old,
2533                                          const struct ilk_wm_values *new)
2534 {
2535         unsigned int dirty = 0;
2536         enum pipe pipe;
2537         int wm_lp;
2538
2539         for_each_pipe(pipe) {
2540                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2541                         dirty |= WM_DIRTY_LINETIME(pipe);
2542                         /* Must disable LP1+ watermarks too */
2543                         dirty |= WM_DIRTY_LP_ALL;
2544                 }
2545
2546                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2547                         dirty |= WM_DIRTY_PIPE(pipe);
2548                         /* Must disable LP1+ watermarks too */
2549                         dirty |= WM_DIRTY_LP_ALL;
2550                 }
2551         }
2552
2553         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2554                 dirty |= WM_DIRTY_FBC;
2555                 /* Must disable LP1+ watermarks too */
2556                 dirty |= WM_DIRTY_LP_ALL;
2557         }
2558
2559         if (old->partitioning != new->partitioning) {
2560                 dirty |= WM_DIRTY_DDB;
2561                 /* Must disable LP1+ watermarks too */
2562                 dirty |= WM_DIRTY_LP_ALL;
2563         }
2564
2565         /* LP1+ watermarks already deemed dirty, no need to continue */
2566         if (dirty & WM_DIRTY_LP_ALL)
2567                 return dirty;
2568
2569         /* Find the lowest numbered LP1+ watermark in need of an update... */
2570         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2571                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2572                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2573                         break;
2574         }
2575
2576         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2577         for (; wm_lp <= 3; wm_lp++)
2578                 dirty |= WM_DIRTY_LP(wm_lp);
2579
2580         return dirty;
2581 }
2582
2583 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2584                                unsigned int dirty)
2585 {
2586         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2587         bool changed = false;
2588
2589         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2590                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2591                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2592                 changed = true;
2593         }
2594         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2595                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2596                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2597                 changed = true;
2598         }
2599         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2600                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2601                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2602                 changed = true;
2603         }
2604
2605         /*
2606          * Don't touch WM1S_LP_EN here.
2607          * Doing so could cause underruns.
2608          */
2609
2610         return changed;
2611 }
2612
2613 /*
2614  * The spec says we shouldn't write when we don't need, because every write
2615  * causes WMs to be re-evaluated, expending some power.
2616  */
2617 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2618                                 struct ilk_wm_values *results)
2619 {
2620         struct drm_device *dev = dev_priv->dev;
2621         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2622         unsigned int dirty;
2623         uint32_t val;
2624
2625         dirty = ilk_compute_wm_dirty(dev, previous, results);
2626         if (!dirty)
2627                 return;
2628
2629         _ilk_disable_lp_wm(dev_priv, dirty);
2630
2631         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2632                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2633         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2634                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2635         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2636                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2637
2638         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2639                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2640         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2641                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2642         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2643                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2644
2645         if (dirty & WM_DIRTY_DDB) {
2646                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2647                         val = I915_READ(WM_MISC);
2648                         if (results->partitioning == INTEL_DDB_PART_1_2)
2649                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2650                         else
2651                                 val |= WM_MISC_DATA_PARTITION_5_6;
2652                         I915_WRITE(WM_MISC, val);
2653                 } else {
2654                         val = I915_READ(DISP_ARB_CTL2);
2655                         if (results->partitioning == INTEL_DDB_PART_1_2)
2656                                 val &= ~DISP_DATA_PARTITION_5_6;
2657                         else
2658                                 val |= DISP_DATA_PARTITION_5_6;
2659                         I915_WRITE(DISP_ARB_CTL2, val);
2660                 }
2661         }
2662
2663         if (dirty & WM_DIRTY_FBC) {
2664                 val = I915_READ(DISP_ARB_CTL);
2665                 if (results->enable_fbc_wm)
2666                         val &= ~DISP_FBC_WM_DIS;
2667                 else
2668                         val |= DISP_FBC_WM_DIS;
2669                 I915_WRITE(DISP_ARB_CTL, val);
2670         }
2671
2672         if (dirty & WM_DIRTY_LP(1) &&
2673             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2674                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2675
2676         if (INTEL_INFO(dev)->gen >= 7) {
2677                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2678                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2679                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2680                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2681         }
2682
2683         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2684                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2685         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2686                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2687         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2688                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2689
2690         dev_priv->wm.hw = *results;
2691 }
2692
2693 static bool ilk_disable_lp_wm(struct drm_device *dev)
2694 {
2695         struct drm_i915_private *dev_priv = dev->dev_private;
2696
2697         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2698 }
2699
2700 static void ilk_update_wm(struct drm_crtc *crtc)
2701 {
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         struct drm_device *dev = crtc->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct ilk_wm_maximums max;
2706         struct ilk_pipe_wm_parameters params = {};
2707         struct ilk_wm_values results = {};
2708         enum intel_ddb_partitioning partitioning;
2709         struct intel_pipe_wm pipe_wm = {};
2710         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2711         struct intel_wm_config config = {};
2712
2713         ilk_compute_wm_parameters(crtc, &params);
2714
2715         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2716
2717         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2718                 return;
2719
2720         intel_crtc->wm.active = pipe_wm;
2721
2722         ilk_compute_wm_config(dev, &config);
2723
2724         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2725         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2726
2727         /* 5/6 split only in single pipe config on IVB+ */
2728         if (INTEL_INFO(dev)->gen >= 7 &&
2729             config.num_pipes_active == 1 && config.sprites_enabled) {
2730                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2731                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2732
2733                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2734         } else {
2735                 best_lp_wm = &lp_wm_1_2;
2736         }
2737
2738         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2739                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2740
2741         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2742
2743         ilk_write_wm_values(dev_priv, &results);
2744 }
2745
2746 static void
2747 ilk_update_sprite_wm(struct drm_plane *plane,
2748                      struct drm_crtc *crtc,
2749                      uint32_t sprite_width, uint32_t sprite_height,
2750                      int pixel_size, bool enabled, bool scaled)
2751 {
2752         struct drm_device *dev = plane->dev;
2753         struct intel_plane *intel_plane = to_intel_plane(plane);
2754
2755         intel_plane->wm.enabled = enabled;
2756         intel_plane->wm.scaled = scaled;
2757         intel_plane->wm.horiz_pixels = sprite_width;
2758         intel_plane->wm.vert_pixels = sprite_width;
2759         intel_plane->wm.bytes_per_pixel = pixel_size;
2760
2761         /*
2762          * IVB workaround: must disable low power watermarks for at least
2763          * one frame before enabling scaling.  LP watermarks can be re-enabled
2764          * when scaling is disabled.
2765          *
2766          * WaCxSRDisabledForSpriteScaling:ivb
2767          */
2768         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2769                 intel_wait_for_vblank(dev, intel_plane->pipe);
2770
2771         ilk_update_wm(crtc);
2772 }
2773
2774 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2775 {
2776         struct drm_device *dev = crtc->dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2781         enum pipe pipe = intel_crtc->pipe;
2782         static const unsigned int wm0_pipe_reg[] = {
2783                 [PIPE_A] = WM0_PIPEA_ILK,
2784                 [PIPE_B] = WM0_PIPEB_ILK,
2785                 [PIPE_C] = WM0_PIPEC_IVB,
2786         };
2787
2788         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2789         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2790                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2791
2792         active->pipe_enabled = intel_crtc_active(crtc);
2793
2794         if (active->pipe_enabled) {
2795                 u32 tmp = hw->wm_pipe[pipe];
2796
2797                 /*
2798                  * For active pipes LP0 watermark is marked as
2799                  * enabled, and LP1+ watermaks as disabled since
2800                  * we can't really reverse compute them in case
2801                  * multiple pipes are active.
2802                  */
2803                 active->wm[0].enable = true;
2804                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2805                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2806                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2807                 active->linetime = hw->wm_linetime[pipe];
2808         } else {
2809                 int level, max_level = ilk_wm_max_level(dev);
2810
2811                 /*
2812                  * For inactive pipes, all watermark levels
2813                  * should be marked as enabled but zeroed,
2814                  * which is what we'd compute them to.
2815                  */
2816                 for (level = 0; level <= max_level; level++)
2817                         active->wm[level].enable = true;
2818         }
2819 }
2820
2821 void ilk_wm_get_hw_state(struct drm_device *dev)
2822 {
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2825         struct drm_crtc *crtc;
2826
2827         for_each_crtc(dev, crtc)
2828                 ilk_pipe_wm_get_hw_state(crtc);
2829
2830         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2831         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2832         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2833
2834         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2835         if (INTEL_INFO(dev)->gen >= 7) {
2836                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2837                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2838         }
2839
2840         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2841                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2842                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2843         else if (IS_IVYBRIDGE(dev))
2844                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2845                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2846
2847         hw->enable_fbc_wm =
2848                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2849 }
2850
2851 /**
2852  * intel_update_watermarks - update FIFO watermark values based on current modes
2853  *
2854  * Calculate watermark values for the various WM regs based on current mode
2855  * and plane configuration.
2856  *
2857  * There are several cases to deal with here:
2858  *   - normal (i.e. non-self-refresh)
2859  *   - self-refresh (SR) mode
2860  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2861  *   - lines are small relative to FIFO size (buffer can hold more than 2
2862  *     lines), so need to account for TLB latency
2863  *
2864  *   The normal calculation is:
2865  *     watermark = dotclock * bytes per pixel * latency
2866  *   where latency is platform & configuration dependent (we assume pessimal
2867  *   values here).
2868  *
2869  *   The SR calculation is:
2870  *     watermark = (trunc(latency/line time)+1) * surface width *
2871  *       bytes per pixel
2872  *   where
2873  *     line time = htotal / dotclock
2874  *     surface width = hdisplay for normal plane and 64 for cursor
2875  *   and latency is assumed to be high, as above.
2876  *
2877  * The final value programmed to the register should always be rounded up,
2878  * and include an extra 2 entries to account for clock crossings.
2879  *
2880  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2881  * to set the non-SR watermarks to 8.
2882  */
2883 void intel_update_watermarks(struct drm_crtc *crtc)
2884 {
2885         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2886
2887         if (dev_priv->display.update_wm)
2888                 dev_priv->display.update_wm(crtc);
2889 }
2890
2891 void intel_update_sprite_watermarks(struct drm_plane *plane,
2892                                     struct drm_crtc *crtc,
2893                                     uint32_t sprite_width,
2894                                     uint32_t sprite_height,
2895                                     int pixel_size,
2896                                     bool enabled, bool scaled)
2897 {
2898         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2899
2900         if (dev_priv->display.update_sprite_wm)
2901                 dev_priv->display.update_sprite_wm(plane, crtc,
2902                                                    sprite_width, sprite_height,
2903                                                    pixel_size, enabled, scaled);
2904 }
2905
2906 static struct drm_i915_gem_object *
2907 intel_alloc_context_page(struct drm_device *dev)
2908 {
2909         struct drm_i915_gem_object *ctx;
2910         int ret;
2911
2912         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2913
2914         ctx = i915_gem_alloc_object(dev, 4096);
2915         if (!ctx) {
2916                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2917                 return NULL;
2918         }
2919
2920         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2921         if (ret) {
2922                 DRM_ERROR("failed to pin power context: %d\n", ret);
2923                 goto err_unref;
2924         }
2925
2926         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2927         if (ret) {
2928                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2929                 goto err_unpin;
2930         }
2931
2932         return ctx;
2933
2934 err_unpin:
2935         i915_gem_object_ggtt_unpin(ctx);
2936 err_unref:
2937         drm_gem_object_unreference(&ctx->base);
2938         return NULL;
2939 }
2940
2941 /**
2942  * Lock protecting IPS related data structures
2943  */
2944 DEFINE_SPINLOCK(mchdev_lock);
2945
2946 /* Global for IPS driver to get at the current i915 device. Protected by
2947  * mchdev_lock. */
2948 static struct drm_i915_private *i915_mch_dev;
2949
2950 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2951 {
2952         struct drm_i915_private *dev_priv = dev->dev_private;
2953         u16 rgvswctl;
2954
2955         assert_spin_locked(&mchdev_lock);
2956
2957         rgvswctl = I915_READ16(MEMSWCTL);
2958         if (rgvswctl & MEMCTL_CMD_STS) {
2959                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2960                 return false; /* still busy with another command */
2961         }
2962
2963         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2964                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2965         I915_WRITE16(MEMSWCTL, rgvswctl);
2966         POSTING_READ16(MEMSWCTL);
2967
2968         rgvswctl |= MEMCTL_CMD_STS;
2969         I915_WRITE16(MEMSWCTL, rgvswctl);
2970
2971         return true;
2972 }
2973
2974 static void ironlake_enable_drps(struct drm_device *dev)
2975 {
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         u32 rgvmodectl = I915_READ(MEMMODECTL);
2978         u8 fmax, fmin, fstart, vstart;
2979
2980         spin_lock_irq(&mchdev_lock);
2981
2982         /* Enable temp reporting */
2983         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2984         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2985
2986         /* 100ms RC evaluation intervals */
2987         I915_WRITE(RCUPEI, 100000);
2988         I915_WRITE(RCDNEI, 100000);
2989
2990         /* Set max/min thresholds to 90ms and 80ms respectively */
2991         I915_WRITE(RCBMAXAVG, 90000);
2992         I915_WRITE(RCBMINAVG, 80000);
2993
2994         I915_WRITE(MEMIHYST, 1);
2995
2996         /* Set up min, max, and cur for interrupt handling */
2997         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2998         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2999         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3000                 MEMMODE_FSTART_SHIFT;
3001
3002         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3003                 PXVFREQ_PX_SHIFT;
3004
3005         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3006         dev_priv->ips.fstart = fstart;
3007
3008         dev_priv->ips.max_delay = fstart;
3009         dev_priv->ips.min_delay = fmin;
3010         dev_priv->ips.cur_delay = fstart;
3011
3012         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3013                          fmax, fmin, fstart);
3014
3015         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3016
3017         /*
3018          * Interrupts will be enabled in ironlake_irq_postinstall
3019          */
3020
3021         I915_WRITE(VIDSTART, vstart);
3022         POSTING_READ(VIDSTART);
3023
3024         rgvmodectl |= MEMMODE_SWMODE_EN;
3025         I915_WRITE(MEMMODECTL, rgvmodectl);
3026
3027         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3028                 DRM_ERROR("stuck trying to change perf mode\n");
3029         mdelay(1);
3030
3031         ironlake_set_drps(dev, fstart);
3032
3033         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3034                 I915_READ(0x112e0);
3035         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3036         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3037         getrawmonotonic(&dev_priv->ips.last_time2);
3038
3039         spin_unlock_irq(&mchdev_lock);
3040 }
3041
3042 static void ironlake_disable_drps(struct drm_device *dev)
3043 {
3044         struct drm_i915_private *dev_priv = dev->dev_private;
3045         u16 rgvswctl;
3046
3047         spin_lock_irq(&mchdev_lock);
3048
3049         rgvswctl = I915_READ16(MEMSWCTL);
3050
3051         /* Ack interrupts, disable EFC interrupt */
3052         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3053         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3054         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3055         I915_WRITE(DEIIR, DE_PCU_EVENT);
3056         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3057
3058         /* Go back to the starting frequency */
3059         ironlake_set_drps(dev, dev_priv->ips.fstart);
3060         mdelay(1);
3061         rgvswctl |= MEMCTL_CMD_STS;
3062         I915_WRITE(MEMSWCTL, rgvswctl);
3063         mdelay(1);
3064
3065         spin_unlock_irq(&mchdev_lock);
3066 }
3067
3068 /* There's a funny hw issue where the hw returns all 0 when reading from
3069  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3070  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3071  * all limits and the gpu stuck at whatever frequency it is at atm).
3072  */
3073 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3074 {
3075         u32 limits;
3076
3077         /* Only set the down limit when we've reached the lowest level to avoid
3078          * getting more interrupts, otherwise leave this clear. This prevents a
3079          * race in the hw when coming out of rc6: There's a tiny window where
3080          * the hw runs at the minimal clock before selecting the desired
3081          * frequency, if the down threshold expires in that window we will not
3082          * receive a down interrupt. */
3083         limits = dev_priv->rps.max_freq_softlimit << 24;
3084         if (val <= dev_priv->rps.min_freq_softlimit)
3085                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3086
3087         return limits;
3088 }
3089
3090 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3091 {
3092         int new_power;
3093
3094         new_power = dev_priv->rps.power;
3095         switch (dev_priv->rps.power) {
3096         case LOW_POWER:
3097                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3098                         new_power = BETWEEN;
3099                 break;
3100
3101         case BETWEEN:
3102                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3103                         new_power = LOW_POWER;
3104                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3105                         new_power = HIGH_POWER;
3106                 break;
3107
3108         case HIGH_POWER:
3109                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3110                         new_power = BETWEEN;
3111                 break;
3112         }
3113         /* Max/min bins are special */
3114         if (val == dev_priv->rps.min_freq_softlimit)
3115                 new_power = LOW_POWER;
3116         if (val == dev_priv->rps.max_freq_softlimit)
3117                 new_power = HIGH_POWER;
3118         if (new_power == dev_priv->rps.power)
3119                 return;
3120
3121         /* Note the units here are not exactly 1us, but 1280ns. */
3122         switch (new_power) {
3123         case LOW_POWER:
3124                 /* Upclock if more than 95% busy over 16ms */
3125                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3126                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3127
3128                 /* Downclock if less than 85% busy over 32ms */
3129                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3130                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3131
3132                 I915_WRITE(GEN6_RP_CONTROL,
3133                            GEN6_RP_MEDIA_TURBO |
3134                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3135                            GEN6_RP_MEDIA_IS_GFX |
3136                            GEN6_RP_ENABLE |
3137                            GEN6_RP_UP_BUSY_AVG |
3138                            GEN6_RP_DOWN_IDLE_AVG);
3139                 break;
3140
3141         case BETWEEN:
3142                 /* Upclock if more than 90% busy over 13ms */
3143                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3144                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3145
3146                 /* Downclock if less than 75% busy over 32ms */
3147                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3148                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3149
3150                 I915_WRITE(GEN6_RP_CONTROL,
3151                            GEN6_RP_MEDIA_TURBO |
3152                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3153                            GEN6_RP_MEDIA_IS_GFX |
3154                            GEN6_RP_ENABLE |
3155                            GEN6_RP_UP_BUSY_AVG |
3156                            GEN6_RP_DOWN_IDLE_AVG);
3157                 break;
3158
3159         case HIGH_POWER:
3160                 /* Upclock if more than 85% busy over 10ms */
3161                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3162                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3163
3164                 /* Downclock if less than 60% busy over 32ms */
3165                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3166                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3167
3168                 I915_WRITE(GEN6_RP_CONTROL,
3169                            GEN6_RP_MEDIA_TURBO |
3170                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3171                            GEN6_RP_MEDIA_IS_GFX |
3172                            GEN6_RP_ENABLE |
3173                            GEN6_RP_UP_BUSY_AVG |
3174                            GEN6_RP_DOWN_IDLE_AVG);
3175                 break;
3176         }
3177
3178         dev_priv->rps.power = new_power;
3179         dev_priv->rps.last_adj = 0;
3180 }
3181
3182 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3183 {
3184         u32 mask = 0;
3185
3186         if (val > dev_priv->rps.min_freq_softlimit)
3187                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3188         if (val < dev_priv->rps.max_freq_softlimit)
3189                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3190
3191         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3192         mask &= dev_priv->pm_rps_events;
3193
3194         /* IVB and SNB hard hangs on looping batchbuffer
3195          * if GEN6_PM_UP_EI_EXPIRED is masked.
3196          */
3197         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3198                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3199
3200         if (IS_GEN8(dev_priv->dev))
3201                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3202
3203         return ~mask;
3204 }
3205
3206 /* gen6_set_rps is called to update the frequency request, but should also be
3207  * called when the range (min_delay and max_delay) is modified so that we can
3208  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3209 void gen6_set_rps(struct drm_device *dev, u8 val)
3210 {
3211         struct drm_i915_private *dev_priv = dev->dev_private;
3212
3213         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3214         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3215         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3216
3217         /* min/max delay may still have been modified so be sure to
3218          * write the limits value.
3219          */
3220         if (val != dev_priv->rps.cur_freq) {
3221                 gen6_set_rps_thresholds(dev_priv, val);
3222
3223                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3224                         I915_WRITE(GEN6_RPNSWREQ,
3225                                    HSW_FREQUENCY(val));
3226                 else
3227                         I915_WRITE(GEN6_RPNSWREQ,
3228                                    GEN6_FREQUENCY(val) |
3229                                    GEN6_OFFSET(0) |
3230                                    GEN6_AGGRESSIVE_TURBO);
3231         }
3232
3233         /* Make sure we continue to get interrupts
3234          * until we hit the minimum or maximum frequencies.
3235          */
3236         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3237         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3238
3239         POSTING_READ(GEN6_RPNSWREQ);
3240
3241         dev_priv->rps.cur_freq = val;
3242         trace_intel_gpu_freq_change(val * 50);
3243 }
3244
3245 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3246  *
3247  * * If Gfx is Idle, then
3248  * 1. Mask Turbo interrupts
3249  * 2. Bring up Gfx clock
3250  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3251  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3252  * 5. Unmask Turbo interrupts
3253 */
3254 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3255 {
3256         struct drm_device *dev = dev_priv->dev;
3257
3258         /* Latest VLV doesn't need to force the gfx clock */
3259         if (dev->pdev->revision >= 0xd) {
3260                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3261                 return;
3262         }
3263
3264         /*
3265          * When we are idle.  Drop to min voltage state.
3266          */
3267
3268         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3269                 return;
3270
3271         /* Mask turbo interrupt so that they will not come in between */
3272         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3273
3274         vlv_force_gfx_clock(dev_priv, true);
3275
3276         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3277
3278         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3279                                         dev_priv->rps.min_freq_softlimit);
3280
3281         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3282                                 & GENFREQSTATUS) == 0, 5))
3283                 DRM_ERROR("timed out waiting for Punit\n");
3284
3285         vlv_force_gfx_clock(dev_priv, false);
3286
3287         I915_WRITE(GEN6_PMINTRMSK,
3288                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3289 }
3290
3291 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3292 {
3293         struct drm_device *dev = dev_priv->dev;
3294
3295         mutex_lock(&dev_priv->rps.hw_lock);
3296         if (dev_priv->rps.enabled) {
3297                 if (IS_CHERRYVIEW(dev))
3298                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3299                 else if (IS_VALLEYVIEW(dev))
3300                         vlv_set_rps_idle(dev_priv);
3301                 else
3302                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3303                 dev_priv->rps.last_adj = 0;
3304         }
3305         mutex_unlock(&dev_priv->rps.hw_lock);
3306 }
3307
3308 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3309 {
3310         struct drm_device *dev = dev_priv->dev;
3311
3312         mutex_lock(&dev_priv->rps.hw_lock);
3313         if (dev_priv->rps.enabled) {
3314                 if (IS_VALLEYVIEW(dev))
3315                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3316                 else
3317                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3318                 dev_priv->rps.last_adj = 0;
3319         }
3320         mutex_unlock(&dev_priv->rps.hw_lock);
3321 }
3322
3323 void valleyview_set_rps(struct drm_device *dev, u8 val)
3324 {
3325         struct drm_i915_private *dev_priv = dev->dev_private;
3326
3327         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3328         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3329         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3330
3331         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3332                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3333                          dev_priv->rps.cur_freq,
3334                          vlv_gpu_freq(dev_priv, val), val);
3335
3336         if (val != dev_priv->rps.cur_freq)
3337                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3338
3339         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3340
3341         dev_priv->rps.cur_freq = val;
3342         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3343 }
3344
3345 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3346 {
3347         struct drm_i915_private *dev_priv = dev->dev_private;
3348
3349         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3350         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3351                                    ~dev_priv->pm_rps_events);
3352         /* Complete PM interrupt masking here doesn't race with the rps work
3353          * item again unmasking PM interrupts because that is using a different
3354          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3355          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3356          * gen8_enable_rps will clean up. */
3357
3358         spin_lock_irq(&dev_priv->irq_lock);
3359         dev_priv->rps.pm_iir = 0;
3360         spin_unlock_irq(&dev_priv->irq_lock);
3361
3362         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3363 }
3364
3365 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3366 {
3367         struct drm_i915_private *dev_priv = dev->dev_private;
3368
3369         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3370         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3371                                 ~dev_priv->pm_rps_events);
3372         /* Complete PM interrupt masking here doesn't race with the rps work
3373          * item again unmasking PM interrupts because that is using a different
3374          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3375          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3376
3377         spin_lock_irq(&dev_priv->irq_lock);
3378         dev_priv->rps.pm_iir = 0;
3379         spin_unlock_irq(&dev_priv->irq_lock);
3380
3381         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3382 }
3383
3384 static void gen6_disable_rps(struct drm_device *dev)
3385 {
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387
3388         I915_WRITE(GEN6_RC_CONTROL, 0);
3389         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3390
3391         if (IS_BROADWELL(dev))
3392                 gen8_disable_rps_interrupts(dev);
3393         else
3394                 gen6_disable_rps_interrupts(dev);
3395 }
3396
3397 static void cherryview_disable_rps(struct drm_device *dev)
3398 {
3399         struct drm_i915_private *dev_priv = dev->dev_private;
3400
3401         I915_WRITE(GEN6_RC_CONTROL, 0);
3402
3403         gen8_disable_rps_interrupts(dev);
3404 }
3405
3406 static void valleyview_disable_rps(struct drm_device *dev)
3407 {
3408         struct drm_i915_private *dev_priv = dev->dev_private;
3409
3410         I915_WRITE(GEN6_RC_CONTROL, 0);
3411
3412         gen6_disable_rps_interrupts(dev);
3413 }
3414
3415 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3416 {
3417         if (IS_VALLEYVIEW(dev)) {
3418                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3419                         mode = GEN6_RC_CTL_RC6_ENABLE;
3420                 else
3421                         mode = 0;
3422         }
3423         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3424                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3425                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3426                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3427 }
3428
3429 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3430 {
3431         /* No RC6 before Ironlake */
3432         if (INTEL_INFO(dev)->gen < 5)
3433                 return 0;
3434
3435         /* RC6 is only on Ironlake mobile not on desktop */
3436         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3437                 return 0;
3438
3439         /* Respect the kernel parameter if it is set */
3440         if (enable_rc6 >= 0) {
3441                 int mask;
3442
3443                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3444                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3445                                INTEL_RC6pp_ENABLE;
3446                 else
3447                         mask = INTEL_RC6_ENABLE;
3448
3449                 if ((enable_rc6 & mask) != enable_rc6)
3450                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3451                                       enable_rc6 & mask, enable_rc6, mask);
3452
3453                 return enable_rc6 & mask;
3454         }
3455
3456         /* Disable RC6 on Ironlake */
3457         if (INTEL_INFO(dev)->gen == 5)
3458                 return 0;
3459
3460         if (IS_IVYBRIDGE(dev))
3461                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3462
3463         return INTEL_RC6_ENABLE;
3464 }
3465
3466 int intel_enable_rc6(const struct drm_device *dev)
3467 {
3468         return i915.enable_rc6;
3469 }
3470
3471 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3472 {
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474
3475         spin_lock_irq(&dev_priv->irq_lock);
3476         WARN_ON(dev_priv->rps.pm_iir);
3477         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3478         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3479         spin_unlock_irq(&dev_priv->irq_lock);
3480 }
3481
3482 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3483 {
3484         struct drm_i915_private *dev_priv = dev->dev_private;
3485
3486         spin_lock_irq(&dev_priv->irq_lock);
3487         WARN_ON(dev_priv->rps.pm_iir);
3488         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3489         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3490         spin_unlock_irq(&dev_priv->irq_lock);
3491 }
3492
3493 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3494 {
3495         /* All of these values are in units of 50MHz */
3496         dev_priv->rps.cur_freq          = 0;
3497         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3498         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3499         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3500         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3501         /* XXX: only BYT has a special efficient freq */
3502         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3503         /* hw_max = RP0 until we check for overclocking */
3504         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3505
3506         /* Preserve min/max settings in case of re-init */
3507         if (dev_priv->rps.max_freq_softlimit == 0)
3508                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3509
3510         if (dev_priv->rps.min_freq_softlimit == 0)
3511                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3512 }
3513
3514 static void gen8_enable_rps(struct drm_device *dev)
3515 {
3516         struct drm_i915_private *dev_priv = dev->dev_private;
3517         struct intel_engine_cs *ring;
3518         uint32_t rc6_mask = 0, rp_state_cap;
3519         int unused;
3520
3521         /* 1a: Software RC state - RC0 */
3522         I915_WRITE(GEN6_RC_STATE, 0);
3523
3524         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3525          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3526         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3527
3528         /* 2a: Disable RC states. */
3529         I915_WRITE(GEN6_RC_CONTROL, 0);
3530
3531         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3532         parse_rp_state_cap(dev_priv, rp_state_cap);
3533
3534         /* 2b: Program RC6 thresholds.*/
3535         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3536         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3537         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3538         for_each_ring(ring, dev_priv, unused)
3539                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3540         I915_WRITE(GEN6_RC_SLEEP, 0);
3541         if (IS_BROADWELL(dev))
3542                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3543         else
3544                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3545
3546         /* 3: Enable RC6 */
3547         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3548                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3549         intel_print_rc6_info(dev, rc6_mask);
3550         if (IS_BROADWELL(dev))
3551                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3552                                 GEN7_RC_CTL_TO_MODE |
3553                                 rc6_mask);
3554         else
3555                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3556                                 GEN6_RC_CTL_EI_MODE(1) |
3557                                 rc6_mask);
3558
3559         /* 4 Program defaults and thresholds for RPS*/
3560         I915_WRITE(GEN6_RPNSWREQ,
3561                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3562         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3563                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3564         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3565         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3566
3567         /* Docs recommend 900MHz, and 300 MHz respectively */
3568         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3569                    dev_priv->rps.max_freq_softlimit << 24 |
3570                    dev_priv->rps.min_freq_softlimit << 16);
3571
3572         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3573         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3574         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3575         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3576
3577         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3578
3579         /* 5: Enable RPS */
3580         I915_WRITE(GEN6_RP_CONTROL,
3581                    GEN6_RP_MEDIA_TURBO |
3582                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3583                    GEN6_RP_MEDIA_IS_GFX |
3584                    GEN6_RP_ENABLE |
3585                    GEN6_RP_UP_BUSY_AVG |
3586                    GEN6_RP_DOWN_IDLE_AVG);
3587
3588         /* 6: Ring frequency + overclocking (our driver does this later */
3589
3590         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3591
3592         gen8_enable_rps_interrupts(dev);
3593
3594         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3595 }
3596
3597 static void gen6_enable_rps(struct drm_device *dev)
3598 {
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600         struct intel_engine_cs *ring;
3601         u32 rp_state_cap;
3602         u32 gt_perf_status;
3603         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3604         u32 gtfifodbg;
3605         int rc6_mode;
3606         int i, ret;
3607
3608         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3609
3610         /* Here begins a magic sequence of register writes to enable
3611          * auto-downclocking.
3612          *
3613          * Perhaps there might be some value in exposing these to
3614          * userspace...
3615          */
3616         I915_WRITE(GEN6_RC_STATE, 0);
3617
3618         /* Clear the DBG now so we don't confuse earlier errors */
3619         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3620                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3621                 I915_WRITE(GTFIFODBG, gtfifodbg);
3622         }
3623
3624         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3625
3626         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3627         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3628
3629         parse_rp_state_cap(dev_priv, rp_state_cap);
3630
3631         /* disable the counters and set deterministic thresholds */
3632         I915_WRITE(GEN6_RC_CONTROL, 0);
3633
3634         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3635         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3636         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3637         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3638         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3639
3640         for_each_ring(ring, dev_priv, i)
3641                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3642
3643         I915_WRITE(GEN6_RC_SLEEP, 0);
3644         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3645         if (IS_IVYBRIDGE(dev))
3646                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3647         else
3648                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3649         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3650         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3651
3652         /* Check if we are enabling RC6 */
3653         rc6_mode = intel_enable_rc6(dev_priv->dev);
3654         if (rc6_mode & INTEL_RC6_ENABLE)
3655                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3656
3657         /* We don't use those on Haswell */
3658         if (!IS_HASWELL(dev)) {
3659                 if (rc6_mode & INTEL_RC6p_ENABLE)
3660                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3661
3662                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3663                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3664         }
3665
3666         intel_print_rc6_info(dev, rc6_mask);
3667
3668         I915_WRITE(GEN6_RC_CONTROL,
3669                    rc6_mask |
3670                    GEN6_RC_CTL_EI_MODE(1) |
3671                    GEN6_RC_CTL_HW_ENABLE);
3672
3673         /* Power down if completely idle for over 50ms */
3674         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3675         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3676
3677         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3678         if (ret)
3679                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3680
3681         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3682         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3683                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3684                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3685                                  (pcu_mbox & 0xff) * 50);
3686                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3687         }
3688
3689         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3690         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3691
3692         gen6_enable_rps_interrupts(dev);
3693
3694         rc6vids = 0;
3695         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3696         if (IS_GEN6(dev) && ret) {
3697                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3698         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3699                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3700                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3701                 rc6vids &= 0xffff00;
3702                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3703                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3704                 if (ret)
3705                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3706         }
3707
3708         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3709 }
3710
3711 static void __gen6_update_ring_freq(struct drm_device *dev)
3712 {
3713         struct drm_i915_private *dev_priv = dev->dev_private;
3714         int min_freq = 15;
3715         unsigned int gpu_freq;
3716         unsigned int max_ia_freq, min_ring_freq;
3717         int scaling_factor = 180;
3718         struct cpufreq_policy *policy;
3719
3720         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3721
3722         policy = cpufreq_cpu_get(0);
3723         if (policy) {
3724                 max_ia_freq = policy->cpuinfo.max_freq;
3725                 cpufreq_cpu_put(policy);
3726         } else {
3727                 /*
3728                  * Default to measured freq if none found, PCU will ensure we
3729                  * don't go over
3730                  */
3731                 max_ia_freq = tsc_khz;
3732         }
3733
3734         /* Convert from kHz to MHz */
3735         max_ia_freq /= 1000;
3736
3737         min_ring_freq = I915_READ(DCLK) & 0xf;
3738         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3739         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3740
3741         /*
3742          * For each potential GPU frequency, load a ring frequency we'd like
3743          * to use for memory access.  We do this by specifying the IA frequency
3744          * the PCU should use as a reference to determine the ring frequency.
3745          */
3746         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3747              gpu_freq--) {
3748                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3749                 unsigned int ia_freq = 0, ring_freq = 0;
3750
3751                 if (INTEL_INFO(dev)->gen >= 8) {
3752                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3753                         ring_freq = max(min_ring_freq, gpu_freq);
3754                 } else if (IS_HASWELL(dev)) {
3755                         ring_freq = mult_frac(gpu_freq, 5, 4);
3756                         ring_freq = max(min_ring_freq, ring_freq);
3757                         /* leave ia_freq as the default, chosen by cpufreq */
3758                 } else {
3759                         /* On older processors, there is no separate ring
3760                          * clock domain, so in order to boost the bandwidth
3761                          * of the ring, we need to upclock the CPU (ia_freq).
3762                          *
3763                          * For GPU frequencies less than 750MHz,
3764                          * just use the lowest ring freq.
3765                          */
3766                         if (gpu_freq < min_freq)
3767                                 ia_freq = 800;
3768                         else
3769                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3770                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3771                 }
3772
3773                 sandybridge_pcode_write(dev_priv,
3774                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3775                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3776                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3777                                         gpu_freq);
3778         }
3779 }
3780
3781 void gen6_update_ring_freq(struct drm_device *dev)
3782 {
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3786                 return;
3787
3788         mutex_lock(&dev_priv->rps.hw_lock);
3789         __gen6_update_ring_freq(dev);
3790         mutex_unlock(&dev_priv->rps.hw_lock);
3791 }
3792
3793 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3794 {
3795         u32 val, rp0;
3796
3797         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3798         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3799
3800         return rp0;
3801 }
3802
3803 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3804 {
3805         u32 val, rpe;
3806
3807         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3808         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3809
3810         return rpe;
3811 }
3812
3813 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3814 {
3815         u32 val, rp1;
3816
3817         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3818         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3819
3820         return rp1;
3821 }
3822
3823 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3824 {
3825         u32 val, rpn;
3826
3827         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3828         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3829         return rpn;
3830 }
3831
3832 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
3833 {
3834         u32 val, rp1;
3835
3836         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3837
3838         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
3839
3840         return rp1;
3841 }
3842
3843 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3844 {
3845         u32 val, rp0;
3846
3847         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3848
3849         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3850         /* Clamp to max */
3851         rp0 = min_t(u32, rp0, 0xea);
3852
3853         return rp0;
3854 }
3855
3856 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3857 {
3858         u32 val, rpe;
3859
3860         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3861         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3862         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3863         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3864
3865         return rpe;
3866 }
3867
3868 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3869 {
3870         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3871 }
3872
3873 /* Check that the pctx buffer wasn't move under us. */
3874 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3875 {
3876         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3877
3878         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3879                              dev_priv->vlv_pctx->stolen->start);
3880 }
3881
3882
3883 /* Check that the pcbr address is not empty. */
3884 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3885 {
3886         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3887
3888         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3889 }
3890
3891 static void cherryview_setup_pctx(struct drm_device *dev)
3892 {
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         unsigned long pctx_paddr, paddr;
3895         struct i915_gtt *gtt = &dev_priv->gtt;
3896         u32 pcbr;
3897         int pctx_size = 32*1024;
3898
3899         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3900
3901         pcbr = I915_READ(VLV_PCBR);
3902         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3903                 paddr = (dev_priv->mm.stolen_base +
3904                          (gtt->stolen_size - pctx_size));
3905
3906                 pctx_paddr = (paddr & (~4095));
3907                 I915_WRITE(VLV_PCBR, pctx_paddr);
3908         }
3909 }
3910
3911 static void valleyview_setup_pctx(struct drm_device *dev)
3912 {
3913         struct drm_i915_private *dev_priv = dev->dev_private;
3914         struct drm_i915_gem_object *pctx;
3915         unsigned long pctx_paddr;
3916         u32 pcbr;
3917         int pctx_size = 24*1024;
3918
3919         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3920
3921         pcbr = I915_READ(VLV_PCBR);
3922         if (pcbr) {
3923                 /* BIOS set it up already, grab the pre-alloc'd space */
3924                 int pcbr_offset;
3925
3926                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3927                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3928                                                                       pcbr_offset,
3929                                                                       I915_GTT_OFFSET_NONE,
3930                                                                       pctx_size);
3931                 goto out;
3932         }
3933
3934         /*
3935          * From the Gunit register HAS:
3936          * The Gfx driver is expected to program this register and ensure
3937          * proper allocation within Gfx stolen memory.  For example, this
3938          * register should be programmed such than the PCBR range does not
3939          * overlap with other ranges, such as the frame buffer, protected
3940          * memory, or any other relevant ranges.
3941          */
3942         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3943         if (!pctx) {
3944                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3945                 return;
3946         }
3947
3948         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3949         I915_WRITE(VLV_PCBR, pctx_paddr);
3950
3951 out:
3952         dev_priv->vlv_pctx = pctx;
3953 }
3954
3955 static void valleyview_cleanup_pctx(struct drm_device *dev)
3956 {
3957         struct drm_i915_private *dev_priv = dev->dev_private;
3958
3959         if (WARN_ON(!dev_priv->vlv_pctx))
3960                 return;
3961
3962         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3963         dev_priv->vlv_pctx = NULL;
3964 }
3965
3966 static void valleyview_init_gt_powersave(struct drm_device *dev)
3967 {
3968         struct drm_i915_private *dev_priv = dev->dev_private;
3969
3970         valleyview_setup_pctx(dev);
3971
3972         mutex_lock(&dev_priv->rps.hw_lock);
3973
3974         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3975         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3976         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3977                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3978                          dev_priv->rps.max_freq);
3979
3980         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3981         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3982                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3983                          dev_priv->rps.efficient_freq);
3984
3985         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
3986         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
3987                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
3988                          dev_priv->rps.rp1_freq);
3989
3990         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3991         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3992                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3993                          dev_priv->rps.min_freq);
3994
3995         /* Preserve min/max settings in case of re-init */
3996         if (dev_priv->rps.max_freq_softlimit == 0)
3997                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3998
3999         if (dev_priv->rps.min_freq_softlimit == 0)
4000                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4001
4002         mutex_unlock(&dev_priv->rps.hw_lock);
4003 }
4004
4005 static void cherryview_init_gt_powersave(struct drm_device *dev)
4006 {
4007         struct drm_i915_private *dev_priv = dev->dev_private;
4008
4009         cherryview_setup_pctx(dev);
4010
4011         mutex_lock(&dev_priv->rps.hw_lock);
4012
4013         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4014         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4015         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4016                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4017                          dev_priv->rps.max_freq);
4018
4019         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4020         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4021                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4022                          dev_priv->rps.efficient_freq);
4023
4024         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4025         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4026                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4027                          dev_priv->rps.rp1_freq);
4028
4029         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4030         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4031                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4032                          dev_priv->rps.min_freq);
4033
4034         /* Preserve min/max settings in case of re-init */
4035         if (dev_priv->rps.max_freq_softlimit == 0)
4036                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4037
4038         if (dev_priv->rps.min_freq_softlimit == 0)
4039                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4040
4041         mutex_unlock(&dev_priv->rps.hw_lock);
4042 }
4043
4044 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4045 {
4046         valleyview_cleanup_pctx(dev);
4047 }
4048
4049 static void cherryview_enable_rps(struct drm_device *dev)
4050 {
4051         struct drm_i915_private *dev_priv = dev->dev_private;
4052         struct intel_engine_cs *ring;
4053         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4054         int i;
4055
4056         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4057
4058         gtfifodbg = I915_READ(GTFIFODBG);
4059         if (gtfifodbg) {
4060                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4061                                  gtfifodbg);
4062                 I915_WRITE(GTFIFODBG, gtfifodbg);
4063         }
4064
4065         cherryview_check_pctx(dev_priv);
4066
4067         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4068          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4069         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4070
4071         /* 2a: Program RC6 thresholds.*/
4072         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4073         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4074         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4075
4076         for_each_ring(ring, dev_priv, i)
4077                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4078         I915_WRITE(GEN6_RC_SLEEP, 0);
4079
4080         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4081
4082         /* allows RC6 residency counter to work */
4083         I915_WRITE(VLV_COUNTER_CONTROL,
4084                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4085                                       VLV_MEDIA_RC6_COUNT_EN |
4086                                       VLV_RENDER_RC6_COUNT_EN));
4087
4088         /* For now we assume BIOS is allocating and populating the PCBR  */
4089         pcbr = I915_READ(VLV_PCBR);
4090
4091         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4092
4093         /* 3: Enable RC6 */
4094         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4095                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4096                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4097
4098         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4099
4100         /* 4 Program defaults and thresholds for RPS*/
4101         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4102         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4103         I915_WRITE(GEN6_RP_UP_EI, 66000);
4104         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4105
4106         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4107
4108         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4109         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4110         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4111
4112         /* 5: Enable RPS */
4113         I915_WRITE(GEN6_RP_CONTROL,
4114                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4115                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4116                    GEN6_RP_ENABLE |
4117                    GEN6_RP_UP_BUSY_AVG |
4118                    GEN6_RP_DOWN_IDLE_AVG);
4119
4120         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4121
4122         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4123         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4124
4125         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4126         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4127                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4128                          dev_priv->rps.cur_freq);
4129
4130         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4131                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4132                          dev_priv->rps.efficient_freq);
4133
4134         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4135
4136         gen8_enable_rps_interrupts(dev);
4137
4138         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4139 }
4140
4141 static void valleyview_enable_rps(struct drm_device *dev)
4142 {
4143         struct drm_i915_private *dev_priv = dev->dev_private;
4144         struct intel_engine_cs *ring;
4145         u32 gtfifodbg, val, rc6_mode = 0;
4146         int i;
4147
4148         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4149
4150         valleyview_check_pctx(dev_priv);
4151
4152         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4153                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4154                                  gtfifodbg);
4155                 I915_WRITE(GTFIFODBG, gtfifodbg);
4156         }
4157
4158         /* If VLV, Forcewake all wells, else re-direct to regular path */
4159         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4160
4161         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4162         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4163         I915_WRITE(GEN6_RP_UP_EI, 66000);
4164         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4165
4166         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4167         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4168
4169         I915_WRITE(GEN6_RP_CONTROL,
4170                    GEN6_RP_MEDIA_TURBO |
4171                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4172                    GEN6_RP_MEDIA_IS_GFX |
4173                    GEN6_RP_ENABLE |
4174                    GEN6_RP_UP_BUSY_AVG |
4175                    GEN6_RP_DOWN_IDLE_CONT);
4176
4177         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4178         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4179         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4180
4181         for_each_ring(ring, dev_priv, i)
4182                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4183
4184         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4185
4186         /* allows RC6 residency counter to work */
4187         I915_WRITE(VLV_COUNTER_CONTROL,
4188                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4189                                       VLV_RENDER_RC0_COUNT_EN |
4190                                       VLV_MEDIA_RC6_COUNT_EN |
4191                                       VLV_RENDER_RC6_COUNT_EN));
4192
4193         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4194                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4195
4196         intel_print_rc6_info(dev, rc6_mode);
4197
4198         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4199
4200         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4201
4202         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4203         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4204
4205         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4206         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4207                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4208                          dev_priv->rps.cur_freq);
4209
4210         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4211                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4212                          dev_priv->rps.efficient_freq);
4213
4214         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4215
4216         gen6_enable_rps_interrupts(dev);
4217
4218         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4219 }
4220
4221 void ironlake_teardown_rc6(struct drm_device *dev)
4222 {
4223         struct drm_i915_private *dev_priv = dev->dev_private;
4224
4225         if (dev_priv->ips.renderctx) {
4226                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4227                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4228                 dev_priv->ips.renderctx = NULL;
4229         }
4230
4231         if (dev_priv->ips.pwrctx) {
4232                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4233                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4234                 dev_priv->ips.pwrctx = NULL;
4235         }
4236 }
4237
4238 static void ironlake_disable_rc6(struct drm_device *dev)
4239 {
4240         struct drm_i915_private *dev_priv = dev->dev_private;
4241
4242         if (I915_READ(PWRCTXA)) {
4243                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4244                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4245                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4246                          50);
4247
4248                 I915_WRITE(PWRCTXA, 0);
4249                 POSTING_READ(PWRCTXA);
4250
4251                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4252                 POSTING_READ(RSTDBYCTL);
4253         }
4254 }
4255
4256 static int ironlake_setup_rc6(struct drm_device *dev)
4257 {
4258         struct drm_i915_private *dev_priv = dev->dev_private;
4259
4260         if (dev_priv->ips.renderctx == NULL)
4261                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4262         if (!dev_priv->ips.renderctx)
4263                 return -ENOMEM;
4264
4265         if (dev_priv->ips.pwrctx == NULL)
4266                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4267         if (!dev_priv->ips.pwrctx) {
4268                 ironlake_teardown_rc6(dev);
4269                 return -ENOMEM;
4270         }
4271
4272         return 0;
4273 }
4274
4275 static void ironlake_enable_rc6(struct drm_device *dev)
4276 {
4277         struct drm_i915_private *dev_priv = dev->dev_private;
4278         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4279         bool was_interruptible;
4280         int ret;
4281
4282         /* rc6 disabled by default due to repeated reports of hanging during
4283          * boot and resume.
4284          */
4285         if (!intel_enable_rc6(dev))
4286                 return;
4287
4288         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4289
4290         ret = ironlake_setup_rc6(dev);
4291         if (ret)
4292                 return;
4293
4294         was_interruptible = dev_priv->mm.interruptible;
4295         dev_priv->mm.interruptible = false;
4296
4297         /*
4298          * GPU can automatically power down the render unit if given a page
4299          * to save state.
4300          */
4301         ret = intel_ring_begin(ring, 6);
4302         if (ret) {
4303                 ironlake_teardown_rc6(dev);
4304                 dev_priv->mm.interruptible = was_interruptible;
4305                 return;
4306         }
4307
4308         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4309         intel_ring_emit(ring, MI_SET_CONTEXT);
4310         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4311                         MI_MM_SPACE_GTT |
4312                         MI_SAVE_EXT_STATE_EN |
4313                         MI_RESTORE_EXT_STATE_EN |
4314                         MI_RESTORE_INHIBIT);
4315         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4316         intel_ring_emit(ring, MI_NOOP);
4317         intel_ring_emit(ring, MI_FLUSH);
4318         intel_ring_advance(ring);
4319
4320         /*
4321          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4322          * does an implicit flush, combined with MI_FLUSH above, it should be
4323          * safe to assume that renderctx is valid
4324          */
4325         ret = intel_ring_idle(ring);
4326         dev_priv->mm.interruptible = was_interruptible;
4327         if (ret) {
4328                 DRM_ERROR("failed to enable ironlake power savings\n");
4329                 ironlake_teardown_rc6(dev);
4330                 return;
4331         }
4332
4333         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4334         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4335
4336         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4337 }
4338
4339 static unsigned long intel_pxfreq(u32 vidfreq)
4340 {
4341         unsigned long freq;
4342         int div = (vidfreq & 0x3f0000) >> 16;
4343         int post = (vidfreq & 0x3000) >> 12;
4344         int pre = (vidfreq & 0x7);
4345
4346         if (!pre)
4347                 return 0;
4348
4349         freq = ((div * 133333) / ((1<<post) * pre));
4350
4351         return freq;
4352 }
4353
4354 static const struct cparams {
4355         u16 i;
4356         u16 t;
4357         u16 m;
4358         u16 c;
4359 } cparams[] = {
4360         { 1, 1333, 301, 28664 },
4361         { 1, 1066, 294, 24460 },
4362         { 1, 800, 294, 25192 },
4363         { 0, 1333, 276, 27605 },
4364         { 0, 1066, 276, 27605 },
4365         { 0, 800, 231, 23784 },
4366 };
4367
4368 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4369 {
4370         u64 total_count, diff, ret;
4371         u32 count1, count2, count3, m = 0, c = 0;
4372         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4373         int i;
4374
4375         assert_spin_locked(&mchdev_lock);
4376
4377         diff1 = now - dev_priv->ips.last_time1;
4378
4379         /* Prevent division-by-zero if we are asking too fast.
4380          * Also, we don't get interesting results if we are polling
4381          * faster than once in 10ms, so just return the saved value
4382          * in such cases.
4383          */
4384         if (diff1 <= 10)
4385                 return dev_priv->ips.chipset_power;
4386
4387         count1 = I915_READ(DMIEC);
4388         count2 = I915_READ(DDREC);
4389         count3 = I915_READ(CSIEC);
4390
4391         total_count = count1 + count2 + count3;
4392
4393         /* FIXME: handle per-counter overflow */
4394         if (total_count < dev_priv->ips.last_count1) {
4395                 diff = ~0UL - dev_priv->ips.last_count1;
4396                 diff += total_count;
4397         } else {
4398                 diff = total_count - dev_priv->ips.last_count1;
4399         }
4400
4401         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4402                 if (cparams[i].i == dev_priv->ips.c_m &&
4403                     cparams[i].t == dev_priv->ips.r_t) {
4404                         m = cparams[i].m;
4405                         c = cparams[i].c;
4406                         break;
4407                 }
4408         }
4409
4410         diff = div_u64(diff, diff1);
4411         ret = ((m * diff) + c);
4412         ret = div_u64(ret, 10);
4413
4414         dev_priv->ips.last_count1 = total_count;
4415         dev_priv->ips.last_time1 = now;
4416
4417         dev_priv->ips.chipset_power = ret;
4418
4419         return ret;
4420 }
4421
4422 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4423 {
4424         struct drm_device *dev = dev_priv->dev;
4425         unsigned long val;
4426
4427         if (INTEL_INFO(dev)->gen != 5)
4428                 return 0;
4429
4430         spin_lock_irq(&mchdev_lock);
4431
4432         val = __i915_chipset_val(dev_priv);
4433
4434         spin_unlock_irq(&mchdev_lock);
4435
4436         return val;
4437 }
4438
4439 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4440 {
4441         unsigned long m, x, b;
4442         u32 tsfs;
4443
4444         tsfs = I915_READ(TSFS);
4445
4446         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4447         x = I915_READ8(TR1);
4448
4449         b = tsfs & TSFS_INTR_MASK;
4450
4451         return ((m * x) / 127) - b;
4452 }
4453
4454 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4455 {
4456         struct drm_device *dev = dev_priv->dev;
4457         static const struct v_table {
4458                 u16 vd; /* in .1 mil */
4459                 u16 vm; /* in .1 mil */
4460         } v_table[] = {
4461                 { 0, 0, },
4462                 { 375, 0, },
4463                 { 500, 0, },
4464                 { 625, 0, },
4465                 { 750, 0, },
4466                 { 875, 0, },
4467                 { 1000, 0, },
4468                 { 1125, 0, },
4469                 { 4125, 3000, },
4470                 { 4125, 3000, },
4471                 { 4125, 3000, },
4472                 { 4125, 3000, },
4473                 { 4125, 3000, },
4474                 { 4125, 3000, },
4475                 { 4125, 3000, },
4476                 { 4125, 3000, },
4477                 { 4125, 3000, },
4478                 { 4125, 3000, },
4479                 { 4125, 3000, },
4480                 { 4125, 3000, },
4481                 { 4125, 3000, },
4482                 { 4125, 3000, },
4483                 { 4125, 3000, },
4484                 { 4125, 3000, },
4485                 { 4125, 3000, },
4486                 { 4125, 3000, },
4487                 { 4125, 3000, },
4488                 { 4125, 3000, },
4489                 { 4125, 3000, },
4490                 { 4125, 3000, },
4491                 { 4125, 3000, },
4492                 { 4125, 3000, },
4493                 { 4250, 3125, },
4494                 { 4375, 3250, },
4495                 { 4500, 3375, },
4496                 { 4625, 3500, },
4497                 { 4750, 3625, },
4498                 { 4875, 3750, },
4499                 { 5000, 3875, },
4500                 { 5125, 4000, },
4501                 { 5250, 4125, },
4502                 { 5375, 4250, },
4503                 { 5500, 4375, },
4504                 { 5625, 4500, },
4505                 { 5750, 4625, },
4506                 { 5875, 4750, },
4507                 { 6000, 4875, },
4508                 { 6125, 5000, },
4509                 { 6250, 5125, },
4510                 { 6375, 5250, },
4511                 { 6500, 5375, },
4512                 { 6625, 5500, },
4513                 { 6750, 5625, },
4514                 { 6875, 5750, },
4515                 { 7000, 5875, },
4516                 { 7125, 6000, },
4517                 { 7250, 6125, },
4518                 { 7375, 6250, },
4519                 { 7500, 6375, },
4520                 { 7625, 6500, },
4521                 { 7750, 6625, },
4522                 { 7875, 6750, },
4523                 { 8000, 6875, },
4524                 { 8125, 7000, },
4525                 { 8250, 7125, },
4526                 { 8375, 7250, },
4527                 { 8500, 7375, },
4528                 { 8625, 7500, },
4529                 { 8750, 7625, },
4530                 { 8875, 7750, },
4531                 { 9000, 7875, },
4532                 { 9125, 8000, },
4533                 { 9250, 8125, },
4534                 { 9375, 8250, },
4535                 { 9500, 8375, },
4536                 { 9625, 8500, },
4537                 { 9750, 8625, },
4538                 { 9875, 8750, },
4539                 { 10000, 8875, },
4540                 { 10125, 9000, },
4541                 { 10250, 9125, },
4542                 { 10375, 9250, },
4543                 { 10500, 9375, },
4544                 { 10625, 9500, },
4545                 { 10750, 9625, },
4546                 { 10875, 9750, },
4547                 { 11000, 9875, },
4548                 { 11125, 10000, },
4549                 { 11250, 10125, },
4550                 { 11375, 10250, },
4551                 { 11500, 10375, },
4552                 { 11625, 10500, },
4553                 { 11750, 10625, },
4554                 { 11875, 10750, },
4555                 { 12000, 10875, },
4556                 { 12125, 11000, },
4557                 { 12250, 11125, },
4558                 { 12375, 11250, },
4559                 { 12500, 11375, },
4560                 { 12625, 11500, },
4561                 { 12750, 11625, },
4562                 { 12875, 11750, },
4563                 { 13000, 11875, },
4564                 { 13125, 12000, },
4565                 { 13250, 12125, },
4566                 { 13375, 12250, },
4567                 { 13500, 12375, },
4568                 { 13625, 12500, },
4569                 { 13750, 12625, },
4570                 { 13875, 12750, },
4571                 { 14000, 12875, },
4572                 { 14125, 13000, },
4573                 { 14250, 13125, },
4574                 { 14375, 13250, },
4575                 { 14500, 13375, },
4576                 { 14625, 13500, },
4577                 { 14750, 13625, },
4578                 { 14875, 13750, },
4579                 { 15000, 13875, },
4580                 { 15125, 14000, },
4581                 { 15250, 14125, },
4582                 { 15375, 14250, },
4583                 { 15500, 14375, },
4584                 { 15625, 14500, },
4585                 { 15750, 14625, },
4586                 { 15875, 14750, },
4587                 { 16000, 14875, },
4588                 { 16125, 15000, },
4589         };
4590         if (INTEL_INFO(dev)->is_mobile)
4591                 return v_table[pxvid].vm;
4592         else
4593                 return v_table[pxvid].vd;
4594 }
4595
4596 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4597 {
4598         struct timespec now, diff1;
4599         u64 diff;
4600         unsigned long diffms;
4601         u32 count;
4602
4603         assert_spin_locked(&mchdev_lock);
4604
4605         getrawmonotonic(&now);
4606         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4607
4608         /* Don't divide by 0 */
4609         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4610         if (!diffms)
4611                 return;
4612
4613         count = I915_READ(GFXEC);
4614
4615         if (count < dev_priv->ips.last_count2) {
4616                 diff = ~0UL - dev_priv->ips.last_count2;
4617                 diff += count;
4618         } else {
4619                 diff = count - dev_priv->ips.last_count2;
4620         }
4621
4622         dev_priv->ips.last_count2 = count;
4623         dev_priv->ips.last_time2 = now;
4624
4625         /* More magic constants... */
4626         diff = diff * 1181;
4627         diff = div_u64(diff, diffms * 10);
4628         dev_priv->ips.gfx_power = diff;
4629 }
4630
4631 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4632 {
4633         struct drm_device *dev = dev_priv->dev;
4634
4635         if (INTEL_INFO(dev)->gen != 5)
4636                 return;
4637
4638         spin_lock_irq(&mchdev_lock);
4639
4640         __i915_update_gfx_val(dev_priv);
4641
4642         spin_unlock_irq(&mchdev_lock);
4643 }
4644
4645 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4646 {
4647         unsigned long t, corr, state1, corr2, state2;
4648         u32 pxvid, ext_v;
4649
4650         assert_spin_locked(&mchdev_lock);
4651
4652         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4653         pxvid = (pxvid >> 24) & 0x7f;
4654         ext_v = pvid_to_extvid(dev_priv, pxvid);
4655
4656         state1 = ext_v;
4657
4658         t = i915_mch_val(dev_priv);
4659
4660         /* Revel in the empirically derived constants */
4661
4662         /* Correction factor in 1/100000 units */
4663         if (t > 80)
4664                 corr = ((t * 2349) + 135940);
4665         else if (t >= 50)
4666                 corr = ((t * 964) + 29317);
4667         else /* < 50 */
4668                 corr = ((t * 301) + 1004);
4669
4670         corr = corr * ((150142 * state1) / 10000 - 78642);
4671         corr /= 100000;
4672         corr2 = (corr * dev_priv->ips.corr);
4673
4674         state2 = (corr2 * state1) / 10000;
4675         state2 /= 100; /* convert to mW */
4676
4677         __i915_update_gfx_val(dev_priv);
4678
4679         return dev_priv->ips.gfx_power + state2;
4680 }
4681
4682 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4683 {
4684         struct drm_device *dev = dev_priv->dev;
4685         unsigned long val;
4686
4687         if (INTEL_INFO(dev)->gen != 5)
4688                 return 0;
4689
4690         spin_lock_irq(&mchdev_lock);
4691
4692         val = __i915_gfx_val(dev_priv);
4693
4694         spin_unlock_irq(&mchdev_lock);
4695
4696         return val;
4697 }
4698
4699 /**
4700  * i915_read_mch_val - return value for IPS use
4701  *
4702  * Calculate and return a value for the IPS driver to use when deciding whether
4703  * we have thermal and power headroom to increase CPU or GPU power budget.
4704  */
4705 unsigned long i915_read_mch_val(void)
4706 {
4707         struct drm_i915_private *dev_priv;
4708         unsigned long chipset_val, graphics_val, ret = 0;
4709
4710         spin_lock_irq(&mchdev_lock);
4711         if (!i915_mch_dev)
4712                 goto out_unlock;
4713         dev_priv = i915_mch_dev;
4714
4715         chipset_val = __i915_chipset_val(dev_priv);
4716         graphics_val = __i915_gfx_val(dev_priv);
4717
4718         ret = chipset_val + graphics_val;
4719
4720 out_unlock:
4721         spin_unlock_irq(&mchdev_lock);
4722
4723         return ret;
4724 }
4725 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4726
4727 /**
4728  * i915_gpu_raise - raise GPU frequency limit
4729  *
4730  * Raise the limit; IPS indicates we have thermal headroom.
4731  */
4732 bool i915_gpu_raise(void)
4733 {
4734         struct drm_i915_private *dev_priv;
4735         bool ret = true;
4736
4737         spin_lock_irq(&mchdev_lock);
4738         if (!i915_mch_dev) {
4739                 ret = false;
4740                 goto out_unlock;
4741         }
4742         dev_priv = i915_mch_dev;
4743
4744         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4745                 dev_priv->ips.max_delay--;
4746
4747 out_unlock:
4748         spin_unlock_irq(&mchdev_lock);
4749
4750         return ret;
4751 }
4752 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4753
4754 /**
4755  * i915_gpu_lower - lower GPU frequency limit
4756  *
4757  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4758  * frequency maximum.
4759  */
4760 bool i915_gpu_lower(void)
4761 {
4762         struct drm_i915_private *dev_priv;
4763         bool ret = true;
4764
4765         spin_lock_irq(&mchdev_lock);
4766         if (!i915_mch_dev) {
4767                 ret = false;
4768                 goto out_unlock;
4769         }
4770         dev_priv = i915_mch_dev;
4771
4772         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4773                 dev_priv->ips.max_delay++;
4774
4775 out_unlock:
4776         spin_unlock_irq(&mchdev_lock);
4777
4778         return ret;
4779 }
4780 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4781
4782 /**
4783  * i915_gpu_busy - indicate GPU business to IPS
4784  *
4785  * Tell the IPS driver whether or not the GPU is busy.
4786  */
4787 bool i915_gpu_busy(void)
4788 {
4789         struct drm_i915_private *dev_priv;
4790         struct intel_engine_cs *ring;
4791         bool ret = false;
4792         int i;
4793
4794         spin_lock_irq(&mchdev_lock);
4795         if (!i915_mch_dev)
4796                 goto out_unlock;
4797         dev_priv = i915_mch_dev;
4798
4799         for_each_ring(ring, dev_priv, i)
4800                 ret |= !list_empty(&ring->request_list);
4801
4802 out_unlock:
4803         spin_unlock_irq(&mchdev_lock);
4804
4805         return ret;
4806 }
4807 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4808
4809 /**
4810  * i915_gpu_turbo_disable - disable graphics turbo
4811  *
4812  * Disable graphics turbo by resetting the max frequency and setting the
4813  * current frequency to the default.
4814  */
4815 bool i915_gpu_turbo_disable(void)
4816 {
4817         struct drm_i915_private *dev_priv;
4818         bool ret = true;
4819
4820         spin_lock_irq(&mchdev_lock);
4821         if (!i915_mch_dev) {
4822                 ret = false;
4823                 goto out_unlock;
4824         }
4825         dev_priv = i915_mch_dev;
4826
4827         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4828
4829         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4830                 ret = false;
4831
4832 out_unlock:
4833         spin_unlock_irq(&mchdev_lock);
4834
4835         return ret;
4836 }
4837 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4838
4839 /**
4840  * Tells the intel_ips driver that the i915 driver is now loaded, if
4841  * IPS got loaded first.
4842  *
4843  * This awkward dance is so that neither module has to depend on the
4844  * other in order for IPS to do the appropriate communication of
4845  * GPU turbo limits to i915.
4846  */
4847 static void
4848 ips_ping_for_i915_load(void)
4849 {
4850         void (*link)(void);
4851
4852         link = symbol_get(ips_link_to_i915_driver);
4853         if (link) {
4854                 link();
4855                 symbol_put(ips_link_to_i915_driver);
4856         }
4857 }
4858
4859 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4860 {
4861         /* We only register the i915 ips part with intel-ips once everything is
4862          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4863         spin_lock_irq(&mchdev_lock);
4864         i915_mch_dev = dev_priv;
4865         spin_unlock_irq(&mchdev_lock);
4866
4867         ips_ping_for_i915_load();
4868 }
4869
4870 void intel_gpu_ips_teardown(void)
4871 {
4872         spin_lock_irq(&mchdev_lock);
4873         i915_mch_dev = NULL;
4874         spin_unlock_irq(&mchdev_lock);
4875 }
4876
4877 static void intel_init_emon(struct drm_device *dev)
4878 {
4879         struct drm_i915_private *dev_priv = dev->dev_private;
4880         u32 lcfuse;
4881         u8 pxw[16];
4882         int i;
4883
4884         /* Disable to program */
4885         I915_WRITE(ECR, 0);
4886         POSTING_READ(ECR);
4887
4888         /* Program energy weights for various events */
4889         I915_WRITE(SDEW, 0x15040d00);
4890         I915_WRITE(CSIEW0, 0x007f0000);
4891         I915_WRITE(CSIEW1, 0x1e220004);
4892         I915_WRITE(CSIEW2, 0x04000004);
4893
4894         for (i = 0; i < 5; i++)
4895                 I915_WRITE(PEW + (i * 4), 0);
4896         for (i = 0; i < 3; i++)
4897                 I915_WRITE(DEW + (i * 4), 0);
4898
4899         /* Program P-state weights to account for frequency power adjustment */
4900         for (i = 0; i < 16; i++) {
4901                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4902                 unsigned long freq = intel_pxfreq(pxvidfreq);
4903                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4904                         PXVFREQ_PX_SHIFT;
4905                 unsigned long val;
4906
4907                 val = vid * vid;
4908                 val *= (freq / 1000);
4909                 val *= 255;
4910                 val /= (127*127*900);
4911                 if (val > 0xff)
4912                         DRM_ERROR("bad pxval: %ld\n", val);
4913                 pxw[i] = val;
4914         }
4915         /* Render standby states get 0 weight */
4916         pxw[14] = 0;
4917         pxw[15] = 0;
4918
4919         for (i = 0; i < 4; i++) {
4920                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4921                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4922                 I915_WRITE(PXW + (i * 4), val);
4923         }
4924
4925         /* Adjust magic regs to magic values (more experimental results) */
4926         I915_WRITE(OGW0, 0);
4927         I915_WRITE(OGW1, 0);
4928         I915_WRITE(EG0, 0x00007f00);
4929         I915_WRITE(EG1, 0x0000000e);
4930         I915_WRITE(EG2, 0x000e0000);
4931         I915_WRITE(EG3, 0x68000300);
4932         I915_WRITE(EG4, 0x42000000);
4933         I915_WRITE(EG5, 0x00140031);
4934         I915_WRITE(EG6, 0);
4935         I915_WRITE(EG7, 0);
4936
4937         for (i = 0; i < 8; i++)
4938                 I915_WRITE(PXWL + (i * 4), 0);
4939
4940         /* Enable PMON + select events */
4941         I915_WRITE(ECR, 0x80000019);
4942
4943         lcfuse = I915_READ(LCFUSE02);
4944
4945         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4946 }
4947
4948 void intel_init_gt_powersave(struct drm_device *dev)
4949 {
4950         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4951
4952         if (IS_CHERRYVIEW(dev))
4953                 cherryview_init_gt_powersave(dev);
4954         else if (IS_VALLEYVIEW(dev))
4955                 valleyview_init_gt_powersave(dev);
4956 }
4957
4958 void intel_cleanup_gt_powersave(struct drm_device *dev)
4959 {
4960         if (IS_CHERRYVIEW(dev))
4961                 return;
4962         else if (IS_VALLEYVIEW(dev))
4963                 valleyview_cleanup_gt_powersave(dev);
4964 }
4965
4966 /**
4967  * intel_suspend_gt_powersave - suspend PM work and helper threads
4968  * @dev: drm device
4969  *
4970  * We don't want to disable RC6 or other features here, we just want
4971  * to make sure any work we've queued has finished and won't bother
4972  * us while we're suspended.
4973  */
4974 void intel_suspend_gt_powersave(struct drm_device *dev)
4975 {
4976         struct drm_i915_private *dev_priv = dev->dev_private;
4977
4978         /* Interrupts should be disabled already to avoid re-arming. */
4979         WARN_ON(intel_irqs_enabled(dev_priv));
4980
4981         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4982
4983         cancel_work_sync(&dev_priv->rps.work);
4984
4985         /* Force GPU to min freq during suspend */
4986         gen6_rps_idle(dev_priv);
4987 }
4988
4989 void intel_disable_gt_powersave(struct drm_device *dev)
4990 {
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992
4993         /* Interrupts should be disabled already to avoid re-arming. */
4994         WARN_ON(intel_irqs_enabled(dev_priv));
4995
4996         if (IS_IRONLAKE_M(dev)) {
4997                 ironlake_disable_drps(dev);
4998                 ironlake_disable_rc6(dev);
4999         } else if (INTEL_INFO(dev)->gen >= 6) {
5000                 intel_suspend_gt_powersave(dev);
5001
5002                 mutex_lock(&dev_priv->rps.hw_lock);
5003                 if (IS_CHERRYVIEW(dev))
5004                         cherryview_disable_rps(dev);
5005                 else if (IS_VALLEYVIEW(dev))
5006                         valleyview_disable_rps(dev);
5007                 else
5008                         gen6_disable_rps(dev);
5009                 dev_priv->rps.enabled = false;
5010                 mutex_unlock(&dev_priv->rps.hw_lock);
5011         }
5012 }
5013
5014 static void intel_gen6_powersave_work(struct work_struct *work)
5015 {
5016         struct drm_i915_private *dev_priv =
5017                 container_of(work, struct drm_i915_private,
5018                              rps.delayed_resume_work.work);
5019         struct drm_device *dev = dev_priv->dev;
5020
5021         mutex_lock(&dev_priv->rps.hw_lock);
5022
5023         if (IS_CHERRYVIEW(dev)) {
5024                 cherryview_enable_rps(dev);
5025         } else if (IS_VALLEYVIEW(dev)) {
5026                 valleyview_enable_rps(dev);
5027         } else if (IS_BROADWELL(dev)) {
5028                 gen8_enable_rps(dev);
5029                 __gen6_update_ring_freq(dev);
5030         } else {
5031                 gen6_enable_rps(dev);
5032                 __gen6_update_ring_freq(dev);
5033         }
5034         dev_priv->rps.enabled = true;
5035         mutex_unlock(&dev_priv->rps.hw_lock);
5036
5037         intel_runtime_pm_put(dev_priv);
5038 }
5039
5040 void intel_enable_gt_powersave(struct drm_device *dev)
5041 {
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043
5044         if (IS_IRONLAKE_M(dev)) {
5045                 mutex_lock(&dev->struct_mutex);
5046                 ironlake_enable_drps(dev);
5047                 ironlake_enable_rc6(dev);
5048                 intel_init_emon(dev);
5049                 mutex_unlock(&dev->struct_mutex);
5050         } else if (INTEL_INFO(dev)->gen >= 6) {
5051                 /*
5052                  * PCU communication is slow and this doesn't need to be
5053                  * done at any specific time, so do this out of our fast path
5054                  * to make resume and init faster.
5055                  *
5056                  * We depend on the HW RC6 power context save/restore
5057                  * mechanism when entering D3 through runtime PM suspend. So
5058                  * disable RPM until RPS/RC6 is properly setup. We can only
5059                  * get here via the driver load/system resume/runtime resume
5060                  * paths, so the _noresume version is enough (and in case of
5061                  * runtime resume it's necessary).
5062                  */
5063                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5064                                            round_jiffies_up_relative(HZ)))
5065                         intel_runtime_pm_get_noresume(dev_priv);
5066         }
5067 }
5068
5069 void intel_reset_gt_powersave(struct drm_device *dev)
5070 {
5071         struct drm_i915_private *dev_priv = dev->dev_private;
5072
5073         dev_priv->rps.enabled = false;
5074         intel_enable_gt_powersave(dev);
5075 }
5076
5077 static void ibx_init_clock_gating(struct drm_device *dev)
5078 {
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080
5081         /*
5082          * On Ibex Peak and Cougar Point, we need to disable clock
5083          * gating for the panel power sequencer or it will fail to
5084          * start up when no ports are active.
5085          */
5086         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5087 }
5088
5089 static void g4x_disable_trickle_feed(struct drm_device *dev)
5090 {
5091         struct drm_i915_private *dev_priv = dev->dev_private;
5092         int pipe;
5093
5094         for_each_pipe(pipe) {
5095                 I915_WRITE(DSPCNTR(pipe),
5096                            I915_READ(DSPCNTR(pipe)) |
5097                            DISPPLANE_TRICKLE_FEED_DISABLE);
5098                 intel_flush_primary_plane(dev_priv, pipe);
5099         }
5100 }
5101
5102 static void ilk_init_lp_watermarks(struct drm_device *dev)
5103 {
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105
5106         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5107         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5108         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5109
5110         /*
5111          * Don't touch WM1S_LP_EN here.
5112          * Doing so could cause underruns.
5113          */
5114 }
5115
5116 static void ironlake_init_clock_gating(struct drm_device *dev)
5117 {
5118         struct drm_i915_private *dev_priv = dev->dev_private;
5119         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5120
5121         /*
5122          * Required for FBC
5123          * WaFbcDisableDpfcClockGating:ilk
5124          */
5125         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5126                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5127                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5128
5129         I915_WRITE(PCH_3DCGDIS0,
5130                    MARIUNIT_CLOCK_GATE_DISABLE |
5131                    SVSMUNIT_CLOCK_GATE_DISABLE);
5132         I915_WRITE(PCH_3DCGDIS1,
5133                    VFMUNIT_CLOCK_GATE_DISABLE);
5134
5135         /*
5136          * According to the spec the following bits should be set in
5137          * order to enable memory self-refresh
5138          * The bit 22/21 of 0x42004
5139          * The bit 5 of 0x42020
5140          * The bit 15 of 0x45000
5141          */
5142         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5143                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5144                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5145         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5146         I915_WRITE(DISP_ARB_CTL,
5147                    (I915_READ(DISP_ARB_CTL) |
5148                     DISP_FBC_WM_DIS));
5149
5150         ilk_init_lp_watermarks(dev);
5151
5152         /*
5153          * Based on the document from hardware guys the following bits
5154          * should be set unconditionally in order to enable FBC.
5155          * The bit 22 of 0x42000
5156          * The bit 22 of 0x42004
5157          * The bit 7,8,9 of 0x42020.
5158          */
5159         if (IS_IRONLAKE_M(dev)) {
5160                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5161                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5162                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5163                            ILK_FBCQ_DIS);
5164                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5165                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5166                            ILK_DPARB_GATE);
5167         }
5168
5169         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5170
5171         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5172                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5173                    ILK_ELPIN_409_SELECT);
5174         I915_WRITE(_3D_CHICKEN2,
5175                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5176                    _3D_CHICKEN2_WM_READ_PIPELINED);
5177
5178         /* WaDisableRenderCachePipelinedFlush:ilk */
5179         I915_WRITE(CACHE_MODE_0,
5180                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5181
5182         /* WaDisable_RenderCache_OperationalFlush:ilk */
5183         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5184
5185         g4x_disable_trickle_feed(dev);
5186
5187         ibx_init_clock_gating(dev);
5188 }
5189
5190 static void cpt_init_clock_gating(struct drm_device *dev)
5191 {
5192         struct drm_i915_private *dev_priv = dev->dev_private;
5193         int pipe;
5194         uint32_t val;
5195
5196         /*
5197          * On Ibex Peak and Cougar Point, we need to disable clock
5198          * gating for the panel power sequencer or it will fail to
5199          * start up when no ports are active.
5200          */
5201         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5202                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5203                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5204         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5205                    DPLS_EDP_PPS_FIX_DIS);
5206         /* The below fixes the weird display corruption, a few pixels shifted
5207          * downward, on (only) LVDS of some HP laptops with IVY.
5208          */
5209         for_each_pipe(pipe) {
5210                 val = I915_READ(TRANS_CHICKEN2(pipe));
5211                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5212                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5213                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5214                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5215                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5216                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5217                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5218                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5219         }
5220         /* WADP0ClockGatingDisable */
5221         for_each_pipe(pipe) {
5222                 I915_WRITE(TRANS_CHICKEN1(pipe),
5223                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5224         }
5225 }
5226
5227 static void gen6_check_mch_setup(struct drm_device *dev)
5228 {
5229         struct drm_i915_private *dev_priv = dev->dev_private;
5230         uint32_t tmp;
5231
5232         tmp = I915_READ(MCH_SSKPD);
5233         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5234                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5235                 DRM_INFO("This can cause pipe underruns and display issues.\n");
5236                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5237         }
5238 }
5239
5240 static void gen6_init_clock_gating(struct drm_device *dev)
5241 {
5242         struct drm_i915_private *dev_priv = dev->dev_private;
5243         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5244
5245         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5246
5247         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5248                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5249                    ILK_ELPIN_409_SELECT);
5250
5251         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5252         I915_WRITE(_3D_CHICKEN,
5253                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5254
5255         /* WaSetupGtModeTdRowDispatch:snb */
5256         if (IS_SNB_GT1(dev))
5257                 I915_WRITE(GEN6_GT_MODE,
5258                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5259
5260         /* WaDisable_RenderCache_OperationalFlush:snb */
5261         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5262
5263         /*
5264          * BSpec recoomends 8x4 when MSAA is used,
5265          * however in practice 16x4 seems fastest.
5266          *
5267          * Note that PS/WM thread counts depend on the WIZ hashing
5268          * disable bit, which we don't touch here, but it's good
5269          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5270          */
5271         I915_WRITE(GEN6_GT_MODE,
5272                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5273
5274         ilk_init_lp_watermarks(dev);
5275
5276         I915_WRITE(CACHE_MODE_0,
5277                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5278
5279         I915_WRITE(GEN6_UCGCTL1,
5280                    I915_READ(GEN6_UCGCTL1) |
5281                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5282                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5283
5284         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5285          * gating disable must be set.  Failure to set it results in
5286          * flickering pixels due to Z write ordering failures after
5287          * some amount of runtime in the Mesa "fire" demo, and Unigine
5288          * Sanctuary and Tropics, and apparently anything else with
5289          * alpha test or pixel discard.
5290          *
5291          * According to the spec, bit 11 (RCCUNIT) must also be set,
5292          * but we didn't debug actual testcases to find it out.
5293          *
5294          * WaDisableRCCUnitClockGating:snb
5295          * WaDisableRCPBUnitClockGating:snb
5296          */
5297         I915_WRITE(GEN6_UCGCTL2,
5298                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5299                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5300
5301         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5302         I915_WRITE(_3D_CHICKEN3,
5303                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5304
5305         /*
5306          * Bspec says:
5307          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5308          * 3DSTATE_SF number of SF output attributes is more than 16."
5309          */
5310         I915_WRITE(_3D_CHICKEN3,
5311                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5312
5313         /*
5314          * According to the spec the following bits should be
5315          * set in order to enable memory self-refresh and fbc:
5316          * The bit21 and bit22 of 0x42000
5317          * The bit21 and bit22 of 0x42004
5318          * The bit5 and bit7 of 0x42020
5319          * The bit14 of 0x70180
5320          * The bit14 of 0x71180
5321          *
5322          * WaFbcAsynchFlipDisableFbcQueue:snb
5323          */
5324         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5325                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5326                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5327         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5328                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5329                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5330         I915_WRITE(ILK_DSPCLK_GATE_D,
5331                    I915_READ(ILK_DSPCLK_GATE_D) |
5332                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5333                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5334
5335         g4x_disable_trickle_feed(dev);
5336
5337         cpt_init_clock_gating(dev);
5338
5339         gen6_check_mch_setup(dev);
5340 }
5341
5342 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5343 {
5344         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5345
5346         /*
5347          * WaVSThreadDispatchOverride:ivb,vlv
5348          *
5349          * This actually overrides the dispatch
5350          * mode for all thread types.
5351          */
5352         reg &= ~GEN7_FF_SCHED_MASK;
5353         reg |= GEN7_FF_TS_SCHED_HW;
5354         reg |= GEN7_FF_VS_SCHED_HW;
5355         reg |= GEN7_FF_DS_SCHED_HW;
5356
5357         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5358 }
5359
5360 static void lpt_init_clock_gating(struct drm_device *dev)
5361 {
5362         struct drm_i915_private *dev_priv = dev->dev_private;
5363
5364         /*
5365          * TODO: this bit should only be enabled when really needed, then
5366          * disabled when not needed anymore in order to save power.
5367          */
5368         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5369                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5370                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5371                            PCH_LP_PARTITION_LEVEL_DISABLE);
5372
5373         /* WADPOClockGatingDisable:hsw */
5374         I915_WRITE(_TRANSA_CHICKEN1,
5375                    I915_READ(_TRANSA_CHICKEN1) |
5376                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5377 }
5378
5379 static void lpt_suspend_hw(struct drm_device *dev)
5380 {
5381         struct drm_i915_private *dev_priv = dev->dev_private;
5382
5383         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5384                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5385
5386                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5387                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5388         }
5389 }
5390
5391 static void gen8_init_clock_gating(struct drm_device *dev)
5392 {
5393         struct drm_i915_private *dev_priv = dev->dev_private;
5394         enum pipe pipe;
5395
5396         I915_WRITE(WM3_LP_ILK, 0);
5397         I915_WRITE(WM2_LP_ILK, 0);
5398         I915_WRITE(WM1_LP_ILK, 0);
5399
5400         /* FIXME(BDW): Check all the w/a, some might only apply to
5401          * pre-production hw. */
5402
5403         /* WaDisablePartialInstShootdown:bdw */
5404         I915_WRITE(GEN8_ROW_CHICKEN,
5405                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5406
5407         /* WaDisableThreadStallDopClockGating:bdw */
5408         /* FIXME: Unclear whether we really need this on production bdw. */
5409         I915_WRITE(GEN8_ROW_CHICKEN,
5410                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5411
5412         /*
5413          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5414          * pre-production hardware
5415          */
5416         I915_WRITE(HALF_SLICE_CHICKEN3,
5417                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5418         I915_WRITE(HALF_SLICE_CHICKEN3,
5419                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5420         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5421
5422         I915_WRITE(_3D_CHICKEN3,
5423                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5424
5425         I915_WRITE(COMMON_SLICE_CHICKEN2,
5426                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5427
5428         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5429                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5430
5431         /* WaDisableDopClockGating:bdw May not be needed for production */
5432         I915_WRITE(GEN7_ROW_CHICKEN2,
5433                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5434
5435         /* WaSwitchSolVfFArbitrationPriority:bdw */
5436         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5437
5438         /* WaPsrDPAMaskVBlankInSRD:bdw */
5439         I915_WRITE(CHICKEN_PAR1_1,
5440                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5441
5442         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5443         for_each_pipe(pipe) {
5444                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5445                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5446                            BDW_DPRS_MASK_VBLANK_SRD);
5447         }
5448
5449         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5450          * workaround for for a possible hang in the unlikely event a TLB
5451          * invalidation occurs during a PSD flush.
5452          */
5453         I915_WRITE(HDC_CHICKEN0,
5454                    I915_READ(HDC_CHICKEN0) |
5455                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5456
5457         /* WaVSRefCountFullforceMissDisable:bdw */
5458         /* WaDSRefCountFullforceMissDisable:bdw */
5459         I915_WRITE(GEN7_FF_THREAD_MODE,
5460                    I915_READ(GEN7_FF_THREAD_MODE) &
5461                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5462
5463         /*
5464          * BSpec recommends 8x4 when MSAA is used,
5465          * however in practice 16x4 seems fastest.
5466          *
5467          * Note that PS/WM thread counts depend on the WIZ hashing
5468          * disable bit, which we don't touch here, but it's good
5469          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5470          */
5471         I915_WRITE(GEN7_GT_MODE,
5472                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5473
5474         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5475                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5476
5477         /* WaDisableSDEUnitClockGating:bdw */
5478         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5479                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5480
5481         /* Wa4x4STCOptimizationDisable:bdw */
5482         I915_WRITE(CACHE_MODE_1,
5483                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5484 }
5485
5486 static void haswell_init_clock_gating(struct drm_device *dev)
5487 {
5488         struct drm_i915_private *dev_priv = dev->dev_private;
5489
5490         ilk_init_lp_watermarks(dev);
5491
5492         /* L3 caching of data atomics doesn't work -- disable it. */
5493         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5494         I915_WRITE(HSW_ROW_CHICKEN3,
5495                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5496
5497         /* This is required by WaCatErrorRejectionIssue:hsw */
5498         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5499                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5500                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5501
5502         /* WaVSRefCountFullforceMissDisable:hsw */
5503         I915_WRITE(GEN7_FF_THREAD_MODE,
5504                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5505
5506         /* WaDisable_RenderCache_OperationalFlush:hsw */
5507         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5508
5509         /* enable HiZ Raw Stall Optimization */
5510         I915_WRITE(CACHE_MODE_0_GEN7,
5511                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5512
5513         /* WaDisable4x2SubspanOptimization:hsw */
5514         I915_WRITE(CACHE_MODE_1,
5515                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5516
5517         /*
5518          * BSpec recommends 8x4 when MSAA is used,
5519          * however in practice 16x4 seems fastest.
5520          *
5521          * Note that PS/WM thread counts depend on the WIZ hashing
5522          * disable bit, which we don't touch here, but it's good
5523          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5524          */
5525         I915_WRITE(GEN7_GT_MODE,
5526                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5527
5528         /* WaSwitchSolVfFArbitrationPriority:hsw */
5529         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5530
5531         /* WaRsPkgCStateDisplayPMReq:hsw */
5532         I915_WRITE(CHICKEN_PAR1_1,
5533                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5534
5535         lpt_init_clock_gating(dev);
5536 }
5537
5538 static void ivybridge_init_clock_gating(struct drm_device *dev)
5539 {
5540         struct drm_i915_private *dev_priv = dev->dev_private;
5541         uint32_t snpcr;
5542
5543         ilk_init_lp_watermarks(dev);
5544
5545         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5546
5547         /* WaDisableEarlyCull:ivb */
5548         I915_WRITE(_3D_CHICKEN3,
5549                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5550
5551         /* WaDisableBackToBackFlipFix:ivb */
5552         I915_WRITE(IVB_CHICKEN3,
5553                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5554                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5555
5556         /* WaDisablePSDDualDispatchEnable:ivb */
5557         if (IS_IVB_GT1(dev))
5558                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5559                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5560
5561         /* WaDisable_RenderCache_OperationalFlush:ivb */
5562         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5563
5564         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5565         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5566                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5567
5568         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5569         I915_WRITE(GEN7_L3CNTLREG1,
5570                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5571         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5572                    GEN7_WA_L3_CHICKEN_MODE);
5573         if (IS_IVB_GT1(dev))
5574                 I915_WRITE(GEN7_ROW_CHICKEN2,
5575                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5576         else {
5577                 /* must write both registers */
5578                 I915_WRITE(GEN7_ROW_CHICKEN2,
5579                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5580                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5581                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5582         }
5583
5584         /* WaForceL3Serialization:ivb */
5585         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5586                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5587
5588         /*
5589          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5590          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5591          */
5592         I915_WRITE(GEN6_UCGCTL2,
5593                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5594
5595         /* This is required by WaCatErrorRejectionIssue:ivb */
5596         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5597                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5598                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5599
5600         g4x_disable_trickle_feed(dev);
5601
5602         gen7_setup_fixed_func_scheduler(dev_priv);
5603
5604         if (0) { /* causes HiZ corruption on ivb:gt1 */
5605                 /* enable HiZ Raw Stall Optimization */
5606                 I915_WRITE(CACHE_MODE_0_GEN7,
5607                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5608         }
5609
5610         /* WaDisable4x2SubspanOptimization:ivb */
5611         I915_WRITE(CACHE_MODE_1,
5612                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5613
5614         /*
5615          * BSpec recommends 8x4 when MSAA is used,
5616          * however in practice 16x4 seems fastest.
5617          *
5618          * Note that PS/WM thread counts depend on the WIZ hashing
5619          * disable bit, which we don't touch here, but it's good
5620          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5621          */
5622         I915_WRITE(GEN7_GT_MODE,
5623                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5624
5625         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5626         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5627         snpcr |= GEN6_MBC_SNPCR_MED;
5628         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5629
5630         if (!HAS_PCH_NOP(dev))
5631                 cpt_init_clock_gating(dev);
5632
5633         gen6_check_mch_setup(dev);
5634 }
5635
5636 static void valleyview_init_clock_gating(struct drm_device *dev)
5637 {
5638         struct drm_i915_private *dev_priv = dev->dev_private;
5639         u32 val;
5640
5641         mutex_lock(&dev_priv->rps.hw_lock);
5642         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5643         mutex_unlock(&dev_priv->rps.hw_lock);
5644         switch ((val >> 6) & 3) {
5645         case 0:
5646         case 1:
5647                 dev_priv->mem_freq = 800;
5648                 break;
5649         case 2:
5650                 dev_priv->mem_freq = 1066;
5651                 break;
5652         case 3:
5653                 dev_priv->mem_freq = 1333;
5654                 break;
5655         }
5656         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5657
5658         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5659
5660         /* WaDisableEarlyCull:vlv */
5661         I915_WRITE(_3D_CHICKEN3,
5662                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5663
5664         /* WaDisableBackToBackFlipFix:vlv */
5665         I915_WRITE(IVB_CHICKEN3,
5666                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5667                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5668
5669         /* WaPsdDispatchEnable:vlv */
5670         /* WaDisablePSDDualDispatchEnable:vlv */
5671         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5672                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5673                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5674
5675         /* WaDisable_RenderCache_OperationalFlush:vlv */
5676         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5677
5678         /* WaForceL3Serialization:vlv */
5679         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5680                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5681
5682         /* WaDisableDopClockGating:vlv */
5683         I915_WRITE(GEN7_ROW_CHICKEN2,
5684                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5685
5686         /* This is required by WaCatErrorRejectionIssue:vlv */
5687         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5688                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5689                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5690
5691         gen7_setup_fixed_func_scheduler(dev_priv);
5692
5693         /*
5694          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5695          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5696          */
5697         I915_WRITE(GEN6_UCGCTL2,
5698                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5699
5700         /* WaDisableL3Bank2xClockGate:vlv
5701          * Disabling L3 clock gating- MMIO 940c[25] = 1
5702          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5703         I915_WRITE(GEN7_UCGCTL4,
5704                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5705
5706         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5707
5708         /*
5709          * BSpec says this must be set, even though
5710          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5711          */
5712         I915_WRITE(CACHE_MODE_1,
5713                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5714
5715         /*
5716          * WaIncreaseL3CreditsForVLVB0:vlv
5717          * This is the hardware default actually.
5718          */
5719         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5720
5721         /*
5722          * WaDisableVLVClockGating_VBIIssue:vlv
5723          * Disable clock gating on th GCFG unit to prevent a delay
5724          * in the reporting of vblank events.
5725          */
5726         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5727 }
5728
5729 static void cherryview_init_clock_gating(struct drm_device *dev)
5730 {
5731         struct drm_i915_private *dev_priv = dev->dev_private;
5732         u32 val;
5733
5734         mutex_lock(&dev_priv->rps.hw_lock);
5735         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
5736         mutex_unlock(&dev_priv->rps.hw_lock);
5737         switch ((val >> 2) & 0x7) {
5738         case 0:
5739         case 1:
5740                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
5741                         dev_priv->mem_freq = 1600;
5742                         break;
5743         case 2:
5744                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
5745                         dev_priv->mem_freq = 1600;
5746                         break;
5747         case 3:
5748                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
5749                         dev_priv->mem_freq = 2000;
5750                         break;
5751         case 4:
5752                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
5753                         dev_priv->mem_freq = 1600;
5754                         break;
5755         case 5:
5756                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
5757                         dev_priv->mem_freq = 1600;
5758                         break;
5759         }
5760         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5761
5762         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5763
5764         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5765
5766         /* WaDisablePartialInstShootdown:chv */
5767         I915_WRITE(GEN8_ROW_CHICKEN,
5768                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5769
5770         /* WaDisableThreadStallDopClockGating:chv */
5771         I915_WRITE(GEN8_ROW_CHICKEN,
5772                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5773
5774         /* WaVSRefCountFullforceMissDisable:chv */
5775         /* WaDSRefCountFullforceMissDisable:chv */
5776         I915_WRITE(GEN7_FF_THREAD_MODE,
5777                    I915_READ(GEN7_FF_THREAD_MODE) &
5778                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5779
5780         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5781         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5782                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5783
5784         /* WaDisableCSUnitClockGating:chv */
5785         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5786                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5787
5788         /* WaDisableSDEUnitClockGating:chv */
5789         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5790                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5791
5792         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5793         I915_WRITE(HALF_SLICE_CHICKEN3,
5794                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5795
5796         /* WaDisableGunitClockGating:chv (pre-production hw) */
5797         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5798                    GINT_DIS);
5799
5800         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5801         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5802                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5803
5804         /* WaDisableDopClockGating:chv (pre-production hw) */
5805         I915_WRITE(GEN7_ROW_CHICKEN2,
5806                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5807         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5808                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5809 }
5810
5811 static void g4x_init_clock_gating(struct drm_device *dev)
5812 {
5813         struct drm_i915_private *dev_priv = dev->dev_private;
5814         uint32_t dspclk_gate;
5815
5816         I915_WRITE(RENCLK_GATE_D1, 0);
5817         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5818                    GS_UNIT_CLOCK_GATE_DISABLE |
5819                    CL_UNIT_CLOCK_GATE_DISABLE);
5820         I915_WRITE(RAMCLK_GATE_D, 0);
5821         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5822                 OVRUNIT_CLOCK_GATE_DISABLE |
5823                 OVCUNIT_CLOCK_GATE_DISABLE;
5824         if (IS_GM45(dev))
5825                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5826         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5827
5828         /* WaDisableRenderCachePipelinedFlush */
5829         I915_WRITE(CACHE_MODE_0,
5830                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5831
5832         /* WaDisable_RenderCache_OperationalFlush:g4x */
5833         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5834
5835         g4x_disable_trickle_feed(dev);
5836 }
5837
5838 static void crestline_init_clock_gating(struct drm_device *dev)
5839 {
5840         struct drm_i915_private *dev_priv = dev->dev_private;
5841
5842         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5843         I915_WRITE(RENCLK_GATE_D2, 0);
5844         I915_WRITE(DSPCLK_GATE_D, 0);
5845         I915_WRITE(RAMCLK_GATE_D, 0);
5846         I915_WRITE16(DEUC, 0);
5847         I915_WRITE(MI_ARB_STATE,
5848                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5849
5850         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5851         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5852 }
5853
5854 static void broadwater_init_clock_gating(struct drm_device *dev)
5855 {
5856         struct drm_i915_private *dev_priv = dev->dev_private;
5857
5858         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5859                    I965_RCC_CLOCK_GATE_DISABLE |
5860                    I965_RCPB_CLOCK_GATE_DISABLE |
5861                    I965_ISC_CLOCK_GATE_DISABLE |
5862                    I965_FBC_CLOCK_GATE_DISABLE);
5863         I915_WRITE(RENCLK_GATE_D2, 0);
5864         I915_WRITE(MI_ARB_STATE,
5865                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5866
5867         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5868         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5869 }
5870
5871 static void gen3_init_clock_gating(struct drm_device *dev)
5872 {
5873         struct drm_i915_private *dev_priv = dev->dev_private;
5874         u32 dstate = I915_READ(D_STATE);
5875
5876         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5877                 DSTATE_DOT_CLOCK_GATING;
5878         I915_WRITE(D_STATE, dstate);
5879
5880         if (IS_PINEVIEW(dev))
5881                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5882
5883         /* IIR "flip pending" means done if this bit is set */
5884         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5885
5886         /* interrupts should cause a wake up from C3 */
5887         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5888
5889         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5890         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5891 }
5892
5893 static void i85x_init_clock_gating(struct drm_device *dev)
5894 {
5895         struct drm_i915_private *dev_priv = dev->dev_private;
5896
5897         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5898
5899         /* interrupts should cause a wake up from C3 */
5900         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5901                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5902 }
5903
5904 static void i830_init_clock_gating(struct drm_device *dev)
5905 {
5906         struct drm_i915_private *dev_priv = dev->dev_private;
5907
5908         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5909 }
5910
5911 void intel_init_clock_gating(struct drm_device *dev)
5912 {
5913         struct drm_i915_private *dev_priv = dev->dev_private;
5914
5915         dev_priv->display.init_clock_gating(dev);
5916 }
5917
5918 void intel_suspend_hw(struct drm_device *dev)
5919 {
5920         if (HAS_PCH_LPT(dev))
5921                 lpt_suspend_hw(dev);
5922 }
5923
5924 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5925         for (i = 0;                                                     \
5926              i < (power_domains)->power_well_count &&                   \
5927                  ((power_well) = &(power_domains)->power_wells[i]);     \
5928              i++)                                                       \
5929                 if ((power_well)->domains & (domain_mask))
5930
5931 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5932         for (i = (power_domains)->power_well_count - 1;                  \
5933              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5934              i--)                                                        \
5935                 if ((power_well)->domains & (domain_mask))
5936
5937 /**
5938  * We should only use the power well if we explicitly asked the hardware to
5939  * enable it, so check if it's enabled and also check if we've requested it to
5940  * be enabled.
5941  */
5942 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5943                                    struct i915_power_well *power_well)
5944 {
5945         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5946                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5947 }
5948
5949 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5950                                           enum intel_display_power_domain domain)
5951 {
5952         struct i915_power_domains *power_domains;
5953         struct i915_power_well *power_well;
5954         bool is_enabled;
5955         int i;
5956
5957         if (dev_priv->pm.suspended)
5958                 return false;
5959
5960         power_domains = &dev_priv->power_domains;
5961
5962         is_enabled = true;
5963
5964         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5965                 if (power_well->always_on)
5966                         continue;
5967
5968                 if (!power_well->hw_enabled) {
5969                         is_enabled = false;
5970                         break;
5971                 }
5972         }
5973
5974         return is_enabled;
5975 }
5976
5977 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5978                                  enum intel_display_power_domain domain)
5979 {
5980         struct i915_power_domains *power_domains;
5981         bool ret;
5982
5983         power_domains = &dev_priv->power_domains;
5984
5985         mutex_lock(&power_domains->lock);
5986         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5987         mutex_unlock(&power_domains->lock);
5988
5989         return ret;
5990 }
5991
5992 /*
5993  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5994  * when not needed anymore. We have 4 registers that can request the power well
5995  * to be enabled, and it will only be disabled if none of the registers is
5996  * requesting it to be enabled.
5997  */
5998 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5999 {
6000         struct drm_device *dev = dev_priv->dev;
6001
6002         /*
6003          * After we re-enable the power well, if we touch VGA register 0x3d5
6004          * we'll get unclaimed register interrupts. This stops after we write
6005          * anything to the VGA MSR register. The vgacon module uses this
6006          * register all the time, so if we unbind our driver and, as a
6007          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6008          * console_unlock(). So make here we touch the VGA MSR register, making
6009          * sure vgacon can keep working normally without triggering interrupts
6010          * and error messages.
6011          */
6012         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6013         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6014         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6015
6016         if (IS_BROADWELL(dev))
6017                 gen8_irq_power_well_post_enable(dev_priv);
6018 }
6019
6020 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6021                                struct i915_power_well *power_well, bool enable)
6022 {
6023         bool is_enabled, enable_requested;
6024         uint32_t tmp;
6025
6026         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6027         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6028         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6029
6030         if (enable) {
6031                 if (!enable_requested)
6032                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6033                                    HSW_PWR_WELL_ENABLE_REQUEST);
6034
6035                 if (!is_enabled) {
6036                         DRM_DEBUG_KMS("Enabling power well\n");
6037                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6038                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6039                                 DRM_ERROR("Timeout enabling power well\n");
6040                 }
6041
6042                 hsw_power_well_post_enable(dev_priv);
6043         } else {
6044                 if (enable_requested) {
6045                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6046                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6047                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6048                 }
6049         }
6050 }
6051
6052 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6053                                    struct i915_power_well *power_well)
6054 {
6055         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6056
6057         /*
6058          * We're taking over the BIOS, so clear any requests made by it since
6059          * the driver is in charge now.
6060          */
6061         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6062                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6063 }
6064
6065 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6066                                   struct i915_power_well *power_well)
6067 {
6068         hsw_set_power_well(dev_priv, power_well, true);
6069 }
6070
6071 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6072                                    struct i915_power_well *power_well)
6073 {
6074         hsw_set_power_well(dev_priv, power_well, false);
6075 }
6076
6077 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6078                                            struct i915_power_well *power_well)
6079 {
6080 }
6081
6082 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6083                                              struct i915_power_well *power_well)
6084 {
6085         return true;
6086 }
6087
6088 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6089                                struct i915_power_well *power_well, bool enable)
6090 {
6091         enum punit_power_well power_well_id = power_well->data;
6092         u32 mask;
6093         u32 state;
6094         u32 ctrl;
6095
6096         mask = PUNIT_PWRGT_MASK(power_well_id);
6097         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6098                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6099
6100         mutex_lock(&dev_priv->rps.hw_lock);
6101
6102 #define COND \
6103         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6104
6105         if (COND)
6106                 goto out;
6107
6108         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6109         ctrl &= ~mask;
6110         ctrl |= state;
6111         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6112
6113         if (wait_for(COND, 100))
6114                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6115                           state,
6116                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6117
6118 #undef COND
6119
6120 out:
6121         mutex_unlock(&dev_priv->rps.hw_lock);
6122 }
6123
6124 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6125                                    struct i915_power_well *power_well)
6126 {
6127         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6128 }
6129
6130 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6131                                   struct i915_power_well *power_well)
6132 {
6133         vlv_set_power_well(dev_priv, power_well, true);
6134 }
6135
6136 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6137                                    struct i915_power_well *power_well)
6138 {
6139         vlv_set_power_well(dev_priv, power_well, false);
6140 }
6141
6142 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6143                                    struct i915_power_well *power_well)
6144 {
6145         int power_well_id = power_well->data;
6146         bool enabled = false;
6147         u32 mask;
6148         u32 state;
6149         u32 ctrl;
6150
6151         mask = PUNIT_PWRGT_MASK(power_well_id);
6152         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6153
6154         mutex_lock(&dev_priv->rps.hw_lock);
6155
6156         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6157         /*
6158          * We only ever set the power-on and power-gate states, anything
6159          * else is unexpected.
6160          */
6161         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6162                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6163         if (state == ctrl)
6164                 enabled = true;
6165
6166         /*
6167          * A transient state at this point would mean some unexpected party
6168          * is poking at the power controls too.
6169          */
6170         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6171         WARN_ON(ctrl != state);
6172
6173         mutex_unlock(&dev_priv->rps.hw_lock);
6174
6175         return enabled;
6176 }
6177
6178 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6179                                           struct i915_power_well *power_well)
6180 {
6181         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6182
6183         vlv_set_power_well(dev_priv, power_well, true);
6184
6185         spin_lock_irq(&dev_priv->irq_lock);
6186         valleyview_enable_display_irqs(dev_priv);
6187         spin_unlock_irq(&dev_priv->irq_lock);
6188
6189         /*
6190          * During driver initialization/resume we can avoid restoring the
6191          * part of the HW/SW state that will be inited anyway explicitly.
6192          */
6193         if (dev_priv->power_domains.initializing)
6194                 return;
6195
6196         intel_hpd_init(dev_priv->dev);
6197
6198         i915_redisable_vga_power_on(dev_priv->dev);
6199 }
6200
6201 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6202                                            struct i915_power_well *power_well)
6203 {
6204         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6205
6206         spin_lock_irq(&dev_priv->irq_lock);
6207         valleyview_disable_display_irqs(dev_priv);
6208         spin_unlock_irq(&dev_priv->irq_lock);
6209
6210         vlv_set_power_well(dev_priv, power_well, false);
6211 }
6212
6213 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6214                                            struct i915_power_well *power_well)
6215 {
6216         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6217
6218         /*
6219          * Enable the CRI clock source so we can get at the
6220          * display and the reference clock for VGA
6221          * hotplug / manual detection.
6222          */
6223         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6224                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6225         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6226
6227         vlv_set_power_well(dev_priv, power_well, true);
6228
6229         /*
6230          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6231          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6232          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6233          *   b. The other bits such as sfr settings / modesel may all
6234          *      be set to 0.
6235          *
6236          * This should only be done on init and resume from S3 with
6237          * both PLLs disabled, or we risk losing DPIO and PLL
6238          * synchronization.
6239          */
6240         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6241 }
6242
6243 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6244                                             struct i915_power_well *power_well)
6245 {
6246         struct drm_device *dev = dev_priv->dev;
6247         enum pipe pipe;
6248
6249         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6250
6251         for_each_pipe(pipe)
6252                 assert_pll_disabled(dev_priv, pipe);
6253
6254         /* Assert common reset */
6255         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6256
6257         vlv_set_power_well(dev_priv, power_well, false);
6258 }
6259
6260 static void check_power_well_state(struct drm_i915_private *dev_priv,
6261                                    struct i915_power_well *power_well)
6262 {
6263         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6264
6265         if (power_well->always_on || !i915.disable_power_well) {
6266                 if (!enabled)
6267                         goto mismatch;
6268
6269                 return;
6270         }
6271
6272         if (enabled != (power_well->count > 0))
6273                 goto mismatch;
6274
6275         return;
6276
6277 mismatch:
6278         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6279                   power_well->name, power_well->always_on, enabled,
6280                   power_well->count, i915.disable_power_well);
6281 }
6282
6283 void intel_display_power_get(struct drm_i915_private *dev_priv,
6284                              enum intel_display_power_domain domain)
6285 {
6286         struct i915_power_domains *power_domains;
6287         struct i915_power_well *power_well;
6288         int i;
6289
6290         intel_runtime_pm_get(dev_priv);
6291
6292         power_domains = &dev_priv->power_domains;
6293
6294         mutex_lock(&power_domains->lock);
6295
6296         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6297                 if (!power_well->count++) {
6298                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6299                         power_well->ops->enable(dev_priv, power_well);
6300                         power_well->hw_enabled = true;
6301                 }
6302
6303                 check_power_well_state(dev_priv, power_well);
6304         }
6305
6306         power_domains->domain_use_count[domain]++;
6307
6308         mutex_unlock(&power_domains->lock);
6309 }
6310
6311 void intel_display_power_put(struct drm_i915_private *dev_priv,
6312                              enum intel_display_power_domain domain)
6313 {
6314         struct i915_power_domains *power_domains;
6315         struct i915_power_well *power_well;
6316         int i;
6317
6318         power_domains = &dev_priv->power_domains;
6319
6320         mutex_lock(&power_domains->lock);
6321
6322         WARN_ON(!power_domains->domain_use_count[domain]);
6323         power_domains->domain_use_count[domain]--;
6324
6325         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6326                 WARN_ON(!power_well->count);
6327
6328                 if (!--power_well->count && i915.disable_power_well) {
6329                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6330                         power_well->hw_enabled = false;
6331                         power_well->ops->disable(dev_priv, power_well);
6332                 }
6333
6334                 check_power_well_state(dev_priv, power_well);
6335         }
6336
6337         mutex_unlock(&power_domains->lock);
6338
6339         intel_runtime_pm_put(dev_priv);
6340 }
6341
6342 static struct i915_power_domains *hsw_pwr;
6343
6344 /* Display audio driver power well request */
6345 int i915_request_power_well(void)
6346 {
6347         struct drm_i915_private *dev_priv;
6348
6349         if (!hsw_pwr)
6350                 return -ENODEV;
6351
6352         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6353                                 power_domains);
6354         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6355         return 0;
6356 }
6357 EXPORT_SYMBOL_GPL(i915_request_power_well);
6358
6359 /* Display audio driver power well release */
6360 int i915_release_power_well(void)
6361 {
6362         struct drm_i915_private *dev_priv;
6363
6364         if (!hsw_pwr)
6365                 return -ENODEV;
6366
6367         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6368                                 power_domains);
6369         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6370         return 0;
6371 }
6372 EXPORT_SYMBOL_GPL(i915_release_power_well);
6373
6374 /*
6375  * Private interface for the audio driver to get CDCLK in kHz.
6376  *
6377  * Caller must request power well using i915_request_power_well() prior to
6378  * making the call.
6379  */
6380 int i915_get_cdclk_freq(void)
6381 {
6382         struct drm_i915_private *dev_priv;
6383
6384         if (!hsw_pwr)
6385                 return -ENODEV;
6386
6387         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6388                                 power_domains);
6389
6390         return intel_ddi_get_cdclk_freq(dev_priv);
6391 }
6392 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6393
6394
6395 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6396
6397 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6398         BIT(POWER_DOMAIN_PIPE_A) |                      \
6399         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6400         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6401         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6402         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6403         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6404         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6405         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6406         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6407         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6408         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6409         BIT(POWER_DOMAIN_PLLS) |                        \
6410         BIT(POWER_DOMAIN_INIT))
6411 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6412         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6413         BIT(POWER_DOMAIN_INIT))
6414
6415 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6416         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6417         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6418 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6419         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6420         BIT(POWER_DOMAIN_INIT))
6421
6422 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6423 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6424
6425 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6426         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6427         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6428         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6429         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6430         BIT(POWER_DOMAIN_PORT_CRT) |            \
6431         BIT(POWER_DOMAIN_INIT))
6432
6433 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6434         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6435         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6436         BIT(POWER_DOMAIN_INIT))
6437
6438 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6439         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6440         BIT(POWER_DOMAIN_INIT))
6441
6442 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6443         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6444         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6445         BIT(POWER_DOMAIN_INIT))
6446
6447 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6448         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6449         BIT(POWER_DOMAIN_INIT))
6450
6451 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6452         .sync_hw = i9xx_always_on_power_well_noop,
6453         .enable = i9xx_always_on_power_well_noop,
6454         .disable = i9xx_always_on_power_well_noop,
6455         .is_enabled = i9xx_always_on_power_well_enabled,
6456 };
6457
6458 static struct i915_power_well i9xx_always_on_power_well[] = {
6459         {
6460                 .name = "always-on",
6461                 .always_on = 1,
6462                 .domains = POWER_DOMAIN_MASK,
6463                 .ops = &i9xx_always_on_power_well_ops,
6464         },
6465 };
6466
6467 static const struct i915_power_well_ops hsw_power_well_ops = {
6468         .sync_hw = hsw_power_well_sync_hw,
6469         .enable = hsw_power_well_enable,
6470         .disable = hsw_power_well_disable,
6471         .is_enabled = hsw_power_well_enabled,
6472 };
6473
6474 static struct i915_power_well hsw_power_wells[] = {
6475         {
6476                 .name = "always-on",
6477                 .always_on = 1,
6478                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6479                 .ops = &i9xx_always_on_power_well_ops,
6480         },
6481         {
6482                 .name = "display",
6483                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6484                 .ops = &hsw_power_well_ops,
6485         },
6486 };
6487
6488 static struct i915_power_well bdw_power_wells[] = {
6489         {
6490                 .name = "always-on",
6491                 .always_on = 1,
6492                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6493                 .ops = &i9xx_always_on_power_well_ops,
6494         },
6495         {
6496                 .name = "display",
6497                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6498                 .ops = &hsw_power_well_ops,
6499         },
6500 };
6501
6502 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6503         .sync_hw = vlv_power_well_sync_hw,
6504         .enable = vlv_display_power_well_enable,
6505         .disable = vlv_display_power_well_disable,
6506         .is_enabled = vlv_power_well_enabled,
6507 };
6508
6509 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6510         .sync_hw = vlv_power_well_sync_hw,
6511         .enable = vlv_dpio_cmn_power_well_enable,
6512         .disable = vlv_dpio_cmn_power_well_disable,
6513         .is_enabled = vlv_power_well_enabled,
6514 };
6515
6516 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6517         .sync_hw = vlv_power_well_sync_hw,
6518         .enable = vlv_power_well_enable,
6519         .disable = vlv_power_well_disable,
6520         .is_enabled = vlv_power_well_enabled,
6521 };
6522
6523 static struct i915_power_well vlv_power_wells[] = {
6524         {
6525                 .name = "always-on",
6526                 .always_on = 1,
6527                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6528                 .ops = &i9xx_always_on_power_well_ops,
6529         },
6530         {
6531                 .name = "display",
6532                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6533                 .data = PUNIT_POWER_WELL_DISP2D,
6534                 .ops = &vlv_display_power_well_ops,
6535         },
6536         {
6537                 .name = "dpio-tx-b-01",
6538                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6539                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6540                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6541                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6542                 .ops = &vlv_dpio_power_well_ops,
6543                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6544         },
6545         {
6546                 .name = "dpio-tx-b-23",
6547                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6548                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6549                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6550                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6551                 .ops = &vlv_dpio_power_well_ops,
6552                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6553         },
6554         {
6555                 .name = "dpio-tx-c-01",
6556                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6557                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6558                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6559                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6560                 .ops = &vlv_dpio_power_well_ops,
6561                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6562         },
6563         {
6564                 .name = "dpio-tx-c-23",
6565                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6566                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6567                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6568                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6569                 .ops = &vlv_dpio_power_well_ops,
6570                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6571         },
6572         {
6573                 .name = "dpio-common",
6574                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6575                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6576                 .ops = &vlv_dpio_cmn_power_well_ops,
6577         },
6578 };
6579
6580 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6581                                                  enum punit_power_well power_well_id)
6582 {
6583         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6584         struct i915_power_well *power_well;
6585         int i;
6586
6587         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6588                 if (power_well->data == power_well_id)
6589                         return power_well;
6590         }
6591
6592         return NULL;
6593 }
6594
6595 #define set_power_wells(power_domains, __power_wells) ({                \
6596         (power_domains)->power_wells = (__power_wells);                 \
6597         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6598 })
6599
6600 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6601 {
6602         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6603
6604         mutex_init(&power_domains->lock);
6605
6606         /*
6607          * The enabling order will be from lower to higher indexed wells,
6608          * the disabling order is reversed.
6609          */
6610         if (IS_HASWELL(dev_priv->dev)) {
6611                 set_power_wells(power_domains, hsw_power_wells);
6612                 hsw_pwr = power_domains;
6613         } else if (IS_BROADWELL(dev_priv->dev)) {
6614                 set_power_wells(power_domains, bdw_power_wells);
6615                 hsw_pwr = power_domains;
6616         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6617                 set_power_wells(power_domains, vlv_power_wells);
6618         } else {
6619                 set_power_wells(power_domains, i9xx_always_on_power_well);
6620         }
6621
6622         return 0;
6623 }
6624
6625 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6626 {
6627         hsw_pwr = NULL;
6628 }
6629
6630 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6631 {
6632         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6633         struct i915_power_well *power_well;
6634         int i;
6635
6636         mutex_lock(&power_domains->lock);
6637         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6638                 power_well->ops->sync_hw(dev_priv, power_well);
6639                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6640                                                                      power_well);
6641         }
6642         mutex_unlock(&power_domains->lock);
6643 }
6644
6645 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
6646 {
6647         struct i915_power_well *cmn =
6648                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
6649         struct i915_power_well *disp2d =
6650                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
6651
6652         /* nothing to do if common lane is already off */
6653         if (!cmn->ops->is_enabled(dev_priv, cmn))
6654                 return;
6655
6656         /* If the display might be already active skip this */
6657         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
6658             I915_READ(DPIO_CTL) & DPIO_CMNRST)
6659                 return;
6660
6661         DRM_DEBUG_KMS("toggling display PHY side reset\n");
6662
6663         /* cmnlane needs DPLL registers */
6664         disp2d->ops->enable(dev_priv, disp2d);
6665
6666         /*
6667          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
6668          * Need to assert and de-assert PHY SB reset by gating the
6669          * common lane power, then un-gating it.
6670          * Simply ungating isn't enough to reset the PHY enough to get
6671          * ports and lanes running.
6672          */
6673         cmn->ops->disable(dev_priv, cmn);
6674 }
6675
6676 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6677 {
6678         struct drm_device *dev = dev_priv->dev;
6679         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6680
6681         power_domains->initializing = true;
6682
6683         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
6684                 mutex_lock(&power_domains->lock);
6685                 vlv_cmnlane_wa(dev_priv);
6686                 mutex_unlock(&power_domains->lock);
6687         }
6688
6689         /* For now, we need the power well to be always enabled. */
6690         intel_display_set_init_power(dev_priv, true);
6691         intel_power_domains_resume(dev_priv);
6692         power_domains->initializing = false;
6693 }
6694
6695 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6696 {
6697         intel_runtime_pm_get(dev_priv);
6698 }
6699
6700 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6701 {
6702         intel_runtime_pm_put(dev_priv);
6703 }
6704
6705 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6706 {
6707         struct drm_device *dev = dev_priv->dev;
6708         struct device *device = &dev->pdev->dev;
6709
6710         if (!HAS_RUNTIME_PM(dev))
6711                 return;
6712
6713         pm_runtime_get_sync(device);
6714         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6715 }
6716
6717 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6718 {
6719         struct drm_device *dev = dev_priv->dev;
6720         struct device *device = &dev->pdev->dev;
6721
6722         if (!HAS_RUNTIME_PM(dev))
6723                 return;
6724
6725         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6726         pm_runtime_get_noresume(device);
6727 }
6728
6729 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6730 {
6731         struct drm_device *dev = dev_priv->dev;
6732         struct device *device = &dev->pdev->dev;
6733
6734         if (!HAS_RUNTIME_PM(dev))
6735                 return;
6736
6737         pm_runtime_mark_last_busy(device);
6738         pm_runtime_put_autosuspend(device);
6739 }
6740
6741 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6742 {
6743         struct drm_device *dev = dev_priv->dev;
6744         struct device *device = &dev->pdev->dev;
6745
6746         if (!HAS_RUNTIME_PM(dev))
6747                 return;
6748
6749         pm_runtime_set_active(device);
6750
6751         /*
6752          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6753          * requirement.
6754          */
6755         if (!intel_enable_rc6(dev)) {
6756                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6757                 return;
6758         }
6759
6760         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6761         pm_runtime_mark_last_busy(device);
6762         pm_runtime_use_autosuspend(device);
6763
6764         pm_runtime_put_autosuspend(device);
6765 }
6766
6767 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6768 {
6769         struct drm_device *dev = dev_priv->dev;
6770         struct device *device = &dev->pdev->dev;
6771
6772         if (!HAS_RUNTIME_PM(dev))
6773                 return;
6774
6775         if (!intel_enable_rc6(dev))
6776                 return;
6777
6778         /* Make sure we're not suspended first. */
6779         pm_runtime_get_sync(device);
6780         pm_runtime_disable(device);
6781 }
6782
6783 /* Set up chip specific power management-related functions */
6784 void intel_init_pm(struct drm_device *dev)
6785 {
6786         struct drm_i915_private *dev_priv = dev->dev_private;
6787
6788         if (HAS_FBC(dev)) {
6789                 if (INTEL_INFO(dev)->gen >= 7) {
6790                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6791                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6792                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6793                 } else if (INTEL_INFO(dev)->gen >= 5) {
6794                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6795                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6796                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6797                 } else if (IS_GM45(dev)) {
6798                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6799                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6800                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6801                 } else {
6802                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6803                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6804                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6805
6806                         /* This value was pulled out of someone's hat */
6807                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6808                 }
6809         }
6810
6811         /* For cxsr */
6812         if (IS_PINEVIEW(dev))
6813                 i915_pineview_get_mem_freq(dev);
6814         else if (IS_GEN5(dev))
6815                 i915_ironlake_get_mem_freq(dev);
6816
6817         /* For FIFO watermark updates */
6818         if (HAS_PCH_SPLIT(dev)) {
6819                 ilk_setup_wm_latency(dev);
6820
6821                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6822                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6823                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6824                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6825                         dev_priv->display.update_wm = ilk_update_wm;
6826                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6827                 } else {
6828                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6829                                       "Disable CxSR\n");
6830                 }
6831
6832                 if (IS_GEN5(dev))
6833                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6834                 else if (IS_GEN6(dev))
6835                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6836                 else if (IS_IVYBRIDGE(dev))
6837                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6838                 else if (IS_HASWELL(dev))
6839                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6840                 else if (INTEL_INFO(dev)->gen == 8)
6841                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6842         } else if (IS_CHERRYVIEW(dev)) {
6843                 dev_priv->display.update_wm = valleyview_update_wm;
6844                 dev_priv->display.init_clock_gating =
6845                         cherryview_init_clock_gating;
6846         } else if (IS_VALLEYVIEW(dev)) {
6847                 dev_priv->display.update_wm = valleyview_update_wm;
6848                 dev_priv->display.init_clock_gating =
6849                         valleyview_init_clock_gating;
6850         } else if (IS_PINEVIEW(dev)) {
6851                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6852                                             dev_priv->is_ddr3,
6853                                             dev_priv->fsb_freq,
6854                                             dev_priv->mem_freq)) {
6855                         DRM_INFO("failed to find known CxSR latency "
6856                                  "(found ddr%s fsb freq %d, mem freq %d), "
6857                                  "disabling CxSR\n",
6858                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6859                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6860                         /* Disable CxSR and never update its watermark again */
6861                         intel_set_memory_cxsr(dev_priv, false);
6862                         dev_priv->display.update_wm = NULL;
6863                 } else
6864                         dev_priv->display.update_wm = pineview_update_wm;
6865                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6866         } else if (IS_G4X(dev)) {
6867                 dev_priv->display.update_wm = g4x_update_wm;
6868                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6869         } else if (IS_GEN4(dev)) {
6870                 dev_priv->display.update_wm = i965_update_wm;
6871                 if (IS_CRESTLINE(dev))
6872                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6873                 else if (IS_BROADWATER(dev))
6874                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6875         } else if (IS_GEN3(dev)) {
6876                 dev_priv->display.update_wm = i9xx_update_wm;
6877                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6878                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6879         } else if (IS_GEN2(dev)) {
6880                 if (INTEL_INFO(dev)->num_pipes == 1) {
6881                         dev_priv->display.update_wm = i845_update_wm;
6882                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6883                 } else {
6884                         dev_priv->display.update_wm = i9xx_update_wm;
6885                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6886                 }
6887
6888                 if (IS_I85X(dev) || IS_I865G(dev))
6889                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6890                 else
6891                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6892         } else {
6893                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6894         }
6895 }
6896
6897 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6898 {
6899         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6900
6901         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6902                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6903                 return -EAGAIN;
6904         }
6905
6906         I915_WRITE(GEN6_PCODE_DATA, *val);
6907         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6908
6909         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6910                      500)) {
6911                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6912                 return -ETIMEDOUT;
6913         }
6914
6915         *val = I915_READ(GEN6_PCODE_DATA);
6916         I915_WRITE(GEN6_PCODE_DATA, 0);
6917
6918         return 0;
6919 }
6920
6921 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6922 {
6923         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6924
6925         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6926                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6927                 return -EAGAIN;
6928         }
6929
6930         I915_WRITE(GEN6_PCODE_DATA, val);
6931         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6932
6933         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6934                      500)) {
6935                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6936                 return -ETIMEDOUT;
6937         }
6938
6939         I915_WRITE(GEN6_PCODE_DATA, 0);
6940
6941         return 0;
6942 }
6943
6944 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6945 {
6946         int div;
6947
6948         /* 4 x czclk */
6949         switch (dev_priv->mem_freq) {
6950         case 800:
6951                 div = 10;
6952                 break;
6953         case 1066:
6954                 div = 12;
6955                 break;
6956         case 1333:
6957                 div = 16;
6958                 break;
6959         default:
6960                 return -1;
6961         }
6962
6963         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6964 }
6965
6966 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6967 {
6968         int mul;
6969
6970         /* 4 x czclk */
6971         switch (dev_priv->mem_freq) {
6972         case 800:
6973                 mul = 10;
6974                 break;
6975         case 1066:
6976                 mul = 12;
6977                 break;
6978         case 1333:
6979                 mul = 16;
6980                 break;
6981         default:
6982                 return -1;
6983         }
6984
6985         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6986 }
6987
6988 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6989 {
6990         int div, freq;
6991
6992         switch (dev_priv->rps.cz_freq) {
6993         case 200:
6994                 div = 5;
6995                 break;
6996         case 267:
6997                 div = 6;
6998                 break;
6999         case 320:
7000         case 333:
7001         case 400:
7002                 div = 8;
7003                 break;
7004         default:
7005                 return -1;
7006         }
7007
7008         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7009
7010         return freq;
7011 }
7012
7013 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7014 {
7015         int mul, opcode;
7016
7017         switch (dev_priv->rps.cz_freq) {
7018         case 200:
7019                 mul = 5;
7020                 break;
7021         case 267:
7022                 mul = 6;
7023                 break;
7024         case 320:
7025         case 333:
7026         case 400:
7027                 mul = 8;
7028                 break;
7029         default:
7030                 return -1;
7031         }
7032
7033         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7034
7035         return opcode;
7036 }
7037
7038 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7039 {
7040         int ret = -1;
7041
7042         if (IS_CHERRYVIEW(dev_priv->dev))
7043                 ret = chv_gpu_freq(dev_priv, val);
7044         else if (IS_VALLEYVIEW(dev_priv->dev))
7045                 ret = byt_gpu_freq(dev_priv, val);
7046
7047         return ret;
7048 }
7049
7050 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7051 {
7052         int ret = -1;
7053
7054         if (IS_CHERRYVIEW(dev_priv->dev))
7055                 ret = chv_freq_opcode(dev_priv, val);
7056         else if (IS_VALLEYVIEW(dev_priv->dev))
7057                 ret = byt_freq_opcode(dev_priv, val);
7058
7059         return ret;
7060 }
7061
7062 void intel_pm_setup(struct drm_device *dev)
7063 {
7064         struct drm_i915_private *dev_priv = dev->dev_private;
7065
7066         mutex_init(&dev_priv->rps.hw_lock);
7067
7068         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7069                           intel_gen6_powersave_work);
7070
7071         dev_priv->pm.suspended = false;
7072         dev_priv->pm._irqs_disabled = false;
7073 }