Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534                 max_width = 4096;
535                 max_height = 2048;
536         } else {
537                 max_width = 2048;
538                 max_height = 1536;
539         }
540         if (intel_crtc->config.pipe_src_w > max_width ||
541             intel_crtc->config.pipe_src_h > max_height) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544                 goto out_disable;
545         }
546         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547             intel_crtc->plane != PLANE_A) {
548                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
550                 goto out_disable;
551         }
552
553         /* The use of a CPU fence is mandatory in order to detect writes
554          * by the CPU to the scanout and trigger updates to the FBC.
555          */
556         if (obj->tiling_mode != I915_TILING_X ||
557             obj->fence_reg == I915_FENCE_REG_NONE) {
558                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560                 goto out_disable;
561         }
562
563         /* If the kernel debugger is active, always disable compression */
564         if (in_dbg_master())
565                 goto out_disable;
566
567         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570                 goto out_disable;
571         }
572
573         /* If the scanout has not changed, don't modify the FBC settings.
574          * Note that we make the fundamental assumption that the fb->obj
575          * cannot be unpinned (and have its GTT offset and fence revoked)
576          * without first being decoupled from the scanout and FBC disabled.
577          */
578         if (dev_priv->fbc.plane == intel_crtc->plane &&
579             dev_priv->fbc.fb_id == fb->base.id &&
580             dev_priv->fbc.y == crtc->y)
581                 return;
582
583         if (intel_fbc_enabled(dev)) {
584                 /* We update FBC along two paths, after changing fb/crtc
585                  * configuration (modeswitching) and after page-flipping
586                  * finishes. For the latter, we know that not only did
587                  * we disable the FBC at the start of the page-flip
588                  * sequence, but also more than one vblank has passed.
589                  *
590                  * For the former case of modeswitching, it is possible
591                  * to switch between two FBC valid configurations
592                  * instantaneously so we do need to disable the FBC
593                  * before we can modify its control registers. We also
594                  * have to wait for the next vblank for that to take
595                  * effect. However, since we delay enabling FBC we can
596                  * assume that a vblank has passed since disabling and
597                  * that we can safely alter the registers in the deferred
598                  * callback.
599                  *
600                  * In the scenario that we go from a valid to invalid
601                  * and then back to valid FBC configuration we have
602                  * no strict enforcement that a vblank occurred since
603                  * disabling the FBC. However, along all current pipe
604                  * disabling paths we do need to wait for a vblank at
605                  * some point. And we wait before enabling FBC anyway.
606                  */
607                 DRM_DEBUG_KMS("disabling active FBC for update\n");
608                 intel_disable_fbc(dev);
609         }
610
611         intel_enable_fbc(crtc);
612         dev_priv->fbc.no_fbc_reason = FBC_OK;
613         return;
614
615 out_disable:
616         /* Multiple disables should be harmless */
617         if (intel_fbc_enabled(dev)) {
618                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619                 intel_disable_fbc(dev);
620         }
621         i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626         struct drm_i915_private *dev_priv = dev->dev_private;
627         u32 tmp;
628
629         tmp = I915_READ(CLKCFG);
630
631         switch (tmp & CLKCFG_FSB_MASK) {
632         case CLKCFG_FSB_533:
633                 dev_priv->fsb_freq = 533; /* 133*4 */
634                 break;
635         case CLKCFG_FSB_800:
636                 dev_priv->fsb_freq = 800; /* 200*4 */
637                 break;
638         case CLKCFG_FSB_667:
639                 dev_priv->fsb_freq =  667; /* 167*4 */
640                 break;
641         case CLKCFG_FSB_400:
642                 dev_priv->fsb_freq = 400; /* 100*4 */
643                 break;
644         }
645
646         switch (tmp & CLKCFG_MEM_MASK) {
647         case CLKCFG_MEM_533:
648                 dev_priv->mem_freq = 533;
649                 break;
650         case CLKCFG_MEM_667:
651                 dev_priv->mem_freq = 667;
652                 break;
653         case CLKCFG_MEM_800:
654                 dev_priv->mem_freq = 800;
655                 break;
656         }
657
658         /* detect pineview DDR3 setting */
659         tmp = I915_READ(CSHRDDR3CTL);
660         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u16 ddrpll, csipll;
667
668         ddrpll = I915_READ16(DDRMPLL1);
669         csipll = I915_READ16(CSIPLL0);
670
671         switch (ddrpll & 0xff) {
672         case 0xc:
673                 dev_priv->mem_freq = 800;
674                 break;
675         case 0x10:
676                 dev_priv->mem_freq = 1066;
677                 break;
678         case 0x14:
679                 dev_priv->mem_freq = 1333;
680                 break;
681         case 0x18:
682                 dev_priv->mem_freq = 1600;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686                                  ddrpll & 0xff);
687                 dev_priv->mem_freq = 0;
688                 break;
689         }
690
691         dev_priv->ips.r_t = dev_priv->mem_freq;
692
693         switch (csipll & 0x3ff) {
694         case 0x00c:
695                 dev_priv->fsb_freq = 3200;
696                 break;
697         case 0x00e:
698                 dev_priv->fsb_freq = 3733;
699                 break;
700         case 0x010:
701                 dev_priv->fsb_freq = 4266;
702                 break;
703         case 0x012:
704                 dev_priv->fsb_freq = 4800;
705                 break;
706         case 0x014:
707                 dev_priv->fsb_freq = 5333;
708                 break;
709         case 0x016:
710                 dev_priv->fsb_freq = 5866;
711                 break;
712         case 0x018:
713                 dev_priv->fsb_freq = 6400;
714                 break;
715         default:
716                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717                                  csipll & 0x3ff);
718                 dev_priv->fsb_freq = 0;
719                 break;
720         }
721
722         if (dev_priv->fsb_freq == 3200) {
723                 dev_priv->ips.c_m = 0;
724         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725                 dev_priv->ips.c_m = 1;
726         } else {
727                 dev_priv->ips.c_m = 2;
728         }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
733         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
734         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
735         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
736         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
737
738         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
739         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
740         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
741         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
742         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
743
744         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
745         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
746         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
747         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
748         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
749
750         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
751         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
752         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
753         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
754         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
755
756         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
757         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
758         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
759         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
760         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
761
762         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
763         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
764         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
765         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
766         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770                                                          int is_ddr3,
771                                                          int fsb,
772                                                          int mem)
773 {
774         const struct cxsr_latency *latency;
775         int i;
776
777         if (fsb == 0 || mem == 0)
778                 return NULL;
779
780         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781                 latency = &cxsr_latency_table[i];
782                 if (is_desktop == latency->is_desktop &&
783                     is_ddr3 == latency->is_ddr3 &&
784                     fsb == latency->fsb_freq && mem == latency->mem_freq)
785                         return latency;
786         }
787
788         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790         return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         /* deactivate cxsr */
798         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802  * Latency for FIFO fetches is dependent on several factors:
803  *   - memory configuration (speed, channels)
804  *   - chipset
805  *   - current MCH state
806  * It can be fairly high in some situations, so here we assume a fairly
807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
808  * set this value too high, the FIFO will fetch frequently to stay full)
809  * and power consumption (set it too low to save power and we might see
810  * FIFO underruns and display "flicker").
811  *
812  * A value of 5us seems to be a good balance; safe for very low end
813  * platforms but not overly aggressive on lower latency configs.
814  */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         uint32_t dsparb = I915_READ(DSPARB);
821         int size;
822
823         size = dsparb & 0x7f;
824         if (plane)
825                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         uint32_t dsparb = I915_READ(DSPARB);
837         int size;
838
839         size = dsparb & 0x1ff;
840         if (plane)
841                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         uint32_t dsparb = I915_READ(DSPARB);
854         int size;
855
856         size = dsparb & 0x7f;
857         size >>= 2; /* Convert to cachelines */
858
859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860                       plane ? "B" : "A",
861                       size);
862
863         return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868         PINEVIEW_DISPLAY_FIFO,
869         PINEVIEW_MAX_WM,
870         PINEVIEW_DFT_WM,
871         PINEVIEW_GUARD_WM,
872         PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_HPLLOFF_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882         PINEVIEW_CURSOR_FIFO,
883         PINEVIEW_CURSOR_MAX_WM,
884         PINEVIEW_CURSOR_DFT_WM,
885         PINEVIEW_CURSOR_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896         G4X_FIFO_SIZE,
897         G4X_MAX_WM,
898         G4X_MAX_WM,
899         2,
900         G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903         I965_CURSOR_FIFO,
904         I965_CURSOR_MAX_WM,
905         I965_CURSOR_DFT_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910         VALLEYVIEW_FIFO_SIZE,
911         VALLEYVIEW_MAX_WM,
912         VALLEYVIEW_MAX_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917         I965_CURSOR_FIFO,
918         VALLEYVIEW_CURSOR_MAX_WM,
919         I965_CURSOR_DFT_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         I965_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931         I945_FIFO_SIZE,
932         I915_MAX_WM,
933         1,
934         2,
935         I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938         I915_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945         I855GM_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952         I830_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958
959 /**
960  * intel_calculate_wm - calculate watermark level
961  * @clock_in_khz: pixel clock
962  * @wm: chip FIFO params
963  * @pixel_size: display pixel size
964  * @latency_ns: memory latency for the platform
965  *
966  * Calculate the watermark level (the level at which the display plane will
967  * start fetching from memory again).  Each chip has a different display
968  * FIFO size and allocation, so the caller needs to figure that out and pass
969  * in the correct intel_watermark_params structure.
970  *
971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
972  * on the pixel size.  When it reaches the watermark level, it'll start
973  * fetching FIFO line sized based chunks from memory until the FIFO fills
974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
975  * will occur, and a display engine hang could result.
976  */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978                                         const struct intel_watermark_params *wm,
979                                         int fifo_size,
980                                         int pixel_size,
981                                         unsigned long latency_ns)
982 {
983         long entries_required, wm_size;
984
985         /*
986          * Note: we need to make sure we don't overflow for various clock &
987          * latency values.
988          * clocks go from a few thousand to several hundred thousand.
989          * latency is usually a few thousand
990          */
991         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992                 1000;
993         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997         wm_size = fifo_size - (entries_required + wm->guard_size);
998
999         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001         /* Don't promote wm_size to unsigned... */
1002         if (wm_size > (long)wm->max_wm)
1003                 wm_size = wm->max_wm;
1004         if (wm_size <= 0)
1005                 wm_size = wm->default_wm;
1006         return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011         struct drm_crtc *crtc, *enabled = NULL;
1012
1013         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014                 if (intel_crtc_active(crtc)) {
1015                         if (enabled)
1016                                 return NULL;
1017                         enabled = crtc;
1018                 }
1019         }
1020
1021         return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026         struct drm_device *dev = unused_crtc->dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_crtc *crtc;
1029         const struct cxsr_latency *latency;
1030         u32 reg;
1031         unsigned long wm;
1032
1033         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1035         if (!latency) {
1036                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037                 pineview_disable_cxsr(dev);
1038                 return;
1039         }
1040
1041         crtc = single_enabled_crtc(dev);
1042         if (crtc) {
1043                 const struct drm_display_mode *adjusted_mode;
1044                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045                 int clock;
1046
1047                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048                 clock = adjusted_mode->crtc_clock;
1049
1050                 /* Display SR */
1051                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052                                         pineview_display_wm.fifo_size,
1053                                         pixel_size, latency->display_sr);
1054                 reg = I915_READ(DSPFW1);
1055                 reg &= ~DSPFW_SR_MASK;
1056                 reg |= wm << DSPFW_SR_SHIFT;
1057                 I915_WRITE(DSPFW1, reg);
1058                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060                 /* cursor SR */
1061                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062                                         pineview_display_wm.fifo_size,
1063                                         pixel_size, latency->cursor_sr);
1064                 reg = I915_READ(DSPFW3);
1065                 reg &= ~DSPFW_CURSOR_SR_MASK;
1066                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067                 I915_WRITE(DSPFW3, reg);
1068
1069                 /* Display HPLL off SR */
1070                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071                                         pineview_display_hplloff_wm.fifo_size,
1072                                         pixel_size, latency->display_hpll_disable);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_HPLL_SR_MASK;
1075                 reg |= wm & DSPFW_HPLL_SR_MASK;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* cursor HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->cursor_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085                 I915_WRITE(DSPFW3, reg);
1086                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088                 /* activate cxsr */
1089                 I915_WRITE(DSPFW3,
1090                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092         } else {
1093                 pineview_disable_cxsr(dev);
1094                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095         }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099                             int plane,
1100                             const struct intel_watermark_params *display,
1101                             int display_latency_ns,
1102                             const struct intel_watermark_params *cursor,
1103                             int cursor_latency_ns,
1104                             int *plane_wm,
1105                             int *cursor_wm)
1106 {
1107         struct drm_crtc *crtc;
1108         const struct drm_display_mode *adjusted_mode;
1109         int htotal, hdisplay, clock, pixel_size;
1110         int line_time_us, line_count;
1111         int entries, tlb_miss;
1112
1113         crtc = intel_get_crtc_for_plane(dev, plane);
1114         if (!intel_crtc_active(crtc)) {
1115                 *cursor_wm = cursor->guard_size;
1116                 *plane_wm = display->guard_size;
1117                 return false;
1118         }
1119
1120         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121         clock = adjusted_mode->crtc_clock;
1122         htotal = adjusted_mode->crtc_htotal;
1123         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126         /* Use the small buffer method to calculate plane watermark */
1127         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129         if (tlb_miss > 0)
1130                 entries += tlb_miss;
1131         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132         *plane_wm = entries + display->guard_size;
1133         if (*plane_wm > (int)display->max_wm)
1134                 *plane_wm = display->max_wm;
1135
1136         /* Use the large buffer method to calculate cursor watermark */
1137         line_time_us = max(htotal * 1000 / clock, 1);
1138         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141         if (tlb_miss > 0)
1142                 entries += tlb_miss;
1143         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144         *cursor_wm = entries + cursor->guard_size;
1145         if (*cursor_wm > (int)cursor->max_wm)
1146                 *cursor_wm = (int)cursor->max_wm;
1147
1148         return true;
1149 }
1150
1151 /*
1152  * Check the wm result.
1153  *
1154  * If any calculated watermark values is larger than the maximum value that
1155  * can be programmed into the associated watermark register, that watermark
1156  * must be disabled.
1157  */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159                            int display_wm, int cursor_wm,
1160                            const struct intel_watermark_params *display,
1161                            const struct intel_watermark_params *cursor)
1162 {
1163         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164                       display_wm, cursor_wm);
1165
1166         if (display_wm > display->max_wm) {
1167                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168                               display_wm, display->max_wm);
1169                 return false;
1170         }
1171
1172         if (cursor_wm > cursor->max_wm) {
1173                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174                               cursor_wm, cursor->max_wm);
1175                 return false;
1176         }
1177
1178         if (!(display_wm || cursor_wm)) {
1179                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180                 return false;
1181         }
1182
1183         return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187                              int plane,
1188                              int latency_ns,
1189                              const struct intel_watermark_params *display,
1190                              const struct intel_watermark_params *cursor,
1191                              int *display_wm, int *cursor_wm)
1192 {
1193         struct drm_crtc *crtc;
1194         const struct drm_display_mode *adjusted_mode;
1195         int hdisplay, htotal, pixel_size, clock;
1196         unsigned long line_time_us;
1197         int line_count, line_size;
1198         int small, large;
1199         int entries;
1200
1201         if (!latency_ns) {
1202                 *display_wm = *cursor_wm = 0;
1203                 return false;
1204         }
1205
1206         crtc = intel_get_crtc_for_plane(dev, plane);
1207         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208         clock = adjusted_mode->crtc_clock;
1209         htotal = adjusted_mode->crtc_htotal;
1210         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213         line_time_us = max(htotal * 1000 / clock, 1);
1214         line_count = (latency_ns / line_time_us + 1000) / 1000;
1215         line_size = hdisplay * pixel_size;
1216
1217         /* Use the minimum of the small and large buffer method for primary */
1218         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219         large = line_count * line_size;
1220
1221         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222         *display_wm = entries + display->guard_size;
1223
1224         /* calculate the self-refresh watermark for display cursor */
1225         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227         *cursor_wm = entries + cursor->guard_size;
1228
1229         return g4x_check_srwm(dev,
1230                               *display_wm, *cursor_wm,
1231                               display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235                                      int plane,
1236                                      int *plane_prec_mult,
1237                                      int *plane_dl,
1238                                      int *cursor_prec_mult,
1239                                      int *cursor_dl)
1240 {
1241         struct drm_crtc *crtc;
1242         int clock, pixel_size;
1243         int entries;
1244
1245         crtc = intel_get_crtc_for_plane(dev, plane);
1246         if (!intel_crtc_active(crtc))
1247                 return false;
1248
1249         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1251
1252         entries = (clock / 1000) * pixel_size;
1253         *plane_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256                                                      pixel_size);
1257
1258         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1259         *cursor_prec_mult = (entries > 256) ?
1260                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Update drain latency registers of memory arbiter
1268  *
1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270  * to be programmed. Each plane has a drain latency multiplier and a drain
1271  * latency value.
1272  */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280                                                         either 16 or 32 */
1281
1282         /* For plane A, Cursor A */
1283         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284                                       &cursor_prec_mult, &cursora_dl)) {
1285                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290                 I915_WRITE(VLV_DDL1, cursora_prec |
1291                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1292                                 planea_prec | planea_dl);
1293         }
1294
1295         /* For plane B, Cursor B */
1296         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297                                       &cursor_prec_mult, &cursorb_dl)) {
1298                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303                 I915_WRITE(VLV_DDL2, cursorb_prec |
1304                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305                                 planeb_prec | planeb_dl);
1306         }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313         struct drm_device *dev = crtc->dev;
1314         static const int sr_latency_ns = 12000;
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317         int plane_sr, cursor_sr;
1318         int ignore_plane_sr, ignore_cursor_sr;
1319         unsigned int enabled = 0;
1320
1321         vlv_update_drain_latency(dev);
1322
1323         if (g4x_compute_wm0(dev, PIPE_A,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planea_wm, &cursora_wm))
1327                 enabled |= 1 << PIPE_A;
1328
1329         if (g4x_compute_wm0(dev, PIPE_B,
1330                             &valleyview_wm_info, latency_ns,
1331                             &valleyview_cursor_wm_info, latency_ns,
1332                             &planeb_wm, &cursorb_wm))
1333                 enabled |= 1 << PIPE_B;
1334
1335         if (single_plane_enabled(enabled) &&
1336             g4x_compute_srwm(dev, ffs(enabled) - 1,
1337                              sr_latency_ns,
1338                              &valleyview_wm_info,
1339                              &valleyview_cursor_wm_info,
1340                              &plane_sr, &ignore_cursor_sr) &&
1341             g4x_compute_srwm(dev, ffs(enabled) - 1,
1342                              2*sr_latency_ns,
1343                              &valleyview_wm_info,
1344                              &valleyview_cursor_wm_info,
1345                              &ignore_plane_sr, &cursor_sr)) {
1346                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347         } else {
1348                 I915_WRITE(FW_BLC_SELF_VLV,
1349                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350                 plane_sr = cursor_sr = 0;
1351         }
1352
1353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354                       planea_wm, cursora_wm,
1355                       planeb_wm, cursorb_wm,
1356                       plane_sr, cursor_sr);
1357
1358         I915_WRITE(DSPFW1,
1359                    (plane_sr << DSPFW_SR_SHIFT) |
1360                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362                    planea_wm);
1363         I915_WRITE(DSPFW2,
1364                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1366         I915_WRITE(DSPFW3,
1367                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         unsigned int enabled = 0;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, latency_ns,
1388                             &g4x_cursor_wm_info, latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399         } else {
1400                 I915_WRITE(FW_BLC_SELF,
1401                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406                       planea_wm, cursora_wm,
1407                       planeb_wm, cursorb_wm,
1408                       plane_sr, cursor_sr);
1409
1410         I915_WRITE(DSPFW1,
1411                    (plane_sr << DSPFW_SR_SHIFT) |
1412                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414                    planea_wm);
1415         I915_WRITE(DSPFW2,
1416                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1418         /* HPLL off in SR has some issues on G4x... disable it */
1419         I915_WRITE(DSPFW3,
1420                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426         struct drm_device *dev = unused_crtc->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct drm_crtc *crtc;
1429         int srwm = 1;
1430         int cursor_sr = 16;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode =
1438                         &to_intel_crtc(crtc)->config.adjusted_mode;
1439                 int clock = adjusted_mode->crtc_clock;
1440                 int htotal = adjusted_mode->crtc_htotal;
1441                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443                 unsigned long line_time_us;
1444                 int entries;
1445
1446                 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448                 /* Use ns/us then divide to preserve precision */
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * hdisplay;
1451                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452                 srwm = I965_FIFO_SIZE - entries;
1453                 if (srwm < 0)
1454                         srwm = 1;
1455                 srwm &= 0x1ff;
1456                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457                               entries, srwm);
1458
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1461                 entries = DIV_ROUND_UP(entries,
1462                                           i965_cursor_wm_info.cacheline_size);
1463                 cursor_sr = i965_cursor_wm_info.fifo_size -
1464                         (entries + i965_cursor_wm_info.guard_size);
1465
1466                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467                         cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470                               "cursor %d\n", srwm, cursor_sr);
1471
1472                 if (IS_CRESTLINE(dev))
1473                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474         } else {
1475                 /* Turn off self refresh if both pipes are enabled */
1476                 if (IS_CRESTLINE(dev))
1477                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478                                    & ~FW_BLC_SELF_EN);
1479         }
1480
1481         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482                       srwm);
1483
1484         /* 965 has limitations... */
1485         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486                    (8 << 16) | (8 << 8) | (8 << 0));
1487         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         const struct intel_watermark_params *wm_info;
1497         uint32_t fwater_lo;
1498         uint32_t fwater_hi;
1499         int cwm, srwm = 1;
1500         int fifo_size;
1501         int planea_wm, planeb_wm;
1502         struct drm_crtc *crtc, *enabled = NULL;
1503
1504         if (IS_I945GM(dev))
1505                 wm_info = &i945_wm_info;
1506         else if (!IS_GEN2(dev))
1507                 wm_info = &i915_wm_info;
1508         else
1509                 wm_info = &i830_wm_info;
1510
1511         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512         crtc = intel_get_crtc_for_plane(dev, 0);
1513         if (intel_crtc_active(crtc)) {
1514                 const struct drm_display_mode *adjusted_mode;
1515                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516                 if (IS_GEN2(dev))
1517                         cpp = 4;
1518
1519                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521                                                wm_info, fifo_size, cpp,
1522                                                latency_ns);
1523                 enabled = crtc;
1524         } else
1525                 planea_wm = fifo_size - wm_info->guard_size;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528         crtc = intel_get_crtc_for_plane(dev, 1);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                latency_ns);
1539                 if (enabled == NULL)
1540                         enabled = crtc;
1541                 else
1542                         enabled = NULL;
1543         } else
1544                 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548         if (IS_I915GM(dev) && enabled) {
1549                 struct intel_framebuffer *fb;
1550
1551                 fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553                 /* self-refresh seems busted with untiled */
1554                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1555                         enabled = NULL;
1556         }
1557
1558         /*
1559          * Overlay gets an aggressive default since video jitter is bad.
1560          */
1561         cwm = 2;
1562
1563         /* Play safe and disable self-refresh before adjusting watermarks. */
1564         if (IS_I945G(dev) || IS_I945GM(dev))
1565                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566         else if (IS_I915GM(dev))
1567                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569         /* Calc sr entries for one plane configs */
1570         if (HAS_FW_BLC(dev) && enabled) {
1571                 /* self-refresh has much higher latency */
1572                 static const int sr_latency_ns = 6000;
1573                 const struct drm_display_mode *adjusted_mode =
1574                         &to_intel_crtc(enabled)->config.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         pixel_size * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (HAS_FW_BLC(dev)) {
1614                 if (enabled) {
1615                         if (IS_I945G(dev) || IS_I945GM(dev))
1616                                 I915_WRITE(FW_BLC_SELF,
1617                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618                         else if (IS_I915GM(dev))
1619                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1621                 } else
1622                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1623         }
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653                                     struct drm_crtc *crtc)
1654 {
1655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656         uint32_t pixel_rate;
1657
1658         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661          * adjust the pixel_rate here. */
1662
1663         if (intel_crtc->config.pch_pfit.enabled) {
1664                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667                 pipe_w = intel_crtc->config.pipe_src_w;
1668                 pipe_h = intel_crtc->config.pipe_src_h;
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677                                      pfit_w * pfit_h);
1678         }
1679
1680         return pixel_rate;
1681 }
1682
1683 /* latency must be in 0.1us units. */
1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685                                uint32_t latency)
1686 {
1687         uint64_t ret;
1688
1689         if (WARN(latency == 0, "Latency value missing\n"))
1690                 return UINT_MAX;
1691
1692         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695         return ret;
1696 }
1697
1698 /* latency must be in 0.1us units. */
1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701                                uint32_t latency)
1702 {
1703         uint32_t ret;
1704
1705         if (WARN(latency == 0, "Latency value missing\n"))
1706                 return UINT_MAX;
1707
1708         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710         ret = DIV_ROUND_UP(ret, 64) + 2;
1711         return ret;
1712 }
1713
1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715                            uint8_t bytes_per_pixel)
1716 {
1717         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1718 }
1719
1720 struct ilk_pipe_wm_parameters {
1721         bool active;
1722         uint32_t pipe_htotal;
1723         uint32_t pixel_rate;
1724         struct intel_plane_wm_parameters pri;
1725         struct intel_plane_wm_parameters spr;
1726         struct intel_plane_wm_parameters cur;
1727 };
1728
1729 struct ilk_wm_maximums {
1730         uint16_t pri;
1731         uint16_t spr;
1732         uint16_t cur;
1733         uint16_t fbc;
1734 };
1735
1736 /* used in computing the new watermarks state */
1737 struct intel_wm_config {
1738         unsigned int num_pipes_active;
1739         bool sprites_enabled;
1740         bool sprites_scaled;
1741 };
1742
1743 /*
1744  * For both WM_PIPE and WM_LP.
1745  * mem_value must be in 0.1us units.
1746  */
1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         uint32_t method1, method2;
1752
1753         if (!params->active || !params->pri.enabled)
1754                 return 0;
1755
1756         method1 = ilk_wm_method1(params->pixel_rate,
1757                                  params->pri.bytes_per_pixel,
1758                                  mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(params->pixel_rate,
1764                                  params->pipe_htotal,
1765                                  params->pri.horiz_pixels,
1766                                  params->pri.bytes_per_pixel,
1767                                  mem_value);
1768
1769         return min(method1, method2);
1770 }
1771
1772 /*
1773  * For both WM_PIPE and WM_LP.
1774  * mem_value must be in 0.1us units.
1775  */
1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777                                    uint32_t mem_value)
1778 {
1779         uint32_t method1, method2;
1780
1781         if (!params->active || !params->spr.enabled)
1782                 return 0;
1783
1784         method1 = ilk_wm_method1(params->pixel_rate,
1785                                  params->spr.bytes_per_pixel,
1786                                  mem_value);
1787         method2 = ilk_wm_method2(params->pixel_rate,
1788                                  params->pipe_htotal,
1789                                  params->spr.horiz_pixels,
1790                                  params->spr.bytes_per_pixel,
1791                                  mem_value);
1792         return min(method1, method2);
1793 }
1794
1795 /*
1796  * For both WM_PIPE and WM_LP.
1797  * mem_value must be in 0.1us units.
1798  */
1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800                                    uint32_t mem_value)
1801 {
1802         if (!params->active || !params->cur.enabled)
1803                 return 0;
1804
1805         return ilk_wm_method2(params->pixel_rate,
1806                               params->pipe_htotal,
1807                               params->cur.horiz_pixels,
1808                               params->cur.bytes_per_pixel,
1809                               mem_value);
1810 }
1811
1812 /* Only for WM_LP. */
1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814                                    uint32_t pri_val)
1815 {
1816         if (!params->active || !params->pri.enabled)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val,
1820                           params->pri.horiz_pixels,
1821                           params->pri.bytes_per_pixel);
1822 }
1823
1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825 {
1826         if (INTEL_INFO(dev)->gen >= 8)
1827                 return 3072;
1828         else if (INTEL_INFO(dev)->gen >= 7)
1829                 return 768;
1830         else
1831                 return 512;
1832 }
1833
1834 /* Calculate the maximum primary/sprite plane watermark */
1835 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1836                                      int level,
1837                                      const struct intel_wm_config *config,
1838                                      enum intel_ddb_partitioning ddb_partitioning,
1839                                      bool is_sprite)
1840 {
1841         unsigned int fifo_size = ilk_display_fifo_size(dev);
1842         unsigned int max;
1843
1844         /* if sprites aren't enabled, sprites get nothing */
1845         if (is_sprite && !config->sprites_enabled)
1846                 return 0;
1847
1848         /* HSW allows LP1+ watermarks even with multiple pipes */
1849         if (level == 0 || config->num_pipes_active > 1) {
1850                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1851
1852                 /*
1853                  * For some reason the non self refresh
1854                  * FIFO size is only half of the self
1855                  * refresh FIFO size on ILK/SNB.
1856                  */
1857                 if (INTEL_INFO(dev)->gen <= 6)
1858                         fifo_size /= 2;
1859         }
1860
1861         if (config->sprites_enabled) {
1862                 /* level 0 is always calculated with 1:1 split */
1863                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1864                         if (is_sprite)
1865                                 fifo_size *= 5;
1866                         fifo_size /= 6;
1867                 } else {
1868                         fifo_size /= 2;
1869                 }
1870         }
1871
1872         /* clamp to max that the registers can hold */
1873         if (INTEL_INFO(dev)->gen >= 8)
1874                 max = level == 0 ? 255 : 2047;
1875         else if (INTEL_INFO(dev)->gen >= 7)
1876                 /* IVB/HSW primary/sprite plane watermarks */
1877                 max = level == 0 ? 127 : 1023;
1878         else if (!is_sprite)
1879                 /* ILK/SNB primary plane watermarks */
1880                 max = level == 0 ? 127 : 511;
1881         else
1882                 /* ILK/SNB sprite plane watermarks */
1883                 max = level == 0 ? 63 : 255;
1884
1885         return min(fifo_size, max);
1886 }
1887
1888 /* Calculate the maximum cursor plane watermark */
1889 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1890                                       int level,
1891                                       const struct intel_wm_config *config)
1892 {
1893         /* HSW LP1+ watermarks w/ multiple pipes */
1894         if (level > 0 && config->num_pipes_active > 1)
1895                 return 64;
1896
1897         /* otherwise just report max that registers can hold */
1898         if (INTEL_INFO(dev)->gen >= 7)
1899                 return level == 0 ? 63 : 255;
1900         else
1901                 return level == 0 ? 31 : 63;
1902 }
1903
1904 /* Calculate the maximum FBC watermark */
1905 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1906 {
1907         /* max that registers can hold */
1908         if (INTEL_INFO(dev)->gen >= 8)
1909                 return 31;
1910         else
1911                 return 15;
1912 }
1913
1914 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1915                                     int level,
1916                                     const struct intel_wm_config *config,
1917                                     enum intel_ddb_partitioning ddb_partitioning,
1918                                     struct ilk_wm_maximums *max)
1919 {
1920         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1921         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1922         max->cur = ilk_cursor_wm_max(dev, level, config);
1923         max->fbc = ilk_fbc_wm_max(dev);
1924 }
1925
1926 static bool ilk_validate_wm_level(int level,
1927                                   const struct ilk_wm_maximums *max,
1928                                   struct intel_wm_level *result)
1929 {
1930         bool ret;
1931
1932         /* already determined to be invalid? */
1933         if (!result->enable)
1934                 return false;
1935
1936         result->enable = result->pri_val <= max->pri &&
1937                          result->spr_val <= max->spr &&
1938                          result->cur_val <= max->cur;
1939
1940         ret = result->enable;
1941
1942         /*
1943          * HACK until we can pre-compute everything,
1944          * and thus fail gracefully if LP0 watermarks
1945          * are exceeded...
1946          */
1947         if (level == 0 && !result->enable) {
1948                 if (result->pri_val > max->pri)
1949                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1950                                       level, result->pri_val, max->pri);
1951                 if (result->spr_val > max->spr)
1952                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1953                                       level, result->spr_val, max->spr);
1954                 if (result->cur_val > max->cur)
1955                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1956                                       level, result->cur_val, max->cur);
1957
1958                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1959                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1960                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1961                 result->enable = true;
1962         }
1963
1964         return ret;
1965 }
1966
1967 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1968                                  int level,
1969                                  const struct ilk_pipe_wm_parameters *p,
1970                                  struct intel_wm_level *result)
1971 {
1972         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1973         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1974         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1975
1976         /* WM1+ latency values stored in 0.5us units */
1977         if (level > 0) {
1978                 pri_latency *= 5;
1979                 spr_latency *= 5;
1980                 cur_latency *= 5;
1981         }
1982
1983         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1984         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1985         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1986         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1987         result->enable = true;
1988 }
1989
1990 static uint32_t
1991 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1992 {
1993         struct drm_i915_private *dev_priv = dev->dev_private;
1994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1995         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1996         u32 linetime, ips_linetime;
1997
1998         if (!intel_crtc_active(crtc))
1999                 return 0;
2000
2001         /* The WM are computed with base on how long it takes to fill a single
2002          * row at the given clock rate, multiplied by 8.
2003          * */
2004         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2005                                      mode->crtc_clock);
2006         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2007                                          intel_ddi_get_cdclk_freq(dev_priv));
2008
2009         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2010                PIPE_WM_LINETIME_TIME(linetime);
2011 }
2012
2013 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2014 {
2015         struct drm_i915_private *dev_priv = dev->dev_private;
2016
2017         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2018                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2019
2020                 wm[0] = (sskpd >> 56) & 0xFF;
2021                 if (wm[0] == 0)
2022                         wm[0] = sskpd & 0xF;
2023                 wm[1] = (sskpd >> 4) & 0xFF;
2024                 wm[2] = (sskpd >> 12) & 0xFF;
2025                 wm[3] = (sskpd >> 20) & 0x1FF;
2026                 wm[4] = (sskpd >> 32) & 0x1FF;
2027         } else if (INTEL_INFO(dev)->gen >= 6) {
2028                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2029
2030                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2031                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2032                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2033                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2034         } else if (INTEL_INFO(dev)->gen >= 5) {
2035                 uint32_t mltr = I915_READ(MLTR_ILK);
2036
2037                 /* ILK primary LP0 latency is 700 ns */
2038                 wm[0] = 7;
2039                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2040                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2041         }
2042 }
2043
2044 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2045 {
2046         /* ILK sprite LP0 latency is 1300 ns */
2047         if (INTEL_INFO(dev)->gen == 5)
2048                 wm[0] = 13;
2049 }
2050
2051 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2052 {
2053         /* ILK cursor LP0 latency is 1300 ns */
2054         if (INTEL_INFO(dev)->gen == 5)
2055                 wm[0] = 13;
2056
2057         /* WaDoubleCursorLP3Latency:ivb */
2058         if (IS_IVYBRIDGE(dev))
2059                 wm[3] *= 2;
2060 }
2061
2062 static int ilk_wm_max_level(const struct drm_device *dev)
2063 {
2064         /* how many WM levels are we expecting */
2065         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2066                 return 4;
2067         else if (INTEL_INFO(dev)->gen >= 6)
2068                 return 3;
2069         else
2070                 return 2;
2071 }
2072
2073 static void intel_print_wm_latency(struct drm_device *dev,
2074                                    const char *name,
2075                                    const uint16_t wm[5])
2076 {
2077         int level, max_level = ilk_wm_max_level(dev);
2078
2079         for (level = 0; level <= max_level; level++) {
2080                 unsigned int latency = wm[level];
2081
2082                 if (latency == 0) {
2083                         DRM_ERROR("%s WM%d latency not provided\n",
2084                                   name, level);
2085                         continue;
2086                 }
2087
2088                 /* WM1+ latency values in 0.5us units */
2089                 if (level > 0)
2090                         latency *= 5;
2091
2092                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2093                               name, level, wm[level],
2094                               latency / 10, latency % 10);
2095         }
2096 }
2097
2098 static void ilk_setup_wm_latency(struct drm_device *dev)
2099 {
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101
2102         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2103
2104         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2105                sizeof(dev_priv->wm.pri_latency));
2106         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2107                sizeof(dev_priv->wm.pri_latency));
2108
2109         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2110         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2111
2112         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2113         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2114         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2115 }
2116
2117 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2118                                       struct ilk_pipe_wm_parameters *p,
2119                                       struct intel_wm_config *config)
2120 {
2121         struct drm_device *dev = crtc->dev;
2122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2123         enum pipe pipe = intel_crtc->pipe;
2124         struct drm_plane *plane;
2125
2126         p->active = intel_crtc_active(crtc);
2127         if (p->active) {
2128                 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2129                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2130                 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2131                 p->cur.bytes_per_pixel = 4;
2132                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2133                 p->cur.horiz_pixels = intel_crtc->cursor_width;
2134                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2135                 p->pri.enabled = true;
2136                 p->cur.enabled = true;
2137         }
2138
2139         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2140                 config->num_pipes_active += intel_crtc_active(crtc);
2141
2142         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2143                 struct intel_plane *intel_plane = to_intel_plane(plane);
2144
2145                 if (intel_plane->pipe == pipe)
2146                         p->spr = intel_plane->wm;
2147
2148                 config->sprites_enabled |= intel_plane->wm.enabled;
2149                 config->sprites_scaled |= intel_plane->wm.scaled;
2150         }
2151 }
2152
2153 /* Compute new watermarks for the pipe */
2154 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2155                                   const struct ilk_pipe_wm_parameters *params,
2156                                   struct intel_pipe_wm *pipe_wm)
2157 {
2158         struct drm_device *dev = crtc->dev;
2159         const struct drm_i915_private *dev_priv = dev->dev_private;
2160         int level, max_level = ilk_wm_max_level(dev);
2161         /* LP0 watermark maximums depend on this pipe alone */
2162         struct intel_wm_config config = {
2163                 .num_pipes_active = 1,
2164                 .sprites_enabled = params->spr.enabled,
2165                 .sprites_scaled = params->spr.scaled,
2166         };
2167         struct ilk_wm_maximums max;
2168
2169         /* LP0 watermarks always use 1/2 DDB partitioning */
2170         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2171
2172         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2173         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2174                 max_level = 1;
2175
2176         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2177         if (params->spr.scaled)
2178                 max_level = 0;
2179
2180         for (level = 0; level <= max_level; level++)
2181                 ilk_compute_wm_level(dev_priv, level, params,
2182                                      &pipe_wm->wm[level]);
2183
2184         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2185                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2186
2187         /* At least LP0 must be valid */
2188         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2189 }
2190
2191 /*
2192  * Merge the watermarks from all active pipes for a specific level.
2193  */
2194 static void ilk_merge_wm_level(struct drm_device *dev,
2195                                int level,
2196                                struct intel_wm_level *ret_wm)
2197 {
2198         const struct intel_crtc *intel_crtc;
2199
2200         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2201                 const struct intel_wm_level *wm =
2202                         &intel_crtc->wm.active.wm[level];
2203
2204                 if (!wm->enable)
2205                         return;
2206
2207                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2208                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2209                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2210                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2211         }
2212
2213         ret_wm->enable = true;
2214 }
2215
2216 /*
2217  * Merge all low power watermarks for all active pipes.
2218  */
2219 static void ilk_wm_merge(struct drm_device *dev,
2220                          const struct intel_wm_config *config,
2221                          const struct ilk_wm_maximums *max,
2222                          struct intel_pipe_wm *merged)
2223 {
2224         int level, max_level = ilk_wm_max_level(dev);
2225
2226         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2227         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2228             config->num_pipes_active > 1)
2229                 return;
2230
2231         /* ILK: FBC WM must be disabled always */
2232         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2233
2234         /* merge each WM1+ level */
2235         for (level = 1; level <= max_level; level++) {
2236                 struct intel_wm_level *wm = &merged->wm[level];
2237
2238                 ilk_merge_wm_level(dev, level, wm);
2239
2240                 if (!ilk_validate_wm_level(level, max, wm))
2241                         break;
2242
2243                 /*
2244                  * The spec says it is preferred to disable
2245                  * FBC WMs instead of disabling a WM level.
2246                  */
2247                 if (wm->fbc_val > max->fbc) {
2248                         merged->fbc_wm_enabled = false;
2249                         wm->fbc_val = 0;
2250                 }
2251         }
2252
2253         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2254         /*
2255          * FIXME this is racy. FBC might get enabled later.
2256          * What we should check here is whether FBC can be
2257          * enabled sometime later.
2258          */
2259         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2260                 for (level = 2; level <= max_level; level++) {
2261                         struct intel_wm_level *wm = &merged->wm[level];
2262
2263                         wm->enable = false;
2264                 }
2265         }
2266 }
2267
2268 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2269 {
2270         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2271         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2272 }
2273
2274 /* The value we need to program into the WM_LPx latency field */
2275 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2276 {
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278
2279         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2280                 return 2 * level;
2281         else
2282                 return dev_priv->wm.pri_latency[level];
2283 }
2284
2285 static void ilk_compute_wm_results(struct drm_device *dev,
2286                                    const struct intel_pipe_wm *merged,
2287                                    enum intel_ddb_partitioning partitioning,
2288                                    struct ilk_wm_values *results)
2289 {
2290         struct intel_crtc *intel_crtc;
2291         int level, wm_lp;
2292
2293         results->enable_fbc_wm = merged->fbc_wm_enabled;
2294         results->partitioning = partitioning;
2295
2296         /* LP1+ register values */
2297         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2298                 const struct intel_wm_level *r;
2299
2300                 level = ilk_wm_lp_to_level(wm_lp, merged);
2301
2302                 r = &merged->wm[level];
2303                 if (!r->enable)
2304                         break;
2305
2306                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2307                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2308                         (r->pri_val << WM1_LP_SR_SHIFT) |
2309                         r->cur_val;
2310
2311                 if (INTEL_INFO(dev)->gen >= 8)
2312                         results->wm_lp[wm_lp - 1] |=
2313                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2314                 else
2315                         results->wm_lp[wm_lp - 1] |=
2316                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2317
2318                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2319                         WARN_ON(wm_lp != 1);
2320                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2321                 } else
2322                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2323         }
2324
2325         /* LP0 register values */
2326         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2327                 enum pipe pipe = intel_crtc->pipe;
2328                 const struct intel_wm_level *r =
2329                         &intel_crtc->wm.active.wm[0];
2330
2331                 if (WARN_ON(!r->enable))
2332                         continue;
2333
2334                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2335
2336                 results->wm_pipe[pipe] =
2337                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2338                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2339                         r->cur_val;
2340         }
2341 }
2342
2343 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2344  * case both are at the same level. Prefer r1 in case they're the same. */
2345 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2346                                                   struct intel_pipe_wm *r1,
2347                                                   struct intel_pipe_wm *r2)
2348 {
2349         int level, max_level = ilk_wm_max_level(dev);
2350         int level1 = 0, level2 = 0;
2351
2352         for (level = 1; level <= max_level; level++) {
2353                 if (r1->wm[level].enable)
2354                         level1 = level;
2355                 if (r2->wm[level].enable)
2356                         level2 = level;
2357         }
2358
2359         if (level1 == level2) {
2360                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2361                         return r2;
2362                 else
2363                         return r1;
2364         } else if (level1 > level2) {
2365                 return r1;
2366         } else {
2367                 return r2;
2368         }
2369 }
2370
2371 /* dirty bits used to track which watermarks need changes */
2372 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2373 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2374 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2375 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2376 #define WM_DIRTY_FBC (1 << 24)
2377 #define WM_DIRTY_DDB (1 << 25)
2378
2379 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2380                                          const struct ilk_wm_values *old,
2381                                          const struct ilk_wm_values *new)
2382 {
2383         unsigned int dirty = 0;
2384         enum pipe pipe;
2385         int wm_lp;
2386
2387         for_each_pipe(pipe) {
2388                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2389                         dirty |= WM_DIRTY_LINETIME(pipe);
2390                         /* Must disable LP1+ watermarks too */
2391                         dirty |= WM_DIRTY_LP_ALL;
2392                 }
2393
2394                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2395                         dirty |= WM_DIRTY_PIPE(pipe);
2396                         /* Must disable LP1+ watermarks too */
2397                         dirty |= WM_DIRTY_LP_ALL;
2398                 }
2399         }
2400
2401         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2402                 dirty |= WM_DIRTY_FBC;
2403                 /* Must disable LP1+ watermarks too */
2404                 dirty |= WM_DIRTY_LP_ALL;
2405         }
2406
2407         if (old->partitioning != new->partitioning) {
2408                 dirty |= WM_DIRTY_DDB;
2409                 /* Must disable LP1+ watermarks too */
2410                 dirty |= WM_DIRTY_LP_ALL;
2411         }
2412
2413         /* LP1+ watermarks already deemed dirty, no need to continue */
2414         if (dirty & WM_DIRTY_LP_ALL)
2415                 return dirty;
2416
2417         /* Find the lowest numbered LP1+ watermark in need of an update... */
2418         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2419                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2420                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2421                         break;
2422         }
2423
2424         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2425         for (; wm_lp <= 3; wm_lp++)
2426                 dirty |= WM_DIRTY_LP(wm_lp);
2427
2428         return dirty;
2429 }
2430
2431 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2432                                unsigned int dirty)
2433 {
2434         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2435         bool changed = false;
2436
2437         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2438                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2439                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2440                 changed = true;
2441         }
2442         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2443                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2444                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2445                 changed = true;
2446         }
2447         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2448                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2449                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2450                 changed = true;
2451         }
2452
2453         /*
2454          * Don't touch WM1S_LP_EN here.
2455          * Doing so could cause underruns.
2456          */
2457
2458         return changed;
2459 }
2460
2461 /*
2462  * The spec says we shouldn't write when we don't need, because every write
2463  * causes WMs to be re-evaluated, expending some power.
2464  */
2465 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2466                                 struct ilk_wm_values *results)
2467 {
2468         struct drm_device *dev = dev_priv->dev;
2469         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2470         unsigned int dirty;
2471         uint32_t val;
2472
2473         dirty = ilk_compute_wm_dirty(dev, previous, results);
2474         if (!dirty)
2475                 return;
2476
2477         _ilk_disable_lp_wm(dev_priv, dirty);
2478
2479         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2480                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2481         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2482                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2483         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2484                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2485
2486         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2487                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2488         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2489                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2490         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2491                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2492
2493         if (dirty & WM_DIRTY_DDB) {
2494                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2495                         val = I915_READ(WM_MISC);
2496                         if (results->partitioning == INTEL_DDB_PART_1_2)
2497                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2498                         else
2499                                 val |= WM_MISC_DATA_PARTITION_5_6;
2500                         I915_WRITE(WM_MISC, val);
2501                 } else {
2502                         val = I915_READ(DISP_ARB_CTL2);
2503                         if (results->partitioning == INTEL_DDB_PART_1_2)
2504                                 val &= ~DISP_DATA_PARTITION_5_6;
2505                         else
2506                                 val |= DISP_DATA_PARTITION_5_6;
2507                         I915_WRITE(DISP_ARB_CTL2, val);
2508                 }
2509         }
2510
2511         if (dirty & WM_DIRTY_FBC) {
2512                 val = I915_READ(DISP_ARB_CTL);
2513                 if (results->enable_fbc_wm)
2514                         val &= ~DISP_FBC_WM_DIS;
2515                 else
2516                         val |= DISP_FBC_WM_DIS;
2517                 I915_WRITE(DISP_ARB_CTL, val);
2518         }
2519
2520         if (dirty & WM_DIRTY_LP(1) &&
2521             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2522                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2523
2524         if (INTEL_INFO(dev)->gen >= 7) {
2525                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2526                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2527                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2528                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2529         }
2530
2531         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2532                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2533         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2534                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2535         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2536                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2537
2538         dev_priv->wm.hw = *results;
2539 }
2540
2541 static bool ilk_disable_lp_wm(struct drm_device *dev)
2542 {
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544
2545         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2546 }
2547
2548 static void ilk_update_wm(struct drm_crtc *crtc)
2549 {
2550         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2551         struct drm_device *dev = crtc->dev;
2552         struct drm_i915_private *dev_priv = dev->dev_private;
2553         struct ilk_wm_maximums max;
2554         struct ilk_pipe_wm_parameters params = {};
2555         struct ilk_wm_values results = {};
2556         enum intel_ddb_partitioning partitioning;
2557         struct intel_pipe_wm pipe_wm = {};
2558         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2559         struct intel_wm_config config = {};
2560
2561         ilk_compute_wm_parameters(crtc, &params, &config);
2562
2563         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2564
2565         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2566                 return;
2567
2568         intel_crtc->wm.active = pipe_wm;
2569
2570         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2571         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2572
2573         /* 5/6 split only in single pipe config on IVB+ */
2574         if (INTEL_INFO(dev)->gen >= 7 &&
2575             config.num_pipes_active == 1 && config.sprites_enabled) {
2576                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2577                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2578
2579                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2580         } else {
2581                 best_lp_wm = &lp_wm_1_2;
2582         }
2583
2584         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2585                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2586
2587         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2588
2589         ilk_write_wm_values(dev_priv, &results);
2590 }
2591
2592 static void ilk_update_sprite_wm(struct drm_plane *plane,
2593                                      struct drm_crtc *crtc,
2594                                      uint32_t sprite_width, int pixel_size,
2595                                      bool enabled, bool scaled)
2596 {
2597         struct drm_device *dev = plane->dev;
2598         struct intel_plane *intel_plane = to_intel_plane(plane);
2599
2600         intel_plane->wm.enabled = enabled;
2601         intel_plane->wm.scaled = scaled;
2602         intel_plane->wm.horiz_pixels = sprite_width;
2603         intel_plane->wm.bytes_per_pixel = pixel_size;
2604
2605         /*
2606          * IVB workaround: must disable low power watermarks for at least
2607          * one frame before enabling scaling.  LP watermarks can be re-enabled
2608          * when scaling is disabled.
2609          *
2610          * WaCxSRDisabledForSpriteScaling:ivb
2611          */
2612         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2613                 intel_wait_for_vblank(dev, intel_plane->pipe);
2614
2615         ilk_update_wm(crtc);
2616 }
2617
2618 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2619 {
2620         struct drm_device *dev = crtc->dev;
2621         struct drm_i915_private *dev_priv = dev->dev_private;
2622         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2624         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2625         enum pipe pipe = intel_crtc->pipe;
2626         static const unsigned int wm0_pipe_reg[] = {
2627                 [PIPE_A] = WM0_PIPEA_ILK,
2628                 [PIPE_B] = WM0_PIPEB_ILK,
2629                 [PIPE_C] = WM0_PIPEC_IVB,
2630         };
2631
2632         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2633         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2634                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2635
2636         if (intel_crtc_active(crtc)) {
2637                 u32 tmp = hw->wm_pipe[pipe];
2638
2639                 /*
2640                  * For active pipes LP0 watermark is marked as
2641                  * enabled, and LP1+ watermaks as disabled since
2642                  * we can't really reverse compute them in case
2643                  * multiple pipes are active.
2644                  */
2645                 active->wm[0].enable = true;
2646                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2647                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2648                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2649                 active->linetime = hw->wm_linetime[pipe];
2650         } else {
2651                 int level, max_level = ilk_wm_max_level(dev);
2652
2653                 /*
2654                  * For inactive pipes, all watermark levels
2655                  * should be marked as enabled but zeroed,
2656                  * which is what we'd compute them to.
2657                  */
2658                 for (level = 0; level <= max_level; level++)
2659                         active->wm[level].enable = true;
2660         }
2661 }
2662
2663 void ilk_wm_get_hw_state(struct drm_device *dev)
2664 {
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2667         struct drm_crtc *crtc;
2668
2669         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2670                 ilk_pipe_wm_get_hw_state(crtc);
2671
2672         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2673         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2674         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2675
2676         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2677         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2678         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2679
2680         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2681                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2682                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2683         else if (IS_IVYBRIDGE(dev))
2684                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2685                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2686
2687         hw->enable_fbc_wm =
2688                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2689 }
2690
2691 /**
2692  * intel_update_watermarks - update FIFO watermark values based on current modes
2693  *
2694  * Calculate watermark values for the various WM regs based on current mode
2695  * and plane configuration.
2696  *
2697  * There are several cases to deal with here:
2698  *   - normal (i.e. non-self-refresh)
2699  *   - self-refresh (SR) mode
2700  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2701  *   - lines are small relative to FIFO size (buffer can hold more than 2
2702  *     lines), so need to account for TLB latency
2703  *
2704  *   The normal calculation is:
2705  *     watermark = dotclock * bytes per pixel * latency
2706  *   where latency is platform & configuration dependent (we assume pessimal
2707  *   values here).
2708  *
2709  *   The SR calculation is:
2710  *     watermark = (trunc(latency/line time)+1) * surface width *
2711  *       bytes per pixel
2712  *   where
2713  *     line time = htotal / dotclock
2714  *     surface width = hdisplay for normal plane and 64 for cursor
2715  *   and latency is assumed to be high, as above.
2716  *
2717  * The final value programmed to the register should always be rounded up,
2718  * and include an extra 2 entries to account for clock crossings.
2719  *
2720  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2721  * to set the non-SR watermarks to 8.
2722  */
2723 void intel_update_watermarks(struct drm_crtc *crtc)
2724 {
2725         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2726
2727         if (dev_priv->display.update_wm)
2728                 dev_priv->display.update_wm(crtc);
2729 }
2730
2731 void intel_update_sprite_watermarks(struct drm_plane *plane,
2732                                     struct drm_crtc *crtc,
2733                                     uint32_t sprite_width, int pixel_size,
2734                                     bool enabled, bool scaled)
2735 {
2736         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2737
2738         if (dev_priv->display.update_sprite_wm)
2739                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2740                                                    pixel_size, enabled, scaled);
2741 }
2742
2743 static struct drm_i915_gem_object *
2744 intel_alloc_context_page(struct drm_device *dev)
2745 {
2746         struct drm_i915_gem_object *ctx;
2747         int ret;
2748
2749         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2750
2751         ctx = i915_gem_alloc_object(dev, 4096);
2752         if (!ctx) {
2753                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2754                 return NULL;
2755         }
2756
2757         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2758         if (ret) {
2759                 DRM_ERROR("failed to pin power context: %d\n", ret);
2760                 goto err_unref;
2761         }
2762
2763         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2764         if (ret) {
2765                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2766                 goto err_unpin;
2767         }
2768
2769         return ctx;
2770
2771 err_unpin:
2772         i915_gem_object_ggtt_unpin(ctx);
2773 err_unref:
2774         drm_gem_object_unreference(&ctx->base);
2775         return NULL;
2776 }
2777
2778 /**
2779  * Lock protecting IPS related data structures
2780  */
2781 DEFINE_SPINLOCK(mchdev_lock);
2782
2783 /* Global for IPS driver to get at the current i915 device. Protected by
2784  * mchdev_lock. */
2785 static struct drm_i915_private *i915_mch_dev;
2786
2787 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2788 {
2789         struct drm_i915_private *dev_priv = dev->dev_private;
2790         u16 rgvswctl;
2791
2792         assert_spin_locked(&mchdev_lock);
2793
2794         rgvswctl = I915_READ16(MEMSWCTL);
2795         if (rgvswctl & MEMCTL_CMD_STS) {
2796                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2797                 return false; /* still busy with another command */
2798         }
2799
2800         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2801                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2802         I915_WRITE16(MEMSWCTL, rgvswctl);
2803         POSTING_READ16(MEMSWCTL);
2804
2805         rgvswctl |= MEMCTL_CMD_STS;
2806         I915_WRITE16(MEMSWCTL, rgvswctl);
2807
2808         return true;
2809 }
2810
2811 static void ironlake_enable_drps(struct drm_device *dev)
2812 {
2813         struct drm_i915_private *dev_priv = dev->dev_private;
2814         u32 rgvmodectl = I915_READ(MEMMODECTL);
2815         u8 fmax, fmin, fstart, vstart;
2816
2817         spin_lock_irq(&mchdev_lock);
2818
2819         /* Enable temp reporting */
2820         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2821         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2822
2823         /* 100ms RC evaluation intervals */
2824         I915_WRITE(RCUPEI, 100000);
2825         I915_WRITE(RCDNEI, 100000);
2826
2827         /* Set max/min thresholds to 90ms and 80ms respectively */
2828         I915_WRITE(RCBMAXAVG, 90000);
2829         I915_WRITE(RCBMINAVG, 80000);
2830
2831         I915_WRITE(MEMIHYST, 1);
2832
2833         /* Set up min, max, and cur for interrupt handling */
2834         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2835         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2836         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2837                 MEMMODE_FSTART_SHIFT;
2838
2839         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2840                 PXVFREQ_PX_SHIFT;
2841
2842         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2843         dev_priv->ips.fstart = fstart;
2844
2845         dev_priv->ips.max_delay = fstart;
2846         dev_priv->ips.min_delay = fmin;
2847         dev_priv->ips.cur_delay = fstart;
2848
2849         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2850                          fmax, fmin, fstart);
2851
2852         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2853
2854         /*
2855          * Interrupts will be enabled in ironlake_irq_postinstall
2856          */
2857
2858         I915_WRITE(VIDSTART, vstart);
2859         POSTING_READ(VIDSTART);
2860
2861         rgvmodectl |= MEMMODE_SWMODE_EN;
2862         I915_WRITE(MEMMODECTL, rgvmodectl);
2863
2864         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2865                 DRM_ERROR("stuck trying to change perf mode\n");
2866         mdelay(1);
2867
2868         ironlake_set_drps(dev, fstart);
2869
2870         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2871                 I915_READ(0x112e0);
2872         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2873         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2874         getrawmonotonic(&dev_priv->ips.last_time2);
2875
2876         spin_unlock_irq(&mchdev_lock);
2877 }
2878
2879 static void ironlake_disable_drps(struct drm_device *dev)
2880 {
2881         struct drm_i915_private *dev_priv = dev->dev_private;
2882         u16 rgvswctl;
2883
2884         spin_lock_irq(&mchdev_lock);
2885
2886         rgvswctl = I915_READ16(MEMSWCTL);
2887
2888         /* Ack interrupts, disable EFC interrupt */
2889         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2890         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2891         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2892         I915_WRITE(DEIIR, DE_PCU_EVENT);
2893         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2894
2895         /* Go back to the starting frequency */
2896         ironlake_set_drps(dev, dev_priv->ips.fstart);
2897         mdelay(1);
2898         rgvswctl |= MEMCTL_CMD_STS;
2899         I915_WRITE(MEMSWCTL, rgvswctl);
2900         mdelay(1);
2901
2902         spin_unlock_irq(&mchdev_lock);
2903 }
2904
2905 /* There's a funny hw issue where the hw returns all 0 when reading from
2906  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2907  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2908  * all limits and the gpu stuck at whatever frequency it is at atm).
2909  */
2910 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2911 {
2912         u32 limits;
2913
2914         /* Only set the down limit when we've reached the lowest level to avoid
2915          * getting more interrupts, otherwise leave this clear. This prevents a
2916          * race in the hw when coming out of rc6: There's a tiny window where
2917          * the hw runs at the minimal clock before selecting the desired
2918          * frequency, if the down threshold expires in that window we will not
2919          * receive a down interrupt. */
2920         limits = dev_priv->rps.max_freq_softlimit << 24;
2921         if (val <= dev_priv->rps.min_freq_softlimit)
2922                 limits |= dev_priv->rps.min_freq_softlimit << 16;
2923
2924         return limits;
2925 }
2926
2927 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2928 {
2929         int new_power;
2930
2931         new_power = dev_priv->rps.power;
2932         switch (dev_priv->rps.power) {
2933         case LOW_POWER:
2934                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2935                         new_power = BETWEEN;
2936                 break;
2937
2938         case BETWEEN:
2939                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2940                         new_power = LOW_POWER;
2941                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2942                         new_power = HIGH_POWER;
2943                 break;
2944
2945         case HIGH_POWER:
2946                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2947                         new_power = BETWEEN;
2948                 break;
2949         }
2950         /* Max/min bins are special */
2951         if (val == dev_priv->rps.min_freq_softlimit)
2952                 new_power = LOW_POWER;
2953         if (val == dev_priv->rps.max_freq_softlimit)
2954                 new_power = HIGH_POWER;
2955         if (new_power == dev_priv->rps.power)
2956                 return;
2957
2958         /* Note the units here are not exactly 1us, but 1280ns. */
2959         switch (new_power) {
2960         case LOW_POWER:
2961                 /* Upclock if more than 95% busy over 16ms */
2962                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2963                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2964
2965                 /* Downclock if less than 85% busy over 32ms */
2966                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2967                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2968
2969                 I915_WRITE(GEN6_RP_CONTROL,
2970                            GEN6_RP_MEDIA_TURBO |
2971                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2972                            GEN6_RP_MEDIA_IS_GFX |
2973                            GEN6_RP_ENABLE |
2974                            GEN6_RP_UP_BUSY_AVG |
2975                            GEN6_RP_DOWN_IDLE_AVG);
2976                 break;
2977
2978         case BETWEEN:
2979                 /* Upclock if more than 90% busy over 13ms */
2980                 I915_WRITE(GEN6_RP_UP_EI, 10250);
2981                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2982
2983                 /* Downclock if less than 75% busy over 32ms */
2984                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2985                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2986
2987                 I915_WRITE(GEN6_RP_CONTROL,
2988                            GEN6_RP_MEDIA_TURBO |
2989                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2990                            GEN6_RP_MEDIA_IS_GFX |
2991                            GEN6_RP_ENABLE |
2992                            GEN6_RP_UP_BUSY_AVG |
2993                            GEN6_RP_DOWN_IDLE_AVG);
2994                 break;
2995
2996         case HIGH_POWER:
2997                 /* Upclock if more than 85% busy over 10ms */
2998                 I915_WRITE(GEN6_RP_UP_EI, 8000);
2999                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3000
3001                 /* Downclock if less than 60% busy over 32ms */
3002                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3003                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3004
3005                 I915_WRITE(GEN6_RP_CONTROL,
3006                            GEN6_RP_MEDIA_TURBO |
3007                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3008                            GEN6_RP_MEDIA_IS_GFX |
3009                            GEN6_RP_ENABLE |
3010                            GEN6_RP_UP_BUSY_AVG |
3011                            GEN6_RP_DOWN_IDLE_AVG);
3012                 break;
3013         }
3014
3015         dev_priv->rps.power = new_power;
3016         dev_priv->rps.last_adj = 0;
3017 }
3018
3019 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3020 {
3021         u32 mask = 0;
3022
3023         if (val > dev_priv->rps.min_freq_softlimit)
3024                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3025         if (val < dev_priv->rps.max_freq_softlimit)
3026                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3027
3028         /* IVB and SNB hard hangs on looping batchbuffer
3029          * if GEN6_PM_UP_EI_EXPIRED is masked.
3030          */
3031         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3032                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3033
3034         return ~mask;
3035 }
3036
3037 /* gen6_set_rps is called to update the frequency request, but should also be
3038  * called when the range (min_delay and max_delay) is modified so that we can
3039  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3040 void gen6_set_rps(struct drm_device *dev, u8 val)
3041 {
3042         struct drm_i915_private *dev_priv = dev->dev_private;
3043
3044         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3045         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3046         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3047
3048         /* min/max delay may still have been modified so be sure to
3049          * write the limits value.
3050          */
3051         if (val != dev_priv->rps.cur_freq) {
3052                 gen6_set_rps_thresholds(dev_priv, val);
3053
3054                 if (IS_HASWELL(dev))
3055                         I915_WRITE(GEN6_RPNSWREQ,
3056                                    HSW_FREQUENCY(val));
3057                 else
3058                         I915_WRITE(GEN6_RPNSWREQ,
3059                                    GEN6_FREQUENCY(val) |
3060                                    GEN6_OFFSET(0) |
3061                                    GEN6_AGGRESSIVE_TURBO);
3062         }
3063
3064         /* Make sure we continue to get interrupts
3065          * until we hit the minimum or maximum frequencies.
3066          */
3067         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3068         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3069
3070         POSTING_READ(GEN6_RPNSWREQ);
3071
3072         dev_priv->rps.cur_freq = val;
3073         trace_intel_gpu_freq_change(val * 50);
3074 }
3075
3076 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3077  *
3078  * * If Gfx is Idle, then
3079  * 1. Mask Turbo interrupts
3080  * 2. Bring up Gfx clock
3081  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3082  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3083  * 5. Unmask Turbo interrupts
3084 */
3085 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3086 {
3087         /*
3088          * When we are idle.  Drop to min voltage state.
3089          */
3090
3091         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3092                 return;
3093
3094         /* Mask turbo interrupt so that they will not come in between */
3095         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3096
3097         /* Bring up the Gfx clock */
3098         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3099                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3100                                 VLV_GFX_CLK_FORCE_ON_BIT);
3101
3102         if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3103                 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3104                         DRM_ERROR("GFX_CLK_ON request timed out\n");
3105                 return;
3106         }
3107
3108         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3109
3110         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3111                                         dev_priv->rps.min_freq_softlimit);
3112
3113         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3114                                 & GENFREQSTATUS) == 0, 5))
3115                 DRM_ERROR("timed out waiting for Punit\n");
3116
3117         /* Release the Gfx clock */
3118         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3119                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3120                                 ~VLV_GFX_CLK_FORCE_ON_BIT);
3121
3122         I915_WRITE(GEN6_PMINTRMSK,
3123                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3124 }
3125
3126 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3127 {
3128         struct drm_device *dev = dev_priv->dev;
3129
3130         mutex_lock(&dev_priv->rps.hw_lock);
3131         if (dev_priv->rps.enabled) {
3132                 if (IS_VALLEYVIEW(dev))
3133                         vlv_set_rps_idle(dev_priv);
3134                 else
3135                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3136                 dev_priv->rps.last_adj = 0;
3137         }
3138         mutex_unlock(&dev_priv->rps.hw_lock);
3139 }
3140
3141 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3142 {
3143         struct drm_device *dev = dev_priv->dev;
3144
3145         mutex_lock(&dev_priv->rps.hw_lock);
3146         if (dev_priv->rps.enabled) {
3147                 if (IS_VALLEYVIEW(dev))
3148                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3149                 else
3150                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3151                 dev_priv->rps.last_adj = 0;
3152         }
3153         mutex_unlock(&dev_priv->rps.hw_lock);
3154 }
3155
3156 void valleyview_set_rps(struct drm_device *dev, u8 val)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159
3160         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3161         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3162         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3163
3164         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3165                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3166                          dev_priv->rps.cur_freq,
3167                          vlv_gpu_freq(dev_priv, val), val);
3168
3169         if (val != dev_priv->rps.cur_freq)
3170                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3171
3172         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3173
3174         dev_priv->rps.cur_freq = val;
3175         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3176 }
3177
3178 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3179 {
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181
3182         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3183         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3184                                 ~dev_priv->pm_rps_events);
3185         /* Complete PM interrupt masking here doesn't race with the rps work
3186          * item again unmasking PM interrupts because that is using a different
3187          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3188          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3189
3190         spin_lock_irq(&dev_priv->irq_lock);
3191         dev_priv->rps.pm_iir = 0;
3192         spin_unlock_irq(&dev_priv->irq_lock);
3193
3194         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3195 }
3196
3197 static void gen6_disable_rps(struct drm_device *dev)
3198 {
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200
3201         I915_WRITE(GEN6_RC_CONTROL, 0);
3202         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3203
3204         gen6_disable_rps_interrupts(dev);
3205 }
3206
3207 static void valleyview_disable_rps(struct drm_device *dev)
3208 {
3209         struct drm_i915_private *dev_priv = dev->dev_private;
3210
3211         I915_WRITE(GEN6_RC_CONTROL, 0);
3212
3213         gen6_disable_rps_interrupts(dev);
3214 }
3215
3216 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3217 {
3218         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3219                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3220                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3221                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3222 }
3223
3224 int intel_enable_rc6(const struct drm_device *dev)
3225 {
3226         /* No RC6 before Ironlake */
3227         if (INTEL_INFO(dev)->gen < 5)
3228                 return 0;
3229
3230         /* Respect the kernel parameter if it is set */
3231         if (i915.enable_rc6 >= 0)
3232                 return i915.enable_rc6;
3233
3234         /* Disable RC6 on Ironlake */
3235         if (INTEL_INFO(dev)->gen == 5)
3236                 return 0;
3237
3238         if (IS_IVYBRIDGE(dev))
3239                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3240
3241         return INTEL_RC6_ENABLE;
3242 }
3243
3244 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3245 {
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247
3248         spin_lock_irq(&dev_priv->irq_lock);
3249         WARN_ON(dev_priv->rps.pm_iir);
3250         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3251         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3252         spin_unlock_irq(&dev_priv->irq_lock);
3253 }
3254
3255 static void gen8_enable_rps(struct drm_device *dev)
3256 {
3257         struct drm_i915_private *dev_priv = dev->dev_private;
3258         struct intel_ring_buffer *ring;
3259         uint32_t rc6_mask = 0, rp_state_cap;
3260         int unused;
3261
3262         /* 1a: Software RC state - RC0 */
3263         I915_WRITE(GEN6_RC_STATE, 0);
3264
3265         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3266          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3267         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3268
3269         /* 2a: Disable RC states. */
3270         I915_WRITE(GEN6_RC_CONTROL, 0);
3271
3272         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3273
3274         /* 2b: Program RC6 thresholds.*/
3275         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3276         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3277         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3278         for_each_ring(ring, dev_priv, unused)
3279                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3280         I915_WRITE(GEN6_RC_SLEEP, 0);
3281         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3282
3283         /* 3: Enable RC6 */
3284         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3285                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3286         intel_print_rc6_info(dev, rc6_mask);
3287         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3288                                     GEN6_RC_CTL_EI_MODE(1) |
3289                                     rc6_mask);
3290
3291         /* 4 Program defaults and thresholds for RPS*/
3292         I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3293         I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3294         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3295         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3296
3297         /* Docs recommend 900MHz, and 300 MHz respectively */
3298         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3299                    dev_priv->rps.max_freq_softlimit << 24 |
3300                    dev_priv->rps.min_freq_softlimit << 16);
3301
3302         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3303         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3304         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3305         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3306
3307         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3308
3309         /* 5: Enable RPS */
3310         I915_WRITE(GEN6_RP_CONTROL,
3311                    GEN6_RP_MEDIA_TURBO |
3312                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3313                    GEN6_RP_MEDIA_IS_GFX |
3314                    GEN6_RP_ENABLE |
3315                    GEN6_RP_UP_BUSY_AVG |
3316                    GEN6_RP_DOWN_IDLE_AVG);
3317
3318         /* 6: Ring frequency + overclocking (our driver does this later */
3319
3320         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3321
3322         gen6_enable_rps_interrupts(dev);
3323
3324         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3325 }
3326
3327 static void gen6_enable_rps(struct drm_device *dev)
3328 {
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         struct intel_ring_buffer *ring;
3331         u32 rp_state_cap;
3332         u32 gt_perf_status;
3333         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3334         u32 gtfifodbg;
3335         int rc6_mode;
3336         int i, ret;
3337
3338         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3339
3340         /* Here begins a magic sequence of register writes to enable
3341          * auto-downclocking.
3342          *
3343          * Perhaps there might be some value in exposing these to
3344          * userspace...
3345          */
3346         I915_WRITE(GEN6_RC_STATE, 0);
3347
3348         /* Clear the DBG now so we don't confuse earlier errors */
3349         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3350                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3351                 I915_WRITE(GTFIFODBG, gtfifodbg);
3352         }
3353
3354         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3355
3356         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3357         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3358
3359         /* All of these values are in units of 50MHz */
3360         dev_priv->rps.cur_freq          = 0;
3361         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3362         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3363         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3364         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3365         /* XXX: only BYT has a special efficient freq */
3366         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3367         /* hw_max = RP0 until we check for overclocking */
3368         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3369
3370         /* Preserve min/max settings in case of re-init */
3371         if (dev_priv->rps.max_freq_softlimit == 0)
3372                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3373
3374         if (dev_priv->rps.min_freq_softlimit == 0)
3375                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3376
3377         /* disable the counters and set deterministic thresholds */
3378         I915_WRITE(GEN6_RC_CONTROL, 0);
3379
3380         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3381         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3382         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3383         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3384         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3385
3386         for_each_ring(ring, dev_priv, i)
3387                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3388
3389         I915_WRITE(GEN6_RC_SLEEP, 0);
3390         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3391         if (IS_IVYBRIDGE(dev))
3392                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3393         else
3394                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3395         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3396         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3397
3398         /* Check if we are enabling RC6 */
3399         rc6_mode = intel_enable_rc6(dev_priv->dev);
3400         if (rc6_mode & INTEL_RC6_ENABLE)
3401                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3402
3403         /* We don't use those on Haswell */
3404         if (!IS_HASWELL(dev)) {
3405                 if (rc6_mode & INTEL_RC6p_ENABLE)
3406                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3407
3408                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3409                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3410         }
3411
3412         intel_print_rc6_info(dev, rc6_mask);
3413
3414         I915_WRITE(GEN6_RC_CONTROL,
3415                    rc6_mask |
3416                    GEN6_RC_CTL_EI_MODE(1) |
3417                    GEN6_RC_CTL_HW_ENABLE);
3418
3419         /* Power down if completely idle for over 50ms */
3420         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3421         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3422
3423         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3424         if (ret)
3425                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3426
3427         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3428         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3429                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3430                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3431                                  (pcu_mbox & 0xff) * 50);
3432                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3433         }
3434
3435         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3436         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3437
3438         gen6_enable_rps_interrupts(dev);
3439
3440         rc6vids = 0;
3441         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3442         if (IS_GEN6(dev) && ret) {
3443                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3444         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3445                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3446                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3447                 rc6vids &= 0xffff00;
3448                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3449                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3450                 if (ret)
3451                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3452         }
3453
3454         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3455 }
3456
3457 void gen6_update_ring_freq(struct drm_device *dev)
3458 {
3459         struct drm_i915_private *dev_priv = dev->dev_private;
3460         int min_freq = 15;
3461         unsigned int gpu_freq;
3462         unsigned int max_ia_freq, min_ring_freq;
3463         int scaling_factor = 180;
3464         struct cpufreq_policy *policy;
3465
3466         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3467
3468         policy = cpufreq_cpu_get(0);
3469         if (policy) {
3470                 max_ia_freq = policy->cpuinfo.max_freq;
3471                 cpufreq_cpu_put(policy);
3472         } else {
3473                 /*
3474                  * Default to measured freq if none found, PCU will ensure we
3475                  * don't go over
3476                  */
3477                 max_ia_freq = tsc_khz;
3478         }
3479
3480         /* Convert from kHz to MHz */
3481         max_ia_freq /= 1000;
3482
3483         min_ring_freq = I915_READ(DCLK) & 0xf;
3484         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3485         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3486
3487         /*
3488          * For each potential GPU frequency, load a ring frequency we'd like
3489          * to use for memory access.  We do this by specifying the IA frequency
3490          * the PCU should use as a reference to determine the ring frequency.
3491          */
3492         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3493              gpu_freq--) {
3494                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3495                 unsigned int ia_freq = 0, ring_freq = 0;
3496
3497                 if (INTEL_INFO(dev)->gen >= 8) {
3498                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3499                         ring_freq = max(min_ring_freq, gpu_freq);
3500                 } else if (IS_HASWELL(dev)) {
3501                         ring_freq = mult_frac(gpu_freq, 5, 4);
3502                         ring_freq = max(min_ring_freq, ring_freq);
3503                         /* leave ia_freq as the default, chosen by cpufreq */
3504                 } else {
3505                         /* On older processors, there is no separate ring
3506                          * clock domain, so in order to boost the bandwidth
3507                          * of the ring, we need to upclock the CPU (ia_freq).
3508                          *
3509                          * For GPU frequencies less than 750MHz,
3510                          * just use the lowest ring freq.
3511                          */
3512                         if (gpu_freq < min_freq)
3513                                 ia_freq = 800;
3514                         else
3515                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3516                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3517                 }
3518
3519                 sandybridge_pcode_write(dev_priv,
3520                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3521                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3522                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3523                                         gpu_freq);
3524         }
3525 }
3526
3527 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3528 {
3529         u32 val, rp0;
3530
3531         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3532
3533         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3534         /* Clamp to max */
3535         rp0 = min_t(u32, rp0, 0xea);
3536
3537         return rp0;
3538 }
3539
3540 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3541 {
3542         u32 val, rpe;
3543
3544         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3545         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3546         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3547         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3548
3549         return rpe;
3550 }
3551
3552 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3553 {
3554         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3555 }
3556
3557 /* Check that the pctx buffer wasn't move under us. */
3558 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3559 {
3560         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3561
3562         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3563                              dev_priv->vlv_pctx->stolen->start);
3564 }
3565
3566 static void valleyview_setup_pctx(struct drm_device *dev)
3567 {
3568         struct drm_i915_private *dev_priv = dev->dev_private;
3569         struct drm_i915_gem_object *pctx;
3570         unsigned long pctx_paddr;
3571         u32 pcbr;
3572         int pctx_size = 24*1024;
3573
3574         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3575
3576         pcbr = I915_READ(VLV_PCBR);
3577         if (pcbr) {
3578                 /* BIOS set it up already, grab the pre-alloc'd space */
3579                 int pcbr_offset;
3580
3581                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3582                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3583                                                                       pcbr_offset,
3584                                                                       I915_GTT_OFFSET_NONE,
3585                                                                       pctx_size);
3586                 goto out;
3587         }
3588
3589         /*
3590          * From the Gunit register HAS:
3591          * The Gfx driver is expected to program this register and ensure
3592          * proper allocation within Gfx stolen memory.  For example, this
3593          * register should be programmed such than the PCBR range does not
3594          * overlap with other ranges, such as the frame buffer, protected
3595          * memory, or any other relevant ranges.
3596          */
3597         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3598         if (!pctx) {
3599                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3600                 return;
3601         }
3602
3603         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3604         I915_WRITE(VLV_PCBR, pctx_paddr);
3605
3606 out:
3607         dev_priv->vlv_pctx = pctx;
3608 }
3609
3610 static void valleyview_cleanup_pctx(struct drm_device *dev)
3611 {
3612         struct drm_i915_private *dev_priv = dev->dev_private;
3613
3614         if (WARN_ON(!dev_priv->vlv_pctx))
3615                 return;
3616
3617         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3618         dev_priv->vlv_pctx = NULL;
3619 }
3620
3621 static void valleyview_enable_rps(struct drm_device *dev)
3622 {
3623         struct drm_i915_private *dev_priv = dev->dev_private;
3624         struct intel_ring_buffer *ring;
3625         u32 gtfifodbg, val, rc6_mode = 0;
3626         int i;
3627
3628         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3629
3630         valleyview_check_pctx(dev_priv);
3631
3632         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3633                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3634                                  gtfifodbg);
3635                 I915_WRITE(GTFIFODBG, gtfifodbg);
3636         }
3637
3638         /* If VLV, Forcewake all wells, else re-direct to regular path */
3639         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3640
3641         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3642         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3643         I915_WRITE(GEN6_RP_UP_EI, 66000);
3644         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3645
3646         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3647
3648         I915_WRITE(GEN6_RP_CONTROL,
3649                    GEN6_RP_MEDIA_TURBO |
3650                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3651                    GEN6_RP_MEDIA_IS_GFX |
3652                    GEN6_RP_ENABLE |
3653                    GEN6_RP_UP_BUSY_AVG |
3654                    GEN6_RP_DOWN_IDLE_CONT);
3655
3656         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3657         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3658         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3659
3660         for_each_ring(ring, dev_priv, i)
3661                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3662
3663         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3664
3665         /* allows RC6 residency counter to work */
3666         I915_WRITE(VLV_COUNTER_CONTROL,
3667                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3668                                       VLV_MEDIA_RC6_COUNT_EN |
3669                                       VLV_RENDER_RC6_COUNT_EN));
3670         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3671                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3672
3673         intel_print_rc6_info(dev, rc6_mode);
3674
3675         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3676
3677         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3678
3679         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3680         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3681
3682         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3683         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3684                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3685                          dev_priv->rps.cur_freq);
3686
3687         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3688         dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
3689         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3690                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3691                          dev_priv->rps.max_freq);
3692
3693         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3694         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3695                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3696                          dev_priv->rps.efficient_freq);
3697
3698         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3699         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3700                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3701                          dev_priv->rps.min_freq);
3702
3703         /* Preserve min/max settings in case of re-init */
3704         if (dev_priv->rps.max_freq_softlimit == 0)
3705                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3706
3707         if (dev_priv->rps.min_freq_softlimit == 0)
3708                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3709
3710         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3711                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3712                          dev_priv->rps.efficient_freq);
3713
3714         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3715
3716         gen6_enable_rps_interrupts(dev);
3717
3718         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3719 }
3720
3721 void ironlake_teardown_rc6(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724
3725         if (dev_priv->ips.renderctx) {
3726                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3727                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3728                 dev_priv->ips.renderctx = NULL;
3729         }
3730
3731         if (dev_priv->ips.pwrctx) {
3732                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3733                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3734                 dev_priv->ips.pwrctx = NULL;
3735         }
3736 }
3737
3738 static void ironlake_disable_rc6(struct drm_device *dev)
3739 {
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741
3742         if (I915_READ(PWRCTXA)) {
3743                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3744                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3745                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3746                          50);
3747
3748                 I915_WRITE(PWRCTXA, 0);
3749                 POSTING_READ(PWRCTXA);
3750
3751                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3752                 POSTING_READ(RSTDBYCTL);
3753         }
3754 }
3755
3756 static int ironlake_setup_rc6(struct drm_device *dev)
3757 {
3758         struct drm_i915_private *dev_priv = dev->dev_private;
3759
3760         if (dev_priv->ips.renderctx == NULL)
3761                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3762         if (!dev_priv->ips.renderctx)
3763                 return -ENOMEM;
3764
3765         if (dev_priv->ips.pwrctx == NULL)
3766                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3767         if (!dev_priv->ips.pwrctx) {
3768                 ironlake_teardown_rc6(dev);
3769                 return -ENOMEM;
3770         }
3771
3772         return 0;
3773 }
3774
3775 static void ironlake_enable_rc6(struct drm_device *dev)
3776 {
3777         struct drm_i915_private *dev_priv = dev->dev_private;
3778         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3779         bool was_interruptible;
3780         int ret;
3781
3782         /* rc6 disabled by default due to repeated reports of hanging during
3783          * boot and resume.
3784          */
3785         if (!intel_enable_rc6(dev))
3786                 return;
3787
3788         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3789
3790         ret = ironlake_setup_rc6(dev);
3791         if (ret)
3792                 return;
3793
3794         was_interruptible = dev_priv->mm.interruptible;
3795         dev_priv->mm.interruptible = false;
3796
3797         /*
3798          * GPU can automatically power down the render unit if given a page
3799          * to save state.
3800          */
3801         ret = intel_ring_begin(ring, 6);
3802         if (ret) {
3803                 ironlake_teardown_rc6(dev);
3804                 dev_priv->mm.interruptible = was_interruptible;
3805                 return;
3806         }
3807
3808         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3809         intel_ring_emit(ring, MI_SET_CONTEXT);
3810         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3811                         MI_MM_SPACE_GTT |
3812                         MI_SAVE_EXT_STATE_EN |
3813                         MI_RESTORE_EXT_STATE_EN |
3814                         MI_RESTORE_INHIBIT);
3815         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3816         intel_ring_emit(ring, MI_NOOP);
3817         intel_ring_emit(ring, MI_FLUSH);
3818         intel_ring_advance(ring);
3819
3820         /*
3821          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3822          * does an implicit flush, combined with MI_FLUSH above, it should be
3823          * safe to assume that renderctx is valid
3824          */
3825         ret = intel_ring_idle(ring);
3826         dev_priv->mm.interruptible = was_interruptible;
3827         if (ret) {
3828                 DRM_ERROR("failed to enable ironlake power savings\n");
3829                 ironlake_teardown_rc6(dev);
3830                 return;
3831         }
3832
3833         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3834         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3835
3836         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3837 }
3838
3839 static unsigned long intel_pxfreq(u32 vidfreq)
3840 {
3841         unsigned long freq;
3842         int div = (vidfreq & 0x3f0000) >> 16;
3843         int post = (vidfreq & 0x3000) >> 12;
3844         int pre = (vidfreq & 0x7);
3845
3846         if (!pre)
3847                 return 0;
3848
3849         freq = ((div * 133333) / ((1<<post) * pre));
3850
3851         return freq;
3852 }
3853
3854 static const struct cparams {
3855         u16 i;
3856         u16 t;
3857         u16 m;
3858         u16 c;
3859 } cparams[] = {
3860         { 1, 1333, 301, 28664 },
3861         { 1, 1066, 294, 24460 },
3862         { 1, 800, 294, 25192 },
3863         { 0, 1333, 276, 27605 },
3864         { 0, 1066, 276, 27605 },
3865         { 0, 800, 231, 23784 },
3866 };
3867
3868 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3869 {
3870         u64 total_count, diff, ret;
3871         u32 count1, count2, count3, m = 0, c = 0;
3872         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3873         int i;
3874
3875         assert_spin_locked(&mchdev_lock);
3876
3877         diff1 = now - dev_priv->ips.last_time1;
3878
3879         /* Prevent division-by-zero if we are asking too fast.
3880          * Also, we don't get interesting results if we are polling
3881          * faster than once in 10ms, so just return the saved value
3882          * in such cases.
3883          */
3884         if (diff1 <= 10)
3885                 return dev_priv->ips.chipset_power;
3886
3887         count1 = I915_READ(DMIEC);
3888         count2 = I915_READ(DDREC);
3889         count3 = I915_READ(CSIEC);
3890
3891         total_count = count1 + count2 + count3;
3892
3893         /* FIXME: handle per-counter overflow */
3894         if (total_count < dev_priv->ips.last_count1) {
3895                 diff = ~0UL - dev_priv->ips.last_count1;
3896                 diff += total_count;
3897         } else {
3898                 diff = total_count - dev_priv->ips.last_count1;
3899         }
3900
3901         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3902                 if (cparams[i].i == dev_priv->ips.c_m &&
3903                     cparams[i].t == dev_priv->ips.r_t) {
3904                         m = cparams[i].m;
3905                         c = cparams[i].c;
3906                         break;
3907                 }
3908         }
3909
3910         diff = div_u64(diff, diff1);
3911         ret = ((m * diff) + c);
3912         ret = div_u64(ret, 10);
3913
3914         dev_priv->ips.last_count1 = total_count;
3915         dev_priv->ips.last_time1 = now;
3916
3917         dev_priv->ips.chipset_power = ret;
3918
3919         return ret;
3920 }
3921
3922 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3923 {
3924         struct drm_device *dev = dev_priv->dev;
3925         unsigned long val;
3926
3927         if (INTEL_INFO(dev)->gen != 5)
3928                 return 0;
3929
3930         spin_lock_irq(&mchdev_lock);
3931
3932         val = __i915_chipset_val(dev_priv);
3933
3934         spin_unlock_irq(&mchdev_lock);
3935
3936         return val;
3937 }
3938
3939 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3940 {
3941         unsigned long m, x, b;
3942         u32 tsfs;
3943
3944         tsfs = I915_READ(TSFS);
3945
3946         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3947         x = I915_READ8(TR1);
3948
3949         b = tsfs & TSFS_INTR_MASK;
3950
3951         return ((m * x) / 127) - b;
3952 }
3953
3954 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3955 {
3956         struct drm_device *dev = dev_priv->dev;
3957         static const struct v_table {
3958                 u16 vd; /* in .1 mil */
3959                 u16 vm; /* in .1 mil */
3960         } v_table[] = {
3961                 { 0, 0, },
3962                 { 375, 0, },
3963                 { 500, 0, },
3964                 { 625, 0, },
3965                 { 750, 0, },
3966                 { 875, 0, },
3967                 { 1000, 0, },
3968                 { 1125, 0, },
3969                 { 4125, 3000, },
3970                 { 4125, 3000, },
3971                 { 4125, 3000, },
3972                 { 4125, 3000, },
3973                 { 4125, 3000, },
3974                 { 4125, 3000, },
3975                 { 4125, 3000, },
3976                 { 4125, 3000, },
3977                 { 4125, 3000, },
3978                 { 4125, 3000, },
3979                 { 4125, 3000, },
3980                 { 4125, 3000, },
3981                 { 4125, 3000, },
3982                 { 4125, 3000, },
3983                 { 4125, 3000, },
3984                 { 4125, 3000, },
3985                 { 4125, 3000, },
3986                 { 4125, 3000, },
3987                 { 4125, 3000, },
3988                 { 4125, 3000, },
3989                 { 4125, 3000, },
3990                 { 4125, 3000, },
3991                 { 4125, 3000, },
3992                 { 4125, 3000, },
3993                 { 4250, 3125, },
3994                 { 4375, 3250, },
3995                 { 4500, 3375, },
3996                 { 4625, 3500, },
3997                 { 4750, 3625, },
3998                 { 4875, 3750, },
3999                 { 5000, 3875, },
4000                 { 5125, 4000, },
4001                 { 5250, 4125, },
4002                 { 5375, 4250, },
4003                 { 5500, 4375, },
4004                 { 5625, 4500, },
4005                 { 5750, 4625, },
4006                 { 5875, 4750, },
4007                 { 6000, 4875, },
4008                 { 6125, 5000, },
4009                 { 6250, 5125, },
4010                 { 6375, 5250, },
4011                 { 6500, 5375, },
4012                 { 6625, 5500, },
4013                 { 6750, 5625, },
4014                 { 6875, 5750, },
4015                 { 7000, 5875, },
4016                 { 7125, 6000, },
4017                 { 7250, 6125, },
4018                 { 7375, 6250, },
4019                 { 7500, 6375, },
4020                 { 7625, 6500, },
4021                 { 7750, 6625, },
4022                 { 7875, 6750, },
4023                 { 8000, 6875, },
4024                 { 8125, 7000, },
4025                 { 8250, 7125, },
4026                 { 8375, 7250, },
4027                 { 8500, 7375, },
4028                 { 8625, 7500, },
4029                 { 8750, 7625, },
4030                 { 8875, 7750, },
4031                 { 9000, 7875, },
4032                 { 9125, 8000, },
4033                 { 9250, 8125, },
4034                 { 9375, 8250, },
4035                 { 9500, 8375, },
4036                 { 9625, 8500, },
4037                 { 9750, 8625, },
4038                 { 9875, 8750, },
4039                 { 10000, 8875, },
4040                 { 10125, 9000, },
4041                 { 10250, 9125, },
4042                 { 10375, 9250, },
4043                 { 10500, 9375, },
4044                 { 10625, 9500, },
4045                 { 10750, 9625, },
4046                 { 10875, 9750, },
4047                 { 11000, 9875, },
4048                 { 11125, 10000, },
4049                 { 11250, 10125, },
4050                 { 11375, 10250, },
4051                 { 11500, 10375, },
4052                 { 11625, 10500, },
4053                 { 11750, 10625, },
4054                 { 11875, 10750, },
4055                 { 12000, 10875, },
4056                 { 12125, 11000, },
4057                 { 12250, 11125, },
4058                 { 12375, 11250, },
4059                 { 12500, 11375, },
4060                 { 12625, 11500, },
4061                 { 12750, 11625, },
4062                 { 12875, 11750, },
4063                 { 13000, 11875, },
4064                 { 13125, 12000, },
4065                 { 13250, 12125, },
4066                 { 13375, 12250, },
4067                 { 13500, 12375, },
4068                 { 13625, 12500, },
4069                 { 13750, 12625, },
4070                 { 13875, 12750, },
4071                 { 14000, 12875, },
4072                 { 14125, 13000, },
4073                 { 14250, 13125, },
4074                 { 14375, 13250, },
4075                 { 14500, 13375, },
4076                 { 14625, 13500, },
4077                 { 14750, 13625, },
4078                 { 14875, 13750, },
4079                 { 15000, 13875, },
4080                 { 15125, 14000, },
4081                 { 15250, 14125, },
4082                 { 15375, 14250, },
4083                 { 15500, 14375, },
4084                 { 15625, 14500, },
4085                 { 15750, 14625, },
4086                 { 15875, 14750, },
4087                 { 16000, 14875, },
4088                 { 16125, 15000, },
4089         };
4090         if (INTEL_INFO(dev)->is_mobile)
4091                 return v_table[pxvid].vm;
4092         else
4093                 return v_table[pxvid].vd;
4094 }
4095
4096 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4097 {
4098         struct timespec now, diff1;
4099         u64 diff;
4100         unsigned long diffms;
4101         u32 count;
4102
4103         assert_spin_locked(&mchdev_lock);
4104
4105         getrawmonotonic(&now);
4106         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4107
4108         /* Don't divide by 0 */
4109         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4110         if (!diffms)
4111                 return;
4112
4113         count = I915_READ(GFXEC);
4114
4115         if (count < dev_priv->ips.last_count2) {
4116                 diff = ~0UL - dev_priv->ips.last_count2;
4117                 diff += count;
4118         } else {
4119                 diff = count - dev_priv->ips.last_count2;
4120         }
4121
4122         dev_priv->ips.last_count2 = count;
4123         dev_priv->ips.last_time2 = now;
4124
4125         /* More magic constants... */
4126         diff = diff * 1181;
4127         diff = div_u64(diff, diffms * 10);
4128         dev_priv->ips.gfx_power = diff;
4129 }
4130
4131 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4132 {
4133         struct drm_device *dev = dev_priv->dev;
4134
4135         if (INTEL_INFO(dev)->gen != 5)
4136                 return;
4137
4138         spin_lock_irq(&mchdev_lock);
4139
4140         __i915_update_gfx_val(dev_priv);
4141
4142         spin_unlock_irq(&mchdev_lock);
4143 }
4144
4145 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4146 {
4147         unsigned long t, corr, state1, corr2, state2;
4148         u32 pxvid, ext_v;
4149
4150         assert_spin_locked(&mchdev_lock);
4151
4152         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4153         pxvid = (pxvid >> 24) & 0x7f;
4154         ext_v = pvid_to_extvid(dev_priv, pxvid);
4155
4156         state1 = ext_v;
4157
4158         t = i915_mch_val(dev_priv);
4159
4160         /* Revel in the empirically derived constants */
4161
4162         /* Correction factor in 1/100000 units */
4163         if (t > 80)
4164                 corr = ((t * 2349) + 135940);
4165         else if (t >= 50)
4166                 corr = ((t * 964) + 29317);
4167         else /* < 50 */
4168                 corr = ((t * 301) + 1004);
4169
4170         corr = corr * ((150142 * state1) / 10000 - 78642);
4171         corr /= 100000;
4172         corr2 = (corr * dev_priv->ips.corr);
4173
4174         state2 = (corr2 * state1) / 10000;
4175         state2 /= 100; /* convert to mW */
4176
4177         __i915_update_gfx_val(dev_priv);
4178
4179         return dev_priv->ips.gfx_power + state2;
4180 }
4181
4182 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4183 {
4184         struct drm_device *dev = dev_priv->dev;
4185         unsigned long val;
4186
4187         if (INTEL_INFO(dev)->gen != 5)
4188                 return 0;
4189
4190         spin_lock_irq(&mchdev_lock);
4191
4192         val = __i915_gfx_val(dev_priv);
4193
4194         spin_unlock_irq(&mchdev_lock);
4195
4196         return val;
4197 }
4198
4199 /**
4200  * i915_read_mch_val - return value for IPS use
4201  *
4202  * Calculate and return a value for the IPS driver to use when deciding whether
4203  * we have thermal and power headroom to increase CPU or GPU power budget.
4204  */
4205 unsigned long i915_read_mch_val(void)
4206 {
4207         struct drm_i915_private *dev_priv;
4208         unsigned long chipset_val, graphics_val, ret = 0;
4209
4210         spin_lock_irq(&mchdev_lock);
4211         if (!i915_mch_dev)
4212                 goto out_unlock;
4213         dev_priv = i915_mch_dev;
4214
4215         chipset_val = __i915_chipset_val(dev_priv);
4216         graphics_val = __i915_gfx_val(dev_priv);
4217
4218         ret = chipset_val + graphics_val;
4219
4220 out_unlock:
4221         spin_unlock_irq(&mchdev_lock);
4222
4223         return ret;
4224 }
4225 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4226
4227 /**
4228  * i915_gpu_raise - raise GPU frequency limit
4229  *
4230  * Raise the limit; IPS indicates we have thermal headroom.
4231  */
4232 bool i915_gpu_raise(void)
4233 {
4234         struct drm_i915_private *dev_priv;
4235         bool ret = true;
4236
4237         spin_lock_irq(&mchdev_lock);
4238         if (!i915_mch_dev) {
4239                 ret = false;
4240                 goto out_unlock;
4241         }
4242         dev_priv = i915_mch_dev;
4243
4244         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4245                 dev_priv->ips.max_delay--;
4246
4247 out_unlock:
4248         spin_unlock_irq(&mchdev_lock);
4249
4250         return ret;
4251 }
4252 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4253
4254 /**
4255  * i915_gpu_lower - lower GPU frequency limit
4256  *
4257  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4258  * frequency maximum.
4259  */
4260 bool i915_gpu_lower(void)
4261 {
4262         struct drm_i915_private *dev_priv;
4263         bool ret = true;
4264
4265         spin_lock_irq(&mchdev_lock);
4266         if (!i915_mch_dev) {
4267                 ret = false;
4268                 goto out_unlock;
4269         }
4270         dev_priv = i915_mch_dev;
4271
4272         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4273                 dev_priv->ips.max_delay++;
4274
4275 out_unlock:
4276         spin_unlock_irq(&mchdev_lock);
4277
4278         return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4281
4282 /**
4283  * i915_gpu_busy - indicate GPU business to IPS
4284  *
4285  * Tell the IPS driver whether or not the GPU is busy.
4286  */
4287 bool i915_gpu_busy(void)
4288 {
4289         struct drm_i915_private *dev_priv;
4290         struct intel_ring_buffer *ring;
4291         bool ret = false;
4292         int i;
4293
4294         spin_lock_irq(&mchdev_lock);
4295         if (!i915_mch_dev)
4296                 goto out_unlock;
4297         dev_priv = i915_mch_dev;
4298
4299         for_each_ring(ring, dev_priv, i)
4300                 ret |= !list_empty(&ring->request_list);
4301
4302 out_unlock:
4303         spin_unlock_irq(&mchdev_lock);
4304
4305         return ret;
4306 }
4307 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4308
4309 /**
4310  * i915_gpu_turbo_disable - disable graphics turbo
4311  *
4312  * Disable graphics turbo by resetting the max frequency and setting the
4313  * current frequency to the default.
4314  */
4315 bool i915_gpu_turbo_disable(void)
4316 {
4317         struct drm_i915_private *dev_priv;
4318         bool ret = true;
4319
4320         spin_lock_irq(&mchdev_lock);
4321         if (!i915_mch_dev) {
4322                 ret = false;
4323                 goto out_unlock;
4324         }
4325         dev_priv = i915_mch_dev;
4326
4327         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4328
4329         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4330                 ret = false;
4331
4332 out_unlock:
4333         spin_unlock_irq(&mchdev_lock);
4334
4335         return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4338
4339 /**
4340  * Tells the intel_ips driver that the i915 driver is now loaded, if
4341  * IPS got loaded first.
4342  *
4343  * This awkward dance is so that neither module has to depend on the
4344  * other in order for IPS to do the appropriate communication of
4345  * GPU turbo limits to i915.
4346  */
4347 static void
4348 ips_ping_for_i915_load(void)
4349 {
4350         void (*link)(void);
4351
4352         link = symbol_get(ips_link_to_i915_driver);
4353         if (link) {
4354                 link();
4355                 symbol_put(ips_link_to_i915_driver);
4356         }
4357 }
4358
4359 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4360 {
4361         /* We only register the i915 ips part with intel-ips once everything is
4362          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4363         spin_lock_irq(&mchdev_lock);
4364         i915_mch_dev = dev_priv;
4365         spin_unlock_irq(&mchdev_lock);
4366
4367         ips_ping_for_i915_load();
4368 }
4369
4370 void intel_gpu_ips_teardown(void)
4371 {
4372         spin_lock_irq(&mchdev_lock);
4373         i915_mch_dev = NULL;
4374         spin_unlock_irq(&mchdev_lock);
4375 }
4376
4377 static void intel_init_emon(struct drm_device *dev)
4378 {
4379         struct drm_i915_private *dev_priv = dev->dev_private;
4380         u32 lcfuse;
4381         u8 pxw[16];
4382         int i;
4383
4384         /* Disable to program */
4385         I915_WRITE(ECR, 0);
4386         POSTING_READ(ECR);
4387
4388         /* Program energy weights for various events */
4389         I915_WRITE(SDEW, 0x15040d00);
4390         I915_WRITE(CSIEW0, 0x007f0000);
4391         I915_WRITE(CSIEW1, 0x1e220004);
4392         I915_WRITE(CSIEW2, 0x04000004);
4393
4394         for (i = 0; i < 5; i++)
4395                 I915_WRITE(PEW + (i * 4), 0);
4396         for (i = 0; i < 3; i++)
4397                 I915_WRITE(DEW + (i * 4), 0);
4398
4399         /* Program P-state weights to account for frequency power adjustment */
4400         for (i = 0; i < 16; i++) {
4401                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4402                 unsigned long freq = intel_pxfreq(pxvidfreq);
4403                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4404                         PXVFREQ_PX_SHIFT;
4405                 unsigned long val;
4406
4407                 val = vid * vid;
4408                 val *= (freq / 1000);
4409                 val *= 255;
4410                 val /= (127*127*900);
4411                 if (val > 0xff)
4412                         DRM_ERROR("bad pxval: %ld\n", val);
4413                 pxw[i] = val;
4414         }
4415         /* Render standby states get 0 weight */
4416         pxw[14] = 0;
4417         pxw[15] = 0;
4418
4419         for (i = 0; i < 4; i++) {
4420                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4421                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4422                 I915_WRITE(PXW + (i * 4), val);
4423         }
4424
4425         /* Adjust magic regs to magic values (more experimental results) */
4426         I915_WRITE(OGW0, 0);
4427         I915_WRITE(OGW1, 0);
4428         I915_WRITE(EG0, 0x00007f00);
4429         I915_WRITE(EG1, 0x0000000e);
4430         I915_WRITE(EG2, 0x000e0000);
4431         I915_WRITE(EG3, 0x68000300);
4432         I915_WRITE(EG4, 0x42000000);
4433         I915_WRITE(EG5, 0x00140031);
4434         I915_WRITE(EG6, 0);
4435         I915_WRITE(EG7, 0);
4436
4437         for (i = 0; i < 8; i++)
4438                 I915_WRITE(PXWL + (i * 4), 0);
4439
4440         /* Enable PMON + select events */
4441         I915_WRITE(ECR, 0x80000019);
4442
4443         lcfuse = I915_READ(LCFUSE02);
4444
4445         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4446 }
4447
4448 void intel_init_gt_powersave(struct drm_device *dev)
4449 {
4450         if (IS_VALLEYVIEW(dev))
4451                 valleyview_setup_pctx(dev);
4452 }
4453
4454 void intel_cleanup_gt_powersave(struct drm_device *dev)
4455 {
4456         if (IS_VALLEYVIEW(dev))
4457                 valleyview_cleanup_pctx(dev);
4458 }
4459
4460 void intel_disable_gt_powersave(struct drm_device *dev)
4461 {
4462         struct drm_i915_private *dev_priv = dev->dev_private;
4463
4464         /* Interrupts should be disabled already to avoid re-arming. */
4465         WARN_ON(dev->irq_enabled);
4466
4467         if (IS_IRONLAKE_M(dev)) {
4468                 ironlake_disable_drps(dev);
4469                 ironlake_disable_rc6(dev);
4470         } else if (INTEL_INFO(dev)->gen >= 6) {
4471                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4472                 cancel_work_sync(&dev_priv->rps.work);
4473                 mutex_lock(&dev_priv->rps.hw_lock);
4474                 if (IS_VALLEYVIEW(dev))
4475                         valleyview_disable_rps(dev);
4476                 else
4477                         gen6_disable_rps(dev);
4478                 dev_priv->rps.enabled = false;
4479                 mutex_unlock(&dev_priv->rps.hw_lock);
4480         }
4481 }
4482
4483 static void intel_gen6_powersave_work(struct work_struct *work)
4484 {
4485         struct drm_i915_private *dev_priv =
4486                 container_of(work, struct drm_i915_private,
4487                              rps.delayed_resume_work.work);
4488         struct drm_device *dev = dev_priv->dev;
4489
4490         mutex_lock(&dev_priv->rps.hw_lock);
4491
4492         if (IS_VALLEYVIEW(dev)) {
4493                 valleyview_enable_rps(dev);
4494         } else if (IS_BROADWELL(dev)) {
4495                 gen8_enable_rps(dev);
4496                 gen6_update_ring_freq(dev);
4497         } else {
4498                 gen6_enable_rps(dev);
4499                 gen6_update_ring_freq(dev);
4500         }
4501         dev_priv->rps.enabled = true;
4502         mutex_unlock(&dev_priv->rps.hw_lock);
4503 }
4504
4505 void intel_enable_gt_powersave(struct drm_device *dev)
4506 {
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508
4509         if (IS_IRONLAKE_M(dev)) {
4510                 ironlake_enable_drps(dev);
4511                 ironlake_enable_rc6(dev);
4512                 intel_init_emon(dev);
4513         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4514                 /*
4515                  * PCU communication is slow and this doesn't need to be
4516                  * done at any specific time, so do this out of our fast path
4517                  * to make resume and init faster.
4518                  */
4519                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4520                                       round_jiffies_up_relative(HZ));
4521         }
4522 }
4523
4524 static void ibx_init_clock_gating(struct drm_device *dev)
4525 {
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527
4528         /*
4529          * On Ibex Peak and Cougar Point, we need to disable clock
4530          * gating for the panel power sequencer or it will fail to
4531          * start up when no ports are active.
4532          */
4533         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4534 }
4535
4536 static void g4x_disable_trickle_feed(struct drm_device *dev)
4537 {
4538         struct drm_i915_private *dev_priv = dev->dev_private;
4539         int pipe;
4540
4541         for_each_pipe(pipe) {
4542                 I915_WRITE(DSPCNTR(pipe),
4543                            I915_READ(DSPCNTR(pipe)) |
4544                            DISPPLANE_TRICKLE_FEED_DISABLE);
4545                 intel_flush_primary_plane(dev_priv, pipe);
4546         }
4547 }
4548
4549 static void ilk_init_lp_watermarks(struct drm_device *dev)
4550 {
4551         struct drm_i915_private *dev_priv = dev->dev_private;
4552
4553         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4554         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4555         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4556
4557         /*
4558          * Don't touch WM1S_LP_EN here.
4559          * Doing so could cause underruns.
4560          */
4561 }
4562
4563 static void ironlake_init_clock_gating(struct drm_device *dev)
4564 {
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4567
4568         /*
4569          * Required for FBC
4570          * WaFbcDisableDpfcClockGating:ilk
4571          */
4572         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4573                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4574                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4575
4576         I915_WRITE(PCH_3DCGDIS0,
4577                    MARIUNIT_CLOCK_GATE_DISABLE |
4578                    SVSMUNIT_CLOCK_GATE_DISABLE);
4579         I915_WRITE(PCH_3DCGDIS1,
4580                    VFMUNIT_CLOCK_GATE_DISABLE);
4581
4582         /*
4583          * According to the spec the following bits should be set in
4584          * order to enable memory self-refresh
4585          * The bit 22/21 of 0x42004
4586          * The bit 5 of 0x42020
4587          * The bit 15 of 0x45000
4588          */
4589         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4590                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4591                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4592         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4593         I915_WRITE(DISP_ARB_CTL,
4594                    (I915_READ(DISP_ARB_CTL) |
4595                     DISP_FBC_WM_DIS));
4596
4597         ilk_init_lp_watermarks(dev);
4598
4599         /*
4600          * Based on the document from hardware guys the following bits
4601          * should be set unconditionally in order to enable FBC.
4602          * The bit 22 of 0x42000
4603          * The bit 22 of 0x42004
4604          * The bit 7,8,9 of 0x42020.
4605          */
4606         if (IS_IRONLAKE_M(dev)) {
4607                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4608                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4609                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4610                            ILK_FBCQ_DIS);
4611                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4612                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4613                            ILK_DPARB_GATE);
4614         }
4615
4616         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4617
4618         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4619                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4620                    ILK_ELPIN_409_SELECT);
4621         I915_WRITE(_3D_CHICKEN2,
4622                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4623                    _3D_CHICKEN2_WM_READ_PIPELINED);
4624
4625         /* WaDisableRenderCachePipelinedFlush:ilk */
4626         I915_WRITE(CACHE_MODE_0,
4627                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4628
4629         g4x_disable_trickle_feed(dev);
4630
4631         ibx_init_clock_gating(dev);
4632 }
4633
4634 static void cpt_init_clock_gating(struct drm_device *dev)
4635 {
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637         int pipe;
4638         uint32_t val;
4639
4640         /*
4641          * On Ibex Peak and Cougar Point, we need to disable clock
4642          * gating for the panel power sequencer or it will fail to
4643          * start up when no ports are active.
4644          */
4645         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4646                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4647                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4648         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4649                    DPLS_EDP_PPS_FIX_DIS);
4650         /* The below fixes the weird display corruption, a few pixels shifted
4651          * downward, on (only) LVDS of some HP laptops with IVY.
4652          */
4653         for_each_pipe(pipe) {
4654                 val = I915_READ(TRANS_CHICKEN2(pipe));
4655                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4656                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4657                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4658                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4659                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4660                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4661                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4662                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4663         }
4664         /* WADP0ClockGatingDisable */
4665         for_each_pipe(pipe) {
4666                 I915_WRITE(TRANS_CHICKEN1(pipe),
4667                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4668         }
4669 }
4670
4671 static void gen6_check_mch_setup(struct drm_device *dev)
4672 {
4673         struct drm_i915_private *dev_priv = dev->dev_private;
4674         uint32_t tmp;
4675
4676         tmp = I915_READ(MCH_SSKPD);
4677         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4678                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4679                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4680                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4681         }
4682 }
4683
4684 static void gen6_init_clock_gating(struct drm_device *dev)
4685 {
4686         struct drm_i915_private *dev_priv = dev->dev_private;
4687         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4688
4689         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4690
4691         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4692                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4693                    ILK_ELPIN_409_SELECT);
4694
4695         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4696         I915_WRITE(_3D_CHICKEN,
4697                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4698
4699         /* WaSetupGtModeTdRowDispatch:snb */
4700         if (IS_SNB_GT1(dev))
4701                 I915_WRITE(GEN6_GT_MODE,
4702                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4703
4704         /*
4705          * BSpec recoomends 8x4 when MSAA is used,
4706          * however in practice 16x4 seems fastest.
4707          *
4708          * Note that PS/WM thread counts depend on the WIZ hashing
4709          * disable bit, which we don't touch here, but it's good
4710          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4711          */
4712         I915_WRITE(GEN6_GT_MODE,
4713                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4714
4715         ilk_init_lp_watermarks(dev);
4716
4717         I915_WRITE(CACHE_MODE_0,
4718                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4719
4720         I915_WRITE(GEN6_UCGCTL1,
4721                    I915_READ(GEN6_UCGCTL1) |
4722                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4723                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4724
4725         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4726          * gating disable must be set.  Failure to set it results in
4727          * flickering pixels due to Z write ordering failures after
4728          * some amount of runtime in the Mesa "fire" demo, and Unigine
4729          * Sanctuary and Tropics, and apparently anything else with
4730          * alpha test or pixel discard.
4731          *
4732          * According to the spec, bit 11 (RCCUNIT) must also be set,
4733          * but we didn't debug actual testcases to find it out.
4734          *
4735          * WaDisableRCCUnitClockGating:snb
4736          * WaDisableRCPBUnitClockGating:snb
4737          */
4738         I915_WRITE(GEN6_UCGCTL2,
4739                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4740                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4741
4742         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4743         I915_WRITE(_3D_CHICKEN3,
4744                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4745
4746         /*
4747          * Bspec says:
4748          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4749          * 3DSTATE_SF number of SF output attributes is more than 16."
4750          */
4751         I915_WRITE(_3D_CHICKEN3,
4752                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4753
4754         /*
4755          * According to the spec the following bits should be
4756          * set in order to enable memory self-refresh and fbc:
4757          * The bit21 and bit22 of 0x42000
4758          * The bit21 and bit22 of 0x42004
4759          * The bit5 and bit7 of 0x42020
4760          * The bit14 of 0x70180
4761          * The bit14 of 0x71180
4762          *
4763          * WaFbcAsynchFlipDisableFbcQueue:snb
4764          */
4765         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4766                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4767                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4768         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4769                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4770                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4771         I915_WRITE(ILK_DSPCLK_GATE_D,
4772                    I915_READ(ILK_DSPCLK_GATE_D) |
4773                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4774                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4775
4776         g4x_disable_trickle_feed(dev);
4777
4778         cpt_init_clock_gating(dev);
4779
4780         gen6_check_mch_setup(dev);
4781 }
4782
4783 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4784 {
4785         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4786
4787         /*
4788          * WaVSThreadDispatchOverride:ivb,vlv
4789          *
4790          * This actually overrides the dispatch
4791          * mode for all thread types.
4792          */
4793         reg &= ~GEN7_FF_SCHED_MASK;
4794         reg |= GEN7_FF_TS_SCHED_HW;
4795         reg |= GEN7_FF_VS_SCHED_HW;
4796         reg |= GEN7_FF_DS_SCHED_HW;
4797
4798         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4799 }
4800
4801 static void lpt_init_clock_gating(struct drm_device *dev)
4802 {
4803         struct drm_i915_private *dev_priv = dev->dev_private;
4804
4805         /*
4806          * TODO: this bit should only be enabled when really needed, then
4807          * disabled when not needed anymore in order to save power.
4808          */
4809         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4810                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4811                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4812                            PCH_LP_PARTITION_LEVEL_DISABLE);
4813
4814         /* WADPOClockGatingDisable:hsw */
4815         I915_WRITE(_TRANSA_CHICKEN1,
4816                    I915_READ(_TRANSA_CHICKEN1) |
4817                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4818 }
4819
4820 static void lpt_suspend_hw(struct drm_device *dev)
4821 {
4822         struct drm_i915_private *dev_priv = dev->dev_private;
4823
4824         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4825                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4826
4827                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4828                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4829         }
4830 }
4831
4832 static void gen8_init_clock_gating(struct drm_device *dev)
4833 {
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         enum pipe pipe;
4836
4837         I915_WRITE(WM3_LP_ILK, 0);
4838         I915_WRITE(WM2_LP_ILK, 0);
4839         I915_WRITE(WM1_LP_ILK, 0);
4840
4841         /* FIXME(BDW): Check all the w/a, some might only apply to
4842          * pre-production hw. */
4843
4844         /* WaDisablePartialInstShootdown:bdw */
4845         I915_WRITE(GEN8_ROW_CHICKEN,
4846                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4847
4848         /* WaDisableThreadStallDopClockGating:bdw */
4849         /* FIXME: Unclear whether we really need this on production bdw. */
4850         I915_WRITE(GEN8_ROW_CHICKEN,
4851                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4852
4853         /*
4854          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4855          * pre-production hardware
4856          */
4857         I915_WRITE(HALF_SLICE_CHICKEN3,
4858                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4859         I915_WRITE(HALF_SLICE_CHICKEN3,
4860                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4861         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4862
4863         I915_WRITE(_3D_CHICKEN3,
4864                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4865
4866         I915_WRITE(COMMON_SLICE_CHICKEN2,
4867                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4868
4869         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4870                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4871
4872         /* WaSwitchSolVfFArbitrationPriority:bdw */
4873         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4874
4875         /* WaPsrDPAMaskVBlankInSRD:bdw */
4876         I915_WRITE(CHICKEN_PAR1_1,
4877                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4878
4879         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4880         for_each_pipe(pipe) {
4881                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
4882                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
4883                            BDW_DPRS_MASK_VBLANK_SRD);
4884         }
4885
4886         /* Use Force Non-Coherent whenever executing a 3D context. This is a
4887          * workaround for for a possible hang in the unlikely event a TLB
4888          * invalidation occurs during a PSD flush.
4889          */
4890         I915_WRITE(HDC_CHICKEN0,
4891                    I915_READ(HDC_CHICKEN0) |
4892                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4893
4894         /* WaVSRefCountFullforceMissDisable:bdw */
4895         /* WaDSRefCountFullforceMissDisable:bdw */
4896         I915_WRITE(GEN7_FF_THREAD_MODE,
4897                    I915_READ(GEN7_FF_THREAD_MODE) &
4898                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4899
4900         /*
4901          * BSpec recommends 8x4 when MSAA is used,
4902          * however in practice 16x4 seems fastest.
4903          *
4904          * Note that PS/WM thread counts depend on the WIZ hashing
4905          * disable bit, which we don't touch here, but it's good
4906          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4907          */
4908         I915_WRITE(GEN7_GT_MODE,
4909                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4910
4911         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4912                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4913
4914         /* WaDisableSDEUnitClockGating:bdw */
4915         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4916                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4917
4918         /* Wa4x4STCOptimizationDisable:bdw */
4919         I915_WRITE(CACHE_MODE_1,
4920                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
4921 }
4922
4923 static void haswell_init_clock_gating(struct drm_device *dev)
4924 {
4925         struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927         ilk_init_lp_watermarks(dev);
4928
4929         /* L3 caching of data atomics doesn't work -- disable it. */
4930         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4931         I915_WRITE(HSW_ROW_CHICKEN3,
4932                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4933
4934         /* This is required by WaCatErrorRejectionIssue:hsw */
4935         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4936                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4937                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4938
4939         /* WaVSRefCountFullforceMissDisable:hsw */
4940         I915_WRITE(GEN7_FF_THREAD_MODE,
4941                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4942
4943         /* enable HiZ Raw Stall Optimization */
4944         I915_WRITE(CACHE_MODE_0_GEN7,
4945                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4946
4947         /* WaDisable4x2SubspanOptimization:hsw */
4948         I915_WRITE(CACHE_MODE_1,
4949                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4950
4951         /*
4952          * BSpec recommends 8x4 when MSAA is used,
4953          * however in practice 16x4 seems fastest.
4954          *
4955          * Note that PS/WM thread counts depend on the WIZ hashing
4956          * disable bit, which we don't touch here, but it's good
4957          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4958          */
4959         I915_WRITE(GEN7_GT_MODE,
4960                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4961
4962         /* WaSwitchSolVfFArbitrationPriority:hsw */
4963         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4964
4965         /* WaRsPkgCStateDisplayPMReq:hsw */
4966         I915_WRITE(CHICKEN_PAR1_1,
4967                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4968
4969         lpt_init_clock_gating(dev);
4970 }
4971
4972 static void ivybridge_init_clock_gating(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975         uint32_t snpcr;
4976
4977         ilk_init_lp_watermarks(dev);
4978
4979         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4980
4981         /* WaDisableEarlyCull:ivb */
4982         I915_WRITE(_3D_CHICKEN3,
4983                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4984
4985         /* WaDisableBackToBackFlipFix:ivb */
4986         I915_WRITE(IVB_CHICKEN3,
4987                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4988                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4989
4990         /* WaDisablePSDDualDispatchEnable:ivb */
4991         if (IS_IVB_GT1(dev))
4992                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4993                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4994
4995         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4996         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4997                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4998
4999         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5000         I915_WRITE(GEN7_L3CNTLREG1,
5001                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5002         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5003                    GEN7_WA_L3_CHICKEN_MODE);
5004         if (IS_IVB_GT1(dev))
5005                 I915_WRITE(GEN7_ROW_CHICKEN2,
5006                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5007         else {
5008                 /* must write both registers */
5009                 I915_WRITE(GEN7_ROW_CHICKEN2,
5010                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5011                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5012                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5013         }
5014
5015         /* WaForceL3Serialization:ivb */
5016         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5017                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5018
5019         /*
5020          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5021          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5022          */
5023         I915_WRITE(GEN6_UCGCTL2,
5024                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5025
5026         /* This is required by WaCatErrorRejectionIssue:ivb */
5027         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5028                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5029                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5030
5031         g4x_disable_trickle_feed(dev);
5032
5033         gen7_setup_fixed_func_scheduler(dev_priv);
5034
5035         if (0) { /* causes HiZ corruption on ivb:gt1 */
5036                 /* enable HiZ Raw Stall Optimization */
5037                 I915_WRITE(CACHE_MODE_0_GEN7,
5038                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5039         }
5040
5041         /* WaDisable4x2SubspanOptimization:ivb */
5042         I915_WRITE(CACHE_MODE_1,
5043                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5044
5045         /*
5046          * BSpec recommends 8x4 when MSAA is used,
5047          * however in practice 16x4 seems fastest.
5048          *
5049          * Note that PS/WM thread counts depend on the WIZ hashing
5050          * disable bit, which we don't touch here, but it's good
5051          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5052          */
5053         I915_WRITE(GEN7_GT_MODE,
5054                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5055
5056         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5057         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5058         snpcr |= GEN6_MBC_SNPCR_MED;
5059         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5060
5061         if (!HAS_PCH_NOP(dev))
5062                 cpt_init_clock_gating(dev);
5063
5064         gen6_check_mch_setup(dev);
5065 }
5066
5067 static void valleyview_init_clock_gating(struct drm_device *dev)
5068 {
5069         struct drm_i915_private *dev_priv = dev->dev_private;
5070         u32 val;
5071
5072         mutex_lock(&dev_priv->rps.hw_lock);
5073         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5074         mutex_unlock(&dev_priv->rps.hw_lock);
5075         switch ((val >> 6) & 3) {
5076         case 0:
5077         case 1:
5078                 dev_priv->mem_freq = 800;
5079                 break;
5080         case 2:
5081                 dev_priv->mem_freq = 1066;
5082                 break;
5083         case 3:
5084                 dev_priv->mem_freq = 1333;
5085                 break;
5086         }
5087         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5088
5089         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5090
5091         /* WaDisableEarlyCull:vlv */
5092         I915_WRITE(_3D_CHICKEN3,
5093                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5094
5095         /* WaDisableBackToBackFlipFix:vlv */
5096         I915_WRITE(IVB_CHICKEN3,
5097                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5098                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5099
5100         /* WaPsdDispatchEnable:vlv */
5101         /* WaDisablePSDDualDispatchEnable:vlv */
5102         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5103                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5104                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5105
5106         /* WaForceL3Serialization:vlv */
5107         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5108                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5109
5110         /* WaDisableDopClockGating:vlv */
5111         I915_WRITE(GEN7_ROW_CHICKEN2,
5112                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5113
5114         /* This is required by WaCatErrorRejectionIssue:vlv */
5115         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5116                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5117                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5118
5119         gen7_setup_fixed_func_scheduler(dev_priv);
5120
5121         /*
5122          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5123          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5124          */
5125         I915_WRITE(GEN6_UCGCTL2,
5126                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5127
5128         /* WaDisableL3Bank2xClockGate:vlv */
5129         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5130
5131         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5132
5133         /*
5134          * BSpec says this must be set, even though
5135          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5136          */
5137         I915_WRITE(CACHE_MODE_1,
5138                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5139
5140         /*
5141          * WaIncreaseL3CreditsForVLVB0:vlv
5142          * This is the hardware default actually.
5143          */
5144         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5145
5146         /*
5147          * WaDisableVLVClockGating_VBIIssue:vlv
5148          * Disable clock gating on th GCFG unit to prevent a delay
5149          * in the reporting of vblank events.
5150          */
5151         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5152 }
5153
5154 static void g4x_init_clock_gating(struct drm_device *dev)
5155 {
5156         struct drm_i915_private *dev_priv = dev->dev_private;
5157         uint32_t dspclk_gate;
5158
5159         I915_WRITE(RENCLK_GATE_D1, 0);
5160         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5161                    GS_UNIT_CLOCK_GATE_DISABLE |
5162                    CL_UNIT_CLOCK_GATE_DISABLE);
5163         I915_WRITE(RAMCLK_GATE_D, 0);
5164         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5165                 OVRUNIT_CLOCK_GATE_DISABLE |
5166                 OVCUNIT_CLOCK_GATE_DISABLE;
5167         if (IS_GM45(dev))
5168                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5169         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5170
5171         /* WaDisableRenderCachePipelinedFlush */
5172         I915_WRITE(CACHE_MODE_0,
5173                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5174
5175         g4x_disable_trickle_feed(dev);
5176 }
5177
5178 static void crestline_init_clock_gating(struct drm_device *dev)
5179 {
5180         struct drm_i915_private *dev_priv = dev->dev_private;
5181
5182         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5183         I915_WRITE(RENCLK_GATE_D2, 0);
5184         I915_WRITE(DSPCLK_GATE_D, 0);
5185         I915_WRITE(RAMCLK_GATE_D, 0);
5186         I915_WRITE16(DEUC, 0);
5187         I915_WRITE(MI_ARB_STATE,
5188                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5189 }
5190
5191 static void broadwater_init_clock_gating(struct drm_device *dev)
5192 {
5193         struct drm_i915_private *dev_priv = dev->dev_private;
5194
5195         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5196                    I965_RCC_CLOCK_GATE_DISABLE |
5197                    I965_RCPB_CLOCK_GATE_DISABLE |
5198                    I965_ISC_CLOCK_GATE_DISABLE |
5199                    I965_FBC_CLOCK_GATE_DISABLE);
5200         I915_WRITE(RENCLK_GATE_D2, 0);
5201         I915_WRITE(MI_ARB_STATE,
5202                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5203 }
5204
5205 static void gen3_init_clock_gating(struct drm_device *dev)
5206 {
5207         struct drm_i915_private *dev_priv = dev->dev_private;
5208         u32 dstate = I915_READ(D_STATE);
5209
5210         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5211                 DSTATE_DOT_CLOCK_GATING;
5212         I915_WRITE(D_STATE, dstate);
5213
5214         if (IS_PINEVIEW(dev))
5215                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5216
5217         /* IIR "flip pending" means done if this bit is set */
5218         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5219 }
5220
5221 static void i85x_init_clock_gating(struct drm_device *dev)
5222 {
5223         struct drm_i915_private *dev_priv = dev->dev_private;
5224
5225         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5226 }
5227
5228 static void i830_init_clock_gating(struct drm_device *dev)
5229 {
5230         struct drm_i915_private *dev_priv = dev->dev_private;
5231
5232         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5233 }
5234
5235 void intel_init_clock_gating(struct drm_device *dev)
5236 {
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238
5239         dev_priv->display.init_clock_gating(dev);
5240 }
5241
5242 void intel_suspend_hw(struct drm_device *dev)
5243 {
5244         if (HAS_PCH_LPT(dev))
5245                 lpt_suspend_hw(dev);
5246 }
5247
5248 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5249         for (i = 0;                                                     \
5250              i < (power_domains)->power_well_count &&                   \
5251                  ((power_well) = &(power_domains)->power_wells[i]);     \
5252              i++)                                                       \
5253                 if ((power_well)->domains & (domain_mask))
5254
5255 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5256         for (i = (power_domains)->power_well_count - 1;                  \
5257              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5258              i--)                                                        \
5259                 if ((power_well)->domains & (domain_mask))
5260
5261 /**
5262  * We should only use the power well if we explicitly asked the hardware to
5263  * enable it, so check if it's enabled and also check if we've requested it to
5264  * be enabled.
5265  */
5266 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5267                                    struct i915_power_well *power_well)
5268 {
5269         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5270                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5271 }
5272
5273 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5274                                     enum intel_display_power_domain domain)
5275 {
5276         struct i915_power_domains *power_domains;
5277
5278         power_domains = &dev_priv->power_domains;
5279
5280         return power_domains->domain_use_count[domain];
5281 }
5282
5283 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5284                                  enum intel_display_power_domain domain)
5285 {
5286         struct i915_power_domains *power_domains;
5287         struct i915_power_well *power_well;
5288         bool is_enabled;
5289         int i;
5290
5291         if (dev_priv->pm.suspended)
5292                 return false;
5293
5294         power_domains = &dev_priv->power_domains;
5295
5296         is_enabled = true;
5297
5298         mutex_lock(&power_domains->lock);
5299         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5300                 if (power_well->always_on)
5301                         continue;
5302
5303                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5304                         is_enabled = false;
5305                         break;
5306                 }
5307         }
5308         mutex_unlock(&power_domains->lock);
5309
5310         return is_enabled;
5311 }
5312
5313 /*
5314  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5315  * when not needed anymore. We have 4 registers that can request the power well
5316  * to be enabled, and it will only be disabled if none of the registers is
5317  * requesting it to be enabled.
5318  */
5319 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5320 {
5321         struct drm_device *dev = dev_priv->dev;
5322         unsigned long irqflags;
5323
5324         /*
5325          * After we re-enable the power well, if we touch VGA register 0x3d5
5326          * we'll get unclaimed register interrupts. This stops after we write
5327          * anything to the VGA MSR register. The vgacon module uses this
5328          * register all the time, so if we unbind our driver and, as a
5329          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5330          * console_unlock(). So make here we touch the VGA MSR register, making
5331          * sure vgacon can keep working normally without triggering interrupts
5332          * and error messages.
5333          */
5334         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5335         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5336         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5337
5338         if (IS_BROADWELL(dev)) {
5339                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5340                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5341                            dev_priv->de_irq_mask[PIPE_B]);
5342                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5343                            ~dev_priv->de_irq_mask[PIPE_B] |
5344                            GEN8_PIPE_VBLANK);
5345                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5346                            dev_priv->de_irq_mask[PIPE_C]);
5347                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5348                            ~dev_priv->de_irq_mask[PIPE_C] |
5349                            GEN8_PIPE_VBLANK);
5350                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5351                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5352         }
5353 }
5354
5355 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5356 {
5357         assert_spin_locked(&dev->vbl_lock);
5358
5359         dev->vblank[pipe].last = 0;
5360 }
5361
5362 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5363 {
5364         struct drm_device *dev = dev_priv->dev;
5365         enum pipe pipe;
5366         unsigned long irqflags;
5367
5368         /*
5369          * After this, the registers on the pipes that are part of the power
5370          * well will become zero, so we have to adjust our counters according to
5371          * that.
5372          *
5373          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5374          */
5375         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5376         for_each_pipe(pipe)
5377                 if (pipe != PIPE_A)
5378                         reset_vblank_counter(dev, pipe);
5379         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5380 }
5381
5382 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5383                                struct i915_power_well *power_well, bool enable)
5384 {
5385         bool is_enabled, enable_requested;
5386         uint32_t tmp;
5387
5388         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5389         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5390         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5391
5392         if (enable) {
5393                 if (!enable_requested)
5394                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5395                                    HSW_PWR_WELL_ENABLE_REQUEST);
5396
5397                 if (!is_enabled) {
5398                         DRM_DEBUG_KMS("Enabling power well\n");
5399                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5400                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5401                                 DRM_ERROR("Timeout enabling power well\n");
5402                 }
5403
5404                 hsw_power_well_post_enable(dev_priv);
5405         } else {
5406                 if (enable_requested) {
5407                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5408                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5409                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5410
5411                         hsw_power_well_post_disable(dev_priv);
5412                 }
5413         }
5414 }
5415
5416 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5417                                    struct i915_power_well *power_well)
5418 {
5419         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5420
5421         /*
5422          * We're taking over the BIOS, so clear any requests made by it since
5423          * the driver is in charge now.
5424          */
5425         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5426                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5427 }
5428
5429 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5430                                   struct i915_power_well *power_well)
5431 {
5432         hsw_set_power_well(dev_priv, power_well, true);
5433 }
5434
5435 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5436                                    struct i915_power_well *power_well)
5437 {
5438         hsw_set_power_well(dev_priv, power_well, false);
5439 }
5440
5441 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5442                                            struct i915_power_well *power_well)
5443 {
5444 }
5445
5446 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5447                                              struct i915_power_well *power_well)
5448 {
5449         return true;
5450 }
5451
5452 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5453                                struct i915_power_well *power_well, bool enable)
5454 {
5455         enum punit_power_well power_well_id = power_well->data;
5456         u32 mask;
5457         u32 state;
5458         u32 ctrl;
5459
5460         mask = PUNIT_PWRGT_MASK(power_well_id);
5461         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5462                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5463
5464         mutex_lock(&dev_priv->rps.hw_lock);
5465
5466 #define COND \
5467         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5468
5469         if (COND)
5470                 goto out;
5471
5472         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5473         ctrl &= ~mask;
5474         ctrl |= state;
5475         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5476
5477         if (wait_for(COND, 100))
5478                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5479                           state,
5480                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5481
5482 #undef COND
5483
5484 out:
5485         mutex_unlock(&dev_priv->rps.hw_lock);
5486 }
5487
5488 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5489                                    struct i915_power_well *power_well)
5490 {
5491         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5492 }
5493
5494 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5495                                   struct i915_power_well *power_well)
5496 {
5497         vlv_set_power_well(dev_priv, power_well, true);
5498 }
5499
5500 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5501                                    struct i915_power_well *power_well)
5502 {
5503         vlv_set_power_well(dev_priv, power_well, false);
5504 }
5505
5506 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5507                                    struct i915_power_well *power_well)
5508 {
5509         int power_well_id = power_well->data;
5510         bool enabled = false;
5511         u32 mask;
5512         u32 state;
5513         u32 ctrl;
5514
5515         mask = PUNIT_PWRGT_MASK(power_well_id);
5516         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5517
5518         mutex_lock(&dev_priv->rps.hw_lock);
5519
5520         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5521         /*
5522          * We only ever set the power-on and power-gate states, anything
5523          * else is unexpected.
5524          */
5525         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5526                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5527         if (state == ctrl)
5528                 enabled = true;
5529
5530         /*
5531          * A transient state at this point would mean some unexpected party
5532          * is poking at the power controls too.
5533          */
5534         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5535         WARN_ON(ctrl != state);
5536
5537         mutex_unlock(&dev_priv->rps.hw_lock);
5538
5539         return enabled;
5540 }
5541
5542 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5543                                           struct i915_power_well *power_well)
5544 {
5545         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5546
5547         vlv_set_power_well(dev_priv, power_well, true);
5548
5549         spin_lock_irq(&dev_priv->irq_lock);
5550         valleyview_enable_display_irqs(dev_priv);
5551         spin_unlock_irq(&dev_priv->irq_lock);
5552
5553         /*
5554          * During driver initialization we need to defer enabling hotplug
5555          * processing until fbdev is set up.
5556          */
5557         if (dev_priv->enable_hotplug_processing)
5558                 intel_hpd_init(dev_priv->dev);
5559
5560         i915_redisable_vga_power_on(dev_priv->dev);
5561 }
5562
5563 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5564                                            struct i915_power_well *power_well)
5565 {
5566         struct drm_device *dev = dev_priv->dev;
5567         enum pipe pipe;
5568
5569         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5570
5571         spin_lock_irq(&dev_priv->irq_lock);
5572         for_each_pipe(pipe)
5573                 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5574
5575         valleyview_disable_display_irqs(dev_priv);
5576         spin_unlock_irq(&dev_priv->irq_lock);
5577
5578         spin_lock_irq(&dev->vbl_lock);
5579         for_each_pipe(pipe)
5580                 reset_vblank_counter(dev, pipe);
5581         spin_unlock_irq(&dev->vbl_lock);
5582
5583         vlv_set_power_well(dev_priv, power_well, false);
5584 }
5585
5586 static void check_power_well_state(struct drm_i915_private *dev_priv,
5587                                    struct i915_power_well *power_well)
5588 {
5589         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5590
5591         if (power_well->always_on || !i915.disable_power_well) {
5592                 if (!enabled)
5593                         goto mismatch;
5594
5595                 return;
5596         }
5597
5598         if (enabled != (power_well->count > 0))
5599                 goto mismatch;
5600
5601         return;
5602
5603 mismatch:
5604         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5605                   power_well->name, power_well->always_on, enabled,
5606                   power_well->count, i915.disable_power_well);
5607 }
5608
5609 void intel_display_power_get(struct drm_i915_private *dev_priv,
5610                              enum intel_display_power_domain domain)
5611 {
5612         struct i915_power_domains *power_domains;
5613         struct i915_power_well *power_well;
5614         int i;
5615
5616         intel_runtime_pm_get(dev_priv);
5617
5618         power_domains = &dev_priv->power_domains;
5619
5620         mutex_lock(&power_domains->lock);
5621
5622         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5623                 if (!power_well->count++) {
5624                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5625                         power_well->ops->enable(dev_priv, power_well);
5626                 }
5627
5628                 check_power_well_state(dev_priv, power_well);
5629         }
5630
5631         power_domains->domain_use_count[domain]++;
5632
5633         mutex_unlock(&power_domains->lock);
5634 }
5635
5636 void intel_display_power_put(struct drm_i915_private *dev_priv,
5637                              enum intel_display_power_domain domain)
5638 {
5639         struct i915_power_domains *power_domains;
5640         struct i915_power_well *power_well;
5641         int i;
5642
5643         power_domains = &dev_priv->power_domains;
5644
5645         mutex_lock(&power_domains->lock);
5646
5647         WARN_ON(!power_domains->domain_use_count[domain]);
5648         power_domains->domain_use_count[domain]--;
5649
5650         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5651                 WARN_ON(!power_well->count);
5652
5653                 if (!--power_well->count && i915.disable_power_well) {
5654                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5655                         power_well->ops->disable(dev_priv, power_well);
5656                 }
5657
5658                 check_power_well_state(dev_priv, power_well);
5659         }
5660
5661         mutex_unlock(&power_domains->lock);
5662
5663         intel_runtime_pm_put(dev_priv);
5664 }
5665
5666 static struct i915_power_domains *hsw_pwr;
5667
5668 /* Display audio driver power well request */
5669 void i915_request_power_well(void)
5670 {
5671         struct drm_i915_private *dev_priv;
5672
5673         if (WARN_ON(!hsw_pwr))
5674                 return;
5675
5676         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5677                                 power_domains);
5678         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5679 }
5680 EXPORT_SYMBOL_GPL(i915_request_power_well);
5681
5682 /* Display audio driver power well release */
5683 void i915_release_power_well(void)
5684 {
5685         struct drm_i915_private *dev_priv;
5686
5687         if (WARN_ON(!hsw_pwr))
5688                 return;
5689
5690         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5691                                 power_domains);
5692         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5693 }
5694 EXPORT_SYMBOL_GPL(i915_release_power_well);
5695
5696 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5697
5698 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
5699         BIT(POWER_DOMAIN_PIPE_A) |                      \
5700         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
5701         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
5702         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
5703         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
5704         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
5705         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
5706         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
5707         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
5708         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
5709         BIT(POWER_DOMAIN_PORT_CRT) |                    \
5710         BIT(POWER_DOMAIN_INIT))
5711 #define HSW_DISPLAY_POWER_DOMAINS (                             \
5712         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
5713         BIT(POWER_DOMAIN_INIT))
5714
5715 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
5716         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
5717         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5718 #define BDW_DISPLAY_POWER_DOMAINS (                             \
5719         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
5720         BIT(POWER_DOMAIN_INIT))
5721
5722 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
5723 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
5724
5725 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
5726         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5727         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5728         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5729         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5730         BIT(POWER_DOMAIN_PORT_CRT) |            \
5731         BIT(POWER_DOMAIN_INIT))
5732
5733 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
5734         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5735         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5736         BIT(POWER_DOMAIN_INIT))
5737
5738 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
5739         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5740         BIT(POWER_DOMAIN_INIT))
5741
5742 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
5743         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5744         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5745         BIT(POWER_DOMAIN_INIT))
5746
5747 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
5748         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5749         BIT(POWER_DOMAIN_INIT))
5750
5751 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5752         .sync_hw = i9xx_always_on_power_well_noop,
5753         .enable = i9xx_always_on_power_well_noop,
5754         .disable = i9xx_always_on_power_well_noop,
5755         .is_enabled = i9xx_always_on_power_well_enabled,
5756 };
5757
5758 static struct i915_power_well i9xx_always_on_power_well[] = {
5759         {
5760                 .name = "always-on",
5761                 .always_on = 1,
5762                 .domains = POWER_DOMAIN_MASK,
5763                 .ops = &i9xx_always_on_power_well_ops,
5764         },
5765 };
5766
5767 static const struct i915_power_well_ops hsw_power_well_ops = {
5768         .sync_hw = hsw_power_well_sync_hw,
5769         .enable = hsw_power_well_enable,
5770         .disable = hsw_power_well_disable,
5771         .is_enabled = hsw_power_well_enabled,
5772 };
5773
5774 static struct i915_power_well hsw_power_wells[] = {
5775         {
5776                 .name = "always-on",
5777                 .always_on = 1,
5778                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5779                 .ops = &i9xx_always_on_power_well_ops,
5780         },
5781         {
5782                 .name = "display",
5783                 .domains = HSW_DISPLAY_POWER_DOMAINS,
5784                 .ops = &hsw_power_well_ops,
5785         },
5786 };
5787
5788 static struct i915_power_well bdw_power_wells[] = {
5789         {
5790                 .name = "always-on",
5791                 .always_on = 1,
5792                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5793                 .ops = &i9xx_always_on_power_well_ops,
5794         },
5795         {
5796                 .name = "display",
5797                 .domains = BDW_DISPLAY_POWER_DOMAINS,
5798                 .ops = &hsw_power_well_ops,
5799         },
5800 };
5801
5802 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5803         .sync_hw = vlv_power_well_sync_hw,
5804         .enable = vlv_display_power_well_enable,
5805         .disable = vlv_display_power_well_disable,
5806         .is_enabled = vlv_power_well_enabled,
5807 };
5808
5809 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5810         .sync_hw = vlv_power_well_sync_hw,
5811         .enable = vlv_power_well_enable,
5812         .disable = vlv_power_well_disable,
5813         .is_enabled = vlv_power_well_enabled,
5814 };
5815
5816 static struct i915_power_well vlv_power_wells[] = {
5817         {
5818                 .name = "always-on",
5819                 .always_on = 1,
5820                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5821                 .ops = &i9xx_always_on_power_well_ops,
5822         },
5823         {
5824                 .name = "display",
5825                 .domains = VLV_DISPLAY_POWER_DOMAINS,
5826                 .data = PUNIT_POWER_WELL_DISP2D,
5827                 .ops = &vlv_display_power_well_ops,
5828         },
5829         {
5830                 .name = "dpio-common",
5831                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5832                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5833                 .ops = &vlv_dpio_power_well_ops,
5834         },
5835         {
5836                 .name = "dpio-tx-b-01",
5837                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5838                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5839                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5840                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5841                 .ops = &vlv_dpio_power_well_ops,
5842                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5843         },
5844         {
5845                 .name = "dpio-tx-b-23",
5846                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5847                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5848                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5849                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5850                 .ops = &vlv_dpio_power_well_ops,
5851                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5852         },
5853         {
5854                 .name = "dpio-tx-c-01",
5855                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5856                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5857                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5858                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5859                 .ops = &vlv_dpio_power_well_ops,
5860                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5861         },
5862         {
5863                 .name = "dpio-tx-c-23",
5864                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5865                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5866                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5867                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5868                 .ops = &vlv_dpio_power_well_ops,
5869                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5870         },
5871 };
5872
5873 #define set_power_wells(power_domains, __power_wells) ({                \
5874         (power_domains)->power_wells = (__power_wells);                 \
5875         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5876 })
5877
5878 int intel_power_domains_init(struct drm_i915_private *dev_priv)
5879 {
5880         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5881
5882         mutex_init(&power_domains->lock);
5883
5884         /*
5885          * The enabling order will be from lower to higher indexed wells,
5886          * the disabling order is reversed.
5887          */
5888         if (IS_HASWELL(dev_priv->dev)) {
5889                 set_power_wells(power_domains, hsw_power_wells);
5890                 hsw_pwr = power_domains;
5891         } else if (IS_BROADWELL(dev_priv->dev)) {
5892                 set_power_wells(power_domains, bdw_power_wells);
5893                 hsw_pwr = power_domains;
5894         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
5895                 set_power_wells(power_domains, vlv_power_wells);
5896         } else {
5897                 set_power_wells(power_domains, i9xx_always_on_power_well);
5898         }
5899
5900         return 0;
5901 }
5902
5903 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5904 {
5905         hsw_pwr = NULL;
5906 }
5907
5908 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5909 {
5910         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5911         struct i915_power_well *power_well;
5912         int i;
5913
5914         mutex_lock(&power_domains->lock);
5915         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5916                 power_well->ops->sync_hw(dev_priv, power_well);
5917         mutex_unlock(&power_domains->lock);
5918 }
5919
5920 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
5921 {
5922         /* For now, we need the power well to be always enabled. */
5923         intel_display_set_init_power(dev_priv, true);
5924         intel_power_domains_resume(dev_priv);
5925 }
5926
5927 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5928 {
5929         intel_runtime_pm_get(dev_priv);
5930 }
5931
5932 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5933 {
5934         intel_runtime_pm_put(dev_priv);
5935 }
5936
5937 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5938 {
5939         struct drm_device *dev = dev_priv->dev;
5940         struct device *device = &dev->pdev->dev;
5941
5942         if (!HAS_RUNTIME_PM(dev))
5943                 return;
5944
5945         pm_runtime_get_sync(device);
5946         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5947 }
5948
5949 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5950 {
5951         struct drm_device *dev = dev_priv->dev;
5952         struct device *device = &dev->pdev->dev;
5953
5954         if (!HAS_RUNTIME_PM(dev))
5955                 return;
5956
5957         pm_runtime_mark_last_busy(device);
5958         pm_runtime_put_autosuspend(device);
5959 }
5960
5961 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5962 {
5963         struct drm_device *dev = dev_priv->dev;
5964         struct device *device = &dev->pdev->dev;
5965
5966         if (!HAS_RUNTIME_PM(dev))
5967                 return;
5968
5969         pm_runtime_set_active(device);
5970
5971         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5972         pm_runtime_mark_last_busy(device);
5973         pm_runtime_use_autosuspend(device);
5974
5975         pm_runtime_put_autosuspend(device);
5976 }
5977
5978 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5979 {
5980         struct drm_device *dev = dev_priv->dev;
5981         struct device *device = &dev->pdev->dev;
5982
5983         if (!HAS_RUNTIME_PM(dev))
5984                 return;
5985
5986         /* Make sure we're not suspended first. */
5987         pm_runtime_get_sync(device);
5988         pm_runtime_disable(device);
5989 }
5990
5991 /* Set up chip specific power management-related functions */
5992 void intel_init_pm(struct drm_device *dev)
5993 {
5994         struct drm_i915_private *dev_priv = dev->dev_private;
5995
5996         if (HAS_FBC(dev)) {
5997                 if (INTEL_INFO(dev)->gen >= 7) {
5998                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5999                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6000                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6001                 } else if (INTEL_INFO(dev)->gen >= 5) {
6002                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6003                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6004                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6005                 } else if (IS_GM45(dev)) {
6006                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6007                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6008                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6009                 } else {
6010                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6011                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6012                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6013
6014                         /* This value was pulled out of someone's hat */
6015                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6016                 }
6017         }
6018
6019         /* For cxsr */
6020         if (IS_PINEVIEW(dev))
6021                 i915_pineview_get_mem_freq(dev);
6022         else if (IS_GEN5(dev))
6023                 i915_ironlake_get_mem_freq(dev);
6024
6025         /* For FIFO watermark updates */
6026         if (HAS_PCH_SPLIT(dev)) {
6027                 ilk_setup_wm_latency(dev);
6028
6029                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6030                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6031                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6032                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6033                         dev_priv->display.update_wm = ilk_update_wm;
6034                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6035                 } else {
6036                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6037                                       "Disable CxSR\n");
6038                 }
6039
6040                 if (IS_GEN5(dev))
6041                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6042                 else if (IS_GEN6(dev))
6043                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6044                 else if (IS_IVYBRIDGE(dev))
6045                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6046                 else if (IS_HASWELL(dev))
6047                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6048                 else if (INTEL_INFO(dev)->gen == 8)
6049                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6050         } else if (IS_VALLEYVIEW(dev)) {
6051                 dev_priv->display.update_wm = valleyview_update_wm;
6052                 dev_priv->display.init_clock_gating =
6053                         valleyview_init_clock_gating;
6054         } else if (IS_PINEVIEW(dev)) {
6055                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6056                                             dev_priv->is_ddr3,
6057                                             dev_priv->fsb_freq,
6058                                             dev_priv->mem_freq)) {
6059                         DRM_INFO("failed to find known CxSR latency "
6060                                  "(found ddr%s fsb freq %d, mem freq %d), "
6061                                  "disabling CxSR\n",
6062                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6063                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6064                         /* Disable CxSR and never update its watermark again */
6065                         pineview_disable_cxsr(dev);
6066                         dev_priv->display.update_wm = NULL;
6067                 } else
6068                         dev_priv->display.update_wm = pineview_update_wm;
6069                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6070         } else if (IS_G4X(dev)) {
6071                 dev_priv->display.update_wm = g4x_update_wm;
6072                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6073         } else if (IS_GEN4(dev)) {
6074                 dev_priv->display.update_wm = i965_update_wm;
6075                 if (IS_CRESTLINE(dev))
6076                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6077                 else if (IS_BROADWATER(dev))
6078                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6079         } else if (IS_GEN3(dev)) {
6080                 dev_priv->display.update_wm = i9xx_update_wm;
6081                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6082                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6083         } else if (IS_GEN2(dev)) {
6084                 if (INTEL_INFO(dev)->num_pipes == 1) {
6085                         dev_priv->display.update_wm = i845_update_wm;
6086                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6087                 } else {
6088                         dev_priv->display.update_wm = i9xx_update_wm;
6089                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6090                 }
6091
6092                 if (IS_I85X(dev) || IS_I865G(dev))
6093                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6094                 else
6095                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6096         } else {
6097                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6098         }
6099 }
6100
6101 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6102 {
6103         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6104
6105         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6106                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6107                 return -EAGAIN;
6108         }
6109
6110         I915_WRITE(GEN6_PCODE_DATA, *val);
6111         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6112
6113         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6114                      500)) {
6115                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6116                 return -ETIMEDOUT;
6117         }
6118
6119         *val = I915_READ(GEN6_PCODE_DATA);
6120         I915_WRITE(GEN6_PCODE_DATA, 0);
6121
6122         return 0;
6123 }
6124
6125 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6126 {
6127         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6128
6129         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6130                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6131                 return -EAGAIN;
6132         }
6133
6134         I915_WRITE(GEN6_PCODE_DATA, val);
6135         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6136
6137         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6138                      500)) {
6139                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6140                 return -ETIMEDOUT;
6141         }
6142
6143         I915_WRITE(GEN6_PCODE_DATA, 0);
6144
6145         return 0;
6146 }
6147
6148 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6149 {
6150         int div;
6151
6152         /* 4 x czclk */
6153         switch (dev_priv->mem_freq) {
6154         case 800:
6155                 div = 10;
6156                 break;
6157         case 1066:
6158                 div = 12;
6159                 break;
6160         case 1333:
6161                 div = 16;
6162                 break;
6163         default:
6164                 return -1;
6165         }
6166
6167         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6168 }
6169
6170 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6171 {
6172         int mul;
6173
6174         /* 4 x czclk */
6175         switch (dev_priv->mem_freq) {
6176         case 800:
6177                 mul = 10;
6178                 break;
6179         case 1066:
6180                 mul = 12;
6181                 break;
6182         case 1333:
6183                 mul = 16;
6184                 break;
6185         default:
6186                 return -1;
6187         }
6188
6189         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6190 }
6191
6192 void intel_pm_setup(struct drm_device *dev)
6193 {
6194         struct drm_i915_private *dev_priv = dev->dev_private;
6195
6196         mutex_init(&dev_priv->rps.hw_lock);
6197
6198         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6199                           intel_gen6_powersave_work);
6200
6201         dev_priv->pm.suspended = false;
6202         dev_priv->pm.irqs_disabled = false;
6203 }