drm/i915: vlv: setup RPS min/max frequencies once during init time
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534                 max_width = 4096;
535                 max_height = 2048;
536         } else {
537                 max_width = 2048;
538                 max_height = 1536;
539         }
540         if (intel_crtc->config.pipe_src_w > max_width ||
541             intel_crtc->config.pipe_src_h > max_height) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544                 goto out_disable;
545         }
546         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547             intel_crtc->plane != PLANE_A) {
548                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
550                 goto out_disable;
551         }
552
553         /* The use of a CPU fence is mandatory in order to detect writes
554          * by the CPU to the scanout and trigger updates to the FBC.
555          */
556         if (obj->tiling_mode != I915_TILING_X ||
557             obj->fence_reg == I915_FENCE_REG_NONE) {
558                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560                 goto out_disable;
561         }
562
563         /* If the kernel debugger is active, always disable compression */
564         if (in_dbg_master())
565                 goto out_disable;
566
567         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570                 goto out_disable;
571         }
572
573         /* If the scanout has not changed, don't modify the FBC settings.
574          * Note that we make the fundamental assumption that the fb->obj
575          * cannot be unpinned (and have its GTT offset and fence revoked)
576          * without first being decoupled from the scanout and FBC disabled.
577          */
578         if (dev_priv->fbc.plane == intel_crtc->plane &&
579             dev_priv->fbc.fb_id == fb->base.id &&
580             dev_priv->fbc.y == crtc->y)
581                 return;
582
583         if (intel_fbc_enabled(dev)) {
584                 /* We update FBC along two paths, after changing fb/crtc
585                  * configuration (modeswitching) and after page-flipping
586                  * finishes. For the latter, we know that not only did
587                  * we disable the FBC at the start of the page-flip
588                  * sequence, but also more than one vblank has passed.
589                  *
590                  * For the former case of modeswitching, it is possible
591                  * to switch between two FBC valid configurations
592                  * instantaneously so we do need to disable the FBC
593                  * before we can modify its control registers. We also
594                  * have to wait for the next vblank for that to take
595                  * effect. However, since we delay enabling FBC we can
596                  * assume that a vblank has passed since disabling and
597                  * that we can safely alter the registers in the deferred
598                  * callback.
599                  *
600                  * In the scenario that we go from a valid to invalid
601                  * and then back to valid FBC configuration we have
602                  * no strict enforcement that a vblank occurred since
603                  * disabling the FBC. However, along all current pipe
604                  * disabling paths we do need to wait for a vblank at
605                  * some point. And we wait before enabling FBC anyway.
606                  */
607                 DRM_DEBUG_KMS("disabling active FBC for update\n");
608                 intel_disable_fbc(dev);
609         }
610
611         intel_enable_fbc(crtc);
612         dev_priv->fbc.no_fbc_reason = FBC_OK;
613         return;
614
615 out_disable:
616         /* Multiple disables should be harmless */
617         if (intel_fbc_enabled(dev)) {
618                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619                 intel_disable_fbc(dev);
620         }
621         i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626         struct drm_i915_private *dev_priv = dev->dev_private;
627         u32 tmp;
628
629         tmp = I915_READ(CLKCFG);
630
631         switch (tmp & CLKCFG_FSB_MASK) {
632         case CLKCFG_FSB_533:
633                 dev_priv->fsb_freq = 533; /* 133*4 */
634                 break;
635         case CLKCFG_FSB_800:
636                 dev_priv->fsb_freq = 800; /* 200*4 */
637                 break;
638         case CLKCFG_FSB_667:
639                 dev_priv->fsb_freq =  667; /* 167*4 */
640                 break;
641         case CLKCFG_FSB_400:
642                 dev_priv->fsb_freq = 400; /* 100*4 */
643                 break;
644         }
645
646         switch (tmp & CLKCFG_MEM_MASK) {
647         case CLKCFG_MEM_533:
648                 dev_priv->mem_freq = 533;
649                 break;
650         case CLKCFG_MEM_667:
651                 dev_priv->mem_freq = 667;
652                 break;
653         case CLKCFG_MEM_800:
654                 dev_priv->mem_freq = 800;
655                 break;
656         }
657
658         /* detect pineview DDR3 setting */
659         tmp = I915_READ(CSHRDDR3CTL);
660         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u16 ddrpll, csipll;
667
668         ddrpll = I915_READ16(DDRMPLL1);
669         csipll = I915_READ16(CSIPLL0);
670
671         switch (ddrpll & 0xff) {
672         case 0xc:
673                 dev_priv->mem_freq = 800;
674                 break;
675         case 0x10:
676                 dev_priv->mem_freq = 1066;
677                 break;
678         case 0x14:
679                 dev_priv->mem_freq = 1333;
680                 break;
681         case 0x18:
682                 dev_priv->mem_freq = 1600;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686                                  ddrpll & 0xff);
687                 dev_priv->mem_freq = 0;
688                 break;
689         }
690
691         dev_priv->ips.r_t = dev_priv->mem_freq;
692
693         switch (csipll & 0x3ff) {
694         case 0x00c:
695                 dev_priv->fsb_freq = 3200;
696                 break;
697         case 0x00e:
698                 dev_priv->fsb_freq = 3733;
699                 break;
700         case 0x010:
701                 dev_priv->fsb_freq = 4266;
702                 break;
703         case 0x012:
704                 dev_priv->fsb_freq = 4800;
705                 break;
706         case 0x014:
707                 dev_priv->fsb_freq = 5333;
708                 break;
709         case 0x016:
710                 dev_priv->fsb_freq = 5866;
711                 break;
712         case 0x018:
713                 dev_priv->fsb_freq = 6400;
714                 break;
715         default:
716                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717                                  csipll & 0x3ff);
718                 dev_priv->fsb_freq = 0;
719                 break;
720         }
721
722         if (dev_priv->fsb_freq == 3200) {
723                 dev_priv->ips.c_m = 0;
724         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725                 dev_priv->ips.c_m = 1;
726         } else {
727                 dev_priv->ips.c_m = 2;
728         }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
733         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
734         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
735         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
736         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
737
738         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
739         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
740         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
741         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
742         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
743
744         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
745         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
746         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
747         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
748         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
749
750         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
751         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
752         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
753         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
754         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
755
756         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
757         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
758         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
759         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
760         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
761
762         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
763         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
764         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
765         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
766         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770                                                          int is_ddr3,
771                                                          int fsb,
772                                                          int mem)
773 {
774         const struct cxsr_latency *latency;
775         int i;
776
777         if (fsb == 0 || mem == 0)
778                 return NULL;
779
780         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781                 latency = &cxsr_latency_table[i];
782                 if (is_desktop == latency->is_desktop &&
783                     is_ddr3 == latency->is_ddr3 &&
784                     fsb == latency->fsb_freq && mem == latency->mem_freq)
785                         return latency;
786         }
787
788         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790         return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         /* deactivate cxsr */
798         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802  * Latency for FIFO fetches is dependent on several factors:
803  *   - memory configuration (speed, channels)
804  *   - chipset
805  *   - current MCH state
806  * It can be fairly high in some situations, so here we assume a fairly
807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
808  * set this value too high, the FIFO will fetch frequently to stay full)
809  * and power consumption (set it too low to save power and we might see
810  * FIFO underruns and display "flicker").
811  *
812  * A value of 5us seems to be a good balance; safe for very low end
813  * platforms but not overly aggressive on lower latency configs.
814  */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         uint32_t dsparb = I915_READ(DSPARB);
821         int size;
822
823         size = dsparb & 0x7f;
824         if (plane)
825                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         uint32_t dsparb = I915_READ(DSPARB);
837         int size;
838
839         size = dsparb & 0x1ff;
840         if (plane)
841                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         uint32_t dsparb = I915_READ(DSPARB);
854         int size;
855
856         size = dsparb & 0x7f;
857         size >>= 2; /* Convert to cachelines */
858
859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860                       plane ? "B" : "A",
861                       size);
862
863         return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868         PINEVIEW_DISPLAY_FIFO,
869         PINEVIEW_MAX_WM,
870         PINEVIEW_DFT_WM,
871         PINEVIEW_GUARD_WM,
872         PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_HPLLOFF_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882         PINEVIEW_CURSOR_FIFO,
883         PINEVIEW_CURSOR_MAX_WM,
884         PINEVIEW_CURSOR_DFT_WM,
885         PINEVIEW_CURSOR_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896         G4X_FIFO_SIZE,
897         G4X_MAX_WM,
898         G4X_MAX_WM,
899         2,
900         G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903         I965_CURSOR_FIFO,
904         I965_CURSOR_MAX_WM,
905         I965_CURSOR_DFT_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910         VALLEYVIEW_FIFO_SIZE,
911         VALLEYVIEW_MAX_WM,
912         VALLEYVIEW_MAX_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917         I965_CURSOR_FIFO,
918         VALLEYVIEW_CURSOR_MAX_WM,
919         I965_CURSOR_DFT_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         I965_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931         I945_FIFO_SIZE,
932         I915_MAX_WM,
933         1,
934         2,
935         I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938         I915_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945         I855GM_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952         I830_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958
959 /**
960  * intel_calculate_wm - calculate watermark level
961  * @clock_in_khz: pixel clock
962  * @wm: chip FIFO params
963  * @pixel_size: display pixel size
964  * @latency_ns: memory latency for the platform
965  *
966  * Calculate the watermark level (the level at which the display plane will
967  * start fetching from memory again).  Each chip has a different display
968  * FIFO size and allocation, so the caller needs to figure that out and pass
969  * in the correct intel_watermark_params structure.
970  *
971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
972  * on the pixel size.  When it reaches the watermark level, it'll start
973  * fetching FIFO line sized based chunks from memory until the FIFO fills
974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
975  * will occur, and a display engine hang could result.
976  */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978                                         const struct intel_watermark_params *wm,
979                                         int fifo_size,
980                                         int pixel_size,
981                                         unsigned long latency_ns)
982 {
983         long entries_required, wm_size;
984
985         /*
986          * Note: we need to make sure we don't overflow for various clock &
987          * latency values.
988          * clocks go from a few thousand to several hundred thousand.
989          * latency is usually a few thousand
990          */
991         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992                 1000;
993         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997         wm_size = fifo_size - (entries_required + wm->guard_size);
998
999         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001         /* Don't promote wm_size to unsigned... */
1002         if (wm_size > (long)wm->max_wm)
1003                 wm_size = wm->max_wm;
1004         if (wm_size <= 0)
1005                 wm_size = wm->default_wm;
1006         return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011         struct drm_crtc *crtc, *enabled = NULL;
1012
1013         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014                 if (intel_crtc_active(crtc)) {
1015                         if (enabled)
1016                                 return NULL;
1017                         enabled = crtc;
1018                 }
1019         }
1020
1021         return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026         struct drm_device *dev = unused_crtc->dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_crtc *crtc;
1029         const struct cxsr_latency *latency;
1030         u32 reg;
1031         unsigned long wm;
1032
1033         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1035         if (!latency) {
1036                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037                 pineview_disable_cxsr(dev);
1038                 return;
1039         }
1040
1041         crtc = single_enabled_crtc(dev);
1042         if (crtc) {
1043                 const struct drm_display_mode *adjusted_mode;
1044                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045                 int clock;
1046
1047                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048                 clock = adjusted_mode->crtc_clock;
1049
1050                 /* Display SR */
1051                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052                                         pineview_display_wm.fifo_size,
1053                                         pixel_size, latency->display_sr);
1054                 reg = I915_READ(DSPFW1);
1055                 reg &= ~DSPFW_SR_MASK;
1056                 reg |= wm << DSPFW_SR_SHIFT;
1057                 I915_WRITE(DSPFW1, reg);
1058                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060                 /* cursor SR */
1061                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062                                         pineview_display_wm.fifo_size,
1063                                         pixel_size, latency->cursor_sr);
1064                 reg = I915_READ(DSPFW3);
1065                 reg &= ~DSPFW_CURSOR_SR_MASK;
1066                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067                 I915_WRITE(DSPFW3, reg);
1068
1069                 /* Display HPLL off SR */
1070                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071                                         pineview_display_hplloff_wm.fifo_size,
1072                                         pixel_size, latency->display_hpll_disable);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_HPLL_SR_MASK;
1075                 reg |= wm & DSPFW_HPLL_SR_MASK;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* cursor HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->cursor_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085                 I915_WRITE(DSPFW3, reg);
1086                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088                 /* activate cxsr */
1089                 I915_WRITE(DSPFW3,
1090                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092         } else {
1093                 pineview_disable_cxsr(dev);
1094                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095         }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099                             int plane,
1100                             const struct intel_watermark_params *display,
1101                             int display_latency_ns,
1102                             const struct intel_watermark_params *cursor,
1103                             int cursor_latency_ns,
1104                             int *plane_wm,
1105                             int *cursor_wm)
1106 {
1107         struct drm_crtc *crtc;
1108         const struct drm_display_mode *adjusted_mode;
1109         int htotal, hdisplay, clock, pixel_size;
1110         int line_time_us, line_count;
1111         int entries, tlb_miss;
1112
1113         crtc = intel_get_crtc_for_plane(dev, plane);
1114         if (!intel_crtc_active(crtc)) {
1115                 *cursor_wm = cursor->guard_size;
1116                 *plane_wm = display->guard_size;
1117                 return false;
1118         }
1119
1120         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121         clock = adjusted_mode->crtc_clock;
1122         htotal = adjusted_mode->crtc_htotal;
1123         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126         /* Use the small buffer method to calculate plane watermark */
1127         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129         if (tlb_miss > 0)
1130                 entries += tlb_miss;
1131         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132         *plane_wm = entries + display->guard_size;
1133         if (*plane_wm > (int)display->max_wm)
1134                 *plane_wm = display->max_wm;
1135
1136         /* Use the large buffer method to calculate cursor watermark */
1137         line_time_us = max(htotal * 1000 / clock, 1);
1138         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141         if (tlb_miss > 0)
1142                 entries += tlb_miss;
1143         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144         *cursor_wm = entries + cursor->guard_size;
1145         if (*cursor_wm > (int)cursor->max_wm)
1146                 *cursor_wm = (int)cursor->max_wm;
1147
1148         return true;
1149 }
1150
1151 /*
1152  * Check the wm result.
1153  *
1154  * If any calculated watermark values is larger than the maximum value that
1155  * can be programmed into the associated watermark register, that watermark
1156  * must be disabled.
1157  */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159                            int display_wm, int cursor_wm,
1160                            const struct intel_watermark_params *display,
1161                            const struct intel_watermark_params *cursor)
1162 {
1163         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164                       display_wm, cursor_wm);
1165
1166         if (display_wm > display->max_wm) {
1167                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168                               display_wm, display->max_wm);
1169                 return false;
1170         }
1171
1172         if (cursor_wm > cursor->max_wm) {
1173                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174                               cursor_wm, cursor->max_wm);
1175                 return false;
1176         }
1177
1178         if (!(display_wm || cursor_wm)) {
1179                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180                 return false;
1181         }
1182
1183         return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187                              int plane,
1188                              int latency_ns,
1189                              const struct intel_watermark_params *display,
1190                              const struct intel_watermark_params *cursor,
1191                              int *display_wm, int *cursor_wm)
1192 {
1193         struct drm_crtc *crtc;
1194         const struct drm_display_mode *adjusted_mode;
1195         int hdisplay, htotal, pixel_size, clock;
1196         unsigned long line_time_us;
1197         int line_count, line_size;
1198         int small, large;
1199         int entries;
1200
1201         if (!latency_ns) {
1202                 *display_wm = *cursor_wm = 0;
1203                 return false;
1204         }
1205
1206         crtc = intel_get_crtc_for_plane(dev, plane);
1207         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208         clock = adjusted_mode->crtc_clock;
1209         htotal = adjusted_mode->crtc_htotal;
1210         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213         line_time_us = max(htotal * 1000 / clock, 1);
1214         line_count = (latency_ns / line_time_us + 1000) / 1000;
1215         line_size = hdisplay * pixel_size;
1216
1217         /* Use the minimum of the small and large buffer method for primary */
1218         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219         large = line_count * line_size;
1220
1221         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222         *display_wm = entries + display->guard_size;
1223
1224         /* calculate the self-refresh watermark for display cursor */
1225         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227         *cursor_wm = entries + cursor->guard_size;
1228
1229         return g4x_check_srwm(dev,
1230                               *display_wm, *cursor_wm,
1231                               display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235                                      int plane,
1236                                      int *plane_prec_mult,
1237                                      int *plane_dl,
1238                                      int *cursor_prec_mult,
1239                                      int *cursor_dl)
1240 {
1241         struct drm_crtc *crtc;
1242         int clock, pixel_size;
1243         int entries;
1244
1245         crtc = intel_get_crtc_for_plane(dev, plane);
1246         if (!intel_crtc_active(crtc))
1247                 return false;
1248
1249         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1251
1252         entries = (clock / 1000) * pixel_size;
1253         *plane_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256                                                      pixel_size);
1257
1258         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1259         *cursor_prec_mult = (entries > 256) ?
1260                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Update drain latency registers of memory arbiter
1268  *
1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270  * to be programmed. Each plane has a drain latency multiplier and a drain
1271  * latency value.
1272  */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280                                                         either 16 or 32 */
1281
1282         /* For plane A, Cursor A */
1283         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284                                       &cursor_prec_mult, &cursora_dl)) {
1285                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290                 I915_WRITE(VLV_DDL1, cursora_prec |
1291                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1292                                 planea_prec | planea_dl);
1293         }
1294
1295         /* For plane B, Cursor B */
1296         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297                                       &cursor_prec_mult, &cursorb_dl)) {
1298                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303                 I915_WRITE(VLV_DDL2, cursorb_prec |
1304                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305                                 planeb_prec | planeb_dl);
1306         }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313         struct drm_device *dev = crtc->dev;
1314         static const int sr_latency_ns = 12000;
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317         int plane_sr, cursor_sr;
1318         int ignore_plane_sr, ignore_cursor_sr;
1319         unsigned int enabled = 0;
1320
1321         vlv_update_drain_latency(dev);
1322
1323         if (g4x_compute_wm0(dev, PIPE_A,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planea_wm, &cursora_wm))
1327                 enabled |= 1 << PIPE_A;
1328
1329         if (g4x_compute_wm0(dev, PIPE_B,
1330                             &valleyview_wm_info, latency_ns,
1331                             &valleyview_cursor_wm_info, latency_ns,
1332                             &planeb_wm, &cursorb_wm))
1333                 enabled |= 1 << PIPE_B;
1334
1335         if (single_plane_enabled(enabled) &&
1336             g4x_compute_srwm(dev, ffs(enabled) - 1,
1337                              sr_latency_ns,
1338                              &valleyview_wm_info,
1339                              &valleyview_cursor_wm_info,
1340                              &plane_sr, &ignore_cursor_sr) &&
1341             g4x_compute_srwm(dev, ffs(enabled) - 1,
1342                              2*sr_latency_ns,
1343                              &valleyview_wm_info,
1344                              &valleyview_cursor_wm_info,
1345                              &ignore_plane_sr, &cursor_sr)) {
1346                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347         } else {
1348                 I915_WRITE(FW_BLC_SELF_VLV,
1349                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350                 plane_sr = cursor_sr = 0;
1351         }
1352
1353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354                       planea_wm, cursora_wm,
1355                       planeb_wm, cursorb_wm,
1356                       plane_sr, cursor_sr);
1357
1358         I915_WRITE(DSPFW1,
1359                    (plane_sr << DSPFW_SR_SHIFT) |
1360                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362                    planea_wm);
1363         I915_WRITE(DSPFW2,
1364                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1366         I915_WRITE(DSPFW3,
1367                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         unsigned int enabled = 0;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, latency_ns,
1388                             &g4x_cursor_wm_info, latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399         } else {
1400                 I915_WRITE(FW_BLC_SELF,
1401                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406                       planea_wm, cursora_wm,
1407                       planeb_wm, cursorb_wm,
1408                       plane_sr, cursor_sr);
1409
1410         I915_WRITE(DSPFW1,
1411                    (plane_sr << DSPFW_SR_SHIFT) |
1412                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414                    planea_wm);
1415         I915_WRITE(DSPFW2,
1416                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1418         /* HPLL off in SR has some issues on G4x... disable it */
1419         I915_WRITE(DSPFW3,
1420                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426         struct drm_device *dev = unused_crtc->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct drm_crtc *crtc;
1429         int srwm = 1;
1430         int cursor_sr = 16;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode =
1438                         &to_intel_crtc(crtc)->config.adjusted_mode;
1439                 int clock = adjusted_mode->crtc_clock;
1440                 int htotal = adjusted_mode->crtc_htotal;
1441                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443                 unsigned long line_time_us;
1444                 int entries;
1445
1446                 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448                 /* Use ns/us then divide to preserve precision */
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * hdisplay;
1451                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452                 srwm = I965_FIFO_SIZE - entries;
1453                 if (srwm < 0)
1454                         srwm = 1;
1455                 srwm &= 0x1ff;
1456                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457                               entries, srwm);
1458
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1461                 entries = DIV_ROUND_UP(entries,
1462                                           i965_cursor_wm_info.cacheline_size);
1463                 cursor_sr = i965_cursor_wm_info.fifo_size -
1464                         (entries + i965_cursor_wm_info.guard_size);
1465
1466                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467                         cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470                               "cursor %d\n", srwm, cursor_sr);
1471
1472                 if (IS_CRESTLINE(dev))
1473                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474         } else {
1475                 /* Turn off self refresh if both pipes are enabled */
1476                 if (IS_CRESTLINE(dev))
1477                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478                                    & ~FW_BLC_SELF_EN);
1479         }
1480
1481         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482                       srwm);
1483
1484         /* 965 has limitations... */
1485         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486                    (8 << 16) | (8 << 8) | (8 << 0));
1487         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         const struct intel_watermark_params *wm_info;
1497         uint32_t fwater_lo;
1498         uint32_t fwater_hi;
1499         int cwm, srwm = 1;
1500         int fifo_size;
1501         int planea_wm, planeb_wm;
1502         struct drm_crtc *crtc, *enabled = NULL;
1503
1504         if (IS_I945GM(dev))
1505                 wm_info = &i945_wm_info;
1506         else if (!IS_GEN2(dev))
1507                 wm_info = &i915_wm_info;
1508         else
1509                 wm_info = &i830_wm_info;
1510
1511         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512         crtc = intel_get_crtc_for_plane(dev, 0);
1513         if (intel_crtc_active(crtc)) {
1514                 const struct drm_display_mode *adjusted_mode;
1515                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516                 if (IS_GEN2(dev))
1517                         cpp = 4;
1518
1519                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521                                                wm_info, fifo_size, cpp,
1522                                                latency_ns);
1523                 enabled = crtc;
1524         } else
1525                 planea_wm = fifo_size - wm_info->guard_size;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528         crtc = intel_get_crtc_for_plane(dev, 1);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                latency_ns);
1539                 if (enabled == NULL)
1540                         enabled = crtc;
1541                 else
1542                         enabled = NULL;
1543         } else
1544                 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548         if (IS_I915GM(dev) && enabled) {
1549                 struct intel_framebuffer *fb;
1550
1551                 fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553                 /* self-refresh seems busted with untiled */
1554                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1555                         enabled = NULL;
1556         }
1557
1558         /*
1559          * Overlay gets an aggressive default since video jitter is bad.
1560          */
1561         cwm = 2;
1562
1563         /* Play safe and disable self-refresh before adjusting watermarks. */
1564         if (IS_I945G(dev) || IS_I945GM(dev))
1565                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566         else if (IS_I915GM(dev))
1567                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569         /* Calc sr entries for one plane configs */
1570         if (HAS_FW_BLC(dev) && enabled) {
1571                 /* self-refresh has much higher latency */
1572                 static const int sr_latency_ns = 6000;
1573                 const struct drm_display_mode *adjusted_mode =
1574                         &to_intel_crtc(enabled)->config.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         pixel_size * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (HAS_FW_BLC(dev)) {
1614                 if (enabled) {
1615                         if (IS_I945G(dev) || IS_I945GM(dev))
1616                                 I915_WRITE(FW_BLC_SELF,
1617                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618                         else if (IS_I915GM(dev))
1619                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1621                 } else
1622                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1623         }
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653                                     struct drm_crtc *crtc)
1654 {
1655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656         uint32_t pixel_rate;
1657
1658         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661          * adjust the pixel_rate here. */
1662
1663         if (intel_crtc->config.pch_pfit.enabled) {
1664                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667                 pipe_w = intel_crtc->config.pipe_src_w;
1668                 pipe_h = intel_crtc->config.pipe_src_h;
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677                                      pfit_w * pfit_h);
1678         }
1679
1680         return pixel_rate;
1681 }
1682
1683 /* latency must be in 0.1us units. */
1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685                                uint32_t latency)
1686 {
1687         uint64_t ret;
1688
1689         if (WARN(latency == 0, "Latency value missing\n"))
1690                 return UINT_MAX;
1691
1692         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695         return ret;
1696 }
1697
1698 /* latency must be in 0.1us units. */
1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701                                uint32_t latency)
1702 {
1703         uint32_t ret;
1704
1705         if (WARN(latency == 0, "Latency value missing\n"))
1706                 return UINT_MAX;
1707
1708         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710         ret = DIV_ROUND_UP(ret, 64) + 2;
1711         return ret;
1712 }
1713
1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715                            uint8_t bytes_per_pixel)
1716 {
1717         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1718 }
1719
1720 struct ilk_pipe_wm_parameters {
1721         bool active;
1722         uint32_t pipe_htotal;
1723         uint32_t pixel_rate;
1724         struct intel_plane_wm_parameters pri;
1725         struct intel_plane_wm_parameters spr;
1726         struct intel_plane_wm_parameters cur;
1727 };
1728
1729 struct ilk_wm_maximums {
1730         uint16_t pri;
1731         uint16_t spr;
1732         uint16_t cur;
1733         uint16_t fbc;
1734 };
1735
1736 /* used in computing the new watermarks state */
1737 struct intel_wm_config {
1738         unsigned int num_pipes_active;
1739         bool sprites_enabled;
1740         bool sprites_scaled;
1741 };
1742
1743 /*
1744  * For both WM_PIPE and WM_LP.
1745  * mem_value must be in 0.1us units.
1746  */
1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         uint32_t method1, method2;
1752
1753         if (!params->active || !params->pri.enabled)
1754                 return 0;
1755
1756         method1 = ilk_wm_method1(params->pixel_rate,
1757                                  params->pri.bytes_per_pixel,
1758                                  mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(params->pixel_rate,
1764                                  params->pipe_htotal,
1765                                  params->pri.horiz_pixels,
1766                                  params->pri.bytes_per_pixel,
1767                                  mem_value);
1768
1769         return min(method1, method2);
1770 }
1771
1772 /*
1773  * For both WM_PIPE and WM_LP.
1774  * mem_value must be in 0.1us units.
1775  */
1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777                                    uint32_t mem_value)
1778 {
1779         uint32_t method1, method2;
1780
1781         if (!params->active || !params->spr.enabled)
1782                 return 0;
1783
1784         method1 = ilk_wm_method1(params->pixel_rate,
1785                                  params->spr.bytes_per_pixel,
1786                                  mem_value);
1787         method2 = ilk_wm_method2(params->pixel_rate,
1788                                  params->pipe_htotal,
1789                                  params->spr.horiz_pixels,
1790                                  params->spr.bytes_per_pixel,
1791                                  mem_value);
1792         return min(method1, method2);
1793 }
1794
1795 /*
1796  * For both WM_PIPE and WM_LP.
1797  * mem_value must be in 0.1us units.
1798  */
1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800                                    uint32_t mem_value)
1801 {
1802         if (!params->active || !params->cur.enabled)
1803                 return 0;
1804
1805         return ilk_wm_method2(params->pixel_rate,
1806                               params->pipe_htotal,
1807                               params->cur.horiz_pixels,
1808                               params->cur.bytes_per_pixel,
1809                               mem_value);
1810 }
1811
1812 /* Only for WM_LP. */
1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814                                    uint32_t pri_val)
1815 {
1816         if (!params->active || !params->pri.enabled)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val,
1820                           params->pri.horiz_pixels,
1821                           params->pri.bytes_per_pixel);
1822 }
1823
1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825 {
1826         if (INTEL_INFO(dev)->gen >= 8)
1827                 return 3072;
1828         else if (INTEL_INFO(dev)->gen >= 7)
1829                 return 768;
1830         else
1831                 return 512;
1832 }
1833
1834 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1835                                          int level, bool is_sprite)
1836 {
1837         if (INTEL_INFO(dev)->gen >= 8)
1838                 /* BDW primary/sprite plane watermarks */
1839                 return level == 0 ? 255 : 2047;
1840         else if (INTEL_INFO(dev)->gen >= 7)
1841                 /* IVB/HSW primary/sprite plane watermarks */
1842                 return level == 0 ? 127 : 1023;
1843         else if (!is_sprite)
1844                 /* ILK/SNB primary plane watermarks */
1845                 return level == 0 ? 127 : 511;
1846         else
1847                 /* ILK/SNB sprite plane watermarks */
1848                 return level == 0 ? 63 : 255;
1849 }
1850
1851 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1852                                           int level)
1853 {
1854         if (INTEL_INFO(dev)->gen >= 7)
1855                 return level == 0 ? 63 : 255;
1856         else
1857                 return level == 0 ? 31 : 63;
1858 }
1859
1860 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1861 {
1862         if (INTEL_INFO(dev)->gen >= 8)
1863                 return 31;
1864         else
1865                 return 15;
1866 }
1867
1868 /* Calculate the maximum primary/sprite plane watermark */
1869 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1870                                      int level,
1871                                      const struct intel_wm_config *config,
1872                                      enum intel_ddb_partitioning ddb_partitioning,
1873                                      bool is_sprite)
1874 {
1875         unsigned int fifo_size = ilk_display_fifo_size(dev);
1876
1877         /* if sprites aren't enabled, sprites get nothing */
1878         if (is_sprite && !config->sprites_enabled)
1879                 return 0;
1880
1881         /* HSW allows LP1+ watermarks even with multiple pipes */
1882         if (level == 0 || config->num_pipes_active > 1) {
1883                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1884
1885                 /*
1886                  * For some reason the non self refresh
1887                  * FIFO size is only half of the self
1888                  * refresh FIFO size on ILK/SNB.
1889                  */
1890                 if (INTEL_INFO(dev)->gen <= 6)
1891                         fifo_size /= 2;
1892         }
1893
1894         if (config->sprites_enabled) {
1895                 /* level 0 is always calculated with 1:1 split */
1896                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1897                         if (is_sprite)
1898                                 fifo_size *= 5;
1899                         fifo_size /= 6;
1900                 } else {
1901                         fifo_size /= 2;
1902                 }
1903         }
1904
1905         /* clamp to max that the registers can hold */
1906         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1907 }
1908
1909 /* Calculate the maximum cursor plane watermark */
1910 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1911                                       int level,
1912                                       const struct intel_wm_config *config)
1913 {
1914         /* HSW LP1+ watermarks w/ multiple pipes */
1915         if (level > 0 && config->num_pipes_active > 1)
1916                 return 64;
1917
1918         /* otherwise just report max that registers can hold */
1919         return ilk_cursor_wm_reg_max(dev, level);
1920 }
1921
1922 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1923                                     int level,
1924                                     const struct intel_wm_config *config,
1925                                     enum intel_ddb_partitioning ddb_partitioning,
1926                                     struct ilk_wm_maximums *max)
1927 {
1928         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1929         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1930         max->cur = ilk_cursor_wm_max(dev, level, config);
1931         max->fbc = ilk_fbc_wm_reg_max(dev);
1932 }
1933
1934 static bool ilk_validate_wm_level(int level,
1935                                   const struct ilk_wm_maximums *max,
1936                                   struct intel_wm_level *result)
1937 {
1938         bool ret;
1939
1940         /* already determined to be invalid? */
1941         if (!result->enable)
1942                 return false;
1943
1944         result->enable = result->pri_val <= max->pri &&
1945                          result->spr_val <= max->spr &&
1946                          result->cur_val <= max->cur;
1947
1948         ret = result->enable;
1949
1950         /*
1951          * HACK until we can pre-compute everything,
1952          * and thus fail gracefully if LP0 watermarks
1953          * are exceeded...
1954          */
1955         if (level == 0 && !result->enable) {
1956                 if (result->pri_val > max->pri)
1957                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1958                                       level, result->pri_val, max->pri);
1959                 if (result->spr_val > max->spr)
1960                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1961                                       level, result->spr_val, max->spr);
1962                 if (result->cur_val > max->cur)
1963                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1964                                       level, result->cur_val, max->cur);
1965
1966                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1967                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1968                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1969                 result->enable = true;
1970         }
1971
1972         return ret;
1973 }
1974
1975 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1976                                  int level,
1977                                  const struct ilk_pipe_wm_parameters *p,
1978                                  struct intel_wm_level *result)
1979 {
1980         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1981         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1982         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1983
1984         /* WM1+ latency values stored in 0.5us units */
1985         if (level > 0) {
1986                 pri_latency *= 5;
1987                 spr_latency *= 5;
1988                 cur_latency *= 5;
1989         }
1990
1991         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1992         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1993         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1994         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1995         result->enable = true;
1996 }
1997
1998 static uint32_t
1999 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2000 {
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2004         u32 linetime, ips_linetime;
2005
2006         if (!intel_crtc_active(crtc))
2007                 return 0;
2008
2009         /* The WM are computed with base on how long it takes to fill a single
2010          * row at the given clock rate, multiplied by 8.
2011          * */
2012         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2013                                      mode->crtc_clock);
2014         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2015                                          intel_ddi_get_cdclk_freq(dev_priv));
2016
2017         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2018                PIPE_WM_LINETIME_TIME(linetime);
2019 }
2020
2021 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2022 {
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024
2025         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2026                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2027
2028                 wm[0] = (sskpd >> 56) & 0xFF;
2029                 if (wm[0] == 0)
2030                         wm[0] = sskpd & 0xF;
2031                 wm[1] = (sskpd >> 4) & 0xFF;
2032                 wm[2] = (sskpd >> 12) & 0xFF;
2033                 wm[3] = (sskpd >> 20) & 0x1FF;
2034                 wm[4] = (sskpd >> 32) & 0x1FF;
2035         } else if (INTEL_INFO(dev)->gen >= 6) {
2036                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2037
2038                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2039                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2040                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2041                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2042         } else if (INTEL_INFO(dev)->gen >= 5) {
2043                 uint32_t mltr = I915_READ(MLTR_ILK);
2044
2045                 /* ILK primary LP0 latency is 700 ns */
2046                 wm[0] = 7;
2047                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2048                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2049         }
2050 }
2051
2052 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2053 {
2054         /* ILK sprite LP0 latency is 1300 ns */
2055         if (INTEL_INFO(dev)->gen == 5)
2056                 wm[0] = 13;
2057 }
2058
2059 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2060 {
2061         /* ILK cursor LP0 latency is 1300 ns */
2062         if (INTEL_INFO(dev)->gen == 5)
2063                 wm[0] = 13;
2064
2065         /* WaDoubleCursorLP3Latency:ivb */
2066         if (IS_IVYBRIDGE(dev))
2067                 wm[3] *= 2;
2068 }
2069
2070 static int ilk_wm_max_level(const struct drm_device *dev)
2071 {
2072         /* how many WM levels are we expecting */
2073         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2074                 return 4;
2075         else if (INTEL_INFO(dev)->gen >= 6)
2076                 return 3;
2077         else
2078                 return 2;
2079 }
2080
2081 static void intel_print_wm_latency(struct drm_device *dev,
2082                                    const char *name,
2083                                    const uint16_t wm[5])
2084 {
2085         int level, max_level = ilk_wm_max_level(dev);
2086
2087         for (level = 0; level <= max_level; level++) {
2088                 unsigned int latency = wm[level];
2089
2090                 if (latency == 0) {
2091                         DRM_ERROR("%s WM%d latency not provided\n",
2092                                   name, level);
2093                         continue;
2094                 }
2095
2096                 /* WM1+ latency values in 0.5us units */
2097                 if (level > 0)
2098                         latency *= 5;
2099
2100                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2101                               name, level, wm[level],
2102                               latency / 10, latency % 10);
2103         }
2104 }
2105
2106 static void ilk_setup_wm_latency(struct drm_device *dev)
2107 {
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109
2110         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2111
2112         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2113                sizeof(dev_priv->wm.pri_latency));
2114         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2115                sizeof(dev_priv->wm.pri_latency));
2116
2117         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2118         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2119
2120         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2121         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2122         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2123 }
2124
2125 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2126                                       struct ilk_pipe_wm_parameters *p)
2127 {
2128         struct drm_device *dev = crtc->dev;
2129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2130         enum pipe pipe = intel_crtc->pipe;
2131         struct drm_plane *plane;
2132
2133         if (!intel_crtc_active(crtc))
2134                 return;
2135
2136         p->active = true;
2137         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2138         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2139         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2140         p->cur.bytes_per_pixel = 4;
2141         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2142         p->cur.horiz_pixels = intel_crtc->cursor_width;
2143         /* TODO: for now, assume primary and cursor planes are always enabled. */
2144         p->pri.enabled = true;
2145         p->cur.enabled = true;
2146
2147         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2148                 struct intel_plane *intel_plane = to_intel_plane(plane);
2149
2150                 if (intel_plane->pipe == pipe) {
2151                         p->spr = intel_plane->wm;
2152                         break;
2153                 }
2154         }
2155 }
2156
2157 static void ilk_compute_wm_config(struct drm_device *dev,
2158                                   struct intel_wm_config *config)
2159 {
2160         struct intel_crtc *intel_crtc;
2161
2162         /* Compute the currently _active_ config */
2163         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2164                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2165
2166                 if (!wm->pipe_enabled)
2167                         continue;
2168
2169                 config->sprites_enabled |= wm->sprites_enabled;
2170                 config->sprites_scaled |= wm->sprites_scaled;
2171                 config->num_pipes_active++;
2172         }
2173 }
2174
2175 /* Compute new watermarks for the pipe */
2176 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2177                                   const struct ilk_pipe_wm_parameters *params,
2178                                   struct intel_pipe_wm *pipe_wm)
2179 {
2180         struct drm_device *dev = crtc->dev;
2181         const struct drm_i915_private *dev_priv = dev->dev_private;
2182         int level, max_level = ilk_wm_max_level(dev);
2183         /* LP0 watermark maximums depend on this pipe alone */
2184         struct intel_wm_config config = {
2185                 .num_pipes_active = 1,
2186                 .sprites_enabled = params->spr.enabled,
2187                 .sprites_scaled = params->spr.scaled,
2188         };
2189         struct ilk_wm_maximums max;
2190
2191         /* LP0 watermarks always use 1/2 DDB partitioning */
2192         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2193
2194         pipe_wm->pipe_enabled = params->active;
2195         pipe_wm->sprites_enabled = params->spr.enabled;
2196         pipe_wm->sprites_scaled = params->spr.scaled;
2197
2198         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2199         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2200                 max_level = 1;
2201
2202         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2203         if (params->spr.scaled)
2204                 max_level = 0;
2205
2206         for (level = 0; level <= max_level; level++)
2207                 ilk_compute_wm_level(dev_priv, level, params,
2208                                      &pipe_wm->wm[level]);
2209
2210         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2211                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2212
2213         /* At least LP0 must be valid */
2214         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2215 }
2216
2217 /*
2218  * Merge the watermarks from all active pipes for a specific level.
2219  */
2220 static void ilk_merge_wm_level(struct drm_device *dev,
2221                                int level,
2222                                struct intel_wm_level *ret_wm)
2223 {
2224         const struct intel_crtc *intel_crtc;
2225
2226         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2227                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2228                 const struct intel_wm_level *wm = &active->wm[level];
2229
2230                 if (!active->pipe_enabled)
2231                         continue;
2232
2233                 if (!wm->enable)
2234                         return;
2235
2236                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2237                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2238                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2239                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2240         }
2241
2242         ret_wm->enable = true;
2243 }
2244
2245 /*
2246  * Merge all low power watermarks for all active pipes.
2247  */
2248 static void ilk_wm_merge(struct drm_device *dev,
2249                          const struct intel_wm_config *config,
2250                          const struct ilk_wm_maximums *max,
2251                          struct intel_pipe_wm *merged)
2252 {
2253         int level, max_level = ilk_wm_max_level(dev);
2254
2255         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2256         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2257             config->num_pipes_active > 1)
2258                 return;
2259
2260         /* ILK: FBC WM must be disabled always */
2261         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2262
2263         /* merge each WM1+ level */
2264         for (level = 1; level <= max_level; level++) {
2265                 struct intel_wm_level *wm = &merged->wm[level];
2266
2267                 ilk_merge_wm_level(dev, level, wm);
2268
2269                 if (!ilk_validate_wm_level(level, max, wm))
2270                         break;
2271
2272                 /*
2273                  * The spec says it is preferred to disable
2274                  * FBC WMs instead of disabling a WM level.
2275                  */
2276                 if (wm->fbc_val > max->fbc) {
2277                         merged->fbc_wm_enabled = false;
2278                         wm->fbc_val = 0;
2279                 }
2280         }
2281
2282         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2283         /*
2284          * FIXME this is racy. FBC might get enabled later.
2285          * What we should check here is whether FBC can be
2286          * enabled sometime later.
2287          */
2288         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2289                 for (level = 2; level <= max_level; level++) {
2290                         struct intel_wm_level *wm = &merged->wm[level];
2291
2292                         wm->enable = false;
2293                 }
2294         }
2295 }
2296
2297 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2298 {
2299         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2300         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2301 }
2302
2303 /* The value we need to program into the WM_LPx latency field */
2304 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2305 {
2306         struct drm_i915_private *dev_priv = dev->dev_private;
2307
2308         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2309                 return 2 * level;
2310         else
2311                 return dev_priv->wm.pri_latency[level];
2312 }
2313
2314 static void ilk_compute_wm_results(struct drm_device *dev,
2315                                    const struct intel_pipe_wm *merged,
2316                                    enum intel_ddb_partitioning partitioning,
2317                                    struct ilk_wm_values *results)
2318 {
2319         struct intel_crtc *intel_crtc;
2320         int level, wm_lp;
2321
2322         results->enable_fbc_wm = merged->fbc_wm_enabled;
2323         results->partitioning = partitioning;
2324
2325         /* LP1+ register values */
2326         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2327                 const struct intel_wm_level *r;
2328
2329                 level = ilk_wm_lp_to_level(wm_lp, merged);
2330
2331                 r = &merged->wm[level];
2332                 if (!r->enable)
2333                         break;
2334
2335                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2336                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2337                         (r->pri_val << WM1_LP_SR_SHIFT) |
2338                         r->cur_val;
2339
2340                 if (INTEL_INFO(dev)->gen >= 8)
2341                         results->wm_lp[wm_lp - 1] |=
2342                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2343                 else
2344                         results->wm_lp[wm_lp - 1] |=
2345                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2346
2347                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2348                         WARN_ON(wm_lp != 1);
2349                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2350                 } else
2351                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2352         }
2353
2354         /* LP0 register values */
2355         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2356                 enum pipe pipe = intel_crtc->pipe;
2357                 const struct intel_wm_level *r =
2358                         &intel_crtc->wm.active.wm[0];
2359
2360                 if (WARN_ON(!r->enable))
2361                         continue;
2362
2363                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2364
2365                 results->wm_pipe[pipe] =
2366                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2367                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2368                         r->cur_val;
2369         }
2370 }
2371
2372 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2373  * case both are at the same level. Prefer r1 in case they're the same. */
2374 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2375                                                   struct intel_pipe_wm *r1,
2376                                                   struct intel_pipe_wm *r2)
2377 {
2378         int level, max_level = ilk_wm_max_level(dev);
2379         int level1 = 0, level2 = 0;
2380
2381         for (level = 1; level <= max_level; level++) {
2382                 if (r1->wm[level].enable)
2383                         level1 = level;
2384                 if (r2->wm[level].enable)
2385                         level2 = level;
2386         }
2387
2388         if (level1 == level2) {
2389                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2390                         return r2;
2391                 else
2392                         return r1;
2393         } else if (level1 > level2) {
2394                 return r1;
2395         } else {
2396                 return r2;
2397         }
2398 }
2399
2400 /* dirty bits used to track which watermarks need changes */
2401 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2402 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2403 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2404 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2405 #define WM_DIRTY_FBC (1 << 24)
2406 #define WM_DIRTY_DDB (1 << 25)
2407
2408 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2409                                          const struct ilk_wm_values *old,
2410                                          const struct ilk_wm_values *new)
2411 {
2412         unsigned int dirty = 0;
2413         enum pipe pipe;
2414         int wm_lp;
2415
2416         for_each_pipe(pipe) {
2417                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2418                         dirty |= WM_DIRTY_LINETIME(pipe);
2419                         /* Must disable LP1+ watermarks too */
2420                         dirty |= WM_DIRTY_LP_ALL;
2421                 }
2422
2423                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2424                         dirty |= WM_DIRTY_PIPE(pipe);
2425                         /* Must disable LP1+ watermarks too */
2426                         dirty |= WM_DIRTY_LP_ALL;
2427                 }
2428         }
2429
2430         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2431                 dirty |= WM_DIRTY_FBC;
2432                 /* Must disable LP1+ watermarks too */
2433                 dirty |= WM_DIRTY_LP_ALL;
2434         }
2435
2436         if (old->partitioning != new->partitioning) {
2437                 dirty |= WM_DIRTY_DDB;
2438                 /* Must disable LP1+ watermarks too */
2439                 dirty |= WM_DIRTY_LP_ALL;
2440         }
2441
2442         /* LP1+ watermarks already deemed dirty, no need to continue */
2443         if (dirty & WM_DIRTY_LP_ALL)
2444                 return dirty;
2445
2446         /* Find the lowest numbered LP1+ watermark in need of an update... */
2447         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2448                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2449                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2450                         break;
2451         }
2452
2453         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2454         for (; wm_lp <= 3; wm_lp++)
2455                 dirty |= WM_DIRTY_LP(wm_lp);
2456
2457         return dirty;
2458 }
2459
2460 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2461                                unsigned int dirty)
2462 {
2463         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2464         bool changed = false;
2465
2466         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2467                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2468                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2469                 changed = true;
2470         }
2471         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2472                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2473                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2474                 changed = true;
2475         }
2476         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2477                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2478                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2479                 changed = true;
2480         }
2481
2482         /*
2483          * Don't touch WM1S_LP_EN here.
2484          * Doing so could cause underruns.
2485          */
2486
2487         return changed;
2488 }
2489
2490 /*
2491  * The spec says we shouldn't write when we don't need, because every write
2492  * causes WMs to be re-evaluated, expending some power.
2493  */
2494 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2495                                 struct ilk_wm_values *results)
2496 {
2497         struct drm_device *dev = dev_priv->dev;
2498         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2499         unsigned int dirty;
2500         uint32_t val;
2501
2502         dirty = ilk_compute_wm_dirty(dev, previous, results);
2503         if (!dirty)
2504                 return;
2505
2506         _ilk_disable_lp_wm(dev_priv, dirty);
2507
2508         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2509                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2510         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2511                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2512         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2513                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2514
2515         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2516                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2517         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2518                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2519         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2520                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2521
2522         if (dirty & WM_DIRTY_DDB) {
2523                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2524                         val = I915_READ(WM_MISC);
2525                         if (results->partitioning == INTEL_DDB_PART_1_2)
2526                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2527                         else
2528                                 val |= WM_MISC_DATA_PARTITION_5_6;
2529                         I915_WRITE(WM_MISC, val);
2530                 } else {
2531                         val = I915_READ(DISP_ARB_CTL2);
2532                         if (results->partitioning == INTEL_DDB_PART_1_2)
2533                                 val &= ~DISP_DATA_PARTITION_5_6;
2534                         else
2535                                 val |= DISP_DATA_PARTITION_5_6;
2536                         I915_WRITE(DISP_ARB_CTL2, val);
2537                 }
2538         }
2539
2540         if (dirty & WM_DIRTY_FBC) {
2541                 val = I915_READ(DISP_ARB_CTL);
2542                 if (results->enable_fbc_wm)
2543                         val &= ~DISP_FBC_WM_DIS;
2544                 else
2545                         val |= DISP_FBC_WM_DIS;
2546                 I915_WRITE(DISP_ARB_CTL, val);
2547         }
2548
2549         if (dirty & WM_DIRTY_LP(1) &&
2550             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2551                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2552
2553         if (INTEL_INFO(dev)->gen >= 7) {
2554                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2555                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2556                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2557                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2558         }
2559
2560         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2561                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2562         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2563                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2564         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2565                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2566
2567         dev_priv->wm.hw = *results;
2568 }
2569
2570 static bool ilk_disable_lp_wm(struct drm_device *dev)
2571 {
2572         struct drm_i915_private *dev_priv = dev->dev_private;
2573
2574         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2575 }
2576
2577 static void ilk_update_wm(struct drm_crtc *crtc)
2578 {
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         struct drm_device *dev = crtc->dev;
2581         struct drm_i915_private *dev_priv = dev->dev_private;
2582         struct ilk_wm_maximums max;
2583         struct ilk_pipe_wm_parameters params = {};
2584         struct ilk_wm_values results = {};
2585         enum intel_ddb_partitioning partitioning;
2586         struct intel_pipe_wm pipe_wm = {};
2587         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2588         struct intel_wm_config config = {};
2589
2590         ilk_compute_wm_parameters(crtc, &params);
2591
2592         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2593
2594         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2595                 return;
2596
2597         intel_crtc->wm.active = pipe_wm;
2598
2599         ilk_compute_wm_config(dev, &config);
2600
2601         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2602         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2603
2604         /* 5/6 split only in single pipe config on IVB+ */
2605         if (INTEL_INFO(dev)->gen >= 7 &&
2606             config.num_pipes_active == 1 && config.sprites_enabled) {
2607                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2608                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2609
2610                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2611         } else {
2612                 best_lp_wm = &lp_wm_1_2;
2613         }
2614
2615         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2616                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2617
2618         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2619
2620         ilk_write_wm_values(dev_priv, &results);
2621 }
2622
2623 static void ilk_update_sprite_wm(struct drm_plane *plane,
2624                                      struct drm_crtc *crtc,
2625                                      uint32_t sprite_width, int pixel_size,
2626                                      bool enabled, bool scaled)
2627 {
2628         struct drm_device *dev = plane->dev;
2629         struct intel_plane *intel_plane = to_intel_plane(plane);
2630
2631         intel_plane->wm.enabled = enabled;
2632         intel_plane->wm.scaled = scaled;
2633         intel_plane->wm.horiz_pixels = sprite_width;
2634         intel_plane->wm.bytes_per_pixel = pixel_size;
2635
2636         /*
2637          * IVB workaround: must disable low power watermarks for at least
2638          * one frame before enabling scaling.  LP watermarks can be re-enabled
2639          * when scaling is disabled.
2640          *
2641          * WaCxSRDisabledForSpriteScaling:ivb
2642          */
2643         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2644                 intel_wait_for_vblank(dev, intel_plane->pipe);
2645
2646         ilk_update_wm(crtc);
2647 }
2648
2649 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2650 {
2651         struct drm_device *dev = crtc->dev;
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2655         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2656         enum pipe pipe = intel_crtc->pipe;
2657         static const unsigned int wm0_pipe_reg[] = {
2658                 [PIPE_A] = WM0_PIPEA_ILK,
2659                 [PIPE_B] = WM0_PIPEB_ILK,
2660                 [PIPE_C] = WM0_PIPEC_IVB,
2661         };
2662
2663         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2664         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2665                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2666
2667         active->pipe_enabled = intel_crtc_active(crtc);
2668
2669         if (active->pipe_enabled) {
2670                 u32 tmp = hw->wm_pipe[pipe];
2671
2672                 /*
2673                  * For active pipes LP0 watermark is marked as
2674                  * enabled, and LP1+ watermaks as disabled since
2675                  * we can't really reverse compute them in case
2676                  * multiple pipes are active.
2677                  */
2678                 active->wm[0].enable = true;
2679                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2680                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2681                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2682                 active->linetime = hw->wm_linetime[pipe];
2683         } else {
2684                 int level, max_level = ilk_wm_max_level(dev);
2685
2686                 /*
2687                  * For inactive pipes, all watermark levels
2688                  * should be marked as enabled but zeroed,
2689                  * which is what we'd compute them to.
2690                  */
2691                 for (level = 0; level <= max_level; level++)
2692                         active->wm[level].enable = true;
2693         }
2694 }
2695
2696 void ilk_wm_get_hw_state(struct drm_device *dev)
2697 {
2698         struct drm_i915_private *dev_priv = dev->dev_private;
2699         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2700         struct drm_crtc *crtc;
2701
2702         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2703                 ilk_pipe_wm_get_hw_state(crtc);
2704
2705         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2706         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2707         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2708
2709         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2710         if (INTEL_INFO(dev)->gen >= 7) {
2711                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2712                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2713         }
2714
2715         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2716                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2717                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2718         else if (IS_IVYBRIDGE(dev))
2719                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2720                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2721
2722         hw->enable_fbc_wm =
2723                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2724 }
2725
2726 /**
2727  * intel_update_watermarks - update FIFO watermark values based on current modes
2728  *
2729  * Calculate watermark values for the various WM regs based on current mode
2730  * and plane configuration.
2731  *
2732  * There are several cases to deal with here:
2733  *   - normal (i.e. non-self-refresh)
2734  *   - self-refresh (SR) mode
2735  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2736  *   - lines are small relative to FIFO size (buffer can hold more than 2
2737  *     lines), so need to account for TLB latency
2738  *
2739  *   The normal calculation is:
2740  *     watermark = dotclock * bytes per pixel * latency
2741  *   where latency is platform & configuration dependent (we assume pessimal
2742  *   values here).
2743  *
2744  *   The SR calculation is:
2745  *     watermark = (trunc(latency/line time)+1) * surface width *
2746  *       bytes per pixel
2747  *   where
2748  *     line time = htotal / dotclock
2749  *     surface width = hdisplay for normal plane and 64 for cursor
2750  *   and latency is assumed to be high, as above.
2751  *
2752  * The final value programmed to the register should always be rounded up,
2753  * and include an extra 2 entries to account for clock crossings.
2754  *
2755  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2756  * to set the non-SR watermarks to 8.
2757  */
2758 void intel_update_watermarks(struct drm_crtc *crtc)
2759 {
2760         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2761
2762         if (dev_priv->display.update_wm)
2763                 dev_priv->display.update_wm(crtc);
2764 }
2765
2766 void intel_update_sprite_watermarks(struct drm_plane *plane,
2767                                     struct drm_crtc *crtc,
2768                                     uint32_t sprite_width, int pixel_size,
2769                                     bool enabled, bool scaled)
2770 {
2771         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2772
2773         if (dev_priv->display.update_sprite_wm)
2774                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2775                                                    pixel_size, enabled, scaled);
2776 }
2777
2778 static struct drm_i915_gem_object *
2779 intel_alloc_context_page(struct drm_device *dev)
2780 {
2781         struct drm_i915_gem_object *ctx;
2782         int ret;
2783
2784         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2785
2786         ctx = i915_gem_alloc_object(dev, 4096);
2787         if (!ctx) {
2788                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2789                 return NULL;
2790         }
2791
2792         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2793         if (ret) {
2794                 DRM_ERROR("failed to pin power context: %d\n", ret);
2795                 goto err_unref;
2796         }
2797
2798         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2799         if (ret) {
2800                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2801                 goto err_unpin;
2802         }
2803
2804         return ctx;
2805
2806 err_unpin:
2807         i915_gem_object_ggtt_unpin(ctx);
2808 err_unref:
2809         drm_gem_object_unreference(&ctx->base);
2810         return NULL;
2811 }
2812
2813 /**
2814  * Lock protecting IPS related data structures
2815  */
2816 DEFINE_SPINLOCK(mchdev_lock);
2817
2818 /* Global for IPS driver to get at the current i915 device. Protected by
2819  * mchdev_lock. */
2820 static struct drm_i915_private *i915_mch_dev;
2821
2822 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2823 {
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         u16 rgvswctl;
2826
2827         assert_spin_locked(&mchdev_lock);
2828
2829         rgvswctl = I915_READ16(MEMSWCTL);
2830         if (rgvswctl & MEMCTL_CMD_STS) {
2831                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2832                 return false; /* still busy with another command */
2833         }
2834
2835         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2836                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2837         I915_WRITE16(MEMSWCTL, rgvswctl);
2838         POSTING_READ16(MEMSWCTL);
2839
2840         rgvswctl |= MEMCTL_CMD_STS;
2841         I915_WRITE16(MEMSWCTL, rgvswctl);
2842
2843         return true;
2844 }
2845
2846 static void ironlake_enable_drps(struct drm_device *dev)
2847 {
2848         struct drm_i915_private *dev_priv = dev->dev_private;
2849         u32 rgvmodectl = I915_READ(MEMMODECTL);
2850         u8 fmax, fmin, fstart, vstart;
2851
2852         spin_lock_irq(&mchdev_lock);
2853
2854         /* Enable temp reporting */
2855         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2856         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2857
2858         /* 100ms RC evaluation intervals */
2859         I915_WRITE(RCUPEI, 100000);
2860         I915_WRITE(RCDNEI, 100000);
2861
2862         /* Set max/min thresholds to 90ms and 80ms respectively */
2863         I915_WRITE(RCBMAXAVG, 90000);
2864         I915_WRITE(RCBMINAVG, 80000);
2865
2866         I915_WRITE(MEMIHYST, 1);
2867
2868         /* Set up min, max, and cur for interrupt handling */
2869         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2870         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2871         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2872                 MEMMODE_FSTART_SHIFT;
2873
2874         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2875                 PXVFREQ_PX_SHIFT;
2876
2877         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2878         dev_priv->ips.fstart = fstart;
2879
2880         dev_priv->ips.max_delay = fstart;
2881         dev_priv->ips.min_delay = fmin;
2882         dev_priv->ips.cur_delay = fstart;
2883
2884         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2885                          fmax, fmin, fstart);
2886
2887         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2888
2889         /*
2890          * Interrupts will be enabled in ironlake_irq_postinstall
2891          */
2892
2893         I915_WRITE(VIDSTART, vstart);
2894         POSTING_READ(VIDSTART);
2895
2896         rgvmodectl |= MEMMODE_SWMODE_EN;
2897         I915_WRITE(MEMMODECTL, rgvmodectl);
2898
2899         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2900                 DRM_ERROR("stuck trying to change perf mode\n");
2901         mdelay(1);
2902
2903         ironlake_set_drps(dev, fstart);
2904
2905         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2906                 I915_READ(0x112e0);
2907         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2908         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2909         getrawmonotonic(&dev_priv->ips.last_time2);
2910
2911         spin_unlock_irq(&mchdev_lock);
2912 }
2913
2914 static void ironlake_disable_drps(struct drm_device *dev)
2915 {
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917         u16 rgvswctl;
2918
2919         spin_lock_irq(&mchdev_lock);
2920
2921         rgvswctl = I915_READ16(MEMSWCTL);
2922
2923         /* Ack interrupts, disable EFC interrupt */
2924         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2925         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2926         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2927         I915_WRITE(DEIIR, DE_PCU_EVENT);
2928         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2929
2930         /* Go back to the starting frequency */
2931         ironlake_set_drps(dev, dev_priv->ips.fstart);
2932         mdelay(1);
2933         rgvswctl |= MEMCTL_CMD_STS;
2934         I915_WRITE(MEMSWCTL, rgvswctl);
2935         mdelay(1);
2936
2937         spin_unlock_irq(&mchdev_lock);
2938 }
2939
2940 /* There's a funny hw issue where the hw returns all 0 when reading from
2941  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2942  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2943  * all limits and the gpu stuck at whatever frequency it is at atm).
2944  */
2945 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2946 {
2947         u32 limits;
2948
2949         /* Only set the down limit when we've reached the lowest level to avoid
2950          * getting more interrupts, otherwise leave this clear. This prevents a
2951          * race in the hw when coming out of rc6: There's a tiny window where
2952          * the hw runs at the minimal clock before selecting the desired
2953          * frequency, if the down threshold expires in that window we will not
2954          * receive a down interrupt. */
2955         limits = dev_priv->rps.max_freq_softlimit << 24;
2956         if (val <= dev_priv->rps.min_freq_softlimit)
2957                 limits |= dev_priv->rps.min_freq_softlimit << 16;
2958
2959         return limits;
2960 }
2961
2962 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2963 {
2964         int new_power;
2965
2966         new_power = dev_priv->rps.power;
2967         switch (dev_priv->rps.power) {
2968         case LOW_POWER:
2969                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2970                         new_power = BETWEEN;
2971                 break;
2972
2973         case BETWEEN:
2974                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2975                         new_power = LOW_POWER;
2976                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2977                         new_power = HIGH_POWER;
2978                 break;
2979
2980         case HIGH_POWER:
2981                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2982                         new_power = BETWEEN;
2983                 break;
2984         }
2985         /* Max/min bins are special */
2986         if (val == dev_priv->rps.min_freq_softlimit)
2987                 new_power = LOW_POWER;
2988         if (val == dev_priv->rps.max_freq_softlimit)
2989                 new_power = HIGH_POWER;
2990         if (new_power == dev_priv->rps.power)
2991                 return;
2992
2993         /* Note the units here are not exactly 1us, but 1280ns. */
2994         switch (new_power) {
2995         case LOW_POWER:
2996                 /* Upclock if more than 95% busy over 16ms */
2997                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2998                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2999
3000                 /* Downclock if less than 85% busy over 32ms */
3001                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3002                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3003
3004                 I915_WRITE(GEN6_RP_CONTROL,
3005                            GEN6_RP_MEDIA_TURBO |
3006                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3007                            GEN6_RP_MEDIA_IS_GFX |
3008                            GEN6_RP_ENABLE |
3009                            GEN6_RP_UP_BUSY_AVG |
3010                            GEN6_RP_DOWN_IDLE_AVG);
3011                 break;
3012
3013         case BETWEEN:
3014                 /* Upclock if more than 90% busy over 13ms */
3015                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3016                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3017
3018                 /* Downclock if less than 75% busy over 32ms */
3019                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3020                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3021
3022                 I915_WRITE(GEN6_RP_CONTROL,
3023                            GEN6_RP_MEDIA_TURBO |
3024                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3025                            GEN6_RP_MEDIA_IS_GFX |
3026                            GEN6_RP_ENABLE |
3027                            GEN6_RP_UP_BUSY_AVG |
3028                            GEN6_RP_DOWN_IDLE_AVG);
3029                 break;
3030
3031         case HIGH_POWER:
3032                 /* Upclock if more than 85% busy over 10ms */
3033                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3034                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3035
3036                 /* Downclock if less than 60% busy over 32ms */
3037                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3038                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3039
3040                 I915_WRITE(GEN6_RP_CONTROL,
3041                            GEN6_RP_MEDIA_TURBO |
3042                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3043                            GEN6_RP_MEDIA_IS_GFX |
3044                            GEN6_RP_ENABLE |
3045                            GEN6_RP_UP_BUSY_AVG |
3046                            GEN6_RP_DOWN_IDLE_AVG);
3047                 break;
3048         }
3049
3050         dev_priv->rps.power = new_power;
3051         dev_priv->rps.last_adj = 0;
3052 }
3053
3054 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3055 {
3056         u32 mask = 0;
3057
3058         if (val > dev_priv->rps.min_freq_softlimit)
3059                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3060         if (val < dev_priv->rps.max_freq_softlimit)
3061                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3062
3063         /* IVB and SNB hard hangs on looping batchbuffer
3064          * if GEN6_PM_UP_EI_EXPIRED is masked.
3065          */
3066         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3067                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3068
3069         return ~mask;
3070 }
3071
3072 /* gen6_set_rps is called to update the frequency request, but should also be
3073  * called when the range (min_delay and max_delay) is modified so that we can
3074  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3075 void gen6_set_rps(struct drm_device *dev, u8 val)
3076 {
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078
3079         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3080         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3081         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3082
3083         /* min/max delay may still have been modified so be sure to
3084          * write the limits value.
3085          */
3086         if (val != dev_priv->rps.cur_freq) {
3087                 gen6_set_rps_thresholds(dev_priv, val);
3088
3089                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3090                         I915_WRITE(GEN6_RPNSWREQ,
3091                                    HSW_FREQUENCY(val));
3092                 else
3093                         I915_WRITE(GEN6_RPNSWREQ,
3094                                    GEN6_FREQUENCY(val) |
3095                                    GEN6_OFFSET(0) |
3096                                    GEN6_AGGRESSIVE_TURBO);
3097         }
3098
3099         /* Make sure we continue to get interrupts
3100          * until we hit the minimum or maximum frequencies.
3101          */
3102         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3103         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3104
3105         POSTING_READ(GEN6_RPNSWREQ);
3106
3107         dev_priv->rps.cur_freq = val;
3108         trace_intel_gpu_freq_change(val * 50);
3109 }
3110
3111 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3112  *
3113  * * If Gfx is Idle, then
3114  * 1. Mask Turbo interrupts
3115  * 2. Bring up Gfx clock
3116  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3117  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3118  * 5. Unmask Turbo interrupts
3119 */
3120 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3121 {
3122         /*
3123          * When we are idle.  Drop to min voltage state.
3124          */
3125
3126         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3127                 return;
3128
3129         /* Mask turbo interrupt so that they will not come in between */
3130         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3131
3132         /* Bring up the Gfx clock */
3133         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3134                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3135                                 VLV_GFX_CLK_FORCE_ON_BIT);
3136
3137         if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3138                 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3139                         DRM_ERROR("GFX_CLK_ON request timed out\n");
3140                 return;
3141         }
3142
3143         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3144
3145         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3146                                         dev_priv->rps.min_freq_softlimit);
3147
3148         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3149                                 & GENFREQSTATUS) == 0, 5))
3150                 DRM_ERROR("timed out waiting for Punit\n");
3151
3152         /* Release the Gfx clock */
3153         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3154                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3155                                 ~VLV_GFX_CLK_FORCE_ON_BIT);
3156
3157         I915_WRITE(GEN6_PMINTRMSK,
3158                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3159 }
3160
3161 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3162 {
3163         struct drm_device *dev = dev_priv->dev;
3164
3165         mutex_lock(&dev_priv->rps.hw_lock);
3166         if (dev_priv->rps.enabled) {
3167                 if (IS_VALLEYVIEW(dev))
3168                         vlv_set_rps_idle(dev_priv);
3169                 else
3170                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3171                 dev_priv->rps.last_adj = 0;
3172         }
3173         mutex_unlock(&dev_priv->rps.hw_lock);
3174 }
3175
3176 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3177 {
3178         struct drm_device *dev = dev_priv->dev;
3179
3180         mutex_lock(&dev_priv->rps.hw_lock);
3181         if (dev_priv->rps.enabled) {
3182                 if (IS_VALLEYVIEW(dev))
3183                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3184                 else
3185                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3186                 dev_priv->rps.last_adj = 0;
3187         }
3188         mutex_unlock(&dev_priv->rps.hw_lock);
3189 }
3190
3191 void valleyview_set_rps(struct drm_device *dev, u8 val)
3192 {
3193         struct drm_i915_private *dev_priv = dev->dev_private;
3194
3195         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3196         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3197         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3198
3199         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3200                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3201                          dev_priv->rps.cur_freq,
3202                          vlv_gpu_freq(dev_priv, val), val);
3203
3204         if (val != dev_priv->rps.cur_freq)
3205                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3206
3207         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3208
3209         dev_priv->rps.cur_freq = val;
3210         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3211 }
3212
3213 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3214 {
3215         struct drm_i915_private *dev_priv = dev->dev_private;
3216
3217         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3218         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3219                                 ~dev_priv->pm_rps_events);
3220         /* Complete PM interrupt masking here doesn't race with the rps work
3221          * item again unmasking PM interrupts because that is using a different
3222          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3223          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3224
3225         spin_lock_irq(&dev_priv->irq_lock);
3226         dev_priv->rps.pm_iir = 0;
3227         spin_unlock_irq(&dev_priv->irq_lock);
3228
3229         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3230 }
3231
3232 static void gen6_disable_rps(struct drm_device *dev)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235
3236         I915_WRITE(GEN6_RC_CONTROL, 0);
3237         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3238
3239         gen6_disable_rps_interrupts(dev);
3240 }
3241
3242 static void valleyview_disable_rps(struct drm_device *dev)
3243 {
3244         struct drm_i915_private *dev_priv = dev->dev_private;
3245
3246         I915_WRITE(GEN6_RC_CONTROL, 0);
3247
3248         gen6_disable_rps_interrupts(dev);
3249 }
3250
3251 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3252 {
3253         if (IS_VALLEYVIEW(dev)) {
3254                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3255                         mode = GEN6_RC_CTL_RC6_ENABLE;
3256                 else
3257                         mode = 0;
3258         }
3259         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3260                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3261                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3262                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3263 }
3264
3265 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3266 {
3267         /* No RC6 before Ironlake */
3268         if (INTEL_INFO(dev)->gen < 5)
3269                 return 0;
3270
3271         /* RC6 is only on Ironlake mobile not on desktop */
3272         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3273                 return 0;
3274
3275         /* Respect the kernel parameter if it is set */
3276         if (enable_rc6 >= 0) {
3277                 int mask;
3278
3279                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3280                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3281                                INTEL_RC6pp_ENABLE;
3282                 else
3283                         mask = INTEL_RC6_ENABLE;
3284
3285                 if ((enable_rc6 & mask) != enable_rc6)
3286                         DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3287                                  enable_rc6, enable_rc6 & mask, mask);
3288
3289                 return enable_rc6 & mask;
3290         }
3291
3292         /* Disable RC6 on Ironlake */
3293         if (INTEL_INFO(dev)->gen == 5)
3294                 return 0;
3295
3296         if (IS_IVYBRIDGE(dev))
3297                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3298
3299         return INTEL_RC6_ENABLE;
3300 }
3301
3302 int intel_enable_rc6(const struct drm_device *dev)
3303 {
3304         return i915.enable_rc6;
3305 }
3306
3307 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3308 {
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310
3311         spin_lock_irq(&dev_priv->irq_lock);
3312         WARN_ON(dev_priv->rps.pm_iir);
3313         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3314         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3315         spin_unlock_irq(&dev_priv->irq_lock);
3316 }
3317
3318 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3319 {
3320         /* All of these values are in units of 50MHz */
3321         dev_priv->rps.cur_freq          = 0;
3322         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3323         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3324         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3325         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3326         /* XXX: only BYT has a special efficient freq */
3327         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3328         /* hw_max = RP0 until we check for overclocking */
3329         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3330
3331         /* Preserve min/max settings in case of re-init */
3332         if (dev_priv->rps.max_freq_softlimit == 0)
3333                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3334
3335         if (dev_priv->rps.min_freq_softlimit == 0)
3336                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3337 }
3338
3339 static void gen8_enable_rps(struct drm_device *dev)
3340 {
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         struct intel_ring_buffer *ring;
3343         uint32_t rc6_mask = 0, rp_state_cap;
3344         int unused;
3345
3346         /* 1a: Software RC state - RC0 */
3347         I915_WRITE(GEN6_RC_STATE, 0);
3348
3349         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3350          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3351         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3352
3353         /* 2a: Disable RC states. */
3354         I915_WRITE(GEN6_RC_CONTROL, 0);
3355
3356         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3357         parse_rp_state_cap(dev_priv, rp_state_cap);
3358
3359         /* 2b: Program RC6 thresholds.*/
3360         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3361         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3362         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3363         for_each_ring(ring, dev_priv, unused)
3364                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3365         I915_WRITE(GEN6_RC_SLEEP, 0);
3366         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3367
3368         /* 3: Enable RC6 */
3369         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3370                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3371         intel_print_rc6_info(dev, rc6_mask);
3372         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3373                                     GEN6_RC_CTL_EI_MODE(1) |
3374                                     rc6_mask);
3375
3376         /* 4 Program defaults and thresholds for RPS*/
3377         I915_WRITE(GEN6_RPNSWREQ,
3378                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3379         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3380                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3381         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3382         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3383
3384         /* Docs recommend 900MHz, and 300 MHz respectively */
3385         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3386                    dev_priv->rps.max_freq_softlimit << 24 |
3387                    dev_priv->rps.min_freq_softlimit << 16);
3388
3389         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3390         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3391         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3392         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3393
3394         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3395
3396         /* 5: Enable RPS */
3397         I915_WRITE(GEN6_RP_CONTROL,
3398                    GEN6_RP_MEDIA_TURBO |
3399                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3400                    GEN6_RP_MEDIA_IS_GFX |
3401                    GEN6_RP_ENABLE |
3402                    GEN6_RP_UP_BUSY_AVG |
3403                    GEN6_RP_DOWN_IDLE_AVG);
3404
3405         /* 6: Ring frequency + overclocking (our driver does this later */
3406
3407         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3408
3409         gen6_enable_rps_interrupts(dev);
3410
3411         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3412 }
3413
3414 static void gen6_enable_rps(struct drm_device *dev)
3415 {
3416         struct drm_i915_private *dev_priv = dev->dev_private;
3417         struct intel_ring_buffer *ring;
3418         u32 rp_state_cap;
3419         u32 gt_perf_status;
3420         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3421         u32 gtfifodbg;
3422         int rc6_mode;
3423         int i, ret;
3424
3425         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3426
3427         /* Here begins a magic sequence of register writes to enable
3428          * auto-downclocking.
3429          *
3430          * Perhaps there might be some value in exposing these to
3431          * userspace...
3432          */
3433         I915_WRITE(GEN6_RC_STATE, 0);
3434
3435         /* Clear the DBG now so we don't confuse earlier errors */
3436         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3437                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3438                 I915_WRITE(GTFIFODBG, gtfifodbg);
3439         }
3440
3441         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3442
3443         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3444         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3445
3446         parse_rp_state_cap(dev_priv, rp_state_cap);
3447
3448         /* disable the counters and set deterministic thresholds */
3449         I915_WRITE(GEN6_RC_CONTROL, 0);
3450
3451         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3452         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3453         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3454         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3455         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3456
3457         for_each_ring(ring, dev_priv, i)
3458                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3459
3460         I915_WRITE(GEN6_RC_SLEEP, 0);
3461         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3462         if (IS_IVYBRIDGE(dev))
3463                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3464         else
3465                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3466         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3467         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3468
3469         /* Check if we are enabling RC6 */
3470         rc6_mode = intel_enable_rc6(dev_priv->dev);
3471         if (rc6_mode & INTEL_RC6_ENABLE)
3472                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3473
3474         /* We don't use those on Haswell */
3475         if (!IS_HASWELL(dev)) {
3476                 if (rc6_mode & INTEL_RC6p_ENABLE)
3477                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3478
3479                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3480                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3481         }
3482
3483         intel_print_rc6_info(dev, rc6_mask);
3484
3485         I915_WRITE(GEN6_RC_CONTROL,
3486                    rc6_mask |
3487                    GEN6_RC_CTL_EI_MODE(1) |
3488                    GEN6_RC_CTL_HW_ENABLE);
3489
3490         /* Power down if completely idle for over 50ms */
3491         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3492         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3493
3494         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3495         if (ret)
3496                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3497
3498         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3499         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3500                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3501                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3502                                  (pcu_mbox & 0xff) * 50);
3503                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3504         }
3505
3506         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3507         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3508
3509         gen6_enable_rps_interrupts(dev);
3510
3511         rc6vids = 0;
3512         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3513         if (IS_GEN6(dev) && ret) {
3514                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3515         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3516                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3517                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3518                 rc6vids &= 0xffff00;
3519                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3520                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3521                 if (ret)
3522                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3523         }
3524
3525         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3526 }
3527
3528 static void __gen6_update_ring_freq(struct drm_device *dev)
3529 {
3530         struct drm_i915_private *dev_priv = dev->dev_private;
3531         int min_freq = 15;
3532         unsigned int gpu_freq;
3533         unsigned int max_ia_freq, min_ring_freq;
3534         int scaling_factor = 180;
3535         struct cpufreq_policy *policy;
3536
3537         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3538
3539         policy = cpufreq_cpu_get(0);
3540         if (policy) {
3541                 max_ia_freq = policy->cpuinfo.max_freq;
3542                 cpufreq_cpu_put(policy);
3543         } else {
3544                 /*
3545                  * Default to measured freq if none found, PCU will ensure we
3546                  * don't go over
3547                  */
3548                 max_ia_freq = tsc_khz;
3549         }
3550
3551         /* Convert from kHz to MHz */
3552         max_ia_freq /= 1000;
3553
3554         min_ring_freq = I915_READ(DCLK) & 0xf;
3555         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3556         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3557
3558         /*
3559          * For each potential GPU frequency, load a ring frequency we'd like
3560          * to use for memory access.  We do this by specifying the IA frequency
3561          * the PCU should use as a reference to determine the ring frequency.
3562          */
3563         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3564              gpu_freq--) {
3565                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3566                 unsigned int ia_freq = 0, ring_freq = 0;
3567
3568                 if (INTEL_INFO(dev)->gen >= 8) {
3569                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3570                         ring_freq = max(min_ring_freq, gpu_freq);
3571                 } else if (IS_HASWELL(dev)) {
3572                         ring_freq = mult_frac(gpu_freq, 5, 4);
3573                         ring_freq = max(min_ring_freq, ring_freq);
3574                         /* leave ia_freq as the default, chosen by cpufreq */
3575                 } else {
3576                         /* On older processors, there is no separate ring
3577                          * clock domain, so in order to boost the bandwidth
3578                          * of the ring, we need to upclock the CPU (ia_freq).
3579                          *
3580                          * For GPU frequencies less than 750MHz,
3581                          * just use the lowest ring freq.
3582                          */
3583                         if (gpu_freq < min_freq)
3584                                 ia_freq = 800;
3585                         else
3586                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3587                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3588                 }
3589
3590                 sandybridge_pcode_write(dev_priv,
3591                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3592                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3593                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3594                                         gpu_freq);
3595         }
3596 }
3597
3598 void gen6_update_ring_freq(struct drm_device *dev)
3599 {
3600         struct drm_i915_private *dev_priv = dev->dev_private;
3601
3602         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3603                 return;
3604
3605         mutex_lock(&dev_priv->rps.hw_lock);
3606         __gen6_update_ring_freq(dev);
3607         mutex_unlock(&dev_priv->rps.hw_lock);
3608 }
3609
3610 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3611 {
3612         u32 val, rp0;
3613
3614         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3615
3616         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3617         /* Clamp to max */
3618         rp0 = min_t(u32, rp0, 0xea);
3619
3620         return rp0;
3621 }
3622
3623 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3624 {
3625         u32 val, rpe;
3626
3627         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3628         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3629         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3630         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3631
3632         return rpe;
3633 }
3634
3635 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3636 {
3637         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3638 }
3639
3640 /* Check that the pctx buffer wasn't move under us. */
3641 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3642 {
3643         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3644
3645         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3646                              dev_priv->vlv_pctx->stolen->start);
3647 }
3648
3649 static void valleyview_setup_pctx(struct drm_device *dev)
3650 {
3651         struct drm_i915_private *dev_priv = dev->dev_private;
3652         struct drm_i915_gem_object *pctx;
3653         unsigned long pctx_paddr;
3654         u32 pcbr;
3655         int pctx_size = 24*1024;
3656
3657         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3658
3659         pcbr = I915_READ(VLV_PCBR);
3660         if (pcbr) {
3661                 /* BIOS set it up already, grab the pre-alloc'd space */
3662                 int pcbr_offset;
3663
3664                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3665                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3666                                                                       pcbr_offset,
3667                                                                       I915_GTT_OFFSET_NONE,
3668                                                                       pctx_size);
3669                 goto out;
3670         }
3671
3672         /*
3673          * From the Gunit register HAS:
3674          * The Gfx driver is expected to program this register and ensure
3675          * proper allocation within Gfx stolen memory.  For example, this
3676          * register should be programmed such than the PCBR range does not
3677          * overlap with other ranges, such as the frame buffer, protected
3678          * memory, or any other relevant ranges.
3679          */
3680         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3681         if (!pctx) {
3682                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3683                 return;
3684         }
3685
3686         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3687         I915_WRITE(VLV_PCBR, pctx_paddr);
3688
3689 out:
3690         dev_priv->vlv_pctx = pctx;
3691 }
3692
3693 static void valleyview_cleanup_pctx(struct drm_device *dev)
3694 {
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696
3697         if (WARN_ON(!dev_priv->vlv_pctx))
3698                 return;
3699
3700         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3701         dev_priv->vlv_pctx = NULL;
3702 }
3703
3704 static void valleyview_init_gt_powersave(struct drm_device *dev)
3705 {
3706         struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708         valleyview_setup_pctx(dev);
3709
3710         mutex_lock(&dev_priv->rps.hw_lock);
3711
3712         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3713         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3714         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3715                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3716                          dev_priv->rps.max_freq);
3717
3718         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3719         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3720                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3721                          dev_priv->rps.efficient_freq);
3722
3723         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3724         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3725                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3726                          dev_priv->rps.min_freq);
3727
3728         /* Preserve min/max settings in case of re-init */
3729         if (dev_priv->rps.max_freq_softlimit == 0)
3730                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3731
3732         if (dev_priv->rps.min_freq_softlimit == 0)
3733                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3734
3735         mutex_unlock(&dev_priv->rps.hw_lock);
3736 }
3737
3738 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3739 {
3740         valleyview_cleanup_pctx(dev);
3741 }
3742
3743 static void valleyview_enable_rps(struct drm_device *dev)
3744 {
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         struct intel_ring_buffer *ring;
3747         u32 gtfifodbg, val, rc6_mode = 0;
3748         int i;
3749
3750         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3751
3752         valleyview_check_pctx(dev_priv);
3753
3754         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3755                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3756                                  gtfifodbg);
3757                 I915_WRITE(GTFIFODBG, gtfifodbg);
3758         }
3759
3760         /* If VLV, Forcewake all wells, else re-direct to regular path */
3761         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3762
3763         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3764         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3765         I915_WRITE(GEN6_RP_UP_EI, 66000);
3766         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3767
3768         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3769
3770         I915_WRITE(GEN6_RP_CONTROL,
3771                    GEN6_RP_MEDIA_TURBO |
3772                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3773                    GEN6_RP_MEDIA_IS_GFX |
3774                    GEN6_RP_ENABLE |
3775                    GEN6_RP_UP_BUSY_AVG |
3776                    GEN6_RP_DOWN_IDLE_CONT);
3777
3778         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3779         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3780         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3781
3782         for_each_ring(ring, dev_priv, i)
3783                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3784
3785         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3786
3787         /* allows RC6 residency counter to work */
3788         I915_WRITE(VLV_COUNTER_CONTROL,
3789                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3790                                       VLV_MEDIA_RC6_COUNT_EN |
3791                                       VLV_RENDER_RC6_COUNT_EN));
3792         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3793                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3794
3795         intel_print_rc6_info(dev, rc6_mode);
3796
3797         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3798
3799         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3800
3801         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3802         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3803
3804         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3805         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3806                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3807                          dev_priv->rps.cur_freq);
3808
3809         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3810                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3811                          dev_priv->rps.efficient_freq);
3812
3813         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3814
3815         gen6_enable_rps_interrupts(dev);
3816
3817         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3818 }
3819
3820 void ironlake_teardown_rc6(struct drm_device *dev)
3821 {
3822         struct drm_i915_private *dev_priv = dev->dev_private;
3823
3824         if (dev_priv->ips.renderctx) {
3825                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3826                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3827                 dev_priv->ips.renderctx = NULL;
3828         }
3829
3830         if (dev_priv->ips.pwrctx) {
3831                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3832                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3833                 dev_priv->ips.pwrctx = NULL;
3834         }
3835 }
3836
3837 static void ironlake_disable_rc6(struct drm_device *dev)
3838 {
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840
3841         if (I915_READ(PWRCTXA)) {
3842                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3843                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3844                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3845                          50);
3846
3847                 I915_WRITE(PWRCTXA, 0);
3848                 POSTING_READ(PWRCTXA);
3849
3850                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3851                 POSTING_READ(RSTDBYCTL);
3852         }
3853 }
3854
3855 static int ironlake_setup_rc6(struct drm_device *dev)
3856 {
3857         struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859         if (dev_priv->ips.renderctx == NULL)
3860                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3861         if (!dev_priv->ips.renderctx)
3862                 return -ENOMEM;
3863
3864         if (dev_priv->ips.pwrctx == NULL)
3865                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3866         if (!dev_priv->ips.pwrctx) {
3867                 ironlake_teardown_rc6(dev);
3868                 return -ENOMEM;
3869         }
3870
3871         return 0;
3872 }
3873
3874 static void ironlake_enable_rc6(struct drm_device *dev)
3875 {
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3878         bool was_interruptible;
3879         int ret;
3880
3881         /* rc6 disabled by default due to repeated reports of hanging during
3882          * boot and resume.
3883          */
3884         if (!intel_enable_rc6(dev))
3885                 return;
3886
3887         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3888
3889         ret = ironlake_setup_rc6(dev);
3890         if (ret)
3891                 return;
3892
3893         was_interruptible = dev_priv->mm.interruptible;
3894         dev_priv->mm.interruptible = false;
3895
3896         /*
3897          * GPU can automatically power down the render unit if given a page
3898          * to save state.
3899          */
3900         ret = intel_ring_begin(ring, 6);
3901         if (ret) {
3902                 ironlake_teardown_rc6(dev);
3903                 dev_priv->mm.interruptible = was_interruptible;
3904                 return;
3905         }
3906
3907         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3908         intel_ring_emit(ring, MI_SET_CONTEXT);
3909         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3910                         MI_MM_SPACE_GTT |
3911                         MI_SAVE_EXT_STATE_EN |
3912                         MI_RESTORE_EXT_STATE_EN |
3913                         MI_RESTORE_INHIBIT);
3914         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3915         intel_ring_emit(ring, MI_NOOP);
3916         intel_ring_emit(ring, MI_FLUSH);
3917         intel_ring_advance(ring);
3918
3919         /*
3920          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3921          * does an implicit flush, combined with MI_FLUSH above, it should be
3922          * safe to assume that renderctx is valid
3923          */
3924         ret = intel_ring_idle(ring);
3925         dev_priv->mm.interruptible = was_interruptible;
3926         if (ret) {
3927                 DRM_ERROR("failed to enable ironlake power savings\n");
3928                 ironlake_teardown_rc6(dev);
3929                 return;
3930         }
3931
3932         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3933         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3934
3935         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
3936 }
3937
3938 static unsigned long intel_pxfreq(u32 vidfreq)
3939 {
3940         unsigned long freq;
3941         int div = (vidfreq & 0x3f0000) >> 16;
3942         int post = (vidfreq & 0x3000) >> 12;
3943         int pre = (vidfreq & 0x7);
3944
3945         if (!pre)
3946                 return 0;
3947
3948         freq = ((div * 133333) / ((1<<post) * pre));
3949
3950         return freq;
3951 }
3952
3953 static const struct cparams {
3954         u16 i;
3955         u16 t;
3956         u16 m;
3957         u16 c;
3958 } cparams[] = {
3959         { 1, 1333, 301, 28664 },
3960         { 1, 1066, 294, 24460 },
3961         { 1, 800, 294, 25192 },
3962         { 0, 1333, 276, 27605 },
3963         { 0, 1066, 276, 27605 },
3964         { 0, 800, 231, 23784 },
3965 };
3966
3967 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3968 {
3969         u64 total_count, diff, ret;
3970         u32 count1, count2, count3, m = 0, c = 0;
3971         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3972         int i;
3973
3974         assert_spin_locked(&mchdev_lock);
3975
3976         diff1 = now - dev_priv->ips.last_time1;
3977
3978         /* Prevent division-by-zero if we are asking too fast.
3979          * Also, we don't get interesting results if we are polling
3980          * faster than once in 10ms, so just return the saved value
3981          * in such cases.
3982          */
3983         if (diff1 <= 10)
3984                 return dev_priv->ips.chipset_power;
3985
3986         count1 = I915_READ(DMIEC);
3987         count2 = I915_READ(DDREC);
3988         count3 = I915_READ(CSIEC);
3989
3990         total_count = count1 + count2 + count3;
3991
3992         /* FIXME: handle per-counter overflow */
3993         if (total_count < dev_priv->ips.last_count1) {
3994                 diff = ~0UL - dev_priv->ips.last_count1;
3995                 diff += total_count;
3996         } else {
3997                 diff = total_count - dev_priv->ips.last_count1;
3998         }
3999
4000         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4001                 if (cparams[i].i == dev_priv->ips.c_m &&
4002                     cparams[i].t == dev_priv->ips.r_t) {
4003                         m = cparams[i].m;
4004                         c = cparams[i].c;
4005                         break;
4006                 }
4007         }
4008
4009         diff = div_u64(diff, diff1);
4010         ret = ((m * diff) + c);
4011         ret = div_u64(ret, 10);
4012
4013         dev_priv->ips.last_count1 = total_count;
4014         dev_priv->ips.last_time1 = now;
4015
4016         dev_priv->ips.chipset_power = ret;
4017
4018         return ret;
4019 }
4020
4021 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4022 {
4023         struct drm_device *dev = dev_priv->dev;
4024         unsigned long val;
4025
4026         if (INTEL_INFO(dev)->gen != 5)
4027                 return 0;
4028
4029         spin_lock_irq(&mchdev_lock);
4030
4031         val = __i915_chipset_val(dev_priv);
4032
4033         spin_unlock_irq(&mchdev_lock);
4034
4035         return val;
4036 }
4037
4038 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4039 {
4040         unsigned long m, x, b;
4041         u32 tsfs;
4042
4043         tsfs = I915_READ(TSFS);
4044
4045         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4046         x = I915_READ8(TR1);
4047
4048         b = tsfs & TSFS_INTR_MASK;
4049
4050         return ((m * x) / 127) - b;
4051 }
4052
4053 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4054 {
4055         struct drm_device *dev = dev_priv->dev;
4056         static const struct v_table {
4057                 u16 vd; /* in .1 mil */
4058                 u16 vm; /* in .1 mil */
4059         } v_table[] = {
4060                 { 0, 0, },
4061                 { 375, 0, },
4062                 { 500, 0, },
4063                 { 625, 0, },
4064                 { 750, 0, },
4065                 { 875, 0, },
4066                 { 1000, 0, },
4067                 { 1125, 0, },
4068                 { 4125, 3000, },
4069                 { 4125, 3000, },
4070                 { 4125, 3000, },
4071                 { 4125, 3000, },
4072                 { 4125, 3000, },
4073                 { 4125, 3000, },
4074                 { 4125, 3000, },
4075                 { 4125, 3000, },
4076                 { 4125, 3000, },
4077                 { 4125, 3000, },
4078                 { 4125, 3000, },
4079                 { 4125, 3000, },
4080                 { 4125, 3000, },
4081                 { 4125, 3000, },
4082                 { 4125, 3000, },
4083                 { 4125, 3000, },
4084                 { 4125, 3000, },
4085                 { 4125, 3000, },
4086                 { 4125, 3000, },
4087                 { 4125, 3000, },
4088                 { 4125, 3000, },
4089                 { 4125, 3000, },
4090                 { 4125, 3000, },
4091                 { 4125, 3000, },
4092                 { 4250, 3125, },
4093                 { 4375, 3250, },
4094                 { 4500, 3375, },
4095                 { 4625, 3500, },
4096                 { 4750, 3625, },
4097                 { 4875, 3750, },
4098                 { 5000, 3875, },
4099                 { 5125, 4000, },
4100                 { 5250, 4125, },
4101                 { 5375, 4250, },
4102                 { 5500, 4375, },
4103                 { 5625, 4500, },
4104                 { 5750, 4625, },
4105                 { 5875, 4750, },
4106                 { 6000, 4875, },
4107                 { 6125, 5000, },
4108                 { 6250, 5125, },
4109                 { 6375, 5250, },
4110                 { 6500, 5375, },
4111                 { 6625, 5500, },
4112                 { 6750, 5625, },
4113                 { 6875, 5750, },
4114                 { 7000, 5875, },
4115                 { 7125, 6000, },
4116                 { 7250, 6125, },
4117                 { 7375, 6250, },
4118                 { 7500, 6375, },
4119                 { 7625, 6500, },
4120                 { 7750, 6625, },
4121                 { 7875, 6750, },
4122                 { 8000, 6875, },
4123                 { 8125, 7000, },
4124                 { 8250, 7125, },
4125                 { 8375, 7250, },
4126                 { 8500, 7375, },
4127                 { 8625, 7500, },
4128                 { 8750, 7625, },
4129                 { 8875, 7750, },
4130                 { 9000, 7875, },
4131                 { 9125, 8000, },
4132                 { 9250, 8125, },
4133                 { 9375, 8250, },
4134                 { 9500, 8375, },
4135                 { 9625, 8500, },
4136                 { 9750, 8625, },
4137                 { 9875, 8750, },
4138                 { 10000, 8875, },
4139                 { 10125, 9000, },
4140                 { 10250, 9125, },
4141                 { 10375, 9250, },
4142                 { 10500, 9375, },
4143                 { 10625, 9500, },
4144                 { 10750, 9625, },
4145                 { 10875, 9750, },
4146                 { 11000, 9875, },
4147                 { 11125, 10000, },
4148                 { 11250, 10125, },
4149                 { 11375, 10250, },
4150                 { 11500, 10375, },
4151                 { 11625, 10500, },
4152                 { 11750, 10625, },
4153                 { 11875, 10750, },
4154                 { 12000, 10875, },
4155                 { 12125, 11000, },
4156                 { 12250, 11125, },
4157                 { 12375, 11250, },
4158                 { 12500, 11375, },
4159                 { 12625, 11500, },
4160                 { 12750, 11625, },
4161                 { 12875, 11750, },
4162                 { 13000, 11875, },
4163                 { 13125, 12000, },
4164                 { 13250, 12125, },
4165                 { 13375, 12250, },
4166                 { 13500, 12375, },
4167                 { 13625, 12500, },
4168                 { 13750, 12625, },
4169                 { 13875, 12750, },
4170                 { 14000, 12875, },
4171                 { 14125, 13000, },
4172                 { 14250, 13125, },
4173                 { 14375, 13250, },
4174                 { 14500, 13375, },
4175                 { 14625, 13500, },
4176                 { 14750, 13625, },
4177                 { 14875, 13750, },
4178                 { 15000, 13875, },
4179                 { 15125, 14000, },
4180                 { 15250, 14125, },
4181                 { 15375, 14250, },
4182                 { 15500, 14375, },
4183                 { 15625, 14500, },
4184                 { 15750, 14625, },
4185                 { 15875, 14750, },
4186                 { 16000, 14875, },
4187                 { 16125, 15000, },
4188         };
4189         if (INTEL_INFO(dev)->is_mobile)
4190                 return v_table[pxvid].vm;
4191         else
4192                 return v_table[pxvid].vd;
4193 }
4194
4195 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4196 {
4197         struct timespec now, diff1;
4198         u64 diff;
4199         unsigned long diffms;
4200         u32 count;
4201
4202         assert_spin_locked(&mchdev_lock);
4203
4204         getrawmonotonic(&now);
4205         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4206
4207         /* Don't divide by 0 */
4208         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4209         if (!diffms)
4210                 return;
4211
4212         count = I915_READ(GFXEC);
4213
4214         if (count < dev_priv->ips.last_count2) {
4215                 diff = ~0UL - dev_priv->ips.last_count2;
4216                 diff += count;
4217         } else {
4218                 diff = count - dev_priv->ips.last_count2;
4219         }
4220
4221         dev_priv->ips.last_count2 = count;
4222         dev_priv->ips.last_time2 = now;
4223
4224         /* More magic constants... */
4225         diff = diff * 1181;
4226         diff = div_u64(diff, diffms * 10);
4227         dev_priv->ips.gfx_power = diff;
4228 }
4229
4230 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4231 {
4232         struct drm_device *dev = dev_priv->dev;
4233
4234         if (INTEL_INFO(dev)->gen != 5)
4235                 return;
4236
4237         spin_lock_irq(&mchdev_lock);
4238
4239         __i915_update_gfx_val(dev_priv);
4240
4241         spin_unlock_irq(&mchdev_lock);
4242 }
4243
4244 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4245 {
4246         unsigned long t, corr, state1, corr2, state2;
4247         u32 pxvid, ext_v;
4248
4249         assert_spin_locked(&mchdev_lock);
4250
4251         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4252         pxvid = (pxvid >> 24) & 0x7f;
4253         ext_v = pvid_to_extvid(dev_priv, pxvid);
4254
4255         state1 = ext_v;
4256
4257         t = i915_mch_val(dev_priv);
4258
4259         /* Revel in the empirically derived constants */
4260
4261         /* Correction factor in 1/100000 units */
4262         if (t > 80)
4263                 corr = ((t * 2349) + 135940);
4264         else if (t >= 50)
4265                 corr = ((t * 964) + 29317);
4266         else /* < 50 */
4267                 corr = ((t * 301) + 1004);
4268
4269         corr = corr * ((150142 * state1) / 10000 - 78642);
4270         corr /= 100000;
4271         corr2 = (corr * dev_priv->ips.corr);
4272
4273         state2 = (corr2 * state1) / 10000;
4274         state2 /= 100; /* convert to mW */
4275
4276         __i915_update_gfx_val(dev_priv);
4277
4278         return dev_priv->ips.gfx_power + state2;
4279 }
4280
4281 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4282 {
4283         struct drm_device *dev = dev_priv->dev;
4284         unsigned long val;
4285
4286         if (INTEL_INFO(dev)->gen != 5)
4287                 return 0;
4288
4289         spin_lock_irq(&mchdev_lock);
4290
4291         val = __i915_gfx_val(dev_priv);
4292
4293         spin_unlock_irq(&mchdev_lock);
4294
4295         return val;
4296 }
4297
4298 /**
4299  * i915_read_mch_val - return value for IPS use
4300  *
4301  * Calculate and return a value for the IPS driver to use when deciding whether
4302  * we have thermal and power headroom to increase CPU or GPU power budget.
4303  */
4304 unsigned long i915_read_mch_val(void)
4305 {
4306         struct drm_i915_private *dev_priv;
4307         unsigned long chipset_val, graphics_val, ret = 0;
4308
4309         spin_lock_irq(&mchdev_lock);
4310         if (!i915_mch_dev)
4311                 goto out_unlock;
4312         dev_priv = i915_mch_dev;
4313
4314         chipset_val = __i915_chipset_val(dev_priv);
4315         graphics_val = __i915_gfx_val(dev_priv);
4316
4317         ret = chipset_val + graphics_val;
4318
4319 out_unlock:
4320         spin_unlock_irq(&mchdev_lock);
4321
4322         return ret;
4323 }
4324 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4325
4326 /**
4327  * i915_gpu_raise - raise GPU frequency limit
4328  *
4329  * Raise the limit; IPS indicates we have thermal headroom.
4330  */
4331 bool i915_gpu_raise(void)
4332 {
4333         struct drm_i915_private *dev_priv;
4334         bool ret = true;
4335
4336         spin_lock_irq(&mchdev_lock);
4337         if (!i915_mch_dev) {
4338                 ret = false;
4339                 goto out_unlock;
4340         }
4341         dev_priv = i915_mch_dev;
4342
4343         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4344                 dev_priv->ips.max_delay--;
4345
4346 out_unlock:
4347         spin_unlock_irq(&mchdev_lock);
4348
4349         return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4352
4353 /**
4354  * i915_gpu_lower - lower GPU frequency limit
4355  *
4356  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4357  * frequency maximum.
4358  */
4359 bool i915_gpu_lower(void)
4360 {
4361         struct drm_i915_private *dev_priv;
4362         bool ret = true;
4363
4364         spin_lock_irq(&mchdev_lock);
4365         if (!i915_mch_dev) {
4366                 ret = false;
4367                 goto out_unlock;
4368         }
4369         dev_priv = i915_mch_dev;
4370
4371         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4372                 dev_priv->ips.max_delay++;
4373
4374 out_unlock:
4375         spin_unlock_irq(&mchdev_lock);
4376
4377         return ret;
4378 }
4379 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4380
4381 /**
4382  * i915_gpu_busy - indicate GPU business to IPS
4383  *
4384  * Tell the IPS driver whether or not the GPU is busy.
4385  */
4386 bool i915_gpu_busy(void)
4387 {
4388         struct drm_i915_private *dev_priv;
4389         struct intel_ring_buffer *ring;
4390         bool ret = false;
4391         int i;
4392
4393         spin_lock_irq(&mchdev_lock);
4394         if (!i915_mch_dev)
4395                 goto out_unlock;
4396         dev_priv = i915_mch_dev;
4397
4398         for_each_ring(ring, dev_priv, i)
4399                 ret |= !list_empty(&ring->request_list);
4400
4401 out_unlock:
4402         spin_unlock_irq(&mchdev_lock);
4403
4404         return ret;
4405 }
4406 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4407
4408 /**
4409  * i915_gpu_turbo_disable - disable graphics turbo
4410  *
4411  * Disable graphics turbo by resetting the max frequency and setting the
4412  * current frequency to the default.
4413  */
4414 bool i915_gpu_turbo_disable(void)
4415 {
4416         struct drm_i915_private *dev_priv;
4417         bool ret = true;
4418
4419         spin_lock_irq(&mchdev_lock);
4420         if (!i915_mch_dev) {
4421                 ret = false;
4422                 goto out_unlock;
4423         }
4424         dev_priv = i915_mch_dev;
4425
4426         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4427
4428         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4429                 ret = false;
4430
4431 out_unlock:
4432         spin_unlock_irq(&mchdev_lock);
4433
4434         return ret;
4435 }
4436 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4437
4438 /**
4439  * Tells the intel_ips driver that the i915 driver is now loaded, if
4440  * IPS got loaded first.
4441  *
4442  * This awkward dance is so that neither module has to depend on the
4443  * other in order for IPS to do the appropriate communication of
4444  * GPU turbo limits to i915.
4445  */
4446 static void
4447 ips_ping_for_i915_load(void)
4448 {
4449         void (*link)(void);
4450
4451         link = symbol_get(ips_link_to_i915_driver);
4452         if (link) {
4453                 link();
4454                 symbol_put(ips_link_to_i915_driver);
4455         }
4456 }
4457
4458 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4459 {
4460         /* We only register the i915 ips part with intel-ips once everything is
4461          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4462         spin_lock_irq(&mchdev_lock);
4463         i915_mch_dev = dev_priv;
4464         spin_unlock_irq(&mchdev_lock);
4465
4466         ips_ping_for_i915_load();
4467 }
4468
4469 void intel_gpu_ips_teardown(void)
4470 {
4471         spin_lock_irq(&mchdev_lock);
4472         i915_mch_dev = NULL;
4473         spin_unlock_irq(&mchdev_lock);
4474 }
4475
4476 static void intel_init_emon(struct drm_device *dev)
4477 {
4478         struct drm_i915_private *dev_priv = dev->dev_private;
4479         u32 lcfuse;
4480         u8 pxw[16];
4481         int i;
4482
4483         /* Disable to program */
4484         I915_WRITE(ECR, 0);
4485         POSTING_READ(ECR);
4486
4487         /* Program energy weights for various events */
4488         I915_WRITE(SDEW, 0x15040d00);
4489         I915_WRITE(CSIEW0, 0x007f0000);
4490         I915_WRITE(CSIEW1, 0x1e220004);
4491         I915_WRITE(CSIEW2, 0x04000004);
4492
4493         for (i = 0; i < 5; i++)
4494                 I915_WRITE(PEW + (i * 4), 0);
4495         for (i = 0; i < 3; i++)
4496                 I915_WRITE(DEW + (i * 4), 0);
4497
4498         /* Program P-state weights to account for frequency power adjustment */
4499         for (i = 0; i < 16; i++) {
4500                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4501                 unsigned long freq = intel_pxfreq(pxvidfreq);
4502                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4503                         PXVFREQ_PX_SHIFT;
4504                 unsigned long val;
4505
4506                 val = vid * vid;
4507                 val *= (freq / 1000);
4508                 val *= 255;
4509                 val /= (127*127*900);
4510                 if (val > 0xff)
4511                         DRM_ERROR("bad pxval: %ld\n", val);
4512                 pxw[i] = val;
4513         }
4514         /* Render standby states get 0 weight */
4515         pxw[14] = 0;
4516         pxw[15] = 0;
4517
4518         for (i = 0; i < 4; i++) {
4519                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4520                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4521                 I915_WRITE(PXW + (i * 4), val);
4522         }
4523
4524         /* Adjust magic regs to magic values (more experimental results) */
4525         I915_WRITE(OGW0, 0);
4526         I915_WRITE(OGW1, 0);
4527         I915_WRITE(EG0, 0x00007f00);
4528         I915_WRITE(EG1, 0x0000000e);
4529         I915_WRITE(EG2, 0x000e0000);
4530         I915_WRITE(EG3, 0x68000300);
4531         I915_WRITE(EG4, 0x42000000);
4532         I915_WRITE(EG5, 0x00140031);
4533         I915_WRITE(EG6, 0);
4534         I915_WRITE(EG7, 0);
4535
4536         for (i = 0; i < 8; i++)
4537                 I915_WRITE(PXWL + (i * 4), 0);
4538
4539         /* Enable PMON + select events */
4540         I915_WRITE(ECR, 0x80000019);
4541
4542         lcfuse = I915_READ(LCFUSE02);
4543
4544         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4545 }
4546
4547 void intel_init_gt_powersave(struct drm_device *dev)
4548 {
4549         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4550
4551         if (IS_VALLEYVIEW(dev))
4552                 valleyview_init_gt_powersave(dev);
4553 }
4554
4555 void intel_cleanup_gt_powersave(struct drm_device *dev)
4556 {
4557         if (IS_VALLEYVIEW(dev))
4558                 valleyview_cleanup_gt_powersave(dev);
4559 }
4560
4561 void intel_disable_gt_powersave(struct drm_device *dev)
4562 {
4563         struct drm_i915_private *dev_priv = dev->dev_private;
4564
4565         /* Interrupts should be disabled already to avoid re-arming. */
4566         WARN_ON(dev->irq_enabled);
4567
4568         if (IS_IRONLAKE_M(dev)) {
4569                 ironlake_disable_drps(dev);
4570                 ironlake_disable_rc6(dev);
4571         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4572                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4573                 cancel_work_sync(&dev_priv->rps.work);
4574                 mutex_lock(&dev_priv->rps.hw_lock);
4575                 if (IS_VALLEYVIEW(dev))
4576                         valleyview_disable_rps(dev);
4577                 else
4578                         gen6_disable_rps(dev);
4579                 dev_priv->rps.enabled = false;
4580                 mutex_unlock(&dev_priv->rps.hw_lock);
4581         }
4582 }
4583
4584 static void intel_gen6_powersave_work(struct work_struct *work)
4585 {
4586         struct drm_i915_private *dev_priv =
4587                 container_of(work, struct drm_i915_private,
4588                              rps.delayed_resume_work.work);
4589         struct drm_device *dev = dev_priv->dev;
4590
4591         mutex_lock(&dev_priv->rps.hw_lock);
4592
4593         if (IS_VALLEYVIEW(dev)) {
4594                 valleyview_enable_rps(dev);
4595         } else if (IS_BROADWELL(dev)) {
4596                 gen8_enable_rps(dev);
4597                 __gen6_update_ring_freq(dev);
4598         } else {
4599                 gen6_enable_rps(dev);
4600                 __gen6_update_ring_freq(dev);
4601         }
4602         dev_priv->rps.enabled = true;
4603         mutex_unlock(&dev_priv->rps.hw_lock);
4604
4605         intel_runtime_pm_put(dev_priv);
4606 }
4607
4608 void intel_enable_gt_powersave(struct drm_device *dev)
4609 {
4610         struct drm_i915_private *dev_priv = dev->dev_private;
4611
4612         if (IS_IRONLAKE_M(dev)) {
4613                 mutex_lock(&dev->struct_mutex);
4614                 ironlake_enable_drps(dev);
4615                 ironlake_enable_rc6(dev);
4616                 intel_init_emon(dev);
4617                 mutex_unlock(&dev->struct_mutex);
4618         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4619                 /*
4620                  * PCU communication is slow and this doesn't need to be
4621                  * done at any specific time, so do this out of our fast path
4622                  * to make resume and init faster.
4623                  *
4624                  * We depend on the HW RC6 power context save/restore
4625                  * mechanism when entering D3 through runtime PM suspend. So
4626                  * disable RPM until RPS/RC6 is properly setup. We can only
4627                  * get here via the driver load/system resume/runtime resume
4628                  * paths, so the _noresume version is enough (and in case of
4629                  * runtime resume it's necessary).
4630                  */
4631                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4632                                            round_jiffies_up_relative(HZ)))
4633                         intel_runtime_pm_get_noresume(dev_priv);
4634         }
4635 }
4636
4637 void intel_reset_gt_powersave(struct drm_device *dev)
4638 {
4639         struct drm_i915_private *dev_priv = dev->dev_private;
4640
4641         dev_priv->rps.enabled = false;
4642         intel_enable_gt_powersave(dev);
4643 }
4644
4645 static void ibx_init_clock_gating(struct drm_device *dev)
4646 {
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649         /*
4650          * On Ibex Peak and Cougar Point, we need to disable clock
4651          * gating for the panel power sequencer or it will fail to
4652          * start up when no ports are active.
4653          */
4654         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4655 }
4656
4657 static void g4x_disable_trickle_feed(struct drm_device *dev)
4658 {
4659         struct drm_i915_private *dev_priv = dev->dev_private;
4660         int pipe;
4661
4662         for_each_pipe(pipe) {
4663                 I915_WRITE(DSPCNTR(pipe),
4664                            I915_READ(DSPCNTR(pipe)) |
4665                            DISPPLANE_TRICKLE_FEED_DISABLE);
4666                 intel_flush_primary_plane(dev_priv, pipe);
4667         }
4668 }
4669
4670 static void ilk_init_lp_watermarks(struct drm_device *dev)
4671 {
4672         struct drm_i915_private *dev_priv = dev->dev_private;
4673
4674         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4675         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4676         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4677
4678         /*
4679          * Don't touch WM1S_LP_EN here.
4680          * Doing so could cause underruns.
4681          */
4682 }
4683
4684 static void ironlake_init_clock_gating(struct drm_device *dev)
4685 {
4686         struct drm_i915_private *dev_priv = dev->dev_private;
4687         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4688
4689         /*
4690          * Required for FBC
4691          * WaFbcDisableDpfcClockGating:ilk
4692          */
4693         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4694                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4695                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4696
4697         I915_WRITE(PCH_3DCGDIS0,
4698                    MARIUNIT_CLOCK_GATE_DISABLE |
4699                    SVSMUNIT_CLOCK_GATE_DISABLE);
4700         I915_WRITE(PCH_3DCGDIS1,
4701                    VFMUNIT_CLOCK_GATE_DISABLE);
4702
4703         /*
4704          * According to the spec the following bits should be set in
4705          * order to enable memory self-refresh
4706          * The bit 22/21 of 0x42004
4707          * The bit 5 of 0x42020
4708          * The bit 15 of 0x45000
4709          */
4710         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4711                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4712                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4713         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4714         I915_WRITE(DISP_ARB_CTL,
4715                    (I915_READ(DISP_ARB_CTL) |
4716                     DISP_FBC_WM_DIS));
4717
4718         ilk_init_lp_watermarks(dev);
4719
4720         /*
4721          * Based on the document from hardware guys the following bits
4722          * should be set unconditionally in order to enable FBC.
4723          * The bit 22 of 0x42000
4724          * The bit 22 of 0x42004
4725          * The bit 7,8,9 of 0x42020.
4726          */
4727         if (IS_IRONLAKE_M(dev)) {
4728                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4729                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4730                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4731                            ILK_FBCQ_DIS);
4732                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4733                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4734                            ILK_DPARB_GATE);
4735         }
4736
4737         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4738
4739         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4740                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4741                    ILK_ELPIN_409_SELECT);
4742         I915_WRITE(_3D_CHICKEN2,
4743                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4744                    _3D_CHICKEN2_WM_READ_PIPELINED);
4745
4746         /* WaDisableRenderCachePipelinedFlush:ilk */
4747         I915_WRITE(CACHE_MODE_0,
4748                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4749
4750         /* WaDisable_RenderCache_OperationalFlush:ilk */
4751         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4752
4753         g4x_disable_trickle_feed(dev);
4754
4755         ibx_init_clock_gating(dev);
4756 }
4757
4758 static void cpt_init_clock_gating(struct drm_device *dev)
4759 {
4760         struct drm_i915_private *dev_priv = dev->dev_private;
4761         int pipe;
4762         uint32_t val;
4763
4764         /*
4765          * On Ibex Peak and Cougar Point, we need to disable clock
4766          * gating for the panel power sequencer or it will fail to
4767          * start up when no ports are active.
4768          */
4769         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4770                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4771                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4772         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4773                    DPLS_EDP_PPS_FIX_DIS);
4774         /* The below fixes the weird display corruption, a few pixels shifted
4775          * downward, on (only) LVDS of some HP laptops with IVY.
4776          */
4777         for_each_pipe(pipe) {
4778                 val = I915_READ(TRANS_CHICKEN2(pipe));
4779                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4780                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4781                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4782                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4783                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4784                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4785                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4786                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4787         }
4788         /* WADP0ClockGatingDisable */
4789         for_each_pipe(pipe) {
4790                 I915_WRITE(TRANS_CHICKEN1(pipe),
4791                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4792         }
4793 }
4794
4795 static void gen6_check_mch_setup(struct drm_device *dev)
4796 {
4797         struct drm_i915_private *dev_priv = dev->dev_private;
4798         uint32_t tmp;
4799
4800         tmp = I915_READ(MCH_SSKPD);
4801         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4802                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4803                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4804                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4805         }
4806 }
4807
4808 static void gen6_init_clock_gating(struct drm_device *dev)
4809 {
4810         struct drm_i915_private *dev_priv = dev->dev_private;
4811         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4812
4813         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4814
4815         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4816                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4817                    ILK_ELPIN_409_SELECT);
4818
4819         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4820         I915_WRITE(_3D_CHICKEN,
4821                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4822
4823         /* WaSetupGtModeTdRowDispatch:snb */
4824         if (IS_SNB_GT1(dev))
4825                 I915_WRITE(GEN6_GT_MODE,
4826                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4827
4828         /* WaDisable_RenderCache_OperationalFlush:snb */
4829         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4830
4831         /*
4832          * BSpec recoomends 8x4 when MSAA is used,
4833          * however in practice 16x4 seems fastest.
4834          *
4835          * Note that PS/WM thread counts depend on the WIZ hashing
4836          * disable bit, which we don't touch here, but it's good
4837          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4838          */
4839         I915_WRITE(GEN6_GT_MODE,
4840                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4841
4842         ilk_init_lp_watermarks(dev);
4843
4844         I915_WRITE(CACHE_MODE_0,
4845                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4846
4847         I915_WRITE(GEN6_UCGCTL1,
4848                    I915_READ(GEN6_UCGCTL1) |
4849                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4850                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4851
4852         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4853          * gating disable must be set.  Failure to set it results in
4854          * flickering pixels due to Z write ordering failures after
4855          * some amount of runtime in the Mesa "fire" demo, and Unigine
4856          * Sanctuary and Tropics, and apparently anything else with
4857          * alpha test or pixel discard.
4858          *
4859          * According to the spec, bit 11 (RCCUNIT) must also be set,
4860          * but we didn't debug actual testcases to find it out.
4861          *
4862          * WaDisableRCCUnitClockGating:snb
4863          * WaDisableRCPBUnitClockGating:snb
4864          */
4865         I915_WRITE(GEN6_UCGCTL2,
4866                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4867                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4868
4869         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4870         I915_WRITE(_3D_CHICKEN3,
4871                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4872
4873         /*
4874          * Bspec says:
4875          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4876          * 3DSTATE_SF number of SF output attributes is more than 16."
4877          */
4878         I915_WRITE(_3D_CHICKEN3,
4879                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4880
4881         /*
4882          * According to the spec the following bits should be
4883          * set in order to enable memory self-refresh and fbc:
4884          * The bit21 and bit22 of 0x42000
4885          * The bit21 and bit22 of 0x42004
4886          * The bit5 and bit7 of 0x42020
4887          * The bit14 of 0x70180
4888          * The bit14 of 0x71180
4889          *
4890          * WaFbcAsynchFlipDisableFbcQueue:snb
4891          */
4892         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4893                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4894                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4895         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4896                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4897                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4898         I915_WRITE(ILK_DSPCLK_GATE_D,
4899                    I915_READ(ILK_DSPCLK_GATE_D) |
4900                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4901                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4902
4903         g4x_disable_trickle_feed(dev);
4904
4905         cpt_init_clock_gating(dev);
4906
4907         gen6_check_mch_setup(dev);
4908 }
4909
4910 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4911 {
4912         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4913
4914         /*
4915          * WaVSThreadDispatchOverride:ivb,vlv
4916          *
4917          * This actually overrides the dispatch
4918          * mode for all thread types.
4919          */
4920         reg &= ~GEN7_FF_SCHED_MASK;
4921         reg |= GEN7_FF_TS_SCHED_HW;
4922         reg |= GEN7_FF_VS_SCHED_HW;
4923         reg |= GEN7_FF_DS_SCHED_HW;
4924
4925         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4926 }
4927
4928 static void lpt_init_clock_gating(struct drm_device *dev)
4929 {
4930         struct drm_i915_private *dev_priv = dev->dev_private;
4931
4932         /*
4933          * TODO: this bit should only be enabled when really needed, then
4934          * disabled when not needed anymore in order to save power.
4935          */
4936         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4937                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4938                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4939                            PCH_LP_PARTITION_LEVEL_DISABLE);
4940
4941         /* WADPOClockGatingDisable:hsw */
4942         I915_WRITE(_TRANSA_CHICKEN1,
4943                    I915_READ(_TRANSA_CHICKEN1) |
4944                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4945 }
4946
4947 static void lpt_suspend_hw(struct drm_device *dev)
4948 {
4949         struct drm_i915_private *dev_priv = dev->dev_private;
4950
4951         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4952                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4953
4954                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4955                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4956         }
4957 }
4958
4959 static void gen8_init_clock_gating(struct drm_device *dev)
4960 {
4961         struct drm_i915_private *dev_priv = dev->dev_private;
4962         enum pipe pipe;
4963
4964         I915_WRITE(WM3_LP_ILK, 0);
4965         I915_WRITE(WM2_LP_ILK, 0);
4966         I915_WRITE(WM1_LP_ILK, 0);
4967
4968         /* FIXME(BDW): Check all the w/a, some might only apply to
4969          * pre-production hw. */
4970
4971         /* WaDisablePartialInstShootdown:bdw */
4972         I915_WRITE(GEN8_ROW_CHICKEN,
4973                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4974
4975         /* WaDisableThreadStallDopClockGating:bdw */
4976         /* FIXME: Unclear whether we really need this on production bdw. */
4977         I915_WRITE(GEN8_ROW_CHICKEN,
4978                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4979
4980         /*
4981          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4982          * pre-production hardware
4983          */
4984         I915_WRITE(HALF_SLICE_CHICKEN3,
4985                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4986         I915_WRITE(HALF_SLICE_CHICKEN3,
4987                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4988         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4989
4990         I915_WRITE(_3D_CHICKEN3,
4991                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4992
4993         I915_WRITE(COMMON_SLICE_CHICKEN2,
4994                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4995
4996         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4997                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4998
4999         /* WaSwitchSolVfFArbitrationPriority:bdw */
5000         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5001
5002         /* WaPsrDPAMaskVBlankInSRD:bdw */
5003         I915_WRITE(CHICKEN_PAR1_1,
5004                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5005
5006         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5007         for_each_pipe(pipe) {
5008                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5009                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5010                            BDW_DPRS_MASK_VBLANK_SRD);
5011         }
5012
5013         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5014          * workaround for for a possible hang in the unlikely event a TLB
5015          * invalidation occurs during a PSD flush.
5016          */
5017         I915_WRITE(HDC_CHICKEN0,
5018                    I915_READ(HDC_CHICKEN0) |
5019                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5020
5021         /* WaVSRefCountFullforceMissDisable:bdw */
5022         /* WaDSRefCountFullforceMissDisable:bdw */
5023         I915_WRITE(GEN7_FF_THREAD_MODE,
5024                    I915_READ(GEN7_FF_THREAD_MODE) &
5025                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5026
5027         /*
5028          * BSpec recommends 8x4 when MSAA is used,
5029          * however in practice 16x4 seems fastest.
5030          *
5031          * Note that PS/WM thread counts depend on the WIZ hashing
5032          * disable bit, which we don't touch here, but it's good
5033          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5034          */
5035         I915_WRITE(GEN7_GT_MODE,
5036                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5037
5038         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5039                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5040
5041         /* WaDisableSDEUnitClockGating:bdw */
5042         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5043                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5044
5045         /* Wa4x4STCOptimizationDisable:bdw */
5046         I915_WRITE(CACHE_MODE_1,
5047                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5048 }
5049
5050 static void haswell_init_clock_gating(struct drm_device *dev)
5051 {
5052         struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054         ilk_init_lp_watermarks(dev);
5055
5056         /* L3 caching of data atomics doesn't work -- disable it. */
5057         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5058         I915_WRITE(HSW_ROW_CHICKEN3,
5059                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5060
5061         /* This is required by WaCatErrorRejectionIssue:hsw */
5062         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5063                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5064                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5065
5066         /* WaVSRefCountFullforceMissDisable:hsw */
5067         I915_WRITE(GEN7_FF_THREAD_MODE,
5068                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5069
5070         /* WaDisable_RenderCache_OperationalFlush:hsw */
5071         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5072
5073         /* enable HiZ Raw Stall Optimization */
5074         I915_WRITE(CACHE_MODE_0_GEN7,
5075                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5076
5077         /* WaDisable4x2SubspanOptimization:hsw */
5078         I915_WRITE(CACHE_MODE_1,
5079                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5080
5081         /*
5082          * BSpec recommends 8x4 when MSAA is used,
5083          * however in practice 16x4 seems fastest.
5084          *
5085          * Note that PS/WM thread counts depend on the WIZ hashing
5086          * disable bit, which we don't touch here, but it's good
5087          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5088          */
5089         I915_WRITE(GEN7_GT_MODE,
5090                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5091
5092         /* WaSwitchSolVfFArbitrationPriority:hsw */
5093         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5094
5095         /* WaRsPkgCStateDisplayPMReq:hsw */
5096         I915_WRITE(CHICKEN_PAR1_1,
5097                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5098
5099         lpt_init_clock_gating(dev);
5100 }
5101
5102 static void ivybridge_init_clock_gating(struct drm_device *dev)
5103 {
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         uint32_t snpcr;
5106
5107         ilk_init_lp_watermarks(dev);
5108
5109         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5110
5111         /* WaDisableEarlyCull:ivb */
5112         I915_WRITE(_3D_CHICKEN3,
5113                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5114
5115         /* WaDisableBackToBackFlipFix:ivb */
5116         I915_WRITE(IVB_CHICKEN3,
5117                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5118                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5119
5120         /* WaDisablePSDDualDispatchEnable:ivb */
5121         if (IS_IVB_GT1(dev))
5122                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5123                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5124
5125         /* WaDisable_RenderCache_OperationalFlush:ivb */
5126         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5127
5128         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5129         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5130                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5131
5132         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5133         I915_WRITE(GEN7_L3CNTLREG1,
5134                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5135         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5136                    GEN7_WA_L3_CHICKEN_MODE);
5137         if (IS_IVB_GT1(dev))
5138                 I915_WRITE(GEN7_ROW_CHICKEN2,
5139                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5140         else {
5141                 /* must write both registers */
5142                 I915_WRITE(GEN7_ROW_CHICKEN2,
5143                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5144                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5145                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5146         }
5147
5148         /* WaForceL3Serialization:ivb */
5149         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5150                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5151
5152         /*
5153          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5154          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5155          */
5156         I915_WRITE(GEN6_UCGCTL2,
5157                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5158
5159         /* This is required by WaCatErrorRejectionIssue:ivb */
5160         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5161                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5162                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5163
5164         g4x_disable_trickle_feed(dev);
5165
5166         gen7_setup_fixed_func_scheduler(dev_priv);
5167
5168         if (0) { /* causes HiZ corruption on ivb:gt1 */
5169                 /* enable HiZ Raw Stall Optimization */
5170                 I915_WRITE(CACHE_MODE_0_GEN7,
5171                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5172         }
5173
5174         /* WaDisable4x2SubspanOptimization:ivb */
5175         I915_WRITE(CACHE_MODE_1,
5176                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5177
5178         /*
5179          * BSpec recommends 8x4 when MSAA is used,
5180          * however in practice 16x4 seems fastest.
5181          *
5182          * Note that PS/WM thread counts depend on the WIZ hashing
5183          * disable bit, which we don't touch here, but it's good
5184          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5185          */
5186         I915_WRITE(GEN7_GT_MODE,
5187                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5188
5189         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5190         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5191         snpcr |= GEN6_MBC_SNPCR_MED;
5192         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5193
5194         if (!HAS_PCH_NOP(dev))
5195                 cpt_init_clock_gating(dev);
5196
5197         gen6_check_mch_setup(dev);
5198 }
5199
5200 static void valleyview_init_clock_gating(struct drm_device *dev)
5201 {
5202         struct drm_i915_private *dev_priv = dev->dev_private;
5203         u32 val;
5204
5205         mutex_lock(&dev_priv->rps.hw_lock);
5206         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5207         mutex_unlock(&dev_priv->rps.hw_lock);
5208         switch ((val >> 6) & 3) {
5209         case 0:
5210         case 1:
5211                 dev_priv->mem_freq = 800;
5212                 break;
5213         case 2:
5214                 dev_priv->mem_freq = 1066;
5215                 break;
5216         case 3:
5217                 dev_priv->mem_freq = 1333;
5218                 break;
5219         }
5220         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5221
5222         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5223         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5224                          dev_priv->vlv_cdclk_freq);
5225
5226         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5227
5228         /* WaDisableEarlyCull:vlv */
5229         I915_WRITE(_3D_CHICKEN3,
5230                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5231
5232         /* WaDisableBackToBackFlipFix:vlv */
5233         I915_WRITE(IVB_CHICKEN3,
5234                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5235                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5236
5237         /* WaPsdDispatchEnable:vlv */
5238         /* WaDisablePSDDualDispatchEnable:vlv */
5239         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5240                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5241                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5242
5243         /* WaDisable_RenderCache_OperationalFlush:vlv */
5244         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5245
5246         /* WaForceL3Serialization:vlv */
5247         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5248                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5249
5250         /* WaDisableDopClockGating:vlv */
5251         I915_WRITE(GEN7_ROW_CHICKEN2,
5252                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5253
5254         /* This is required by WaCatErrorRejectionIssue:vlv */
5255         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5256                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5257                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5258
5259         gen7_setup_fixed_func_scheduler(dev_priv);
5260
5261         /*
5262          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5263          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5264          */
5265         I915_WRITE(GEN6_UCGCTL2,
5266                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5267
5268         /* WaDisableL3Bank2xClockGate:vlv */
5269         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5270
5271         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5272
5273         /*
5274          * BSpec says this must be set, even though
5275          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5276          */
5277         I915_WRITE(CACHE_MODE_1,
5278                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5279
5280         /*
5281          * WaIncreaseL3CreditsForVLVB0:vlv
5282          * This is the hardware default actually.
5283          */
5284         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5285
5286         /*
5287          * WaDisableVLVClockGating_VBIIssue:vlv
5288          * Disable clock gating on th GCFG unit to prevent a delay
5289          * in the reporting of vblank events.
5290          */
5291         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5292 }
5293
5294 static void g4x_init_clock_gating(struct drm_device *dev)
5295 {
5296         struct drm_i915_private *dev_priv = dev->dev_private;
5297         uint32_t dspclk_gate;
5298
5299         I915_WRITE(RENCLK_GATE_D1, 0);
5300         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5301                    GS_UNIT_CLOCK_GATE_DISABLE |
5302                    CL_UNIT_CLOCK_GATE_DISABLE);
5303         I915_WRITE(RAMCLK_GATE_D, 0);
5304         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5305                 OVRUNIT_CLOCK_GATE_DISABLE |
5306                 OVCUNIT_CLOCK_GATE_DISABLE;
5307         if (IS_GM45(dev))
5308                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5309         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5310
5311         /* WaDisableRenderCachePipelinedFlush */
5312         I915_WRITE(CACHE_MODE_0,
5313                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5314
5315         /* WaDisable_RenderCache_OperationalFlush:g4x */
5316         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5317
5318         g4x_disable_trickle_feed(dev);
5319 }
5320
5321 static void crestline_init_clock_gating(struct drm_device *dev)
5322 {
5323         struct drm_i915_private *dev_priv = dev->dev_private;
5324
5325         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5326         I915_WRITE(RENCLK_GATE_D2, 0);
5327         I915_WRITE(DSPCLK_GATE_D, 0);
5328         I915_WRITE(RAMCLK_GATE_D, 0);
5329         I915_WRITE16(DEUC, 0);
5330         I915_WRITE(MI_ARB_STATE,
5331                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5332
5333         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5334         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5335 }
5336
5337 static void broadwater_init_clock_gating(struct drm_device *dev)
5338 {
5339         struct drm_i915_private *dev_priv = dev->dev_private;
5340
5341         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5342                    I965_RCC_CLOCK_GATE_DISABLE |
5343                    I965_RCPB_CLOCK_GATE_DISABLE |
5344                    I965_ISC_CLOCK_GATE_DISABLE |
5345                    I965_FBC_CLOCK_GATE_DISABLE);
5346         I915_WRITE(RENCLK_GATE_D2, 0);
5347         I915_WRITE(MI_ARB_STATE,
5348                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5349
5350         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5351         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5352 }
5353
5354 static void gen3_init_clock_gating(struct drm_device *dev)
5355 {
5356         struct drm_i915_private *dev_priv = dev->dev_private;
5357         u32 dstate = I915_READ(D_STATE);
5358
5359         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5360                 DSTATE_DOT_CLOCK_GATING;
5361         I915_WRITE(D_STATE, dstate);
5362
5363         if (IS_PINEVIEW(dev))
5364                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5365
5366         /* IIR "flip pending" means done if this bit is set */
5367         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5368 }
5369
5370 static void i85x_init_clock_gating(struct drm_device *dev)
5371 {
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373
5374         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5375 }
5376
5377 static void i830_init_clock_gating(struct drm_device *dev)
5378 {
5379         struct drm_i915_private *dev_priv = dev->dev_private;
5380
5381         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5382 }
5383
5384 void intel_init_clock_gating(struct drm_device *dev)
5385 {
5386         struct drm_i915_private *dev_priv = dev->dev_private;
5387
5388         dev_priv->display.init_clock_gating(dev);
5389 }
5390
5391 void intel_suspend_hw(struct drm_device *dev)
5392 {
5393         if (HAS_PCH_LPT(dev))
5394                 lpt_suspend_hw(dev);
5395 }
5396
5397 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5398         for (i = 0;                                                     \
5399              i < (power_domains)->power_well_count &&                   \
5400                  ((power_well) = &(power_domains)->power_wells[i]);     \
5401              i++)                                                       \
5402                 if ((power_well)->domains & (domain_mask))
5403
5404 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5405         for (i = (power_domains)->power_well_count - 1;                  \
5406              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5407              i--)                                                        \
5408                 if ((power_well)->domains & (domain_mask))
5409
5410 /**
5411  * We should only use the power well if we explicitly asked the hardware to
5412  * enable it, so check if it's enabled and also check if we've requested it to
5413  * be enabled.
5414  */
5415 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5416                                    struct i915_power_well *power_well)
5417 {
5418         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5419                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5420 }
5421
5422 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5423                                     enum intel_display_power_domain domain)
5424 {
5425         struct i915_power_domains *power_domains;
5426
5427         power_domains = &dev_priv->power_domains;
5428
5429         return power_domains->domain_use_count[domain];
5430 }
5431
5432 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5433                                  enum intel_display_power_domain domain)
5434 {
5435         struct i915_power_domains *power_domains;
5436         struct i915_power_well *power_well;
5437         bool is_enabled;
5438         int i;
5439
5440         if (dev_priv->pm.suspended)
5441                 return false;
5442
5443         power_domains = &dev_priv->power_domains;
5444
5445         is_enabled = true;
5446
5447         mutex_lock(&power_domains->lock);
5448         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5449                 if (power_well->always_on)
5450                         continue;
5451
5452                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5453                         is_enabled = false;
5454                         break;
5455                 }
5456         }
5457         mutex_unlock(&power_domains->lock);
5458
5459         return is_enabled;
5460 }
5461
5462 /*
5463  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5464  * when not needed anymore. We have 4 registers that can request the power well
5465  * to be enabled, and it will only be disabled if none of the registers is
5466  * requesting it to be enabled.
5467  */
5468 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5469 {
5470         struct drm_device *dev = dev_priv->dev;
5471         unsigned long irqflags;
5472
5473         /*
5474          * After we re-enable the power well, if we touch VGA register 0x3d5
5475          * we'll get unclaimed register interrupts. This stops after we write
5476          * anything to the VGA MSR register. The vgacon module uses this
5477          * register all the time, so if we unbind our driver and, as a
5478          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5479          * console_unlock(). So make here we touch the VGA MSR register, making
5480          * sure vgacon can keep working normally without triggering interrupts
5481          * and error messages.
5482          */
5483         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5484         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5485         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5486
5487         if (IS_BROADWELL(dev)) {
5488                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5489                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5490                            dev_priv->de_irq_mask[PIPE_B]);
5491                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5492                            ~dev_priv->de_irq_mask[PIPE_B] |
5493                            GEN8_PIPE_VBLANK);
5494                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5495                            dev_priv->de_irq_mask[PIPE_C]);
5496                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5497                            ~dev_priv->de_irq_mask[PIPE_C] |
5498                            GEN8_PIPE_VBLANK);
5499                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5500                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5501         }
5502 }
5503
5504 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5505 {
5506         assert_spin_locked(&dev->vbl_lock);
5507
5508         dev->vblank[pipe].last = 0;
5509 }
5510
5511 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5512 {
5513         struct drm_device *dev = dev_priv->dev;
5514         enum pipe pipe;
5515         unsigned long irqflags;
5516
5517         /*
5518          * After this, the registers on the pipes that are part of the power
5519          * well will become zero, so we have to adjust our counters according to
5520          * that.
5521          *
5522          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5523          */
5524         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5525         for_each_pipe(pipe)
5526                 if (pipe != PIPE_A)
5527                         reset_vblank_counter(dev, pipe);
5528         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5529 }
5530
5531 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5532                                struct i915_power_well *power_well, bool enable)
5533 {
5534         bool is_enabled, enable_requested;
5535         uint32_t tmp;
5536
5537         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5538         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5539         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5540
5541         if (enable) {
5542                 if (!enable_requested)
5543                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5544                                    HSW_PWR_WELL_ENABLE_REQUEST);
5545
5546                 if (!is_enabled) {
5547                         DRM_DEBUG_KMS("Enabling power well\n");
5548                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5549                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5550                                 DRM_ERROR("Timeout enabling power well\n");
5551                 }
5552
5553                 hsw_power_well_post_enable(dev_priv);
5554         } else {
5555                 if (enable_requested) {
5556                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5557                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5558                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5559
5560                         hsw_power_well_post_disable(dev_priv);
5561                 }
5562         }
5563 }
5564
5565 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5566                                    struct i915_power_well *power_well)
5567 {
5568         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5569
5570         /*
5571          * We're taking over the BIOS, so clear any requests made by it since
5572          * the driver is in charge now.
5573          */
5574         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5575                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5576 }
5577
5578 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5579                                   struct i915_power_well *power_well)
5580 {
5581         hsw_set_power_well(dev_priv, power_well, true);
5582 }
5583
5584 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5585                                    struct i915_power_well *power_well)
5586 {
5587         hsw_set_power_well(dev_priv, power_well, false);
5588 }
5589
5590 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5591                                            struct i915_power_well *power_well)
5592 {
5593 }
5594
5595 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5596                                              struct i915_power_well *power_well)
5597 {
5598         return true;
5599 }
5600
5601 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5602                                struct i915_power_well *power_well, bool enable)
5603 {
5604         enum punit_power_well power_well_id = power_well->data;
5605         u32 mask;
5606         u32 state;
5607         u32 ctrl;
5608
5609         mask = PUNIT_PWRGT_MASK(power_well_id);
5610         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5611                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5612
5613         mutex_lock(&dev_priv->rps.hw_lock);
5614
5615 #define COND \
5616         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5617
5618         if (COND)
5619                 goto out;
5620
5621         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5622         ctrl &= ~mask;
5623         ctrl |= state;
5624         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5625
5626         if (wait_for(COND, 100))
5627                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5628                           state,
5629                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5630
5631 #undef COND
5632
5633 out:
5634         mutex_unlock(&dev_priv->rps.hw_lock);
5635 }
5636
5637 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5638                                    struct i915_power_well *power_well)
5639 {
5640         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5641 }
5642
5643 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5644                                   struct i915_power_well *power_well)
5645 {
5646         vlv_set_power_well(dev_priv, power_well, true);
5647 }
5648
5649 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5650                                    struct i915_power_well *power_well)
5651 {
5652         vlv_set_power_well(dev_priv, power_well, false);
5653 }
5654
5655 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5656                                    struct i915_power_well *power_well)
5657 {
5658         int power_well_id = power_well->data;
5659         bool enabled = false;
5660         u32 mask;
5661         u32 state;
5662         u32 ctrl;
5663
5664         mask = PUNIT_PWRGT_MASK(power_well_id);
5665         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5666
5667         mutex_lock(&dev_priv->rps.hw_lock);
5668
5669         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5670         /*
5671          * We only ever set the power-on and power-gate states, anything
5672          * else is unexpected.
5673          */
5674         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5675                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5676         if (state == ctrl)
5677                 enabled = true;
5678
5679         /*
5680          * A transient state at this point would mean some unexpected party
5681          * is poking at the power controls too.
5682          */
5683         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5684         WARN_ON(ctrl != state);
5685
5686         mutex_unlock(&dev_priv->rps.hw_lock);
5687
5688         return enabled;
5689 }
5690
5691 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5692                                           struct i915_power_well *power_well)
5693 {
5694         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5695
5696         vlv_set_power_well(dev_priv, power_well, true);
5697
5698         spin_lock_irq(&dev_priv->irq_lock);
5699         valleyview_enable_display_irqs(dev_priv);
5700         spin_unlock_irq(&dev_priv->irq_lock);
5701
5702         /*
5703          * During driver initialization we need to defer enabling hotplug
5704          * processing until fbdev is set up.
5705          */
5706         if (dev_priv->enable_hotplug_processing)
5707                 intel_hpd_init(dev_priv->dev);
5708
5709         i915_redisable_vga_power_on(dev_priv->dev);
5710 }
5711
5712 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5713                                            struct i915_power_well *power_well)
5714 {
5715         struct drm_device *dev = dev_priv->dev;
5716         enum pipe pipe;
5717
5718         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5719
5720         spin_lock_irq(&dev_priv->irq_lock);
5721         for_each_pipe(pipe)
5722                 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5723
5724         valleyview_disable_display_irqs(dev_priv);
5725         spin_unlock_irq(&dev_priv->irq_lock);
5726
5727         spin_lock_irq(&dev->vbl_lock);
5728         for_each_pipe(pipe)
5729                 reset_vblank_counter(dev, pipe);
5730         spin_unlock_irq(&dev->vbl_lock);
5731
5732         vlv_set_power_well(dev_priv, power_well, false);
5733 }
5734
5735 static void check_power_well_state(struct drm_i915_private *dev_priv,
5736                                    struct i915_power_well *power_well)
5737 {
5738         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5739
5740         if (power_well->always_on || !i915.disable_power_well) {
5741                 if (!enabled)
5742                         goto mismatch;
5743
5744                 return;
5745         }
5746
5747         if (enabled != (power_well->count > 0))
5748                 goto mismatch;
5749
5750         return;
5751
5752 mismatch:
5753         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5754                   power_well->name, power_well->always_on, enabled,
5755                   power_well->count, i915.disable_power_well);
5756 }
5757
5758 void intel_display_power_get(struct drm_i915_private *dev_priv,
5759                              enum intel_display_power_domain domain)
5760 {
5761         struct i915_power_domains *power_domains;
5762         struct i915_power_well *power_well;
5763         int i;
5764
5765         intel_runtime_pm_get(dev_priv);
5766
5767         power_domains = &dev_priv->power_domains;
5768
5769         mutex_lock(&power_domains->lock);
5770
5771         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5772                 if (!power_well->count++) {
5773                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5774                         power_well->ops->enable(dev_priv, power_well);
5775                 }
5776
5777                 check_power_well_state(dev_priv, power_well);
5778         }
5779
5780         power_domains->domain_use_count[domain]++;
5781
5782         mutex_unlock(&power_domains->lock);
5783 }
5784
5785 void intel_display_power_put(struct drm_i915_private *dev_priv,
5786                              enum intel_display_power_domain domain)
5787 {
5788         struct i915_power_domains *power_domains;
5789         struct i915_power_well *power_well;
5790         int i;
5791
5792         power_domains = &dev_priv->power_domains;
5793
5794         mutex_lock(&power_domains->lock);
5795
5796         WARN_ON(!power_domains->domain_use_count[domain]);
5797         power_domains->domain_use_count[domain]--;
5798
5799         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5800                 WARN_ON(!power_well->count);
5801
5802                 if (!--power_well->count && i915.disable_power_well) {
5803                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5804                         power_well->ops->disable(dev_priv, power_well);
5805                 }
5806
5807                 check_power_well_state(dev_priv, power_well);
5808         }
5809
5810         mutex_unlock(&power_domains->lock);
5811
5812         intel_runtime_pm_put(dev_priv);
5813 }
5814
5815 static struct i915_power_domains *hsw_pwr;
5816
5817 /* Display audio driver power well request */
5818 void i915_request_power_well(void)
5819 {
5820         struct drm_i915_private *dev_priv;
5821
5822         if (WARN_ON(!hsw_pwr))
5823                 return;
5824
5825         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5826                                 power_domains);
5827         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5828 }
5829 EXPORT_SYMBOL_GPL(i915_request_power_well);
5830
5831 /* Display audio driver power well release */
5832 void i915_release_power_well(void)
5833 {
5834         struct drm_i915_private *dev_priv;
5835
5836         if (WARN_ON(!hsw_pwr))
5837                 return;
5838
5839         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5840                                 power_domains);
5841         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5842 }
5843 EXPORT_SYMBOL_GPL(i915_release_power_well);
5844
5845 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5846
5847 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
5848         BIT(POWER_DOMAIN_PIPE_A) |                      \
5849         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
5850         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
5851         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
5852         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
5853         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
5854         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
5855         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
5856         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
5857         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
5858         BIT(POWER_DOMAIN_PORT_CRT) |                    \
5859         BIT(POWER_DOMAIN_INIT))
5860 #define HSW_DISPLAY_POWER_DOMAINS (                             \
5861         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
5862         BIT(POWER_DOMAIN_INIT))
5863
5864 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
5865         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
5866         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5867 #define BDW_DISPLAY_POWER_DOMAINS (                             \
5868         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
5869         BIT(POWER_DOMAIN_INIT))
5870
5871 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
5872 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
5873
5874 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
5875         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5876         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5877         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5878         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5879         BIT(POWER_DOMAIN_PORT_CRT) |            \
5880         BIT(POWER_DOMAIN_INIT))
5881
5882 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
5883         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5884         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5885         BIT(POWER_DOMAIN_INIT))
5886
5887 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
5888         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5889         BIT(POWER_DOMAIN_INIT))
5890
5891 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
5892         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5893         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5894         BIT(POWER_DOMAIN_INIT))
5895
5896 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
5897         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5898         BIT(POWER_DOMAIN_INIT))
5899
5900 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5901         .sync_hw = i9xx_always_on_power_well_noop,
5902         .enable = i9xx_always_on_power_well_noop,
5903         .disable = i9xx_always_on_power_well_noop,
5904         .is_enabled = i9xx_always_on_power_well_enabled,
5905 };
5906
5907 static struct i915_power_well i9xx_always_on_power_well[] = {
5908         {
5909                 .name = "always-on",
5910                 .always_on = 1,
5911                 .domains = POWER_DOMAIN_MASK,
5912                 .ops = &i9xx_always_on_power_well_ops,
5913         },
5914 };
5915
5916 static const struct i915_power_well_ops hsw_power_well_ops = {
5917         .sync_hw = hsw_power_well_sync_hw,
5918         .enable = hsw_power_well_enable,
5919         .disable = hsw_power_well_disable,
5920         .is_enabled = hsw_power_well_enabled,
5921 };
5922
5923 static struct i915_power_well hsw_power_wells[] = {
5924         {
5925                 .name = "always-on",
5926                 .always_on = 1,
5927                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5928                 .ops = &i9xx_always_on_power_well_ops,
5929         },
5930         {
5931                 .name = "display",
5932                 .domains = HSW_DISPLAY_POWER_DOMAINS,
5933                 .ops = &hsw_power_well_ops,
5934         },
5935 };
5936
5937 static struct i915_power_well bdw_power_wells[] = {
5938         {
5939                 .name = "always-on",
5940                 .always_on = 1,
5941                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5942                 .ops = &i9xx_always_on_power_well_ops,
5943         },
5944         {
5945                 .name = "display",
5946                 .domains = BDW_DISPLAY_POWER_DOMAINS,
5947                 .ops = &hsw_power_well_ops,
5948         },
5949 };
5950
5951 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5952         .sync_hw = vlv_power_well_sync_hw,
5953         .enable = vlv_display_power_well_enable,
5954         .disable = vlv_display_power_well_disable,
5955         .is_enabled = vlv_power_well_enabled,
5956 };
5957
5958 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5959         .sync_hw = vlv_power_well_sync_hw,
5960         .enable = vlv_power_well_enable,
5961         .disable = vlv_power_well_disable,
5962         .is_enabled = vlv_power_well_enabled,
5963 };
5964
5965 static struct i915_power_well vlv_power_wells[] = {
5966         {
5967                 .name = "always-on",
5968                 .always_on = 1,
5969                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5970                 .ops = &i9xx_always_on_power_well_ops,
5971         },
5972         {
5973                 .name = "display",
5974                 .domains = VLV_DISPLAY_POWER_DOMAINS,
5975                 .data = PUNIT_POWER_WELL_DISP2D,
5976                 .ops = &vlv_display_power_well_ops,
5977         },
5978         {
5979                 .name = "dpio-common",
5980                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5981                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5982                 .ops = &vlv_dpio_power_well_ops,
5983         },
5984         {
5985                 .name = "dpio-tx-b-01",
5986                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5987                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5988                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5989                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5990                 .ops = &vlv_dpio_power_well_ops,
5991                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5992         },
5993         {
5994                 .name = "dpio-tx-b-23",
5995                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5996                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5997                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5998                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5999                 .ops = &vlv_dpio_power_well_ops,
6000                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6001         },
6002         {
6003                 .name = "dpio-tx-c-01",
6004                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6005                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6006                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6007                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6008                 .ops = &vlv_dpio_power_well_ops,
6009                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6010         },
6011         {
6012                 .name = "dpio-tx-c-23",
6013                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6014                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6015                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6016                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6017                 .ops = &vlv_dpio_power_well_ops,
6018                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6019         },
6020 };
6021
6022 #define set_power_wells(power_domains, __power_wells) ({                \
6023         (power_domains)->power_wells = (__power_wells);                 \
6024         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6025 })
6026
6027 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6028 {
6029         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6030
6031         mutex_init(&power_domains->lock);
6032
6033         /*
6034          * The enabling order will be from lower to higher indexed wells,
6035          * the disabling order is reversed.
6036          */
6037         if (IS_HASWELL(dev_priv->dev)) {
6038                 set_power_wells(power_domains, hsw_power_wells);
6039                 hsw_pwr = power_domains;
6040         } else if (IS_BROADWELL(dev_priv->dev)) {
6041                 set_power_wells(power_domains, bdw_power_wells);
6042                 hsw_pwr = power_domains;
6043         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6044                 set_power_wells(power_domains, vlv_power_wells);
6045         } else {
6046                 set_power_wells(power_domains, i9xx_always_on_power_well);
6047         }
6048
6049         return 0;
6050 }
6051
6052 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6053 {
6054         hsw_pwr = NULL;
6055 }
6056
6057 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6058 {
6059         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6060         struct i915_power_well *power_well;
6061         int i;
6062
6063         mutex_lock(&power_domains->lock);
6064         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
6065                 power_well->ops->sync_hw(dev_priv, power_well);
6066         mutex_unlock(&power_domains->lock);
6067 }
6068
6069 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6070 {
6071         /* For now, we need the power well to be always enabled. */
6072         intel_display_set_init_power(dev_priv, true);
6073         intel_power_domains_resume(dev_priv);
6074 }
6075
6076 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6077 {
6078         intel_runtime_pm_get(dev_priv);
6079 }
6080
6081 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6082 {
6083         intel_runtime_pm_put(dev_priv);
6084 }
6085
6086 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6087 {
6088         struct drm_device *dev = dev_priv->dev;
6089         struct device *device = &dev->pdev->dev;
6090
6091         if (!HAS_RUNTIME_PM(dev))
6092                 return;
6093
6094         pm_runtime_get_sync(device);
6095         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6096 }
6097
6098 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6099 {
6100         struct drm_device *dev = dev_priv->dev;
6101         struct device *device = &dev->pdev->dev;
6102
6103         if (!HAS_RUNTIME_PM(dev))
6104                 return;
6105
6106         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6107         pm_runtime_get_noresume(device);
6108 }
6109
6110 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6111 {
6112         struct drm_device *dev = dev_priv->dev;
6113         struct device *device = &dev->pdev->dev;
6114
6115         if (!HAS_RUNTIME_PM(dev))
6116                 return;
6117
6118         pm_runtime_mark_last_busy(device);
6119         pm_runtime_put_autosuspend(device);
6120 }
6121
6122 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6123 {
6124         struct drm_device *dev = dev_priv->dev;
6125         struct device *device = &dev->pdev->dev;
6126
6127         if (!HAS_RUNTIME_PM(dev))
6128                 return;
6129
6130         pm_runtime_set_active(device);
6131
6132         /*
6133          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6134          * requirement.
6135          */
6136         if (!intel_enable_rc6(dev)) {
6137                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6138                 return;
6139         }
6140
6141         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6142         pm_runtime_mark_last_busy(device);
6143         pm_runtime_use_autosuspend(device);
6144
6145         pm_runtime_put_autosuspend(device);
6146 }
6147
6148 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6149 {
6150         struct drm_device *dev = dev_priv->dev;
6151         struct device *device = &dev->pdev->dev;
6152
6153         if (!HAS_RUNTIME_PM(dev))
6154                 return;
6155
6156         if (!intel_enable_rc6(dev))
6157                 return;
6158
6159         /* Make sure we're not suspended first. */
6160         pm_runtime_get_sync(device);
6161         pm_runtime_disable(device);
6162 }
6163
6164 /* Set up chip specific power management-related functions */
6165 void intel_init_pm(struct drm_device *dev)
6166 {
6167         struct drm_i915_private *dev_priv = dev->dev_private;
6168
6169         if (HAS_FBC(dev)) {
6170                 if (INTEL_INFO(dev)->gen >= 7) {
6171                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6172                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6173                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6174                 } else if (INTEL_INFO(dev)->gen >= 5) {
6175                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6176                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6177                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6178                 } else if (IS_GM45(dev)) {
6179                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6180                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6181                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6182                 } else {
6183                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6184                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6185                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6186
6187                         /* This value was pulled out of someone's hat */
6188                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6189                 }
6190         }
6191
6192         /* For cxsr */
6193         if (IS_PINEVIEW(dev))
6194                 i915_pineview_get_mem_freq(dev);
6195         else if (IS_GEN5(dev))
6196                 i915_ironlake_get_mem_freq(dev);
6197
6198         /* For FIFO watermark updates */
6199         if (HAS_PCH_SPLIT(dev)) {
6200                 ilk_setup_wm_latency(dev);
6201
6202                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6203                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6204                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6205                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6206                         dev_priv->display.update_wm = ilk_update_wm;
6207                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6208                 } else {
6209                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6210                                       "Disable CxSR\n");
6211                 }
6212
6213                 if (IS_GEN5(dev))
6214                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6215                 else if (IS_GEN6(dev))
6216                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6217                 else if (IS_IVYBRIDGE(dev))
6218                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6219                 else if (IS_HASWELL(dev))
6220                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6221                 else if (INTEL_INFO(dev)->gen == 8)
6222                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6223         } else if (IS_VALLEYVIEW(dev)) {
6224                 dev_priv->display.update_wm = valleyview_update_wm;
6225                 dev_priv->display.init_clock_gating =
6226                         valleyview_init_clock_gating;
6227         } else if (IS_PINEVIEW(dev)) {
6228                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6229                                             dev_priv->is_ddr3,
6230                                             dev_priv->fsb_freq,
6231                                             dev_priv->mem_freq)) {
6232                         DRM_INFO("failed to find known CxSR latency "
6233                                  "(found ddr%s fsb freq %d, mem freq %d), "
6234                                  "disabling CxSR\n",
6235                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6236                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6237                         /* Disable CxSR and never update its watermark again */
6238                         pineview_disable_cxsr(dev);
6239                         dev_priv->display.update_wm = NULL;
6240                 } else
6241                         dev_priv->display.update_wm = pineview_update_wm;
6242                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6243         } else if (IS_G4X(dev)) {
6244                 dev_priv->display.update_wm = g4x_update_wm;
6245                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6246         } else if (IS_GEN4(dev)) {
6247                 dev_priv->display.update_wm = i965_update_wm;
6248                 if (IS_CRESTLINE(dev))
6249                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6250                 else if (IS_BROADWATER(dev))
6251                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6252         } else if (IS_GEN3(dev)) {
6253                 dev_priv->display.update_wm = i9xx_update_wm;
6254                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6255                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6256         } else if (IS_GEN2(dev)) {
6257                 if (INTEL_INFO(dev)->num_pipes == 1) {
6258                         dev_priv->display.update_wm = i845_update_wm;
6259                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6260                 } else {
6261                         dev_priv->display.update_wm = i9xx_update_wm;
6262                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6263                 }
6264
6265                 if (IS_I85X(dev) || IS_I865G(dev))
6266                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6267                 else
6268                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6269         } else {
6270                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6271         }
6272 }
6273
6274 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6275 {
6276         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6277
6278         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6279                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6280                 return -EAGAIN;
6281         }
6282
6283         I915_WRITE(GEN6_PCODE_DATA, *val);
6284         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6285
6286         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6287                      500)) {
6288                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6289                 return -ETIMEDOUT;
6290         }
6291
6292         *val = I915_READ(GEN6_PCODE_DATA);
6293         I915_WRITE(GEN6_PCODE_DATA, 0);
6294
6295         return 0;
6296 }
6297
6298 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6299 {
6300         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6301
6302         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6303                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6304                 return -EAGAIN;
6305         }
6306
6307         I915_WRITE(GEN6_PCODE_DATA, val);
6308         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6309
6310         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6311                      500)) {
6312                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6313                 return -ETIMEDOUT;
6314         }
6315
6316         I915_WRITE(GEN6_PCODE_DATA, 0);
6317
6318         return 0;
6319 }
6320
6321 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6322 {
6323         int div;
6324
6325         /* 4 x czclk */
6326         switch (dev_priv->mem_freq) {
6327         case 800:
6328                 div = 10;
6329                 break;
6330         case 1066:
6331                 div = 12;
6332                 break;
6333         case 1333:
6334                 div = 16;
6335                 break;
6336         default:
6337                 return -1;
6338         }
6339
6340         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6341 }
6342
6343 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6344 {
6345         int mul;
6346
6347         /* 4 x czclk */
6348         switch (dev_priv->mem_freq) {
6349         case 800:
6350                 mul = 10;
6351                 break;
6352         case 1066:
6353                 mul = 12;
6354                 break;
6355         case 1333:
6356                 mul = 16;
6357                 break;
6358         default:
6359                 return -1;
6360         }
6361
6362         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6363 }
6364
6365 void intel_pm_setup(struct drm_device *dev)
6366 {
6367         struct drm_i915_private *dev_priv = dev->dev_private;
6368
6369         mutex_init(&dev_priv->rps.hw_lock);
6370
6371         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6372                           intel_gen6_powersave_work);
6373
6374         dev_priv->pm.suspended = false;
6375         dev_priv->pm.irqs_disabled = false;
6376 }