drm/i915: rip our vblank reset hacks for runtime PM
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534                 max_width = 4096;
535                 max_height = 2048;
536         } else {
537                 max_width = 2048;
538                 max_height = 1536;
539         }
540         if (intel_crtc->config.pipe_src_w > max_width ||
541             intel_crtc->config.pipe_src_h > max_height) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544                 goto out_disable;
545         }
546         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547             intel_crtc->plane != PLANE_A) {
548                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
550                 goto out_disable;
551         }
552
553         /* The use of a CPU fence is mandatory in order to detect writes
554          * by the CPU to the scanout and trigger updates to the FBC.
555          */
556         if (obj->tiling_mode != I915_TILING_X ||
557             obj->fence_reg == I915_FENCE_REG_NONE) {
558                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560                 goto out_disable;
561         }
562
563         /* If the kernel debugger is active, always disable compression */
564         if (in_dbg_master())
565                 goto out_disable;
566
567         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570                 goto out_disable;
571         }
572
573         /* If the scanout has not changed, don't modify the FBC settings.
574          * Note that we make the fundamental assumption that the fb->obj
575          * cannot be unpinned (and have its GTT offset and fence revoked)
576          * without first being decoupled from the scanout and FBC disabled.
577          */
578         if (dev_priv->fbc.plane == intel_crtc->plane &&
579             dev_priv->fbc.fb_id == fb->base.id &&
580             dev_priv->fbc.y == crtc->y)
581                 return;
582
583         if (intel_fbc_enabled(dev)) {
584                 /* We update FBC along two paths, after changing fb/crtc
585                  * configuration (modeswitching) and after page-flipping
586                  * finishes. For the latter, we know that not only did
587                  * we disable the FBC at the start of the page-flip
588                  * sequence, but also more than one vblank has passed.
589                  *
590                  * For the former case of modeswitching, it is possible
591                  * to switch between two FBC valid configurations
592                  * instantaneously so we do need to disable the FBC
593                  * before we can modify its control registers. We also
594                  * have to wait for the next vblank for that to take
595                  * effect. However, since we delay enabling FBC we can
596                  * assume that a vblank has passed since disabling and
597                  * that we can safely alter the registers in the deferred
598                  * callback.
599                  *
600                  * In the scenario that we go from a valid to invalid
601                  * and then back to valid FBC configuration we have
602                  * no strict enforcement that a vblank occurred since
603                  * disabling the FBC. However, along all current pipe
604                  * disabling paths we do need to wait for a vblank at
605                  * some point. And we wait before enabling FBC anyway.
606                  */
607                 DRM_DEBUG_KMS("disabling active FBC for update\n");
608                 intel_disable_fbc(dev);
609         }
610
611         intel_enable_fbc(crtc);
612         dev_priv->fbc.no_fbc_reason = FBC_OK;
613         return;
614
615 out_disable:
616         /* Multiple disables should be harmless */
617         if (intel_fbc_enabled(dev)) {
618                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619                 intel_disable_fbc(dev);
620         }
621         i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626         struct drm_i915_private *dev_priv = dev->dev_private;
627         u32 tmp;
628
629         tmp = I915_READ(CLKCFG);
630
631         switch (tmp & CLKCFG_FSB_MASK) {
632         case CLKCFG_FSB_533:
633                 dev_priv->fsb_freq = 533; /* 133*4 */
634                 break;
635         case CLKCFG_FSB_800:
636                 dev_priv->fsb_freq = 800; /* 200*4 */
637                 break;
638         case CLKCFG_FSB_667:
639                 dev_priv->fsb_freq =  667; /* 167*4 */
640                 break;
641         case CLKCFG_FSB_400:
642                 dev_priv->fsb_freq = 400; /* 100*4 */
643                 break;
644         }
645
646         switch (tmp & CLKCFG_MEM_MASK) {
647         case CLKCFG_MEM_533:
648                 dev_priv->mem_freq = 533;
649                 break;
650         case CLKCFG_MEM_667:
651                 dev_priv->mem_freq = 667;
652                 break;
653         case CLKCFG_MEM_800:
654                 dev_priv->mem_freq = 800;
655                 break;
656         }
657
658         /* detect pineview DDR3 setting */
659         tmp = I915_READ(CSHRDDR3CTL);
660         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u16 ddrpll, csipll;
667
668         ddrpll = I915_READ16(DDRMPLL1);
669         csipll = I915_READ16(CSIPLL0);
670
671         switch (ddrpll & 0xff) {
672         case 0xc:
673                 dev_priv->mem_freq = 800;
674                 break;
675         case 0x10:
676                 dev_priv->mem_freq = 1066;
677                 break;
678         case 0x14:
679                 dev_priv->mem_freq = 1333;
680                 break;
681         case 0x18:
682                 dev_priv->mem_freq = 1600;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686                                  ddrpll & 0xff);
687                 dev_priv->mem_freq = 0;
688                 break;
689         }
690
691         dev_priv->ips.r_t = dev_priv->mem_freq;
692
693         switch (csipll & 0x3ff) {
694         case 0x00c:
695                 dev_priv->fsb_freq = 3200;
696                 break;
697         case 0x00e:
698                 dev_priv->fsb_freq = 3733;
699                 break;
700         case 0x010:
701                 dev_priv->fsb_freq = 4266;
702                 break;
703         case 0x012:
704                 dev_priv->fsb_freq = 4800;
705                 break;
706         case 0x014:
707                 dev_priv->fsb_freq = 5333;
708                 break;
709         case 0x016:
710                 dev_priv->fsb_freq = 5866;
711                 break;
712         case 0x018:
713                 dev_priv->fsb_freq = 6400;
714                 break;
715         default:
716                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717                                  csipll & 0x3ff);
718                 dev_priv->fsb_freq = 0;
719                 break;
720         }
721
722         if (dev_priv->fsb_freq == 3200) {
723                 dev_priv->ips.c_m = 0;
724         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725                 dev_priv->ips.c_m = 1;
726         } else {
727                 dev_priv->ips.c_m = 2;
728         }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
733         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
734         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
735         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
736         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
737
738         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
739         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
740         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
741         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
742         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
743
744         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
745         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
746         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
747         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
748         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
749
750         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
751         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
752         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
753         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
754         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
755
756         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
757         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
758         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
759         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
760         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
761
762         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
763         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
764         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
765         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
766         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770                                                          int is_ddr3,
771                                                          int fsb,
772                                                          int mem)
773 {
774         const struct cxsr_latency *latency;
775         int i;
776
777         if (fsb == 0 || mem == 0)
778                 return NULL;
779
780         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781                 latency = &cxsr_latency_table[i];
782                 if (is_desktop == latency->is_desktop &&
783                     is_ddr3 == latency->is_ddr3 &&
784                     fsb == latency->fsb_freq && mem == latency->mem_freq)
785                         return latency;
786         }
787
788         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790         return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         /* deactivate cxsr */
798         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802  * Latency for FIFO fetches is dependent on several factors:
803  *   - memory configuration (speed, channels)
804  *   - chipset
805  *   - current MCH state
806  * It can be fairly high in some situations, so here we assume a fairly
807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
808  * set this value too high, the FIFO will fetch frequently to stay full)
809  * and power consumption (set it too low to save power and we might see
810  * FIFO underruns and display "flicker").
811  *
812  * A value of 5us seems to be a good balance; safe for very low end
813  * platforms but not overly aggressive on lower latency configs.
814  */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         uint32_t dsparb = I915_READ(DSPARB);
821         int size;
822
823         size = dsparb & 0x7f;
824         if (plane)
825                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         uint32_t dsparb = I915_READ(DSPARB);
837         int size;
838
839         size = dsparb & 0x1ff;
840         if (plane)
841                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         uint32_t dsparb = I915_READ(DSPARB);
854         int size;
855
856         size = dsparb & 0x7f;
857         size >>= 2; /* Convert to cachelines */
858
859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860                       plane ? "B" : "A",
861                       size);
862
863         return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868         PINEVIEW_DISPLAY_FIFO,
869         PINEVIEW_MAX_WM,
870         PINEVIEW_DFT_WM,
871         PINEVIEW_GUARD_WM,
872         PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_HPLLOFF_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882         PINEVIEW_CURSOR_FIFO,
883         PINEVIEW_CURSOR_MAX_WM,
884         PINEVIEW_CURSOR_DFT_WM,
885         PINEVIEW_CURSOR_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896         G4X_FIFO_SIZE,
897         G4X_MAX_WM,
898         G4X_MAX_WM,
899         2,
900         G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903         I965_CURSOR_FIFO,
904         I965_CURSOR_MAX_WM,
905         I965_CURSOR_DFT_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910         VALLEYVIEW_FIFO_SIZE,
911         VALLEYVIEW_MAX_WM,
912         VALLEYVIEW_MAX_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917         I965_CURSOR_FIFO,
918         VALLEYVIEW_CURSOR_MAX_WM,
919         I965_CURSOR_DFT_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         I965_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931         I945_FIFO_SIZE,
932         I915_MAX_WM,
933         1,
934         2,
935         I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938         I915_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945         I855GM_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952         I830_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958
959 /**
960  * intel_calculate_wm - calculate watermark level
961  * @clock_in_khz: pixel clock
962  * @wm: chip FIFO params
963  * @pixel_size: display pixel size
964  * @latency_ns: memory latency for the platform
965  *
966  * Calculate the watermark level (the level at which the display plane will
967  * start fetching from memory again).  Each chip has a different display
968  * FIFO size and allocation, so the caller needs to figure that out and pass
969  * in the correct intel_watermark_params structure.
970  *
971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
972  * on the pixel size.  When it reaches the watermark level, it'll start
973  * fetching FIFO line sized based chunks from memory until the FIFO fills
974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
975  * will occur, and a display engine hang could result.
976  */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978                                         const struct intel_watermark_params *wm,
979                                         int fifo_size,
980                                         int pixel_size,
981                                         unsigned long latency_ns)
982 {
983         long entries_required, wm_size;
984
985         /*
986          * Note: we need to make sure we don't overflow for various clock &
987          * latency values.
988          * clocks go from a few thousand to several hundred thousand.
989          * latency is usually a few thousand
990          */
991         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992                 1000;
993         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997         wm_size = fifo_size - (entries_required + wm->guard_size);
998
999         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001         /* Don't promote wm_size to unsigned... */
1002         if (wm_size > (long)wm->max_wm)
1003                 wm_size = wm->max_wm;
1004         if (wm_size <= 0)
1005                 wm_size = wm->default_wm;
1006         return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011         struct drm_crtc *crtc, *enabled = NULL;
1012
1013         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014                 if (intel_crtc_active(crtc)) {
1015                         if (enabled)
1016                                 return NULL;
1017                         enabled = crtc;
1018                 }
1019         }
1020
1021         return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026         struct drm_device *dev = unused_crtc->dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_crtc *crtc;
1029         const struct cxsr_latency *latency;
1030         u32 reg;
1031         unsigned long wm;
1032
1033         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1035         if (!latency) {
1036                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037                 pineview_disable_cxsr(dev);
1038                 return;
1039         }
1040
1041         crtc = single_enabled_crtc(dev);
1042         if (crtc) {
1043                 const struct drm_display_mode *adjusted_mode;
1044                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045                 int clock;
1046
1047                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048                 clock = adjusted_mode->crtc_clock;
1049
1050                 /* Display SR */
1051                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052                                         pineview_display_wm.fifo_size,
1053                                         pixel_size, latency->display_sr);
1054                 reg = I915_READ(DSPFW1);
1055                 reg &= ~DSPFW_SR_MASK;
1056                 reg |= wm << DSPFW_SR_SHIFT;
1057                 I915_WRITE(DSPFW1, reg);
1058                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060                 /* cursor SR */
1061                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062                                         pineview_display_wm.fifo_size,
1063                                         pixel_size, latency->cursor_sr);
1064                 reg = I915_READ(DSPFW3);
1065                 reg &= ~DSPFW_CURSOR_SR_MASK;
1066                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067                 I915_WRITE(DSPFW3, reg);
1068
1069                 /* Display HPLL off SR */
1070                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071                                         pineview_display_hplloff_wm.fifo_size,
1072                                         pixel_size, latency->display_hpll_disable);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_HPLL_SR_MASK;
1075                 reg |= wm & DSPFW_HPLL_SR_MASK;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* cursor HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->cursor_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085                 I915_WRITE(DSPFW3, reg);
1086                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088                 /* activate cxsr */
1089                 I915_WRITE(DSPFW3,
1090                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092         } else {
1093                 pineview_disable_cxsr(dev);
1094                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095         }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099                             int plane,
1100                             const struct intel_watermark_params *display,
1101                             int display_latency_ns,
1102                             const struct intel_watermark_params *cursor,
1103                             int cursor_latency_ns,
1104                             int *plane_wm,
1105                             int *cursor_wm)
1106 {
1107         struct drm_crtc *crtc;
1108         const struct drm_display_mode *adjusted_mode;
1109         int htotal, hdisplay, clock, pixel_size;
1110         int line_time_us, line_count;
1111         int entries, tlb_miss;
1112
1113         crtc = intel_get_crtc_for_plane(dev, plane);
1114         if (!intel_crtc_active(crtc)) {
1115                 *cursor_wm = cursor->guard_size;
1116                 *plane_wm = display->guard_size;
1117                 return false;
1118         }
1119
1120         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121         clock = adjusted_mode->crtc_clock;
1122         htotal = adjusted_mode->crtc_htotal;
1123         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126         /* Use the small buffer method to calculate plane watermark */
1127         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129         if (tlb_miss > 0)
1130                 entries += tlb_miss;
1131         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132         *plane_wm = entries + display->guard_size;
1133         if (*plane_wm > (int)display->max_wm)
1134                 *plane_wm = display->max_wm;
1135
1136         /* Use the large buffer method to calculate cursor watermark */
1137         line_time_us = max(htotal * 1000 / clock, 1);
1138         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141         if (tlb_miss > 0)
1142                 entries += tlb_miss;
1143         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144         *cursor_wm = entries + cursor->guard_size;
1145         if (*cursor_wm > (int)cursor->max_wm)
1146                 *cursor_wm = (int)cursor->max_wm;
1147
1148         return true;
1149 }
1150
1151 /*
1152  * Check the wm result.
1153  *
1154  * If any calculated watermark values is larger than the maximum value that
1155  * can be programmed into the associated watermark register, that watermark
1156  * must be disabled.
1157  */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159                            int display_wm, int cursor_wm,
1160                            const struct intel_watermark_params *display,
1161                            const struct intel_watermark_params *cursor)
1162 {
1163         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164                       display_wm, cursor_wm);
1165
1166         if (display_wm > display->max_wm) {
1167                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168                               display_wm, display->max_wm);
1169                 return false;
1170         }
1171
1172         if (cursor_wm > cursor->max_wm) {
1173                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174                               cursor_wm, cursor->max_wm);
1175                 return false;
1176         }
1177
1178         if (!(display_wm || cursor_wm)) {
1179                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180                 return false;
1181         }
1182
1183         return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187                              int plane,
1188                              int latency_ns,
1189                              const struct intel_watermark_params *display,
1190                              const struct intel_watermark_params *cursor,
1191                              int *display_wm, int *cursor_wm)
1192 {
1193         struct drm_crtc *crtc;
1194         const struct drm_display_mode *adjusted_mode;
1195         int hdisplay, htotal, pixel_size, clock;
1196         unsigned long line_time_us;
1197         int line_count, line_size;
1198         int small, large;
1199         int entries;
1200
1201         if (!latency_ns) {
1202                 *display_wm = *cursor_wm = 0;
1203                 return false;
1204         }
1205
1206         crtc = intel_get_crtc_for_plane(dev, plane);
1207         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208         clock = adjusted_mode->crtc_clock;
1209         htotal = adjusted_mode->crtc_htotal;
1210         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213         line_time_us = max(htotal * 1000 / clock, 1);
1214         line_count = (latency_ns / line_time_us + 1000) / 1000;
1215         line_size = hdisplay * pixel_size;
1216
1217         /* Use the minimum of the small and large buffer method for primary */
1218         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219         large = line_count * line_size;
1220
1221         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222         *display_wm = entries + display->guard_size;
1223
1224         /* calculate the self-refresh watermark for display cursor */
1225         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227         *cursor_wm = entries + cursor->guard_size;
1228
1229         return g4x_check_srwm(dev,
1230                               *display_wm, *cursor_wm,
1231                               display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235                                      int plane,
1236                                      int *plane_prec_mult,
1237                                      int *plane_dl,
1238                                      int *cursor_prec_mult,
1239                                      int *cursor_dl)
1240 {
1241         struct drm_crtc *crtc;
1242         int clock, pixel_size;
1243         int entries;
1244
1245         crtc = intel_get_crtc_for_plane(dev, plane);
1246         if (!intel_crtc_active(crtc))
1247                 return false;
1248
1249         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1251
1252         entries = (clock / 1000) * pixel_size;
1253         *plane_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256                                                      pixel_size);
1257
1258         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1259         *cursor_prec_mult = (entries > 256) ?
1260                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Update drain latency registers of memory arbiter
1268  *
1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270  * to be programmed. Each plane has a drain latency multiplier and a drain
1271  * latency value.
1272  */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280                                                         either 16 or 32 */
1281
1282         /* For plane A, Cursor A */
1283         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284                                       &cursor_prec_mult, &cursora_dl)) {
1285                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290                 I915_WRITE(VLV_DDL1, cursora_prec |
1291                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1292                                 planea_prec | planea_dl);
1293         }
1294
1295         /* For plane B, Cursor B */
1296         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297                                       &cursor_prec_mult, &cursorb_dl)) {
1298                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303                 I915_WRITE(VLV_DDL2, cursorb_prec |
1304                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305                                 planeb_prec | planeb_dl);
1306         }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313         struct drm_device *dev = crtc->dev;
1314         static const int sr_latency_ns = 12000;
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317         int plane_sr, cursor_sr;
1318         int ignore_plane_sr, ignore_cursor_sr;
1319         unsigned int enabled = 0;
1320
1321         vlv_update_drain_latency(dev);
1322
1323         if (g4x_compute_wm0(dev, PIPE_A,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planea_wm, &cursora_wm))
1327                 enabled |= 1 << PIPE_A;
1328
1329         if (g4x_compute_wm0(dev, PIPE_B,
1330                             &valleyview_wm_info, latency_ns,
1331                             &valleyview_cursor_wm_info, latency_ns,
1332                             &planeb_wm, &cursorb_wm))
1333                 enabled |= 1 << PIPE_B;
1334
1335         if (single_plane_enabled(enabled) &&
1336             g4x_compute_srwm(dev, ffs(enabled) - 1,
1337                              sr_latency_ns,
1338                              &valleyview_wm_info,
1339                              &valleyview_cursor_wm_info,
1340                              &plane_sr, &ignore_cursor_sr) &&
1341             g4x_compute_srwm(dev, ffs(enabled) - 1,
1342                              2*sr_latency_ns,
1343                              &valleyview_wm_info,
1344                              &valleyview_cursor_wm_info,
1345                              &ignore_plane_sr, &cursor_sr)) {
1346                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347         } else {
1348                 I915_WRITE(FW_BLC_SELF_VLV,
1349                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350                 plane_sr = cursor_sr = 0;
1351         }
1352
1353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354                       planea_wm, cursora_wm,
1355                       planeb_wm, cursorb_wm,
1356                       plane_sr, cursor_sr);
1357
1358         I915_WRITE(DSPFW1,
1359                    (plane_sr << DSPFW_SR_SHIFT) |
1360                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362                    planea_wm);
1363         I915_WRITE(DSPFW2,
1364                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1366         I915_WRITE(DSPFW3,
1367                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         unsigned int enabled = 0;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, latency_ns,
1388                             &g4x_cursor_wm_info, latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399         } else {
1400                 I915_WRITE(FW_BLC_SELF,
1401                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406                       planea_wm, cursora_wm,
1407                       planeb_wm, cursorb_wm,
1408                       plane_sr, cursor_sr);
1409
1410         I915_WRITE(DSPFW1,
1411                    (plane_sr << DSPFW_SR_SHIFT) |
1412                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414                    planea_wm);
1415         I915_WRITE(DSPFW2,
1416                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1418         /* HPLL off in SR has some issues on G4x... disable it */
1419         I915_WRITE(DSPFW3,
1420                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426         struct drm_device *dev = unused_crtc->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct drm_crtc *crtc;
1429         int srwm = 1;
1430         int cursor_sr = 16;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode =
1438                         &to_intel_crtc(crtc)->config.adjusted_mode;
1439                 int clock = adjusted_mode->crtc_clock;
1440                 int htotal = adjusted_mode->crtc_htotal;
1441                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443                 unsigned long line_time_us;
1444                 int entries;
1445
1446                 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448                 /* Use ns/us then divide to preserve precision */
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * hdisplay;
1451                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452                 srwm = I965_FIFO_SIZE - entries;
1453                 if (srwm < 0)
1454                         srwm = 1;
1455                 srwm &= 0x1ff;
1456                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457                               entries, srwm);
1458
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1461                 entries = DIV_ROUND_UP(entries,
1462                                           i965_cursor_wm_info.cacheline_size);
1463                 cursor_sr = i965_cursor_wm_info.fifo_size -
1464                         (entries + i965_cursor_wm_info.guard_size);
1465
1466                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467                         cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470                               "cursor %d\n", srwm, cursor_sr);
1471
1472                 if (IS_CRESTLINE(dev))
1473                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474         } else {
1475                 /* Turn off self refresh if both pipes are enabled */
1476                 if (IS_CRESTLINE(dev))
1477                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478                                    & ~FW_BLC_SELF_EN);
1479         }
1480
1481         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482                       srwm);
1483
1484         /* 965 has limitations... */
1485         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486                    (8 << 16) | (8 << 8) | (8 << 0));
1487         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         const struct intel_watermark_params *wm_info;
1497         uint32_t fwater_lo;
1498         uint32_t fwater_hi;
1499         int cwm, srwm = 1;
1500         int fifo_size;
1501         int planea_wm, planeb_wm;
1502         struct drm_crtc *crtc, *enabled = NULL;
1503
1504         if (IS_I945GM(dev))
1505                 wm_info = &i945_wm_info;
1506         else if (!IS_GEN2(dev))
1507                 wm_info = &i915_wm_info;
1508         else
1509                 wm_info = &i830_wm_info;
1510
1511         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512         crtc = intel_get_crtc_for_plane(dev, 0);
1513         if (intel_crtc_active(crtc)) {
1514                 const struct drm_display_mode *adjusted_mode;
1515                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516                 if (IS_GEN2(dev))
1517                         cpp = 4;
1518
1519                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521                                                wm_info, fifo_size, cpp,
1522                                                latency_ns);
1523                 enabled = crtc;
1524         } else
1525                 planea_wm = fifo_size - wm_info->guard_size;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528         crtc = intel_get_crtc_for_plane(dev, 1);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                latency_ns);
1539                 if (enabled == NULL)
1540                         enabled = crtc;
1541                 else
1542                         enabled = NULL;
1543         } else
1544                 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548         if (IS_I915GM(dev) && enabled) {
1549                 struct intel_framebuffer *fb;
1550
1551                 fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553                 /* self-refresh seems busted with untiled */
1554                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1555                         enabled = NULL;
1556         }
1557
1558         /*
1559          * Overlay gets an aggressive default since video jitter is bad.
1560          */
1561         cwm = 2;
1562
1563         /* Play safe and disable self-refresh before adjusting watermarks. */
1564         if (IS_I945G(dev) || IS_I945GM(dev))
1565                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566         else if (IS_I915GM(dev))
1567                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569         /* Calc sr entries for one plane configs */
1570         if (HAS_FW_BLC(dev) && enabled) {
1571                 /* self-refresh has much higher latency */
1572                 static const int sr_latency_ns = 6000;
1573                 const struct drm_display_mode *adjusted_mode =
1574                         &to_intel_crtc(enabled)->config.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         pixel_size * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (HAS_FW_BLC(dev)) {
1614                 if (enabled) {
1615                         if (IS_I945G(dev) || IS_I945GM(dev))
1616                                 I915_WRITE(FW_BLC_SELF,
1617                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618                         else if (IS_I915GM(dev))
1619                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1621                 } else
1622                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1623         }
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653                                     struct drm_crtc *crtc)
1654 {
1655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656         uint32_t pixel_rate;
1657
1658         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661          * adjust the pixel_rate here. */
1662
1663         if (intel_crtc->config.pch_pfit.enabled) {
1664                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667                 pipe_w = intel_crtc->config.pipe_src_w;
1668                 pipe_h = intel_crtc->config.pipe_src_h;
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677                                      pfit_w * pfit_h);
1678         }
1679
1680         return pixel_rate;
1681 }
1682
1683 /* latency must be in 0.1us units. */
1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685                                uint32_t latency)
1686 {
1687         uint64_t ret;
1688
1689         if (WARN(latency == 0, "Latency value missing\n"))
1690                 return UINT_MAX;
1691
1692         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695         return ret;
1696 }
1697
1698 /* latency must be in 0.1us units. */
1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701                                uint32_t latency)
1702 {
1703         uint32_t ret;
1704
1705         if (WARN(latency == 0, "Latency value missing\n"))
1706                 return UINT_MAX;
1707
1708         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710         ret = DIV_ROUND_UP(ret, 64) + 2;
1711         return ret;
1712 }
1713
1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715                            uint8_t bytes_per_pixel)
1716 {
1717         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1718 }
1719
1720 struct ilk_pipe_wm_parameters {
1721         bool active;
1722         uint32_t pipe_htotal;
1723         uint32_t pixel_rate;
1724         struct intel_plane_wm_parameters pri;
1725         struct intel_plane_wm_parameters spr;
1726         struct intel_plane_wm_parameters cur;
1727 };
1728
1729 struct ilk_wm_maximums {
1730         uint16_t pri;
1731         uint16_t spr;
1732         uint16_t cur;
1733         uint16_t fbc;
1734 };
1735
1736 /* used in computing the new watermarks state */
1737 struct intel_wm_config {
1738         unsigned int num_pipes_active;
1739         bool sprites_enabled;
1740         bool sprites_scaled;
1741 };
1742
1743 /*
1744  * For both WM_PIPE and WM_LP.
1745  * mem_value must be in 0.1us units.
1746  */
1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         uint32_t method1, method2;
1752
1753         if (!params->active || !params->pri.enabled)
1754                 return 0;
1755
1756         method1 = ilk_wm_method1(params->pixel_rate,
1757                                  params->pri.bytes_per_pixel,
1758                                  mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(params->pixel_rate,
1764                                  params->pipe_htotal,
1765                                  params->pri.horiz_pixels,
1766                                  params->pri.bytes_per_pixel,
1767                                  mem_value);
1768
1769         return min(method1, method2);
1770 }
1771
1772 /*
1773  * For both WM_PIPE and WM_LP.
1774  * mem_value must be in 0.1us units.
1775  */
1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777                                    uint32_t mem_value)
1778 {
1779         uint32_t method1, method2;
1780
1781         if (!params->active || !params->spr.enabled)
1782                 return 0;
1783
1784         method1 = ilk_wm_method1(params->pixel_rate,
1785                                  params->spr.bytes_per_pixel,
1786                                  mem_value);
1787         method2 = ilk_wm_method2(params->pixel_rate,
1788                                  params->pipe_htotal,
1789                                  params->spr.horiz_pixels,
1790                                  params->spr.bytes_per_pixel,
1791                                  mem_value);
1792         return min(method1, method2);
1793 }
1794
1795 /*
1796  * For both WM_PIPE and WM_LP.
1797  * mem_value must be in 0.1us units.
1798  */
1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800                                    uint32_t mem_value)
1801 {
1802         if (!params->active || !params->cur.enabled)
1803                 return 0;
1804
1805         return ilk_wm_method2(params->pixel_rate,
1806                               params->pipe_htotal,
1807                               params->cur.horiz_pixels,
1808                               params->cur.bytes_per_pixel,
1809                               mem_value);
1810 }
1811
1812 /* Only for WM_LP. */
1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814                                    uint32_t pri_val)
1815 {
1816         if (!params->active || !params->pri.enabled)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val,
1820                           params->pri.horiz_pixels,
1821                           params->pri.bytes_per_pixel);
1822 }
1823
1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825 {
1826         if (INTEL_INFO(dev)->gen >= 8)
1827                 return 3072;
1828         else if (INTEL_INFO(dev)->gen >= 7)
1829                 return 768;
1830         else
1831                 return 512;
1832 }
1833
1834 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1835                                          int level, bool is_sprite)
1836 {
1837         if (INTEL_INFO(dev)->gen >= 8)
1838                 /* BDW primary/sprite plane watermarks */
1839                 return level == 0 ? 255 : 2047;
1840         else if (INTEL_INFO(dev)->gen >= 7)
1841                 /* IVB/HSW primary/sprite plane watermarks */
1842                 return level == 0 ? 127 : 1023;
1843         else if (!is_sprite)
1844                 /* ILK/SNB primary plane watermarks */
1845                 return level == 0 ? 127 : 511;
1846         else
1847                 /* ILK/SNB sprite plane watermarks */
1848                 return level == 0 ? 63 : 255;
1849 }
1850
1851 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1852                                           int level)
1853 {
1854         if (INTEL_INFO(dev)->gen >= 7)
1855                 return level == 0 ? 63 : 255;
1856         else
1857                 return level == 0 ? 31 : 63;
1858 }
1859
1860 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1861 {
1862         if (INTEL_INFO(dev)->gen >= 8)
1863                 return 31;
1864         else
1865                 return 15;
1866 }
1867
1868 /* Calculate the maximum primary/sprite plane watermark */
1869 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1870                                      int level,
1871                                      const struct intel_wm_config *config,
1872                                      enum intel_ddb_partitioning ddb_partitioning,
1873                                      bool is_sprite)
1874 {
1875         unsigned int fifo_size = ilk_display_fifo_size(dev);
1876
1877         /* if sprites aren't enabled, sprites get nothing */
1878         if (is_sprite && !config->sprites_enabled)
1879                 return 0;
1880
1881         /* HSW allows LP1+ watermarks even with multiple pipes */
1882         if (level == 0 || config->num_pipes_active > 1) {
1883                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1884
1885                 /*
1886                  * For some reason the non self refresh
1887                  * FIFO size is only half of the self
1888                  * refresh FIFO size on ILK/SNB.
1889                  */
1890                 if (INTEL_INFO(dev)->gen <= 6)
1891                         fifo_size /= 2;
1892         }
1893
1894         if (config->sprites_enabled) {
1895                 /* level 0 is always calculated with 1:1 split */
1896                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1897                         if (is_sprite)
1898                                 fifo_size *= 5;
1899                         fifo_size /= 6;
1900                 } else {
1901                         fifo_size /= 2;
1902                 }
1903         }
1904
1905         /* clamp to max that the registers can hold */
1906         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1907 }
1908
1909 /* Calculate the maximum cursor plane watermark */
1910 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1911                                       int level,
1912                                       const struct intel_wm_config *config)
1913 {
1914         /* HSW LP1+ watermarks w/ multiple pipes */
1915         if (level > 0 && config->num_pipes_active > 1)
1916                 return 64;
1917
1918         /* otherwise just report max that registers can hold */
1919         return ilk_cursor_wm_reg_max(dev, level);
1920 }
1921
1922 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1923                                     int level,
1924                                     const struct intel_wm_config *config,
1925                                     enum intel_ddb_partitioning ddb_partitioning,
1926                                     struct ilk_wm_maximums *max)
1927 {
1928         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1929         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1930         max->cur = ilk_cursor_wm_max(dev, level, config);
1931         max->fbc = ilk_fbc_wm_reg_max(dev);
1932 }
1933
1934 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1935                                         int level,
1936                                         struct ilk_wm_maximums *max)
1937 {
1938         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1939         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1940         max->cur = ilk_cursor_wm_reg_max(dev, level);
1941         max->fbc = ilk_fbc_wm_reg_max(dev);
1942 }
1943
1944 static bool ilk_validate_wm_level(int level,
1945                                   const struct ilk_wm_maximums *max,
1946                                   struct intel_wm_level *result)
1947 {
1948         bool ret;
1949
1950         /* already determined to be invalid? */
1951         if (!result->enable)
1952                 return false;
1953
1954         result->enable = result->pri_val <= max->pri &&
1955                          result->spr_val <= max->spr &&
1956                          result->cur_val <= max->cur;
1957
1958         ret = result->enable;
1959
1960         /*
1961          * HACK until we can pre-compute everything,
1962          * and thus fail gracefully if LP0 watermarks
1963          * are exceeded...
1964          */
1965         if (level == 0 && !result->enable) {
1966                 if (result->pri_val > max->pri)
1967                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1968                                       level, result->pri_val, max->pri);
1969                 if (result->spr_val > max->spr)
1970                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1971                                       level, result->spr_val, max->spr);
1972                 if (result->cur_val > max->cur)
1973                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1974                                       level, result->cur_val, max->cur);
1975
1976                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1977                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1978                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1979                 result->enable = true;
1980         }
1981
1982         return ret;
1983 }
1984
1985 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1986                                  int level,
1987                                  const struct ilk_pipe_wm_parameters *p,
1988                                  struct intel_wm_level *result)
1989 {
1990         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1991         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1992         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1993
1994         /* WM1+ latency values stored in 0.5us units */
1995         if (level > 0) {
1996                 pri_latency *= 5;
1997                 spr_latency *= 5;
1998                 cur_latency *= 5;
1999         }
2000
2001         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2002         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2003         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2004         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2005         result->enable = true;
2006 }
2007
2008 static uint32_t
2009 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2010 {
2011         struct drm_i915_private *dev_priv = dev->dev_private;
2012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2013         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2014         u32 linetime, ips_linetime;
2015
2016         if (!intel_crtc_active(crtc))
2017                 return 0;
2018
2019         /* The WM are computed with base on how long it takes to fill a single
2020          * row at the given clock rate, multiplied by 8.
2021          * */
2022         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2023                                      mode->crtc_clock);
2024         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2025                                          intel_ddi_get_cdclk_freq(dev_priv));
2026
2027         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2028                PIPE_WM_LINETIME_TIME(linetime);
2029 }
2030
2031 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2032 {
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034
2035         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2036                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2037
2038                 wm[0] = (sskpd >> 56) & 0xFF;
2039                 if (wm[0] == 0)
2040                         wm[0] = sskpd & 0xF;
2041                 wm[1] = (sskpd >> 4) & 0xFF;
2042                 wm[2] = (sskpd >> 12) & 0xFF;
2043                 wm[3] = (sskpd >> 20) & 0x1FF;
2044                 wm[4] = (sskpd >> 32) & 0x1FF;
2045         } else if (INTEL_INFO(dev)->gen >= 6) {
2046                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2047
2048                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2049                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2050                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2051                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2052         } else if (INTEL_INFO(dev)->gen >= 5) {
2053                 uint32_t mltr = I915_READ(MLTR_ILK);
2054
2055                 /* ILK primary LP0 latency is 700 ns */
2056                 wm[0] = 7;
2057                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2058                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2059         }
2060 }
2061
2062 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2063 {
2064         /* ILK sprite LP0 latency is 1300 ns */
2065         if (INTEL_INFO(dev)->gen == 5)
2066                 wm[0] = 13;
2067 }
2068
2069 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2070 {
2071         /* ILK cursor LP0 latency is 1300 ns */
2072         if (INTEL_INFO(dev)->gen == 5)
2073                 wm[0] = 13;
2074
2075         /* WaDoubleCursorLP3Latency:ivb */
2076         if (IS_IVYBRIDGE(dev))
2077                 wm[3] *= 2;
2078 }
2079
2080 static int ilk_wm_max_level(const struct drm_device *dev)
2081 {
2082         /* how many WM levels are we expecting */
2083         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2084                 return 4;
2085         else if (INTEL_INFO(dev)->gen >= 6)
2086                 return 3;
2087         else
2088                 return 2;
2089 }
2090
2091 static void intel_print_wm_latency(struct drm_device *dev,
2092                                    const char *name,
2093                                    const uint16_t wm[5])
2094 {
2095         int level, max_level = ilk_wm_max_level(dev);
2096
2097         for (level = 0; level <= max_level; level++) {
2098                 unsigned int latency = wm[level];
2099
2100                 if (latency == 0) {
2101                         DRM_ERROR("%s WM%d latency not provided\n",
2102                                   name, level);
2103                         continue;
2104                 }
2105
2106                 /* WM1+ latency values in 0.5us units */
2107                 if (level > 0)
2108                         latency *= 5;
2109
2110                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2111                               name, level, wm[level],
2112                               latency / 10, latency % 10);
2113         }
2114 }
2115
2116 static void ilk_setup_wm_latency(struct drm_device *dev)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119
2120         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2121
2122         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2123                sizeof(dev_priv->wm.pri_latency));
2124         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2125                sizeof(dev_priv->wm.pri_latency));
2126
2127         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2128         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2129
2130         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2131         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2132         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2133 }
2134
2135 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2136                                       struct ilk_pipe_wm_parameters *p)
2137 {
2138         struct drm_device *dev = crtc->dev;
2139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2140         enum pipe pipe = intel_crtc->pipe;
2141         struct drm_plane *plane;
2142
2143         if (!intel_crtc_active(crtc))
2144                 return;
2145
2146         p->active = true;
2147         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2148         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2149         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2150         p->cur.bytes_per_pixel = 4;
2151         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2152         p->cur.horiz_pixels = intel_crtc->cursor_width;
2153         /* TODO: for now, assume primary and cursor planes are always enabled. */
2154         p->pri.enabled = true;
2155         p->cur.enabled = true;
2156
2157         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2158                 struct intel_plane *intel_plane = to_intel_plane(plane);
2159
2160                 if (intel_plane->pipe == pipe) {
2161                         p->spr = intel_plane->wm;
2162                         break;
2163                 }
2164         }
2165 }
2166
2167 static void ilk_compute_wm_config(struct drm_device *dev,
2168                                   struct intel_wm_config *config)
2169 {
2170         struct intel_crtc *intel_crtc;
2171
2172         /* Compute the currently _active_ config */
2173         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2174                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2175
2176                 if (!wm->pipe_enabled)
2177                         continue;
2178
2179                 config->sprites_enabled |= wm->sprites_enabled;
2180                 config->sprites_scaled |= wm->sprites_scaled;
2181                 config->num_pipes_active++;
2182         }
2183 }
2184
2185 /* Compute new watermarks for the pipe */
2186 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2187                                   const struct ilk_pipe_wm_parameters *params,
2188                                   struct intel_pipe_wm *pipe_wm)
2189 {
2190         struct drm_device *dev = crtc->dev;
2191         const struct drm_i915_private *dev_priv = dev->dev_private;
2192         int level, max_level = ilk_wm_max_level(dev);
2193         /* LP0 watermark maximums depend on this pipe alone */
2194         struct intel_wm_config config = {
2195                 .num_pipes_active = 1,
2196                 .sprites_enabled = params->spr.enabled,
2197                 .sprites_scaled = params->spr.scaled,
2198         };
2199         struct ilk_wm_maximums max;
2200
2201         pipe_wm->pipe_enabled = params->active;
2202         pipe_wm->sprites_enabled = params->spr.enabled;
2203         pipe_wm->sprites_scaled = params->spr.scaled;
2204
2205         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2206         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2207                 max_level = 1;
2208
2209         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2210         if (params->spr.scaled)
2211                 max_level = 0;
2212
2213         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2214
2215         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2216                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2217
2218         /* LP0 watermarks always use 1/2 DDB partitioning */
2219         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2220
2221         /* At least LP0 must be valid */
2222         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2223                 return false;
2224
2225         ilk_compute_wm_reg_maximums(dev, 1, &max);
2226
2227         for (level = 1; level <= max_level; level++) {
2228                 struct intel_wm_level wm = {};
2229
2230                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2231
2232                 /*
2233                  * Disable any watermark level that exceeds the
2234                  * register maximums since such watermarks are
2235                  * always invalid.
2236                  */
2237                 if (!ilk_validate_wm_level(level, &max, &wm))
2238                         break;
2239
2240                 pipe_wm->wm[level] = wm;
2241         }
2242
2243         return true;
2244 }
2245
2246 /*
2247  * Merge the watermarks from all active pipes for a specific level.
2248  */
2249 static void ilk_merge_wm_level(struct drm_device *dev,
2250                                int level,
2251                                struct intel_wm_level *ret_wm)
2252 {
2253         const struct intel_crtc *intel_crtc;
2254
2255         ret_wm->enable = true;
2256
2257         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2258                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2259                 const struct intel_wm_level *wm = &active->wm[level];
2260
2261                 if (!active->pipe_enabled)
2262                         continue;
2263
2264                 /*
2265                  * The watermark values may have been used in the past,
2266                  * so we must maintain them in the registers for some
2267                  * time even if the level is now disabled.
2268                  */
2269                 if (!wm->enable)
2270                         ret_wm->enable = false;
2271
2272                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2273                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2274                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2275                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2276         }
2277 }
2278
2279 /*
2280  * Merge all low power watermarks for all active pipes.
2281  */
2282 static void ilk_wm_merge(struct drm_device *dev,
2283                          const struct intel_wm_config *config,
2284                          const struct ilk_wm_maximums *max,
2285                          struct intel_pipe_wm *merged)
2286 {
2287         int level, max_level = ilk_wm_max_level(dev);
2288         int last_enabled_level = max_level;
2289
2290         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2291         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2292             config->num_pipes_active > 1)
2293                 return;
2294
2295         /* ILK: FBC WM must be disabled always */
2296         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2297
2298         /* merge each WM1+ level */
2299         for (level = 1; level <= max_level; level++) {
2300                 struct intel_wm_level *wm = &merged->wm[level];
2301
2302                 ilk_merge_wm_level(dev, level, wm);
2303
2304                 if (level > last_enabled_level)
2305                         wm->enable = false;
2306                 else if (!ilk_validate_wm_level(level, max, wm))
2307                         /* make sure all following levels get disabled */
2308                         last_enabled_level = level - 1;
2309
2310                 /*
2311                  * The spec says it is preferred to disable
2312                  * FBC WMs instead of disabling a WM level.
2313                  */
2314                 if (wm->fbc_val > max->fbc) {
2315                         if (wm->enable)
2316                                 merged->fbc_wm_enabled = false;
2317                         wm->fbc_val = 0;
2318                 }
2319         }
2320
2321         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2322         /*
2323          * FIXME this is racy. FBC might get enabled later.
2324          * What we should check here is whether FBC can be
2325          * enabled sometime later.
2326          */
2327         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2328                 for (level = 2; level <= max_level; level++) {
2329                         struct intel_wm_level *wm = &merged->wm[level];
2330
2331                         wm->enable = false;
2332                 }
2333         }
2334 }
2335
2336 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2337 {
2338         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2339         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2340 }
2341
2342 /* The value we need to program into the WM_LPx latency field */
2343 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2344 {
2345         struct drm_i915_private *dev_priv = dev->dev_private;
2346
2347         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2348                 return 2 * level;
2349         else
2350                 return dev_priv->wm.pri_latency[level];
2351 }
2352
2353 static void ilk_compute_wm_results(struct drm_device *dev,
2354                                    const struct intel_pipe_wm *merged,
2355                                    enum intel_ddb_partitioning partitioning,
2356                                    struct ilk_wm_values *results)
2357 {
2358         struct intel_crtc *intel_crtc;
2359         int level, wm_lp;
2360
2361         results->enable_fbc_wm = merged->fbc_wm_enabled;
2362         results->partitioning = partitioning;
2363
2364         /* LP1+ register values */
2365         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2366                 const struct intel_wm_level *r;
2367
2368                 level = ilk_wm_lp_to_level(wm_lp, merged);
2369
2370                 r = &merged->wm[level];
2371
2372                 /*
2373                  * Maintain the watermark values even if the level is
2374                  * disabled. Doing otherwise could cause underruns.
2375                  */
2376                 results->wm_lp[wm_lp - 1] =
2377                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2378                         (r->pri_val << WM1_LP_SR_SHIFT) |
2379                         r->cur_val;
2380
2381                 if (r->enable)
2382                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2383
2384                 if (INTEL_INFO(dev)->gen >= 8)
2385                         results->wm_lp[wm_lp - 1] |=
2386                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2387                 else
2388                         results->wm_lp[wm_lp - 1] |=
2389                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2390
2391                 /*
2392                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2393                  * level is disabled. Doing otherwise could cause underruns.
2394                  */
2395                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2396                         WARN_ON(wm_lp != 1);
2397                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2398                 } else
2399                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2400         }
2401
2402         /* LP0 register values */
2403         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2404                 enum pipe pipe = intel_crtc->pipe;
2405                 const struct intel_wm_level *r =
2406                         &intel_crtc->wm.active.wm[0];
2407
2408                 if (WARN_ON(!r->enable))
2409                         continue;
2410
2411                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2412
2413                 results->wm_pipe[pipe] =
2414                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2415                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2416                         r->cur_val;
2417         }
2418 }
2419
2420 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2421  * case both are at the same level. Prefer r1 in case they're the same. */
2422 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2423                                                   struct intel_pipe_wm *r1,
2424                                                   struct intel_pipe_wm *r2)
2425 {
2426         int level, max_level = ilk_wm_max_level(dev);
2427         int level1 = 0, level2 = 0;
2428
2429         for (level = 1; level <= max_level; level++) {
2430                 if (r1->wm[level].enable)
2431                         level1 = level;
2432                 if (r2->wm[level].enable)
2433                         level2 = level;
2434         }
2435
2436         if (level1 == level2) {
2437                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2438                         return r2;
2439                 else
2440                         return r1;
2441         } else if (level1 > level2) {
2442                 return r1;
2443         } else {
2444                 return r2;
2445         }
2446 }
2447
2448 /* dirty bits used to track which watermarks need changes */
2449 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2450 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2451 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2452 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2453 #define WM_DIRTY_FBC (1 << 24)
2454 #define WM_DIRTY_DDB (1 << 25)
2455
2456 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2457                                          const struct ilk_wm_values *old,
2458                                          const struct ilk_wm_values *new)
2459 {
2460         unsigned int dirty = 0;
2461         enum pipe pipe;
2462         int wm_lp;
2463
2464         for_each_pipe(pipe) {
2465                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2466                         dirty |= WM_DIRTY_LINETIME(pipe);
2467                         /* Must disable LP1+ watermarks too */
2468                         dirty |= WM_DIRTY_LP_ALL;
2469                 }
2470
2471                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2472                         dirty |= WM_DIRTY_PIPE(pipe);
2473                         /* Must disable LP1+ watermarks too */
2474                         dirty |= WM_DIRTY_LP_ALL;
2475                 }
2476         }
2477
2478         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2479                 dirty |= WM_DIRTY_FBC;
2480                 /* Must disable LP1+ watermarks too */
2481                 dirty |= WM_DIRTY_LP_ALL;
2482         }
2483
2484         if (old->partitioning != new->partitioning) {
2485                 dirty |= WM_DIRTY_DDB;
2486                 /* Must disable LP1+ watermarks too */
2487                 dirty |= WM_DIRTY_LP_ALL;
2488         }
2489
2490         /* LP1+ watermarks already deemed dirty, no need to continue */
2491         if (dirty & WM_DIRTY_LP_ALL)
2492                 return dirty;
2493
2494         /* Find the lowest numbered LP1+ watermark in need of an update... */
2495         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2496                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2497                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2498                         break;
2499         }
2500
2501         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2502         for (; wm_lp <= 3; wm_lp++)
2503                 dirty |= WM_DIRTY_LP(wm_lp);
2504
2505         return dirty;
2506 }
2507
2508 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2509                                unsigned int dirty)
2510 {
2511         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2512         bool changed = false;
2513
2514         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2515                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2516                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2517                 changed = true;
2518         }
2519         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2520                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2521                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2522                 changed = true;
2523         }
2524         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2525                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2526                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2527                 changed = true;
2528         }
2529
2530         /*
2531          * Don't touch WM1S_LP_EN here.
2532          * Doing so could cause underruns.
2533          */
2534
2535         return changed;
2536 }
2537
2538 /*
2539  * The spec says we shouldn't write when we don't need, because every write
2540  * causes WMs to be re-evaluated, expending some power.
2541  */
2542 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2543                                 struct ilk_wm_values *results)
2544 {
2545         struct drm_device *dev = dev_priv->dev;
2546         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2547         unsigned int dirty;
2548         uint32_t val;
2549
2550         dirty = ilk_compute_wm_dirty(dev, previous, results);
2551         if (!dirty)
2552                 return;
2553
2554         _ilk_disable_lp_wm(dev_priv, dirty);
2555
2556         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2557                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2558         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2559                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2560         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2561                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2562
2563         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2564                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2565         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2566                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2567         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2568                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2569
2570         if (dirty & WM_DIRTY_DDB) {
2571                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2572                         val = I915_READ(WM_MISC);
2573                         if (results->partitioning == INTEL_DDB_PART_1_2)
2574                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2575                         else
2576                                 val |= WM_MISC_DATA_PARTITION_5_6;
2577                         I915_WRITE(WM_MISC, val);
2578                 } else {
2579                         val = I915_READ(DISP_ARB_CTL2);
2580                         if (results->partitioning == INTEL_DDB_PART_1_2)
2581                                 val &= ~DISP_DATA_PARTITION_5_6;
2582                         else
2583                                 val |= DISP_DATA_PARTITION_5_6;
2584                         I915_WRITE(DISP_ARB_CTL2, val);
2585                 }
2586         }
2587
2588         if (dirty & WM_DIRTY_FBC) {
2589                 val = I915_READ(DISP_ARB_CTL);
2590                 if (results->enable_fbc_wm)
2591                         val &= ~DISP_FBC_WM_DIS;
2592                 else
2593                         val |= DISP_FBC_WM_DIS;
2594                 I915_WRITE(DISP_ARB_CTL, val);
2595         }
2596
2597         if (dirty & WM_DIRTY_LP(1) &&
2598             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2599                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2600
2601         if (INTEL_INFO(dev)->gen >= 7) {
2602                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2603                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2604                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2605                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2606         }
2607
2608         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2609                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2610         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2611                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2612         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2613                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2614
2615         dev_priv->wm.hw = *results;
2616 }
2617
2618 static bool ilk_disable_lp_wm(struct drm_device *dev)
2619 {
2620         struct drm_i915_private *dev_priv = dev->dev_private;
2621
2622         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2623 }
2624
2625 static void ilk_update_wm(struct drm_crtc *crtc)
2626 {
2627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2628         struct drm_device *dev = crtc->dev;
2629         struct drm_i915_private *dev_priv = dev->dev_private;
2630         struct ilk_wm_maximums max;
2631         struct ilk_pipe_wm_parameters params = {};
2632         struct ilk_wm_values results = {};
2633         enum intel_ddb_partitioning partitioning;
2634         struct intel_pipe_wm pipe_wm = {};
2635         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2636         struct intel_wm_config config = {};
2637
2638         ilk_compute_wm_parameters(crtc, &params);
2639
2640         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2641
2642         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2643                 return;
2644
2645         intel_crtc->wm.active = pipe_wm;
2646
2647         ilk_compute_wm_config(dev, &config);
2648
2649         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2650         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2651
2652         /* 5/6 split only in single pipe config on IVB+ */
2653         if (INTEL_INFO(dev)->gen >= 7 &&
2654             config.num_pipes_active == 1 && config.sprites_enabled) {
2655                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2656                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2657
2658                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2659         } else {
2660                 best_lp_wm = &lp_wm_1_2;
2661         }
2662
2663         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2664                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2665
2666         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2667
2668         ilk_write_wm_values(dev_priv, &results);
2669 }
2670
2671 static void ilk_update_sprite_wm(struct drm_plane *plane,
2672                                      struct drm_crtc *crtc,
2673                                      uint32_t sprite_width, int pixel_size,
2674                                      bool enabled, bool scaled)
2675 {
2676         struct drm_device *dev = plane->dev;
2677         struct intel_plane *intel_plane = to_intel_plane(plane);
2678
2679         intel_plane->wm.enabled = enabled;
2680         intel_plane->wm.scaled = scaled;
2681         intel_plane->wm.horiz_pixels = sprite_width;
2682         intel_plane->wm.bytes_per_pixel = pixel_size;
2683
2684         /*
2685          * IVB workaround: must disable low power watermarks for at least
2686          * one frame before enabling scaling.  LP watermarks can be re-enabled
2687          * when scaling is disabled.
2688          *
2689          * WaCxSRDisabledForSpriteScaling:ivb
2690          */
2691         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2692                 intel_wait_for_vblank(dev, intel_plane->pipe);
2693
2694         ilk_update_wm(crtc);
2695 }
2696
2697 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2698 {
2699         struct drm_device *dev = crtc->dev;
2700         struct drm_i915_private *dev_priv = dev->dev_private;
2701         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2704         enum pipe pipe = intel_crtc->pipe;
2705         static const unsigned int wm0_pipe_reg[] = {
2706                 [PIPE_A] = WM0_PIPEA_ILK,
2707                 [PIPE_B] = WM0_PIPEB_ILK,
2708                 [PIPE_C] = WM0_PIPEC_IVB,
2709         };
2710
2711         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2712         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2713                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2714
2715         active->pipe_enabled = intel_crtc_active(crtc);
2716
2717         if (active->pipe_enabled) {
2718                 u32 tmp = hw->wm_pipe[pipe];
2719
2720                 /*
2721                  * For active pipes LP0 watermark is marked as
2722                  * enabled, and LP1+ watermaks as disabled since
2723                  * we can't really reverse compute them in case
2724                  * multiple pipes are active.
2725                  */
2726                 active->wm[0].enable = true;
2727                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2728                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2729                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2730                 active->linetime = hw->wm_linetime[pipe];
2731         } else {
2732                 int level, max_level = ilk_wm_max_level(dev);
2733
2734                 /*
2735                  * For inactive pipes, all watermark levels
2736                  * should be marked as enabled but zeroed,
2737                  * which is what we'd compute them to.
2738                  */
2739                 for (level = 0; level <= max_level; level++)
2740                         active->wm[level].enable = true;
2741         }
2742 }
2743
2744 void ilk_wm_get_hw_state(struct drm_device *dev)
2745 {
2746         struct drm_i915_private *dev_priv = dev->dev_private;
2747         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2748         struct drm_crtc *crtc;
2749
2750         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2751                 ilk_pipe_wm_get_hw_state(crtc);
2752
2753         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2754         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2755         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2756
2757         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2758         if (INTEL_INFO(dev)->gen >= 7) {
2759                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2760                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2761         }
2762
2763         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2764                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2765                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2766         else if (IS_IVYBRIDGE(dev))
2767                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2768                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2769
2770         hw->enable_fbc_wm =
2771                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2772 }
2773
2774 /**
2775  * intel_update_watermarks - update FIFO watermark values based on current modes
2776  *
2777  * Calculate watermark values for the various WM regs based on current mode
2778  * and plane configuration.
2779  *
2780  * There are several cases to deal with here:
2781  *   - normal (i.e. non-self-refresh)
2782  *   - self-refresh (SR) mode
2783  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2784  *   - lines are small relative to FIFO size (buffer can hold more than 2
2785  *     lines), so need to account for TLB latency
2786  *
2787  *   The normal calculation is:
2788  *     watermark = dotclock * bytes per pixel * latency
2789  *   where latency is platform & configuration dependent (we assume pessimal
2790  *   values here).
2791  *
2792  *   The SR calculation is:
2793  *     watermark = (trunc(latency/line time)+1) * surface width *
2794  *       bytes per pixel
2795  *   where
2796  *     line time = htotal / dotclock
2797  *     surface width = hdisplay for normal plane and 64 for cursor
2798  *   and latency is assumed to be high, as above.
2799  *
2800  * The final value programmed to the register should always be rounded up,
2801  * and include an extra 2 entries to account for clock crossings.
2802  *
2803  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2804  * to set the non-SR watermarks to 8.
2805  */
2806 void intel_update_watermarks(struct drm_crtc *crtc)
2807 {
2808         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2809
2810         if (dev_priv->display.update_wm)
2811                 dev_priv->display.update_wm(crtc);
2812 }
2813
2814 void intel_update_sprite_watermarks(struct drm_plane *plane,
2815                                     struct drm_crtc *crtc,
2816                                     uint32_t sprite_width, int pixel_size,
2817                                     bool enabled, bool scaled)
2818 {
2819         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2820
2821         if (dev_priv->display.update_sprite_wm)
2822                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2823                                                    pixel_size, enabled, scaled);
2824 }
2825
2826 static struct drm_i915_gem_object *
2827 intel_alloc_context_page(struct drm_device *dev)
2828 {
2829         struct drm_i915_gem_object *ctx;
2830         int ret;
2831
2832         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2833
2834         ctx = i915_gem_alloc_object(dev, 4096);
2835         if (!ctx) {
2836                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2837                 return NULL;
2838         }
2839
2840         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2841         if (ret) {
2842                 DRM_ERROR("failed to pin power context: %d\n", ret);
2843                 goto err_unref;
2844         }
2845
2846         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2847         if (ret) {
2848                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2849                 goto err_unpin;
2850         }
2851
2852         return ctx;
2853
2854 err_unpin:
2855         i915_gem_object_ggtt_unpin(ctx);
2856 err_unref:
2857         drm_gem_object_unreference(&ctx->base);
2858         return NULL;
2859 }
2860
2861 /**
2862  * Lock protecting IPS related data structures
2863  */
2864 DEFINE_SPINLOCK(mchdev_lock);
2865
2866 /* Global for IPS driver to get at the current i915 device. Protected by
2867  * mchdev_lock. */
2868 static struct drm_i915_private *i915_mch_dev;
2869
2870 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2871 {
2872         struct drm_i915_private *dev_priv = dev->dev_private;
2873         u16 rgvswctl;
2874
2875         assert_spin_locked(&mchdev_lock);
2876
2877         rgvswctl = I915_READ16(MEMSWCTL);
2878         if (rgvswctl & MEMCTL_CMD_STS) {
2879                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2880                 return false; /* still busy with another command */
2881         }
2882
2883         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2884                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2885         I915_WRITE16(MEMSWCTL, rgvswctl);
2886         POSTING_READ16(MEMSWCTL);
2887
2888         rgvswctl |= MEMCTL_CMD_STS;
2889         I915_WRITE16(MEMSWCTL, rgvswctl);
2890
2891         return true;
2892 }
2893
2894 static void ironlake_enable_drps(struct drm_device *dev)
2895 {
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         u32 rgvmodectl = I915_READ(MEMMODECTL);
2898         u8 fmax, fmin, fstart, vstart;
2899
2900         spin_lock_irq(&mchdev_lock);
2901
2902         /* Enable temp reporting */
2903         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2904         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2905
2906         /* 100ms RC evaluation intervals */
2907         I915_WRITE(RCUPEI, 100000);
2908         I915_WRITE(RCDNEI, 100000);
2909
2910         /* Set max/min thresholds to 90ms and 80ms respectively */
2911         I915_WRITE(RCBMAXAVG, 90000);
2912         I915_WRITE(RCBMINAVG, 80000);
2913
2914         I915_WRITE(MEMIHYST, 1);
2915
2916         /* Set up min, max, and cur for interrupt handling */
2917         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2918         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2919         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2920                 MEMMODE_FSTART_SHIFT;
2921
2922         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2923                 PXVFREQ_PX_SHIFT;
2924
2925         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2926         dev_priv->ips.fstart = fstart;
2927
2928         dev_priv->ips.max_delay = fstart;
2929         dev_priv->ips.min_delay = fmin;
2930         dev_priv->ips.cur_delay = fstart;
2931
2932         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2933                          fmax, fmin, fstart);
2934
2935         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2936
2937         /*
2938          * Interrupts will be enabled in ironlake_irq_postinstall
2939          */
2940
2941         I915_WRITE(VIDSTART, vstart);
2942         POSTING_READ(VIDSTART);
2943
2944         rgvmodectl |= MEMMODE_SWMODE_EN;
2945         I915_WRITE(MEMMODECTL, rgvmodectl);
2946
2947         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2948                 DRM_ERROR("stuck trying to change perf mode\n");
2949         mdelay(1);
2950
2951         ironlake_set_drps(dev, fstart);
2952
2953         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2954                 I915_READ(0x112e0);
2955         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2956         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2957         getrawmonotonic(&dev_priv->ips.last_time2);
2958
2959         spin_unlock_irq(&mchdev_lock);
2960 }
2961
2962 static void ironlake_disable_drps(struct drm_device *dev)
2963 {
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         u16 rgvswctl;
2966
2967         spin_lock_irq(&mchdev_lock);
2968
2969         rgvswctl = I915_READ16(MEMSWCTL);
2970
2971         /* Ack interrupts, disable EFC interrupt */
2972         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2973         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2974         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2975         I915_WRITE(DEIIR, DE_PCU_EVENT);
2976         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2977
2978         /* Go back to the starting frequency */
2979         ironlake_set_drps(dev, dev_priv->ips.fstart);
2980         mdelay(1);
2981         rgvswctl |= MEMCTL_CMD_STS;
2982         I915_WRITE(MEMSWCTL, rgvswctl);
2983         mdelay(1);
2984
2985         spin_unlock_irq(&mchdev_lock);
2986 }
2987
2988 /* There's a funny hw issue where the hw returns all 0 when reading from
2989  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2990  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2991  * all limits and the gpu stuck at whatever frequency it is at atm).
2992  */
2993 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2994 {
2995         u32 limits;
2996
2997         /* Only set the down limit when we've reached the lowest level to avoid
2998          * getting more interrupts, otherwise leave this clear. This prevents a
2999          * race in the hw when coming out of rc6: There's a tiny window where
3000          * the hw runs at the minimal clock before selecting the desired
3001          * frequency, if the down threshold expires in that window we will not
3002          * receive a down interrupt. */
3003         limits = dev_priv->rps.max_freq_softlimit << 24;
3004         if (val <= dev_priv->rps.min_freq_softlimit)
3005                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3006
3007         return limits;
3008 }
3009
3010 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3011 {
3012         int new_power;
3013
3014         new_power = dev_priv->rps.power;
3015         switch (dev_priv->rps.power) {
3016         case LOW_POWER:
3017                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3018                         new_power = BETWEEN;
3019                 break;
3020
3021         case BETWEEN:
3022                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3023                         new_power = LOW_POWER;
3024                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3025                         new_power = HIGH_POWER;
3026                 break;
3027
3028         case HIGH_POWER:
3029                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3030                         new_power = BETWEEN;
3031                 break;
3032         }
3033         /* Max/min bins are special */
3034         if (val == dev_priv->rps.min_freq_softlimit)
3035                 new_power = LOW_POWER;
3036         if (val == dev_priv->rps.max_freq_softlimit)
3037                 new_power = HIGH_POWER;
3038         if (new_power == dev_priv->rps.power)
3039                 return;
3040
3041         /* Note the units here are not exactly 1us, but 1280ns. */
3042         switch (new_power) {
3043         case LOW_POWER:
3044                 /* Upclock if more than 95% busy over 16ms */
3045                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3046                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3047
3048                 /* Downclock if less than 85% busy over 32ms */
3049                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3050                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3051
3052                 I915_WRITE(GEN6_RP_CONTROL,
3053                            GEN6_RP_MEDIA_TURBO |
3054                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3055                            GEN6_RP_MEDIA_IS_GFX |
3056                            GEN6_RP_ENABLE |
3057                            GEN6_RP_UP_BUSY_AVG |
3058                            GEN6_RP_DOWN_IDLE_AVG);
3059                 break;
3060
3061         case BETWEEN:
3062                 /* Upclock if more than 90% busy over 13ms */
3063                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3064                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3065
3066                 /* Downclock if less than 75% busy over 32ms */
3067                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3068                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3069
3070                 I915_WRITE(GEN6_RP_CONTROL,
3071                            GEN6_RP_MEDIA_TURBO |
3072                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3073                            GEN6_RP_MEDIA_IS_GFX |
3074                            GEN6_RP_ENABLE |
3075                            GEN6_RP_UP_BUSY_AVG |
3076                            GEN6_RP_DOWN_IDLE_AVG);
3077                 break;
3078
3079         case HIGH_POWER:
3080                 /* Upclock if more than 85% busy over 10ms */
3081                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3082                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3083
3084                 /* Downclock if less than 60% busy over 32ms */
3085                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3086                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3087
3088                 I915_WRITE(GEN6_RP_CONTROL,
3089                            GEN6_RP_MEDIA_TURBO |
3090                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3091                            GEN6_RP_MEDIA_IS_GFX |
3092                            GEN6_RP_ENABLE |
3093                            GEN6_RP_UP_BUSY_AVG |
3094                            GEN6_RP_DOWN_IDLE_AVG);
3095                 break;
3096         }
3097
3098         dev_priv->rps.power = new_power;
3099         dev_priv->rps.last_adj = 0;
3100 }
3101
3102 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3103 {
3104         u32 mask = 0;
3105
3106         if (val > dev_priv->rps.min_freq_softlimit)
3107                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3108         if (val < dev_priv->rps.max_freq_softlimit)
3109                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3110
3111         /* IVB and SNB hard hangs on looping batchbuffer
3112          * if GEN6_PM_UP_EI_EXPIRED is masked.
3113          */
3114         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3115                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3116
3117         return ~mask;
3118 }
3119
3120 /* gen6_set_rps is called to update the frequency request, but should also be
3121  * called when the range (min_delay and max_delay) is modified so that we can
3122  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3123 void gen6_set_rps(struct drm_device *dev, u8 val)
3124 {
3125         struct drm_i915_private *dev_priv = dev->dev_private;
3126
3127         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3128         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3129         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3130
3131         /* min/max delay may still have been modified so be sure to
3132          * write the limits value.
3133          */
3134         if (val != dev_priv->rps.cur_freq) {
3135                 gen6_set_rps_thresholds(dev_priv, val);
3136
3137                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3138                         I915_WRITE(GEN6_RPNSWREQ,
3139                                    HSW_FREQUENCY(val));
3140                 else
3141                         I915_WRITE(GEN6_RPNSWREQ,
3142                                    GEN6_FREQUENCY(val) |
3143                                    GEN6_OFFSET(0) |
3144                                    GEN6_AGGRESSIVE_TURBO);
3145         }
3146
3147         /* Make sure we continue to get interrupts
3148          * until we hit the minimum or maximum frequencies.
3149          */
3150         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3151         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3152
3153         POSTING_READ(GEN6_RPNSWREQ);
3154
3155         dev_priv->rps.cur_freq = val;
3156         trace_intel_gpu_freq_change(val * 50);
3157 }
3158
3159 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3160  *
3161  * * If Gfx is Idle, then
3162  * 1. Mask Turbo interrupts
3163  * 2. Bring up Gfx clock
3164  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3165  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3166  * 5. Unmask Turbo interrupts
3167 */
3168 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3169 {
3170         /*
3171          * When we are idle.  Drop to min voltage state.
3172          */
3173
3174         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3175                 return;
3176
3177         /* Mask turbo interrupt so that they will not come in between */
3178         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3179
3180         vlv_force_gfx_clock(dev_priv, true);
3181
3182         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3183
3184         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3185                                         dev_priv->rps.min_freq_softlimit);
3186
3187         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3188                                 & GENFREQSTATUS) == 0, 5))
3189                 DRM_ERROR("timed out waiting for Punit\n");
3190
3191         vlv_force_gfx_clock(dev_priv, false);
3192
3193         I915_WRITE(GEN6_PMINTRMSK,
3194                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3195 }
3196
3197 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3198 {
3199         struct drm_device *dev = dev_priv->dev;
3200
3201         mutex_lock(&dev_priv->rps.hw_lock);
3202         if (dev_priv->rps.enabled) {
3203                 if (IS_VALLEYVIEW(dev))
3204                         vlv_set_rps_idle(dev_priv);
3205                 else
3206                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3207                 dev_priv->rps.last_adj = 0;
3208         }
3209         mutex_unlock(&dev_priv->rps.hw_lock);
3210 }
3211
3212 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3213 {
3214         struct drm_device *dev = dev_priv->dev;
3215
3216         mutex_lock(&dev_priv->rps.hw_lock);
3217         if (dev_priv->rps.enabled) {
3218                 if (IS_VALLEYVIEW(dev))
3219                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3220                 else
3221                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3222                 dev_priv->rps.last_adj = 0;
3223         }
3224         mutex_unlock(&dev_priv->rps.hw_lock);
3225 }
3226
3227 void valleyview_set_rps(struct drm_device *dev, u8 val)
3228 {
3229         struct drm_i915_private *dev_priv = dev->dev_private;
3230
3231         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3232         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3233         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3234
3235         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3236                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3237                          dev_priv->rps.cur_freq,
3238                          vlv_gpu_freq(dev_priv, val), val);
3239
3240         if (val != dev_priv->rps.cur_freq)
3241                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3242
3243         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3244
3245         dev_priv->rps.cur_freq = val;
3246         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3247 }
3248
3249 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3250 {
3251         struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3254         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3255                                 ~dev_priv->pm_rps_events);
3256         /* Complete PM interrupt masking here doesn't race with the rps work
3257          * item again unmasking PM interrupts because that is using a different
3258          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3259          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3260
3261         spin_lock_irq(&dev_priv->irq_lock);
3262         dev_priv->rps.pm_iir = 0;
3263         spin_unlock_irq(&dev_priv->irq_lock);
3264
3265         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3266 }
3267
3268 static void gen6_disable_rps(struct drm_device *dev)
3269 {
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271
3272         I915_WRITE(GEN6_RC_CONTROL, 0);
3273         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3274
3275         gen6_disable_rps_interrupts(dev);
3276 }
3277
3278 static void valleyview_disable_rps(struct drm_device *dev)
3279 {
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281
3282         I915_WRITE(GEN6_RC_CONTROL, 0);
3283
3284         gen6_disable_rps_interrupts(dev);
3285 }
3286
3287 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3288 {
3289         if (IS_VALLEYVIEW(dev)) {
3290                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3291                         mode = GEN6_RC_CTL_RC6_ENABLE;
3292                 else
3293                         mode = 0;
3294         }
3295         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3296                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3297                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3298                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3299 }
3300
3301 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3302 {
3303         /* No RC6 before Ironlake */
3304         if (INTEL_INFO(dev)->gen < 5)
3305                 return 0;
3306
3307         /* RC6 is only on Ironlake mobile not on desktop */
3308         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3309                 return 0;
3310
3311         /* Disable RC6 on Broadwell for now */
3312         if (IS_BROADWELL(dev))
3313                 return 0;
3314
3315         /* Respect the kernel parameter if it is set */
3316         if (enable_rc6 >= 0) {
3317                 int mask;
3318
3319                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3320                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3321                                INTEL_RC6pp_ENABLE;
3322                 else
3323                         mask = INTEL_RC6_ENABLE;
3324
3325                 if ((enable_rc6 & mask) != enable_rc6)
3326                         DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3327                                  enable_rc6, enable_rc6 & mask, mask);
3328
3329                 return enable_rc6 & mask;
3330         }
3331
3332         /* Disable RC6 on Ironlake */
3333         if (INTEL_INFO(dev)->gen == 5)
3334                 return 0;
3335
3336         if (IS_IVYBRIDGE(dev))
3337                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3338
3339         return INTEL_RC6_ENABLE;
3340 }
3341
3342 int intel_enable_rc6(const struct drm_device *dev)
3343 {
3344         return i915.enable_rc6;
3345 }
3346
3347 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351         spin_lock_irq(&dev_priv->irq_lock);
3352         WARN_ON(dev_priv->rps.pm_iir);
3353         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3354         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3355         spin_unlock_irq(&dev_priv->irq_lock);
3356 }
3357
3358 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3359 {
3360         /* All of these values are in units of 50MHz */
3361         dev_priv->rps.cur_freq          = 0;
3362         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3363         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3364         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3365         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3366         /* XXX: only BYT has a special efficient freq */
3367         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3368         /* hw_max = RP0 until we check for overclocking */
3369         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3370
3371         /* Preserve min/max settings in case of re-init */
3372         if (dev_priv->rps.max_freq_softlimit == 0)
3373                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3374
3375         if (dev_priv->rps.min_freq_softlimit == 0)
3376                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3377 }
3378
3379 static void gen8_enable_rps(struct drm_device *dev)
3380 {
3381         struct drm_i915_private *dev_priv = dev->dev_private;
3382         struct intel_ring_buffer *ring;
3383         uint32_t rc6_mask = 0, rp_state_cap;
3384         int unused;
3385
3386         /* 1a: Software RC state - RC0 */
3387         I915_WRITE(GEN6_RC_STATE, 0);
3388
3389         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3390          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3391         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3392
3393         /* 2a: Disable RC states. */
3394         I915_WRITE(GEN6_RC_CONTROL, 0);
3395
3396         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3397         parse_rp_state_cap(dev_priv, rp_state_cap);
3398
3399         /* 2b: Program RC6 thresholds.*/
3400         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3401         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3402         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3403         for_each_ring(ring, dev_priv, unused)
3404                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3405         I915_WRITE(GEN6_RC_SLEEP, 0);
3406         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3407
3408         /* 3: Enable RC6 */
3409         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3410                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3411         intel_print_rc6_info(dev, rc6_mask);
3412         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3413                                     GEN6_RC_CTL_EI_MODE(1) |
3414                                     rc6_mask);
3415
3416         /* 4 Program defaults and thresholds for RPS*/
3417         I915_WRITE(GEN6_RPNSWREQ,
3418                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3419         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3420                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3421         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3422         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3423
3424         /* Docs recommend 900MHz, and 300 MHz respectively */
3425         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3426                    dev_priv->rps.max_freq_softlimit << 24 |
3427                    dev_priv->rps.min_freq_softlimit << 16);
3428
3429         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3430         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3431         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3432         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3433
3434         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3435
3436         /* 5: Enable RPS */
3437         I915_WRITE(GEN6_RP_CONTROL,
3438                    GEN6_RP_MEDIA_TURBO |
3439                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3440                    GEN6_RP_MEDIA_IS_GFX |
3441                    GEN6_RP_ENABLE |
3442                    GEN6_RP_UP_BUSY_AVG |
3443                    GEN6_RP_DOWN_IDLE_AVG);
3444
3445         /* 6: Ring frequency + overclocking (our driver does this later */
3446
3447         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3448
3449         gen6_enable_rps_interrupts(dev);
3450
3451         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3452 }
3453
3454 static void gen6_enable_rps(struct drm_device *dev)
3455 {
3456         struct drm_i915_private *dev_priv = dev->dev_private;
3457         struct intel_ring_buffer *ring;
3458         u32 rp_state_cap;
3459         u32 gt_perf_status;
3460         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3461         u32 gtfifodbg;
3462         int rc6_mode;
3463         int i, ret;
3464
3465         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3466
3467         /* Here begins a magic sequence of register writes to enable
3468          * auto-downclocking.
3469          *
3470          * Perhaps there might be some value in exposing these to
3471          * userspace...
3472          */
3473         I915_WRITE(GEN6_RC_STATE, 0);
3474
3475         /* Clear the DBG now so we don't confuse earlier errors */
3476         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3477                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3478                 I915_WRITE(GTFIFODBG, gtfifodbg);
3479         }
3480
3481         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3482
3483         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3484         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3485
3486         parse_rp_state_cap(dev_priv, rp_state_cap);
3487
3488         /* disable the counters and set deterministic thresholds */
3489         I915_WRITE(GEN6_RC_CONTROL, 0);
3490
3491         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3492         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3493         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3494         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3495         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3496
3497         for_each_ring(ring, dev_priv, i)
3498                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3499
3500         I915_WRITE(GEN6_RC_SLEEP, 0);
3501         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3502         if (IS_IVYBRIDGE(dev))
3503                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3504         else
3505                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3506         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3507         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3508
3509         /* Check if we are enabling RC6 */
3510         rc6_mode = intel_enable_rc6(dev_priv->dev);
3511         if (rc6_mode & INTEL_RC6_ENABLE)
3512                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3513
3514         /* We don't use those on Haswell */
3515         if (!IS_HASWELL(dev)) {
3516                 if (rc6_mode & INTEL_RC6p_ENABLE)
3517                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3518
3519                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3520                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3521         }
3522
3523         intel_print_rc6_info(dev, rc6_mask);
3524
3525         I915_WRITE(GEN6_RC_CONTROL,
3526                    rc6_mask |
3527                    GEN6_RC_CTL_EI_MODE(1) |
3528                    GEN6_RC_CTL_HW_ENABLE);
3529
3530         /* Power down if completely idle for over 50ms */
3531         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3532         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3533
3534         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3535         if (ret)
3536                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3537
3538         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3539         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3540                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3541                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3542                                  (pcu_mbox & 0xff) * 50);
3543                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3544         }
3545
3546         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3547         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3548
3549         gen6_enable_rps_interrupts(dev);
3550
3551         rc6vids = 0;
3552         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3553         if (IS_GEN6(dev) && ret) {
3554                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3555         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3556                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3557                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3558                 rc6vids &= 0xffff00;
3559                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3560                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3561                 if (ret)
3562                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3563         }
3564
3565         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3566 }
3567
3568 static void __gen6_update_ring_freq(struct drm_device *dev)
3569 {
3570         struct drm_i915_private *dev_priv = dev->dev_private;
3571         int min_freq = 15;
3572         unsigned int gpu_freq;
3573         unsigned int max_ia_freq, min_ring_freq;
3574         int scaling_factor = 180;
3575         struct cpufreq_policy *policy;
3576
3577         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3578
3579         policy = cpufreq_cpu_get(0);
3580         if (policy) {
3581                 max_ia_freq = policy->cpuinfo.max_freq;
3582                 cpufreq_cpu_put(policy);
3583         } else {
3584                 /*
3585                  * Default to measured freq if none found, PCU will ensure we
3586                  * don't go over
3587                  */
3588                 max_ia_freq = tsc_khz;
3589         }
3590
3591         /* Convert from kHz to MHz */
3592         max_ia_freq /= 1000;
3593
3594         min_ring_freq = I915_READ(DCLK) & 0xf;
3595         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3596         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3597
3598         /*
3599          * For each potential GPU frequency, load a ring frequency we'd like
3600          * to use for memory access.  We do this by specifying the IA frequency
3601          * the PCU should use as a reference to determine the ring frequency.
3602          */
3603         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3604              gpu_freq--) {
3605                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3606                 unsigned int ia_freq = 0, ring_freq = 0;
3607
3608                 if (INTEL_INFO(dev)->gen >= 8) {
3609                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3610                         ring_freq = max(min_ring_freq, gpu_freq);
3611                 } else if (IS_HASWELL(dev)) {
3612                         ring_freq = mult_frac(gpu_freq, 5, 4);
3613                         ring_freq = max(min_ring_freq, ring_freq);
3614                         /* leave ia_freq as the default, chosen by cpufreq */
3615                 } else {
3616                         /* On older processors, there is no separate ring
3617                          * clock domain, so in order to boost the bandwidth
3618                          * of the ring, we need to upclock the CPU (ia_freq).
3619                          *
3620                          * For GPU frequencies less than 750MHz,
3621                          * just use the lowest ring freq.
3622                          */
3623                         if (gpu_freq < min_freq)
3624                                 ia_freq = 800;
3625                         else
3626                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3627                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3628                 }
3629
3630                 sandybridge_pcode_write(dev_priv,
3631                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3632                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3633                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3634                                         gpu_freq);
3635         }
3636 }
3637
3638 void gen6_update_ring_freq(struct drm_device *dev)
3639 {
3640         struct drm_i915_private *dev_priv = dev->dev_private;
3641
3642         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3643                 return;
3644
3645         mutex_lock(&dev_priv->rps.hw_lock);
3646         __gen6_update_ring_freq(dev);
3647         mutex_unlock(&dev_priv->rps.hw_lock);
3648 }
3649
3650 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3651 {
3652         u32 val, rp0;
3653
3654         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3655
3656         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3657         /* Clamp to max */
3658         rp0 = min_t(u32, rp0, 0xea);
3659
3660         return rp0;
3661 }
3662
3663 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3664 {
3665         u32 val, rpe;
3666
3667         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3668         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3669         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3670         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3671
3672         return rpe;
3673 }
3674
3675 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3676 {
3677         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3678 }
3679
3680 /* Check that the pctx buffer wasn't move under us. */
3681 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3682 {
3683         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3684
3685         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3686                              dev_priv->vlv_pctx->stolen->start);
3687 }
3688
3689 static void valleyview_setup_pctx(struct drm_device *dev)
3690 {
3691         struct drm_i915_private *dev_priv = dev->dev_private;
3692         struct drm_i915_gem_object *pctx;
3693         unsigned long pctx_paddr;
3694         u32 pcbr;
3695         int pctx_size = 24*1024;
3696
3697         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3698
3699         pcbr = I915_READ(VLV_PCBR);
3700         if (pcbr) {
3701                 /* BIOS set it up already, grab the pre-alloc'd space */
3702                 int pcbr_offset;
3703
3704                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3705                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3706                                                                       pcbr_offset,
3707                                                                       I915_GTT_OFFSET_NONE,
3708                                                                       pctx_size);
3709                 goto out;
3710         }
3711
3712         /*
3713          * From the Gunit register HAS:
3714          * The Gfx driver is expected to program this register and ensure
3715          * proper allocation within Gfx stolen memory.  For example, this
3716          * register should be programmed such than the PCBR range does not
3717          * overlap with other ranges, such as the frame buffer, protected
3718          * memory, or any other relevant ranges.
3719          */
3720         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3721         if (!pctx) {
3722                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3723                 return;
3724         }
3725
3726         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3727         I915_WRITE(VLV_PCBR, pctx_paddr);
3728
3729 out:
3730         dev_priv->vlv_pctx = pctx;
3731 }
3732
3733 static void valleyview_cleanup_pctx(struct drm_device *dev)
3734 {
3735         struct drm_i915_private *dev_priv = dev->dev_private;
3736
3737         if (WARN_ON(!dev_priv->vlv_pctx))
3738                 return;
3739
3740         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3741         dev_priv->vlv_pctx = NULL;
3742 }
3743
3744 static void valleyview_init_gt_powersave(struct drm_device *dev)
3745 {
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748         valleyview_setup_pctx(dev);
3749
3750         mutex_lock(&dev_priv->rps.hw_lock);
3751
3752         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3753         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3754         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3755                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3756                          dev_priv->rps.max_freq);
3757
3758         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3759         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3760                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3761                          dev_priv->rps.efficient_freq);
3762
3763         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3764         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3765                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3766                          dev_priv->rps.min_freq);
3767
3768         /* Preserve min/max settings in case of re-init */
3769         if (dev_priv->rps.max_freq_softlimit == 0)
3770                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3771
3772         if (dev_priv->rps.min_freq_softlimit == 0)
3773                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3774
3775         mutex_unlock(&dev_priv->rps.hw_lock);
3776 }
3777
3778 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3779 {
3780         valleyview_cleanup_pctx(dev);
3781 }
3782
3783 static void valleyview_enable_rps(struct drm_device *dev)
3784 {
3785         struct drm_i915_private *dev_priv = dev->dev_private;
3786         struct intel_ring_buffer *ring;
3787         u32 gtfifodbg, val, rc6_mode = 0;
3788         int i;
3789
3790         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3791
3792         valleyview_check_pctx(dev_priv);
3793
3794         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3795                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3796                                  gtfifodbg);
3797                 I915_WRITE(GTFIFODBG, gtfifodbg);
3798         }
3799
3800         /* If VLV, Forcewake all wells, else re-direct to regular path */
3801         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3802
3803         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3804         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3805         I915_WRITE(GEN6_RP_UP_EI, 66000);
3806         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3807
3808         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3809
3810         I915_WRITE(GEN6_RP_CONTROL,
3811                    GEN6_RP_MEDIA_TURBO |
3812                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3813                    GEN6_RP_MEDIA_IS_GFX |
3814                    GEN6_RP_ENABLE |
3815                    GEN6_RP_UP_BUSY_AVG |
3816                    GEN6_RP_DOWN_IDLE_CONT);
3817
3818         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3819         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3820         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3821
3822         for_each_ring(ring, dev_priv, i)
3823                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3824
3825         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3826
3827         /* allows RC6 residency counter to work */
3828         I915_WRITE(VLV_COUNTER_CONTROL,
3829                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3830                                       VLV_MEDIA_RC6_COUNT_EN |
3831                                       VLV_RENDER_RC6_COUNT_EN));
3832         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3833                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3834
3835         intel_print_rc6_info(dev, rc6_mode);
3836
3837         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3838
3839         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3840
3841         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3842         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3843
3844         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3845         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3846                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3847                          dev_priv->rps.cur_freq);
3848
3849         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3850                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3851                          dev_priv->rps.efficient_freq);
3852
3853         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3854
3855         gen6_enable_rps_interrupts(dev);
3856
3857         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3858 }
3859
3860 void ironlake_teardown_rc6(struct drm_device *dev)
3861 {
3862         struct drm_i915_private *dev_priv = dev->dev_private;
3863
3864         if (dev_priv->ips.renderctx) {
3865                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3866                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3867                 dev_priv->ips.renderctx = NULL;
3868         }
3869
3870         if (dev_priv->ips.pwrctx) {
3871                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3872                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3873                 dev_priv->ips.pwrctx = NULL;
3874         }
3875 }
3876
3877 static void ironlake_disable_rc6(struct drm_device *dev)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880
3881         if (I915_READ(PWRCTXA)) {
3882                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3883                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3884                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3885                          50);
3886
3887                 I915_WRITE(PWRCTXA, 0);
3888                 POSTING_READ(PWRCTXA);
3889
3890                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3891                 POSTING_READ(RSTDBYCTL);
3892         }
3893 }
3894
3895 static int ironlake_setup_rc6(struct drm_device *dev)
3896 {
3897         struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899         if (dev_priv->ips.renderctx == NULL)
3900                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3901         if (!dev_priv->ips.renderctx)
3902                 return -ENOMEM;
3903
3904         if (dev_priv->ips.pwrctx == NULL)
3905                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3906         if (!dev_priv->ips.pwrctx) {
3907                 ironlake_teardown_rc6(dev);
3908                 return -ENOMEM;
3909         }
3910
3911         return 0;
3912 }
3913
3914 static void ironlake_enable_rc6(struct drm_device *dev)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3918         bool was_interruptible;
3919         int ret;
3920
3921         /* rc6 disabled by default due to repeated reports of hanging during
3922          * boot and resume.
3923          */
3924         if (!intel_enable_rc6(dev))
3925                 return;
3926
3927         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3928
3929         ret = ironlake_setup_rc6(dev);
3930         if (ret)
3931                 return;
3932
3933         was_interruptible = dev_priv->mm.interruptible;
3934         dev_priv->mm.interruptible = false;
3935
3936         /*
3937          * GPU can automatically power down the render unit if given a page
3938          * to save state.
3939          */
3940         ret = intel_ring_begin(ring, 6);
3941         if (ret) {
3942                 ironlake_teardown_rc6(dev);
3943                 dev_priv->mm.interruptible = was_interruptible;
3944                 return;
3945         }
3946
3947         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3948         intel_ring_emit(ring, MI_SET_CONTEXT);
3949         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3950                         MI_MM_SPACE_GTT |
3951                         MI_SAVE_EXT_STATE_EN |
3952                         MI_RESTORE_EXT_STATE_EN |
3953                         MI_RESTORE_INHIBIT);
3954         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3955         intel_ring_emit(ring, MI_NOOP);
3956         intel_ring_emit(ring, MI_FLUSH);
3957         intel_ring_advance(ring);
3958
3959         /*
3960          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3961          * does an implicit flush, combined with MI_FLUSH above, it should be
3962          * safe to assume that renderctx is valid
3963          */
3964         ret = intel_ring_idle(ring);
3965         dev_priv->mm.interruptible = was_interruptible;
3966         if (ret) {
3967                 DRM_ERROR("failed to enable ironlake power savings\n");
3968                 ironlake_teardown_rc6(dev);
3969                 return;
3970         }
3971
3972         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3973         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3974
3975         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
3976 }
3977
3978 static unsigned long intel_pxfreq(u32 vidfreq)
3979 {
3980         unsigned long freq;
3981         int div = (vidfreq & 0x3f0000) >> 16;
3982         int post = (vidfreq & 0x3000) >> 12;
3983         int pre = (vidfreq & 0x7);
3984
3985         if (!pre)
3986                 return 0;
3987
3988         freq = ((div * 133333) / ((1<<post) * pre));
3989
3990         return freq;
3991 }
3992
3993 static const struct cparams {
3994         u16 i;
3995         u16 t;
3996         u16 m;
3997         u16 c;
3998 } cparams[] = {
3999         { 1, 1333, 301, 28664 },
4000         { 1, 1066, 294, 24460 },
4001         { 1, 800, 294, 25192 },
4002         { 0, 1333, 276, 27605 },
4003         { 0, 1066, 276, 27605 },
4004         { 0, 800, 231, 23784 },
4005 };
4006
4007 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4008 {
4009         u64 total_count, diff, ret;
4010         u32 count1, count2, count3, m = 0, c = 0;
4011         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4012         int i;
4013
4014         assert_spin_locked(&mchdev_lock);
4015
4016         diff1 = now - dev_priv->ips.last_time1;
4017
4018         /* Prevent division-by-zero if we are asking too fast.
4019          * Also, we don't get interesting results if we are polling
4020          * faster than once in 10ms, so just return the saved value
4021          * in such cases.
4022          */
4023         if (diff1 <= 10)
4024                 return dev_priv->ips.chipset_power;
4025
4026         count1 = I915_READ(DMIEC);
4027         count2 = I915_READ(DDREC);
4028         count3 = I915_READ(CSIEC);
4029
4030         total_count = count1 + count2 + count3;
4031
4032         /* FIXME: handle per-counter overflow */
4033         if (total_count < dev_priv->ips.last_count1) {
4034                 diff = ~0UL - dev_priv->ips.last_count1;
4035                 diff += total_count;
4036         } else {
4037                 diff = total_count - dev_priv->ips.last_count1;
4038         }
4039
4040         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4041                 if (cparams[i].i == dev_priv->ips.c_m &&
4042                     cparams[i].t == dev_priv->ips.r_t) {
4043                         m = cparams[i].m;
4044                         c = cparams[i].c;
4045                         break;
4046                 }
4047         }
4048
4049         diff = div_u64(diff, diff1);
4050         ret = ((m * diff) + c);
4051         ret = div_u64(ret, 10);
4052
4053         dev_priv->ips.last_count1 = total_count;
4054         dev_priv->ips.last_time1 = now;
4055
4056         dev_priv->ips.chipset_power = ret;
4057
4058         return ret;
4059 }
4060
4061 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4062 {
4063         struct drm_device *dev = dev_priv->dev;
4064         unsigned long val;
4065
4066         if (INTEL_INFO(dev)->gen != 5)
4067                 return 0;
4068
4069         spin_lock_irq(&mchdev_lock);
4070
4071         val = __i915_chipset_val(dev_priv);
4072
4073         spin_unlock_irq(&mchdev_lock);
4074
4075         return val;
4076 }
4077
4078 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4079 {
4080         unsigned long m, x, b;
4081         u32 tsfs;
4082
4083         tsfs = I915_READ(TSFS);
4084
4085         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4086         x = I915_READ8(TR1);
4087
4088         b = tsfs & TSFS_INTR_MASK;
4089
4090         return ((m * x) / 127) - b;
4091 }
4092
4093 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4094 {
4095         struct drm_device *dev = dev_priv->dev;
4096         static const struct v_table {
4097                 u16 vd; /* in .1 mil */
4098                 u16 vm; /* in .1 mil */
4099         } v_table[] = {
4100                 { 0, 0, },
4101                 { 375, 0, },
4102                 { 500, 0, },
4103                 { 625, 0, },
4104                 { 750, 0, },
4105                 { 875, 0, },
4106                 { 1000, 0, },
4107                 { 1125, 0, },
4108                 { 4125, 3000, },
4109                 { 4125, 3000, },
4110                 { 4125, 3000, },
4111                 { 4125, 3000, },
4112                 { 4125, 3000, },
4113                 { 4125, 3000, },
4114                 { 4125, 3000, },
4115                 { 4125, 3000, },
4116                 { 4125, 3000, },
4117                 { 4125, 3000, },
4118                 { 4125, 3000, },
4119                 { 4125, 3000, },
4120                 { 4125, 3000, },
4121                 { 4125, 3000, },
4122                 { 4125, 3000, },
4123                 { 4125, 3000, },
4124                 { 4125, 3000, },
4125                 { 4125, 3000, },
4126                 { 4125, 3000, },
4127                 { 4125, 3000, },
4128                 { 4125, 3000, },
4129                 { 4125, 3000, },
4130                 { 4125, 3000, },
4131                 { 4125, 3000, },
4132                 { 4250, 3125, },
4133                 { 4375, 3250, },
4134                 { 4500, 3375, },
4135                 { 4625, 3500, },
4136                 { 4750, 3625, },
4137                 { 4875, 3750, },
4138                 { 5000, 3875, },
4139                 { 5125, 4000, },
4140                 { 5250, 4125, },
4141                 { 5375, 4250, },
4142                 { 5500, 4375, },
4143                 { 5625, 4500, },
4144                 { 5750, 4625, },
4145                 { 5875, 4750, },
4146                 { 6000, 4875, },
4147                 { 6125, 5000, },
4148                 { 6250, 5125, },
4149                 { 6375, 5250, },
4150                 { 6500, 5375, },
4151                 { 6625, 5500, },
4152                 { 6750, 5625, },
4153                 { 6875, 5750, },
4154                 { 7000, 5875, },
4155                 { 7125, 6000, },
4156                 { 7250, 6125, },
4157                 { 7375, 6250, },
4158                 { 7500, 6375, },
4159                 { 7625, 6500, },
4160                 { 7750, 6625, },
4161                 { 7875, 6750, },
4162                 { 8000, 6875, },
4163                 { 8125, 7000, },
4164                 { 8250, 7125, },
4165                 { 8375, 7250, },
4166                 { 8500, 7375, },
4167                 { 8625, 7500, },
4168                 { 8750, 7625, },
4169                 { 8875, 7750, },
4170                 { 9000, 7875, },
4171                 { 9125, 8000, },
4172                 { 9250, 8125, },
4173                 { 9375, 8250, },
4174                 { 9500, 8375, },
4175                 { 9625, 8500, },
4176                 { 9750, 8625, },
4177                 { 9875, 8750, },
4178                 { 10000, 8875, },
4179                 { 10125, 9000, },
4180                 { 10250, 9125, },
4181                 { 10375, 9250, },
4182                 { 10500, 9375, },
4183                 { 10625, 9500, },
4184                 { 10750, 9625, },
4185                 { 10875, 9750, },
4186                 { 11000, 9875, },
4187                 { 11125, 10000, },
4188                 { 11250, 10125, },
4189                 { 11375, 10250, },
4190                 { 11500, 10375, },
4191                 { 11625, 10500, },
4192                 { 11750, 10625, },
4193                 { 11875, 10750, },
4194                 { 12000, 10875, },
4195                 { 12125, 11000, },
4196                 { 12250, 11125, },
4197                 { 12375, 11250, },
4198                 { 12500, 11375, },
4199                 { 12625, 11500, },
4200                 { 12750, 11625, },
4201                 { 12875, 11750, },
4202                 { 13000, 11875, },
4203                 { 13125, 12000, },
4204                 { 13250, 12125, },
4205                 { 13375, 12250, },
4206                 { 13500, 12375, },
4207                 { 13625, 12500, },
4208                 { 13750, 12625, },
4209                 { 13875, 12750, },
4210                 { 14000, 12875, },
4211                 { 14125, 13000, },
4212                 { 14250, 13125, },
4213                 { 14375, 13250, },
4214                 { 14500, 13375, },
4215                 { 14625, 13500, },
4216                 { 14750, 13625, },
4217                 { 14875, 13750, },
4218                 { 15000, 13875, },
4219                 { 15125, 14000, },
4220                 { 15250, 14125, },
4221                 { 15375, 14250, },
4222                 { 15500, 14375, },
4223                 { 15625, 14500, },
4224                 { 15750, 14625, },
4225                 { 15875, 14750, },
4226                 { 16000, 14875, },
4227                 { 16125, 15000, },
4228         };
4229         if (INTEL_INFO(dev)->is_mobile)
4230                 return v_table[pxvid].vm;
4231         else
4232                 return v_table[pxvid].vd;
4233 }
4234
4235 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4236 {
4237         struct timespec now, diff1;
4238         u64 diff;
4239         unsigned long diffms;
4240         u32 count;
4241
4242         assert_spin_locked(&mchdev_lock);
4243
4244         getrawmonotonic(&now);
4245         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4246
4247         /* Don't divide by 0 */
4248         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4249         if (!diffms)
4250                 return;
4251
4252         count = I915_READ(GFXEC);
4253
4254         if (count < dev_priv->ips.last_count2) {
4255                 diff = ~0UL - dev_priv->ips.last_count2;
4256                 diff += count;
4257         } else {
4258                 diff = count - dev_priv->ips.last_count2;
4259         }
4260
4261         dev_priv->ips.last_count2 = count;
4262         dev_priv->ips.last_time2 = now;
4263
4264         /* More magic constants... */
4265         diff = diff * 1181;
4266         diff = div_u64(diff, diffms * 10);
4267         dev_priv->ips.gfx_power = diff;
4268 }
4269
4270 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4271 {
4272         struct drm_device *dev = dev_priv->dev;
4273
4274         if (INTEL_INFO(dev)->gen != 5)
4275                 return;
4276
4277         spin_lock_irq(&mchdev_lock);
4278
4279         __i915_update_gfx_val(dev_priv);
4280
4281         spin_unlock_irq(&mchdev_lock);
4282 }
4283
4284 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4285 {
4286         unsigned long t, corr, state1, corr2, state2;
4287         u32 pxvid, ext_v;
4288
4289         assert_spin_locked(&mchdev_lock);
4290
4291         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4292         pxvid = (pxvid >> 24) & 0x7f;
4293         ext_v = pvid_to_extvid(dev_priv, pxvid);
4294
4295         state1 = ext_v;
4296
4297         t = i915_mch_val(dev_priv);
4298
4299         /* Revel in the empirically derived constants */
4300
4301         /* Correction factor in 1/100000 units */
4302         if (t > 80)
4303                 corr = ((t * 2349) + 135940);
4304         else if (t >= 50)
4305                 corr = ((t * 964) + 29317);
4306         else /* < 50 */
4307                 corr = ((t * 301) + 1004);
4308
4309         corr = corr * ((150142 * state1) / 10000 - 78642);
4310         corr /= 100000;
4311         corr2 = (corr * dev_priv->ips.corr);
4312
4313         state2 = (corr2 * state1) / 10000;
4314         state2 /= 100; /* convert to mW */
4315
4316         __i915_update_gfx_val(dev_priv);
4317
4318         return dev_priv->ips.gfx_power + state2;
4319 }
4320
4321 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4322 {
4323         struct drm_device *dev = dev_priv->dev;
4324         unsigned long val;
4325
4326         if (INTEL_INFO(dev)->gen != 5)
4327                 return 0;
4328
4329         spin_lock_irq(&mchdev_lock);
4330
4331         val = __i915_gfx_val(dev_priv);
4332
4333         spin_unlock_irq(&mchdev_lock);
4334
4335         return val;
4336 }
4337
4338 /**
4339  * i915_read_mch_val - return value for IPS use
4340  *
4341  * Calculate and return a value for the IPS driver to use when deciding whether
4342  * we have thermal and power headroom to increase CPU or GPU power budget.
4343  */
4344 unsigned long i915_read_mch_val(void)
4345 {
4346         struct drm_i915_private *dev_priv;
4347         unsigned long chipset_val, graphics_val, ret = 0;
4348
4349         spin_lock_irq(&mchdev_lock);
4350         if (!i915_mch_dev)
4351                 goto out_unlock;
4352         dev_priv = i915_mch_dev;
4353
4354         chipset_val = __i915_chipset_val(dev_priv);
4355         graphics_val = __i915_gfx_val(dev_priv);
4356
4357         ret = chipset_val + graphics_val;
4358
4359 out_unlock:
4360         spin_unlock_irq(&mchdev_lock);
4361
4362         return ret;
4363 }
4364 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4365
4366 /**
4367  * i915_gpu_raise - raise GPU frequency limit
4368  *
4369  * Raise the limit; IPS indicates we have thermal headroom.
4370  */
4371 bool i915_gpu_raise(void)
4372 {
4373         struct drm_i915_private *dev_priv;
4374         bool ret = true;
4375
4376         spin_lock_irq(&mchdev_lock);
4377         if (!i915_mch_dev) {
4378                 ret = false;
4379                 goto out_unlock;
4380         }
4381         dev_priv = i915_mch_dev;
4382
4383         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4384                 dev_priv->ips.max_delay--;
4385
4386 out_unlock:
4387         spin_unlock_irq(&mchdev_lock);
4388
4389         return ret;
4390 }
4391 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4392
4393 /**
4394  * i915_gpu_lower - lower GPU frequency limit
4395  *
4396  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4397  * frequency maximum.
4398  */
4399 bool i915_gpu_lower(void)
4400 {
4401         struct drm_i915_private *dev_priv;
4402         bool ret = true;
4403
4404         spin_lock_irq(&mchdev_lock);
4405         if (!i915_mch_dev) {
4406                 ret = false;
4407                 goto out_unlock;
4408         }
4409         dev_priv = i915_mch_dev;
4410
4411         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4412                 dev_priv->ips.max_delay++;
4413
4414 out_unlock:
4415         spin_unlock_irq(&mchdev_lock);
4416
4417         return ret;
4418 }
4419 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4420
4421 /**
4422  * i915_gpu_busy - indicate GPU business to IPS
4423  *
4424  * Tell the IPS driver whether or not the GPU is busy.
4425  */
4426 bool i915_gpu_busy(void)
4427 {
4428         struct drm_i915_private *dev_priv;
4429         struct intel_ring_buffer *ring;
4430         bool ret = false;
4431         int i;
4432
4433         spin_lock_irq(&mchdev_lock);
4434         if (!i915_mch_dev)
4435                 goto out_unlock;
4436         dev_priv = i915_mch_dev;
4437
4438         for_each_ring(ring, dev_priv, i)
4439                 ret |= !list_empty(&ring->request_list);
4440
4441 out_unlock:
4442         spin_unlock_irq(&mchdev_lock);
4443
4444         return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4447
4448 /**
4449  * i915_gpu_turbo_disable - disable graphics turbo
4450  *
4451  * Disable graphics turbo by resetting the max frequency and setting the
4452  * current frequency to the default.
4453  */
4454 bool i915_gpu_turbo_disable(void)
4455 {
4456         struct drm_i915_private *dev_priv;
4457         bool ret = true;
4458
4459         spin_lock_irq(&mchdev_lock);
4460         if (!i915_mch_dev) {
4461                 ret = false;
4462                 goto out_unlock;
4463         }
4464         dev_priv = i915_mch_dev;
4465
4466         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4467
4468         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4469                 ret = false;
4470
4471 out_unlock:
4472         spin_unlock_irq(&mchdev_lock);
4473
4474         return ret;
4475 }
4476 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4477
4478 /**
4479  * Tells the intel_ips driver that the i915 driver is now loaded, if
4480  * IPS got loaded first.
4481  *
4482  * This awkward dance is so that neither module has to depend on the
4483  * other in order for IPS to do the appropriate communication of
4484  * GPU turbo limits to i915.
4485  */
4486 static void
4487 ips_ping_for_i915_load(void)
4488 {
4489         void (*link)(void);
4490
4491         link = symbol_get(ips_link_to_i915_driver);
4492         if (link) {
4493                 link();
4494                 symbol_put(ips_link_to_i915_driver);
4495         }
4496 }
4497
4498 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4499 {
4500         /* We only register the i915 ips part with intel-ips once everything is
4501          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4502         spin_lock_irq(&mchdev_lock);
4503         i915_mch_dev = dev_priv;
4504         spin_unlock_irq(&mchdev_lock);
4505
4506         ips_ping_for_i915_load();
4507 }
4508
4509 void intel_gpu_ips_teardown(void)
4510 {
4511         spin_lock_irq(&mchdev_lock);
4512         i915_mch_dev = NULL;
4513         spin_unlock_irq(&mchdev_lock);
4514 }
4515
4516 static void intel_init_emon(struct drm_device *dev)
4517 {
4518         struct drm_i915_private *dev_priv = dev->dev_private;
4519         u32 lcfuse;
4520         u8 pxw[16];
4521         int i;
4522
4523         /* Disable to program */
4524         I915_WRITE(ECR, 0);
4525         POSTING_READ(ECR);
4526
4527         /* Program energy weights for various events */
4528         I915_WRITE(SDEW, 0x15040d00);
4529         I915_WRITE(CSIEW0, 0x007f0000);
4530         I915_WRITE(CSIEW1, 0x1e220004);
4531         I915_WRITE(CSIEW2, 0x04000004);
4532
4533         for (i = 0; i < 5; i++)
4534                 I915_WRITE(PEW + (i * 4), 0);
4535         for (i = 0; i < 3; i++)
4536                 I915_WRITE(DEW + (i * 4), 0);
4537
4538         /* Program P-state weights to account for frequency power adjustment */
4539         for (i = 0; i < 16; i++) {
4540                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4541                 unsigned long freq = intel_pxfreq(pxvidfreq);
4542                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4543                         PXVFREQ_PX_SHIFT;
4544                 unsigned long val;
4545
4546                 val = vid * vid;
4547                 val *= (freq / 1000);
4548                 val *= 255;
4549                 val /= (127*127*900);
4550                 if (val > 0xff)
4551                         DRM_ERROR("bad pxval: %ld\n", val);
4552                 pxw[i] = val;
4553         }
4554         /* Render standby states get 0 weight */
4555         pxw[14] = 0;
4556         pxw[15] = 0;
4557
4558         for (i = 0; i < 4; i++) {
4559                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4560                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4561                 I915_WRITE(PXW + (i * 4), val);
4562         }
4563
4564         /* Adjust magic regs to magic values (more experimental results) */
4565         I915_WRITE(OGW0, 0);
4566         I915_WRITE(OGW1, 0);
4567         I915_WRITE(EG0, 0x00007f00);
4568         I915_WRITE(EG1, 0x0000000e);
4569         I915_WRITE(EG2, 0x000e0000);
4570         I915_WRITE(EG3, 0x68000300);
4571         I915_WRITE(EG4, 0x42000000);
4572         I915_WRITE(EG5, 0x00140031);
4573         I915_WRITE(EG6, 0);
4574         I915_WRITE(EG7, 0);
4575
4576         for (i = 0; i < 8; i++)
4577                 I915_WRITE(PXWL + (i * 4), 0);
4578
4579         /* Enable PMON + select events */
4580         I915_WRITE(ECR, 0x80000019);
4581
4582         lcfuse = I915_READ(LCFUSE02);
4583
4584         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4585 }
4586
4587 void intel_init_gt_powersave(struct drm_device *dev)
4588 {
4589         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4590
4591         if (IS_VALLEYVIEW(dev))
4592                 valleyview_init_gt_powersave(dev);
4593 }
4594
4595 void intel_cleanup_gt_powersave(struct drm_device *dev)
4596 {
4597         if (IS_VALLEYVIEW(dev))
4598                 valleyview_cleanup_gt_powersave(dev);
4599 }
4600
4601 void intel_disable_gt_powersave(struct drm_device *dev)
4602 {
4603         struct drm_i915_private *dev_priv = dev->dev_private;
4604
4605         /* Interrupts should be disabled already to avoid re-arming. */
4606         WARN_ON(dev->irq_enabled);
4607
4608         if (IS_IRONLAKE_M(dev)) {
4609                 ironlake_disable_drps(dev);
4610                 ironlake_disable_rc6(dev);
4611         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4612                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4613                 cancel_work_sync(&dev_priv->rps.work);
4614                 mutex_lock(&dev_priv->rps.hw_lock);
4615                 if (IS_VALLEYVIEW(dev))
4616                         valleyview_disable_rps(dev);
4617                 else
4618                         gen6_disable_rps(dev);
4619                 dev_priv->rps.enabled = false;
4620                 mutex_unlock(&dev_priv->rps.hw_lock);
4621         }
4622 }
4623
4624 static void intel_gen6_powersave_work(struct work_struct *work)
4625 {
4626         struct drm_i915_private *dev_priv =
4627                 container_of(work, struct drm_i915_private,
4628                              rps.delayed_resume_work.work);
4629         struct drm_device *dev = dev_priv->dev;
4630
4631         mutex_lock(&dev_priv->rps.hw_lock);
4632
4633         if (IS_VALLEYVIEW(dev)) {
4634                 valleyview_enable_rps(dev);
4635         } else if (IS_BROADWELL(dev)) {
4636                 gen8_enable_rps(dev);
4637                 __gen6_update_ring_freq(dev);
4638         } else {
4639                 gen6_enable_rps(dev);
4640                 __gen6_update_ring_freq(dev);
4641         }
4642         dev_priv->rps.enabled = true;
4643         mutex_unlock(&dev_priv->rps.hw_lock);
4644
4645         intel_runtime_pm_put(dev_priv);
4646 }
4647
4648 void intel_enable_gt_powersave(struct drm_device *dev)
4649 {
4650         struct drm_i915_private *dev_priv = dev->dev_private;
4651
4652         if (IS_IRONLAKE_M(dev)) {
4653                 mutex_lock(&dev->struct_mutex);
4654                 ironlake_enable_drps(dev);
4655                 ironlake_enable_rc6(dev);
4656                 intel_init_emon(dev);
4657                 mutex_unlock(&dev->struct_mutex);
4658         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4659                 /*
4660                  * PCU communication is slow and this doesn't need to be
4661                  * done at any specific time, so do this out of our fast path
4662                  * to make resume and init faster.
4663                  *
4664                  * We depend on the HW RC6 power context save/restore
4665                  * mechanism when entering D3 through runtime PM suspend. So
4666                  * disable RPM until RPS/RC6 is properly setup. We can only
4667                  * get here via the driver load/system resume/runtime resume
4668                  * paths, so the _noresume version is enough (and in case of
4669                  * runtime resume it's necessary).
4670                  */
4671                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4672                                            round_jiffies_up_relative(HZ)))
4673                         intel_runtime_pm_get_noresume(dev_priv);
4674         }
4675 }
4676
4677 void intel_reset_gt_powersave(struct drm_device *dev)
4678 {
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680
4681         dev_priv->rps.enabled = false;
4682         intel_enable_gt_powersave(dev);
4683 }
4684
4685 static void ibx_init_clock_gating(struct drm_device *dev)
4686 {
4687         struct drm_i915_private *dev_priv = dev->dev_private;
4688
4689         /*
4690          * On Ibex Peak and Cougar Point, we need to disable clock
4691          * gating for the panel power sequencer or it will fail to
4692          * start up when no ports are active.
4693          */
4694         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4695 }
4696
4697 static void g4x_disable_trickle_feed(struct drm_device *dev)
4698 {
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         int pipe;
4701
4702         for_each_pipe(pipe) {
4703                 I915_WRITE(DSPCNTR(pipe),
4704                            I915_READ(DSPCNTR(pipe)) |
4705                            DISPPLANE_TRICKLE_FEED_DISABLE);
4706                 intel_flush_primary_plane(dev_priv, pipe);
4707         }
4708 }
4709
4710 static void ilk_init_lp_watermarks(struct drm_device *dev)
4711 {
4712         struct drm_i915_private *dev_priv = dev->dev_private;
4713
4714         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4715         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4716         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4717
4718         /*
4719          * Don't touch WM1S_LP_EN here.
4720          * Doing so could cause underruns.
4721          */
4722 }
4723
4724 static void ironlake_init_clock_gating(struct drm_device *dev)
4725 {
4726         struct drm_i915_private *dev_priv = dev->dev_private;
4727         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4728
4729         /*
4730          * Required for FBC
4731          * WaFbcDisableDpfcClockGating:ilk
4732          */
4733         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4734                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4735                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4736
4737         I915_WRITE(PCH_3DCGDIS0,
4738                    MARIUNIT_CLOCK_GATE_DISABLE |
4739                    SVSMUNIT_CLOCK_GATE_DISABLE);
4740         I915_WRITE(PCH_3DCGDIS1,
4741                    VFMUNIT_CLOCK_GATE_DISABLE);
4742
4743         /*
4744          * According to the spec the following bits should be set in
4745          * order to enable memory self-refresh
4746          * The bit 22/21 of 0x42004
4747          * The bit 5 of 0x42020
4748          * The bit 15 of 0x45000
4749          */
4750         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4751                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4752                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4753         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4754         I915_WRITE(DISP_ARB_CTL,
4755                    (I915_READ(DISP_ARB_CTL) |
4756                     DISP_FBC_WM_DIS));
4757
4758         ilk_init_lp_watermarks(dev);
4759
4760         /*
4761          * Based on the document from hardware guys the following bits
4762          * should be set unconditionally in order to enable FBC.
4763          * The bit 22 of 0x42000
4764          * The bit 22 of 0x42004
4765          * The bit 7,8,9 of 0x42020.
4766          */
4767         if (IS_IRONLAKE_M(dev)) {
4768                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4769                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4770                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4771                            ILK_FBCQ_DIS);
4772                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4773                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4774                            ILK_DPARB_GATE);
4775         }
4776
4777         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4778
4779         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4780                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4781                    ILK_ELPIN_409_SELECT);
4782         I915_WRITE(_3D_CHICKEN2,
4783                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4784                    _3D_CHICKEN2_WM_READ_PIPELINED);
4785
4786         /* WaDisableRenderCachePipelinedFlush:ilk */
4787         I915_WRITE(CACHE_MODE_0,
4788                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4789
4790         /* WaDisable_RenderCache_OperationalFlush:ilk */
4791         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4792
4793         g4x_disable_trickle_feed(dev);
4794
4795         ibx_init_clock_gating(dev);
4796 }
4797
4798 static void cpt_init_clock_gating(struct drm_device *dev)
4799 {
4800         struct drm_i915_private *dev_priv = dev->dev_private;
4801         int pipe;
4802         uint32_t val;
4803
4804         /*
4805          * On Ibex Peak and Cougar Point, we need to disable clock
4806          * gating for the panel power sequencer or it will fail to
4807          * start up when no ports are active.
4808          */
4809         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4810                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4811                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4812         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4813                    DPLS_EDP_PPS_FIX_DIS);
4814         /* The below fixes the weird display corruption, a few pixels shifted
4815          * downward, on (only) LVDS of some HP laptops with IVY.
4816          */
4817         for_each_pipe(pipe) {
4818                 val = I915_READ(TRANS_CHICKEN2(pipe));
4819                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4820                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4821                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4822                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4823                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4824                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4825                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4826                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4827         }
4828         /* WADP0ClockGatingDisable */
4829         for_each_pipe(pipe) {
4830                 I915_WRITE(TRANS_CHICKEN1(pipe),
4831                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4832         }
4833 }
4834
4835 static void gen6_check_mch_setup(struct drm_device *dev)
4836 {
4837         struct drm_i915_private *dev_priv = dev->dev_private;
4838         uint32_t tmp;
4839
4840         tmp = I915_READ(MCH_SSKPD);
4841         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4842                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4843                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4844                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4845         }
4846 }
4847
4848 static void gen6_init_clock_gating(struct drm_device *dev)
4849 {
4850         struct drm_i915_private *dev_priv = dev->dev_private;
4851         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4852
4853         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4854
4855         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4856                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4857                    ILK_ELPIN_409_SELECT);
4858
4859         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4860         I915_WRITE(_3D_CHICKEN,
4861                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4862
4863         /* WaSetupGtModeTdRowDispatch:snb */
4864         if (IS_SNB_GT1(dev))
4865                 I915_WRITE(GEN6_GT_MODE,
4866                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4867
4868         /* WaDisable_RenderCache_OperationalFlush:snb */
4869         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4870
4871         /*
4872          * BSpec recoomends 8x4 when MSAA is used,
4873          * however in practice 16x4 seems fastest.
4874          *
4875          * Note that PS/WM thread counts depend on the WIZ hashing
4876          * disable bit, which we don't touch here, but it's good
4877          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4878          */
4879         I915_WRITE(GEN6_GT_MODE,
4880                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4881
4882         ilk_init_lp_watermarks(dev);
4883
4884         I915_WRITE(CACHE_MODE_0,
4885                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4886
4887         I915_WRITE(GEN6_UCGCTL1,
4888                    I915_READ(GEN6_UCGCTL1) |
4889                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4890                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4891
4892         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4893          * gating disable must be set.  Failure to set it results in
4894          * flickering pixels due to Z write ordering failures after
4895          * some amount of runtime in the Mesa "fire" demo, and Unigine
4896          * Sanctuary and Tropics, and apparently anything else with
4897          * alpha test or pixel discard.
4898          *
4899          * According to the spec, bit 11 (RCCUNIT) must also be set,
4900          * but we didn't debug actual testcases to find it out.
4901          *
4902          * WaDisableRCCUnitClockGating:snb
4903          * WaDisableRCPBUnitClockGating:snb
4904          */
4905         I915_WRITE(GEN6_UCGCTL2,
4906                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4907                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4908
4909         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4910         I915_WRITE(_3D_CHICKEN3,
4911                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4912
4913         /*
4914          * Bspec says:
4915          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4916          * 3DSTATE_SF number of SF output attributes is more than 16."
4917          */
4918         I915_WRITE(_3D_CHICKEN3,
4919                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4920
4921         /*
4922          * According to the spec the following bits should be
4923          * set in order to enable memory self-refresh and fbc:
4924          * The bit21 and bit22 of 0x42000
4925          * The bit21 and bit22 of 0x42004
4926          * The bit5 and bit7 of 0x42020
4927          * The bit14 of 0x70180
4928          * The bit14 of 0x71180
4929          *
4930          * WaFbcAsynchFlipDisableFbcQueue:snb
4931          */
4932         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4933                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4934                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4935         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4936                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4937                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4938         I915_WRITE(ILK_DSPCLK_GATE_D,
4939                    I915_READ(ILK_DSPCLK_GATE_D) |
4940                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4941                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4942
4943         g4x_disable_trickle_feed(dev);
4944
4945         cpt_init_clock_gating(dev);
4946
4947         gen6_check_mch_setup(dev);
4948 }
4949
4950 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4951 {
4952         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4953
4954         /*
4955          * WaVSThreadDispatchOverride:ivb,vlv
4956          *
4957          * This actually overrides the dispatch
4958          * mode for all thread types.
4959          */
4960         reg &= ~GEN7_FF_SCHED_MASK;
4961         reg |= GEN7_FF_TS_SCHED_HW;
4962         reg |= GEN7_FF_VS_SCHED_HW;
4963         reg |= GEN7_FF_DS_SCHED_HW;
4964
4965         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4966 }
4967
4968 static void lpt_init_clock_gating(struct drm_device *dev)
4969 {
4970         struct drm_i915_private *dev_priv = dev->dev_private;
4971
4972         /*
4973          * TODO: this bit should only be enabled when really needed, then
4974          * disabled when not needed anymore in order to save power.
4975          */
4976         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4977                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4978                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4979                            PCH_LP_PARTITION_LEVEL_DISABLE);
4980
4981         /* WADPOClockGatingDisable:hsw */
4982         I915_WRITE(_TRANSA_CHICKEN1,
4983                    I915_READ(_TRANSA_CHICKEN1) |
4984                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4985 }
4986
4987 static void lpt_suspend_hw(struct drm_device *dev)
4988 {
4989         struct drm_i915_private *dev_priv = dev->dev_private;
4990
4991         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4992                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4993
4994                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4995                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4996         }
4997 }
4998
4999 static void gen8_init_clock_gating(struct drm_device *dev)
5000 {
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         enum pipe pipe;
5003
5004         I915_WRITE(WM3_LP_ILK, 0);
5005         I915_WRITE(WM2_LP_ILK, 0);
5006         I915_WRITE(WM1_LP_ILK, 0);
5007
5008         /* FIXME(BDW): Check all the w/a, some might only apply to
5009          * pre-production hw. */
5010
5011         /* WaDisablePartialInstShootdown:bdw */
5012         I915_WRITE(GEN8_ROW_CHICKEN,
5013                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5014
5015         /* WaDisableThreadStallDopClockGating:bdw */
5016         /* FIXME: Unclear whether we really need this on production bdw. */
5017         I915_WRITE(GEN8_ROW_CHICKEN,
5018                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5019
5020         /*
5021          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5022          * pre-production hardware
5023          */
5024         I915_WRITE(HALF_SLICE_CHICKEN3,
5025                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5026         I915_WRITE(HALF_SLICE_CHICKEN3,
5027                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5028         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5029
5030         I915_WRITE(_3D_CHICKEN3,
5031                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5032
5033         I915_WRITE(COMMON_SLICE_CHICKEN2,
5034                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5035
5036         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5037                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5038
5039         /* WaDisableDopClockGating:bdw May not be needed for production */
5040         I915_WRITE(GEN7_ROW_CHICKEN2,
5041                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5042
5043         /* WaSwitchSolVfFArbitrationPriority:bdw */
5044         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5045
5046         /* WaPsrDPAMaskVBlankInSRD:bdw */
5047         I915_WRITE(CHICKEN_PAR1_1,
5048                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5049
5050         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5051         for_each_pipe(pipe) {
5052                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5053                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5054                            BDW_DPRS_MASK_VBLANK_SRD);
5055         }
5056
5057         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5058          * workaround for for a possible hang in the unlikely event a TLB
5059          * invalidation occurs during a PSD flush.
5060          */
5061         I915_WRITE(HDC_CHICKEN0,
5062                    I915_READ(HDC_CHICKEN0) |
5063                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5064
5065         /* WaVSRefCountFullforceMissDisable:bdw */
5066         /* WaDSRefCountFullforceMissDisable:bdw */
5067         I915_WRITE(GEN7_FF_THREAD_MODE,
5068                    I915_READ(GEN7_FF_THREAD_MODE) &
5069                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5070
5071         /*
5072          * BSpec recommends 8x4 when MSAA is used,
5073          * however in practice 16x4 seems fastest.
5074          *
5075          * Note that PS/WM thread counts depend on the WIZ hashing
5076          * disable bit, which we don't touch here, but it's good
5077          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5078          */
5079         I915_WRITE(GEN7_GT_MODE,
5080                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5081
5082         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5083                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5084
5085         /* WaDisableSDEUnitClockGating:bdw */
5086         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5087                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5088
5089         /* Wa4x4STCOptimizationDisable:bdw */
5090         I915_WRITE(CACHE_MODE_1,
5091                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5092 }
5093
5094 static void haswell_init_clock_gating(struct drm_device *dev)
5095 {
5096         struct drm_i915_private *dev_priv = dev->dev_private;
5097
5098         ilk_init_lp_watermarks(dev);
5099
5100         /* L3 caching of data atomics doesn't work -- disable it. */
5101         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5102         I915_WRITE(HSW_ROW_CHICKEN3,
5103                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5104
5105         /* This is required by WaCatErrorRejectionIssue:hsw */
5106         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5107                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5108                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5109
5110         /* WaVSRefCountFullforceMissDisable:hsw */
5111         I915_WRITE(GEN7_FF_THREAD_MODE,
5112                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5113
5114         /* WaDisable_RenderCache_OperationalFlush:hsw */
5115         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5116
5117         /* enable HiZ Raw Stall Optimization */
5118         I915_WRITE(CACHE_MODE_0_GEN7,
5119                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5120
5121         /* WaDisable4x2SubspanOptimization:hsw */
5122         I915_WRITE(CACHE_MODE_1,
5123                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5124
5125         /*
5126          * BSpec recommends 8x4 when MSAA is used,
5127          * however in practice 16x4 seems fastest.
5128          *
5129          * Note that PS/WM thread counts depend on the WIZ hashing
5130          * disable bit, which we don't touch here, but it's good
5131          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5132          */
5133         I915_WRITE(GEN7_GT_MODE,
5134                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5135
5136         /* WaSwitchSolVfFArbitrationPriority:hsw */
5137         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5138
5139         /* WaRsPkgCStateDisplayPMReq:hsw */
5140         I915_WRITE(CHICKEN_PAR1_1,
5141                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5142
5143         lpt_init_clock_gating(dev);
5144 }
5145
5146 static void ivybridge_init_clock_gating(struct drm_device *dev)
5147 {
5148         struct drm_i915_private *dev_priv = dev->dev_private;
5149         uint32_t snpcr;
5150
5151         ilk_init_lp_watermarks(dev);
5152
5153         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5154
5155         /* WaDisableEarlyCull:ivb */
5156         I915_WRITE(_3D_CHICKEN3,
5157                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5158
5159         /* WaDisableBackToBackFlipFix:ivb */
5160         I915_WRITE(IVB_CHICKEN3,
5161                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5162                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5163
5164         /* WaDisablePSDDualDispatchEnable:ivb */
5165         if (IS_IVB_GT1(dev))
5166                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5167                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5168
5169         /* WaDisable_RenderCache_OperationalFlush:ivb */
5170         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5171
5172         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5173         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5174                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5175
5176         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5177         I915_WRITE(GEN7_L3CNTLREG1,
5178                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5179         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5180                    GEN7_WA_L3_CHICKEN_MODE);
5181         if (IS_IVB_GT1(dev))
5182                 I915_WRITE(GEN7_ROW_CHICKEN2,
5183                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5184         else {
5185                 /* must write both registers */
5186                 I915_WRITE(GEN7_ROW_CHICKEN2,
5187                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5188                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5189                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5190         }
5191
5192         /* WaForceL3Serialization:ivb */
5193         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5194                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5195
5196         /*
5197          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5198          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5199          */
5200         I915_WRITE(GEN6_UCGCTL2,
5201                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5202
5203         /* This is required by WaCatErrorRejectionIssue:ivb */
5204         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5205                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5206                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5207
5208         g4x_disable_trickle_feed(dev);
5209
5210         gen7_setup_fixed_func_scheduler(dev_priv);
5211
5212         if (0) { /* causes HiZ corruption on ivb:gt1 */
5213                 /* enable HiZ Raw Stall Optimization */
5214                 I915_WRITE(CACHE_MODE_0_GEN7,
5215                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5216         }
5217
5218         /* WaDisable4x2SubspanOptimization:ivb */
5219         I915_WRITE(CACHE_MODE_1,
5220                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5221
5222         /*
5223          * BSpec recommends 8x4 when MSAA is used,
5224          * however in practice 16x4 seems fastest.
5225          *
5226          * Note that PS/WM thread counts depend on the WIZ hashing
5227          * disable bit, which we don't touch here, but it's good
5228          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5229          */
5230         I915_WRITE(GEN7_GT_MODE,
5231                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5232
5233         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5234         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5235         snpcr |= GEN6_MBC_SNPCR_MED;
5236         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5237
5238         if (!HAS_PCH_NOP(dev))
5239                 cpt_init_clock_gating(dev);
5240
5241         gen6_check_mch_setup(dev);
5242 }
5243
5244 static void valleyview_init_clock_gating(struct drm_device *dev)
5245 {
5246         struct drm_i915_private *dev_priv = dev->dev_private;
5247         u32 val;
5248
5249         mutex_lock(&dev_priv->rps.hw_lock);
5250         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5251         mutex_unlock(&dev_priv->rps.hw_lock);
5252         switch ((val >> 6) & 3) {
5253         case 0:
5254         case 1:
5255                 dev_priv->mem_freq = 800;
5256                 break;
5257         case 2:
5258                 dev_priv->mem_freq = 1066;
5259                 break;
5260         case 3:
5261                 dev_priv->mem_freq = 1333;
5262                 break;
5263         }
5264         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5265
5266         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5267         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5268                          dev_priv->vlv_cdclk_freq);
5269
5270         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5271
5272         /* WaDisableEarlyCull:vlv */
5273         I915_WRITE(_3D_CHICKEN3,
5274                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5275
5276         /* WaDisableBackToBackFlipFix:vlv */
5277         I915_WRITE(IVB_CHICKEN3,
5278                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5279                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5280
5281         /* WaPsdDispatchEnable:vlv */
5282         /* WaDisablePSDDualDispatchEnable:vlv */
5283         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5284                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5285                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5286
5287         /* WaDisable_RenderCache_OperationalFlush:vlv */
5288         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5289
5290         /* WaForceL3Serialization:vlv */
5291         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5292                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5293
5294         /* WaDisableDopClockGating:vlv */
5295         I915_WRITE(GEN7_ROW_CHICKEN2,
5296                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5297
5298         /* This is required by WaCatErrorRejectionIssue:vlv */
5299         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5300                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5301                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5302
5303         gen7_setup_fixed_func_scheduler(dev_priv);
5304
5305         /*
5306          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5307          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5308          */
5309         I915_WRITE(GEN6_UCGCTL2,
5310                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5311
5312         /* WaDisableL3Bank2xClockGate:vlv */
5313         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5314
5315         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5316
5317         /*
5318          * BSpec says this must be set, even though
5319          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5320          */
5321         I915_WRITE(CACHE_MODE_1,
5322                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5323
5324         /*
5325          * WaIncreaseL3CreditsForVLVB0:vlv
5326          * This is the hardware default actually.
5327          */
5328         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5329
5330         /*
5331          * WaDisableVLVClockGating_VBIIssue:vlv
5332          * Disable clock gating on th GCFG unit to prevent a delay
5333          * in the reporting of vblank events.
5334          */
5335         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5336 }
5337
5338 static void g4x_init_clock_gating(struct drm_device *dev)
5339 {
5340         struct drm_i915_private *dev_priv = dev->dev_private;
5341         uint32_t dspclk_gate;
5342
5343         I915_WRITE(RENCLK_GATE_D1, 0);
5344         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5345                    GS_UNIT_CLOCK_GATE_DISABLE |
5346                    CL_UNIT_CLOCK_GATE_DISABLE);
5347         I915_WRITE(RAMCLK_GATE_D, 0);
5348         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5349                 OVRUNIT_CLOCK_GATE_DISABLE |
5350                 OVCUNIT_CLOCK_GATE_DISABLE;
5351         if (IS_GM45(dev))
5352                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5353         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5354
5355         /* WaDisableRenderCachePipelinedFlush */
5356         I915_WRITE(CACHE_MODE_0,
5357                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5358
5359         /* WaDisable_RenderCache_OperationalFlush:g4x */
5360         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5361
5362         g4x_disable_trickle_feed(dev);
5363 }
5364
5365 static void crestline_init_clock_gating(struct drm_device *dev)
5366 {
5367         struct drm_i915_private *dev_priv = dev->dev_private;
5368
5369         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5370         I915_WRITE(RENCLK_GATE_D2, 0);
5371         I915_WRITE(DSPCLK_GATE_D, 0);
5372         I915_WRITE(RAMCLK_GATE_D, 0);
5373         I915_WRITE16(DEUC, 0);
5374         I915_WRITE(MI_ARB_STATE,
5375                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5376
5377         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5378         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5379 }
5380
5381 static void broadwater_init_clock_gating(struct drm_device *dev)
5382 {
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384
5385         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5386                    I965_RCC_CLOCK_GATE_DISABLE |
5387                    I965_RCPB_CLOCK_GATE_DISABLE |
5388                    I965_ISC_CLOCK_GATE_DISABLE |
5389                    I965_FBC_CLOCK_GATE_DISABLE);
5390         I915_WRITE(RENCLK_GATE_D2, 0);
5391         I915_WRITE(MI_ARB_STATE,
5392                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5393
5394         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5395         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5396 }
5397
5398 static void gen3_init_clock_gating(struct drm_device *dev)
5399 {
5400         struct drm_i915_private *dev_priv = dev->dev_private;
5401         u32 dstate = I915_READ(D_STATE);
5402
5403         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5404                 DSTATE_DOT_CLOCK_GATING;
5405         I915_WRITE(D_STATE, dstate);
5406
5407         if (IS_PINEVIEW(dev))
5408                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5409
5410         /* IIR "flip pending" means done if this bit is set */
5411         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5412 }
5413
5414 static void i85x_init_clock_gating(struct drm_device *dev)
5415 {
5416         struct drm_i915_private *dev_priv = dev->dev_private;
5417
5418         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5419 }
5420
5421 static void i830_init_clock_gating(struct drm_device *dev)
5422 {
5423         struct drm_i915_private *dev_priv = dev->dev_private;
5424
5425         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5426 }
5427
5428 void intel_init_clock_gating(struct drm_device *dev)
5429 {
5430         struct drm_i915_private *dev_priv = dev->dev_private;
5431
5432         dev_priv->display.init_clock_gating(dev);
5433 }
5434
5435 void intel_suspend_hw(struct drm_device *dev)
5436 {
5437         if (HAS_PCH_LPT(dev))
5438                 lpt_suspend_hw(dev);
5439 }
5440
5441 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5442         for (i = 0;                                                     \
5443              i < (power_domains)->power_well_count &&                   \
5444                  ((power_well) = &(power_domains)->power_wells[i]);     \
5445              i++)                                                       \
5446                 if ((power_well)->domains & (domain_mask))
5447
5448 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5449         for (i = (power_domains)->power_well_count - 1;                  \
5450              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5451              i--)                                                        \
5452                 if ((power_well)->domains & (domain_mask))
5453
5454 /**
5455  * We should only use the power well if we explicitly asked the hardware to
5456  * enable it, so check if it's enabled and also check if we've requested it to
5457  * be enabled.
5458  */
5459 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5460                                    struct i915_power_well *power_well)
5461 {
5462         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5463                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5464 }
5465
5466 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5467                                     enum intel_display_power_domain domain)
5468 {
5469         struct i915_power_domains *power_domains;
5470
5471         power_domains = &dev_priv->power_domains;
5472
5473         return power_domains->domain_use_count[domain];
5474 }
5475
5476 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5477                                  enum intel_display_power_domain domain)
5478 {
5479         struct i915_power_domains *power_domains;
5480         struct i915_power_well *power_well;
5481         bool is_enabled;
5482         int i;
5483
5484         if (dev_priv->pm.suspended)
5485                 return false;
5486
5487         power_domains = &dev_priv->power_domains;
5488
5489         is_enabled = true;
5490
5491         mutex_lock(&power_domains->lock);
5492         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5493                 if (power_well->always_on)
5494                         continue;
5495
5496                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5497                         is_enabled = false;
5498                         break;
5499                 }
5500         }
5501         mutex_unlock(&power_domains->lock);
5502
5503         return is_enabled;
5504 }
5505
5506 /*
5507  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5508  * when not needed anymore. We have 4 registers that can request the power well
5509  * to be enabled, and it will only be disabled if none of the registers is
5510  * requesting it to be enabled.
5511  */
5512 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5513 {
5514         struct drm_device *dev = dev_priv->dev;
5515         unsigned long irqflags;
5516
5517         /*
5518          * After we re-enable the power well, if we touch VGA register 0x3d5
5519          * we'll get unclaimed register interrupts. This stops after we write
5520          * anything to the VGA MSR register. The vgacon module uses this
5521          * register all the time, so if we unbind our driver and, as a
5522          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5523          * console_unlock(). So make here we touch the VGA MSR register, making
5524          * sure vgacon can keep working normally without triggering interrupts
5525          * and error messages.
5526          */
5527         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5528         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5529         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5530
5531         if (IS_BROADWELL(dev)) {
5532                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5533                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5534                            dev_priv->de_irq_mask[PIPE_B]);
5535                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5536                            ~dev_priv->de_irq_mask[PIPE_B] |
5537                            GEN8_PIPE_VBLANK);
5538                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5539                            dev_priv->de_irq_mask[PIPE_C]);
5540                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5541                            ~dev_priv->de_irq_mask[PIPE_C] |
5542                            GEN8_PIPE_VBLANK);
5543                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5544                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5545         }
5546 }
5547
5548 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5549                                struct i915_power_well *power_well, bool enable)
5550 {
5551         bool is_enabled, enable_requested;
5552         uint32_t tmp;
5553
5554         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5555         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5556         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5557
5558         if (enable) {
5559                 if (!enable_requested)
5560                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5561                                    HSW_PWR_WELL_ENABLE_REQUEST);
5562
5563                 if (!is_enabled) {
5564                         DRM_DEBUG_KMS("Enabling power well\n");
5565                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5566                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5567                                 DRM_ERROR("Timeout enabling power well\n");
5568                 }
5569
5570                 hsw_power_well_post_enable(dev_priv);
5571         } else {
5572                 if (enable_requested) {
5573                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5574                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5575                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5576                 }
5577         }
5578 }
5579
5580 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5581                                    struct i915_power_well *power_well)
5582 {
5583         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5584
5585         /*
5586          * We're taking over the BIOS, so clear any requests made by it since
5587          * the driver is in charge now.
5588          */
5589         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5590                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5591 }
5592
5593 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5594                                   struct i915_power_well *power_well)
5595 {
5596         hsw_set_power_well(dev_priv, power_well, true);
5597 }
5598
5599 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5600                                    struct i915_power_well *power_well)
5601 {
5602         hsw_set_power_well(dev_priv, power_well, false);
5603 }
5604
5605 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5606                                            struct i915_power_well *power_well)
5607 {
5608 }
5609
5610 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5611                                              struct i915_power_well *power_well)
5612 {
5613         return true;
5614 }
5615
5616 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5617                                struct i915_power_well *power_well, bool enable)
5618 {
5619         enum punit_power_well power_well_id = power_well->data;
5620         u32 mask;
5621         u32 state;
5622         u32 ctrl;
5623
5624         mask = PUNIT_PWRGT_MASK(power_well_id);
5625         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5626                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5627
5628         mutex_lock(&dev_priv->rps.hw_lock);
5629
5630 #define COND \
5631         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5632
5633         if (COND)
5634                 goto out;
5635
5636         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5637         ctrl &= ~mask;
5638         ctrl |= state;
5639         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5640
5641         if (wait_for(COND, 100))
5642                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5643                           state,
5644                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5645
5646 #undef COND
5647
5648 out:
5649         mutex_unlock(&dev_priv->rps.hw_lock);
5650 }
5651
5652 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5653                                    struct i915_power_well *power_well)
5654 {
5655         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5656 }
5657
5658 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5659                                   struct i915_power_well *power_well)
5660 {
5661         vlv_set_power_well(dev_priv, power_well, true);
5662 }
5663
5664 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5665                                    struct i915_power_well *power_well)
5666 {
5667         vlv_set_power_well(dev_priv, power_well, false);
5668 }
5669
5670 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5671                                    struct i915_power_well *power_well)
5672 {
5673         int power_well_id = power_well->data;
5674         bool enabled = false;
5675         u32 mask;
5676         u32 state;
5677         u32 ctrl;
5678
5679         mask = PUNIT_PWRGT_MASK(power_well_id);
5680         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5681
5682         mutex_lock(&dev_priv->rps.hw_lock);
5683
5684         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5685         /*
5686          * We only ever set the power-on and power-gate states, anything
5687          * else is unexpected.
5688          */
5689         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5690                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5691         if (state == ctrl)
5692                 enabled = true;
5693
5694         /*
5695          * A transient state at this point would mean some unexpected party
5696          * is poking at the power controls too.
5697          */
5698         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5699         WARN_ON(ctrl != state);
5700
5701         mutex_unlock(&dev_priv->rps.hw_lock);
5702
5703         return enabled;
5704 }
5705
5706 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5707                                           struct i915_power_well *power_well)
5708 {
5709         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5710
5711         vlv_set_power_well(dev_priv, power_well, true);
5712
5713         spin_lock_irq(&dev_priv->irq_lock);
5714         valleyview_enable_display_irqs(dev_priv);
5715         spin_unlock_irq(&dev_priv->irq_lock);
5716
5717         /*
5718          * During driver initialization/resume we can avoid restoring the
5719          * part of the HW/SW state that will be inited anyway explicitly.
5720          */
5721         if (dev_priv->power_domains.initializing)
5722                 return;
5723
5724         intel_hpd_init(dev_priv->dev);
5725
5726         i915_redisable_vga_power_on(dev_priv->dev);
5727 }
5728
5729 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5730                                            struct i915_power_well *power_well)
5731 {
5732         struct drm_device *dev = dev_priv->dev;
5733         enum pipe pipe;
5734
5735         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5736
5737         spin_lock_irq(&dev_priv->irq_lock);
5738         for_each_pipe(pipe)
5739                 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5740
5741         valleyview_disable_display_irqs(dev_priv);
5742         spin_unlock_irq(&dev_priv->irq_lock);
5743
5744         vlv_set_power_well(dev_priv, power_well, false);
5745 }
5746
5747 static void check_power_well_state(struct drm_i915_private *dev_priv,
5748                                    struct i915_power_well *power_well)
5749 {
5750         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5751
5752         if (power_well->always_on || !i915.disable_power_well) {
5753                 if (!enabled)
5754                         goto mismatch;
5755
5756                 return;
5757         }
5758
5759         if (enabled != (power_well->count > 0))
5760                 goto mismatch;
5761
5762         return;
5763
5764 mismatch:
5765         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5766                   power_well->name, power_well->always_on, enabled,
5767                   power_well->count, i915.disable_power_well);
5768 }
5769
5770 void intel_display_power_get(struct drm_i915_private *dev_priv,
5771                              enum intel_display_power_domain domain)
5772 {
5773         struct i915_power_domains *power_domains;
5774         struct i915_power_well *power_well;
5775         int i;
5776
5777         intel_runtime_pm_get(dev_priv);
5778
5779         power_domains = &dev_priv->power_domains;
5780
5781         mutex_lock(&power_domains->lock);
5782
5783         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5784                 if (!power_well->count++) {
5785                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5786                         power_well->ops->enable(dev_priv, power_well);
5787                 }
5788
5789                 check_power_well_state(dev_priv, power_well);
5790         }
5791
5792         power_domains->domain_use_count[domain]++;
5793
5794         mutex_unlock(&power_domains->lock);
5795 }
5796
5797 void intel_display_power_put(struct drm_i915_private *dev_priv,
5798                              enum intel_display_power_domain domain)
5799 {
5800         struct i915_power_domains *power_domains;
5801         struct i915_power_well *power_well;
5802         int i;
5803
5804         power_domains = &dev_priv->power_domains;
5805
5806         mutex_lock(&power_domains->lock);
5807
5808         WARN_ON(!power_domains->domain_use_count[domain]);
5809         power_domains->domain_use_count[domain]--;
5810
5811         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5812                 WARN_ON(!power_well->count);
5813
5814                 if (!--power_well->count && i915.disable_power_well) {
5815                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5816                         power_well->ops->disable(dev_priv, power_well);
5817                 }
5818
5819                 check_power_well_state(dev_priv, power_well);
5820         }
5821
5822         mutex_unlock(&power_domains->lock);
5823
5824         intel_runtime_pm_put(dev_priv);
5825 }
5826
5827 static struct i915_power_domains *hsw_pwr;
5828
5829 /* Display audio driver power well request */
5830 void i915_request_power_well(void)
5831 {
5832         struct drm_i915_private *dev_priv;
5833
5834         if (WARN_ON(!hsw_pwr))
5835                 return;
5836
5837         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5838                                 power_domains);
5839         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5840 }
5841 EXPORT_SYMBOL_GPL(i915_request_power_well);
5842
5843 /* Display audio driver power well release */
5844 void i915_release_power_well(void)
5845 {
5846         struct drm_i915_private *dev_priv;
5847
5848         if (WARN_ON(!hsw_pwr))
5849                 return;
5850
5851         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5852                                 power_domains);
5853         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5854 }
5855 EXPORT_SYMBOL_GPL(i915_release_power_well);
5856
5857 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5858
5859 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
5860         BIT(POWER_DOMAIN_PIPE_A) |                      \
5861         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
5862         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
5863         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
5864         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
5865         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
5866         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
5867         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
5868         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
5869         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
5870         BIT(POWER_DOMAIN_PORT_CRT) |                    \
5871         BIT(POWER_DOMAIN_INIT))
5872 #define HSW_DISPLAY_POWER_DOMAINS (                             \
5873         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
5874         BIT(POWER_DOMAIN_INIT))
5875
5876 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
5877         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
5878         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5879 #define BDW_DISPLAY_POWER_DOMAINS (                             \
5880         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
5881         BIT(POWER_DOMAIN_INIT))
5882
5883 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
5884 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
5885
5886 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
5887         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5888         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5889         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5890         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5891         BIT(POWER_DOMAIN_PORT_CRT) |            \
5892         BIT(POWER_DOMAIN_INIT))
5893
5894 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
5895         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5896         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5897         BIT(POWER_DOMAIN_INIT))
5898
5899 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
5900         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5901         BIT(POWER_DOMAIN_INIT))
5902
5903 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
5904         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5905         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5906         BIT(POWER_DOMAIN_INIT))
5907
5908 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
5909         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5910         BIT(POWER_DOMAIN_INIT))
5911
5912 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5913         .sync_hw = i9xx_always_on_power_well_noop,
5914         .enable = i9xx_always_on_power_well_noop,
5915         .disable = i9xx_always_on_power_well_noop,
5916         .is_enabled = i9xx_always_on_power_well_enabled,
5917 };
5918
5919 static struct i915_power_well i9xx_always_on_power_well[] = {
5920         {
5921                 .name = "always-on",
5922                 .always_on = 1,
5923                 .domains = POWER_DOMAIN_MASK,
5924                 .ops = &i9xx_always_on_power_well_ops,
5925         },
5926 };
5927
5928 static const struct i915_power_well_ops hsw_power_well_ops = {
5929         .sync_hw = hsw_power_well_sync_hw,
5930         .enable = hsw_power_well_enable,
5931         .disable = hsw_power_well_disable,
5932         .is_enabled = hsw_power_well_enabled,
5933 };
5934
5935 static struct i915_power_well hsw_power_wells[] = {
5936         {
5937                 .name = "always-on",
5938                 .always_on = 1,
5939                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5940                 .ops = &i9xx_always_on_power_well_ops,
5941         },
5942         {
5943                 .name = "display",
5944                 .domains = HSW_DISPLAY_POWER_DOMAINS,
5945                 .ops = &hsw_power_well_ops,
5946         },
5947 };
5948
5949 static struct i915_power_well bdw_power_wells[] = {
5950         {
5951                 .name = "always-on",
5952                 .always_on = 1,
5953                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5954                 .ops = &i9xx_always_on_power_well_ops,
5955         },
5956         {
5957                 .name = "display",
5958                 .domains = BDW_DISPLAY_POWER_DOMAINS,
5959                 .ops = &hsw_power_well_ops,
5960         },
5961 };
5962
5963 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5964         .sync_hw = vlv_power_well_sync_hw,
5965         .enable = vlv_display_power_well_enable,
5966         .disable = vlv_display_power_well_disable,
5967         .is_enabled = vlv_power_well_enabled,
5968 };
5969
5970 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5971         .sync_hw = vlv_power_well_sync_hw,
5972         .enable = vlv_power_well_enable,
5973         .disable = vlv_power_well_disable,
5974         .is_enabled = vlv_power_well_enabled,
5975 };
5976
5977 static struct i915_power_well vlv_power_wells[] = {
5978         {
5979                 .name = "always-on",
5980                 .always_on = 1,
5981                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5982                 .ops = &i9xx_always_on_power_well_ops,
5983         },
5984         {
5985                 .name = "display",
5986                 .domains = VLV_DISPLAY_POWER_DOMAINS,
5987                 .data = PUNIT_POWER_WELL_DISP2D,
5988                 .ops = &vlv_display_power_well_ops,
5989         },
5990         {
5991                 .name = "dpio-common",
5992                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5993                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5994                 .ops = &vlv_dpio_power_well_ops,
5995         },
5996         {
5997                 .name = "dpio-tx-b-01",
5998                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5999                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6000                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6001                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6002                 .ops = &vlv_dpio_power_well_ops,
6003                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6004         },
6005         {
6006                 .name = "dpio-tx-b-23",
6007                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6008                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6009                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6010                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6011                 .ops = &vlv_dpio_power_well_ops,
6012                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6013         },
6014         {
6015                 .name = "dpio-tx-c-01",
6016                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6017                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6018                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6019                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6020                 .ops = &vlv_dpio_power_well_ops,
6021                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6022         },
6023         {
6024                 .name = "dpio-tx-c-23",
6025                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6026                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6027                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6028                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6029                 .ops = &vlv_dpio_power_well_ops,
6030                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6031         },
6032 };
6033
6034 #define set_power_wells(power_domains, __power_wells) ({                \
6035         (power_domains)->power_wells = (__power_wells);                 \
6036         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6037 })
6038
6039 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6040 {
6041         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6042
6043         mutex_init(&power_domains->lock);
6044
6045         /*
6046          * The enabling order will be from lower to higher indexed wells,
6047          * the disabling order is reversed.
6048          */
6049         if (IS_HASWELL(dev_priv->dev)) {
6050                 set_power_wells(power_domains, hsw_power_wells);
6051                 hsw_pwr = power_domains;
6052         } else if (IS_BROADWELL(dev_priv->dev)) {
6053                 set_power_wells(power_domains, bdw_power_wells);
6054                 hsw_pwr = power_domains;
6055         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6056                 set_power_wells(power_domains, vlv_power_wells);
6057         } else {
6058                 set_power_wells(power_domains, i9xx_always_on_power_well);
6059         }
6060
6061         return 0;
6062 }
6063
6064 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6065 {
6066         hsw_pwr = NULL;
6067 }
6068
6069 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6070 {
6071         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6072         struct i915_power_well *power_well;
6073         int i;
6074
6075         mutex_lock(&power_domains->lock);
6076         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
6077                 power_well->ops->sync_hw(dev_priv, power_well);
6078         mutex_unlock(&power_domains->lock);
6079 }
6080
6081 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6082 {
6083         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6084
6085         power_domains->initializing = true;
6086         /* For now, we need the power well to be always enabled. */
6087         intel_display_set_init_power(dev_priv, true);
6088         intel_power_domains_resume(dev_priv);
6089         power_domains->initializing = false;
6090 }
6091
6092 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6093 {
6094         intel_runtime_pm_get(dev_priv);
6095 }
6096
6097 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6098 {
6099         intel_runtime_pm_put(dev_priv);
6100 }
6101
6102 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6103 {
6104         struct drm_device *dev = dev_priv->dev;
6105         struct device *device = &dev->pdev->dev;
6106
6107         if (!HAS_RUNTIME_PM(dev))
6108                 return;
6109
6110         pm_runtime_get_sync(device);
6111         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6112 }
6113
6114 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6115 {
6116         struct drm_device *dev = dev_priv->dev;
6117         struct device *device = &dev->pdev->dev;
6118
6119         if (!HAS_RUNTIME_PM(dev))
6120                 return;
6121
6122         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6123         pm_runtime_get_noresume(device);
6124 }
6125
6126 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6127 {
6128         struct drm_device *dev = dev_priv->dev;
6129         struct device *device = &dev->pdev->dev;
6130
6131         if (!HAS_RUNTIME_PM(dev))
6132                 return;
6133
6134         pm_runtime_mark_last_busy(device);
6135         pm_runtime_put_autosuspend(device);
6136 }
6137
6138 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6139 {
6140         struct drm_device *dev = dev_priv->dev;
6141         struct device *device = &dev->pdev->dev;
6142
6143         if (!HAS_RUNTIME_PM(dev))
6144                 return;
6145
6146         pm_runtime_set_active(device);
6147
6148         /*
6149          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6150          * requirement.
6151          */
6152         if (!intel_enable_rc6(dev)) {
6153                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6154                 return;
6155         }
6156
6157         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6158         pm_runtime_mark_last_busy(device);
6159         pm_runtime_use_autosuspend(device);
6160
6161         pm_runtime_put_autosuspend(device);
6162 }
6163
6164 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6165 {
6166         struct drm_device *dev = dev_priv->dev;
6167         struct device *device = &dev->pdev->dev;
6168
6169         if (!HAS_RUNTIME_PM(dev))
6170                 return;
6171
6172         if (!intel_enable_rc6(dev))
6173                 return;
6174
6175         /* Make sure we're not suspended first. */
6176         pm_runtime_get_sync(device);
6177         pm_runtime_disable(device);
6178 }
6179
6180 /* Set up chip specific power management-related functions */
6181 void intel_init_pm(struct drm_device *dev)
6182 {
6183         struct drm_i915_private *dev_priv = dev->dev_private;
6184
6185         if (HAS_FBC(dev)) {
6186                 if (INTEL_INFO(dev)->gen >= 7) {
6187                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6188                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6189                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6190                 } else if (INTEL_INFO(dev)->gen >= 5) {
6191                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6192                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6193                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6194                 } else if (IS_GM45(dev)) {
6195                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6196                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6197                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6198                 } else {
6199                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6200                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6201                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6202
6203                         /* This value was pulled out of someone's hat */
6204                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6205                 }
6206         }
6207
6208         /* For cxsr */
6209         if (IS_PINEVIEW(dev))
6210                 i915_pineview_get_mem_freq(dev);
6211         else if (IS_GEN5(dev))
6212                 i915_ironlake_get_mem_freq(dev);
6213
6214         /* For FIFO watermark updates */
6215         if (HAS_PCH_SPLIT(dev)) {
6216                 ilk_setup_wm_latency(dev);
6217
6218                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6219                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6220                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6221                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6222                         dev_priv->display.update_wm = ilk_update_wm;
6223                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6224                 } else {
6225                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6226                                       "Disable CxSR\n");
6227                 }
6228
6229                 if (IS_GEN5(dev))
6230                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6231                 else if (IS_GEN6(dev))
6232                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6233                 else if (IS_IVYBRIDGE(dev))
6234                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6235                 else if (IS_HASWELL(dev))
6236                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6237                 else if (INTEL_INFO(dev)->gen == 8)
6238                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6239         } else if (IS_VALLEYVIEW(dev)) {
6240                 dev_priv->display.update_wm = valleyview_update_wm;
6241                 dev_priv->display.init_clock_gating =
6242                         valleyview_init_clock_gating;
6243         } else if (IS_PINEVIEW(dev)) {
6244                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6245                                             dev_priv->is_ddr3,
6246                                             dev_priv->fsb_freq,
6247                                             dev_priv->mem_freq)) {
6248                         DRM_INFO("failed to find known CxSR latency "
6249                                  "(found ddr%s fsb freq %d, mem freq %d), "
6250                                  "disabling CxSR\n",
6251                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6252                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6253                         /* Disable CxSR and never update its watermark again */
6254                         pineview_disable_cxsr(dev);
6255                         dev_priv->display.update_wm = NULL;
6256                 } else
6257                         dev_priv->display.update_wm = pineview_update_wm;
6258                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6259         } else if (IS_G4X(dev)) {
6260                 dev_priv->display.update_wm = g4x_update_wm;
6261                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6262         } else if (IS_GEN4(dev)) {
6263                 dev_priv->display.update_wm = i965_update_wm;
6264                 if (IS_CRESTLINE(dev))
6265                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6266                 else if (IS_BROADWATER(dev))
6267                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6268         } else if (IS_GEN3(dev)) {
6269                 dev_priv->display.update_wm = i9xx_update_wm;
6270                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6271                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6272         } else if (IS_GEN2(dev)) {
6273                 if (INTEL_INFO(dev)->num_pipes == 1) {
6274                         dev_priv->display.update_wm = i845_update_wm;
6275                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6276                 } else {
6277                         dev_priv->display.update_wm = i9xx_update_wm;
6278                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6279                 }
6280
6281                 if (IS_I85X(dev) || IS_I865G(dev))
6282                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6283                 else
6284                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6285         } else {
6286                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6287         }
6288 }
6289
6290 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6291 {
6292         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6293
6294         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6295                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6296                 return -EAGAIN;
6297         }
6298
6299         I915_WRITE(GEN6_PCODE_DATA, *val);
6300         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6301
6302         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6303                      500)) {
6304                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6305                 return -ETIMEDOUT;
6306         }
6307
6308         *val = I915_READ(GEN6_PCODE_DATA);
6309         I915_WRITE(GEN6_PCODE_DATA, 0);
6310
6311         return 0;
6312 }
6313
6314 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6315 {
6316         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6317
6318         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6319                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6320                 return -EAGAIN;
6321         }
6322
6323         I915_WRITE(GEN6_PCODE_DATA, val);
6324         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6325
6326         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6327                      500)) {
6328                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6329                 return -ETIMEDOUT;
6330         }
6331
6332         I915_WRITE(GEN6_PCODE_DATA, 0);
6333
6334         return 0;
6335 }
6336
6337 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6338 {
6339         int div;
6340
6341         /* 4 x czclk */
6342         switch (dev_priv->mem_freq) {
6343         case 800:
6344                 div = 10;
6345                 break;
6346         case 1066:
6347                 div = 12;
6348                 break;
6349         case 1333:
6350                 div = 16;
6351                 break;
6352         default:
6353                 return -1;
6354         }
6355
6356         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6357 }
6358
6359 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6360 {
6361         int mul;
6362
6363         /* 4 x czclk */
6364         switch (dev_priv->mem_freq) {
6365         case 800:
6366                 mul = 10;
6367                 break;
6368         case 1066:
6369                 mul = 12;
6370                 break;
6371         case 1333:
6372                 mul = 16;
6373                 break;
6374         default:
6375                 return -1;
6376         }
6377
6378         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6379 }
6380
6381 void intel_pm_setup(struct drm_device *dev)
6382 {
6383         struct drm_i915_private *dev_priv = dev->dev_private;
6384
6385         mutex_init(&dev_priv->rps.hw_lock);
6386
6387         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6388                           intel_gen6_powersave_work);
6389
6390         dev_priv->pm.suspended = false;
6391         dev_priv->pm.irqs_disabled = false;
6392 }