drm/i915:Initialize the second BSD ring on BDW GT3 machine
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int ring_space(struct intel_ring_buffer *ring)
44 {
45         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += ring->size;
48         return space;
49 }
50
51 static bool intel_ring_stopped(struct intel_ring_buffer *ring)
52 {
53         struct drm_i915_private *dev_priv = ring->dev->dev_private;
54         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
55 }
56
57 void __intel_ring_advance(struct intel_ring_buffer *ring)
58 {
59         ring->tail &= ring->size - 1;
60         if (intel_ring_stopped(ring))
61                 return;
62         ring->write_tail(ring, ring->tail);
63 }
64
65 static int
66 gen2_render_ring_flush(struct intel_ring_buffer *ring,
67                        u32      invalidate_domains,
68                        u32      flush_domains)
69 {
70         u32 cmd;
71         int ret;
72
73         cmd = MI_FLUSH;
74         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
75                 cmd |= MI_NO_WRITE_FLUSH;
76
77         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
78                 cmd |= MI_READ_FLUSH;
79
80         ret = intel_ring_begin(ring, 2);
81         if (ret)
82                 return ret;
83
84         intel_ring_emit(ring, cmd);
85         intel_ring_emit(ring, MI_NOOP);
86         intel_ring_advance(ring);
87
88         return 0;
89 }
90
91 static int
92 gen4_render_ring_flush(struct intel_ring_buffer *ring,
93                        u32      invalidate_domains,
94                        u32      flush_domains)
95 {
96         struct drm_device *dev = ring->dev;
97         u32 cmd;
98         int ret;
99
100         /*
101          * read/write caches:
102          *
103          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
104          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
105          * also flushed at 2d versus 3d pipeline switches.
106          *
107          * read-only caches:
108          *
109          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
110          * MI_READ_FLUSH is set, and is always flushed on 965.
111          *
112          * I915_GEM_DOMAIN_COMMAND may not exist?
113          *
114          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
115          * invalidated when MI_EXE_FLUSH is set.
116          *
117          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
118          * invalidated with every MI_FLUSH.
119          *
120          * TLBs:
121          *
122          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
123          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
124          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
125          * are flushed at any MI_FLUSH.
126          */
127
128         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
129         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
130                 cmd &= ~MI_NO_WRITE_FLUSH;
131         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
132                 cmd |= MI_EXE_FLUSH;
133
134         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
135             (IS_G4X(dev) || IS_GEN5(dev)))
136                 cmd |= MI_INVALIDATE_ISP;
137
138         ret = intel_ring_begin(ring, 2);
139         if (ret)
140                 return ret;
141
142         intel_ring_emit(ring, cmd);
143         intel_ring_emit(ring, MI_NOOP);
144         intel_ring_advance(ring);
145
146         return 0;
147 }
148
149 /**
150  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
151  * implementing two workarounds on gen6.  From section 1.4.7.1
152  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
153  *
154  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
155  * produced by non-pipelined state commands), software needs to first
156  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
157  * 0.
158  *
159  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
160  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
161  *
162  * And the workaround for these two requires this workaround first:
163  *
164  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
165  * BEFORE the pipe-control with a post-sync op and no write-cache
166  * flushes.
167  *
168  * And this last workaround is tricky because of the requirements on
169  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
170  * volume 2 part 1:
171  *
172  *     "1 of the following must also be set:
173  *      - Render Target Cache Flush Enable ([12] of DW1)
174  *      - Depth Cache Flush Enable ([0] of DW1)
175  *      - Stall at Pixel Scoreboard ([1] of DW1)
176  *      - Depth Stall ([13] of DW1)
177  *      - Post-Sync Operation ([13] of DW1)
178  *      - Notify Enable ([8] of DW1)"
179  *
180  * The cache flushes require the workaround flush that triggered this
181  * one, so we can't use it.  Depth stall would trigger the same.
182  * Post-sync nonzero is what triggered this second workaround, so we
183  * can't use that one either.  Notify enable is IRQs, which aren't
184  * really our business.  That leaves only stall at scoreboard.
185  */
186 static int
187 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
188 {
189         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
190         int ret;
191
192
193         ret = intel_ring_begin(ring, 6);
194         if (ret)
195                 return ret;
196
197         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
198         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
199                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
200         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
201         intel_ring_emit(ring, 0); /* low dword */
202         intel_ring_emit(ring, 0); /* high dword */
203         intel_ring_emit(ring, MI_NOOP);
204         intel_ring_advance(ring);
205
206         ret = intel_ring_begin(ring, 6);
207         if (ret)
208                 return ret;
209
210         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
211         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
212         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213         intel_ring_emit(ring, 0);
214         intel_ring_emit(ring, 0);
215         intel_ring_emit(ring, MI_NOOP);
216         intel_ring_advance(ring);
217
218         return 0;
219 }
220
221 static int
222 gen6_render_ring_flush(struct intel_ring_buffer *ring,
223                          u32 invalidate_domains, u32 flush_domains)
224 {
225         u32 flags = 0;
226         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
227         int ret;
228
229         /* Force SNB workarounds for PIPE_CONTROL flushes */
230         ret = intel_emit_post_sync_nonzero_flush(ring);
231         if (ret)
232                 return ret;
233
234         /* Just flush everything.  Experiments have shown that reducing the
235          * number of bits based on the write domains has little performance
236          * impact.
237          */
238         if (flush_domains) {
239                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
240                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
241                 /*
242                  * Ensure that any following seqno writes only happen
243                  * when the render cache is indeed flushed.
244                  */
245                 flags |= PIPE_CONTROL_CS_STALL;
246         }
247         if (invalidate_domains) {
248                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
249                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
250                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
251                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
252                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
253                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
254                 /*
255                  * TLB invalidate requires a post-sync write.
256                  */
257                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
258         }
259
260         ret = intel_ring_begin(ring, 4);
261         if (ret)
262                 return ret;
263
264         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
265         intel_ring_emit(ring, flags);
266         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
267         intel_ring_emit(ring, 0);
268         intel_ring_advance(ring);
269
270         return 0;
271 }
272
273 static int
274 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
275 {
276         int ret;
277
278         ret = intel_ring_begin(ring, 4);
279         if (ret)
280                 return ret;
281
282         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
283         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
284                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
285         intel_ring_emit(ring, 0);
286         intel_ring_emit(ring, 0);
287         intel_ring_advance(ring);
288
289         return 0;
290 }
291
292 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
293 {
294         int ret;
295
296         if (!ring->fbc_dirty)
297                 return 0;
298
299         ret = intel_ring_begin(ring, 6);
300         if (ret)
301                 return ret;
302         /* WaFbcNukeOn3DBlt:ivb/hsw */
303         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
304         intel_ring_emit(ring, MSG_FBC_REND_STATE);
305         intel_ring_emit(ring, value);
306         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
307         intel_ring_emit(ring, MSG_FBC_REND_STATE);
308         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
309         intel_ring_advance(ring);
310
311         ring->fbc_dirty = false;
312         return 0;
313 }
314
315 static int
316 gen7_render_ring_flush(struct intel_ring_buffer *ring,
317                        u32 invalidate_domains, u32 flush_domains)
318 {
319         u32 flags = 0;
320         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
321         int ret;
322
323         /*
324          * Ensure that any following seqno writes only happen when the render
325          * cache is indeed flushed.
326          *
327          * Workaround: 4th PIPE_CONTROL command (except the ones with only
328          * read-cache invalidate bits set) must have the CS_STALL bit set. We
329          * don't try to be clever and just set it unconditionally.
330          */
331         flags |= PIPE_CONTROL_CS_STALL;
332
333         /* Just flush everything.  Experiments have shown that reducing the
334          * number of bits based on the write domains has little performance
335          * impact.
336          */
337         if (flush_domains) {
338                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
339                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
340         }
341         if (invalidate_domains) {
342                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
343                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
344                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
345                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
346                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
347                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
348                 /*
349                  * TLB invalidate requires a post-sync write.
350                  */
351                 flags |= PIPE_CONTROL_QW_WRITE;
352                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
353
354                 /* Workaround: we must issue a pipe_control with CS-stall bit
355                  * set before a pipe_control command that has the state cache
356                  * invalidate bit set. */
357                 gen7_render_ring_cs_stall_wa(ring);
358         }
359
360         ret = intel_ring_begin(ring, 4);
361         if (ret)
362                 return ret;
363
364         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
365         intel_ring_emit(ring, flags);
366         intel_ring_emit(ring, scratch_addr);
367         intel_ring_emit(ring, 0);
368         intel_ring_advance(ring);
369
370         if (!invalidate_domains && flush_domains)
371                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
372
373         return 0;
374 }
375
376 static int
377 gen8_render_ring_flush(struct intel_ring_buffer *ring,
378                        u32 invalidate_domains, u32 flush_domains)
379 {
380         u32 flags = 0;
381         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
382         int ret;
383
384         flags |= PIPE_CONTROL_CS_STALL;
385
386         if (flush_domains) {
387                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
388                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
389         }
390         if (invalidate_domains) {
391                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
392                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
393                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
394                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
395                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
396                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
397                 flags |= PIPE_CONTROL_QW_WRITE;
398                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
399         }
400
401         ret = intel_ring_begin(ring, 6);
402         if (ret)
403                 return ret;
404
405         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
406         intel_ring_emit(ring, flags);
407         intel_ring_emit(ring, scratch_addr);
408         intel_ring_emit(ring, 0);
409         intel_ring_emit(ring, 0);
410         intel_ring_emit(ring, 0);
411         intel_ring_advance(ring);
412
413         return 0;
414
415 }
416
417 static void ring_write_tail(struct intel_ring_buffer *ring,
418                             u32 value)
419 {
420         struct drm_i915_private *dev_priv = ring->dev->dev_private;
421         I915_WRITE_TAIL(ring, value);
422 }
423
424 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
425 {
426         struct drm_i915_private *dev_priv = ring->dev->dev_private;
427         u64 acthd;
428
429         if (INTEL_INFO(ring->dev)->gen >= 8)
430                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
431                                          RING_ACTHD_UDW(ring->mmio_base));
432         else if (INTEL_INFO(ring->dev)->gen >= 4)
433                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
434         else
435                 acthd = I915_READ(ACTHD);
436
437         return acthd;
438 }
439
440 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
441 {
442         struct drm_i915_private *dev_priv = ring->dev->dev_private;
443         u32 addr;
444
445         addr = dev_priv->status_page_dmah->busaddr;
446         if (INTEL_INFO(ring->dev)->gen >= 4)
447                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
448         I915_WRITE(HWS_PGA, addr);
449 }
450
451 static bool stop_ring(struct intel_ring_buffer *ring)
452 {
453         struct drm_i915_private *dev_priv = to_i915(ring->dev);
454
455         if (!IS_GEN2(ring->dev)) {
456                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
457                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
458                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
459                         return false;
460                 }
461         }
462
463         I915_WRITE_CTL(ring, 0);
464         I915_WRITE_HEAD(ring, 0);
465         ring->write_tail(ring, 0);
466
467         if (!IS_GEN2(ring->dev)) {
468                 (void)I915_READ_CTL(ring);
469                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
470         }
471
472         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
473 }
474
475 static int init_ring_common(struct intel_ring_buffer *ring)
476 {
477         struct drm_device *dev = ring->dev;
478         struct drm_i915_private *dev_priv = dev->dev_private;
479         struct drm_i915_gem_object *obj = ring->obj;
480         int ret = 0;
481
482         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
483
484         if (!stop_ring(ring)) {
485                 /* G45 ring initialization often fails to reset head to zero */
486                 DRM_DEBUG_KMS("%s head not reset to zero "
487                               "ctl %08x head %08x tail %08x start %08x\n",
488                               ring->name,
489                               I915_READ_CTL(ring),
490                               I915_READ_HEAD(ring),
491                               I915_READ_TAIL(ring),
492                               I915_READ_START(ring));
493
494                 if (!stop_ring(ring)) {
495                         DRM_ERROR("failed to set %s head to zero "
496                                   "ctl %08x head %08x tail %08x start %08x\n",
497                                   ring->name,
498                                   I915_READ_CTL(ring),
499                                   I915_READ_HEAD(ring),
500                                   I915_READ_TAIL(ring),
501                                   I915_READ_START(ring));
502                         ret = -EIO;
503                         goto out;
504                 }
505         }
506
507         if (I915_NEED_GFX_HWS(dev))
508                 intel_ring_setup_status_page(ring);
509         else
510                 ring_setup_phys_status_page(ring);
511
512         /* Initialize the ring. This must happen _after_ we've cleared the ring
513          * registers with the above sequence (the readback of the HEAD registers
514          * also enforces ordering), otherwise the hw might lose the new ring
515          * register values. */
516         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
517         I915_WRITE_CTL(ring,
518                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
519                         | RING_VALID);
520
521         /* If the head is still not zero, the ring is dead */
522         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
523                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
524                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
525                 DRM_ERROR("%s initialization failed "
526                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
527                           ring->name,
528                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
529                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
530                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
531                 ret = -EIO;
532                 goto out;
533         }
534
535         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
536                 i915_kernel_lost_context(ring->dev);
537         else {
538                 ring->head = I915_READ_HEAD(ring);
539                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
540                 ring->space = ring_space(ring);
541                 ring->last_retired_head = -1;
542         }
543
544         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
545
546 out:
547         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
548
549         return ret;
550 }
551
552 static int
553 init_pipe_control(struct intel_ring_buffer *ring)
554 {
555         int ret;
556
557         if (ring->scratch.obj)
558                 return 0;
559
560         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
561         if (ring->scratch.obj == NULL) {
562                 DRM_ERROR("Failed to allocate seqno page\n");
563                 ret = -ENOMEM;
564                 goto err;
565         }
566
567         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
568         if (ret)
569                 goto err_unref;
570
571         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
572         if (ret)
573                 goto err_unref;
574
575         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
576         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
577         if (ring->scratch.cpu_page == NULL) {
578                 ret = -ENOMEM;
579                 goto err_unpin;
580         }
581
582         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
583                          ring->name, ring->scratch.gtt_offset);
584         return 0;
585
586 err_unpin:
587         i915_gem_object_ggtt_unpin(ring->scratch.obj);
588 err_unref:
589         drm_gem_object_unreference(&ring->scratch.obj->base);
590 err:
591         return ret;
592 }
593
594 static int init_render_ring(struct intel_ring_buffer *ring)
595 {
596         struct drm_device *dev = ring->dev;
597         struct drm_i915_private *dev_priv = dev->dev_private;
598         int ret = init_ring_common(ring);
599
600         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
601         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
602                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
603
604         /* We need to disable the AsyncFlip performance optimisations in order
605          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
606          * programmed to '1' on all products.
607          *
608          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
609          */
610         if (INTEL_INFO(dev)->gen >= 6)
611                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
612
613         /* Required for the hardware to program scanline values for waiting */
614         /* WaEnableFlushTlbInvalidationMode:snb */
615         if (INTEL_INFO(dev)->gen == 6)
616                 I915_WRITE(GFX_MODE,
617                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
618
619         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
620         if (IS_GEN7(dev))
621                 I915_WRITE(GFX_MODE_GEN7,
622                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
623                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
624
625         if (INTEL_INFO(dev)->gen >= 5) {
626                 ret = init_pipe_control(ring);
627                 if (ret)
628                         return ret;
629         }
630
631         if (IS_GEN6(dev)) {
632                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
633                  * "If this bit is set, STCunit will have LRA as replacement
634                  *  policy. [...] This bit must be reset.  LRA replacement
635                  *  policy is not supported."
636                  */
637                 I915_WRITE(CACHE_MODE_0,
638                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
639         }
640
641         if (INTEL_INFO(dev)->gen >= 6)
642                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
643
644         if (HAS_L3_DPF(dev))
645                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
646
647         return ret;
648 }
649
650 static void render_ring_cleanup(struct intel_ring_buffer *ring)
651 {
652         struct drm_device *dev = ring->dev;
653
654         if (ring->scratch.obj == NULL)
655                 return;
656
657         if (INTEL_INFO(dev)->gen >= 5) {
658                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
659                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
660         }
661
662         drm_gem_object_unreference(&ring->scratch.obj->base);
663         ring->scratch.obj = NULL;
664 }
665
666 static void
667 update_mboxes(struct intel_ring_buffer *ring,
668               u32 mmio_offset)
669 {
670 /* NB: In order to be able to do semaphore MBOX updates for varying number
671  * of rings, it's easiest if we round up each individual update to a
672  * multiple of 2 (since ring updates must always be a multiple of 2)
673  * even though the actual update only requires 3 dwords.
674  */
675 #define MBOX_UPDATE_DWORDS 4
676         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677         intel_ring_emit(ring, mmio_offset);
678         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
679         intel_ring_emit(ring, MI_NOOP);
680 }
681
682 /**
683  * gen6_add_request - Update the semaphore mailbox registers
684  * 
685  * @ring - ring that is adding a request
686  * @seqno - return seqno stuck into the ring
687  *
688  * Update the mailbox registers in the *other* rings with the current seqno.
689  * This acts like a signal in the canonical semaphore.
690  */
691 static int
692 gen6_add_request(struct intel_ring_buffer *ring)
693 {
694         struct drm_device *dev = ring->dev;
695         struct drm_i915_private *dev_priv = dev->dev_private;
696         struct intel_ring_buffer *useless;
697         int i, ret, num_dwords = 4;
698
699         if (i915_semaphore_is_enabled(dev))
700                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
701 #undef MBOX_UPDATE_DWORDS
702
703         ret = intel_ring_begin(ring, num_dwords);
704         if (ret)
705                 return ret;
706
707         if (i915_semaphore_is_enabled(dev)) {
708                 for_each_ring(useless, dev_priv, i) {
709                         u32 mbox_reg = ring->signal_mbox[i];
710                         if (mbox_reg != GEN6_NOSYNC)
711                                 update_mboxes(ring, mbox_reg);
712                 }
713         }
714
715         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
716         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
717         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
718         intel_ring_emit(ring, MI_USER_INTERRUPT);
719         __intel_ring_advance(ring);
720
721         return 0;
722 }
723
724 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
725                                               u32 seqno)
726 {
727         struct drm_i915_private *dev_priv = dev->dev_private;
728         return dev_priv->last_seqno < seqno;
729 }
730
731 /**
732  * intel_ring_sync - sync the waiter to the signaller on seqno
733  *
734  * @waiter - ring that is waiting
735  * @signaller - ring which has, or will signal
736  * @seqno - seqno which the waiter will block on
737  */
738 static int
739 gen6_ring_sync(struct intel_ring_buffer *waiter,
740                struct intel_ring_buffer *signaller,
741                u32 seqno)
742 {
743         int ret;
744         u32 dw1 = MI_SEMAPHORE_MBOX |
745                   MI_SEMAPHORE_COMPARE |
746                   MI_SEMAPHORE_REGISTER;
747
748         /* Throughout all of the GEM code, seqno passed implies our current
749          * seqno is >= the last seqno executed. However for hardware the
750          * comparison is strictly greater than.
751          */
752         seqno -= 1;
753
754         WARN_ON(signaller->semaphore_register[waiter->id] ==
755                 MI_SEMAPHORE_SYNC_INVALID);
756
757         ret = intel_ring_begin(waiter, 4);
758         if (ret)
759                 return ret;
760
761         /* If seqno wrap happened, omit the wait with no-ops */
762         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
763                 intel_ring_emit(waiter,
764                                 dw1 |
765                                 signaller->semaphore_register[waiter->id]);
766                 intel_ring_emit(waiter, seqno);
767                 intel_ring_emit(waiter, 0);
768                 intel_ring_emit(waiter, MI_NOOP);
769         } else {
770                 intel_ring_emit(waiter, MI_NOOP);
771                 intel_ring_emit(waiter, MI_NOOP);
772                 intel_ring_emit(waiter, MI_NOOP);
773                 intel_ring_emit(waiter, MI_NOOP);
774         }
775         intel_ring_advance(waiter);
776
777         return 0;
778 }
779
780 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
781 do {                                                                    \
782         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
783                  PIPE_CONTROL_DEPTH_STALL);                             \
784         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
785         intel_ring_emit(ring__, 0);                                                     \
786         intel_ring_emit(ring__, 0);                                                     \
787 } while (0)
788
789 static int
790 pc_render_add_request(struct intel_ring_buffer *ring)
791 {
792         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
793         int ret;
794
795         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
796          * incoherent with writes to memory, i.e. completely fubar,
797          * so we need to use PIPE_NOTIFY instead.
798          *
799          * However, we also need to workaround the qword write
800          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
801          * memory before requesting an interrupt.
802          */
803         ret = intel_ring_begin(ring, 32);
804         if (ret)
805                 return ret;
806
807         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
808                         PIPE_CONTROL_WRITE_FLUSH |
809                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
810         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
811         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
812         intel_ring_emit(ring, 0);
813         PIPE_CONTROL_FLUSH(ring, scratch_addr);
814         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
815         PIPE_CONTROL_FLUSH(ring, scratch_addr);
816         scratch_addr += 2 * CACHELINE_BYTES;
817         PIPE_CONTROL_FLUSH(ring, scratch_addr);
818         scratch_addr += 2 * CACHELINE_BYTES;
819         PIPE_CONTROL_FLUSH(ring, scratch_addr);
820         scratch_addr += 2 * CACHELINE_BYTES;
821         PIPE_CONTROL_FLUSH(ring, scratch_addr);
822         scratch_addr += 2 * CACHELINE_BYTES;
823         PIPE_CONTROL_FLUSH(ring, scratch_addr);
824
825         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
826                         PIPE_CONTROL_WRITE_FLUSH |
827                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
828                         PIPE_CONTROL_NOTIFY);
829         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
830         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
831         intel_ring_emit(ring, 0);
832         __intel_ring_advance(ring);
833
834         return 0;
835 }
836
837 static u32
838 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
839 {
840         /* Workaround to force correct ordering between irq and seqno writes on
841          * ivb (and maybe also on snb) by reading from a CS register (like
842          * ACTHD) before reading the status page. */
843         if (!lazy_coherency) {
844                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
845                 POSTING_READ(RING_ACTHD(ring->mmio_base));
846         }
847
848         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
849 }
850
851 static u32
852 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
853 {
854         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
855 }
856
857 static void
858 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
859 {
860         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
861 }
862
863 static u32
864 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
865 {
866         return ring->scratch.cpu_page[0];
867 }
868
869 static void
870 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
871 {
872         ring->scratch.cpu_page[0] = seqno;
873 }
874
875 static bool
876 gen5_ring_get_irq(struct intel_ring_buffer *ring)
877 {
878         struct drm_device *dev = ring->dev;
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         unsigned long flags;
881
882         if (!dev->irq_enabled)
883                 return false;
884
885         spin_lock_irqsave(&dev_priv->irq_lock, flags);
886         if (ring->irq_refcount++ == 0)
887                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
888         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
889
890         return true;
891 }
892
893 static void
894 gen5_ring_put_irq(struct intel_ring_buffer *ring)
895 {
896         struct drm_device *dev = ring->dev;
897         struct drm_i915_private *dev_priv = dev->dev_private;
898         unsigned long flags;
899
900         spin_lock_irqsave(&dev_priv->irq_lock, flags);
901         if (--ring->irq_refcount == 0)
902                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
903         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
904 }
905
906 static bool
907 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
908 {
909         struct drm_device *dev = ring->dev;
910         struct drm_i915_private *dev_priv = dev->dev_private;
911         unsigned long flags;
912
913         if (!dev->irq_enabled)
914                 return false;
915
916         spin_lock_irqsave(&dev_priv->irq_lock, flags);
917         if (ring->irq_refcount++ == 0) {
918                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
919                 I915_WRITE(IMR, dev_priv->irq_mask);
920                 POSTING_READ(IMR);
921         }
922         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
923
924         return true;
925 }
926
927 static void
928 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
929 {
930         struct drm_device *dev = ring->dev;
931         struct drm_i915_private *dev_priv = dev->dev_private;
932         unsigned long flags;
933
934         spin_lock_irqsave(&dev_priv->irq_lock, flags);
935         if (--ring->irq_refcount == 0) {
936                 dev_priv->irq_mask |= ring->irq_enable_mask;
937                 I915_WRITE(IMR, dev_priv->irq_mask);
938                 POSTING_READ(IMR);
939         }
940         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
941 }
942
943 static bool
944 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
945 {
946         struct drm_device *dev = ring->dev;
947         struct drm_i915_private *dev_priv = dev->dev_private;
948         unsigned long flags;
949
950         if (!dev->irq_enabled)
951                 return false;
952
953         spin_lock_irqsave(&dev_priv->irq_lock, flags);
954         if (ring->irq_refcount++ == 0) {
955                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
956                 I915_WRITE16(IMR, dev_priv->irq_mask);
957                 POSTING_READ16(IMR);
958         }
959         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
960
961         return true;
962 }
963
964 static void
965 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
966 {
967         struct drm_device *dev = ring->dev;
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         unsigned long flags;
970
971         spin_lock_irqsave(&dev_priv->irq_lock, flags);
972         if (--ring->irq_refcount == 0) {
973                 dev_priv->irq_mask |= ring->irq_enable_mask;
974                 I915_WRITE16(IMR, dev_priv->irq_mask);
975                 POSTING_READ16(IMR);
976         }
977         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
978 }
979
980 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
981 {
982         struct drm_device *dev = ring->dev;
983         struct drm_i915_private *dev_priv = ring->dev->dev_private;
984         u32 mmio = 0;
985
986         /* The ring status page addresses are no longer next to the rest of
987          * the ring registers as of gen7.
988          */
989         if (IS_GEN7(dev)) {
990                 switch (ring->id) {
991                 case RCS:
992                         mmio = RENDER_HWS_PGA_GEN7;
993                         break;
994                 case BCS:
995                         mmio = BLT_HWS_PGA_GEN7;
996                         break;
997                 case VCS:
998                         mmio = BSD_HWS_PGA_GEN7;
999                         break;
1000                 case VECS:
1001                         mmio = VEBOX_HWS_PGA_GEN7;
1002                         break;
1003                 }
1004         } else if (IS_GEN6(ring->dev)) {
1005                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1006         } else {
1007                 /* XXX: gen8 returns to sanity */
1008                 mmio = RING_HWS_PGA(ring->mmio_base);
1009         }
1010
1011         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1012         POSTING_READ(mmio);
1013
1014         /*
1015          * Flush the TLB for this page
1016          *
1017          * FIXME: These two bits have disappeared on gen8, so a question
1018          * arises: do we still need this and if so how should we go about
1019          * invalidating the TLB?
1020          */
1021         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1022                 u32 reg = RING_INSTPM(ring->mmio_base);
1023
1024                 /* ring should be idle before issuing a sync flush*/
1025                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1026
1027                 I915_WRITE(reg,
1028                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1029                                               INSTPM_SYNC_FLUSH));
1030                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1031                              1000))
1032                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1033                                   ring->name);
1034         }
1035 }
1036
1037 static int
1038 bsd_ring_flush(struct intel_ring_buffer *ring,
1039                u32     invalidate_domains,
1040                u32     flush_domains)
1041 {
1042         int ret;
1043
1044         ret = intel_ring_begin(ring, 2);
1045         if (ret)
1046                 return ret;
1047
1048         intel_ring_emit(ring, MI_FLUSH);
1049         intel_ring_emit(ring, MI_NOOP);
1050         intel_ring_advance(ring);
1051         return 0;
1052 }
1053
1054 static int
1055 i9xx_add_request(struct intel_ring_buffer *ring)
1056 {
1057         int ret;
1058
1059         ret = intel_ring_begin(ring, 4);
1060         if (ret)
1061                 return ret;
1062
1063         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1064         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1065         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1066         intel_ring_emit(ring, MI_USER_INTERRUPT);
1067         __intel_ring_advance(ring);
1068
1069         return 0;
1070 }
1071
1072 static bool
1073 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1074 {
1075         struct drm_device *dev = ring->dev;
1076         struct drm_i915_private *dev_priv = dev->dev_private;
1077         unsigned long flags;
1078
1079         if (!dev->irq_enabled)
1080                return false;
1081
1082         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1083         if (ring->irq_refcount++ == 0) {
1084                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1085                         I915_WRITE_IMR(ring,
1086                                        ~(ring->irq_enable_mask |
1087                                          GT_PARITY_ERROR(dev)));
1088                 else
1089                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1090                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1091         }
1092         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1093
1094         return true;
1095 }
1096
1097 static void
1098 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1099 {
1100         struct drm_device *dev = ring->dev;
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         unsigned long flags;
1103
1104         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1105         if (--ring->irq_refcount == 0) {
1106                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1107                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1108                 else
1109                         I915_WRITE_IMR(ring, ~0);
1110                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1111         }
1112         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1113 }
1114
1115 static bool
1116 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1117 {
1118         struct drm_device *dev = ring->dev;
1119         struct drm_i915_private *dev_priv = dev->dev_private;
1120         unsigned long flags;
1121
1122         if (!dev->irq_enabled)
1123                 return false;
1124
1125         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1126         if (ring->irq_refcount++ == 0) {
1127                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1128                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1129         }
1130         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1131
1132         return true;
1133 }
1134
1135 static void
1136 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1137 {
1138         struct drm_device *dev = ring->dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         unsigned long flags;
1141
1142         if (!dev->irq_enabled)
1143                 return;
1144
1145         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1146         if (--ring->irq_refcount == 0) {
1147                 I915_WRITE_IMR(ring, ~0);
1148                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1149         }
1150         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1151 }
1152
1153 static bool
1154 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1155 {
1156         struct drm_device *dev = ring->dev;
1157         struct drm_i915_private *dev_priv = dev->dev_private;
1158         unsigned long flags;
1159
1160         if (!dev->irq_enabled)
1161                 return false;
1162
1163         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1164         if (ring->irq_refcount++ == 0) {
1165                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1166                         I915_WRITE_IMR(ring,
1167                                        ~(ring->irq_enable_mask |
1168                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1169                 } else {
1170                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1171                 }
1172                 POSTING_READ(RING_IMR(ring->mmio_base));
1173         }
1174         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1175
1176         return true;
1177 }
1178
1179 static void
1180 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1181 {
1182         struct drm_device *dev = ring->dev;
1183         struct drm_i915_private *dev_priv = dev->dev_private;
1184         unsigned long flags;
1185
1186         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1187         if (--ring->irq_refcount == 0) {
1188                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1189                         I915_WRITE_IMR(ring,
1190                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1191                 } else {
1192                         I915_WRITE_IMR(ring, ~0);
1193                 }
1194                 POSTING_READ(RING_IMR(ring->mmio_base));
1195         }
1196         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1197 }
1198
1199 static int
1200 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1201                          u32 offset, u32 length,
1202                          unsigned flags)
1203 {
1204         int ret;
1205
1206         ret = intel_ring_begin(ring, 2);
1207         if (ret)
1208                 return ret;
1209
1210         intel_ring_emit(ring,
1211                         MI_BATCH_BUFFER_START |
1212                         MI_BATCH_GTT |
1213                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1214         intel_ring_emit(ring, offset);
1215         intel_ring_advance(ring);
1216
1217         return 0;
1218 }
1219
1220 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1221 #define I830_BATCH_LIMIT (256*1024)
1222 static int
1223 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1224                                 u32 offset, u32 len,
1225                                 unsigned flags)
1226 {
1227         int ret;
1228
1229         if (flags & I915_DISPATCH_PINNED) {
1230                 ret = intel_ring_begin(ring, 4);
1231                 if (ret)
1232                         return ret;
1233
1234                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1235                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1236                 intel_ring_emit(ring, offset + len - 8);
1237                 intel_ring_emit(ring, MI_NOOP);
1238                 intel_ring_advance(ring);
1239         } else {
1240                 u32 cs_offset = ring->scratch.gtt_offset;
1241
1242                 if (len > I830_BATCH_LIMIT)
1243                         return -ENOSPC;
1244
1245                 ret = intel_ring_begin(ring, 9+3);
1246                 if (ret)
1247                         return ret;
1248                 /* Blit the batch (which has now all relocs applied) to the stable batch
1249                  * scratch bo area (so that the CS never stumbles over its tlb
1250                  * invalidation bug) ... */
1251                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1252                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1253                                 XY_SRC_COPY_BLT_WRITE_RGB);
1254                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1255                 intel_ring_emit(ring, 0);
1256                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1257                 intel_ring_emit(ring, cs_offset);
1258                 intel_ring_emit(ring, 0);
1259                 intel_ring_emit(ring, 4096);
1260                 intel_ring_emit(ring, offset);
1261                 intel_ring_emit(ring, MI_FLUSH);
1262
1263                 /* ... and execute it. */
1264                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1265                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1266                 intel_ring_emit(ring, cs_offset + len - 8);
1267                 intel_ring_advance(ring);
1268         }
1269
1270         return 0;
1271 }
1272
1273 static int
1274 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1275                          u32 offset, u32 len,
1276                          unsigned flags)
1277 {
1278         int ret;
1279
1280         ret = intel_ring_begin(ring, 2);
1281         if (ret)
1282                 return ret;
1283
1284         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1285         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1286         intel_ring_advance(ring);
1287
1288         return 0;
1289 }
1290
1291 static void cleanup_status_page(struct intel_ring_buffer *ring)
1292 {
1293         struct drm_i915_gem_object *obj;
1294
1295         obj = ring->status_page.obj;
1296         if (obj == NULL)
1297                 return;
1298
1299         kunmap(sg_page(obj->pages->sgl));
1300         i915_gem_object_ggtt_unpin(obj);
1301         drm_gem_object_unreference(&obj->base);
1302         ring->status_page.obj = NULL;
1303 }
1304
1305 static int init_status_page(struct intel_ring_buffer *ring)
1306 {
1307         struct drm_i915_gem_object *obj;
1308
1309         if ((obj = ring->status_page.obj) == NULL) {
1310                 int ret;
1311
1312                 obj = i915_gem_alloc_object(ring->dev, 4096);
1313                 if (obj == NULL) {
1314                         DRM_ERROR("Failed to allocate status page\n");
1315                         return -ENOMEM;
1316                 }
1317
1318                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1319                 if (ret)
1320                         goto err_unref;
1321
1322                 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1323                 if (ret) {
1324 err_unref:
1325                         drm_gem_object_unreference(&obj->base);
1326                         return ret;
1327                 }
1328
1329                 ring->status_page.obj = obj;
1330         }
1331
1332         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1333         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1334         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1335
1336         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1337                         ring->name, ring->status_page.gfx_addr);
1338
1339         return 0;
1340 }
1341
1342 static int init_phys_status_page(struct intel_ring_buffer *ring)
1343 {
1344         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1345
1346         if (!dev_priv->status_page_dmah) {
1347                 dev_priv->status_page_dmah =
1348                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1349                 if (!dev_priv->status_page_dmah)
1350                         return -ENOMEM;
1351         }
1352
1353         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1354         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1355
1356         return 0;
1357 }
1358
1359 static int allocate_ring_buffer(struct intel_ring_buffer *ring)
1360 {
1361         struct drm_device *dev = ring->dev;
1362         struct drm_i915_private *dev_priv = to_i915(dev);
1363         struct drm_i915_gem_object *obj;
1364         int ret;
1365
1366         if (ring->obj)
1367                 return 0;
1368
1369         obj = NULL;
1370         if (!HAS_LLC(dev))
1371                 obj = i915_gem_object_create_stolen(dev, ring->size);
1372         if (obj == NULL)
1373                 obj = i915_gem_alloc_object(dev, ring->size);
1374         if (obj == NULL)
1375                 return -ENOMEM;
1376
1377         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1378         if (ret)
1379                 goto err_unref;
1380
1381         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1382         if (ret)
1383                 goto err_unpin;
1384
1385         ring->virtual_start =
1386                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1387                            ring->size);
1388         if (ring->virtual_start == NULL) {
1389                 ret = -EINVAL;
1390                 goto err_unpin;
1391         }
1392
1393         ring->obj = obj;
1394         return 0;
1395
1396 err_unpin:
1397         i915_gem_object_ggtt_unpin(obj);
1398 err_unref:
1399         drm_gem_object_unreference(&obj->base);
1400         return ret;
1401 }
1402
1403 static int intel_init_ring_buffer(struct drm_device *dev,
1404                                   struct intel_ring_buffer *ring)
1405 {
1406         int ret;
1407
1408         ring->dev = dev;
1409         INIT_LIST_HEAD(&ring->active_list);
1410         INIT_LIST_HEAD(&ring->request_list);
1411         ring->size = 32 * PAGE_SIZE;
1412         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1413
1414         init_waitqueue_head(&ring->irq_queue);
1415
1416         if (I915_NEED_GFX_HWS(dev)) {
1417                 ret = init_status_page(ring);
1418                 if (ret)
1419                         return ret;
1420         } else {
1421                 BUG_ON(ring->id != RCS);
1422                 ret = init_phys_status_page(ring);
1423                 if (ret)
1424                         return ret;
1425         }
1426
1427         ret = allocate_ring_buffer(ring);
1428         if (ret) {
1429                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1430                 return ret;
1431         }
1432
1433         /* Workaround an erratum on the i830 which causes a hang if
1434          * the TAIL pointer points to within the last 2 cachelines
1435          * of the buffer.
1436          */
1437         ring->effective_size = ring->size;
1438         if (IS_I830(dev) || IS_845G(dev))
1439                 ring->effective_size -= 2 * CACHELINE_BYTES;
1440
1441         i915_cmd_parser_init_ring(ring);
1442
1443         return ring->init(ring);
1444 }
1445
1446 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1447 {
1448         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1449
1450         if (ring->obj == NULL)
1451                 return;
1452
1453         intel_stop_ring_buffer(ring);
1454         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1455
1456         iounmap(ring->virtual_start);
1457
1458         i915_gem_object_ggtt_unpin(ring->obj);
1459         drm_gem_object_unreference(&ring->obj->base);
1460         ring->obj = NULL;
1461         ring->preallocated_lazy_request = NULL;
1462         ring->outstanding_lazy_seqno = 0;
1463
1464         if (ring->cleanup)
1465                 ring->cleanup(ring);
1466
1467         cleanup_status_page(ring);
1468 }
1469
1470 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1471 {
1472         struct drm_i915_gem_request *request;
1473         u32 seqno = 0, tail;
1474         int ret;
1475
1476         if (ring->last_retired_head != -1) {
1477                 ring->head = ring->last_retired_head;
1478                 ring->last_retired_head = -1;
1479
1480                 ring->space = ring_space(ring);
1481                 if (ring->space >= n)
1482                         return 0;
1483         }
1484
1485         list_for_each_entry(request, &ring->request_list, list) {
1486                 int space;
1487
1488                 if (request->tail == -1)
1489                         continue;
1490
1491                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1492                 if (space < 0)
1493                         space += ring->size;
1494                 if (space >= n) {
1495                         seqno = request->seqno;
1496                         tail = request->tail;
1497                         break;
1498                 }
1499
1500                 /* Consume this request in case we need more space than
1501                  * is available and so need to prevent a race between
1502                  * updating last_retired_head and direct reads of
1503                  * I915_RING_HEAD. It also provides a nice sanity check.
1504                  */
1505                 request->tail = -1;
1506         }
1507
1508         if (seqno == 0)
1509                 return -ENOSPC;
1510
1511         ret = i915_wait_seqno(ring, seqno);
1512         if (ret)
1513                 return ret;
1514
1515         ring->head = tail;
1516         ring->space = ring_space(ring);
1517         if (WARN_ON(ring->space < n))
1518                 return -ENOSPC;
1519
1520         return 0;
1521 }
1522
1523 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1524 {
1525         struct drm_device *dev = ring->dev;
1526         struct drm_i915_private *dev_priv = dev->dev_private;
1527         unsigned long end;
1528         int ret;
1529
1530         ret = intel_ring_wait_request(ring, n);
1531         if (ret != -ENOSPC)
1532                 return ret;
1533
1534         /* force the tail write in case we have been skipping them */
1535         __intel_ring_advance(ring);
1536
1537         trace_i915_ring_wait_begin(ring);
1538         /* With GEM the hangcheck timer should kick us out of the loop,
1539          * leaving it early runs the risk of corrupting GEM state (due
1540          * to running on almost untested codepaths). But on resume
1541          * timers don't work yet, so prevent a complete hang in that
1542          * case by choosing an insanely large timeout. */
1543         end = jiffies + 60 * HZ;
1544
1545         do {
1546                 ring->head = I915_READ_HEAD(ring);
1547                 ring->space = ring_space(ring);
1548                 if (ring->space >= n) {
1549                         trace_i915_ring_wait_end(ring);
1550                         return 0;
1551                 }
1552
1553                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1554                     dev->primary->master) {
1555                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1556                         if (master_priv->sarea_priv)
1557                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1558                 }
1559
1560                 msleep(1);
1561
1562                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1563                                            dev_priv->mm.interruptible);
1564                 if (ret)
1565                         return ret;
1566         } while (!time_after(jiffies, end));
1567         trace_i915_ring_wait_end(ring);
1568         return -EBUSY;
1569 }
1570
1571 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1572 {
1573         uint32_t __iomem *virt;
1574         int rem = ring->size - ring->tail;
1575
1576         if (ring->space < rem) {
1577                 int ret = ring_wait_for_space(ring, rem);
1578                 if (ret)
1579                         return ret;
1580         }
1581
1582         virt = ring->virtual_start + ring->tail;
1583         rem /= 4;
1584         while (rem--)
1585                 iowrite32(MI_NOOP, virt++);
1586
1587         ring->tail = 0;
1588         ring->space = ring_space(ring);
1589
1590         return 0;
1591 }
1592
1593 int intel_ring_idle(struct intel_ring_buffer *ring)
1594 {
1595         u32 seqno;
1596         int ret;
1597
1598         /* We need to add any requests required to flush the objects and ring */
1599         if (ring->outstanding_lazy_seqno) {
1600                 ret = i915_add_request(ring, NULL);
1601                 if (ret)
1602                         return ret;
1603         }
1604
1605         /* Wait upon the last request to be completed */
1606         if (list_empty(&ring->request_list))
1607                 return 0;
1608
1609         seqno = list_entry(ring->request_list.prev,
1610                            struct drm_i915_gem_request,
1611                            list)->seqno;
1612
1613         return i915_wait_seqno(ring, seqno);
1614 }
1615
1616 static int
1617 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1618 {
1619         if (ring->outstanding_lazy_seqno)
1620                 return 0;
1621
1622         if (ring->preallocated_lazy_request == NULL) {
1623                 struct drm_i915_gem_request *request;
1624
1625                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1626                 if (request == NULL)
1627                         return -ENOMEM;
1628
1629                 ring->preallocated_lazy_request = request;
1630         }
1631
1632         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1633 }
1634
1635 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1636                                 int bytes)
1637 {
1638         int ret;
1639
1640         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1641                 ret = intel_wrap_ring_buffer(ring);
1642                 if (unlikely(ret))
1643                         return ret;
1644         }
1645
1646         if (unlikely(ring->space < bytes)) {
1647                 ret = ring_wait_for_space(ring, bytes);
1648                 if (unlikely(ret))
1649                         return ret;
1650         }
1651
1652         return 0;
1653 }
1654
1655 int intel_ring_begin(struct intel_ring_buffer *ring,
1656                      int num_dwords)
1657 {
1658         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1659         int ret;
1660
1661         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1662                                    dev_priv->mm.interruptible);
1663         if (ret)
1664                 return ret;
1665
1666         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1667         if (ret)
1668                 return ret;
1669
1670         /* Preallocate the olr before touching the ring */
1671         ret = intel_ring_alloc_seqno(ring);
1672         if (ret)
1673                 return ret;
1674
1675         ring->space -= num_dwords * sizeof(uint32_t);
1676         return 0;
1677 }
1678
1679 /* Align the ring tail to a cacheline boundary */
1680 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1681 {
1682         int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1683         int ret;
1684
1685         if (num_dwords == 0)
1686                 return 0;
1687
1688         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1689         ret = intel_ring_begin(ring, num_dwords);
1690         if (ret)
1691                 return ret;
1692
1693         while (num_dwords--)
1694                 intel_ring_emit(ring, MI_NOOP);
1695
1696         intel_ring_advance(ring);
1697
1698         return 0;
1699 }
1700
1701 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1702 {
1703         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1704
1705         BUG_ON(ring->outstanding_lazy_seqno);
1706
1707         if (INTEL_INFO(ring->dev)->gen >= 6) {
1708                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1709                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1710                 if (HAS_VEBOX(ring->dev))
1711                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1712         }
1713
1714         ring->set_seqno(ring, seqno);
1715         ring->hangcheck.seqno = seqno;
1716 }
1717
1718 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1719                                      u32 value)
1720 {
1721         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1722
1723        /* Every tail move must follow the sequence below */
1724
1725         /* Disable notification that the ring is IDLE. The GT
1726          * will then assume that it is busy and bring it out of rc6.
1727          */
1728         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1729                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1730
1731         /* Clear the context id. Here be magic! */
1732         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1733
1734         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1735         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1736                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1737                      50))
1738                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1739
1740         /* Now that the ring is fully powered up, update the tail */
1741         I915_WRITE_TAIL(ring, value);
1742         POSTING_READ(RING_TAIL(ring->mmio_base));
1743
1744         /* Let the ring send IDLE messages to the GT again,
1745          * and so let it sleep to conserve power when idle.
1746          */
1747         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1748                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1749 }
1750
1751 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1752                                u32 invalidate, u32 flush)
1753 {
1754         uint32_t cmd;
1755         int ret;
1756
1757         ret = intel_ring_begin(ring, 4);
1758         if (ret)
1759                 return ret;
1760
1761         cmd = MI_FLUSH_DW;
1762         if (INTEL_INFO(ring->dev)->gen >= 8)
1763                 cmd += 1;
1764         /*
1765          * Bspec vol 1c.5 - video engine command streamer:
1766          * "If ENABLED, all TLBs will be invalidated once the flush
1767          * operation is complete. This bit is only valid when the
1768          * Post-Sync Operation field is a value of 1h or 3h."
1769          */
1770         if (invalidate & I915_GEM_GPU_DOMAINS)
1771                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1772                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1773         intel_ring_emit(ring, cmd);
1774         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1775         if (INTEL_INFO(ring->dev)->gen >= 8) {
1776                 intel_ring_emit(ring, 0); /* upper addr */
1777                 intel_ring_emit(ring, 0); /* value */
1778         } else  {
1779                 intel_ring_emit(ring, 0);
1780                 intel_ring_emit(ring, MI_NOOP);
1781         }
1782         intel_ring_advance(ring);
1783         return 0;
1784 }
1785
1786 static int
1787 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1788                               u32 offset, u32 len,
1789                               unsigned flags)
1790 {
1791         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1792         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1793                 !(flags & I915_DISPATCH_SECURE);
1794         int ret;
1795
1796         ret = intel_ring_begin(ring, 4);
1797         if (ret)
1798                 return ret;
1799
1800         /* FIXME(BDW): Address space and security selectors. */
1801         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1802         intel_ring_emit(ring, offset);
1803         intel_ring_emit(ring, 0);
1804         intel_ring_emit(ring, MI_NOOP);
1805         intel_ring_advance(ring);
1806
1807         return 0;
1808 }
1809
1810 static int
1811 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1812                               u32 offset, u32 len,
1813                               unsigned flags)
1814 {
1815         int ret;
1816
1817         ret = intel_ring_begin(ring, 2);
1818         if (ret)
1819                 return ret;
1820
1821         intel_ring_emit(ring,
1822                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1823                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1824         /* bit0-7 is the length on GEN6+ */
1825         intel_ring_emit(ring, offset);
1826         intel_ring_advance(ring);
1827
1828         return 0;
1829 }
1830
1831 static int
1832 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1833                               u32 offset, u32 len,
1834                               unsigned flags)
1835 {
1836         int ret;
1837
1838         ret = intel_ring_begin(ring, 2);
1839         if (ret)
1840                 return ret;
1841
1842         intel_ring_emit(ring,
1843                         MI_BATCH_BUFFER_START |
1844                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1845         /* bit0-7 is the length on GEN6+ */
1846         intel_ring_emit(ring, offset);
1847         intel_ring_advance(ring);
1848
1849         return 0;
1850 }
1851
1852 /* Blitter support (SandyBridge+) */
1853
1854 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1855                            u32 invalidate, u32 flush)
1856 {
1857         struct drm_device *dev = ring->dev;
1858         uint32_t cmd;
1859         int ret;
1860
1861         ret = intel_ring_begin(ring, 4);
1862         if (ret)
1863                 return ret;
1864
1865         cmd = MI_FLUSH_DW;
1866         if (INTEL_INFO(ring->dev)->gen >= 8)
1867                 cmd += 1;
1868         /*
1869          * Bspec vol 1c.3 - blitter engine command streamer:
1870          * "If ENABLED, all TLBs will be invalidated once the flush
1871          * operation is complete. This bit is only valid when the
1872          * Post-Sync Operation field is a value of 1h or 3h."
1873          */
1874         if (invalidate & I915_GEM_DOMAIN_RENDER)
1875                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1876                         MI_FLUSH_DW_OP_STOREDW;
1877         intel_ring_emit(ring, cmd);
1878         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1879         if (INTEL_INFO(ring->dev)->gen >= 8) {
1880                 intel_ring_emit(ring, 0); /* upper addr */
1881                 intel_ring_emit(ring, 0); /* value */
1882         } else  {
1883                 intel_ring_emit(ring, 0);
1884                 intel_ring_emit(ring, MI_NOOP);
1885         }
1886         intel_ring_advance(ring);
1887
1888         if (IS_GEN7(dev) && !invalidate && flush)
1889                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1890
1891         return 0;
1892 }
1893
1894 int intel_init_render_ring_buffer(struct drm_device *dev)
1895 {
1896         struct drm_i915_private *dev_priv = dev->dev_private;
1897         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1898
1899         ring->name = "render ring";
1900         ring->id = RCS;
1901         ring->mmio_base = RENDER_RING_BASE;
1902
1903         if (INTEL_INFO(dev)->gen >= 6) {
1904                 ring->add_request = gen6_add_request;
1905                 ring->flush = gen7_render_ring_flush;
1906                 if (INTEL_INFO(dev)->gen == 6)
1907                         ring->flush = gen6_render_ring_flush;
1908                 if (INTEL_INFO(dev)->gen >= 8) {
1909                         ring->flush = gen8_render_ring_flush;
1910                         ring->irq_get = gen8_ring_get_irq;
1911                         ring->irq_put = gen8_ring_put_irq;
1912                 } else {
1913                         ring->irq_get = gen6_ring_get_irq;
1914                         ring->irq_put = gen6_ring_put_irq;
1915                 }
1916                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1917                 ring->get_seqno = gen6_ring_get_seqno;
1918                 ring->set_seqno = ring_set_seqno;
1919                 ring->sync_to = gen6_ring_sync;
1920                 /*
1921                  * The current semaphore is only applied on pre-gen8 platform.
1922                  * And there is no VCS2 ring on the pre-gen8 platform. So the
1923                  * semaphore between RCS and VCS2 is initialized as INVALID.
1924                  * Gen8 will initialize the sema between VCS2 and RCS later.
1925                  */
1926                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1927                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1928                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1929                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1930                 ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1931                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1932                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1933                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1934                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1935                 ring->signal_mbox[VCS2] = GEN6_NOSYNC;
1936         } else if (IS_GEN5(dev)) {
1937                 ring->add_request = pc_render_add_request;
1938                 ring->flush = gen4_render_ring_flush;
1939                 ring->get_seqno = pc_render_get_seqno;
1940                 ring->set_seqno = pc_render_set_seqno;
1941                 ring->irq_get = gen5_ring_get_irq;
1942                 ring->irq_put = gen5_ring_put_irq;
1943                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1944                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1945         } else {
1946                 ring->add_request = i9xx_add_request;
1947                 if (INTEL_INFO(dev)->gen < 4)
1948                         ring->flush = gen2_render_ring_flush;
1949                 else
1950                         ring->flush = gen4_render_ring_flush;
1951                 ring->get_seqno = ring_get_seqno;
1952                 ring->set_seqno = ring_set_seqno;
1953                 if (IS_GEN2(dev)) {
1954                         ring->irq_get = i8xx_ring_get_irq;
1955                         ring->irq_put = i8xx_ring_put_irq;
1956                 } else {
1957                         ring->irq_get = i9xx_ring_get_irq;
1958                         ring->irq_put = i9xx_ring_put_irq;
1959                 }
1960                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1961         }
1962         ring->write_tail = ring_write_tail;
1963         if (IS_HASWELL(dev))
1964                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1965         else if (IS_GEN8(dev))
1966                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1967         else if (INTEL_INFO(dev)->gen >= 6)
1968                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1969         else if (INTEL_INFO(dev)->gen >= 4)
1970                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1971         else if (IS_I830(dev) || IS_845G(dev))
1972                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1973         else
1974                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1975         ring->init = init_render_ring;
1976         ring->cleanup = render_ring_cleanup;
1977
1978         /* Workaround batchbuffer to combat CS tlb bug. */
1979         if (HAS_BROKEN_CS_TLB(dev)) {
1980                 struct drm_i915_gem_object *obj;
1981                 int ret;
1982
1983                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1984                 if (obj == NULL) {
1985                         DRM_ERROR("Failed to allocate batch bo\n");
1986                         return -ENOMEM;
1987                 }
1988
1989                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1990                 if (ret != 0) {
1991                         drm_gem_object_unreference(&obj->base);
1992                         DRM_ERROR("Failed to ping batch bo\n");
1993                         return ret;
1994                 }
1995
1996                 ring->scratch.obj = obj;
1997                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1998         }
1999
2000         return intel_init_ring_buffer(dev, ring);
2001 }
2002
2003 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2007         int ret;
2008
2009         ring->name = "render ring";
2010         ring->id = RCS;
2011         ring->mmio_base = RENDER_RING_BASE;
2012
2013         if (INTEL_INFO(dev)->gen >= 6) {
2014                 /* non-kms not supported on gen6+ */
2015                 return -ENODEV;
2016         }
2017
2018         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2019          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2020          * the special gen5 functions. */
2021         ring->add_request = i9xx_add_request;
2022         if (INTEL_INFO(dev)->gen < 4)
2023                 ring->flush = gen2_render_ring_flush;
2024         else
2025                 ring->flush = gen4_render_ring_flush;
2026         ring->get_seqno = ring_get_seqno;
2027         ring->set_seqno = ring_set_seqno;
2028         if (IS_GEN2(dev)) {
2029                 ring->irq_get = i8xx_ring_get_irq;
2030                 ring->irq_put = i8xx_ring_put_irq;
2031         } else {
2032                 ring->irq_get = i9xx_ring_get_irq;
2033                 ring->irq_put = i9xx_ring_put_irq;
2034         }
2035         ring->irq_enable_mask = I915_USER_INTERRUPT;
2036         ring->write_tail = ring_write_tail;
2037         if (INTEL_INFO(dev)->gen >= 4)
2038                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2039         else if (IS_I830(dev) || IS_845G(dev))
2040                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2041         else
2042                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2043         ring->init = init_render_ring;
2044         ring->cleanup = render_ring_cleanup;
2045
2046         ring->dev = dev;
2047         INIT_LIST_HEAD(&ring->active_list);
2048         INIT_LIST_HEAD(&ring->request_list);
2049
2050         ring->size = size;
2051         ring->effective_size = ring->size;
2052         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2053                 ring->effective_size -= 2 * CACHELINE_BYTES;
2054
2055         ring->virtual_start = ioremap_wc(start, size);
2056         if (ring->virtual_start == NULL) {
2057                 DRM_ERROR("can not ioremap virtual address for"
2058                           " ring buffer\n");
2059                 return -ENOMEM;
2060         }
2061
2062         if (!I915_NEED_GFX_HWS(dev)) {
2063                 ret = init_phys_status_page(ring);
2064                 if (ret)
2065                         return ret;
2066         }
2067
2068         return 0;
2069 }
2070
2071 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2072 {
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2075
2076         ring->name = "bsd ring";
2077         ring->id = VCS;
2078
2079         ring->write_tail = ring_write_tail;
2080         if (INTEL_INFO(dev)->gen >= 6) {
2081                 ring->mmio_base = GEN6_BSD_RING_BASE;
2082                 /* gen6 bsd needs a special wa for tail updates */
2083                 if (IS_GEN6(dev))
2084                         ring->write_tail = gen6_bsd_ring_write_tail;
2085                 ring->flush = gen6_bsd_ring_flush;
2086                 ring->add_request = gen6_add_request;
2087                 ring->get_seqno = gen6_ring_get_seqno;
2088                 ring->set_seqno = ring_set_seqno;
2089                 if (INTEL_INFO(dev)->gen >= 8) {
2090                         ring->irq_enable_mask =
2091                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2092                         ring->irq_get = gen8_ring_get_irq;
2093                         ring->irq_put = gen8_ring_put_irq;
2094                         ring->dispatch_execbuffer =
2095                                 gen8_ring_dispatch_execbuffer;
2096                 } else {
2097                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2098                         ring->irq_get = gen6_ring_get_irq;
2099                         ring->irq_put = gen6_ring_put_irq;
2100                         ring->dispatch_execbuffer =
2101                                 gen6_ring_dispatch_execbuffer;
2102                 }
2103                 ring->sync_to = gen6_ring_sync;
2104                 /*
2105                  * The current semaphore is only applied on pre-gen8 platform.
2106                  * And there is no VCS2 ring on the pre-gen8 platform. So the
2107                  * semaphore between VCS and VCS2 is initialized as INVALID.
2108                  * Gen8 will initialize the sema between VCS2 and VCS later.
2109                  */
2110                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2111                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2112                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2113                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2114                 ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2115                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2116                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2117                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2118                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2119                 ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2120         } else {
2121                 ring->mmio_base = BSD_RING_BASE;
2122                 ring->flush = bsd_ring_flush;
2123                 ring->add_request = i9xx_add_request;
2124                 ring->get_seqno = ring_get_seqno;
2125                 ring->set_seqno = ring_set_seqno;
2126                 if (IS_GEN5(dev)) {
2127                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2128                         ring->irq_get = gen5_ring_get_irq;
2129                         ring->irq_put = gen5_ring_put_irq;
2130                 } else {
2131                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2132                         ring->irq_get = i9xx_ring_get_irq;
2133                         ring->irq_put = i9xx_ring_put_irq;
2134                 }
2135                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2136         }
2137         ring->init = init_ring_common;
2138
2139         return intel_init_ring_buffer(dev, ring);
2140 }
2141
2142 /**
2143  * Initialize the second BSD ring for Broadwell GT3.
2144  * It is noted that this only exists on Broadwell GT3.
2145  */
2146 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2147 {
2148         struct drm_i915_private *dev_priv = dev->dev_private;
2149         struct intel_ring_buffer *ring = &dev_priv->ring[VCS2];
2150
2151         if ((INTEL_INFO(dev)->gen != 8)) {
2152                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2153                 return -EINVAL;
2154         }
2155
2156         ring->name = "bds2_ring";
2157         ring->id = VCS2;
2158
2159         ring->write_tail = ring_write_tail;
2160         ring->mmio_base = GEN8_BSD2_RING_BASE;
2161         ring->flush = gen6_bsd_ring_flush;
2162         ring->add_request = gen6_add_request;
2163         ring->get_seqno = gen6_ring_get_seqno;
2164         ring->set_seqno = ring_set_seqno;
2165         ring->irq_enable_mask =
2166                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2167         ring->irq_get = gen8_ring_get_irq;
2168         ring->irq_put = gen8_ring_put_irq;
2169         ring->dispatch_execbuffer =
2170                         gen8_ring_dispatch_execbuffer;
2171         ring->sync_to = gen6_ring_sync;
2172         /*
2173          * The current semaphore is only applied on the pre-gen8. And there
2174          * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2175          * between VCS2 and other ring is initialized as invalid.
2176          * Gen8 will initialize the sema between VCS2 and other ring later.
2177          */
2178         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2179         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2180         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2181         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2182         ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2183         ring->signal_mbox[RCS] = GEN6_NOSYNC;
2184         ring->signal_mbox[VCS] = GEN6_NOSYNC;
2185         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2186         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2187         ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2188
2189         ring->init = init_ring_common;
2190
2191         return intel_init_ring_buffer(dev, ring);
2192 }
2193
2194 int intel_init_blt_ring_buffer(struct drm_device *dev)
2195 {
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2198
2199         ring->name = "blitter ring";
2200         ring->id = BCS;
2201
2202         ring->mmio_base = BLT_RING_BASE;
2203         ring->write_tail = ring_write_tail;
2204         ring->flush = gen6_ring_flush;
2205         ring->add_request = gen6_add_request;
2206         ring->get_seqno = gen6_ring_get_seqno;
2207         ring->set_seqno = ring_set_seqno;
2208         if (INTEL_INFO(dev)->gen >= 8) {
2209                 ring->irq_enable_mask =
2210                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2211                 ring->irq_get = gen8_ring_get_irq;
2212                 ring->irq_put = gen8_ring_put_irq;
2213                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2214         } else {
2215                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2216                 ring->irq_get = gen6_ring_get_irq;
2217                 ring->irq_put = gen6_ring_put_irq;
2218                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2219         }
2220         ring->sync_to = gen6_ring_sync;
2221         /*
2222          * The current semaphore is only applied on pre-gen8 platform. And
2223          * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2224          * between BCS and VCS2 is initialized as INVALID.
2225          * Gen8 will initialize the sema between BCS and VCS2 later.
2226          */
2227         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2228         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2229         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2230         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2231         ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2232         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2233         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2234         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2235         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2236         ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2237         ring->init = init_ring_common;
2238
2239         return intel_init_ring_buffer(dev, ring);
2240 }
2241
2242 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2246
2247         ring->name = "video enhancement ring";
2248         ring->id = VECS;
2249
2250         ring->mmio_base = VEBOX_RING_BASE;
2251         ring->write_tail = ring_write_tail;
2252         ring->flush = gen6_ring_flush;
2253         ring->add_request = gen6_add_request;
2254         ring->get_seqno = gen6_ring_get_seqno;
2255         ring->set_seqno = ring_set_seqno;
2256
2257         if (INTEL_INFO(dev)->gen >= 8) {
2258                 ring->irq_enable_mask =
2259                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2260                 ring->irq_get = gen8_ring_get_irq;
2261                 ring->irq_put = gen8_ring_put_irq;
2262                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2263         } else {
2264                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2265                 ring->irq_get = hsw_vebox_get_irq;
2266                 ring->irq_put = hsw_vebox_put_irq;
2267                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2268         }
2269         ring->sync_to = gen6_ring_sync;
2270         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2271         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2272         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2273         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2274         ring->semaphore_register[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2275         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2276         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2277         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2278         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2279         ring->signal_mbox[VCS2] = GEN6_NOSYNC;
2280         ring->init = init_ring_common;
2281
2282         return intel_init_ring_buffer(dev, ring);
2283 }
2284
2285 int
2286 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2287 {
2288         int ret;
2289
2290         if (!ring->gpu_caches_dirty)
2291                 return 0;
2292
2293         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2294         if (ret)
2295                 return ret;
2296
2297         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2298
2299         ring->gpu_caches_dirty = false;
2300         return 0;
2301 }
2302
2303 int
2304 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2305 {
2306         uint32_t flush_domains;
2307         int ret;
2308
2309         flush_domains = 0;
2310         if (ring->gpu_caches_dirty)
2311                 flush_domains = I915_GEM_GPU_DOMAINS;
2312
2313         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2314         if (ret)
2315                 return ret;
2316
2317         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2318
2319         ring->gpu_caches_dirty = false;
2320         return 0;
2321 }
2322
2323 void
2324 intel_stop_ring_buffer(struct intel_ring_buffer *ring)
2325 {
2326         int ret;
2327
2328         if (!intel_ring_initialized(ring))
2329                 return;
2330
2331         ret = intel_ring_idle(ring);
2332         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2333                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2334                           ring->name, ret);
2335
2336         stop_ring(ring);
2337 }