drm/i915: Update ring->dispatch_execbuffer() to take a request structure
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(ring, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(ring, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223
224         ret = intel_ring_begin(ring, 6);
225         if (ret)
226                 return ret;
227
228         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
229         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
230                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
231         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
232         intel_ring_emit(ring, 0); /* low dword */
233         intel_ring_emit(ring, 0); /* high dword */
234         intel_ring_emit(ring, MI_NOOP);
235         intel_ring_advance(ring);
236
237         ret = intel_ring_begin(ring, 6);
238         if (ret)
239                 return ret;
240
241         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
242         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
243         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, 0);
246         intel_ring_emit(ring, MI_NOOP);
247         intel_ring_advance(ring);
248
249         return 0;
250 }
251
252 static int
253 gen6_render_ring_flush(struct drm_i915_gem_request *req,
254                        u32 invalidate_domains, u32 flush_domains)
255 {
256         struct intel_engine_cs *ring = req->ring;
257         u32 flags = 0;
258         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
259         int ret;
260
261         /* Force SNB workarounds for PIPE_CONTROL flushes */
262         ret = intel_emit_post_sync_nonzero_flush(req);
263         if (ret)
264                 return ret;
265
266         /* Just flush everything.  Experiments have shown that reducing the
267          * number of bits based on the write domains has little performance
268          * impact.
269          */
270         if (flush_domains) {
271                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
272                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
273                 /*
274                  * Ensure that any following seqno writes only happen
275                  * when the render cache is indeed flushed.
276                  */
277                 flags |= PIPE_CONTROL_CS_STALL;
278         }
279         if (invalidate_domains) {
280                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
281                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
285                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
286                 /*
287                  * TLB invalidate requires a post-sync write.
288                  */
289                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
290         }
291
292         ret = intel_ring_begin(ring, 4);
293         if (ret)
294                 return ret;
295
296         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
297         intel_ring_emit(ring, flags);
298         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
299         intel_ring_emit(ring, 0);
300         intel_ring_advance(ring);
301
302         return 0;
303 }
304
305 static int
306 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
307 {
308         struct intel_engine_cs *ring = req->ring;
309         int ret;
310
311         ret = intel_ring_begin(ring, 4);
312         if (ret)
313                 return ret;
314
315         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
316         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
317                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
318         intel_ring_emit(ring, 0);
319         intel_ring_emit(ring, 0);
320         intel_ring_advance(ring);
321
322         return 0;
323 }
324
325 static int
326 gen7_render_ring_flush(struct drm_i915_gem_request *req,
327                        u32 invalidate_domains, u32 flush_domains)
328 {
329         struct intel_engine_cs *ring = req->ring;
330         u32 flags = 0;
331         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
332         int ret;
333
334         /*
335          * Ensure that any following seqno writes only happen when the render
336          * cache is indeed flushed.
337          *
338          * Workaround: 4th PIPE_CONTROL command (except the ones with only
339          * read-cache invalidate bits set) must have the CS_STALL bit set. We
340          * don't try to be clever and just set it unconditionally.
341          */
342         flags |= PIPE_CONTROL_CS_STALL;
343
344         /* Just flush everything.  Experiments have shown that reducing the
345          * number of bits based on the write domains has little performance
346          * impact.
347          */
348         if (flush_domains) {
349                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
350                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
351         }
352         if (invalidate_domains) {
353                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
354                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360                 /*
361                  * TLB invalidate requires a post-sync write.
362                  */
363                 flags |= PIPE_CONTROL_QW_WRITE;
364                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
366                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
368                 /* Workaround: we must issue a pipe_control with CS-stall bit
369                  * set before a pipe_control command that has the state cache
370                  * invalidate bit set. */
371                 gen7_render_ring_cs_stall_wa(req);
372         }
373
374         ret = intel_ring_begin(ring, 4);
375         if (ret)
376                 return ret;
377
378         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379         intel_ring_emit(ring, flags);
380         intel_ring_emit(ring, scratch_addr);
381         intel_ring_emit(ring, 0);
382         intel_ring_advance(ring);
383
384         return 0;
385 }
386
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389                        u32 flags, u32 scratch_addr)
390 {
391         struct intel_engine_cs *ring = req->ring;
392         int ret;
393
394         ret = intel_ring_begin(ring, 6);
395         if (ret)
396                 return ret;
397
398         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399         intel_ring_emit(ring, flags);
400         intel_ring_emit(ring, scratch_addr);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_emit(ring, 0);
404         intel_ring_advance(ring);
405
406         return 0;
407 }
408
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411                        u32 invalidate_domains, u32 flush_domains)
412 {
413         u32 flags = 0;
414         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415         int ret;
416
417         flags |= PIPE_CONTROL_CS_STALL;
418
419         if (flush_domains) {
420                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422         }
423         if (invalidate_domains) {
424                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
425                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
426                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
430                 flags |= PIPE_CONTROL_QW_WRITE;
431                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
432
433                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
434                 ret = gen8_emit_pipe_control(req,
435                                              PIPE_CONTROL_CS_STALL |
436                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
437                                              0);
438                 if (ret)
439                         return ret;
440         }
441
442         return gen8_emit_pipe_control(req, flags, scratch_addr);
443 }
444
445 static void ring_write_tail(struct intel_engine_cs *ring,
446                             u32 value)
447 {
448         struct drm_i915_private *dev_priv = ring->dev->dev_private;
449         I915_WRITE_TAIL(ring, value);
450 }
451
452 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
453 {
454         struct drm_i915_private *dev_priv = ring->dev->dev_private;
455         u64 acthd;
456
457         if (INTEL_INFO(ring->dev)->gen >= 8)
458                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
459                                          RING_ACTHD_UDW(ring->mmio_base));
460         else if (INTEL_INFO(ring->dev)->gen >= 4)
461                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
462         else
463                 acthd = I915_READ(ACTHD);
464
465         return acthd;
466 }
467
468 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
469 {
470         struct drm_i915_private *dev_priv = ring->dev->dev_private;
471         u32 addr;
472
473         addr = dev_priv->status_page_dmah->busaddr;
474         if (INTEL_INFO(ring->dev)->gen >= 4)
475                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
476         I915_WRITE(HWS_PGA, addr);
477 }
478
479 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
480 {
481         struct drm_device *dev = ring->dev;
482         struct drm_i915_private *dev_priv = ring->dev->dev_private;
483         u32 mmio = 0;
484
485         /* The ring status page addresses are no longer next to the rest of
486          * the ring registers as of gen7.
487          */
488         if (IS_GEN7(dev)) {
489                 switch (ring->id) {
490                 case RCS:
491                         mmio = RENDER_HWS_PGA_GEN7;
492                         break;
493                 case BCS:
494                         mmio = BLT_HWS_PGA_GEN7;
495                         break;
496                 /*
497                  * VCS2 actually doesn't exist on Gen7. Only shut up
498                  * gcc switch check warning
499                  */
500                 case VCS2:
501                 case VCS:
502                         mmio = BSD_HWS_PGA_GEN7;
503                         break;
504                 case VECS:
505                         mmio = VEBOX_HWS_PGA_GEN7;
506                         break;
507                 }
508         } else if (IS_GEN6(ring->dev)) {
509                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
510         } else {
511                 /* XXX: gen8 returns to sanity */
512                 mmio = RING_HWS_PGA(ring->mmio_base);
513         }
514
515         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
516         POSTING_READ(mmio);
517
518         /*
519          * Flush the TLB for this page
520          *
521          * FIXME: These two bits have disappeared on gen8, so a question
522          * arises: do we still need this and if so how should we go about
523          * invalidating the TLB?
524          */
525         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
526                 u32 reg = RING_INSTPM(ring->mmio_base);
527
528                 /* ring should be idle before issuing a sync flush*/
529                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
530
531                 I915_WRITE(reg,
532                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
533                                               INSTPM_SYNC_FLUSH));
534                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
535                              1000))
536                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
537                                   ring->name);
538         }
539 }
540
541 static bool stop_ring(struct intel_engine_cs *ring)
542 {
543         struct drm_i915_private *dev_priv = to_i915(ring->dev);
544
545         if (!IS_GEN2(ring->dev)) {
546                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
547                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
548                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
549                         /* Sometimes we observe that the idle flag is not
550                          * set even though the ring is empty. So double
551                          * check before giving up.
552                          */
553                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
554                                 return false;
555                 }
556         }
557
558         I915_WRITE_CTL(ring, 0);
559         I915_WRITE_HEAD(ring, 0);
560         ring->write_tail(ring, 0);
561
562         if (!IS_GEN2(ring->dev)) {
563                 (void)I915_READ_CTL(ring);
564                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
565         }
566
567         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
568 }
569
570 static int init_ring_common(struct intel_engine_cs *ring)
571 {
572         struct drm_device *dev = ring->dev;
573         struct drm_i915_private *dev_priv = dev->dev_private;
574         struct intel_ringbuffer *ringbuf = ring->buffer;
575         struct drm_i915_gem_object *obj = ringbuf->obj;
576         int ret = 0;
577
578         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
579
580         if (!stop_ring(ring)) {
581                 /* G45 ring initialization often fails to reset head to zero */
582                 DRM_DEBUG_KMS("%s head not reset to zero "
583                               "ctl %08x head %08x tail %08x start %08x\n",
584                               ring->name,
585                               I915_READ_CTL(ring),
586                               I915_READ_HEAD(ring),
587                               I915_READ_TAIL(ring),
588                               I915_READ_START(ring));
589
590                 if (!stop_ring(ring)) {
591                         DRM_ERROR("failed to set %s head to zero "
592                                   "ctl %08x head %08x tail %08x start %08x\n",
593                                   ring->name,
594                                   I915_READ_CTL(ring),
595                                   I915_READ_HEAD(ring),
596                                   I915_READ_TAIL(ring),
597                                   I915_READ_START(ring));
598                         ret = -EIO;
599                         goto out;
600                 }
601         }
602
603         if (I915_NEED_GFX_HWS(dev))
604                 intel_ring_setup_status_page(ring);
605         else
606                 ring_setup_phys_status_page(ring);
607
608         /* Enforce ordering by reading HEAD register back */
609         I915_READ_HEAD(ring);
610
611         /* Initialize the ring. This must happen _after_ we've cleared the ring
612          * registers with the above sequence (the readback of the HEAD registers
613          * also enforces ordering), otherwise the hw might lose the new ring
614          * register values. */
615         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
616
617         /* WaClearRingBufHeadRegAtInit:ctg,elk */
618         if (I915_READ_HEAD(ring))
619                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
620                           ring->name, I915_READ_HEAD(ring));
621         I915_WRITE_HEAD(ring, 0);
622         (void)I915_READ_HEAD(ring);
623
624         I915_WRITE_CTL(ring,
625                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
626                         | RING_VALID);
627
628         /* If the head is still not zero, the ring is dead */
629         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
630                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
631                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
632                 DRM_ERROR("%s initialization failed "
633                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
634                           ring->name,
635                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
636                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
637                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
638                 ret = -EIO;
639                 goto out;
640         }
641
642         ringbuf->last_retired_head = -1;
643         ringbuf->head = I915_READ_HEAD(ring);
644         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
645         intel_ring_update_space(ringbuf);
646
647         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
648
649 out:
650         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
651
652         return ret;
653 }
654
655 void
656 intel_fini_pipe_control(struct intel_engine_cs *ring)
657 {
658         struct drm_device *dev = ring->dev;
659
660         if (ring->scratch.obj == NULL)
661                 return;
662
663         if (INTEL_INFO(dev)->gen >= 5) {
664                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
665                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
666         }
667
668         drm_gem_object_unreference(&ring->scratch.obj->base);
669         ring->scratch.obj = NULL;
670 }
671
672 int
673 intel_init_pipe_control(struct intel_engine_cs *ring)
674 {
675         int ret;
676
677         WARN_ON(ring->scratch.obj);
678
679         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
680         if (ring->scratch.obj == NULL) {
681                 DRM_ERROR("Failed to allocate seqno page\n");
682                 ret = -ENOMEM;
683                 goto err;
684         }
685
686         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
687         if (ret)
688                 goto err_unref;
689
690         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
691         if (ret)
692                 goto err_unref;
693
694         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
695         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
696         if (ring->scratch.cpu_page == NULL) {
697                 ret = -ENOMEM;
698                 goto err_unpin;
699         }
700
701         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
702                          ring->name, ring->scratch.gtt_offset);
703         return 0;
704
705 err_unpin:
706         i915_gem_object_ggtt_unpin(ring->scratch.obj);
707 err_unref:
708         drm_gem_object_unreference(&ring->scratch.obj->base);
709 err:
710         return ret;
711 }
712
713 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
714 {
715         int ret, i;
716         struct intel_engine_cs *ring = req->ring;
717         struct drm_device *dev = ring->dev;
718         struct drm_i915_private *dev_priv = dev->dev_private;
719         struct i915_workarounds *w = &dev_priv->workarounds;
720
721         if (WARN_ON_ONCE(w->count == 0))
722                 return 0;
723
724         ring->gpu_caches_dirty = true;
725         ret = intel_ring_flush_all_caches(req);
726         if (ret)
727                 return ret;
728
729         ret = intel_ring_begin(ring, (w->count * 2 + 2));
730         if (ret)
731                 return ret;
732
733         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
734         for (i = 0; i < w->count; i++) {
735                 intel_ring_emit(ring, w->reg[i].addr);
736                 intel_ring_emit(ring, w->reg[i].value);
737         }
738         intel_ring_emit(ring, MI_NOOP);
739
740         intel_ring_advance(ring);
741
742         ring->gpu_caches_dirty = true;
743         ret = intel_ring_flush_all_caches(req);
744         if (ret)
745                 return ret;
746
747         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
748
749         return 0;
750 }
751
752 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
753 {
754         int ret;
755
756         ret = intel_ring_workarounds_emit(req);
757         if (ret != 0)
758                 return ret;
759
760         ret = i915_gem_render_state_init(req);
761         if (ret)
762                 DRM_ERROR("init render state: %d\n", ret);
763
764         return ret;
765 }
766
767 static int wa_add(struct drm_i915_private *dev_priv,
768                   const u32 addr, const u32 mask, const u32 val)
769 {
770         const u32 idx = dev_priv->workarounds.count;
771
772         if (WARN_ON(idx >= I915_MAX_WA_REGS))
773                 return -ENOSPC;
774
775         dev_priv->workarounds.reg[idx].addr = addr;
776         dev_priv->workarounds.reg[idx].value = val;
777         dev_priv->workarounds.reg[idx].mask = mask;
778
779         dev_priv->workarounds.count++;
780
781         return 0;
782 }
783
784 #define WA_REG(addr, mask, val) { \
785                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
786                 if (r) \
787                         return r; \
788         }
789
790 #define WA_SET_BIT_MASKED(addr, mask) \
791         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
792
793 #define WA_CLR_BIT_MASKED(addr, mask) \
794         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
795
796 #define WA_SET_FIELD_MASKED(addr, mask, value) \
797         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
798
799 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
800 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
801
802 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
803
804 static int bdw_init_workarounds(struct intel_engine_cs *ring)
805 {
806         struct drm_device *dev = ring->dev;
807         struct drm_i915_private *dev_priv = dev->dev_private;
808
809         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
810
811         /* WaDisableAsyncFlipPerfMode:bdw */
812         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
813
814         /* WaDisablePartialInstShootdown:bdw */
815         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
816         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
817                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
818                           STALL_DOP_GATING_DISABLE);
819
820         /* WaDisableDopClockGating:bdw */
821         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
822                           DOP_CLOCK_GATING_DISABLE);
823
824         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
825                           GEN8_SAMPLER_POWER_BYPASS_DIS);
826
827         /* Use Force Non-Coherent whenever executing a 3D context. This is a
828          * workaround for for a possible hang in the unlikely event a TLB
829          * invalidation occurs during a PSD flush.
830          */
831         WA_SET_BIT_MASKED(HDC_CHICKEN0,
832                           /* WaForceEnableNonCoherent:bdw */
833                           HDC_FORCE_NON_COHERENT |
834                           /* WaForceContextSaveRestoreNonCoherent:bdw */
835                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
836                           /* WaHdcDisableFetchWhenMasked:bdw */
837                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
838                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
839                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
840
841         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
842          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
843          *  polygons in the same 8x4 pixel/sample area to be processed without
844          *  stalling waiting for the earlier ones to write to Hierarchical Z
845          *  buffer."
846          *
847          * This optimization is off by default for Broadwell; turn it on.
848          */
849         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
850
851         /* Wa4x4STCOptimizationDisable:bdw */
852         WA_SET_BIT_MASKED(CACHE_MODE_1,
853                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
854
855         /*
856          * BSpec recommends 8x4 when MSAA is used,
857          * however in practice 16x4 seems fastest.
858          *
859          * Note that PS/WM thread counts depend on the WIZ hashing
860          * disable bit, which we don't touch here, but it's good
861          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
862          */
863         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
864                             GEN6_WIZ_HASHING_MASK,
865                             GEN6_WIZ_HASHING_16x4);
866
867         return 0;
868 }
869
870 static int chv_init_workarounds(struct intel_engine_cs *ring)
871 {
872         struct drm_device *dev = ring->dev;
873         struct drm_i915_private *dev_priv = dev->dev_private;
874
875         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
876
877         /* WaDisableAsyncFlipPerfMode:chv */
878         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
879
880         /* WaDisablePartialInstShootdown:chv */
881         /* WaDisableThreadStallDopClockGating:chv */
882         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
883                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
884                           STALL_DOP_GATING_DISABLE);
885
886         /* Use Force Non-Coherent whenever executing a 3D context. This is a
887          * workaround for a possible hang in the unlikely event a TLB
888          * invalidation occurs during a PSD flush.
889          */
890         /* WaForceEnableNonCoherent:chv */
891         /* WaHdcDisableFetchWhenMasked:chv */
892         WA_SET_BIT_MASKED(HDC_CHICKEN0,
893                           HDC_FORCE_NON_COHERENT |
894                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
895
896         /* According to the CACHE_MODE_0 default value documentation, some
897          * CHV platforms disable this optimization by default.  Turn it on.
898          */
899         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
900
901         /* Wa4x4STCOptimizationDisable:chv */
902         WA_SET_BIT_MASKED(CACHE_MODE_1,
903                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
904
905         /* Improve HiZ throughput on CHV. */
906         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
907
908         /*
909          * BSpec recommends 8x4 when MSAA is used,
910          * however in practice 16x4 seems fastest.
911          *
912          * Note that PS/WM thread counts depend on the WIZ hashing
913          * disable bit, which we don't touch here, but it's good
914          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
915          */
916         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
917                             GEN6_WIZ_HASHING_MASK,
918                             GEN6_WIZ_HASHING_16x4);
919
920         return 0;
921 }
922
923 static int gen9_init_workarounds(struct intel_engine_cs *ring)
924 {
925         struct drm_device *dev = ring->dev;
926         struct drm_i915_private *dev_priv = dev->dev_private;
927         uint32_t tmp;
928
929         /* WaDisablePartialInstShootdown:skl,bxt */
930         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
931                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
932
933         /* Syncing dependencies between camera and graphics:skl,bxt */
934         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
935                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
936
937         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
938             INTEL_REVID(dev) == SKL_REVID_B0)) ||
939             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
940                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
941                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
942                                   GEN9_DG_MIRROR_FIX_ENABLE);
943         }
944
945         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
946             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
947                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
948                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
950                 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
951                                   DISABLE_PIXEL_MASK_CAMMING);
952         }
953
954         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
955             IS_BROXTON(dev)) {
956                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
957                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
958                                   GEN9_ENABLE_YV12_BUGFIX);
959         }
960
961         /* Wa4x4STCOptimizationDisable:skl,bxt */
962         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
963
964         /* WaDisablePartialResolveInVc:skl,bxt */
965         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
966
967         /* WaCcsTlbPrefetchDisable:skl,bxt */
968         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
969                           GEN9_CCS_TLB_PREFETCH_ENABLE);
970
971         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
972         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
973             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
974                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
975                                   PIXEL_MASK_CAMMING_DISABLE);
976
977         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
978         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
979         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
980             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
981                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
982         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
983
984         return 0;
985 }
986
987 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
988 {
989         struct drm_device *dev = ring->dev;
990         struct drm_i915_private *dev_priv = dev->dev_private;
991         u8 vals[3] = { 0, 0, 0 };
992         unsigned int i;
993
994         for (i = 0; i < 3; i++) {
995                 u8 ss;
996
997                 /*
998                  * Only consider slices where one, and only one, subslice has 7
999                  * EUs
1000                  */
1001                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1002                         continue;
1003
1004                 /*
1005                  * subslice_7eu[i] != 0 (because of the check above) and
1006                  * ss_max == 4 (maximum number of subslices possible per slice)
1007                  *
1008                  * ->    0 <= ss <= 3;
1009                  */
1010                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1011                 vals[i] = 3 - ss;
1012         }
1013
1014         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1015                 return 0;
1016
1017         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1018         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1019                             GEN9_IZ_HASHING_MASK(2) |
1020                             GEN9_IZ_HASHING_MASK(1) |
1021                             GEN9_IZ_HASHING_MASK(0),
1022                             GEN9_IZ_HASHING(2, vals[2]) |
1023                             GEN9_IZ_HASHING(1, vals[1]) |
1024                             GEN9_IZ_HASHING(0, vals[0]));
1025
1026         return 0;
1027 }
1028
1029
1030 static int skl_init_workarounds(struct intel_engine_cs *ring)
1031 {
1032         struct drm_device *dev = ring->dev;
1033         struct drm_i915_private *dev_priv = dev->dev_private;
1034
1035         gen9_init_workarounds(ring);
1036
1037         /* WaDisablePowerCompilerClockGating:skl */
1038         if (INTEL_REVID(dev) == SKL_REVID_B0)
1039                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1040                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1041
1042         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1043                 /*
1044                  *Use Force Non-Coherent whenever executing a 3D context. This
1045                  * is a workaround for a possible hang in the unlikely event
1046                  * a TLB invalidation occurs during a PSD flush.
1047                  */
1048                 /* WaForceEnableNonCoherent:skl */
1049                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1050                                   HDC_FORCE_NON_COHERENT);
1051         }
1052
1053         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1054             INTEL_REVID(dev) == SKL_REVID_D0)
1055                 /* WaBarrierPerformanceFixDisable:skl */
1056                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1057                                   HDC_FENCE_DEST_SLM_DISABLE |
1058                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1059
1060         return skl_tune_iz_hashing(ring);
1061 }
1062
1063 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1064 {
1065         struct drm_device *dev = ring->dev;
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067
1068         gen9_init_workarounds(ring);
1069
1070         /* WaDisableThreadStallDopClockGating:bxt */
1071         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1072                           STALL_DOP_GATING_DISABLE);
1073
1074         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1075         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1076                 WA_SET_BIT_MASKED(
1077                         GEN7_HALF_SLICE_CHICKEN1,
1078                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1079         }
1080
1081         return 0;
1082 }
1083
1084 int init_workarounds_ring(struct intel_engine_cs *ring)
1085 {
1086         struct drm_device *dev = ring->dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088
1089         WARN_ON(ring->id != RCS);
1090
1091         dev_priv->workarounds.count = 0;
1092
1093         if (IS_BROADWELL(dev))
1094                 return bdw_init_workarounds(ring);
1095
1096         if (IS_CHERRYVIEW(dev))
1097                 return chv_init_workarounds(ring);
1098
1099         if (IS_SKYLAKE(dev))
1100                 return skl_init_workarounds(ring);
1101
1102         if (IS_BROXTON(dev))
1103                 return bxt_init_workarounds(ring);
1104
1105         return 0;
1106 }
1107
1108 static int init_render_ring(struct intel_engine_cs *ring)
1109 {
1110         struct drm_device *dev = ring->dev;
1111         struct drm_i915_private *dev_priv = dev->dev_private;
1112         int ret = init_ring_common(ring);
1113         if (ret)
1114                 return ret;
1115
1116         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1117         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1118                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1119
1120         /* We need to disable the AsyncFlip performance optimisations in order
1121          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1122          * programmed to '1' on all products.
1123          *
1124          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1125          */
1126         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1127                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1128
1129         /* Required for the hardware to program scanline values for waiting */
1130         /* WaEnableFlushTlbInvalidationMode:snb */
1131         if (INTEL_INFO(dev)->gen == 6)
1132                 I915_WRITE(GFX_MODE,
1133                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1134
1135         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1136         if (IS_GEN7(dev))
1137                 I915_WRITE(GFX_MODE_GEN7,
1138                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1139                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1140
1141         if (IS_GEN6(dev)) {
1142                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1143                  * "If this bit is set, STCunit will have LRA as replacement
1144                  *  policy. [...] This bit must be reset.  LRA replacement
1145                  *  policy is not supported."
1146                  */
1147                 I915_WRITE(CACHE_MODE_0,
1148                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1149         }
1150
1151         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1152                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1153
1154         if (HAS_L3_DPF(dev))
1155                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1156
1157         return init_workarounds_ring(ring);
1158 }
1159
1160 static void render_ring_cleanup(struct intel_engine_cs *ring)
1161 {
1162         struct drm_device *dev = ring->dev;
1163         struct drm_i915_private *dev_priv = dev->dev_private;
1164
1165         if (dev_priv->semaphore_obj) {
1166                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1167                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1168                 dev_priv->semaphore_obj = NULL;
1169         }
1170
1171         intel_fini_pipe_control(ring);
1172 }
1173
1174 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1175                            unsigned int num_dwords)
1176 {
1177 #define MBOX_UPDATE_DWORDS 8
1178         struct drm_device *dev = signaller->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct intel_engine_cs *waiter;
1181         int i, ret, num_rings;
1182
1183         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1184         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1185 #undef MBOX_UPDATE_DWORDS
1186
1187         ret = intel_ring_begin(signaller, num_dwords);
1188         if (ret)
1189                 return ret;
1190
1191         for_each_ring(waiter, dev_priv, i) {
1192                 u32 seqno;
1193                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1194                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1195                         continue;
1196
1197                 seqno = i915_gem_request_get_seqno(
1198                                            signaller->outstanding_lazy_request);
1199                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1200                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1201                                            PIPE_CONTROL_QW_WRITE |
1202                                            PIPE_CONTROL_FLUSH_ENABLE);
1203                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1204                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1205                 intel_ring_emit(signaller, seqno);
1206                 intel_ring_emit(signaller, 0);
1207                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1208                                            MI_SEMAPHORE_TARGET(waiter->id));
1209                 intel_ring_emit(signaller, 0);
1210         }
1211
1212         return 0;
1213 }
1214
1215 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1216                            unsigned int num_dwords)
1217 {
1218 #define MBOX_UPDATE_DWORDS 6
1219         struct drm_device *dev = signaller->dev;
1220         struct drm_i915_private *dev_priv = dev->dev_private;
1221         struct intel_engine_cs *waiter;
1222         int i, ret, num_rings;
1223
1224         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1225         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1226 #undef MBOX_UPDATE_DWORDS
1227
1228         ret = intel_ring_begin(signaller, num_dwords);
1229         if (ret)
1230                 return ret;
1231
1232         for_each_ring(waiter, dev_priv, i) {
1233                 u32 seqno;
1234                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1235                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1236                         continue;
1237
1238                 seqno = i915_gem_request_get_seqno(
1239                                            signaller->outstanding_lazy_request);
1240                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1241                                            MI_FLUSH_DW_OP_STOREDW);
1242                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1243                                            MI_FLUSH_DW_USE_GTT);
1244                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1245                 intel_ring_emit(signaller, seqno);
1246                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1247                                            MI_SEMAPHORE_TARGET(waiter->id));
1248                 intel_ring_emit(signaller, 0);
1249         }
1250
1251         return 0;
1252 }
1253
1254 static int gen6_signal(struct intel_engine_cs *signaller,
1255                        unsigned int num_dwords)
1256 {
1257         struct drm_device *dev = signaller->dev;
1258         struct drm_i915_private *dev_priv = dev->dev_private;
1259         struct intel_engine_cs *useless;
1260         int i, ret, num_rings;
1261
1262 #define MBOX_UPDATE_DWORDS 3
1263         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1264         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1265 #undef MBOX_UPDATE_DWORDS
1266
1267         ret = intel_ring_begin(signaller, num_dwords);
1268         if (ret)
1269                 return ret;
1270
1271         for_each_ring(useless, dev_priv, i) {
1272                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1273                 if (mbox_reg != GEN6_NOSYNC) {
1274                         u32 seqno = i915_gem_request_get_seqno(
1275                                            signaller->outstanding_lazy_request);
1276                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1277                         intel_ring_emit(signaller, mbox_reg);
1278                         intel_ring_emit(signaller, seqno);
1279                 }
1280         }
1281
1282         /* If num_dwords was rounded, make sure the tail pointer is correct */
1283         if (num_rings % 2 == 0)
1284                 intel_ring_emit(signaller, MI_NOOP);
1285
1286         return 0;
1287 }
1288
1289 /**
1290  * gen6_add_request - Update the semaphore mailbox registers
1291  *
1292  * @request - request to write to the ring
1293  *
1294  * Update the mailbox registers in the *other* rings with the current seqno.
1295  * This acts like a signal in the canonical semaphore.
1296  */
1297 static int
1298 gen6_add_request(struct drm_i915_gem_request *req)
1299 {
1300         struct intel_engine_cs *ring = req->ring;
1301         int ret;
1302
1303         if (ring->semaphore.signal)
1304                 ret = ring->semaphore.signal(ring, 4);
1305         else
1306                 ret = intel_ring_begin(ring, 4);
1307
1308         if (ret)
1309                 return ret;
1310
1311         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1312         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1313         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1314         intel_ring_emit(ring, MI_USER_INTERRUPT);
1315         __intel_ring_advance(ring);
1316
1317         return 0;
1318 }
1319
1320 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1321                                               u32 seqno)
1322 {
1323         struct drm_i915_private *dev_priv = dev->dev_private;
1324         return dev_priv->last_seqno < seqno;
1325 }
1326
1327 /**
1328  * intel_ring_sync - sync the waiter to the signaller on seqno
1329  *
1330  * @waiter - ring that is waiting
1331  * @signaller - ring which has, or will signal
1332  * @seqno - seqno which the waiter will block on
1333  */
1334
1335 static int
1336 gen8_ring_sync(struct intel_engine_cs *waiter,
1337                struct intel_engine_cs *signaller,
1338                u32 seqno)
1339 {
1340         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1341         int ret;
1342
1343         ret = intel_ring_begin(waiter, 4);
1344         if (ret)
1345                 return ret;
1346
1347         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1348                                 MI_SEMAPHORE_GLOBAL_GTT |
1349                                 MI_SEMAPHORE_POLL |
1350                                 MI_SEMAPHORE_SAD_GTE_SDD);
1351         intel_ring_emit(waiter, seqno);
1352         intel_ring_emit(waiter,
1353                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1354         intel_ring_emit(waiter,
1355                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1356         intel_ring_advance(waiter);
1357         return 0;
1358 }
1359
1360 static int
1361 gen6_ring_sync(struct intel_engine_cs *waiter,
1362                struct intel_engine_cs *signaller,
1363                u32 seqno)
1364 {
1365         u32 dw1 = MI_SEMAPHORE_MBOX |
1366                   MI_SEMAPHORE_COMPARE |
1367                   MI_SEMAPHORE_REGISTER;
1368         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1369         int ret;
1370
1371         /* Throughout all of the GEM code, seqno passed implies our current
1372          * seqno is >= the last seqno executed. However for hardware the
1373          * comparison is strictly greater than.
1374          */
1375         seqno -= 1;
1376
1377         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1378
1379         ret = intel_ring_begin(waiter, 4);
1380         if (ret)
1381                 return ret;
1382
1383         /* If seqno wrap happened, omit the wait with no-ops */
1384         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1385                 intel_ring_emit(waiter, dw1 | wait_mbox);
1386                 intel_ring_emit(waiter, seqno);
1387                 intel_ring_emit(waiter, 0);
1388                 intel_ring_emit(waiter, MI_NOOP);
1389         } else {
1390                 intel_ring_emit(waiter, MI_NOOP);
1391                 intel_ring_emit(waiter, MI_NOOP);
1392                 intel_ring_emit(waiter, MI_NOOP);
1393                 intel_ring_emit(waiter, MI_NOOP);
1394         }
1395         intel_ring_advance(waiter);
1396
1397         return 0;
1398 }
1399
1400 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1401 do {                                                                    \
1402         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1403                  PIPE_CONTROL_DEPTH_STALL);                             \
1404         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1405         intel_ring_emit(ring__, 0);                                                     \
1406         intel_ring_emit(ring__, 0);                                                     \
1407 } while (0)
1408
1409 static int
1410 pc_render_add_request(struct drm_i915_gem_request *req)
1411 {
1412         struct intel_engine_cs *ring = req->ring;
1413         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1414         int ret;
1415
1416         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1417          * incoherent with writes to memory, i.e. completely fubar,
1418          * so we need to use PIPE_NOTIFY instead.
1419          *
1420          * However, we also need to workaround the qword write
1421          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1422          * memory before requesting an interrupt.
1423          */
1424         ret = intel_ring_begin(ring, 32);
1425         if (ret)
1426                 return ret;
1427
1428         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1429                         PIPE_CONTROL_WRITE_FLUSH |
1430                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1431         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1432         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1433         intel_ring_emit(ring, 0);
1434         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1435         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1436         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1437         scratch_addr += 2 * CACHELINE_BYTES;
1438         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1439         scratch_addr += 2 * CACHELINE_BYTES;
1440         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1441         scratch_addr += 2 * CACHELINE_BYTES;
1442         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1443         scratch_addr += 2 * CACHELINE_BYTES;
1444         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1445
1446         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1447                         PIPE_CONTROL_WRITE_FLUSH |
1448                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1449                         PIPE_CONTROL_NOTIFY);
1450         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1451         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1452         intel_ring_emit(ring, 0);
1453         __intel_ring_advance(ring);
1454
1455         return 0;
1456 }
1457
1458 static u32
1459 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1460 {
1461         /* Workaround to force correct ordering between irq and seqno writes on
1462          * ivb (and maybe also on snb) by reading from a CS register (like
1463          * ACTHD) before reading the status page. */
1464         if (!lazy_coherency) {
1465                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1466                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1467         }
1468
1469         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1470 }
1471
1472 static u32
1473 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1474 {
1475         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1476 }
1477
1478 static void
1479 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1480 {
1481         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1482 }
1483
1484 static u32
1485 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1486 {
1487         return ring->scratch.cpu_page[0];
1488 }
1489
1490 static void
1491 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1492 {
1493         ring->scratch.cpu_page[0] = seqno;
1494 }
1495
1496 static bool
1497 gen5_ring_get_irq(struct intel_engine_cs *ring)
1498 {
1499         struct drm_device *dev = ring->dev;
1500         struct drm_i915_private *dev_priv = dev->dev_private;
1501         unsigned long flags;
1502
1503         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1504                 return false;
1505
1506         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1507         if (ring->irq_refcount++ == 0)
1508                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1509         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1510
1511         return true;
1512 }
1513
1514 static void
1515 gen5_ring_put_irq(struct intel_engine_cs *ring)
1516 {
1517         struct drm_device *dev = ring->dev;
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519         unsigned long flags;
1520
1521         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1522         if (--ring->irq_refcount == 0)
1523                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1524         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1525 }
1526
1527 static bool
1528 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1529 {
1530         struct drm_device *dev = ring->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         unsigned long flags;
1533
1534         if (!intel_irqs_enabled(dev_priv))
1535                 return false;
1536
1537         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1538         if (ring->irq_refcount++ == 0) {
1539                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1540                 I915_WRITE(IMR, dev_priv->irq_mask);
1541                 POSTING_READ(IMR);
1542         }
1543         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1544
1545         return true;
1546 }
1547
1548 static void
1549 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1550 {
1551         struct drm_device *dev = ring->dev;
1552         struct drm_i915_private *dev_priv = dev->dev_private;
1553         unsigned long flags;
1554
1555         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1556         if (--ring->irq_refcount == 0) {
1557                 dev_priv->irq_mask |= ring->irq_enable_mask;
1558                 I915_WRITE(IMR, dev_priv->irq_mask);
1559                 POSTING_READ(IMR);
1560         }
1561         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1562 }
1563
1564 static bool
1565 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1566 {
1567         struct drm_device *dev = ring->dev;
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         unsigned long flags;
1570
1571         if (!intel_irqs_enabled(dev_priv))
1572                 return false;
1573
1574         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1575         if (ring->irq_refcount++ == 0) {
1576                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1577                 I915_WRITE16(IMR, dev_priv->irq_mask);
1578                 POSTING_READ16(IMR);
1579         }
1580         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1581
1582         return true;
1583 }
1584
1585 static void
1586 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1587 {
1588         struct drm_device *dev = ring->dev;
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         unsigned long flags;
1591
1592         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1593         if (--ring->irq_refcount == 0) {
1594                 dev_priv->irq_mask |= ring->irq_enable_mask;
1595                 I915_WRITE16(IMR, dev_priv->irq_mask);
1596                 POSTING_READ16(IMR);
1597         }
1598         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1599 }
1600
1601 static int
1602 bsd_ring_flush(struct drm_i915_gem_request *req,
1603                u32     invalidate_domains,
1604                u32     flush_domains)
1605 {
1606         struct intel_engine_cs *ring = req->ring;
1607         int ret;
1608
1609         ret = intel_ring_begin(ring, 2);
1610         if (ret)
1611                 return ret;
1612
1613         intel_ring_emit(ring, MI_FLUSH);
1614         intel_ring_emit(ring, MI_NOOP);
1615         intel_ring_advance(ring);
1616         return 0;
1617 }
1618
1619 static int
1620 i9xx_add_request(struct drm_i915_gem_request *req)
1621 {
1622         struct intel_engine_cs *ring = req->ring;
1623         int ret;
1624
1625         ret = intel_ring_begin(ring, 4);
1626         if (ret)
1627                 return ret;
1628
1629         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1630         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1631         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1632         intel_ring_emit(ring, MI_USER_INTERRUPT);
1633         __intel_ring_advance(ring);
1634
1635         return 0;
1636 }
1637
1638 static bool
1639 gen6_ring_get_irq(struct intel_engine_cs *ring)
1640 {
1641         struct drm_device *dev = ring->dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         unsigned long flags;
1644
1645         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1646                 return false;
1647
1648         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1649         if (ring->irq_refcount++ == 0) {
1650                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1651                         I915_WRITE_IMR(ring,
1652                                        ~(ring->irq_enable_mask |
1653                                          GT_PARITY_ERROR(dev)));
1654                 else
1655                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1656                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1657         }
1658         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1659
1660         return true;
1661 }
1662
1663 static void
1664 gen6_ring_put_irq(struct intel_engine_cs *ring)
1665 {
1666         struct drm_device *dev = ring->dev;
1667         struct drm_i915_private *dev_priv = dev->dev_private;
1668         unsigned long flags;
1669
1670         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1671         if (--ring->irq_refcount == 0) {
1672                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1673                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1674                 else
1675                         I915_WRITE_IMR(ring, ~0);
1676                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1677         }
1678         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1679 }
1680
1681 static bool
1682 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1683 {
1684         struct drm_device *dev = ring->dev;
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686         unsigned long flags;
1687
1688         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1689                 return false;
1690
1691         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1692         if (ring->irq_refcount++ == 0) {
1693                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1694                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1695         }
1696         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1697
1698         return true;
1699 }
1700
1701 static void
1702 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1703 {
1704         struct drm_device *dev = ring->dev;
1705         struct drm_i915_private *dev_priv = dev->dev_private;
1706         unsigned long flags;
1707
1708         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1709         if (--ring->irq_refcount == 0) {
1710                 I915_WRITE_IMR(ring, ~0);
1711                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1712         }
1713         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1714 }
1715
1716 static bool
1717 gen8_ring_get_irq(struct intel_engine_cs *ring)
1718 {
1719         struct drm_device *dev = ring->dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721         unsigned long flags;
1722
1723         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1724                 return false;
1725
1726         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1727         if (ring->irq_refcount++ == 0) {
1728                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1729                         I915_WRITE_IMR(ring,
1730                                        ~(ring->irq_enable_mask |
1731                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1732                 } else {
1733                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1734                 }
1735                 POSTING_READ(RING_IMR(ring->mmio_base));
1736         }
1737         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1738
1739         return true;
1740 }
1741
1742 static void
1743 gen8_ring_put_irq(struct intel_engine_cs *ring)
1744 {
1745         struct drm_device *dev = ring->dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747         unsigned long flags;
1748
1749         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1750         if (--ring->irq_refcount == 0) {
1751                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1752                         I915_WRITE_IMR(ring,
1753                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1754                 } else {
1755                         I915_WRITE_IMR(ring, ~0);
1756                 }
1757                 POSTING_READ(RING_IMR(ring->mmio_base));
1758         }
1759         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1760 }
1761
1762 static int
1763 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1764                          u64 offset, u32 length,
1765                          unsigned dispatch_flags)
1766 {
1767         struct intel_engine_cs *ring = req->ring;
1768         int ret;
1769
1770         ret = intel_ring_begin(ring, 2);
1771         if (ret)
1772                 return ret;
1773
1774         intel_ring_emit(ring,
1775                         MI_BATCH_BUFFER_START |
1776                         MI_BATCH_GTT |
1777                         (dispatch_flags & I915_DISPATCH_SECURE ?
1778                          0 : MI_BATCH_NON_SECURE_I965));
1779         intel_ring_emit(ring, offset);
1780         intel_ring_advance(ring);
1781
1782         return 0;
1783 }
1784
1785 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1786 #define I830_BATCH_LIMIT (256*1024)
1787 #define I830_TLB_ENTRIES (2)
1788 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1789 static int
1790 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1791                          u64 offset, u32 len,
1792                          unsigned dispatch_flags)
1793 {
1794         struct intel_engine_cs *ring = req->ring;
1795         u32 cs_offset = ring->scratch.gtt_offset;
1796         int ret;
1797
1798         ret = intel_ring_begin(ring, 6);
1799         if (ret)
1800                 return ret;
1801
1802         /* Evict the invalid PTE TLBs */
1803         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1804         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1805         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1806         intel_ring_emit(ring, cs_offset);
1807         intel_ring_emit(ring, 0xdeadbeef);
1808         intel_ring_emit(ring, MI_NOOP);
1809         intel_ring_advance(ring);
1810
1811         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1812                 if (len > I830_BATCH_LIMIT)
1813                         return -ENOSPC;
1814
1815                 ret = intel_ring_begin(ring, 6 + 2);
1816                 if (ret)
1817                         return ret;
1818
1819                 /* Blit the batch (which has now all relocs applied) to the
1820                  * stable batch scratch bo area (so that the CS never
1821                  * stumbles over its tlb invalidation bug) ...
1822                  */
1823                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1824                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1825                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1826                 intel_ring_emit(ring, cs_offset);
1827                 intel_ring_emit(ring, 4096);
1828                 intel_ring_emit(ring, offset);
1829
1830                 intel_ring_emit(ring, MI_FLUSH);
1831                 intel_ring_emit(ring, MI_NOOP);
1832                 intel_ring_advance(ring);
1833
1834                 /* ... and execute it. */
1835                 offset = cs_offset;
1836         }
1837
1838         ret = intel_ring_begin(ring, 4);
1839         if (ret)
1840                 return ret;
1841
1842         intel_ring_emit(ring, MI_BATCH_BUFFER);
1843         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1844                                         0 : MI_BATCH_NON_SECURE));
1845         intel_ring_emit(ring, offset + len - 8);
1846         intel_ring_emit(ring, MI_NOOP);
1847         intel_ring_advance(ring);
1848
1849         return 0;
1850 }
1851
1852 static int
1853 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1854                          u64 offset, u32 len,
1855                          unsigned dispatch_flags)
1856 {
1857         struct intel_engine_cs *ring = req->ring;
1858         int ret;
1859
1860         ret = intel_ring_begin(ring, 2);
1861         if (ret)
1862                 return ret;
1863
1864         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1865         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1866                                         0 : MI_BATCH_NON_SECURE));
1867         intel_ring_advance(ring);
1868
1869         return 0;
1870 }
1871
1872 static void cleanup_status_page(struct intel_engine_cs *ring)
1873 {
1874         struct drm_i915_gem_object *obj;
1875
1876         obj = ring->status_page.obj;
1877         if (obj == NULL)
1878                 return;
1879
1880         kunmap(sg_page(obj->pages->sgl));
1881         i915_gem_object_ggtt_unpin(obj);
1882         drm_gem_object_unreference(&obj->base);
1883         ring->status_page.obj = NULL;
1884 }
1885
1886 static int init_status_page(struct intel_engine_cs *ring)
1887 {
1888         struct drm_i915_gem_object *obj;
1889
1890         if ((obj = ring->status_page.obj) == NULL) {
1891                 unsigned flags;
1892                 int ret;
1893
1894                 obj = i915_gem_alloc_object(ring->dev, 4096);
1895                 if (obj == NULL) {
1896                         DRM_ERROR("Failed to allocate status page\n");
1897                         return -ENOMEM;
1898                 }
1899
1900                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1901                 if (ret)
1902                         goto err_unref;
1903
1904                 flags = 0;
1905                 if (!HAS_LLC(ring->dev))
1906                         /* On g33, we cannot place HWS above 256MiB, so
1907                          * restrict its pinning to the low mappable arena.
1908                          * Though this restriction is not documented for
1909                          * gen4, gen5, or byt, they also behave similarly
1910                          * and hang if the HWS is placed at the top of the
1911                          * GTT. To generalise, it appears that all !llc
1912                          * platforms have issues with us placing the HWS
1913                          * above the mappable region (even though we never
1914                          * actualy map it).
1915                          */
1916                         flags |= PIN_MAPPABLE;
1917                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1918                 if (ret) {
1919 err_unref:
1920                         drm_gem_object_unreference(&obj->base);
1921                         return ret;
1922                 }
1923
1924                 ring->status_page.obj = obj;
1925         }
1926
1927         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1928         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1929         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1930
1931         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1932                         ring->name, ring->status_page.gfx_addr);
1933
1934         return 0;
1935 }
1936
1937 static int init_phys_status_page(struct intel_engine_cs *ring)
1938 {
1939         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1940
1941         if (!dev_priv->status_page_dmah) {
1942                 dev_priv->status_page_dmah =
1943                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1944                 if (!dev_priv->status_page_dmah)
1945                         return -ENOMEM;
1946         }
1947
1948         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1949         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1950
1951         return 0;
1952 }
1953
1954 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1955 {
1956         iounmap(ringbuf->virtual_start);
1957         ringbuf->virtual_start = NULL;
1958         i915_gem_object_ggtt_unpin(ringbuf->obj);
1959 }
1960
1961 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1962                                      struct intel_ringbuffer *ringbuf)
1963 {
1964         struct drm_i915_private *dev_priv = to_i915(dev);
1965         struct drm_i915_gem_object *obj = ringbuf->obj;
1966         int ret;
1967
1968         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1969         if (ret)
1970                 return ret;
1971
1972         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1973         if (ret) {
1974                 i915_gem_object_ggtt_unpin(obj);
1975                 return ret;
1976         }
1977
1978         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1979                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1980         if (ringbuf->virtual_start == NULL) {
1981                 i915_gem_object_ggtt_unpin(obj);
1982                 return -EINVAL;
1983         }
1984
1985         return 0;
1986 }
1987
1988 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1989 {
1990         drm_gem_object_unreference(&ringbuf->obj->base);
1991         ringbuf->obj = NULL;
1992 }
1993
1994 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1995                                struct intel_ringbuffer *ringbuf)
1996 {
1997         struct drm_i915_gem_object *obj;
1998
1999         obj = NULL;
2000         if (!HAS_LLC(dev))
2001                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2002         if (obj == NULL)
2003                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2004         if (obj == NULL)
2005                 return -ENOMEM;
2006
2007         /* mark ring buffers as read-only from GPU side by default */
2008         obj->gt_ro = 1;
2009
2010         ringbuf->obj = obj;
2011
2012         return 0;
2013 }
2014
2015 static int intel_init_ring_buffer(struct drm_device *dev,
2016                                   struct intel_engine_cs *ring)
2017 {
2018         struct intel_ringbuffer *ringbuf;
2019         int ret;
2020
2021         WARN_ON(ring->buffer);
2022
2023         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2024         if (!ringbuf)
2025                 return -ENOMEM;
2026         ring->buffer = ringbuf;
2027
2028         ring->dev = dev;
2029         INIT_LIST_HEAD(&ring->active_list);
2030         INIT_LIST_HEAD(&ring->request_list);
2031         INIT_LIST_HEAD(&ring->execlist_queue);
2032         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2033         ringbuf->size = 32 * PAGE_SIZE;
2034         ringbuf->ring = ring;
2035         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2036
2037         init_waitqueue_head(&ring->irq_queue);
2038
2039         if (I915_NEED_GFX_HWS(dev)) {
2040                 ret = init_status_page(ring);
2041                 if (ret)
2042                         goto error;
2043         } else {
2044                 BUG_ON(ring->id != RCS);
2045                 ret = init_phys_status_page(ring);
2046                 if (ret)
2047                         goto error;
2048         }
2049
2050         WARN_ON(ringbuf->obj);
2051
2052         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2053         if (ret) {
2054                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2055                                 ring->name, ret);
2056                 goto error;
2057         }
2058
2059         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2060         if (ret) {
2061                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2062                                 ring->name, ret);
2063                 intel_destroy_ringbuffer_obj(ringbuf);
2064                 goto error;
2065         }
2066
2067         /* Workaround an erratum on the i830 which causes a hang if
2068          * the TAIL pointer points to within the last 2 cachelines
2069          * of the buffer.
2070          */
2071         ringbuf->effective_size = ringbuf->size;
2072         if (IS_I830(dev) || IS_845G(dev))
2073                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2074
2075         ret = i915_cmd_parser_init_ring(ring);
2076         if (ret)
2077                 goto error;
2078
2079         return 0;
2080
2081 error:
2082         kfree(ringbuf);
2083         ring->buffer = NULL;
2084         return ret;
2085 }
2086
2087 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2088 {
2089         struct drm_i915_private *dev_priv;
2090         struct intel_ringbuffer *ringbuf;
2091
2092         if (!intel_ring_initialized(ring))
2093                 return;
2094
2095         dev_priv = to_i915(ring->dev);
2096         ringbuf = ring->buffer;
2097
2098         intel_stop_ring_buffer(ring);
2099         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2100
2101         intel_unpin_ringbuffer_obj(ringbuf);
2102         intel_destroy_ringbuffer_obj(ringbuf);
2103         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2104
2105         if (ring->cleanup)
2106                 ring->cleanup(ring);
2107
2108         cleanup_status_page(ring);
2109
2110         i915_cmd_parser_fini_ring(ring);
2111         i915_gem_batch_pool_fini(&ring->batch_pool);
2112
2113         kfree(ringbuf);
2114         ring->buffer = NULL;
2115 }
2116
2117 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2118 {
2119         struct intel_ringbuffer *ringbuf = ring->buffer;
2120         struct drm_i915_gem_request *request;
2121         unsigned space;
2122         int ret;
2123
2124         /* The whole point of reserving space is to not wait! */
2125         WARN_ON(ringbuf->reserved_in_use);
2126
2127         if (intel_ring_space(ringbuf) >= n)
2128                 return 0;
2129
2130         list_for_each_entry(request, &ring->request_list, list) {
2131                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2132                                            ringbuf->size);
2133                 if (space >= n)
2134                         break;
2135         }
2136
2137         if (WARN_ON(&request->list == &ring->request_list))
2138                 return -ENOSPC;
2139
2140         ret = i915_wait_request(request);
2141         if (ret)
2142                 return ret;
2143
2144         ringbuf->space = space;
2145         return 0;
2146 }
2147
2148 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2149 {
2150         uint32_t __iomem *virt;
2151         struct intel_ringbuffer *ringbuf = ring->buffer;
2152         int rem = ringbuf->size - ringbuf->tail;
2153
2154         /* Can't wrap if space has already been reserved! */
2155         WARN_ON(ringbuf->reserved_in_use);
2156
2157         if (ringbuf->space < rem) {
2158                 int ret = ring_wait_for_space(ring, rem);
2159                 if (ret)
2160                         return ret;
2161         }
2162
2163         virt = ringbuf->virtual_start + ringbuf->tail;
2164         rem /= 4;
2165         while (rem--)
2166                 iowrite32(MI_NOOP, virt++);
2167
2168         ringbuf->tail = 0;
2169         intel_ring_update_space(ringbuf);
2170
2171         return 0;
2172 }
2173
2174 int intel_ring_idle(struct intel_engine_cs *ring)
2175 {
2176         struct drm_i915_gem_request *req;
2177
2178         /* We need to add any requests required to flush the objects and ring */
2179         WARN_ON(ring->outstanding_lazy_request);
2180         if (ring->outstanding_lazy_request)
2181                 i915_add_request(ring->outstanding_lazy_request);
2182
2183         /* Wait upon the last request to be completed */
2184         if (list_empty(&ring->request_list))
2185                 return 0;
2186
2187         req = list_entry(ring->request_list.prev,
2188                         struct drm_i915_gem_request,
2189                         list);
2190
2191         /* Make sure we do not trigger any retires */
2192         return __i915_wait_request(req,
2193                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2194                                    to_i915(ring->dev)->mm.interruptible,
2195                                    NULL, NULL);
2196 }
2197
2198 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2199 {
2200         request->ringbuf = request->ring->buffer;
2201         return 0;
2202 }
2203
2204 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2205 {
2206         /* NB: Until request management is fully tidied up and the OLR is
2207          * removed, there are too many ways for get false hits on this
2208          * anti-recursion check! */
2209         /*WARN_ON(ringbuf->reserved_size);*/
2210         WARN_ON(ringbuf->reserved_in_use);
2211
2212         ringbuf->reserved_size = size;
2213
2214         /*
2215          * Really need to call _begin() here but that currently leads to
2216          * recursion problems! This will be fixed later but for now just
2217          * return and hope for the best. Note that there is only a real
2218          * problem if the create of the request never actually calls _begin()
2219          * but if they are not submitting any work then why did they create
2220          * the request in the first place?
2221          */
2222 }
2223
2224 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2225 {
2226         WARN_ON(ringbuf->reserved_in_use);
2227
2228         ringbuf->reserved_size   = 0;
2229         ringbuf->reserved_in_use = false;
2230 }
2231
2232 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2233 {
2234         WARN_ON(ringbuf->reserved_in_use);
2235
2236         ringbuf->reserved_in_use = true;
2237         ringbuf->reserved_tail   = ringbuf->tail;
2238 }
2239
2240 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2241 {
2242         WARN_ON(!ringbuf->reserved_in_use);
2243         WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2244              "request reserved size too small: %d vs %d!\n",
2245              ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2246
2247         ringbuf->reserved_size   = 0;
2248         ringbuf->reserved_in_use = false;
2249 }
2250
2251 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2252 {
2253         struct intel_ringbuffer *ringbuf = ring->buffer;
2254         int ret;
2255
2256         /*
2257          * Add on the reserved size to the request to make sure that after
2258          * the intended commands have been emitted, there is guaranteed to
2259          * still be enough free space to send them to the hardware.
2260          */
2261         if (!ringbuf->reserved_in_use)
2262                 bytes += ringbuf->reserved_size;
2263
2264         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2265                 ret = intel_wrap_ring_buffer(ring);
2266                 if (unlikely(ret))
2267                         return ret;
2268
2269                 if(ringbuf->reserved_size) {
2270                         uint32_t size = ringbuf->reserved_size;
2271
2272                         intel_ring_reserved_space_cancel(ringbuf);
2273                         intel_ring_reserved_space_reserve(ringbuf, size);
2274                 }
2275         }
2276
2277         if (unlikely(ringbuf->space < bytes)) {
2278                 ret = ring_wait_for_space(ring, bytes);
2279                 if (unlikely(ret))
2280                         return ret;
2281         }
2282
2283         return 0;
2284 }
2285
2286 int intel_ring_begin(struct intel_engine_cs *ring,
2287                      int num_dwords)
2288 {
2289         struct drm_i915_gem_request *req;
2290         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2291         int ret;
2292
2293         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2294                                    dev_priv->mm.interruptible);
2295         if (ret)
2296                 return ret;
2297
2298         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2299         if (ret)
2300                 return ret;
2301
2302         /* Preallocate the olr before touching the ring */
2303         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
2304         if (ret)
2305                 return ret;
2306
2307         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2308         return 0;
2309 }
2310
2311 /* Align the ring tail to a cacheline boundary */
2312 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2313 {
2314         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2315         int ret;
2316
2317         if (num_dwords == 0)
2318                 return 0;
2319
2320         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2321         ret = intel_ring_begin(ring, num_dwords);
2322         if (ret)
2323                 return ret;
2324
2325         while (num_dwords--)
2326                 intel_ring_emit(ring, MI_NOOP);
2327
2328         intel_ring_advance(ring);
2329
2330         return 0;
2331 }
2332
2333 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2334 {
2335         struct drm_device *dev = ring->dev;
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337
2338         BUG_ON(ring->outstanding_lazy_request);
2339
2340         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2341                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2342                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2343                 if (HAS_VEBOX(dev))
2344                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2345         }
2346
2347         ring->set_seqno(ring, seqno);
2348         ring->hangcheck.seqno = seqno;
2349 }
2350
2351 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2352                                      u32 value)
2353 {
2354         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2355
2356        /* Every tail move must follow the sequence below */
2357
2358         /* Disable notification that the ring is IDLE. The GT
2359          * will then assume that it is busy and bring it out of rc6.
2360          */
2361         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2362                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2363
2364         /* Clear the context id. Here be magic! */
2365         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2366
2367         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2368         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2369                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2370                      50))
2371                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2372
2373         /* Now that the ring is fully powered up, update the tail */
2374         I915_WRITE_TAIL(ring, value);
2375         POSTING_READ(RING_TAIL(ring->mmio_base));
2376
2377         /* Let the ring send IDLE messages to the GT again,
2378          * and so let it sleep to conserve power when idle.
2379          */
2380         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2381                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2382 }
2383
2384 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2385                                u32 invalidate, u32 flush)
2386 {
2387         struct intel_engine_cs *ring = req->ring;
2388         uint32_t cmd;
2389         int ret;
2390
2391         ret = intel_ring_begin(ring, 4);
2392         if (ret)
2393                 return ret;
2394
2395         cmd = MI_FLUSH_DW;
2396         if (INTEL_INFO(ring->dev)->gen >= 8)
2397                 cmd += 1;
2398
2399         /* We always require a command barrier so that subsequent
2400          * commands, such as breadcrumb interrupts, are strictly ordered
2401          * wrt the contents of the write cache being flushed to memory
2402          * (and thus being coherent from the CPU).
2403          */
2404         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2405
2406         /*
2407          * Bspec vol 1c.5 - video engine command streamer:
2408          * "If ENABLED, all TLBs will be invalidated once the flush
2409          * operation is complete. This bit is only valid when the
2410          * Post-Sync Operation field is a value of 1h or 3h."
2411          */
2412         if (invalidate & I915_GEM_GPU_DOMAINS)
2413                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2414
2415         intel_ring_emit(ring, cmd);
2416         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2417         if (INTEL_INFO(ring->dev)->gen >= 8) {
2418                 intel_ring_emit(ring, 0); /* upper addr */
2419                 intel_ring_emit(ring, 0); /* value */
2420         } else  {
2421                 intel_ring_emit(ring, 0);
2422                 intel_ring_emit(ring, MI_NOOP);
2423         }
2424         intel_ring_advance(ring);
2425         return 0;
2426 }
2427
2428 static int
2429 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2430                               u64 offset, u32 len,
2431                               unsigned dispatch_flags)
2432 {
2433         struct intel_engine_cs *ring = req->ring;
2434         bool ppgtt = USES_PPGTT(ring->dev) &&
2435                         !(dispatch_flags & I915_DISPATCH_SECURE);
2436         int ret;
2437
2438         ret = intel_ring_begin(ring, 4);
2439         if (ret)
2440                 return ret;
2441
2442         /* FIXME(BDW): Address space and security selectors. */
2443         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2444         intel_ring_emit(ring, lower_32_bits(offset));
2445         intel_ring_emit(ring, upper_32_bits(offset));
2446         intel_ring_emit(ring, MI_NOOP);
2447         intel_ring_advance(ring);
2448
2449         return 0;
2450 }
2451
2452 static int
2453 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2454                              u64 offset, u32 len,
2455                              unsigned dispatch_flags)
2456 {
2457         struct intel_engine_cs *ring = req->ring;
2458         int ret;
2459
2460         ret = intel_ring_begin(ring, 2);
2461         if (ret)
2462                 return ret;
2463
2464         intel_ring_emit(ring,
2465                         MI_BATCH_BUFFER_START |
2466                         (dispatch_flags & I915_DISPATCH_SECURE ?
2467                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2468         /* bit0-7 is the length on GEN6+ */
2469         intel_ring_emit(ring, offset);
2470         intel_ring_advance(ring);
2471
2472         return 0;
2473 }
2474
2475 static int
2476 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2477                               u64 offset, u32 len,
2478                               unsigned dispatch_flags)
2479 {
2480         struct intel_engine_cs *ring = req->ring;
2481         int ret;
2482
2483         ret = intel_ring_begin(ring, 2);
2484         if (ret)
2485                 return ret;
2486
2487         intel_ring_emit(ring,
2488                         MI_BATCH_BUFFER_START |
2489                         (dispatch_flags & I915_DISPATCH_SECURE ?
2490                          0 : MI_BATCH_NON_SECURE_I965));
2491         /* bit0-7 is the length on GEN6+ */
2492         intel_ring_emit(ring, offset);
2493         intel_ring_advance(ring);
2494
2495         return 0;
2496 }
2497
2498 /* Blitter support (SandyBridge+) */
2499
2500 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2501                            u32 invalidate, u32 flush)
2502 {
2503         struct intel_engine_cs *ring = req->ring;
2504         struct drm_device *dev = ring->dev;
2505         uint32_t cmd;
2506         int ret;
2507
2508         ret = intel_ring_begin(ring, 4);
2509         if (ret)
2510                 return ret;
2511
2512         cmd = MI_FLUSH_DW;
2513         if (INTEL_INFO(dev)->gen >= 8)
2514                 cmd += 1;
2515
2516         /* We always require a command barrier so that subsequent
2517          * commands, such as breadcrumb interrupts, are strictly ordered
2518          * wrt the contents of the write cache being flushed to memory
2519          * (and thus being coherent from the CPU).
2520          */
2521         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2522
2523         /*
2524          * Bspec vol 1c.3 - blitter engine command streamer:
2525          * "If ENABLED, all TLBs will be invalidated once the flush
2526          * operation is complete. This bit is only valid when the
2527          * Post-Sync Operation field is a value of 1h or 3h."
2528          */
2529         if (invalidate & I915_GEM_DOMAIN_RENDER)
2530                 cmd |= MI_INVALIDATE_TLB;
2531         intel_ring_emit(ring, cmd);
2532         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2533         if (INTEL_INFO(dev)->gen >= 8) {
2534                 intel_ring_emit(ring, 0); /* upper addr */
2535                 intel_ring_emit(ring, 0); /* value */
2536         } else  {
2537                 intel_ring_emit(ring, 0);
2538                 intel_ring_emit(ring, MI_NOOP);
2539         }
2540         intel_ring_advance(ring);
2541
2542         return 0;
2543 }
2544
2545 int intel_init_render_ring_buffer(struct drm_device *dev)
2546 {
2547         struct drm_i915_private *dev_priv = dev->dev_private;
2548         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2549         struct drm_i915_gem_object *obj;
2550         int ret;
2551
2552         ring->name = "render ring";
2553         ring->id = RCS;
2554         ring->mmio_base = RENDER_RING_BASE;
2555
2556         if (INTEL_INFO(dev)->gen >= 8) {
2557                 if (i915_semaphore_is_enabled(dev)) {
2558                         obj = i915_gem_alloc_object(dev, 4096);
2559                         if (obj == NULL) {
2560                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2561                                 i915.semaphores = 0;
2562                         } else {
2563                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2564                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2565                                 if (ret != 0) {
2566                                         drm_gem_object_unreference(&obj->base);
2567                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2568                                         i915.semaphores = 0;
2569                                 } else
2570                                         dev_priv->semaphore_obj = obj;
2571                         }
2572                 }
2573
2574                 ring->init_context = intel_rcs_ctx_init;
2575                 ring->add_request = gen6_add_request;
2576                 ring->flush = gen8_render_ring_flush;
2577                 ring->irq_get = gen8_ring_get_irq;
2578                 ring->irq_put = gen8_ring_put_irq;
2579                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2580                 ring->get_seqno = gen6_ring_get_seqno;
2581                 ring->set_seqno = ring_set_seqno;
2582                 if (i915_semaphore_is_enabled(dev)) {
2583                         WARN_ON(!dev_priv->semaphore_obj);
2584                         ring->semaphore.sync_to = gen8_ring_sync;
2585                         ring->semaphore.signal = gen8_rcs_signal;
2586                         GEN8_RING_SEMAPHORE_INIT;
2587                 }
2588         } else if (INTEL_INFO(dev)->gen >= 6) {
2589                 ring->add_request = gen6_add_request;
2590                 ring->flush = gen7_render_ring_flush;
2591                 if (INTEL_INFO(dev)->gen == 6)
2592                         ring->flush = gen6_render_ring_flush;
2593                 ring->irq_get = gen6_ring_get_irq;
2594                 ring->irq_put = gen6_ring_put_irq;
2595                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2596                 ring->get_seqno = gen6_ring_get_seqno;
2597                 ring->set_seqno = ring_set_seqno;
2598                 if (i915_semaphore_is_enabled(dev)) {
2599                         ring->semaphore.sync_to = gen6_ring_sync;
2600                         ring->semaphore.signal = gen6_signal;
2601                         /*
2602                          * The current semaphore is only applied on pre-gen8
2603                          * platform.  And there is no VCS2 ring on the pre-gen8
2604                          * platform. So the semaphore between RCS and VCS2 is
2605                          * initialized as INVALID.  Gen8 will initialize the
2606                          * sema between VCS2 and RCS later.
2607                          */
2608                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2609                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2610                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2611                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2612                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2613                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2614                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2615                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2616                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2617                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2618                 }
2619         } else if (IS_GEN5(dev)) {
2620                 ring->add_request = pc_render_add_request;
2621                 ring->flush = gen4_render_ring_flush;
2622                 ring->get_seqno = pc_render_get_seqno;
2623                 ring->set_seqno = pc_render_set_seqno;
2624                 ring->irq_get = gen5_ring_get_irq;
2625                 ring->irq_put = gen5_ring_put_irq;
2626                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2627                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2628         } else {
2629                 ring->add_request = i9xx_add_request;
2630                 if (INTEL_INFO(dev)->gen < 4)
2631                         ring->flush = gen2_render_ring_flush;
2632                 else
2633                         ring->flush = gen4_render_ring_flush;
2634                 ring->get_seqno = ring_get_seqno;
2635                 ring->set_seqno = ring_set_seqno;
2636                 if (IS_GEN2(dev)) {
2637                         ring->irq_get = i8xx_ring_get_irq;
2638                         ring->irq_put = i8xx_ring_put_irq;
2639                 } else {
2640                         ring->irq_get = i9xx_ring_get_irq;
2641                         ring->irq_put = i9xx_ring_put_irq;
2642                 }
2643                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2644         }
2645         ring->write_tail = ring_write_tail;
2646
2647         if (IS_HASWELL(dev))
2648                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2649         else if (IS_GEN8(dev))
2650                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2651         else if (INTEL_INFO(dev)->gen >= 6)
2652                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2653         else if (INTEL_INFO(dev)->gen >= 4)
2654                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2655         else if (IS_I830(dev) || IS_845G(dev))
2656                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2657         else
2658                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2659         ring->init_hw = init_render_ring;
2660         ring->cleanup = render_ring_cleanup;
2661
2662         /* Workaround batchbuffer to combat CS tlb bug. */
2663         if (HAS_BROKEN_CS_TLB(dev)) {
2664                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2665                 if (obj == NULL) {
2666                         DRM_ERROR("Failed to allocate batch bo\n");
2667                         return -ENOMEM;
2668                 }
2669
2670                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2671                 if (ret != 0) {
2672                         drm_gem_object_unreference(&obj->base);
2673                         DRM_ERROR("Failed to ping batch bo\n");
2674                         return ret;
2675                 }
2676
2677                 ring->scratch.obj = obj;
2678                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2679         }
2680
2681         ret = intel_init_ring_buffer(dev, ring);
2682         if (ret)
2683                 return ret;
2684
2685         if (INTEL_INFO(dev)->gen >= 5) {
2686                 ret = intel_init_pipe_control(ring);
2687                 if (ret)
2688                         return ret;
2689         }
2690
2691         return 0;
2692 }
2693
2694 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2695 {
2696         struct drm_i915_private *dev_priv = dev->dev_private;
2697         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2698
2699         ring->name = "bsd ring";
2700         ring->id = VCS;
2701
2702         ring->write_tail = ring_write_tail;
2703         if (INTEL_INFO(dev)->gen >= 6) {
2704                 ring->mmio_base = GEN6_BSD_RING_BASE;
2705                 /* gen6 bsd needs a special wa for tail updates */
2706                 if (IS_GEN6(dev))
2707                         ring->write_tail = gen6_bsd_ring_write_tail;
2708                 ring->flush = gen6_bsd_ring_flush;
2709                 ring->add_request = gen6_add_request;
2710                 ring->get_seqno = gen6_ring_get_seqno;
2711                 ring->set_seqno = ring_set_seqno;
2712                 if (INTEL_INFO(dev)->gen >= 8) {
2713                         ring->irq_enable_mask =
2714                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2715                         ring->irq_get = gen8_ring_get_irq;
2716                         ring->irq_put = gen8_ring_put_irq;
2717                         ring->dispatch_execbuffer =
2718                                 gen8_ring_dispatch_execbuffer;
2719                         if (i915_semaphore_is_enabled(dev)) {
2720                                 ring->semaphore.sync_to = gen8_ring_sync;
2721                                 ring->semaphore.signal = gen8_xcs_signal;
2722                                 GEN8_RING_SEMAPHORE_INIT;
2723                         }
2724                 } else {
2725                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2726                         ring->irq_get = gen6_ring_get_irq;
2727                         ring->irq_put = gen6_ring_put_irq;
2728                         ring->dispatch_execbuffer =
2729                                 gen6_ring_dispatch_execbuffer;
2730                         if (i915_semaphore_is_enabled(dev)) {
2731                                 ring->semaphore.sync_to = gen6_ring_sync;
2732                                 ring->semaphore.signal = gen6_signal;
2733                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2734                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2735                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2736                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2737                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2738                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2739                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2740                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2741                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2742                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2743                         }
2744                 }
2745         } else {
2746                 ring->mmio_base = BSD_RING_BASE;
2747                 ring->flush = bsd_ring_flush;
2748                 ring->add_request = i9xx_add_request;
2749                 ring->get_seqno = ring_get_seqno;
2750                 ring->set_seqno = ring_set_seqno;
2751                 if (IS_GEN5(dev)) {
2752                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2753                         ring->irq_get = gen5_ring_get_irq;
2754                         ring->irq_put = gen5_ring_put_irq;
2755                 } else {
2756                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2757                         ring->irq_get = i9xx_ring_get_irq;
2758                         ring->irq_put = i9xx_ring_put_irq;
2759                 }
2760                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2761         }
2762         ring->init_hw = init_ring_common;
2763
2764         return intel_init_ring_buffer(dev, ring);
2765 }
2766
2767 /**
2768  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2769  */
2770 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2771 {
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2774
2775         ring->name = "bsd2 ring";
2776         ring->id = VCS2;
2777
2778         ring->write_tail = ring_write_tail;
2779         ring->mmio_base = GEN8_BSD2_RING_BASE;
2780         ring->flush = gen6_bsd_ring_flush;
2781         ring->add_request = gen6_add_request;
2782         ring->get_seqno = gen6_ring_get_seqno;
2783         ring->set_seqno = ring_set_seqno;
2784         ring->irq_enable_mask =
2785                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2786         ring->irq_get = gen8_ring_get_irq;
2787         ring->irq_put = gen8_ring_put_irq;
2788         ring->dispatch_execbuffer =
2789                         gen8_ring_dispatch_execbuffer;
2790         if (i915_semaphore_is_enabled(dev)) {
2791                 ring->semaphore.sync_to = gen8_ring_sync;
2792                 ring->semaphore.signal = gen8_xcs_signal;
2793                 GEN8_RING_SEMAPHORE_INIT;
2794         }
2795         ring->init_hw = init_ring_common;
2796
2797         return intel_init_ring_buffer(dev, ring);
2798 }
2799
2800 int intel_init_blt_ring_buffer(struct drm_device *dev)
2801 {
2802         struct drm_i915_private *dev_priv = dev->dev_private;
2803         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2804
2805         ring->name = "blitter ring";
2806         ring->id = BCS;
2807
2808         ring->mmio_base = BLT_RING_BASE;
2809         ring->write_tail = ring_write_tail;
2810         ring->flush = gen6_ring_flush;
2811         ring->add_request = gen6_add_request;
2812         ring->get_seqno = gen6_ring_get_seqno;
2813         ring->set_seqno = ring_set_seqno;
2814         if (INTEL_INFO(dev)->gen >= 8) {
2815                 ring->irq_enable_mask =
2816                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2817                 ring->irq_get = gen8_ring_get_irq;
2818                 ring->irq_put = gen8_ring_put_irq;
2819                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2820                 if (i915_semaphore_is_enabled(dev)) {
2821                         ring->semaphore.sync_to = gen8_ring_sync;
2822                         ring->semaphore.signal = gen8_xcs_signal;
2823                         GEN8_RING_SEMAPHORE_INIT;
2824                 }
2825         } else {
2826                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2827                 ring->irq_get = gen6_ring_get_irq;
2828                 ring->irq_put = gen6_ring_put_irq;
2829                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2830                 if (i915_semaphore_is_enabled(dev)) {
2831                         ring->semaphore.signal = gen6_signal;
2832                         ring->semaphore.sync_to = gen6_ring_sync;
2833                         /*
2834                          * The current semaphore is only applied on pre-gen8
2835                          * platform.  And there is no VCS2 ring on the pre-gen8
2836                          * platform. So the semaphore between BCS and VCS2 is
2837                          * initialized as INVALID.  Gen8 will initialize the
2838                          * sema between BCS and VCS2 later.
2839                          */
2840                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2841                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2842                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2843                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2844                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2845                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2846                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2847                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2848                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2849                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2850                 }
2851         }
2852         ring->init_hw = init_ring_common;
2853
2854         return intel_init_ring_buffer(dev, ring);
2855 }
2856
2857 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2858 {
2859         struct drm_i915_private *dev_priv = dev->dev_private;
2860         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2861
2862         ring->name = "video enhancement ring";
2863         ring->id = VECS;
2864
2865         ring->mmio_base = VEBOX_RING_BASE;
2866         ring->write_tail = ring_write_tail;
2867         ring->flush = gen6_ring_flush;
2868         ring->add_request = gen6_add_request;
2869         ring->get_seqno = gen6_ring_get_seqno;
2870         ring->set_seqno = ring_set_seqno;
2871
2872         if (INTEL_INFO(dev)->gen >= 8) {
2873                 ring->irq_enable_mask =
2874                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2875                 ring->irq_get = gen8_ring_get_irq;
2876                 ring->irq_put = gen8_ring_put_irq;
2877                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2878                 if (i915_semaphore_is_enabled(dev)) {
2879                         ring->semaphore.sync_to = gen8_ring_sync;
2880                         ring->semaphore.signal = gen8_xcs_signal;
2881                         GEN8_RING_SEMAPHORE_INIT;
2882                 }
2883         } else {
2884                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2885                 ring->irq_get = hsw_vebox_get_irq;
2886                 ring->irq_put = hsw_vebox_put_irq;
2887                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2888                 if (i915_semaphore_is_enabled(dev)) {
2889                         ring->semaphore.sync_to = gen6_ring_sync;
2890                         ring->semaphore.signal = gen6_signal;
2891                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2892                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2893                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2894                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2895                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2896                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2897                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2898                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2899                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2900                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2901                 }
2902         }
2903         ring->init_hw = init_ring_common;
2904
2905         return intel_init_ring_buffer(dev, ring);
2906 }
2907
2908 int
2909 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2910 {
2911         struct intel_engine_cs *ring = req->ring;
2912         int ret;
2913
2914         if (!ring->gpu_caches_dirty)
2915                 return 0;
2916
2917         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2918         if (ret)
2919                 return ret;
2920
2921         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2922
2923         ring->gpu_caches_dirty = false;
2924         return 0;
2925 }
2926
2927 int
2928 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2929 {
2930         struct intel_engine_cs *ring = req->ring;
2931         uint32_t flush_domains;
2932         int ret;
2933
2934         flush_domains = 0;
2935         if (ring->gpu_caches_dirty)
2936                 flush_domains = I915_GEM_GPU_DOMAINS;
2937
2938         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2939         if (ret)
2940                 return ret;
2941
2942         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2943
2944         ring->gpu_caches_dirty = false;
2945         return 0;
2946 }
2947
2948 void
2949 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2950 {
2951         int ret;
2952
2953         if (!intel_ring_initialized(ring))
2954                 return;
2955
2956         ret = intel_ring_idle(ring);
2957         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2958                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2959                           ring->name, ret);
2960
2961         stop_ring(ring);
2962 }