drm/i915: Reserve space improvements
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(req, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(req, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223         ret = intel_ring_begin(req, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
230         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231         intel_ring_emit(ring, 0); /* low dword */
232         intel_ring_emit(ring, 0); /* high dword */
233         intel_ring_emit(ring, MI_NOOP);
234         intel_ring_advance(ring);
235
236         ret = intel_ring_begin(req, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243         intel_ring_emit(ring, 0);
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253                        u32 invalidate_domains, u32 flush_domains)
254 {
255         struct intel_engine_cs *ring = req->ring;
256         u32 flags = 0;
257         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258         int ret;
259
260         /* Force SNB workarounds for PIPE_CONTROL flushes */
261         ret = intel_emit_post_sync_nonzero_flush(req);
262         if (ret)
263                 return ret;
264
265         /* Just flush everything.  Experiments have shown that reducing the
266          * number of bits based on the write domains has little performance
267          * impact.
268          */
269         if (flush_domains) {
270                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272                 /*
273                  * Ensure that any following seqno writes only happen
274                  * when the render cache is indeed flushed.
275                  */
276                 flags |= PIPE_CONTROL_CS_STALL;
277         }
278         if (invalidate_domains) {
279                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285                 /*
286                  * TLB invalidate requires a post-sync write.
287                  */
288                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289         }
290
291         ret = intel_ring_begin(req, 4);
292         if (ret)
293                 return ret;
294
295         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296         intel_ring_emit(ring, flags);
297         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298         intel_ring_emit(ring, 0);
299         intel_ring_advance(ring);
300
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307         struct intel_engine_cs *ring = req->ring;
308         int ret;
309
310         ret = intel_ring_begin(req, 4);
311         if (ret)
312                 return ret;
313
314         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
317         intel_ring_emit(ring, 0);
318         intel_ring_emit(ring, 0);
319         intel_ring_advance(ring);
320
321         return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326                        u32 invalidate_domains, u32 flush_domains)
327 {
328         struct intel_engine_cs *ring = req->ring;
329         u32 flags = 0;
330         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331         int ret;
332
333         /*
334          * Ensure that any following seqno writes only happen when the render
335          * cache is indeed flushed.
336          *
337          * Workaround: 4th PIPE_CONTROL command (except the ones with only
338          * read-cache invalidate bits set) must have the CS_STALL bit set. We
339          * don't try to be clever and just set it unconditionally.
340          */
341         flags |= PIPE_CONTROL_CS_STALL;
342
343         /* Just flush everything.  Experiments have shown that reducing the
344          * number of bits based on the write domains has little performance
345          * impact.
346          */
347         if (flush_domains) {
348                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350         }
351         if (invalidate_domains) {
352                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359                 /*
360                  * TLB invalidate requires a post-sync write.
361                  */
362                 flags |= PIPE_CONTROL_QW_WRITE;
363                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367                 /* Workaround: we must issue a pipe_control with CS-stall bit
368                  * set before a pipe_control command that has the state cache
369                  * invalidate bit set. */
370                 gen7_render_ring_cs_stall_wa(req);
371         }
372
373         ret = intel_ring_begin(req, 4);
374         if (ret)
375                 return ret;
376
377         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378         intel_ring_emit(ring, flags);
379         intel_ring_emit(ring, scratch_addr);
380         intel_ring_emit(ring, 0);
381         intel_ring_advance(ring);
382
383         return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388                        u32 flags, u32 scratch_addr)
389 {
390         struct intel_engine_cs *ring = req->ring;
391         int ret;
392
393         ret = intel_ring_begin(req, 6);
394         if (ret)
395                 return ret;
396
397         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398         intel_ring_emit(ring, flags);
399         intel_ring_emit(ring, scratch_addr);
400         intel_ring_emit(ring, 0);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_advance(ring);
404
405         return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410                        u32 invalidate_domains, u32 flush_domains)
411 {
412         u32 flags = 0;
413         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414         int ret;
415
416         flags |= PIPE_CONTROL_CS_STALL;
417
418         if (flush_domains) {
419                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421         }
422         if (invalidate_domains) {
423                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_QW_WRITE;
430                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433                 ret = gen8_emit_pipe_control(req,
434                                              PIPE_CONTROL_CS_STALL |
435                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
436                                              0);
437                 if (ret)
438                         return ret;
439         }
440
441         return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445                             u32 value)
446 {
447         struct drm_i915_private *dev_priv = ring->dev->dev_private;
448         I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453         struct drm_i915_private *dev_priv = ring->dev->dev_private;
454         u64 acthd;
455
456         if (INTEL_INFO(ring->dev)->gen >= 8)
457                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458                                          RING_ACTHD_UDW(ring->mmio_base));
459         else if (INTEL_INFO(ring->dev)->gen >= 4)
460                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461         else
462                 acthd = I915_READ(ACTHD);
463
464         return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469         struct drm_i915_private *dev_priv = ring->dev->dev_private;
470         u32 addr;
471
472         addr = dev_priv->status_page_dmah->busaddr;
473         if (INTEL_INFO(ring->dev)->gen >= 4)
474                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475         I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480         struct drm_device *dev = ring->dev;
481         struct drm_i915_private *dev_priv = ring->dev->dev_private;
482         u32 mmio = 0;
483
484         /* The ring status page addresses are no longer next to the rest of
485          * the ring registers as of gen7.
486          */
487         if (IS_GEN7(dev)) {
488                 switch (ring->id) {
489                 case RCS:
490                         mmio = RENDER_HWS_PGA_GEN7;
491                         break;
492                 case BCS:
493                         mmio = BLT_HWS_PGA_GEN7;
494                         break;
495                 /*
496                  * VCS2 actually doesn't exist on Gen7. Only shut up
497                  * gcc switch check warning
498                  */
499                 case VCS2:
500                 case VCS:
501                         mmio = BSD_HWS_PGA_GEN7;
502                         break;
503                 case VECS:
504                         mmio = VEBOX_HWS_PGA_GEN7;
505                         break;
506                 }
507         } else if (IS_GEN6(ring->dev)) {
508                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509         } else {
510                 /* XXX: gen8 returns to sanity */
511                 mmio = RING_HWS_PGA(ring->mmio_base);
512         }
513
514         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515         POSTING_READ(mmio);
516
517         /*
518          * Flush the TLB for this page
519          *
520          * FIXME: These two bits have disappeared on gen8, so a question
521          * arises: do we still need this and if so how should we go about
522          * invalidating the TLB?
523          */
524         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525                 u32 reg = RING_INSTPM(ring->mmio_base);
526
527                 /* ring should be idle before issuing a sync flush*/
528                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530                 I915_WRITE(reg,
531                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532                                               INSTPM_SYNC_FLUSH));
533                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534                              1000))
535                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536                                   ring->name);
537         }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542         struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544         if (!IS_GEN2(ring->dev)) {
545                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548                         /* Sometimes we observe that the idle flag is not
549                          * set even though the ring is empty. So double
550                          * check before giving up.
551                          */
552                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553                                 return false;
554                 }
555         }
556
557         I915_WRITE_CTL(ring, 0);
558         I915_WRITE_HEAD(ring, 0);
559         ring->write_tail(ring, 0);
560
561         if (!IS_GEN2(ring->dev)) {
562                 (void)I915_READ_CTL(ring);
563                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564         }
565
566         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571         struct drm_device *dev = ring->dev;
572         struct drm_i915_private *dev_priv = dev->dev_private;
573         struct intel_ringbuffer *ringbuf = ring->buffer;
574         struct drm_i915_gem_object *obj = ringbuf->obj;
575         int ret = 0;
576
577         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579         if (!stop_ring(ring)) {
580                 /* G45 ring initialization often fails to reset head to zero */
581                 DRM_DEBUG_KMS("%s head not reset to zero "
582                               "ctl %08x head %08x tail %08x start %08x\n",
583                               ring->name,
584                               I915_READ_CTL(ring),
585                               I915_READ_HEAD(ring),
586                               I915_READ_TAIL(ring),
587                               I915_READ_START(ring));
588
589                 if (!stop_ring(ring)) {
590                         DRM_ERROR("failed to set %s head to zero "
591                                   "ctl %08x head %08x tail %08x start %08x\n",
592                                   ring->name,
593                                   I915_READ_CTL(ring),
594                                   I915_READ_HEAD(ring),
595                                   I915_READ_TAIL(ring),
596                                   I915_READ_START(ring));
597                         ret = -EIO;
598                         goto out;
599                 }
600         }
601
602         if (I915_NEED_GFX_HWS(dev))
603                 intel_ring_setup_status_page(ring);
604         else
605                 ring_setup_phys_status_page(ring);
606
607         /* Enforce ordering by reading HEAD register back */
608         I915_READ_HEAD(ring);
609
610         /* Initialize the ring. This must happen _after_ we've cleared the ring
611          * registers with the above sequence (the readback of the HEAD registers
612          * also enforces ordering), otherwise the hw might lose the new ring
613          * register values. */
614         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616         /* WaClearRingBufHeadRegAtInit:ctg,elk */
617         if (I915_READ_HEAD(ring))
618                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619                           ring->name, I915_READ_HEAD(ring));
620         I915_WRITE_HEAD(ring, 0);
621         (void)I915_READ_HEAD(ring);
622
623         I915_WRITE_CTL(ring,
624                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625                         | RING_VALID);
626
627         /* If the head is still not zero, the ring is dead */
628         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631                 DRM_ERROR("%s initialization failed "
632                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633                           ring->name,
634                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637                 ret = -EIO;
638                 goto out;
639         }
640
641         ringbuf->last_retired_head = -1;
642         ringbuf->head = I915_READ_HEAD(ring);
643         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644         intel_ring_update_space(ringbuf);
645
646         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651         return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657         struct drm_device *dev = ring->dev;
658
659         if (ring->scratch.obj == NULL)
660                 return;
661
662         if (INTEL_INFO(dev)->gen >= 5) {
663                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665         }
666
667         drm_gem_object_unreference(&ring->scratch.obj->base);
668         ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674         int ret;
675
676         WARN_ON(ring->scratch.obj);
677
678         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679         if (ring->scratch.obj == NULL) {
680                 DRM_ERROR("Failed to allocate seqno page\n");
681                 ret = -ENOMEM;
682                 goto err;
683         }
684
685         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686         if (ret)
687                 goto err_unref;
688
689         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690         if (ret)
691                 goto err_unref;
692
693         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695         if (ring->scratch.cpu_page == NULL) {
696                 ret = -ENOMEM;
697                 goto err_unpin;
698         }
699
700         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701                          ring->name, ring->scratch.gtt_offset);
702         return 0;
703
704 err_unpin:
705         i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707         drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709         return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714         int ret, i;
715         struct intel_engine_cs *ring = req->ring;
716         struct drm_device *dev = ring->dev;
717         struct drm_i915_private *dev_priv = dev->dev_private;
718         struct i915_workarounds *w = &dev_priv->workarounds;
719
720         if (WARN_ON_ONCE(w->count == 0))
721                 return 0;
722
723         ring->gpu_caches_dirty = true;
724         ret = intel_ring_flush_all_caches(req);
725         if (ret)
726                 return ret;
727
728         ret = intel_ring_begin(req, (w->count * 2 + 2));
729         if (ret)
730                 return ret;
731
732         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733         for (i = 0; i < w->count; i++) {
734                 intel_ring_emit(ring, w->reg[i].addr);
735                 intel_ring_emit(ring, w->reg[i].value);
736         }
737         intel_ring_emit(ring, MI_NOOP);
738
739         intel_ring_advance(ring);
740
741         ring->gpu_caches_dirty = true;
742         ret = intel_ring_flush_all_caches(req);
743         if (ret)
744                 return ret;
745
746         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748         return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753         int ret;
754
755         ret = intel_ring_workarounds_emit(req);
756         if (ret != 0)
757                 return ret;
758
759         ret = i915_gem_render_state_init(req);
760         if (ret)
761                 DRM_ERROR("init render state: %d\n", ret);
762
763         return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767                   const u32 addr, const u32 mask, const u32 val)
768 {
769         const u32 idx = dev_priv->workarounds.count;
770
771         if (WARN_ON(idx >= I915_MAX_WA_REGS))
772                 return -ENOSPC;
773
774         dev_priv->workarounds.reg[idx].addr = addr;
775         dev_priv->workarounds.reg[idx].value = val;
776         dev_priv->workarounds.reg[idx].mask = mask;
777
778         dev_priv->workarounds.count++;
779
780         return 0;
781 }
782
783 #define WA_REG(addr, mask, val) { \
784                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785                 if (r) \
786                         return r; \
787         }
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int bdw_init_workarounds(struct intel_engine_cs *ring)
804 {
805         struct drm_device *dev = ring->dev;
806         struct drm_i915_private *dev_priv = dev->dev_private;
807
808         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810         /* WaDisableAsyncFlipPerfMode:bdw */
811         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813         /* WaDisablePartialInstShootdown:bdw */
814         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
815         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
816                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
817                           STALL_DOP_GATING_DISABLE);
818
819         /* WaDisableDopClockGating:bdw */
820         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
821                           DOP_CLOCK_GATING_DISABLE);
822
823         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
824                           GEN8_SAMPLER_POWER_BYPASS_DIS);
825
826         /* Use Force Non-Coherent whenever executing a 3D context. This is a
827          * workaround for for a possible hang in the unlikely event a TLB
828          * invalidation occurs during a PSD flush.
829          */
830         WA_SET_BIT_MASKED(HDC_CHICKEN0,
831                           /* WaForceEnableNonCoherent:bdw */
832                           HDC_FORCE_NON_COHERENT |
833                           /* WaForceContextSaveRestoreNonCoherent:bdw */
834                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
835                           /* WaHdcDisableFetchWhenMasked:bdw */
836                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
838                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
839
840         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
841          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
842          *  polygons in the same 8x4 pixel/sample area to be processed without
843          *  stalling waiting for the earlier ones to write to Hierarchical Z
844          *  buffer."
845          *
846          * This optimization is off by default for Broadwell; turn it on.
847          */
848         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
849
850         /* Wa4x4STCOptimizationDisable:bdw */
851         WA_SET_BIT_MASKED(CACHE_MODE_1,
852                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
853
854         /*
855          * BSpec recommends 8x4 when MSAA is used,
856          * however in practice 16x4 seems fastest.
857          *
858          * Note that PS/WM thread counts depend on the WIZ hashing
859          * disable bit, which we don't touch here, but it's good
860          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
861          */
862         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
863                             GEN6_WIZ_HASHING_MASK,
864                             GEN6_WIZ_HASHING_16x4);
865
866         return 0;
867 }
868
869 static int chv_init_workarounds(struct intel_engine_cs *ring)
870 {
871         struct drm_device *dev = ring->dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873
874         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
875
876         /* WaDisableAsyncFlipPerfMode:chv */
877         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
878
879         /* WaDisablePartialInstShootdown:chv */
880         /* WaDisableThreadStallDopClockGating:chv */
881         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
882                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
883                           STALL_DOP_GATING_DISABLE);
884
885         /* Use Force Non-Coherent whenever executing a 3D context. This is a
886          * workaround for a possible hang in the unlikely event a TLB
887          * invalidation occurs during a PSD flush.
888          */
889         /* WaForceEnableNonCoherent:chv */
890         /* WaHdcDisableFetchWhenMasked:chv */
891         WA_SET_BIT_MASKED(HDC_CHICKEN0,
892                           HDC_FORCE_NON_COHERENT |
893                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
894
895         /* According to the CACHE_MODE_0 default value documentation, some
896          * CHV platforms disable this optimization by default.  Turn it on.
897          */
898         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
899
900         /* Wa4x4STCOptimizationDisable:chv */
901         WA_SET_BIT_MASKED(CACHE_MODE_1,
902                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
903
904         /* Improve HiZ throughput on CHV. */
905         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
906
907         /*
908          * BSpec recommends 8x4 when MSAA is used,
909          * however in practice 16x4 seems fastest.
910          *
911          * Note that PS/WM thread counts depend on the WIZ hashing
912          * disable bit, which we don't touch here, but it's good
913          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
914          */
915         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
916                             GEN6_WIZ_HASHING_MASK,
917                             GEN6_WIZ_HASHING_16x4);
918
919         return 0;
920 }
921
922 static int gen9_init_workarounds(struct intel_engine_cs *ring)
923 {
924         struct drm_device *dev = ring->dev;
925         struct drm_i915_private *dev_priv = dev->dev_private;
926         uint32_t tmp;
927
928         /* WaDisablePartialInstShootdown:skl,bxt */
929         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
930                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
931
932         /* Syncing dependencies between camera and graphics:skl,bxt */
933         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
934                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
935
936         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
937             INTEL_REVID(dev) == SKL_REVID_B0)) ||
938             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941                                   GEN9_DG_MIRROR_FIX_ENABLE);
942         }
943
944         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
945             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
946                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
947                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
948                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
949                 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
950                                   DISABLE_PIXEL_MASK_CAMMING);
951         }
952
953         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
954             IS_BROXTON(dev)) {
955                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
956                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
957                                   GEN9_ENABLE_YV12_BUGFIX);
958         }
959
960         /* Wa4x4STCOptimizationDisable:skl,bxt */
961         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
962
963         /* WaDisablePartialResolveInVc:skl,bxt */
964         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
965
966         /* WaCcsTlbPrefetchDisable:skl,bxt */
967         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
968                           GEN9_CCS_TLB_PREFETCH_ENABLE);
969
970         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
971         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
972             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
973                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
974                                   PIXEL_MASK_CAMMING_DISABLE);
975
976         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
977         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
978         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
979             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
980                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
981         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
982
983         return 0;
984 }
985
986 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
987 {
988         struct drm_device *dev = ring->dev;
989         struct drm_i915_private *dev_priv = dev->dev_private;
990         u8 vals[3] = { 0, 0, 0 };
991         unsigned int i;
992
993         for (i = 0; i < 3; i++) {
994                 u8 ss;
995
996                 /*
997                  * Only consider slices where one, and only one, subslice has 7
998                  * EUs
999                  */
1000                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1001                         continue;
1002
1003                 /*
1004                  * subslice_7eu[i] != 0 (because of the check above) and
1005                  * ss_max == 4 (maximum number of subslices possible per slice)
1006                  *
1007                  * ->    0 <= ss <= 3;
1008                  */
1009                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1010                 vals[i] = 3 - ss;
1011         }
1012
1013         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1014                 return 0;
1015
1016         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1017         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1018                             GEN9_IZ_HASHING_MASK(2) |
1019                             GEN9_IZ_HASHING_MASK(1) |
1020                             GEN9_IZ_HASHING_MASK(0),
1021                             GEN9_IZ_HASHING(2, vals[2]) |
1022                             GEN9_IZ_HASHING(1, vals[1]) |
1023                             GEN9_IZ_HASHING(0, vals[0]));
1024
1025         return 0;
1026 }
1027
1028
1029 static int skl_init_workarounds(struct intel_engine_cs *ring)
1030 {
1031         struct drm_device *dev = ring->dev;
1032         struct drm_i915_private *dev_priv = dev->dev_private;
1033
1034         gen9_init_workarounds(ring);
1035
1036         /* WaDisablePowerCompilerClockGating:skl */
1037         if (INTEL_REVID(dev) == SKL_REVID_B0)
1038                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1039                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1040
1041         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1042                 /*
1043                  *Use Force Non-Coherent whenever executing a 3D context. This
1044                  * is a workaround for a possible hang in the unlikely event
1045                  * a TLB invalidation occurs during a PSD flush.
1046                  */
1047                 /* WaForceEnableNonCoherent:skl */
1048                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1049                                   HDC_FORCE_NON_COHERENT);
1050         }
1051
1052         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1053             INTEL_REVID(dev) == SKL_REVID_D0)
1054                 /* WaBarrierPerformanceFixDisable:skl */
1055                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1056                                   HDC_FENCE_DEST_SLM_DISABLE |
1057                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1058
1059         return skl_tune_iz_hashing(ring);
1060 }
1061
1062 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1063 {
1064         struct drm_device *dev = ring->dev;
1065         struct drm_i915_private *dev_priv = dev->dev_private;
1066
1067         gen9_init_workarounds(ring);
1068
1069         /* WaDisableThreadStallDopClockGating:bxt */
1070         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1071                           STALL_DOP_GATING_DISABLE);
1072
1073         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1074         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1075                 WA_SET_BIT_MASKED(
1076                         GEN7_HALF_SLICE_CHICKEN1,
1077                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1078         }
1079
1080         return 0;
1081 }
1082
1083 int init_workarounds_ring(struct intel_engine_cs *ring)
1084 {
1085         struct drm_device *dev = ring->dev;
1086         struct drm_i915_private *dev_priv = dev->dev_private;
1087
1088         WARN_ON(ring->id != RCS);
1089
1090         dev_priv->workarounds.count = 0;
1091
1092         if (IS_BROADWELL(dev))
1093                 return bdw_init_workarounds(ring);
1094
1095         if (IS_CHERRYVIEW(dev))
1096                 return chv_init_workarounds(ring);
1097
1098         if (IS_SKYLAKE(dev))
1099                 return skl_init_workarounds(ring);
1100
1101         if (IS_BROXTON(dev))
1102                 return bxt_init_workarounds(ring);
1103
1104         return 0;
1105 }
1106
1107 static int init_render_ring(struct intel_engine_cs *ring)
1108 {
1109         struct drm_device *dev = ring->dev;
1110         struct drm_i915_private *dev_priv = dev->dev_private;
1111         int ret = init_ring_common(ring);
1112         if (ret)
1113                 return ret;
1114
1115         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1116         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1117                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1118
1119         /* We need to disable the AsyncFlip performance optimisations in order
1120          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1121          * programmed to '1' on all products.
1122          *
1123          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1124          */
1125         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1126                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1127
1128         /* Required for the hardware to program scanline values for waiting */
1129         /* WaEnableFlushTlbInvalidationMode:snb */
1130         if (INTEL_INFO(dev)->gen == 6)
1131                 I915_WRITE(GFX_MODE,
1132                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1133
1134         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1135         if (IS_GEN7(dev))
1136                 I915_WRITE(GFX_MODE_GEN7,
1137                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1138                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1139
1140         if (IS_GEN6(dev)) {
1141                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1142                  * "If this bit is set, STCunit will have LRA as replacement
1143                  *  policy. [...] This bit must be reset.  LRA replacement
1144                  *  policy is not supported."
1145                  */
1146                 I915_WRITE(CACHE_MODE_0,
1147                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1148         }
1149
1150         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1151                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1152
1153         if (HAS_L3_DPF(dev))
1154                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1155
1156         return init_workarounds_ring(ring);
1157 }
1158
1159 static void render_ring_cleanup(struct intel_engine_cs *ring)
1160 {
1161         struct drm_device *dev = ring->dev;
1162         struct drm_i915_private *dev_priv = dev->dev_private;
1163
1164         if (dev_priv->semaphore_obj) {
1165                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1166                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1167                 dev_priv->semaphore_obj = NULL;
1168         }
1169
1170         intel_fini_pipe_control(ring);
1171 }
1172
1173 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1174                            unsigned int num_dwords)
1175 {
1176 #define MBOX_UPDATE_DWORDS 8
1177         struct intel_engine_cs *signaller = signaller_req->ring;
1178         struct drm_device *dev = signaller->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct intel_engine_cs *waiter;
1181         int i, ret, num_rings;
1182
1183         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1184         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1185 #undef MBOX_UPDATE_DWORDS
1186
1187         ret = intel_ring_begin(signaller_req, num_dwords);
1188         if (ret)
1189                 return ret;
1190
1191         for_each_ring(waiter, dev_priv, i) {
1192                 u32 seqno;
1193                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1194                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1195                         continue;
1196
1197                 seqno = i915_gem_request_get_seqno(signaller_req);
1198                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1199                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1200                                            PIPE_CONTROL_QW_WRITE |
1201                                            PIPE_CONTROL_FLUSH_ENABLE);
1202                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1203                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1204                 intel_ring_emit(signaller, seqno);
1205                 intel_ring_emit(signaller, 0);
1206                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1207                                            MI_SEMAPHORE_TARGET(waiter->id));
1208                 intel_ring_emit(signaller, 0);
1209         }
1210
1211         return 0;
1212 }
1213
1214 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1215                            unsigned int num_dwords)
1216 {
1217 #define MBOX_UPDATE_DWORDS 6
1218         struct intel_engine_cs *signaller = signaller_req->ring;
1219         struct drm_device *dev = signaller->dev;
1220         struct drm_i915_private *dev_priv = dev->dev_private;
1221         struct intel_engine_cs *waiter;
1222         int i, ret, num_rings;
1223
1224         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1225         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1226 #undef MBOX_UPDATE_DWORDS
1227
1228         ret = intel_ring_begin(signaller_req, num_dwords);
1229         if (ret)
1230                 return ret;
1231
1232         for_each_ring(waiter, dev_priv, i) {
1233                 u32 seqno;
1234                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1235                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1236                         continue;
1237
1238                 seqno = i915_gem_request_get_seqno(signaller_req);
1239                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1240                                            MI_FLUSH_DW_OP_STOREDW);
1241                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1242                                            MI_FLUSH_DW_USE_GTT);
1243                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1244                 intel_ring_emit(signaller, seqno);
1245                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1246                                            MI_SEMAPHORE_TARGET(waiter->id));
1247                 intel_ring_emit(signaller, 0);
1248         }
1249
1250         return 0;
1251 }
1252
1253 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1254                        unsigned int num_dwords)
1255 {
1256         struct intel_engine_cs *signaller = signaller_req->ring;
1257         struct drm_device *dev = signaller->dev;
1258         struct drm_i915_private *dev_priv = dev->dev_private;
1259         struct intel_engine_cs *useless;
1260         int i, ret, num_rings;
1261
1262 #define MBOX_UPDATE_DWORDS 3
1263         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1264         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1265 #undef MBOX_UPDATE_DWORDS
1266
1267         ret = intel_ring_begin(signaller_req, num_dwords);
1268         if (ret)
1269                 return ret;
1270
1271         for_each_ring(useless, dev_priv, i) {
1272                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1273                 if (mbox_reg != GEN6_NOSYNC) {
1274                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1275                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1276                         intel_ring_emit(signaller, mbox_reg);
1277                         intel_ring_emit(signaller, seqno);
1278                 }
1279         }
1280
1281         /* If num_dwords was rounded, make sure the tail pointer is correct */
1282         if (num_rings % 2 == 0)
1283                 intel_ring_emit(signaller, MI_NOOP);
1284
1285         return 0;
1286 }
1287
1288 /**
1289  * gen6_add_request - Update the semaphore mailbox registers
1290  *
1291  * @request - request to write to the ring
1292  *
1293  * Update the mailbox registers in the *other* rings with the current seqno.
1294  * This acts like a signal in the canonical semaphore.
1295  */
1296 static int
1297 gen6_add_request(struct drm_i915_gem_request *req)
1298 {
1299         struct intel_engine_cs *ring = req->ring;
1300         int ret;
1301
1302         if (ring->semaphore.signal)
1303                 ret = ring->semaphore.signal(req, 4);
1304         else
1305                 ret = intel_ring_begin(req, 4);
1306
1307         if (ret)
1308                 return ret;
1309
1310         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1311         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1312         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1313         intel_ring_emit(ring, MI_USER_INTERRUPT);
1314         __intel_ring_advance(ring);
1315
1316         return 0;
1317 }
1318
1319 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1320                                               u32 seqno)
1321 {
1322         struct drm_i915_private *dev_priv = dev->dev_private;
1323         return dev_priv->last_seqno < seqno;
1324 }
1325
1326 /**
1327  * intel_ring_sync - sync the waiter to the signaller on seqno
1328  *
1329  * @waiter - ring that is waiting
1330  * @signaller - ring which has, or will signal
1331  * @seqno - seqno which the waiter will block on
1332  */
1333
1334 static int
1335 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1336                struct intel_engine_cs *signaller,
1337                u32 seqno)
1338 {
1339         struct intel_engine_cs *waiter = waiter_req->ring;
1340         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1341         int ret;
1342
1343         ret = intel_ring_begin(waiter_req, 4);
1344         if (ret)
1345                 return ret;
1346
1347         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1348                                 MI_SEMAPHORE_GLOBAL_GTT |
1349                                 MI_SEMAPHORE_POLL |
1350                                 MI_SEMAPHORE_SAD_GTE_SDD);
1351         intel_ring_emit(waiter, seqno);
1352         intel_ring_emit(waiter,
1353                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1354         intel_ring_emit(waiter,
1355                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1356         intel_ring_advance(waiter);
1357         return 0;
1358 }
1359
1360 static int
1361 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1362                struct intel_engine_cs *signaller,
1363                u32 seqno)
1364 {
1365         struct intel_engine_cs *waiter = waiter_req->ring;
1366         u32 dw1 = MI_SEMAPHORE_MBOX |
1367                   MI_SEMAPHORE_COMPARE |
1368                   MI_SEMAPHORE_REGISTER;
1369         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1370         int ret;
1371
1372         /* Throughout all of the GEM code, seqno passed implies our current
1373          * seqno is >= the last seqno executed. However for hardware the
1374          * comparison is strictly greater than.
1375          */
1376         seqno -= 1;
1377
1378         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1379
1380         ret = intel_ring_begin(waiter_req, 4);
1381         if (ret)
1382                 return ret;
1383
1384         /* If seqno wrap happened, omit the wait with no-ops */
1385         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1386                 intel_ring_emit(waiter, dw1 | wait_mbox);
1387                 intel_ring_emit(waiter, seqno);
1388                 intel_ring_emit(waiter, 0);
1389                 intel_ring_emit(waiter, MI_NOOP);
1390         } else {
1391                 intel_ring_emit(waiter, MI_NOOP);
1392                 intel_ring_emit(waiter, MI_NOOP);
1393                 intel_ring_emit(waiter, MI_NOOP);
1394                 intel_ring_emit(waiter, MI_NOOP);
1395         }
1396         intel_ring_advance(waiter);
1397
1398         return 0;
1399 }
1400
1401 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1402 do {                                                                    \
1403         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1404                  PIPE_CONTROL_DEPTH_STALL);                             \
1405         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1406         intel_ring_emit(ring__, 0);                                                     \
1407         intel_ring_emit(ring__, 0);                                                     \
1408 } while (0)
1409
1410 static int
1411 pc_render_add_request(struct drm_i915_gem_request *req)
1412 {
1413         struct intel_engine_cs *ring = req->ring;
1414         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1415         int ret;
1416
1417         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1418          * incoherent with writes to memory, i.e. completely fubar,
1419          * so we need to use PIPE_NOTIFY instead.
1420          *
1421          * However, we also need to workaround the qword write
1422          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1423          * memory before requesting an interrupt.
1424          */
1425         ret = intel_ring_begin(req, 32);
1426         if (ret)
1427                 return ret;
1428
1429         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1430                         PIPE_CONTROL_WRITE_FLUSH |
1431                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1432         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1433         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1434         intel_ring_emit(ring, 0);
1435         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1436         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1437         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1438         scratch_addr += 2 * CACHELINE_BYTES;
1439         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1440         scratch_addr += 2 * CACHELINE_BYTES;
1441         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1442         scratch_addr += 2 * CACHELINE_BYTES;
1443         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1444         scratch_addr += 2 * CACHELINE_BYTES;
1445         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1446
1447         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1448                         PIPE_CONTROL_WRITE_FLUSH |
1449                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1450                         PIPE_CONTROL_NOTIFY);
1451         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1452         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1453         intel_ring_emit(ring, 0);
1454         __intel_ring_advance(ring);
1455
1456         return 0;
1457 }
1458
1459 static u32
1460 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1461 {
1462         /* Workaround to force correct ordering between irq and seqno writes on
1463          * ivb (and maybe also on snb) by reading from a CS register (like
1464          * ACTHD) before reading the status page. */
1465         if (!lazy_coherency) {
1466                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1467                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1468         }
1469
1470         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1471 }
1472
1473 static u32
1474 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1475 {
1476         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1477 }
1478
1479 static void
1480 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1481 {
1482         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1483 }
1484
1485 static u32
1486 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1487 {
1488         return ring->scratch.cpu_page[0];
1489 }
1490
1491 static void
1492 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1493 {
1494         ring->scratch.cpu_page[0] = seqno;
1495 }
1496
1497 static bool
1498 gen5_ring_get_irq(struct intel_engine_cs *ring)
1499 {
1500         struct drm_device *dev = ring->dev;
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         unsigned long flags;
1503
1504         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1505                 return false;
1506
1507         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1508         if (ring->irq_refcount++ == 0)
1509                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1510         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1511
1512         return true;
1513 }
1514
1515 static void
1516 gen5_ring_put_irq(struct intel_engine_cs *ring)
1517 {
1518         struct drm_device *dev = ring->dev;
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520         unsigned long flags;
1521
1522         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1523         if (--ring->irq_refcount == 0)
1524                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1525         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1526 }
1527
1528 static bool
1529 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1530 {
1531         struct drm_device *dev = ring->dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         unsigned long flags;
1534
1535         if (!intel_irqs_enabled(dev_priv))
1536                 return false;
1537
1538         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1539         if (ring->irq_refcount++ == 0) {
1540                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1541                 I915_WRITE(IMR, dev_priv->irq_mask);
1542                 POSTING_READ(IMR);
1543         }
1544         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1545
1546         return true;
1547 }
1548
1549 static void
1550 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1551 {
1552         struct drm_device *dev = ring->dev;
1553         struct drm_i915_private *dev_priv = dev->dev_private;
1554         unsigned long flags;
1555
1556         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1557         if (--ring->irq_refcount == 0) {
1558                 dev_priv->irq_mask |= ring->irq_enable_mask;
1559                 I915_WRITE(IMR, dev_priv->irq_mask);
1560                 POSTING_READ(IMR);
1561         }
1562         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1563 }
1564
1565 static bool
1566 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1567 {
1568         struct drm_device *dev = ring->dev;
1569         struct drm_i915_private *dev_priv = dev->dev_private;
1570         unsigned long flags;
1571
1572         if (!intel_irqs_enabled(dev_priv))
1573                 return false;
1574
1575         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1576         if (ring->irq_refcount++ == 0) {
1577                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1578                 I915_WRITE16(IMR, dev_priv->irq_mask);
1579                 POSTING_READ16(IMR);
1580         }
1581         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1582
1583         return true;
1584 }
1585
1586 static void
1587 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1588 {
1589         struct drm_device *dev = ring->dev;
1590         struct drm_i915_private *dev_priv = dev->dev_private;
1591         unsigned long flags;
1592
1593         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1594         if (--ring->irq_refcount == 0) {
1595                 dev_priv->irq_mask |= ring->irq_enable_mask;
1596                 I915_WRITE16(IMR, dev_priv->irq_mask);
1597                 POSTING_READ16(IMR);
1598         }
1599         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1600 }
1601
1602 static int
1603 bsd_ring_flush(struct drm_i915_gem_request *req,
1604                u32     invalidate_domains,
1605                u32     flush_domains)
1606 {
1607         struct intel_engine_cs *ring = req->ring;
1608         int ret;
1609
1610         ret = intel_ring_begin(req, 2);
1611         if (ret)
1612                 return ret;
1613
1614         intel_ring_emit(ring, MI_FLUSH);
1615         intel_ring_emit(ring, MI_NOOP);
1616         intel_ring_advance(ring);
1617         return 0;
1618 }
1619
1620 static int
1621 i9xx_add_request(struct drm_i915_gem_request *req)
1622 {
1623         struct intel_engine_cs *ring = req->ring;
1624         int ret;
1625
1626         ret = intel_ring_begin(req, 4);
1627         if (ret)
1628                 return ret;
1629
1630         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1631         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1632         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1633         intel_ring_emit(ring, MI_USER_INTERRUPT);
1634         __intel_ring_advance(ring);
1635
1636         return 0;
1637 }
1638
1639 static bool
1640 gen6_ring_get_irq(struct intel_engine_cs *ring)
1641 {
1642         struct drm_device *dev = ring->dev;
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644         unsigned long flags;
1645
1646         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1647                 return false;
1648
1649         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1650         if (ring->irq_refcount++ == 0) {
1651                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1652                         I915_WRITE_IMR(ring,
1653                                        ~(ring->irq_enable_mask |
1654                                          GT_PARITY_ERROR(dev)));
1655                 else
1656                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1657                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1658         }
1659         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1660
1661         return true;
1662 }
1663
1664 static void
1665 gen6_ring_put_irq(struct intel_engine_cs *ring)
1666 {
1667         struct drm_device *dev = ring->dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         unsigned long flags;
1670
1671         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1672         if (--ring->irq_refcount == 0) {
1673                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1674                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1675                 else
1676                         I915_WRITE_IMR(ring, ~0);
1677                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1678         }
1679         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1680 }
1681
1682 static bool
1683 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1684 {
1685         struct drm_device *dev = ring->dev;
1686         struct drm_i915_private *dev_priv = dev->dev_private;
1687         unsigned long flags;
1688
1689         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1690                 return false;
1691
1692         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1693         if (ring->irq_refcount++ == 0) {
1694                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1695                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1696         }
1697         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1698
1699         return true;
1700 }
1701
1702 static void
1703 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1704 {
1705         struct drm_device *dev = ring->dev;
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707         unsigned long flags;
1708
1709         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1710         if (--ring->irq_refcount == 0) {
1711                 I915_WRITE_IMR(ring, ~0);
1712                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1713         }
1714         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1715 }
1716
1717 static bool
1718 gen8_ring_get_irq(struct intel_engine_cs *ring)
1719 {
1720         struct drm_device *dev = ring->dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         unsigned long flags;
1723
1724         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1725                 return false;
1726
1727         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1728         if (ring->irq_refcount++ == 0) {
1729                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1730                         I915_WRITE_IMR(ring,
1731                                        ~(ring->irq_enable_mask |
1732                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1733                 } else {
1734                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1735                 }
1736                 POSTING_READ(RING_IMR(ring->mmio_base));
1737         }
1738         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1739
1740         return true;
1741 }
1742
1743 static void
1744 gen8_ring_put_irq(struct intel_engine_cs *ring)
1745 {
1746         struct drm_device *dev = ring->dev;
1747         struct drm_i915_private *dev_priv = dev->dev_private;
1748         unsigned long flags;
1749
1750         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1751         if (--ring->irq_refcount == 0) {
1752                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1753                         I915_WRITE_IMR(ring,
1754                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1755                 } else {
1756                         I915_WRITE_IMR(ring, ~0);
1757                 }
1758                 POSTING_READ(RING_IMR(ring->mmio_base));
1759         }
1760         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1761 }
1762
1763 static int
1764 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1765                          u64 offset, u32 length,
1766                          unsigned dispatch_flags)
1767 {
1768         struct intel_engine_cs *ring = req->ring;
1769         int ret;
1770
1771         ret = intel_ring_begin(req, 2);
1772         if (ret)
1773                 return ret;
1774
1775         intel_ring_emit(ring,
1776                         MI_BATCH_BUFFER_START |
1777                         MI_BATCH_GTT |
1778                         (dispatch_flags & I915_DISPATCH_SECURE ?
1779                          0 : MI_BATCH_NON_SECURE_I965));
1780         intel_ring_emit(ring, offset);
1781         intel_ring_advance(ring);
1782
1783         return 0;
1784 }
1785
1786 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1787 #define I830_BATCH_LIMIT (256*1024)
1788 #define I830_TLB_ENTRIES (2)
1789 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1790 static int
1791 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1792                          u64 offset, u32 len,
1793                          unsigned dispatch_flags)
1794 {
1795         struct intel_engine_cs *ring = req->ring;
1796         u32 cs_offset = ring->scratch.gtt_offset;
1797         int ret;
1798
1799         ret = intel_ring_begin(req, 6);
1800         if (ret)
1801                 return ret;
1802
1803         /* Evict the invalid PTE TLBs */
1804         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1805         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1806         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1807         intel_ring_emit(ring, cs_offset);
1808         intel_ring_emit(ring, 0xdeadbeef);
1809         intel_ring_emit(ring, MI_NOOP);
1810         intel_ring_advance(ring);
1811
1812         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1813                 if (len > I830_BATCH_LIMIT)
1814                         return -ENOSPC;
1815
1816                 ret = intel_ring_begin(req, 6 + 2);
1817                 if (ret)
1818                         return ret;
1819
1820                 /* Blit the batch (which has now all relocs applied) to the
1821                  * stable batch scratch bo area (so that the CS never
1822                  * stumbles over its tlb invalidation bug) ...
1823                  */
1824                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1825                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1826                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1827                 intel_ring_emit(ring, cs_offset);
1828                 intel_ring_emit(ring, 4096);
1829                 intel_ring_emit(ring, offset);
1830
1831                 intel_ring_emit(ring, MI_FLUSH);
1832                 intel_ring_emit(ring, MI_NOOP);
1833                 intel_ring_advance(ring);
1834
1835                 /* ... and execute it. */
1836                 offset = cs_offset;
1837         }
1838
1839         ret = intel_ring_begin(req, 4);
1840         if (ret)
1841                 return ret;
1842
1843         intel_ring_emit(ring, MI_BATCH_BUFFER);
1844         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1845                                         0 : MI_BATCH_NON_SECURE));
1846         intel_ring_emit(ring, offset + len - 8);
1847         intel_ring_emit(ring, MI_NOOP);
1848         intel_ring_advance(ring);
1849
1850         return 0;
1851 }
1852
1853 static int
1854 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1855                          u64 offset, u32 len,
1856                          unsigned dispatch_flags)
1857 {
1858         struct intel_engine_cs *ring = req->ring;
1859         int ret;
1860
1861         ret = intel_ring_begin(req, 2);
1862         if (ret)
1863                 return ret;
1864
1865         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1866         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1867                                         0 : MI_BATCH_NON_SECURE));
1868         intel_ring_advance(ring);
1869
1870         return 0;
1871 }
1872
1873 static void cleanup_status_page(struct intel_engine_cs *ring)
1874 {
1875         struct drm_i915_gem_object *obj;
1876
1877         obj = ring->status_page.obj;
1878         if (obj == NULL)
1879                 return;
1880
1881         kunmap(sg_page(obj->pages->sgl));
1882         i915_gem_object_ggtt_unpin(obj);
1883         drm_gem_object_unreference(&obj->base);
1884         ring->status_page.obj = NULL;
1885 }
1886
1887 static int init_status_page(struct intel_engine_cs *ring)
1888 {
1889         struct drm_i915_gem_object *obj;
1890
1891         if ((obj = ring->status_page.obj) == NULL) {
1892                 unsigned flags;
1893                 int ret;
1894
1895                 obj = i915_gem_alloc_object(ring->dev, 4096);
1896                 if (obj == NULL) {
1897                         DRM_ERROR("Failed to allocate status page\n");
1898                         return -ENOMEM;
1899                 }
1900
1901                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1902                 if (ret)
1903                         goto err_unref;
1904
1905                 flags = 0;
1906                 if (!HAS_LLC(ring->dev))
1907                         /* On g33, we cannot place HWS above 256MiB, so
1908                          * restrict its pinning to the low mappable arena.
1909                          * Though this restriction is not documented for
1910                          * gen4, gen5, or byt, they also behave similarly
1911                          * and hang if the HWS is placed at the top of the
1912                          * GTT. To generalise, it appears that all !llc
1913                          * platforms have issues with us placing the HWS
1914                          * above the mappable region (even though we never
1915                          * actualy map it).
1916                          */
1917                         flags |= PIN_MAPPABLE;
1918                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1919                 if (ret) {
1920 err_unref:
1921                         drm_gem_object_unreference(&obj->base);
1922                         return ret;
1923                 }
1924
1925                 ring->status_page.obj = obj;
1926         }
1927
1928         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1929         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1930         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1931
1932         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1933                         ring->name, ring->status_page.gfx_addr);
1934
1935         return 0;
1936 }
1937
1938 static int init_phys_status_page(struct intel_engine_cs *ring)
1939 {
1940         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1941
1942         if (!dev_priv->status_page_dmah) {
1943                 dev_priv->status_page_dmah =
1944                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1945                 if (!dev_priv->status_page_dmah)
1946                         return -ENOMEM;
1947         }
1948
1949         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1950         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1951
1952         return 0;
1953 }
1954
1955 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1956 {
1957         iounmap(ringbuf->virtual_start);
1958         ringbuf->virtual_start = NULL;
1959         i915_gem_object_ggtt_unpin(ringbuf->obj);
1960 }
1961
1962 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1963                                      struct intel_ringbuffer *ringbuf)
1964 {
1965         struct drm_i915_private *dev_priv = to_i915(dev);
1966         struct drm_i915_gem_object *obj = ringbuf->obj;
1967         int ret;
1968
1969         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1970         if (ret)
1971                 return ret;
1972
1973         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1974         if (ret) {
1975                 i915_gem_object_ggtt_unpin(obj);
1976                 return ret;
1977         }
1978
1979         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1980                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1981         if (ringbuf->virtual_start == NULL) {
1982                 i915_gem_object_ggtt_unpin(obj);
1983                 return -EINVAL;
1984         }
1985
1986         return 0;
1987 }
1988
1989 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1990 {
1991         drm_gem_object_unreference(&ringbuf->obj->base);
1992         ringbuf->obj = NULL;
1993 }
1994
1995 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1996                                struct intel_ringbuffer *ringbuf)
1997 {
1998         struct drm_i915_gem_object *obj;
1999
2000         obj = NULL;
2001         if (!HAS_LLC(dev))
2002                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2003         if (obj == NULL)
2004                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2005         if (obj == NULL)
2006                 return -ENOMEM;
2007
2008         /* mark ring buffers as read-only from GPU side by default */
2009         obj->gt_ro = 1;
2010
2011         ringbuf->obj = obj;
2012
2013         return 0;
2014 }
2015
2016 static int intel_init_ring_buffer(struct drm_device *dev,
2017                                   struct intel_engine_cs *ring)
2018 {
2019         struct intel_ringbuffer *ringbuf;
2020         int ret;
2021
2022         WARN_ON(ring->buffer);
2023
2024         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2025         if (!ringbuf)
2026                 return -ENOMEM;
2027         ring->buffer = ringbuf;
2028
2029         ring->dev = dev;
2030         INIT_LIST_HEAD(&ring->active_list);
2031         INIT_LIST_HEAD(&ring->request_list);
2032         INIT_LIST_HEAD(&ring->execlist_queue);
2033         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2034         ringbuf->size = 32 * PAGE_SIZE;
2035         ringbuf->ring = ring;
2036         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2037
2038         init_waitqueue_head(&ring->irq_queue);
2039
2040         if (I915_NEED_GFX_HWS(dev)) {
2041                 ret = init_status_page(ring);
2042                 if (ret)
2043                         goto error;
2044         } else {
2045                 BUG_ON(ring->id != RCS);
2046                 ret = init_phys_status_page(ring);
2047                 if (ret)
2048                         goto error;
2049         }
2050
2051         WARN_ON(ringbuf->obj);
2052
2053         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2054         if (ret) {
2055                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2056                                 ring->name, ret);
2057                 goto error;
2058         }
2059
2060         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2061         if (ret) {
2062                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2063                                 ring->name, ret);
2064                 intel_destroy_ringbuffer_obj(ringbuf);
2065                 goto error;
2066         }
2067
2068         /* Workaround an erratum on the i830 which causes a hang if
2069          * the TAIL pointer points to within the last 2 cachelines
2070          * of the buffer.
2071          */
2072         ringbuf->effective_size = ringbuf->size;
2073         if (IS_I830(dev) || IS_845G(dev))
2074                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2075
2076         ret = i915_cmd_parser_init_ring(ring);
2077         if (ret)
2078                 goto error;
2079
2080         return 0;
2081
2082 error:
2083         kfree(ringbuf);
2084         ring->buffer = NULL;
2085         return ret;
2086 }
2087
2088 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2089 {
2090         struct drm_i915_private *dev_priv;
2091         struct intel_ringbuffer *ringbuf;
2092
2093         if (!intel_ring_initialized(ring))
2094                 return;
2095
2096         dev_priv = to_i915(ring->dev);
2097         ringbuf = ring->buffer;
2098
2099         intel_stop_ring_buffer(ring);
2100         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2101
2102         intel_unpin_ringbuffer_obj(ringbuf);
2103         intel_destroy_ringbuffer_obj(ringbuf);
2104
2105         if (ring->cleanup)
2106                 ring->cleanup(ring);
2107
2108         cleanup_status_page(ring);
2109
2110         i915_cmd_parser_fini_ring(ring);
2111         i915_gem_batch_pool_fini(&ring->batch_pool);
2112
2113         kfree(ringbuf);
2114         ring->buffer = NULL;
2115 }
2116
2117 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2118 {
2119         struct intel_ringbuffer *ringbuf = ring->buffer;
2120         struct drm_i915_gem_request *request;
2121         unsigned space;
2122         int ret;
2123
2124         if (intel_ring_space(ringbuf) >= n)
2125                 return 0;
2126
2127         /* The whole point of reserving space is to not wait! */
2128         WARN_ON(ringbuf->reserved_in_use);
2129
2130         list_for_each_entry(request, &ring->request_list, list) {
2131                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2132                                            ringbuf->size);
2133                 if (space >= n)
2134                         break;
2135         }
2136
2137         if (WARN_ON(&request->list == &ring->request_list))
2138                 return -ENOSPC;
2139
2140         ret = i915_wait_request(request);
2141         if (ret)
2142                 return ret;
2143
2144         ringbuf->space = space;
2145         return 0;
2146 }
2147
2148 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2149 {
2150         uint32_t __iomem *virt;
2151         int rem = ringbuf->size - ringbuf->tail;
2152
2153         virt = ringbuf->virtual_start + ringbuf->tail;
2154         rem /= 4;
2155         while (rem--)
2156                 iowrite32(MI_NOOP, virt++);
2157
2158         ringbuf->tail = 0;
2159         intel_ring_update_space(ringbuf);
2160 }
2161
2162 int intel_ring_idle(struct intel_engine_cs *ring)
2163 {
2164         struct drm_i915_gem_request *req;
2165
2166         /* Wait upon the last request to be completed */
2167         if (list_empty(&ring->request_list))
2168                 return 0;
2169
2170         req = list_entry(ring->request_list.prev,
2171                         struct drm_i915_gem_request,
2172                         list);
2173
2174         /* Make sure we do not trigger any retires */
2175         return __i915_wait_request(req,
2176                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2177                                    to_i915(ring->dev)->mm.interruptible,
2178                                    NULL, NULL);
2179 }
2180
2181 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2182 {
2183         request->ringbuf = request->ring->buffer;
2184         return 0;
2185 }
2186
2187 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2188 {
2189         /*
2190          * The first call merely notes the reserve request and is common for
2191          * all back ends. The subsequent localised _begin() call actually
2192          * ensures that the reservation is available. Without the begin, if
2193          * the request creator immediately submitted the request without
2194          * adding any commands to it then there might not actually be
2195          * sufficient room for the submission commands.
2196          */
2197         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2198
2199         return intel_ring_begin(request, 0);
2200 }
2201
2202 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2203 {
2204         WARN_ON(ringbuf->reserved_size);
2205         WARN_ON(ringbuf->reserved_in_use);
2206
2207         ringbuf->reserved_size = size;
2208 }
2209
2210 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2211 {
2212         WARN_ON(ringbuf->reserved_in_use);
2213
2214         ringbuf->reserved_size   = 0;
2215         ringbuf->reserved_in_use = false;
2216 }
2217
2218 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2219 {
2220         WARN_ON(ringbuf->reserved_in_use);
2221
2222         ringbuf->reserved_in_use = true;
2223         ringbuf->reserved_tail   = ringbuf->tail;
2224 }
2225
2226 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2227 {
2228         WARN_ON(!ringbuf->reserved_in_use);
2229         if (ringbuf->tail > ringbuf->reserved_tail) {
2230                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2231                      "request reserved size too small: %d vs %d!\n",
2232                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2233         } else {
2234                 /*
2235                  * The ring was wrapped while the reserved space was in use.
2236                  * That means that some unknown amount of the ring tail was
2237                  * no-op filled and skipped. Thus simply adding the ring size
2238                  * to the tail and doing the above space check will not work.
2239                  * Rather than attempt to track how much tail was skipped,
2240                  * it is much simpler to say that also skipping the sanity
2241                  * check every once in a while is not a big issue.
2242                  */
2243         }
2244
2245         ringbuf->reserved_size   = 0;
2246         ringbuf->reserved_in_use = false;
2247 }
2248
2249 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2250 {
2251         struct intel_ringbuffer *ringbuf = ring->buffer;
2252         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2253         int remain_actual = ringbuf->size - ringbuf->tail;
2254         int ret, total_bytes, wait_bytes = 0;
2255         bool need_wrap = false;
2256
2257         if (ringbuf->reserved_in_use)
2258                 total_bytes = bytes;
2259         else
2260                 total_bytes = bytes + ringbuf->reserved_size;
2261
2262         if (unlikely(bytes > remain_usable)) {
2263                 /*
2264                  * Not enough space for the basic request. So need to flush
2265                  * out the remainder and then wait for base + reserved.
2266                  */
2267                 wait_bytes = remain_actual + total_bytes;
2268                 need_wrap = true;
2269         } else {
2270                 if (unlikely(total_bytes > remain_usable)) {
2271                         /*
2272                          * The base request will fit but the reserved space
2273                          * falls off the end. So only need to to wait for the
2274                          * reserved size after flushing out the remainder.
2275                          */
2276                         wait_bytes = remain_actual + ringbuf->reserved_size;
2277                         need_wrap = true;
2278                 } else if (total_bytes > ringbuf->space) {
2279                         /* No wrapping required, just waiting. */
2280                         wait_bytes = total_bytes;
2281                 }
2282         }
2283
2284         if (wait_bytes) {
2285                 ret = ring_wait_for_space(ring, wait_bytes);
2286                 if (unlikely(ret))
2287                         return ret;
2288
2289                 if (need_wrap)
2290                         __wrap_ring_buffer(ringbuf);
2291         }
2292
2293         return 0;
2294 }
2295
2296 int intel_ring_begin(struct drm_i915_gem_request *req,
2297                      int num_dwords)
2298 {
2299         struct intel_engine_cs *ring;
2300         struct drm_i915_private *dev_priv;
2301         int ret;
2302
2303         WARN_ON(req == NULL);
2304         ring = req->ring;
2305         dev_priv = ring->dev->dev_private;
2306
2307         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2308                                    dev_priv->mm.interruptible);
2309         if (ret)
2310                 return ret;
2311
2312         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2313         if (ret)
2314                 return ret;
2315
2316         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2317         return 0;
2318 }
2319
2320 /* Align the ring tail to a cacheline boundary */
2321 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2322 {
2323         struct intel_engine_cs *ring = req->ring;
2324         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2325         int ret;
2326
2327         if (num_dwords == 0)
2328                 return 0;
2329
2330         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2331         ret = intel_ring_begin(req, num_dwords);
2332         if (ret)
2333                 return ret;
2334
2335         while (num_dwords--)
2336                 intel_ring_emit(ring, MI_NOOP);
2337
2338         intel_ring_advance(ring);
2339
2340         return 0;
2341 }
2342
2343 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2344 {
2345         struct drm_device *dev = ring->dev;
2346         struct drm_i915_private *dev_priv = dev->dev_private;
2347
2348         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2349                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2350                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2351                 if (HAS_VEBOX(dev))
2352                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2353         }
2354
2355         ring->set_seqno(ring, seqno);
2356         ring->hangcheck.seqno = seqno;
2357 }
2358
2359 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2360                                      u32 value)
2361 {
2362         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2363
2364        /* Every tail move must follow the sequence below */
2365
2366         /* Disable notification that the ring is IDLE. The GT
2367          * will then assume that it is busy and bring it out of rc6.
2368          */
2369         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2370                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2371
2372         /* Clear the context id. Here be magic! */
2373         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2374
2375         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2376         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2377                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2378                      50))
2379                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2380
2381         /* Now that the ring is fully powered up, update the tail */
2382         I915_WRITE_TAIL(ring, value);
2383         POSTING_READ(RING_TAIL(ring->mmio_base));
2384
2385         /* Let the ring send IDLE messages to the GT again,
2386          * and so let it sleep to conserve power when idle.
2387          */
2388         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2389                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2390 }
2391
2392 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2393                                u32 invalidate, u32 flush)
2394 {
2395         struct intel_engine_cs *ring = req->ring;
2396         uint32_t cmd;
2397         int ret;
2398
2399         ret = intel_ring_begin(req, 4);
2400         if (ret)
2401                 return ret;
2402
2403         cmd = MI_FLUSH_DW;
2404         if (INTEL_INFO(ring->dev)->gen >= 8)
2405                 cmd += 1;
2406
2407         /* We always require a command barrier so that subsequent
2408          * commands, such as breadcrumb interrupts, are strictly ordered
2409          * wrt the contents of the write cache being flushed to memory
2410          * (and thus being coherent from the CPU).
2411          */
2412         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2413
2414         /*
2415          * Bspec vol 1c.5 - video engine command streamer:
2416          * "If ENABLED, all TLBs will be invalidated once the flush
2417          * operation is complete. This bit is only valid when the
2418          * Post-Sync Operation field is a value of 1h or 3h."
2419          */
2420         if (invalidate & I915_GEM_GPU_DOMAINS)
2421                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2422
2423         intel_ring_emit(ring, cmd);
2424         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2425         if (INTEL_INFO(ring->dev)->gen >= 8) {
2426                 intel_ring_emit(ring, 0); /* upper addr */
2427                 intel_ring_emit(ring, 0); /* value */
2428         } else  {
2429                 intel_ring_emit(ring, 0);
2430                 intel_ring_emit(ring, MI_NOOP);
2431         }
2432         intel_ring_advance(ring);
2433         return 0;
2434 }
2435
2436 static int
2437 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2438                               u64 offset, u32 len,
2439                               unsigned dispatch_flags)
2440 {
2441         struct intel_engine_cs *ring = req->ring;
2442         bool ppgtt = USES_PPGTT(ring->dev) &&
2443                         !(dispatch_flags & I915_DISPATCH_SECURE);
2444         int ret;
2445
2446         ret = intel_ring_begin(req, 4);
2447         if (ret)
2448                 return ret;
2449
2450         /* FIXME(BDW): Address space and security selectors. */
2451         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2452         intel_ring_emit(ring, lower_32_bits(offset));
2453         intel_ring_emit(ring, upper_32_bits(offset));
2454         intel_ring_emit(ring, MI_NOOP);
2455         intel_ring_advance(ring);
2456
2457         return 0;
2458 }
2459
2460 static int
2461 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2462                              u64 offset, u32 len,
2463                              unsigned dispatch_flags)
2464 {
2465         struct intel_engine_cs *ring = req->ring;
2466         int ret;
2467
2468         ret = intel_ring_begin(req, 2);
2469         if (ret)
2470                 return ret;
2471
2472         intel_ring_emit(ring,
2473                         MI_BATCH_BUFFER_START |
2474                         (dispatch_flags & I915_DISPATCH_SECURE ?
2475                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2476         /* bit0-7 is the length on GEN6+ */
2477         intel_ring_emit(ring, offset);
2478         intel_ring_advance(ring);
2479
2480         return 0;
2481 }
2482
2483 static int
2484 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2485                               u64 offset, u32 len,
2486                               unsigned dispatch_flags)
2487 {
2488         struct intel_engine_cs *ring = req->ring;
2489         int ret;
2490
2491         ret = intel_ring_begin(req, 2);
2492         if (ret)
2493                 return ret;
2494
2495         intel_ring_emit(ring,
2496                         MI_BATCH_BUFFER_START |
2497                         (dispatch_flags & I915_DISPATCH_SECURE ?
2498                          0 : MI_BATCH_NON_SECURE_I965));
2499         /* bit0-7 is the length on GEN6+ */
2500         intel_ring_emit(ring, offset);
2501         intel_ring_advance(ring);
2502
2503         return 0;
2504 }
2505
2506 /* Blitter support (SandyBridge+) */
2507
2508 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2509                            u32 invalidate, u32 flush)
2510 {
2511         struct intel_engine_cs *ring = req->ring;
2512         struct drm_device *dev = ring->dev;
2513         uint32_t cmd;
2514         int ret;
2515
2516         ret = intel_ring_begin(req, 4);
2517         if (ret)
2518                 return ret;
2519
2520         cmd = MI_FLUSH_DW;
2521         if (INTEL_INFO(dev)->gen >= 8)
2522                 cmd += 1;
2523
2524         /* We always require a command barrier so that subsequent
2525          * commands, such as breadcrumb interrupts, are strictly ordered
2526          * wrt the contents of the write cache being flushed to memory
2527          * (and thus being coherent from the CPU).
2528          */
2529         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2530
2531         /*
2532          * Bspec vol 1c.3 - blitter engine command streamer:
2533          * "If ENABLED, all TLBs will be invalidated once the flush
2534          * operation is complete. This bit is only valid when the
2535          * Post-Sync Operation field is a value of 1h or 3h."
2536          */
2537         if (invalidate & I915_GEM_DOMAIN_RENDER)
2538                 cmd |= MI_INVALIDATE_TLB;
2539         intel_ring_emit(ring, cmd);
2540         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2541         if (INTEL_INFO(dev)->gen >= 8) {
2542                 intel_ring_emit(ring, 0); /* upper addr */
2543                 intel_ring_emit(ring, 0); /* value */
2544         } else  {
2545                 intel_ring_emit(ring, 0);
2546                 intel_ring_emit(ring, MI_NOOP);
2547         }
2548         intel_ring_advance(ring);
2549
2550         return 0;
2551 }
2552
2553 int intel_init_render_ring_buffer(struct drm_device *dev)
2554 {
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2557         struct drm_i915_gem_object *obj;
2558         int ret;
2559
2560         ring->name = "render ring";
2561         ring->id = RCS;
2562         ring->mmio_base = RENDER_RING_BASE;
2563
2564         if (INTEL_INFO(dev)->gen >= 8) {
2565                 if (i915_semaphore_is_enabled(dev)) {
2566                         obj = i915_gem_alloc_object(dev, 4096);
2567                         if (obj == NULL) {
2568                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2569                                 i915.semaphores = 0;
2570                         } else {
2571                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2572                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2573                                 if (ret != 0) {
2574                                         drm_gem_object_unreference(&obj->base);
2575                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2576                                         i915.semaphores = 0;
2577                                 } else
2578                                         dev_priv->semaphore_obj = obj;
2579                         }
2580                 }
2581
2582                 ring->init_context = intel_rcs_ctx_init;
2583                 ring->add_request = gen6_add_request;
2584                 ring->flush = gen8_render_ring_flush;
2585                 ring->irq_get = gen8_ring_get_irq;
2586                 ring->irq_put = gen8_ring_put_irq;
2587                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2588                 ring->get_seqno = gen6_ring_get_seqno;
2589                 ring->set_seqno = ring_set_seqno;
2590                 if (i915_semaphore_is_enabled(dev)) {
2591                         WARN_ON(!dev_priv->semaphore_obj);
2592                         ring->semaphore.sync_to = gen8_ring_sync;
2593                         ring->semaphore.signal = gen8_rcs_signal;
2594                         GEN8_RING_SEMAPHORE_INIT;
2595                 }
2596         } else if (INTEL_INFO(dev)->gen >= 6) {
2597                 ring->add_request = gen6_add_request;
2598                 ring->flush = gen7_render_ring_flush;
2599                 if (INTEL_INFO(dev)->gen == 6)
2600                         ring->flush = gen6_render_ring_flush;
2601                 ring->irq_get = gen6_ring_get_irq;
2602                 ring->irq_put = gen6_ring_put_irq;
2603                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2604                 ring->get_seqno = gen6_ring_get_seqno;
2605                 ring->set_seqno = ring_set_seqno;
2606                 if (i915_semaphore_is_enabled(dev)) {
2607                         ring->semaphore.sync_to = gen6_ring_sync;
2608                         ring->semaphore.signal = gen6_signal;
2609                         /*
2610                          * The current semaphore is only applied on pre-gen8
2611                          * platform.  And there is no VCS2 ring on the pre-gen8
2612                          * platform. So the semaphore between RCS and VCS2 is
2613                          * initialized as INVALID.  Gen8 will initialize the
2614                          * sema between VCS2 and RCS later.
2615                          */
2616                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2617                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2618                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2619                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2620                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2621                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2622                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2623                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2624                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2625                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2626                 }
2627         } else if (IS_GEN5(dev)) {
2628                 ring->add_request = pc_render_add_request;
2629                 ring->flush = gen4_render_ring_flush;
2630                 ring->get_seqno = pc_render_get_seqno;
2631                 ring->set_seqno = pc_render_set_seqno;
2632                 ring->irq_get = gen5_ring_get_irq;
2633                 ring->irq_put = gen5_ring_put_irq;
2634                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2635                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2636         } else {
2637                 ring->add_request = i9xx_add_request;
2638                 if (INTEL_INFO(dev)->gen < 4)
2639                         ring->flush = gen2_render_ring_flush;
2640                 else
2641                         ring->flush = gen4_render_ring_flush;
2642                 ring->get_seqno = ring_get_seqno;
2643                 ring->set_seqno = ring_set_seqno;
2644                 if (IS_GEN2(dev)) {
2645                         ring->irq_get = i8xx_ring_get_irq;
2646                         ring->irq_put = i8xx_ring_put_irq;
2647                 } else {
2648                         ring->irq_get = i9xx_ring_get_irq;
2649                         ring->irq_put = i9xx_ring_put_irq;
2650                 }
2651                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2652         }
2653         ring->write_tail = ring_write_tail;
2654
2655         if (IS_HASWELL(dev))
2656                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2657         else if (IS_GEN8(dev))
2658                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2659         else if (INTEL_INFO(dev)->gen >= 6)
2660                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2661         else if (INTEL_INFO(dev)->gen >= 4)
2662                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2663         else if (IS_I830(dev) || IS_845G(dev))
2664                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2665         else
2666                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2667         ring->init_hw = init_render_ring;
2668         ring->cleanup = render_ring_cleanup;
2669
2670         /* Workaround batchbuffer to combat CS tlb bug. */
2671         if (HAS_BROKEN_CS_TLB(dev)) {
2672                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2673                 if (obj == NULL) {
2674                         DRM_ERROR("Failed to allocate batch bo\n");
2675                         return -ENOMEM;
2676                 }
2677
2678                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2679                 if (ret != 0) {
2680                         drm_gem_object_unreference(&obj->base);
2681                         DRM_ERROR("Failed to ping batch bo\n");
2682                         return ret;
2683                 }
2684
2685                 ring->scratch.obj = obj;
2686                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2687         }
2688
2689         ret = intel_init_ring_buffer(dev, ring);
2690         if (ret)
2691                 return ret;
2692
2693         if (INTEL_INFO(dev)->gen >= 5) {
2694                 ret = intel_init_pipe_control(ring);
2695                 if (ret)
2696                         return ret;
2697         }
2698
2699         return 0;
2700 }
2701
2702 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2703 {
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2706
2707         ring->name = "bsd ring";
2708         ring->id = VCS;
2709
2710         ring->write_tail = ring_write_tail;
2711         if (INTEL_INFO(dev)->gen >= 6) {
2712                 ring->mmio_base = GEN6_BSD_RING_BASE;
2713                 /* gen6 bsd needs a special wa for tail updates */
2714                 if (IS_GEN6(dev))
2715                         ring->write_tail = gen6_bsd_ring_write_tail;
2716                 ring->flush = gen6_bsd_ring_flush;
2717                 ring->add_request = gen6_add_request;
2718                 ring->get_seqno = gen6_ring_get_seqno;
2719                 ring->set_seqno = ring_set_seqno;
2720                 if (INTEL_INFO(dev)->gen >= 8) {
2721                         ring->irq_enable_mask =
2722                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2723                         ring->irq_get = gen8_ring_get_irq;
2724                         ring->irq_put = gen8_ring_put_irq;
2725                         ring->dispatch_execbuffer =
2726                                 gen8_ring_dispatch_execbuffer;
2727                         if (i915_semaphore_is_enabled(dev)) {
2728                                 ring->semaphore.sync_to = gen8_ring_sync;
2729                                 ring->semaphore.signal = gen8_xcs_signal;
2730                                 GEN8_RING_SEMAPHORE_INIT;
2731                         }
2732                 } else {
2733                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2734                         ring->irq_get = gen6_ring_get_irq;
2735                         ring->irq_put = gen6_ring_put_irq;
2736                         ring->dispatch_execbuffer =
2737                                 gen6_ring_dispatch_execbuffer;
2738                         if (i915_semaphore_is_enabled(dev)) {
2739                                 ring->semaphore.sync_to = gen6_ring_sync;
2740                                 ring->semaphore.signal = gen6_signal;
2741                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2742                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2743                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2744                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2745                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2746                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2747                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2748                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2749                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2750                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2751                         }
2752                 }
2753         } else {
2754                 ring->mmio_base = BSD_RING_BASE;
2755                 ring->flush = bsd_ring_flush;
2756                 ring->add_request = i9xx_add_request;
2757                 ring->get_seqno = ring_get_seqno;
2758                 ring->set_seqno = ring_set_seqno;
2759                 if (IS_GEN5(dev)) {
2760                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2761                         ring->irq_get = gen5_ring_get_irq;
2762                         ring->irq_put = gen5_ring_put_irq;
2763                 } else {
2764                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2765                         ring->irq_get = i9xx_ring_get_irq;
2766                         ring->irq_put = i9xx_ring_put_irq;
2767                 }
2768                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2769         }
2770         ring->init_hw = init_ring_common;
2771
2772         return intel_init_ring_buffer(dev, ring);
2773 }
2774
2775 /**
2776  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2777  */
2778 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2779 {
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2782
2783         ring->name = "bsd2 ring";
2784         ring->id = VCS2;
2785
2786         ring->write_tail = ring_write_tail;
2787         ring->mmio_base = GEN8_BSD2_RING_BASE;
2788         ring->flush = gen6_bsd_ring_flush;
2789         ring->add_request = gen6_add_request;
2790         ring->get_seqno = gen6_ring_get_seqno;
2791         ring->set_seqno = ring_set_seqno;
2792         ring->irq_enable_mask =
2793                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2794         ring->irq_get = gen8_ring_get_irq;
2795         ring->irq_put = gen8_ring_put_irq;
2796         ring->dispatch_execbuffer =
2797                         gen8_ring_dispatch_execbuffer;
2798         if (i915_semaphore_is_enabled(dev)) {
2799                 ring->semaphore.sync_to = gen8_ring_sync;
2800                 ring->semaphore.signal = gen8_xcs_signal;
2801                 GEN8_RING_SEMAPHORE_INIT;
2802         }
2803         ring->init_hw = init_ring_common;
2804
2805         return intel_init_ring_buffer(dev, ring);
2806 }
2807
2808 int intel_init_blt_ring_buffer(struct drm_device *dev)
2809 {
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2812
2813         ring->name = "blitter ring";
2814         ring->id = BCS;
2815
2816         ring->mmio_base = BLT_RING_BASE;
2817         ring->write_tail = ring_write_tail;
2818         ring->flush = gen6_ring_flush;
2819         ring->add_request = gen6_add_request;
2820         ring->get_seqno = gen6_ring_get_seqno;
2821         ring->set_seqno = ring_set_seqno;
2822         if (INTEL_INFO(dev)->gen >= 8) {
2823                 ring->irq_enable_mask =
2824                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2825                 ring->irq_get = gen8_ring_get_irq;
2826                 ring->irq_put = gen8_ring_put_irq;
2827                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2828                 if (i915_semaphore_is_enabled(dev)) {
2829                         ring->semaphore.sync_to = gen8_ring_sync;
2830                         ring->semaphore.signal = gen8_xcs_signal;
2831                         GEN8_RING_SEMAPHORE_INIT;
2832                 }
2833         } else {
2834                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2835                 ring->irq_get = gen6_ring_get_irq;
2836                 ring->irq_put = gen6_ring_put_irq;
2837                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2838                 if (i915_semaphore_is_enabled(dev)) {
2839                         ring->semaphore.signal = gen6_signal;
2840                         ring->semaphore.sync_to = gen6_ring_sync;
2841                         /*
2842                          * The current semaphore is only applied on pre-gen8
2843                          * platform.  And there is no VCS2 ring on the pre-gen8
2844                          * platform. So the semaphore between BCS and VCS2 is
2845                          * initialized as INVALID.  Gen8 will initialize the
2846                          * sema between BCS and VCS2 later.
2847                          */
2848                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2849                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2850                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2851                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2852                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2853                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2854                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2855                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2856                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2857                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2858                 }
2859         }
2860         ring->init_hw = init_ring_common;
2861
2862         return intel_init_ring_buffer(dev, ring);
2863 }
2864
2865 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2866 {
2867         struct drm_i915_private *dev_priv = dev->dev_private;
2868         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2869
2870         ring->name = "video enhancement ring";
2871         ring->id = VECS;
2872
2873         ring->mmio_base = VEBOX_RING_BASE;
2874         ring->write_tail = ring_write_tail;
2875         ring->flush = gen6_ring_flush;
2876         ring->add_request = gen6_add_request;
2877         ring->get_seqno = gen6_ring_get_seqno;
2878         ring->set_seqno = ring_set_seqno;
2879
2880         if (INTEL_INFO(dev)->gen >= 8) {
2881                 ring->irq_enable_mask =
2882                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2883                 ring->irq_get = gen8_ring_get_irq;
2884                 ring->irq_put = gen8_ring_put_irq;
2885                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2886                 if (i915_semaphore_is_enabled(dev)) {
2887                         ring->semaphore.sync_to = gen8_ring_sync;
2888                         ring->semaphore.signal = gen8_xcs_signal;
2889                         GEN8_RING_SEMAPHORE_INIT;
2890                 }
2891         } else {
2892                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2893                 ring->irq_get = hsw_vebox_get_irq;
2894                 ring->irq_put = hsw_vebox_put_irq;
2895                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2896                 if (i915_semaphore_is_enabled(dev)) {
2897                         ring->semaphore.sync_to = gen6_ring_sync;
2898                         ring->semaphore.signal = gen6_signal;
2899                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2900                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2901                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2902                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2903                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2904                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2905                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2906                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2907                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2908                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2909                 }
2910         }
2911         ring->init_hw = init_ring_common;
2912
2913         return intel_init_ring_buffer(dev, ring);
2914 }
2915
2916 int
2917 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2918 {
2919         struct intel_engine_cs *ring = req->ring;
2920         int ret;
2921
2922         if (!ring->gpu_caches_dirty)
2923                 return 0;
2924
2925         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2926         if (ret)
2927                 return ret;
2928
2929         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2930
2931         ring->gpu_caches_dirty = false;
2932         return 0;
2933 }
2934
2935 int
2936 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2937 {
2938         struct intel_engine_cs *ring = req->ring;
2939         uint32_t flush_domains;
2940         int ret;
2941
2942         flush_domains = 0;
2943         if (ring->gpu_caches_dirty)
2944                 flush_domains = I915_GEM_GPU_DOMAINS;
2945
2946         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2947         if (ret)
2948                 return ret;
2949
2950         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2951
2952         ring->gpu_caches_dirty = false;
2953         return 0;
2954 }
2955
2956 void
2957 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2958 {
2959         int ret;
2960
2961         if (!intel_ring_initialized(ring))
2962                 return;
2963
2964         ret = intel_ring_idle(ring);
2965         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2966                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2967                           ring->name, ret);
2968
2969         stop_ring(ring);
2970 }