drm/nouveau/gk20a: reclocking support
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / nouveau / core / subdev / clock / gk20a.c
1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  *
22  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23  *
24  */
25
26 #define MHZ (1000 * 1000)
27
28 #define MASK(w) ((1 << w) - 1)
29
30 #define SYS_GPCPLL_CFG_BASE                     0x00137000
31 #define GPC_BCASE_GPCPLL_CFG_BASE               0x00132800
32
33 #define GPCPLL_CFG              (SYS_GPCPLL_CFG_BASE + 0)
34 #define GPCPLL_CFG_ENABLE       BIT(0)
35 #define GPCPLL_CFG_IDDQ         BIT(1)
36 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
37 #define GPCPLL_CFG_LOCK         BIT(17)
38
39 #define GPCPLL_COEFF            (SYS_GPCPLL_CFG_BASE + 4)
40 #define GPCPLL_COEFF_M_SHIFT    0
41 #define GPCPLL_COEFF_M_WIDTH    8
42 #define GPCPLL_COEFF_N_SHIFT    8
43 #define GPCPLL_COEFF_N_WIDTH    8
44 #define GPCPLL_COEFF_P_SHIFT    16
45 #define GPCPLL_COEFF_P_WIDTH    6
46
47 #define GPCPLL_CFG2                     (SYS_GPCPLL_CFG_BASE + 0xc)
48 #define GPCPLL_CFG2_SETUP2_SHIFT        16
49 #define GPCPLL_CFG2_PLL_STEPA_SHIFT     24
50
51 #define GPCPLL_CFG3                     (SYS_GPCPLL_CFG_BASE + 0x18)
52 #define GPCPLL_CFG3_PLL_STEPB_SHIFT     16
53
54 #define GPCPLL_NDIV_SLOWDOWN                    (SYS_GPCPLL_CFG_BASE + 0x1c)
55 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT      0
56 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT     8
57 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT     16
58 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT   22
59 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT   31
60
61 #define SEL_VCO                         (SYS_GPCPLL_CFG_BASE + 0x100)
62 #define SEL_VCO_GPC2CLK_OUT_SHIFT       0
63
64 #define GPC2CLK_OUT                     (SYS_GPCPLL_CFG_BASE + 0x250)
65 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
66 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
67 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE  1
68 #define GPC2CLK_OUT_VCODIV_WIDTH        6
69 #define GPC2CLK_OUT_VCODIV_SHIFT        8
70 #define GPC2CLK_OUT_VCODIV1             0
71 #define GPC2CLK_OUT_VCODIV_MASK         (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
72                                         GPC2CLK_OUT_VCODIV_SHIFT)
73 #define GPC2CLK_OUT_BYPDIV_WIDTH        6
74 #define GPC2CLK_OUT_BYPDIV_SHIFT        0
75 #define GPC2CLK_OUT_BYPDIV31            0x3c
76 #define GPC2CLK_OUT_INIT_MASK   ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
77                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
78                 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
79                 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
80 #define GPC2CLK_OUT_INIT_VAL    ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
81                 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
82                 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
83                 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
84
85 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG   (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
86 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT     24
87 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
88             (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
89
90 #include <subdev/clock.h>
91 #include <subdev/timer.h>
92
93 #ifdef __KERNEL__
94 #include <nouveau_platform.h>
95 #endif
96
97 static const u8 pl_to_div[] = {
98 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
99 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
100 };
101
102 /* All frequencies in Mhz */
103 struct gk20a_clk_pllg_params {
104         u32 min_vco, max_vco;
105         u32 min_u, max_u;
106         u32 min_m, max_m;
107         u32 min_n, max_n;
108         u32 min_pl, max_pl;
109 };
110
111 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
112         .min_vco = 1000, .max_vco = 1700,
113         .min_u = 12, .max_u = 38,
114         .min_m = 1, .max_m = 255,
115         .min_n = 8, .max_n = 255,
116         .min_pl = 1, .max_pl = 32,
117 };
118
119 struct gk20a_clock_priv {
120         struct nouveau_clock base;
121         const struct gk20a_clk_pllg_params *params;
122         u32 m, n, pl;
123         u32 parent_rate;
124 };
125 #define to_gk20a_clock(base) container_of(base, struct gk20a_clock_priv, base)
126
127 static void
128 gk20a_pllg_read_mnp(struct gk20a_clock_priv *priv)
129 {
130         u32 val;
131
132         val = nv_rd32(priv, GPCPLL_COEFF);
133         priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
134         priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
135         priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
136 }
137
138 static u32
139 gk20a_pllg_calc_rate(struct gk20a_clock_priv *priv)
140 {
141         u32 rate;
142         u32 divider;
143
144         rate = priv->parent_rate * priv->n;
145         divider = priv->m * pl_to_div[priv->pl];
146         do_div(rate, divider);
147
148         return rate / 2;
149 }
150
151 static int
152 gk20a_pllg_calc_mnp(struct gk20a_clock_priv *priv, unsigned long rate)
153 {
154         u32 target_clk_f, ref_clk_f, target_freq;
155         u32 min_vco_f, max_vco_f;
156         u32 low_pl, high_pl, best_pl;
157         u32 target_vco_f, vco_f;
158         u32 best_m, best_n;
159         u32 u_f;
160         u32 m, n, n2;
161         u32 delta, lwv, best_delta = ~0;
162         u32 pl;
163
164         target_clk_f = rate * 2 / MHZ;
165         ref_clk_f = priv->parent_rate / MHZ;
166
167         max_vco_f = priv->params->max_vco;
168         min_vco_f = priv->params->min_vco;
169         best_m = priv->params->max_m;
170         best_n = priv->params->min_n;
171         best_pl = priv->params->min_pl;
172
173         target_vco_f = target_clk_f + target_clk_f / 50;
174         if (max_vco_f < target_vco_f)
175                 max_vco_f = target_vco_f;
176
177         /* min_pl <= high_pl <= max_pl */
178         high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
179         high_pl = min(high_pl, priv->params->max_pl);
180         high_pl = max(high_pl, priv->params->min_pl);
181
182         /* min_pl <= low_pl <= max_pl */
183         low_pl = min_vco_f / target_vco_f;
184         low_pl = min(low_pl, priv->params->max_pl);
185         low_pl = max(low_pl, priv->params->min_pl);
186
187         /* Find Indices of high_pl and low_pl */
188         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
189                 if (pl_to_div[pl] >= low_pl) {
190                         low_pl = pl;
191                         break;
192                 }
193         }
194         for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
195                 if (pl_to_div[pl] >= high_pl) {
196                         high_pl = pl;
197                         break;
198                 }
199         }
200
201         nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
202                  pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
203
204         /* Select lowest possible VCO */
205         for (pl = low_pl; pl <= high_pl; pl++) {
206                 target_vco_f = target_clk_f * pl_to_div[pl];
207                 for (m = priv->params->min_m; m <= priv->params->max_m; m++) {
208                         u_f = ref_clk_f / m;
209
210                         if (u_f < priv->params->min_u)
211                                 break;
212                         if (u_f > priv->params->max_u)
213                                 continue;
214
215                         n = (target_vco_f * m) / ref_clk_f;
216                         n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
217
218                         if (n > priv->params->max_n)
219                                 break;
220
221                         for (; n <= n2; n++) {
222                                 if (n < priv->params->min_n)
223                                         continue;
224                                 if (n > priv->params->max_n)
225                                         break;
226
227                                 vco_f = ref_clk_f * n / m;
228
229                                 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
230                                         lwv = (vco_f + (pl_to_div[pl] / 2))
231                                                 / pl_to_div[pl];
232                                         delta = abs(lwv - target_clk_f);
233
234                                         if (delta < best_delta) {
235                                                 best_delta = delta;
236                                                 best_m = m;
237                                                 best_n = n;
238                                                 best_pl = pl;
239
240                                                 if (best_delta == 0)
241                                                         goto found_match;
242                                         }
243                                 }
244                         }
245                 }
246         }
247
248 found_match:
249         WARN_ON(best_delta == ~0);
250
251         if (best_delta != 0)
252                 nv_debug(priv, "no best match for target @ %dMHz on gpc_pll",
253                          target_clk_f);
254
255         priv->m = best_m;
256         priv->n = best_n;
257         priv->pl = best_pl;
258
259         target_freq = gk20a_pllg_calc_rate(priv) / MHZ;
260
261         nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
262                  target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]);
263
264         return 0;
265 }
266
267 static int
268 gk20a_pllg_slide(struct gk20a_clock_priv *priv, u32 n)
269 {
270         u32 val;
271         int ramp_timeout;
272
273         /* get old coefficients */
274         val = nv_rd32(priv, GPCPLL_COEFF);
275         /* do nothing if NDIV is the same */
276         if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
277                 return 0;
278
279         /* setup */
280         nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
281                 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
282         nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
283                 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
284
285         /* pll slowdown mode */
286         nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
287                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
288                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
289
290         /* new ndiv ready for ramp */
291         val = nv_rd32(priv, GPCPLL_COEFF);
292         val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
293         val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
294         udelay(1);
295         nv_wr32(priv, GPCPLL_COEFF, val);
296
297         /* dynamic ramp to new ndiv */
298         val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
299         val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
300         udelay(1);
301         nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val);
302
303         for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
304                 udelay(1);
305                 val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
306                 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
307                         break;
308         }
309
310         /* exit slowdown mode */
311         nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
312                 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
313                 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
314         nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
315
316         if (ramp_timeout <= 0) {
317                 nv_error(priv, "gpcpll dynamic ramp timeout\n");
318                 return -ETIMEDOUT;
319         }
320
321         return 0;
322 }
323
324 static void
325 _gk20a_pllg_enable(struct gk20a_clock_priv *priv)
326 {
327         nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
328         nv_rd32(priv, GPCPLL_CFG);
329 }
330
331 static void
332 _gk20a_pllg_disable(struct gk20a_clock_priv *priv)
333 {
334         nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
335         nv_rd32(priv, GPCPLL_CFG);
336 }
337
338 static int
339 _gk20a_pllg_program_mnp(struct gk20a_clock_priv *priv, bool allow_slide)
340 {
341         u32 val, cfg;
342         u32 m_old, pl_old, n_lo;
343
344         /* get old coefficients */
345         val = nv_rd32(priv, GPCPLL_COEFF);
346         m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
347         pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
348
349         /* do NDIV slide if there is no change in M and PL */
350         cfg = nv_rd32(priv, GPCPLL_CFG);
351         if (allow_slide && priv->m == m_old && priv->pl == pl_old &&
352             (cfg & GPCPLL_CFG_ENABLE)) {
353                 return gk20a_pllg_slide(priv, priv->n);
354         }
355
356         /* slide down to NDIV_LO */
357         n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco,
358                             priv->parent_rate / MHZ);
359         if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
360                 int ret = gk20a_pllg_slide(priv, n_lo);
361
362                 if (ret)
363                         return ret;
364         }
365
366         /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
367         nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
368                 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
369
370         /* put PLL in bypass before programming it */
371         val = nv_rd32(priv, SEL_VCO);
372         val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
373         udelay(2);
374         nv_wr32(priv, SEL_VCO, val);
375
376         /* get out from IDDQ */
377         val = nv_rd32(priv, GPCPLL_CFG);
378         if (val & GPCPLL_CFG_IDDQ) {
379                 val &= ~GPCPLL_CFG_IDDQ;
380                 nv_wr32(priv, GPCPLL_CFG, val);
381                 nv_rd32(priv, GPCPLL_CFG);
382                 udelay(2);
383         }
384
385         _gk20a_pllg_disable(priv);
386
387         nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n,
388                  priv->pl);
389
390         n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco,
391                             priv->parent_rate / MHZ);
392         val = priv->m << GPCPLL_COEFF_M_SHIFT;
393         val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT;
394         val |= priv->pl << GPCPLL_COEFF_P_SHIFT;
395         nv_wr32(priv, GPCPLL_COEFF, val);
396
397         _gk20a_pllg_enable(priv);
398
399         val = nv_rd32(priv, GPCPLL_CFG);
400         if (val & GPCPLL_CFG_LOCK_DET_OFF) {
401                 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
402                 nv_wr32(priv, GPCPLL_CFG, val);
403         }
404
405         if (!nouveau_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
406                                    GPCPLL_CFG_LOCK)) {
407                 nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__);
408                 return -ETIMEDOUT;
409         }
410
411         /* switch to VCO mode */
412         nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
413
414         /* restore out divider 1:1 */
415         val = nv_rd32(priv, GPC2CLK_OUT);
416         val &= ~GPC2CLK_OUT_VCODIV_MASK;
417         udelay(2);
418         nv_wr32(priv, GPC2CLK_OUT, val);
419
420         /* slide up to new NDIV */
421         return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0;
422 }
423
424 static int
425 gk20a_pllg_program_mnp(struct gk20a_clock_priv *priv)
426 {
427         int err;
428
429         err = _gk20a_pllg_program_mnp(priv, true);
430         if (err)
431                 err = _gk20a_pllg_program_mnp(priv, false);
432
433         return err;
434 }
435
436 static void
437 gk20a_pllg_disable(struct gk20a_clock_priv *priv)
438 {
439         u32 val;
440
441         /* slide to VCO min */
442         val = nv_rd32(priv, GPCPLL_CFG);
443         if (val & GPCPLL_CFG_ENABLE) {
444                 u32 coeff, m, n_lo;
445
446                 coeff = nv_rd32(priv, GPCPLL_COEFF);
447                 m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
448                 n_lo = DIV_ROUND_UP(m * priv->params->min_vco,
449                                     priv->parent_rate / MHZ);
450                 gk20a_pllg_slide(priv, n_lo);
451         }
452
453         /* put PLL in bypass before disabling it */
454         nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
455
456         _gk20a_pllg_disable(priv);
457 }
458
459 #define GK20A_CLK_GPC_MDIV 1000
460
461 static struct nouveau_clocks
462 gk20a_domains[] = {
463         { nv_clk_src_crystal, 0xff },
464         { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
465         { nv_clk_src_max }
466 };
467
468 static struct nouveau_pstate
469 gk20a_pstates[] = {
470         {
471                 .base = {
472                         .domain[nv_clk_src_gpc] = 72000,
473                 },
474         },
475         {
476                 .base = {
477                         .domain[nv_clk_src_gpc] = 108000,
478                 },
479         },
480         {
481                 .base = {
482                         .domain[nv_clk_src_gpc] = 180000,
483                 },
484         },
485         {
486                 .base = {
487                         .domain[nv_clk_src_gpc] = 252000,
488                 },
489         },
490         {
491                 .base = {
492                         .domain[nv_clk_src_gpc] = 324000,
493                 },
494         },
495         {
496                 .base = {
497                         .domain[nv_clk_src_gpc] = 396000,
498                 },
499         },
500         {
501                 .base = {
502                         .domain[nv_clk_src_gpc] = 468000,
503                 },
504         },
505         {
506                 .base = {
507                         .domain[nv_clk_src_gpc] = 540000,
508                 },
509         },
510         {
511                 .base = {
512                         .domain[nv_clk_src_gpc] = 612000,
513                 },
514         },
515         {
516                 .base = {
517                         .domain[nv_clk_src_gpc] = 648000,
518                 },
519         },
520         {
521                 .base = {
522                         .domain[nv_clk_src_gpc] = 684000,
523                 },
524         },
525         {
526                 .base = {
527                         .domain[nv_clk_src_gpc] = 708000,
528                 },
529         },
530         {
531                 .base = {
532                         .domain[nv_clk_src_gpc] = 756000,
533                 },
534         },
535         {
536                 .base = {
537                         .domain[nv_clk_src_gpc] = 804000,
538                 },
539         },
540         {
541                 .base = {
542                         .domain[nv_clk_src_gpc] = 852000,
543                 },
544         },
545 };
546
547 static int
548 gk20a_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
549 {
550         struct gk20a_clock_priv *priv = (void *)clk;
551
552         switch (src) {
553         case nv_clk_src_crystal:
554                 return nv_device(clk)->crystal;
555         case nv_clk_src_gpc:
556                 gk20a_pllg_read_mnp(priv);
557                 return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV;
558         default:
559                 nv_error(clk, "invalid clock source %d\n", src);
560                 return -EINVAL;
561         }
562 }
563
564 static int
565 gk20a_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
566 {
567         struct gk20a_clock_priv *priv = (void *)clk;
568
569         return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] *
570                                          GK20A_CLK_GPC_MDIV);
571 }
572
573 static int
574 gk20a_clock_prog(struct nouveau_clock *clk)
575 {
576         struct gk20a_clock_priv *priv = (void *)clk;
577
578         return gk20a_pllg_program_mnp(priv);
579 }
580
581 static void
582 gk20a_clock_tidy(struct nouveau_clock *clk)
583 {
584 }
585
586 static int
587 gk20a_clock_fini(struct nouveau_object *object, bool suspend)
588 {
589         struct gk20a_clock_priv *priv = (void *)object;
590         int ret;
591
592         ret = nouveau_clock_fini(&priv->base, false);
593
594         gk20a_pllg_disable(priv);
595
596         return ret;
597 }
598
599 static int
600 gk20a_clock_init(struct nouveau_object *object)
601 {
602         struct gk20a_clock_priv *priv = (void *)object;
603         int ret;
604
605         nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
606
607         ret = nouveau_clock_init(&priv->base);
608         if (ret)
609                 return ret;
610
611         ret = gk20a_clock_prog(&priv->base);
612         if (ret) {
613                 nv_error(priv, "cannot initialize clock\n");
614                 return ret;
615         }
616
617         return 0;
618 }
619
620 static int
621 gk20a_clock_ctor(struct nouveau_object *parent,  struct nouveau_object *engine,
622                  struct nouveau_oclass *oclass, void *data, u32 size,
623                  struct nouveau_object **pobject)
624 {
625         struct gk20a_clock_priv *priv;
626         struct nouveau_platform_device *plat;
627         int ret;
628         int i;
629
630         /* Finish initializing the pstates */
631         for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
632                 INIT_LIST_HEAD(&gk20a_pstates[i].list);
633                 gk20a_pstates[i].pstate = i + 1;
634         }
635
636         ret = nouveau_clock_create(parent, engine, oclass, gk20a_domains,
637                         gk20a_pstates, ARRAY_SIZE(gk20a_pstates), true, &priv);
638         *pobject = nv_object(priv);
639         if (ret)
640                 return ret;
641
642         priv->params = &gk20a_pllg_params;
643
644         plat = nv_device_to_platform(nv_device(parent));
645         priv->parent_rate = clk_get_rate(plat->gpu->clk);
646         nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ);
647
648         priv->base.read = gk20a_clock_read;
649         priv->base.calc = gk20a_clock_calc;
650         priv->base.prog = gk20a_clock_prog;
651         priv->base.tidy = gk20a_clock_tidy;
652
653         return 0;
654 }
655
656 struct nouveau_oclass
657 gk20a_clock_oclass = {
658         .handle = NV_SUBDEV(CLOCK, 0xea),
659         .ofuncs = &(struct nouveau_ofuncs) {
660                 .ctor = gk20a_clock_ctor,
661                 .dtor = _nouveau_subdev_dtor,
662                 .init = gk20a_clock_init,
663                 .fini = gk20a_clock_fini,
664         },
665 };