421d301b3797a73c2345c7b4a5a219c427d2a0b9
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / nouveau / nvd0_display.c
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24
25 #include <linux/dma-mapping.h>
26
27 #include "drmP.h"
28 #include "drm_crtc_helper.h"
29
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nv50_display.h"
37
38 #define EVO_DMA_NR 9
39
40 #define EVO_MASTER  (0x00)
41 #define EVO_FLIP(c) (0x01 + (c))
42 #define EVO_OVLY(c) (0x05 + (c))
43 #define EVO_OIMM(c) (0x09 + (c))
44 #define EVO_CURS(c) (0x0d + (c))
45
46 /* offsets in shared sync bo of various structures */
47 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
48 #define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
49 #define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
50 #define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)
51
52 struct evo {
53         int idx;
54         dma_addr_t handle;
55         u32 *ptr;
56         struct {
57                 u32 offset;
58                 u16 value;
59         } sem;
60 };
61
62 struct nvd0_display {
63         struct nouveau_gpuobj *mem;
64         struct nouveau_bo *sync;
65         struct evo evo[9];
66
67         struct tasklet_struct tasklet;
68         u32 modeset;
69 };
70
71 static struct nvd0_display *
72 nvd0_display(struct drm_device *dev)
73 {
74         struct drm_nouveau_private *dev_priv = dev->dev_private;
75         return dev_priv->engine.display.priv;
76 }
77
78 static struct drm_crtc *
79 nvd0_display_crtc_get(struct drm_encoder *encoder)
80 {
81         return nouveau_encoder(encoder)->crtc;
82 }
83
84 /******************************************************************************
85  * EVO channel helpers
86  *****************************************************************************/
87 static inline int
88 evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
89 {
90         int ret = 0;
91         nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
92         nv_wr32(dev, 0x610704 + (id * 0x10), data);
93         nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
94         if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
95                 ret = -EBUSY;
96         nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
97         return ret;
98 }
99
100 static u32 *
101 evo_wait(struct drm_device *dev, int id, int nr)
102 {
103         struct nvd0_display *disp = nvd0_display(dev);
104         u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;
105
106         if (put + nr >= (PAGE_SIZE / 4)) {
107                 disp->evo[id].ptr[put] = 0x20000000;
108
109                 nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
110                 if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
111                         NV_ERROR(dev, "evo %d dma stalled\n", id);
112                         return NULL;
113                 }
114
115                 put = 0;
116         }
117
118         if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
119                 NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);
120
121         return disp->evo[id].ptr + put;
122 }
123
124 static void
125 evo_kick(u32 *push, struct drm_device *dev, int id)
126 {
127         struct nvd0_display *disp = nvd0_display(dev);
128
129         if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
130                 u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
131                 u32 *cur = disp->evo[id].ptr + curp;
132
133                 while (cur < push)
134                         NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
135                 NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
136         }
137
138         nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
139 }
140
141 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
142 #define evo_data(p,d)   *((p)++) = (d)
143
144 static int
145 evo_init_dma(struct drm_device *dev, int ch)
146 {
147         struct nvd0_display *disp = nvd0_display(dev);
148         u32 flags;
149
150         flags = 0x00000000;
151         if (ch == EVO_MASTER)
152                 flags |= 0x01000000;
153
154         nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
155         nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
156         nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
157         nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
158         nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
159         nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
160         if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
161                 NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
162                               nv_rd32(dev, 0x610490 + (ch * 0x0010)));
163                 return -EBUSY;
164         }
165
166         nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
167         nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
168         return 0;
169 }
170
171 static void
172 evo_fini_dma(struct drm_device *dev, int ch)
173 {
174         if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
175                 return;
176
177         nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
178         nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
179         nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
180         nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
181         nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
182 }
183
184 static inline void
185 evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
186 {
187         nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
188 }
189
190 static int
191 evo_init_pio(struct drm_device *dev, int ch)
192 {
193         nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
194         if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
195                 NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
196                               nv_rd32(dev, 0x610490 + (ch * 0x0010)));
197                 return -EBUSY;
198         }
199
200         nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
201         nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
202         return 0;
203 }
204
205 static void
206 evo_fini_pio(struct drm_device *dev, int ch)
207 {
208         if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
209                 return;
210
211         nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
212         nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
213         nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
214         nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
215         nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
216 }
217
218 static bool
219 evo_sync_wait(void *data)
220 {
221         return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
222 }
223
224 static int
225 evo_sync(struct drm_device *dev, int ch)
226 {
227         struct nvd0_display *disp = nvd0_display(dev);
228         u32 *push = evo_wait(dev, ch, 8);
229         if (push) {
230                 nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
231                 evo_mthd(push, 0x0084, 1);
232                 evo_data(push, 0x80000000 | EVO_MAST_NTFY);
233                 evo_mthd(push, 0x0080, 2);
234                 evo_data(push, 0x00000000);
235                 evo_data(push, 0x00000000);
236                 evo_kick(push, dev, ch);
237                 if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
238                         return 0;
239         }
240
241         return -EBUSY;
242 }
243
244 /******************************************************************************
245  * Page flipping channel
246  *****************************************************************************/
247 struct nouveau_bo *
248 nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
249 {
250         return nvd0_display(dev)->sync;
251 }
252
253 void
254 nvd0_display_flip_stop(struct drm_crtc *crtc)
255 {
256         struct nvd0_display *disp = nvd0_display(crtc->dev);
257         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
258         struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
259         u32 *push;
260
261         push = evo_wait(crtc->dev, evo->idx, 8);
262         if (push) {
263                 evo_mthd(push, 0x0084, 1);
264                 evo_data(push, 0x00000000);
265                 evo_mthd(push, 0x0094, 1);
266                 evo_data(push, 0x00000000);
267                 evo_mthd(push, 0x00c0, 1);
268                 evo_data(push, 0x00000000);
269                 evo_mthd(push, 0x0080, 1);
270                 evo_data(push, 0x00000000);
271                 evo_kick(push, crtc->dev, evo->idx);
272         }
273 }
274
275 int
276 nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
277                        struct nouveau_channel *chan, u32 swap_interval)
278 {
279         struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
280         struct nvd0_display *disp = nvd0_display(crtc->dev);
281         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
282         struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
283         u64 offset;
284         u32 *push;
285         int ret;
286
287         evo_sync(crtc->dev, EVO_MASTER);
288
289         swap_interval <<= 4;
290         if (swap_interval == 0)
291                 swap_interval |= 0x100;
292
293         push = evo_wait(crtc->dev, evo->idx, 128);
294         if (unlikely(push == NULL))
295                 return -EBUSY;
296
297         /* synchronise with the rendering channel, if necessary */
298         if (likely(chan)) {
299                 ret = RING_SPACE(chan, 10);
300                 if (ret)
301                         return ret;
302
303                 offset  = chan->dispc_vma[nv_crtc->index].offset;
304                 offset += evo->sem.offset;
305
306                 BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
307                 OUT_RING  (chan, upper_32_bits(offset));
308                 OUT_RING  (chan, lower_32_bits(offset));
309                 OUT_RING  (chan, 0xf00d0000 | evo->sem.value);
310                 OUT_RING  (chan, 0x1002);
311                 BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
312                 OUT_RING  (chan, upper_32_bits(offset));
313                 OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
314                 OUT_RING  (chan, 0x74b1e000);
315                 OUT_RING  (chan, 0x1001);
316                 FIRE_RING (chan);
317         } else {
318                 nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
319                                 0xf00d0000 | evo->sem.value);
320                 evo_sync(crtc->dev, EVO_MASTER);
321         }
322
323         /* queue the flip */
324         evo_mthd(push, 0x0100, 1);
325         evo_data(push, 0xfffe0000);
326         evo_mthd(push, 0x0084, 1);
327         evo_data(push, swap_interval);
328         if (!(swap_interval & 0x00000100)) {
329                 evo_mthd(push, 0x00e0, 1);
330                 evo_data(push, 0x40000000);
331         }
332         evo_mthd(push, 0x0088, 4);
333         evo_data(push, evo->sem.offset);
334         evo_data(push, 0xf00d0000 | evo->sem.value);
335         evo_data(push, 0x74b1e000);
336         evo_data(push, NvEvoSync);
337         evo_mthd(push, 0x00a0, 2);
338         evo_data(push, 0x00000000);
339         evo_data(push, 0x00000000);
340         evo_mthd(push, 0x00c0, 1);
341         evo_data(push, nv_fb->r_dma);
342         evo_mthd(push, 0x0110, 2);
343         evo_data(push, 0x00000000);
344         evo_data(push, 0x00000000);
345         evo_mthd(push, 0x0400, 5);
346         evo_data(push, nv_fb->nvbo->bo.offset >> 8);
347         evo_data(push, 0);
348         evo_data(push, (fb->height << 16) | fb->width);
349         evo_data(push, nv_fb->r_pitch);
350         evo_data(push, nv_fb->r_format);
351         evo_mthd(push, 0x0080, 1);
352         evo_data(push, 0x00000000);
353         evo_kick(push, crtc->dev, evo->idx);
354
355         evo->sem.offset ^= 0x10;
356         evo->sem.value++;
357         return 0;
358 }
359
360 /******************************************************************************
361  * CRTC
362  *****************************************************************************/
363 static int
364 nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
365 {
366         struct drm_device *dev = nv_crtc->base.dev;
367         struct nouveau_connector *nv_connector;
368         struct drm_connector *connector;
369         u32 *push, mode = 0x00;
370
371         nv_connector = nouveau_crtc_connector_get(nv_crtc);
372         connector = &nv_connector->base;
373         if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
374                 if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
375                         mode = DITHERING_MODE_DYNAMIC2X2;
376         } else {
377                 mode = nv_connector->dithering_mode;
378         }
379
380         if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
381                 if (connector->display_info.bpc >= 8)
382                         mode |= DITHERING_DEPTH_8BPC;
383         } else {
384                 mode |= nv_connector->dithering_depth;
385         }
386
387         push = evo_wait(dev, EVO_MASTER, 4);
388         if (push) {
389                 evo_mthd(push, 0x0490 + (nv_crtc->index * 0x300), 1);
390                 evo_data(push, mode);
391                 if (update) {
392                         evo_mthd(push, 0x0080, 1);
393                         evo_data(push, 0x00000000);
394                 }
395                 evo_kick(push, dev, EVO_MASTER);
396         }
397
398         return 0;
399 }
400
401 static int
402 nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
403 {
404         struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
405         struct drm_device *dev = nv_crtc->base.dev;
406         struct drm_crtc *crtc = &nv_crtc->base;
407         struct nouveau_connector *nv_connector;
408         int mode = DRM_MODE_SCALE_NONE;
409         u32 oX, oY, *push;
410
411         /* start off at the resolution we programmed the crtc for, this
412          * effectively handles NONE/FULL scaling
413          */
414         nv_connector = nouveau_crtc_connector_get(nv_crtc);
415         if (nv_connector && nv_connector->native_mode)
416                 mode = nv_connector->scaling_mode;
417
418         if (mode != DRM_MODE_SCALE_NONE)
419                 omode = nv_connector->native_mode;
420         else
421                 omode = umode;
422
423         oX = omode->hdisplay;
424         oY = omode->vdisplay;
425         if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
426                 oY *= 2;
427
428         /* add overscan compensation if necessary, will keep the aspect
429          * ratio the same as the backend mode unless overridden by the
430          * user setting both hborder and vborder properties.
431          */
432         if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
433                              (nv_connector->underscan == UNDERSCAN_AUTO &&
434                               nv_connector->edid &&
435                               drm_detect_hdmi_monitor(nv_connector->edid)))) {
436                 u32 bX = nv_connector->underscan_hborder;
437                 u32 bY = nv_connector->underscan_vborder;
438                 u32 aspect = (oY << 19) / oX;
439
440                 if (bX) {
441                         oX -= (bX * 2);
442                         if (bY) oY -= (bY * 2);
443                         else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
444                 } else {
445                         oX -= (oX >> 4) + 32;
446                         if (bY) oY -= (bY * 2);
447                         else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
448                 }
449         }
450
451         /* handle CENTER/ASPECT scaling, taking into account the areas
452          * removed already for overscan compensation
453          */
454         switch (mode) {
455         case DRM_MODE_SCALE_CENTER:
456                 oX = min((u32)umode->hdisplay, oX);
457                 oY = min((u32)umode->vdisplay, oY);
458                 /* fall-through */
459         case DRM_MODE_SCALE_ASPECT:
460                 if (oY < oX) {
461                         u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
462                         oX = ((oY * aspect) + (aspect / 2)) >> 19;
463                 } else {
464                         u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
465                         oY = ((oX * aspect) + (aspect / 2)) >> 19;
466                 }
467                 break;
468         default:
469                 break;
470         }
471
472         push = evo_wait(dev, EVO_MASTER, 8);
473         if (push) {
474                 evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
475                 evo_data(push, (oY << 16) | oX);
476                 evo_data(push, (oY << 16) | oX);
477                 evo_data(push, (oY << 16) | oX);
478                 evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
479                 evo_data(push, 0x00000000);
480                 evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
481                 evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
482                 evo_kick(push, dev, EVO_MASTER);
483                 if (update) {
484                         nvd0_display_flip_stop(crtc);
485                         nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
486                 }
487         }
488
489         return 0;
490 }
491
492 static int
493 nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
494                     int x, int y, bool update)
495 {
496         struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
497         u32 *push;
498
499         push = evo_wait(fb->dev, EVO_MASTER, 16);
500         if (push) {
501                 evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
502                 evo_data(push, nvfb->nvbo->bo.offset >> 8);
503                 evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
504                 evo_data(push, (fb->height << 16) | fb->width);
505                 evo_data(push, nvfb->r_pitch);
506                 evo_data(push, nvfb->r_format);
507                 evo_data(push, nvfb->r_dma);
508                 evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
509                 evo_data(push, (y << 16) | x);
510                 if (update) {
511                         evo_mthd(push, 0x0080, 1);
512                         evo_data(push, 0x00000000);
513                 }
514                 evo_kick(push, fb->dev, EVO_MASTER);
515         }
516
517         nv_crtc->fb.tile_flags = nvfb->r_dma;
518         return 0;
519 }
520
521 static void
522 nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
523 {
524         struct drm_device *dev = nv_crtc->base.dev;
525         u32 *push = evo_wait(dev, EVO_MASTER, 16);
526         if (push) {
527                 if (show) {
528                         evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
529                         evo_data(push, 0x85000000);
530                         evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
531                         evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
532                         evo_data(push, NvEvoVRAM);
533                 } else {
534                         evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
535                         evo_data(push, 0x05000000);
536                         evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
537                         evo_data(push, 0x00000000);
538                 }
539
540                 if (update) {
541                         evo_mthd(push, 0x0080, 1);
542                         evo_data(push, 0x00000000);
543                 }
544
545                 evo_kick(push, dev, EVO_MASTER);
546         }
547 }
548
549 static void
550 nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
551 {
552 }
553
554 static void
555 nvd0_crtc_prepare(struct drm_crtc *crtc)
556 {
557         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
558         u32 *push;
559
560         nvd0_display_flip_stop(crtc);
561
562         push = evo_wait(crtc->dev, EVO_MASTER, 2);
563         if (push) {
564                 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
565                 evo_data(push, 0x00000000);
566                 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
567                 evo_data(push, 0x03000000);
568                 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
569                 evo_data(push, 0x00000000);
570                 evo_kick(push, crtc->dev, EVO_MASTER);
571         }
572
573         nvd0_crtc_cursor_show(nv_crtc, false, false);
574 }
575
576 static void
577 nvd0_crtc_commit(struct drm_crtc *crtc)
578 {
579         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
580         u32 *push;
581
582         push = evo_wait(crtc->dev, EVO_MASTER, 32);
583         if (push) {
584                 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
585                 evo_data(push, nv_crtc->fb.tile_flags);
586                 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
587                 evo_data(push, 0x83000000);
588                 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
589                 evo_data(push, 0x00000000);
590                 evo_data(push, 0x00000000);
591                 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
592                 evo_data(push, NvEvoVRAM);
593                 evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
594                 evo_data(push, 0xffffff00);
595                 evo_kick(push, crtc->dev, EVO_MASTER);
596         }
597
598         nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
599         nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
600 }
601
602 static bool
603 nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
604                      struct drm_display_mode *adjusted_mode)
605 {
606         return true;
607 }
608
609 static int
610 nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
611 {
612         struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
613         int ret;
614
615         ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
616         if (ret)
617                 return ret;
618
619         if (old_fb) {
620                 nvfb = nouveau_framebuffer(old_fb);
621                 nouveau_bo_unpin(nvfb->nvbo);
622         }
623
624         return 0;
625 }
626
627 static int
628 nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
629                    struct drm_display_mode *mode, int x, int y,
630                    struct drm_framebuffer *old_fb)
631 {
632         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
633         struct nouveau_connector *nv_connector;
634         u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
635         u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
636         u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
637         u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
638         u32 vblan2e = 0, vblan2s = 1;
639         u32 *push;
640         int ret;
641
642         hactive = mode->htotal;
643         hsynce  = mode->hsync_end - mode->hsync_start - 1;
644         hbackp  = mode->htotal - mode->hsync_end;
645         hblanke = hsynce + hbackp;
646         hfrontp = mode->hsync_start - mode->hdisplay;
647         hblanks = mode->htotal - hfrontp - 1;
648
649         vactive = mode->vtotal * vscan / ilace;
650         vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
651         vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
652         vblanke = vsynce + vbackp;
653         vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
654         vblanks = vactive - vfrontp - 1;
655         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
656                 vblan2e = vactive + vsynce + vbackp;
657                 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
658                 vactive = (vactive * 2) + 1;
659         }
660
661         ret = nvd0_crtc_swap_fbs(crtc, old_fb);
662         if (ret)
663                 return ret;
664
665         push = evo_wait(crtc->dev, EVO_MASTER, 64);
666         if (push) {
667                 evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
668                 evo_data(push, 0x00000000);
669                 evo_data(push, (vactive << 16) | hactive);
670                 evo_data(push, ( vsynce << 16) | hsynce);
671                 evo_data(push, (vblanke << 16) | hblanke);
672                 evo_data(push, (vblanks << 16) | hblanks);
673                 evo_data(push, (vblan2e << 16) | vblan2s);
674                 evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
675                 evo_data(push, 0x00000000); /* ??? */
676                 evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
677                 evo_data(push, mode->clock * 1000);
678                 evo_data(push, 0x00200000); /* ??? */
679                 evo_data(push, mode->clock * 1000);
680                 evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
681                 evo_data(push, 0x00000311);
682                 evo_data(push, 0x00000100);
683                 evo_kick(push, crtc->dev, EVO_MASTER);
684         }
685
686         nv_connector = nouveau_crtc_connector_get(nv_crtc);
687         nvd0_crtc_set_dither(nv_crtc, false);
688         nvd0_crtc_set_scale(nv_crtc, false);
689         nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
690         return 0;
691 }
692
693 static int
694 nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
695                         struct drm_framebuffer *old_fb)
696 {
697         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
698         int ret;
699
700         if (!crtc->fb) {
701                 NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
702                 return 0;
703         }
704
705         ret = nvd0_crtc_swap_fbs(crtc, old_fb);
706         if (ret)
707                 return ret;
708
709         nvd0_display_flip_stop(crtc);
710         nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
711         nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
712         return 0;
713 }
714
715 static int
716 nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
717                                struct drm_framebuffer *fb, int x, int y,
718                                enum mode_set_atomic state)
719 {
720         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
721         nvd0_display_flip_stop(crtc);
722         nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
723         return 0;
724 }
725
726 static void
727 nvd0_crtc_lut_load(struct drm_crtc *crtc)
728 {
729         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
730         void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
731         int i;
732
733         for (i = 0; i < 256; i++) {
734                 writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
735                 writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
736                 writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
737         }
738 }
739
740 static int
741 nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
742                      uint32_t handle, uint32_t width, uint32_t height)
743 {
744         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
745         struct drm_device *dev = crtc->dev;
746         struct drm_gem_object *gem;
747         struct nouveau_bo *nvbo;
748         bool visible = (handle != 0);
749         int i, ret = 0;
750
751         if (visible) {
752                 if (width != 64 || height != 64)
753                         return -EINVAL;
754
755                 gem = drm_gem_object_lookup(dev, file_priv, handle);
756                 if (unlikely(!gem))
757                         return -ENOENT;
758                 nvbo = nouveau_gem_object(gem);
759
760                 ret = nouveau_bo_map(nvbo);
761                 if (ret == 0) {
762                         for (i = 0; i < 64 * 64; i++) {
763                                 u32 v = nouveau_bo_rd32(nvbo, i);
764                                 nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
765                         }
766                         nouveau_bo_unmap(nvbo);
767                 }
768
769                 drm_gem_object_unreference_unlocked(gem);
770         }
771
772         if (visible != nv_crtc->cursor.visible) {
773                 nvd0_crtc_cursor_show(nv_crtc, visible, true);
774                 nv_crtc->cursor.visible = visible;
775         }
776
777         return ret;
778 }
779
780 static int
781 nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
782 {
783         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
784         int ch = EVO_CURS(nv_crtc->index);
785
786         evo_piow(crtc->dev, ch, 0x0084, (y << 16) | x);
787         evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
788         return 0;
789 }
790
791 static void
792 nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
793                     uint32_t start, uint32_t size)
794 {
795         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
796         u32 end = max(start + size, (u32)256);
797         u32 i;
798
799         for (i = start; i < end; i++) {
800                 nv_crtc->lut.r[i] = r[i];
801                 nv_crtc->lut.g[i] = g[i];
802                 nv_crtc->lut.b[i] = b[i];
803         }
804
805         nvd0_crtc_lut_load(crtc);
806 }
807
808 static void
809 nvd0_crtc_destroy(struct drm_crtc *crtc)
810 {
811         struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
812         nouveau_bo_unmap(nv_crtc->cursor.nvbo);
813         nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
814         nouveau_bo_unmap(nv_crtc->lut.nvbo);
815         nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
816         drm_crtc_cleanup(crtc);
817         kfree(crtc);
818 }
819
820 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
821         .dpms = nvd0_crtc_dpms,
822         .prepare = nvd0_crtc_prepare,
823         .commit = nvd0_crtc_commit,
824         .mode_fixup = nvd0_crtc_mode_fixup,
825         .mode_set = nvd0_crtc_mode_set,
826         .mode_set_base = nvd0_crtc_mode_set_base,
827         .mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
828         .load_lut = nvd0_crtc_lut_load,
829 };
830
831 static const struct drm_crtc_funcs nvd0_crtc_func = {
832         .cursor_set = nvd0_crtc_cursor_set,
833         .cursor_move = nvd0_crtc_cursor_move,
834         .gamma_set = nvd0_crtc_gamma_set,
835         .set_config = drm_crtc_helper_set_config,
836         .destroy = nvd0_crtc_destroy,
837         .page_flip = nouveau_crtc_page_flip,
838 };
839
840 static void
841 nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
842 {
843 }
844
845 static void
846 nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
847 {
848 }
849
850 static int
851 nvd0_crtc_create(struct drm_device *dev, int index)
852 {
853         struct nouveau_crtc *nv_crtc;
854         struct drm_crtc *crtc;
855         int ret, i;
856
857         nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
858         if (!nv_crtc)
859                 return -ENOMEM;
860
861         nv_crtc->index = index;
862         nv_crtc->set_dither = nvd0_crtc_set_dither;
863         nv_crtc->set_scale = nvd0_crtc_set_scale;
864         nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
865         nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
866         for (i = 0; i < 256; i++) {
867                 nv_crtc->lut.r[i] = i << 8;
868                 nv_crtc->lut.g[i] = i << 8;
869                 nv_crtc->lut.b[i] = i << 8;
870         }
871
872         crtc = &nv_crtc->base;
873         drm_crtc_init(dev, crtc, &nvd0_crtc_func);
874         drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
875         drm_mode_crtc_set_gamma_size(crtc, 256);
876
877         ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
878                              0, 0x0000, &nv_crtc->cursor.nvbo);
879         if (!ret) {
880                 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
881                 if (!ret)
882                         ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
883                 if (ret)
884                         nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
885         }
886
887         if (ret)
888                 goto out;
889
890         ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
891                              0, 0x0000, &nv_crtc->lut.nvbo);
892         if (!ret) {
893                 ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
894                 if (!ret)
895                         ret = nouveau_bo_map(nv_crtc->lut.nvbo);
896                 if (ret)
897                         nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
898         }
899
900         if (ret)
901                 goto out;
902
903         nvd0_crtc_lut_load(crtc);
904
905 out:
906         if (ret)
907                 nvd0_crtc_destroy(crtc);
908         return ret;
909 }
910
911 /******************************************************************************
912  * DAC
913  *****************************************************************************/
914 static void
915 nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
916 {
917         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
918         struct drm_device *dev = encoder->dev;
919         int or = nv_encoder->or;
920         u32 dpms_ctrl;
921
922         dpms_ctrl = 0x80000000;
923         if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
924                 dpms_ctrl |= 0x00000001;
925         if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
926                 dpms_ctrl |= 0x00000004;
927
928         nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
929         nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
930         nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
931 }
932
933 static bool
934 nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
935                     struct drm_display_mode *adjusted_mode)
936 {
937         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
938         struct nouveau_connector *nv_connector;
939
940         nv_connector = nouveau_encoder_connector_get(nv_encoder);
941         if (nv_connector && nv_connector->native_mode) {
942                 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
943                         int id = adjusted_mode->base.id;
944                         *adjusted_mode = *nv_connector->native_mode;
945                         adjusted_mode->base.id = id;
946                 }
947         }
948
949         return true;
950 }
951
952 static void
953 nvd0_dac_commit(struct drm_encoder *encoder)
954 {
955 }
956
957 static void
958 nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
959                   struct drm_display_mode *adjusted_mode)
960 {
961         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
962         struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
963         u32 syncs, magic, *push;
964
965         syncs = 0x00000001;
966         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
967                 syncs |= 0x00000008;
968         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
969                 syncs |= 0x00000010;
970
971         magic = 0x31ec6000 | (nv_crtc->index << 25);
972         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
973                 magic |= 0x00000001;
974
975         nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
976
977         push = evo_wait(encoder->dev, EVO_MASTER, 8);
978         if (push) {
979                 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
980                 evo_data(push, syncs);
981                 evo_data(push, magic);
982                 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2);
983                 evo_data(push, 1 << nv_crtc->index);
984                 evo_data(push, 0x00ff);
985                 evo_kick(push, encoder->dev, EVO_MASTER);
986         }
987
988         nv_encoder->crtc = encoder->crtc;
989 }
990
991 static void
992 nvd0_dac_disconnect(struct drm_encoder *encoder)
993 {
994         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
995         struct drm_device *dev = encoder->dev;
996         u32 *push;
997
998         if (nv_encoder->crtc) {
999                 nvd0_crtc_prepare(nv_encoder->crtc);
1000
1001                 push = evo_wait(dev, EVO_MASTER, 4);
1002                 if (push) {
1003                         evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
1004                         evo_data(push, 0x00000000);
1005                         evo_mthd(push, 0x0080, 1);
1006                         evo_data(push, 0x00000000);
1007                         evo_kick(push, dev, EVO_MASTER);
1008                 }
1009
1010                 nv_encoder->crtc = NULL;
1011         }
1012 }
1013
1014 static enum drm_connector_status
1015 nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1016 {
1017         enum drm_connector_status status = connector_status_disconnected;
1018         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1019         struct drm_device *dev = encoder->dev;
1020         int or = nv_encoder->or;
1021         u32 load;
1022
1023         nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
1024         udelay(9500);
1025         nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);
1026
1027         load = nv_rd32(dev, 0x61a00c + (or * 0x800));
1028         if ((load & 0x38000000) == 0x38000000)
1029                 status = connector_status_connected;
1030
1031         nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
1032         return status;
1033 }
1034
1035 static void
1036 nvd0_dac_destroy(struct drm_encoder *encoder)
1037 {
1038         drm_encoder_cleanup(encoder);
1039         kfree(encoder);
1040 }
1041
1042 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
1043         .dpms = nvd0_dac_dpms,
1044         .mode_fixup = nvd0_dac_mode_fixup,
1045         .prepare = nvd0_dac_disconnect,
1046         .commit = nvd0_dac_commit,
1047         .mode_set = nvd0_dac_mode_set,
1048         .disable = nvd0_dac_disconnect,
1049         .get_crtc = nvd0_display_crtc_get,
1050         .detect = nvd0_dac_detect
1051 };
1052
1053 static const struct drm_encoder_funcs nvd0_dac_func = {
1054         .destroy = nvd0_dac_destroy,
1055 };
1056
1057 static int
1058 nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1059 {
1060         struct drm_device *dev = connector->dev;
1061         struct nouveau_encoder *nv_encoder;
1062         struct drm_encoder *encoder;
1063
1064         nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1065         if (!nv_encoder)
1066                 return -ENOMEM;
1067         nv_encoder->dcb = dcbe;
1068         nv_encoder->or = ffs(dcbe->or) - 1;
1069
1070         encoder = to_drm_encoder(nv_encoder);
1071         encoder->possible_crtcs = dcbe->heads;
1072         encoder->possible_clones = 0;
1073         drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
1074         drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
1075
1076         drm_mode_connector_attach_encoder(connector, encoder);
1077         return 0;
1078 }
1079
1080 /******************************************************************************
1081  * Audio
1082  *****************************************************************************/
1083 static void
1084 nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1085 {
1086         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1087         struct nouveau_connector *nv_connector;
1088         struct drm_device *dev = encoder->dev;
1089         int i, or = nv_encoder->or * 0x30;
1090
1091         nv_connector = nouveau_encoder_connector_get(nv_encoder);
1092         if (!drm_detect_monitor_audio(nv_connector->edid))
1093                 return;
1094
1095         nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);
1096
1097         drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1098         if (nv_connector->base.eld[0]) {
1099                 u8 *eld = nv_connector->base.eld;
1100
1101                 for (i = 0; i < eld[2] * 4; i++)
1102                         nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
1103                 for (i = eld[2] * 4; i < 0x60; i++)
1104                         nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);
1105
1106                 nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
1107         }
1108 }
1109
1110 static void
1111 nvd0_audio_disconnect(struct drm_encoder *encoder)
1112 {
1113         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1114         struct drm_device *dev = encoder->dev;
1115         int or = nv_encoder->or * 0x30;
1116
1117         nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
1118 }
1119
1120 /******************************************************************************
1121  * HDMI
1122  *****************************************************************************/
1123 static void
1124 nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1125 {
1126         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1127         struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1128         struct nouveau_connector *nv_connector;
1129         struct drm_device *dev = encoder->dev;
1130         int head = nv_crtc->index * 0x800;
1131         u32 rekey = 56; /* binary driver, and tegra constant */
1132         u32 max_ac_packet;
1133
1134         nv_connector = nouveau_encoder_connector_get(nv_encoder);
1135         if (!drm_detect_hdmi_monitor(nv_connector->edid))
1136                 return;
1137
1138         max_ac_packet  = mode->htotal - mode->hdisplay;
1139         max_ac_packet -= rekey;
1140         max_ac_packet -= 18; /* constant from tegra */
1141         max_ac_packet /= 32;
1142
1143         /* AVI InfoFrame */
1144         nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1145         nv_wr32(dev, 0x61671c + head, 0x000d0282);
1146         nv_wr32(dev, 0x616720 + head, 0x0000006f);
1147         nv_wr32(dev, 0x616724 + head, 0x00000000);
1148         nv_wr32(dev, 0x616728 + head, 0x00000000);
1149         nv_wr32(dev, 0x61672c + head, 0x00000000);
1150         nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);
1151
1152         /* ??? InfoFrame? */
1153         nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1154         nv_wr32(dev, 0x6167ac + head, 0x00000010);
1155         nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);
1156
1157         /* HDMI_CTRL */
1158         nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
1159                                                   max_ac_packet << 16);
1160
1161         /* NFI, audio doesn't work without it though.. */
1162         nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);
1163
1164         nvd0_audio_mode_set(encoder, mode);
1165 }
1166
1167 static void
1168 nvd0_hdmi_disconnect(struct drm_encoder *encoder)
1169 {
1170         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1171         struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1172         struct drm_device *dev = encoder->dev;
1173         int head = nv_crtc->index * 0x800;
1174
1175         nvd0_audio_disconnect(encoder);
1176
1177         nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
1178         nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1179         nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1180 }
1181
1182 /******************************************************************************
1183  * SOR
1184  *****************************************************************************/
1185 static inline u32
1186 nvd0_sor_dp_lane_map(struct drm_device *dev, struct dcb_entry *dcb, u8 lane)
1187 {
1188         static const u8 nvd0[] = { 16, 8, 0, 24 };
1189         return nvd0[lane];
1190 }
1191
1192 static void
1193 nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_entry *dcb, u8 pattern)
1194 {
1195         const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1196         const u32 loff = (or * 0x800) + (link * 0x80);
1197         nv_mask(dev, 0x61c110 + loff, 0x0f0f0f0f, 0x01010101 * pattern);
1198 }
1199
1200 static void
1201 nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_entry *dcb,
1202                       u8 lane, u8 swing, u8 preem)
1203 {
1204         const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1205         const u32 loff = (or * 0x800) + (link * 0x80);
1206         u32 shift = nvd0_sor_dp_lane_map(dev, dcb, lane);
1207         u32 mask = 0x000000ff << shift;
1208         u8 *table, *entry, *config = NULL;
1209
1210         switch (swing) {
1211         case 0: preem += 0; break;
1212         case 1: preem += 4; break;
1213         case 2: preem += 7; break;
1214         case 3: preem += 9; break;
1215         }
1216
1217         table = nouveau_dp_bios_data(dev, dcb, &entry);
1218         if (table) {
1219                 if (table[0] == 0x30) {
1220                         config  = entry + table[4];
1221                         config += table[5] * preem;
1222                 }
1223         }
1224
1225         if (!config) {
1226                 NV_ERROR(dev, "PDISP: unsupported DP table for chipset\n");
1227                 return;
1228         }
1229
1230         nv_mask(dev, 0x61c118 + loff, mask, config[1] << shift);
1231         nv_mask(dev, 0x61c120 + loff, mask, config[2] << shift);
1232         nv_mask(dev, 0x61c130 + loff, 0x0000ff00, config[3] << 8);
1233         nv_mask(dev, 0x61c13c + loff, 0x00000000, 0x00000000);
1234 }
1235
1236 static void
1237 nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_entry *dcb, int crtc,
1238                      int link_nr, u32 link_bw, bool enhframe)
1239 {
1240         const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1241         const u32 loff = (or * 0x800) + (link * 0x80);
1242         const u32 soff = (or * 0x800);
1243         u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & ~0x001f4000;
1244         u32 clksor = nv_rd32(dev, 0x612300 + soff) & ~0x007c0000;
1245         u32 script = 0x0000, lane_mask = 0;
1246         u8 *table, *entry;
1247         int i;
1248
1249         link_bw /= 27000;
1250
1251         table = nouveau_dp_bios_data(dev, dcb, &entry);
1252         if (table) {
1253                 if      (table[0] == 0x30) entry = ROMPTR(dev, entry[10]);
1254                 else                       entry = NULL;
1255
1256                 while (entry) {
1257                         if (entry[0] >= link_bw)
1258                                 break;
1259                         entry += 3;
1260                 }
1261
1262                 nouveau_bios_run_init_table(dev, script, dcb, crtc);
1263         }
1264
1265         clksor |= link_bw << 18;
1266         dpctrl |= ((1 << link_nr) - 1) << 16;
1267         if (enhframe)
1268                 dpctrl |= 0x00004000;
1269
1270         for (i = 0; i < link_nr; i++)
1271                 lane_mask |= 1 << (nvd0_sor_dp_lane_map(dev, dcb, i) >> 3);
1272
1273         nv_wr32(dev, 0x612300 + soff, clksor);
1274         nv_wr32(dev, 0x61c10c + loff, dpctrl);
1275         nv_mask(dev, 0x61c130 + loff, 0x0000000f, lane_mask);
1276 }
1277
1278 static void
1279 nvd0_sor_dp_link_get(struct drm_device *dev, struct dcb_entry *dcb,
1280                      u32 *link_nr, u32 *link_bw)
1281 {
1282         const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1283         const u32 loff = (or * 0x800) + (link * 0x80);
1284         const u32 soff = (or * 0x800);
1285         u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & 0x000f0000;
1286         u32 clksor = nv_rd32(dev, 0x612300 + soff);
1287
1288         if      (dpctrl > 0x00030000) *link_nr = 4;
1289         else if (dpctrl > 0x00010000) *link_nr = 2;
1290         else                          *link_nr = 1;
1291
1292         *link_bw  = (clksor & 0x007c0000) >> 18;
1293         *link_bw *= 27000;
1294 }
1295
1296 static void
1297 nvd0_sor_dp_calc_tu(struct drm_device *dev, struct dcb_entry *dcb,
1298                     u32 crtc, u32 datarate)
1299 {
1300         const u32 symbol = 100000;
1301         const u32 TU = 64;
1302         u32 link_nr, link_bw;
1303         u64 ratio, value;
1304
1305         nvd0_sor_dp_link_get(dev, dcb, &link_nr, &link_bw);
1306
1307         ratio  = datarate;
1308         ratio *= symbol;
1309         do_div(ratio, link_nr * link_bw);
1310
1311         value  = (symbol - ratio) * TU;
1312         value *= ratio;
1313         do_div(value, symbol);
1314         do_div(value, symbol);
1315
1316         value += 5;
1317         value |= 0x08000000;
1318
1319         nv_wr32(dev, 0x616610 + (crtc * 0x800), value);
1320 }
1321
1322 static void
1323 nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
1324 {
1325         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1326         struct drm_device *dev = encoder->dev;
1327         struct drm_encoder *partner;
1328         int or = nv_encoder->or;
1329         u32 dpms_ctrl;
1330
1331         nv_encoder->last_dpms = mode;
1332
1333         list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1334                 struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1335
1336                 if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1337                         continue;
1338
1339                 if (nv_partner != nv_encoder &&
1340                     nv_partner->dcb->or == nv_encoder->dcb->or) {
1341                         if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1342                                 return;
1343                         break;
1344                 }
1345         }
1346
1347         dpms_ctrl  = (mode == DRM_MODE_DPMS_ON);
1348         dpms_ctrl |= 0x80000000;
1349
1350         nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1351         nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
1352         nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1353         nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1354
1355         if (nv_encoder->dcb->type == OUTPUT_DP) {
1356                 struct dp_train_func func = {
1357                         .link_set = nvd0_sor_dp_link_set,
1358                         .train_set = nvd0_sor_dp_train_set,
1359                         .train_adj = nvd0_sor_dp_train_adj
1360                 };
1361
1362                 nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
1363         }
1364 }
1365
1366 static bool
1367 nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
1368                     struct drm_display_mode *adjusted_mode)
1369 {
1370         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1371         struct nouveau_connector *nv_connector;
1372
1373         nv_connector = nouveau_encoder_connector_get(nv_encoder);
1374         if (nv_connector && nv_connector->native_mode) {
1375                 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1376                         int id = adjusted_mode->base.id;
1377                         *adjusted_mode = *nv_connector->native_mode;
1378                         adjusted_mode->base.id = id;
1379                 }
1380         }
1381
1382         return true;
1383 }
1384
1385 static void
1386 nvd0_sor_disconnect(struct drm_encoder *encoder)
1387 {
1388         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1389         struct drm_device *dev = encoder->dev;
1390         u32 *push;
1391
1392         if (nv_encoder->crtc) {
1393                 nvd0_crtc_prepare(nv_encoder->crtc);
1394
1395                 push = evo_wait(dev, EVO_MASTER, 4);
1396                 if (push) {
1397                         evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
1398                         evo_data(push, 0x00000000);
1399                         evo_mthd(push, 0x0080, 1);
1400                         evo_data(push, 0x00000000);
1401                         evo_kick(push, dev, EVO_MASTER);
1402                 }
1403
1404                 nvd0_hdmi_disconnect(encoder);
1405
1406                 nv_encoder->crtc = NULL;
1407                 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1408         }
1409 }
1410
1411 static void
1412 nvd0_sor_prepare(struct drm_encoder *encoder)
1413 {
1414         nvd0_sor_disconnect(encoder);
1415         if (nouveau_encoder(encoder)->dcb->type == OUTPUT_DP)
1416                 evo_sync(encoder->dev, EVO_MASTER);
1417 }
1418
1419 static void
1420 nvd0_sor_commit(struct drm_encoder *encoder)
1421 {
1422 }
1423
1424 static void
1425 nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1426                   struct drm_display_mode *mode)
1427 {
1428         struct drm_device *dev = encoder->dev;
1429         struct drm_nouveau_private *dev_priv = dev->dev_private;
1430         struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1431         struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1432         struct nouveau_connector *nv_connector;
1433         struct nvbios *bios = &dev_priv->vbios;
1434         u32 mode_ctrl = (1 << nv_crtc->index);
1435         u32 syncs, magic, *push;
1436         u32 or_config;
1437
1438         syncs = 0x00000001;
1439         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1440                 syncs |= 0x00000008;
1441         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1442                 syncs |= 0x00000010;
1443
1444         magic = 0x31ec6000 | (nv_crtc->index << 25);
1445         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1446                 magic |= 0x00000001;
1447
1448         nv_connector = nouveau_encoder_connector_get(nv_encoder);
1449         switch (nv_encoder->dcb->type) {
1450         case OUTPUT_TMDS:
1451                 if (nv_encoder->dcb->sorconf.link & 1) {
1452                         if (mode->clock < 165000)
1453                                 mode_ctrl |= 0x00000100;
1454                         else
1455                                 mode_ctrl |= 0x00000500;
1456                 } else {
1457                         mode_ctrl |= 0x00000200;
1458                 }
1459
1460                 or_config = (mode_ctrl & 0x00000f00) >> 8;
1461                 if (mode->clock >= 165000)
1462                         or_config |= 0x0100;
1463
1464                 nvd0_hdmi_mode_set(encoder, mode);
1465                 break;
1466         case OUTPUT_LVDS:
1467                 or_config = (mode_ctrl & 0x00000f00) >> 8;
1468                 if (bios->fp_no_ddc) {
1469                         if (bios->fp.dual_link)
1470                                 or_config |= 0x0100;
1471                         if (bios->fp.if_is_24bit)
1472                                 or_config |= 0x0200;
1473                 } else {
1474                         if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1475                                 if (((u8 *)nv_connector->edid)[121] == 2)
1476                                         or_config |= 0x0100;
1477                         } else
1478                         if (mode->clock >= bios->fp.duallink_transition_clk) {
1479                                 or_config |= 0x0100;
1480                         }
1481
1482                         if (or_config & 0x0100) {
1483                                 if (bios->fp.strapless_is_24bit & 2)
1484                                         or_config |= 0x0200;
1485                         } else {
1486                                 if (bios->fp.strapless_is_24bit & 1)
1487                                         or_config |= 0x0200;
1488                         }
1489
1490                         if (nv_connector->base.display_info.bpc == 8)
1491                                 or_config |= 0x0200;
1492
1493                 }
1494                 break;
1495         case OUTPUT_DP:
1496                 if (nv_connector->base.display_info.bpc == 6) {
1497                         nv_encoder->dp.datarate = mode->clock * 18 / 8;
1498                         syncs |= 0x00000140;
1499                 } else {
1500                         nv_encoder->dp.datarate = mode->clock * 24 / 8;
1501                         syncs |= 0x00000180;
1502                 }
1503
1504                 if (nv_encoder->dcb->sorconf.link & 1)
1505                         mode_ctrl |= 0x00000800;
1506                 else
1507                         mode_ctrl |= 0x00000900;
1508
1509                 or_config = (mode_ctrl & 0x00000f00) >> 8;
1510                 break;
1511         default:
1512                 BUG_ON(1);
1513                 break;
1514         }
1515
1516         nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1517
1518         if (nv_encoder->dcb->type == OUTPUT_DP) {
1519                 nvd0_sor_dp_calc_tu(dev, nv_encoder->dcb, nv_crtc->index,
1520                                          nv_encoder->dp.datarate);
1521         }
1522
1523         push = evo_wait(dev, EVO_MASTER, 8);
1524         if (push) {
1525                 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1526                 evo_data(push, syncs);
1527                 evo_data(push, magic);
1528                 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2);
1529                 evo_data(push, mode_ctrl);
1530                 evo_data(push, or_config);
1531                 evo_kick(push, dev, EVO_MASTER);
1532         }
1533
1534         nv_encoder->crtc = encoder->crtc;
1535 }
1536
1537 static void
1538 nvd0_sor_destroy(struct drm_encoder *encoder)
1539 {
1540         drm_encoder_cleanup(encoder);
1541         kfree(encoder);
1542 }
1543
1544 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
1545         .dpms = nvd0_sor_dpms,
1546         .mode_fixup = nvd0_sor_mode_fixup,
1547         .prepare = nvd0_sor_prepare,
1548         .commit = nvd0_sor_commit,
1549         .mode_set = nvd0_sor_mode_set,
1550         .disable = nvd0_sor_disconnect,
1551         .get_crtc = nvd0_display_crtc_get,
1552 };
1553
1554 static const struct drm_encoder_funcs nvd0_sor_func = {
1555         .destroy = nvd0_sor_destroy,
1556 };
1557
1558 static int
1559 nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1560 {
1561         struct drm_device *dev = connector->dev;
1562         struct nouveau_encoder *nv_encoder;
1563         struct drm_encoder *encoder;
1564
1565         nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1566         if (!nv_encoder)
1567                 return -ENOMEM;
1568         nv_encoder->dcb = dcbe;
1569         nv_encoder->or = ffs(dcbe->or) - 1;
1570         nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1571
1572         encoder = to_drm_encoder(nv_encoder);
1573         encoder->possible_crtcs = dcbe->heads;
1574         encoder->possible_clones = 0;
1575         drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
1576         drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
1577
1578         drm_mode_connector_attach_encoder(connector, encoder);
1579         return 0;
1580 }
1581
1582 /******************************************************************************
1583  * IRQ
1584  *****************************************************************************/
1585 static struct dcb_entry *
1586 lookup_dcb(struct drm_device *dev, int id, u32 mc)
1587 {
1588         struct drm_nouveau_private *dev_priv = dev->dev_private;
1589         int type, or, i, link = -1;
1590
1591         if (id < 4) {
1592                 type = OUTPUT_ANALOG;
1593                 or   = id;
1594         } else {
1595                 switch (mc & 0x00000f00) {
1596                 case 0x00000000: link = 0; type = OUTPUT_LVDS; break;
1597                 case 0x00000100: link = 0; type = OUTPUT_TMDS; break;
1598                 case 0x00000200: link = 1; type = OUTPUT_TMDS; break;
1599                 case 0x00000500: link = 0; type = OUTPUT_TMDS; break;
1600                 case 0x00000800: link = 0; type = OUTPUT_DP; break;
1601                 case 0x00000900: link = 1; type = OUTPUT_DP; break;
1602                 default:
1603                         NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
1604                         return NULL;
1605                 }
1606
1607                 or = id - 4;
1608         }
1609
1610         for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
1611                 struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
1612                 if (dcb->type == type && (dcb->or & (1 << or)) &&
1613                     (link < 0 || link == !(dcb->sorconf.link & 1)))
1614                         return dcb;
1615         }
1616
1617         NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1618         return NULL;
1619 }
1620
1621 static void
1622 nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1623 {
1624         struct dcb_entry *dcb;
1625         int i;
1626
1627         for (i = 0; mask && i < 8; i++) {
1628                 u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1629                 if (!(mcc & (1 << crtc)))
1630                         continue;
1631
1632                 dcb = lookup_dcb(dev, i, mcc);
1633                 if (!dcb)
1634                         continue;
1635
1636                 nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1637         }
1638
1639         nv_wr32(dev, 0x6101d4, 0x00000000);
1640         nv_wr32(dev, 0x6109d4, 0x00000000);
1641         nv_wr32(dev, 0x6101d0, 0x80000000);
1642 }
1643
1644 static void
1645 nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1646 {
1647         struct dcb_entry *dcb;
1648         u32 or, tmp, pclk;
1649         int i;
1650
1651         for (i = 0; mask && i < 8; i++) {
1652                 u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1653                 if (!(mcc & (1 << crtc)))
1654                         continue;
1655
1656                 dcb = lookup_dcb(dev, i, mcc);
1657                 if (!dcb)
1658                         continue;
1659
1660                 nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1661         }
1662
1663         pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1664         NV_DEBUG_KMS(dev, "PDISP: crtc %d pclk %d mask 0x%08x\n",
1665                           crtc, pclk, mask);
1666         if (pclk && (mask & 0x00010000)) {
1667                 nv50_crtc_set_clock(dev, crtc, pclk);
1668         }
1669
1670         for (i = 0; mask && i < 8; i++) {
1671                 u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1672                 u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1673                 if (!(mcp & (1 << crtc)))
1674                         continue;
1675
1676                 dcb = lookup_dcb(dev, i, mcp);
1677                 if (!dcb)
1678                         continue;
1679                 or = ffs(dcb->or) - 1;
1680
1681                 nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);
1682
1683                 nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
1684                 switch (dcb->type) {
1685                 case OUTPUT_ANALOG:
1686                         nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
1687                         break;
1688                 case OUTPUT_TMDS:
1689                 case OUTPUT_LVDS:
1690                 case OUTPUT_DP:
1691                         if (cfg & 0x00000100)
1692                                 tmp = 0x00000101;
1693                         else
1694                                 tmp = 0x00000000;
1695
1696                         nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
1697                         break;
1698                 default:
1699                         break;
1700                 }
1701
1702                 break;
1703         }
1704
1705         nv_wr32(dev, 0x6101d4, 0x00000000);
1706         nv_wr32(dev, 0x6109d4, 0x00000000);
1707         nv_wr32(dev, 0x6101d0, 0x80000000);
1708 }
1709
1710 static void
1711 nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1712 {
1713         struct dcb_entry *dcb;
1714         int pclk, i;
1715
1716         pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1717
1718         for (i = 0; mask && i < 8; i++) {
1719                 u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1720                 u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1721                 if (!(mcp & (1 << crtc)))
1722                         continue;
1723
1724                 dcb = lookup_dcb(dev, i, mcp);
1725                 if (!dcb)
1726                         continue;
1727
1728                 nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
1729         }
1730
1731         nv_wr32(dev, 0x6101d4, 0x00000000);
1732         nv_wr32(dev, 0x6109d4, 0x00000000);
1733         nv_wr32(dev, 0x6101d0, 0x80000000);
1734 }
1735
1736 static void
1737 nvd0_display_bh(unsigned long data)
1738 {
1739         struct drm_device *dev = (struct drm_device *)data;
1740         struct nvd0_display *disp = nvd0_display(dev);
1741         u32 mask = 0, crtc = ~0;
1742         int i;
1743
1744         if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
1745                 NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
1746                 NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
1747                          nv_rd32(dev, 0x6101d0),
1748                          nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
1749                 for (i = 0; i < 8; i++) {
1750                         NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
1751                                 i < 4 ? "DAC" : "SOR", i,
1752                                 nv_rd32(dev, 0x640180 + (i * 0x20)),
1753                                 nv_rd32(dev, 0x660180 + (i * 0x20)));
1754                 }
1755         }
1756
1757         while (!mask && ++crtc < dev->mode_config.num_crtc)
1758                 mask = nv_rd32(dev, 0x6101d4 + (crtc * 0x800));
1759
1760         if (disp->modeset & 0x00000001)
1761                 nvd0_display_unk1_handler(dev, crtc, mask);
1762         if (disp->modeset & 0x00000002)
1763                 nvd0_display_unk2_handler(dev, crtc, mask);
1764         if (disp->modeset & 0x00000004)
1765                 nvd0_display_unk4_handler(dev, crtc, mask);
1766 }
1767
1768 static void
1769 nvd0_display_intr(struct drm_device *dev)
1770 {
1771         struct nvd0_display *disp = nvd0_display(dev);
1772         u32 intr = nv_rd32(dev, 0x610088);
1773         int i;
1774
1775         if (intr & 0x00000001) {
1776                 u32 stat = nv_rd32(dev, 0x61008c);
1777                 nv_wr32(dev, 0x61008c, stat);
1778                 intr &= ~0x00000001;
1779         }
1780
1781         if (intr & 0x00000002) {
1782                 u32 stat = nv_rd32(dev, 0x61009c);
1783                 int chid = ffs(stat) - 1;
1784                 if (chid >= 0) {
1785                         u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
1786                         u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
1787                         u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));
1788
1789                         NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1790                                      "0x%08x 0x%08x\n",
1791                                 chid, (mthd & 0x0000ffc), data, mthd, unkn);
1792                         nv_wr32(dev, 0x61009c, (1 << chid));
1793                         nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
1794                 }
1795
1796                 intr &= ~0x00000002;
1797         }
1798
1799         if (intr & 0x00100000) {
1800                 u32 stat = nv_rd32(dev, 0x6100ac);
1801
1802                 if (stat & 0x00000007) {
1803                         disp->modeset = stat;
1804                         tasklet_schedule(&disp->tasklet);
1805
1806                         nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1807                         stat &= ~0x00000007;
1808                 }
1809
1810                 if (stat) {
1811                         NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
1812                         nv_wr32(dev, 0x6100ac, stat);
1813                 }
1814
1815                 intr &= ~0x00100000;
1816         }
1817
1818         for (i = 0; i < dev->mode_config.num_crtc; i++) {
1819                 u32 mask = 0x01000000 << i;
1820                 if (intr & mask) {
1821                         u32 stat = nv_rd32(dev, 0x6100bc + (i * 0x800));
1822                         nv_wr32(dev, 0x6100bc + (i * 0x800), stat);
1823                         intr &= ~mask;
1824                 }
1825         }
1826
1827         if (intr)
1828                 NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
1829 }
1830
1831 /******************************************************************************
1832  * Init
1833  *****************************************************************************/
1834 void
1835 nvd0_display_fini(struct drm_device *dev)
1836 {
1837         int i;
1838
1839         /* fini cursors + overlays + flips */
1840         for (i = 1; i >= 0; i--) {
1841                 evo_fini_pio(dev, EVO_CURS(i));
1842                 evo_fini_pio(dev, EVO_OIMM(i));
1843                 evo_fini_dma(dev, EVO_OVLY(i));
1844                 evo_fini_dma(dev, EVO_FLIP(i));
1845         }
1846
1847         /* fini master */
1848         evo_fini_dma(dev, EVO_MASTER);
1849 }
1850
1851 int
1852 nvd0_display_init(struct drm_device *dev)
1853 {
1854         struct nvd0_display *disp = nvd0_display(dev);
1855         int ret, i;
1856         u32 *push;
1857
1858         if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
1859                 nv_wr32(dev, 0x6100ac, 0x00000100);
1860                 nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
1861                 if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
1862                         NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
1863                                  nv_rd32(dev, 0x6194e8));
1864                         return -EBUSY;
1865                 }
1866         }
1867
1868         /* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1869          * work at all unless you do the SOR part below.
1870          */
1871         for (i = 0; i < 3; i++) {
1872                 u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
1873                 nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
1874         }
1875
1876         for (i = 0; i < 4; i++) {
1877                 u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
1878                 nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
1879         }
1880
1881         for (i = 0; i < dev->mode_config.num_crtc; i++) {
1882                 u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
1883                 u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
1884                 u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
1885                 nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
1886                 nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
1887                 nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1888         }
1889
1890         /* point at our hash table / objects, enable interrupts */
1891         nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1892         nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1893
1894         /* init master */
1895         ret = evo_init_dma(dev, EVO_MASTER);
1896         if (ret)
1897                 goto error;
1898
1899         /* init flips + overlays + cursors */
1900         for (i = 0; i < dev->mode_config.num_crtc; i++) {
1901                 if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
1902                     (ret = evo_init_dma(dev, EVO_OVLY(i))) ||
1903                     (ret = evo_init_pio(dev, EVO_OIMM(i))) ||
1904                     (ret = evo_init_pio(dev, EVO_CURS(i))))
1905                         goto error;
1906         }
1907
1908         push = evo_wait(dev, EVO_MASTER, 32);
1909         if (!push) {
1910                 ret = -EBUSY;
1911                 goto error;
1912         }
1913         evo_mthd(push, 0x0088, 1);
1914         evo_data(push, NvEvoSync);
1915         evo_mthd(push, 0x0084, 1);
1916         evo_data(push, 0x00000000);
1917         evo_mthd(push, 0x0084, 1);
1918         evo_data(push, 0x80000000);
1919         evo_mthd(push, 0x008c, 1);
1920         evo_data(push, 0x00000000);
1921         evo_kick(push, dev, EVO_MASTER);
1922
1923 error:
1924         if (ret)
1925                 nvd0_display_fini(dev);
1926         return ret;
1927 }
1928
1929 void
1930 nvd0_display_destroy(struct drm_device *dev)
1931 {
1932         struct drm_nouveau_private *dev_priv = dev->dev_private;
1933         struct nvd0_display *disp = nvd0_display(dev);
1934         struct pci_dev *pdev = dev->pdev;
1935         int i;
1936
1937         for (i = 0; i < EVO_DMA_NR; i++) {
1938                 struct evo *evo = &disp->evo[i];
1939                 pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
1940         }
1941
1942         nouveau_gpuobj_ref(NULL, &disp->mem);
1943         nouveau_bo_unmap(disp->sync);
1944         nouveau_bo_ref(NULL, &disp->sync);
1945         nouveau_irq_unregister(dev, 26);
1946
1947         dev_priv->engine.display.priv = NULL;
1948         kfree(disp);
1949 }
1950
1951 int
1952 nvd0_display_create(struct drm_device *dev)
1953 {
1954         struct drm_nouveau_private *dev_priv = dev->dev_private;
1955         struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1956         struct dcb_table *dcb = &dev_priv->vbios.dcb;
1957         struct drm_connector *connector, *tmp;
1958         struct pci_dev *pdev = dev->pdev;
1959         struct nvd0_display *disp;
1960         struct dcb_entry *dcbe;
1961         int crtcs, ret, i;
1962
1963         disp = kzalloc(sizeof(*disp), GFP_KERNEL);
1964         if (!disp)
1965                 return -ENOMEM;
1966         dev_priv->engine.display.priv = disp;
1967
1968         /* create crtc objects to represent the hw heads */
1969         crtcs = nv_rd32(dev, 0x022448);
1970         for (i = 0; i < crtcs; i++) {
1971                 ret = nvd0_crtc_create(dev, i);
1972                 if (ret)
1973                         goto out;
1974         }
1975
1976         /* create encoder/connector objects based on VBIOS DCB table */
1977         for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
1978                 connector = nouveau_connector_create(dev, dcbe->connector);
1979                 if (IS_ERR(connector))
1980                         continue;
1981
1982                 if (dcbe->location != DCB_LOC_ON_CHIP) {
1983                         NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
1984                                 dcbe->type, ffs(dcbe->or) - 1);
1985                         continue;
1986                 }
1987
1988                 switch (dcbe->type) {
1989                 case OUTPUT_TMDS:
1990                 case OUTPUT_LVDS:
1991                 case OUTPUT_DP:
1992                         nvd0_sor_create(connector, dcbe);
1993                         break;
1994                 case OUTPUT_ANALOG:
1995                         nvd0_dac_create(connector, dcbe);
1996                         break;
1997                 default:
1998                         NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
1999                                 dcbe->type, ffs(dcbe->or) - 1);
2000                         continue;
2001                 }
2002         }
2003
2004         /* cull any connectors we created that don't have an encoder */
2005         list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2006                 if (connector->encoder_ids[0])
2007                         continue;
2008
2009                 NV_WARN(dev, "%s has no encoders, removing\n",
2010                         drm_get_connector_name(connector));
2011                 connector->funcs->destroy(connector);
2012         }
2013
2014         /* setup interrupt handling */
2015         tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
2016         nouveau_irq_register(dev, 26, nvd0_display_intr);
2017
2018         /* small shared memory area we use for notifiers and semaphores */
2019         ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2020                              0, 0x0000, &disp->sync);
2021         if (!ret) {
2022                 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2023                 if (!ret)
2024                         ret = nouveau_bo_map(disp->sync);
2025                 if (ret)
2026                         nouveau_bo_ref(NULL, &disp->sync);
2027         }
2028
2029         if (ret)
2030                 goto out;
2031
2032         /* hash table and dma objects for the memory areas we care about */
2033         ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
2034                                  NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
2035         if (ret)
2036                 goto out;
2037
2038         /* create evo dma channels */
2039         for (i = 0; i < EVO_DMA_NR; i++) {
2040                 struct evo *evo = &disp->evo[i];
2041                 u64 offset = disp->sync->bo.offset;
2042                 u32 dmao = 0x1000 + (i * 0x100);
2043                 u32 hash = 0x0000 + (i * 0x040);
2044
2045                 evo->idx = i;
2046                 evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
2047                 evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
2048                 if (!evo->ptr) {
2049                         ret = -ENOMEM;
2050                         goto out;
2051                 }
2052
2053                 nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
2054                 nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
2055                 nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
2056                 nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
2057                 nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
2058                 nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
2059                 nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
2060                 nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
2061                                                 ((dmao + 0x00) << 9));
2062
2063                 nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
2064                 nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
2065                 nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
2066                 nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
2067                 nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
2068                 nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
2069                 nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
2070                 nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
2071                                                 ((dmao + 0x20) << 9));
2072
2073                 nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
2074                 nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
2075                 nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
2076                 nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
2077                 nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
2078                 nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
2079                 nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
2080                 nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
2081                                                 ((dmao + 0x40) << 9));
2082
2083                 nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
2084                 nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
2085                 nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
2086                 nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
2087                 nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
2088                 nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
2089                 nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
2090                 nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
2091                                                 ((dmao + 0x60) << 9));
2092         }
2093
2094         pinstmem->flush(dev);
2095
2096 out:
2097         if (ret)
2098                 nvd0_display_destroy(dev);
2099         return ret;
2100 }