49e21cf57e226d33e360eb69dcbe96834af9cb02
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramnv50.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "nv50.h"
25 #include "ramseq.h"
26
27 #include <core/option.h>
28 #include <subdev/bios.h>
29 #include <subdev/bios/perf.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk/pll.h>
34
35 struct nv50_ramseq {
36         struct hwsq base;
37         struct hwsq_reg r_0x002504;
38         struct hwsq_reg r_0x004008;
39         struct hwsq_reg r_0x00400c;
40         struct hwsq_reg r_0x00c040;
41         struct hwsq_reg r_0x100200;
42         struct hwsq_reg r_0x100210;
43         struct hwsq_reg r_0x10021c;
44         struct hwsq_reg r_0x1002d0;
45         struct hwsq_reg r_0x1002d4;
46         struct hwsq_reg r_0x1002dc;
47         struct hwsq_reg r_0x10053c;
48         struct hwsq_reg r_0x1005a0;
49         struct hwsq_reg r_0x1005a4;
50         struct hwsq_reg r_0x100710;
51         struct hwsq_reg r_0x100714;
52         struct hwsq_reg r_0x100718;
53         struct hwsq_reg r_0x10071c;
54         struct hwsq_reg r_0x100da0;
55         struct hwsq_reg r_0x100e20;
56         struct hwsq_reg r_0x100e24;
57         struct hwsq_reg r_0x611200;
58         struct hwsq_reg r_timing[9];
59         struct hwsq_reg r_mr[4];
60 };
61
62 struct nv50_ram {
63         struct nvkm_ram base;
64         struct nv50_ramseq hwsq;
65 };
66
67 #define T(t) cfg->timing_10_##t
68 static int
69 nv50_ram_timing_calc(struct nvkm_fb *fb, u32 *timing)
70 {
71         struct nv50_ram *ram = (void *)fb->ram;
72         struct nvbios_ramcfg *cfg = &ram->base.target.bios;
73         u32 cur2, cur4, cur7, cur8;
74         u8 unkt3b;
75
76         cur2 = nv_rd32(fb, 0x100228);
77         cur4 = nv_rd32(fb, 0x100230);
78         cur7 = nv_rd32(fb, 0x10023c);
79         cur8 = nv_rd32(fb, 0x100240);
80
81         switch ((!T(CWL)) * ram->base.type) {
82         case NV_MEM_TYPE_DDR2:
83                 T(CWL) = T(CL) - 1;
84                 break;
85         case NV_MEM_TYPE_GDDR3:
86                 T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
87                 break;
88         }
89
90         /* XXX: N=1 is not proper statistics */
91         if (nv_device(fb)->chipset == 0xa0) {
92                 unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
93                 timing[6] = (0x2d + T(CL) - T(CWL) +
94                                 ram->base.next->bios.rammap_00_16_40) << 16 |
95                             T(CWL) << 8 |
96                             (0x2f + T(CL) - T(CWL));
97         } else {
98                 unkt3b = 0x16;
99                 timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
100                             max_t(s8, T(CWL) - 2, 1) << 8 |
101                             (0x2e + T(CL) - T(CWL));
102         }
103
104         timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
105         timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
106                     max_t(u8, T(18), 1) << 16 |
107                     (T(WTR) + 1 + T(CWL)) << 8 |
108                     (3 + T(CL) - T(CWL));
109         timing[2] = (T(CWL) - 1) << 24 |
110                     (T(RRD) << 16) |
111                     (T(RCDWR) << 8) |
112                     T(RCDRD);
113         timing[3] = (unkt3b - 2 + T(CL)) << 24 |
114                     unkt3b << 16 |
115                     (T(CL) - 1) << 8 |
116                     (T(CL) - 1);
117         timing[4] = (cur4 & 0xffff0000) |
118                     T(13) << 8 |
119                     T(13);
120         timing[5] = T(RFC) << 24 |
121                     max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
122                     T(RP);
123         /* Timing 6 is already done above */
124         timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
125         timing[8] = (cur8 & 0xffffff00);
126
127         /* XXX: P.version == 1 only has DDR2 and GDDR3? */
128         if (fb->ram->type == NV_MEM_TYPE_DDR2) {
129                 timing[5] |= (T(CL) + 3) << 8;
130                 timing[8] |= (T(CL) - 4);
131         } else if (fb->ram->type == NV_MEM_TYPE_GDDR3) {
132                 timing[5] |= (T(CL) + 2) << 8;
133                 timing[8] |= (T(CL) - 2);
134         }
135
136         nv_debug(fb, " 220: %08x %08x %08x %08x\n",
137                         timing[0], timing[1], timing[2], timing[3]);
138         nv_debug(fb, " 230: %08x %08x %08x %08x\n",
139                         timing[4], timing[5], timing[6], timing[7]);
140         nv_debug(fb, " 240: %08x\n", timing[8]);
141         return 0;
142 }
143 #undef T
144
145 static void
146 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
147 {
148         ram_mask(hwsq, mr[0], 0x100, 0x100);
149         ram_mask(hwsq, mr[0], 0x100, 0x000);
150         ram_nsec(hwsq, 24000);
151 }
152
153 static int
154 nv50_ram_calc(struct nvkm_fb *fb, u32 freq)
155 {
156         struct nvkm_bios *bios = nvkm_bios(fb);
157         struct nv50_ram *ram = (void *)fb->ram;
158         struct nv50_ramseq *hwsq = &ram->hwsq;
159         struct nvbios_perfE perfE;
160         struct nvbios_pll mpll;
161         struct nvkm_ram_data *next;
162         u8  ver, hdr, cnt, len, strap, size;
163         u32 data;
164         u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
165         int N1, M1, N2, M2, P;
166         int ret, i;
167         u32 timing[9];
168
169         next = &ram->base.target;
170         next->freq = freq;
171         ram->base.next = next;
172
173         /* lookup closest matching performance table entry for frequency */
174         i = 0;
175         do {
176                 data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
177                                             &size, &perfE);
178                 if (!data || (ver < 0x25 || ver >= 0x40) ||
179                     (size < 2)) {
180                         nv_error(fb, "invalid/missing perftab entry\n");
181                         return -EINVAL;
182                 }
183         } while (perfE.memory < freq);
184
185         nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
186
187         /* locate specific data set for the attached memory */
188         strap = nvbios_ramcfg_index(nv_subdev(fb));
189         if (strap >= cnt) {
190                 nv_error(fb, "invalid ramcfg strap\n");
191                 return -EINVAL;
192         }
193
194         data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
195                         &next->bios);
196         if (!data) {
197                 nv_error(fb, "invalid/missing rammap entry ");
198                 return -EINVAL;
199         }
200
201         /* lookup memory timings, if bios says they're present */
202         if (next->bios.ramcfg_timing != 0xff) {
203                 data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
204                                         &ver, &hdr, &cnt, &len, &next->bios);
205                 if (!data || ver != 0x10 || hdr < 0x12) {
206                         nv_error(fb, "invalid/missing timing entry "
207                                  "%02x %04x %02x %02x\n",
208                                  strap, data, ver, hdr);
209                         return -EINVAL;
210                 }
211         }
212
213         nv50_ram_timing_calc(fb, timing);
214
215         ret = ram_init(hwsq, nv_subdev(fb));
216         if (ret)
217                 return ret;
218
219         /* Determine ram-specific MR values */
220         ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
221         ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
222         ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
223
224         switch (ram->base.type) {
225         case NV_MEM_TYPE_GDDR3:
226                 ret = nvkm_gddr3_calc(&ram->base);
227                 break;
228         default:
229                 ret = -ENOSYS;
230                 break;
231         }
232
233         if (ret)
234                 return ret;
235
236         /* Always disable this bit during reclock */
237         ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
238
239         ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
240         ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
241         ram_wr32(hwsq, 0x611200, 0x00003300);
242         ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
243         ram_nsec(hwsq, 8000);
244         ram_setf(hwsq, 0x10, 0x00); /* disable fb */
245         ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
246         ram_nsec(hwsq, 2000);
247
248         ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
249         ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
250         ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
251         ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
252         ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
253
254         ret = nvbios_pll_parse(bios, 0x004008, &mpll);
255         mpll.vco2.max_freq = 0;
256         if (ret >= 0) {
257                 ret = nv04_pll_calc(nv_subdev(fb), &mpll, freq,
258                                     &N1, &M1, &N2, &M2, &P);
259                 if (ret <= 0)
260                         ret = -EINVAL;
261         }
262
263         if (ret < 0)
264                 return ret;
265
266         /* XXX: 750MHz seems rather arbitrary */
267         if (freq <= 750000) {
268                 r100da0 = 0x00000010;
269                 r004008 = 0x90000000;
270         } else {
271                 r100da0 = 0x00000000;
272                 r004008 = 0x80000000;
273         }
274
275         r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
276
277         ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
278         /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
279          * it have a different rammap bit from DLLoff? */
280         ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
281                         next->bios.rammap_00_16_40 << 14);
282         ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
283         ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
284         if (nv_device(fb)->chipset >= 0x96)
285                 ram_wr32(hwsq, 0x100da0, r100da0);
286         ram_nsec(hwsq, 64000); /*XXX*/
287         ram_nsec(hwsq, 32000); /*XXX*/
288
289         ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
290
291         ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
292         ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
293         ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
294
295         ram_nsec(hwsq, 12000);
296
297         switch (ram->base.type) {
298         case NV_MEM_TYPE_DDR2:
299                 ram_nuke(hwsq, mr[0]); /* force update */
300                 ram_mask(hwsq, mr[0], 0x000, 0x000);
301                 break;
302         case NV_MEM_TYPE_GDDR3:
303                 ram_nuke(hwsq, mr[1]); /* force update */
304                 ram_wr32(hwsq, mr[1], ram->base.mr[1]);
305                 ram_nuke(hwsq, mr[0]); /* force update */
306                 ram_wr32(hwsq, mr[0], ram->base.mr[0]);
307                 break;
308         default:
309                 break;
310         }
311
312         ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
313         ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
314         ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
315         ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
316         ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
317         ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
318         ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
319         ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
320         ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
321
322         if (!next->bios.ramcfg_00_03_02)
323                 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
324         ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
325
326         /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
327         unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000101;
328         unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
329         unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
330         unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
331
332         if ( next->bios.ramcfg_00_03_01)
333                 unk71c |= 0x00000100;
334         if ( next->bios.ramcfg_00_03_02)
335                 unk710 |= 0x00000100;
336         if (!next->bios.ramcfg_00_03_08) {
337                 unk710 |= 0x1;
338                 unk714 |= 0x20;
339         }
340         if ( next->bios.ramcfg_00_04_04)
341                 unk714 |= 0x70000000;
342         if ( next->bios.ramcfg_00_04_20)
343                 unk718 |= 0x00000100;
344
345         ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
346         ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
347         ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
348         ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
349
350         if (next->bios.rammap_00_16_20) {
351                 ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
352                                          next->bios.ramcfg_00_06 << 8 |
353                                          next->bios.ramcfg_00_05);
354                 ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
355                                          next->bios.ramcfg_00_08);
356                 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
357         } else {
358                 ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
359         }
360         ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
361
362         /* Reset DLL */
363         if (!next->bios.ramcfg_DLLoff)
364                 nvkm_sddr2_dll_reset(hwsq);
365
366         ram_setf(hwsq, 0x10, 0x01); /* enable fb */
367         ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
368         ram_wr32(hwsq, 0x611200, 0x00003330);
369         ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
370
371         if (next->bios.rammap_00_17_02)
372                 ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
373         if (!next->bios.rammap_00_16_40)
374                 ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
375         if (next->bios.ramcfg_00_03_02)
376                 ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
377
378         return 0;
379 }
380
381 static int
382 nv50_ram_prog(struct nvkm_fb *fb)
383 {
384         struct nvkm_device *device = nv_device(fb);
385         struct nv50_ram *ram = (void *)fb->ram;
386         struct nv50_ramseq *hwsq = &ram->hwsq;
387
388         ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
389         return 0;
390 }
391
392 static void
393 nv50_ram_tidy(struct nvkm_fb *fb)
394 {
395         struct nv50_ram *ram = (void *)fb->ram;
396         struct nv50_ramseq *hwsq = &ram->hwsq;
397         ram_exec(hwsq, false);
398 }
399
400 void
401 __nv50_ram_put(struct nvkm_fb *fb, struct nvkm_mem *mem)
402 {
403         struct nvkm_mm_node *this;
404
405         while (!list_empty(&mem->regions)) {
406                 this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
407
408                 list_del(&this->rl_entry);
409                 nvkm_mm_free(&fb->vram, &this);
410         }
411
412         nvkm_mm_free(&fb->tags, &mem->tag);
413 }
414
415 void
416 nv50_ram_put(struct nvkm_fb *fb, struct nvkm_mem **pmem)
417 {
418         struct nvkm_mem *mem = *pmem;
419
420         *pmem = NULL;
421         if (unlikely(mem == NULL))
422                 return;
423
424         mutex_lock(&fb->subdev.mutex);
425         __nv50_ram_put(fb, mem);
426         mutex_unlock(&fb->subdev.mutex);
427
428         kfree(mem);
429 }
430
431 int
432 nv50_ram_get(struct nvkm_fb *fb, u64 size, u32 align, u32 ncmin,
433              u32 memtype, struct nvkm_mem **pmem)
434 {
435         struct nvkm_mm *heap = &fb->vram;
436         struct nvkm_mm *tags = &fb->tags;
437         struct nvkm_mm_node *r;
438         struct nvkm_mem *mem;
439         int comp = (memtype & 0x300) >> 8;
440         int type = (memtype & 0x07f);
441         int back = (memtype & 0x800);
442         int min, max, ret;
443
444         max = (size >> 12);
445         min = ncmin ? (ncmin >> 12) : max;
446         align >>= 12;
447
448         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
449         if (!mem)
450                 return -ENOMEM;
451
452         mutex_lock(&fb->subdev.mutex);
453         if (comp) {
454                 if (align == 16) {
455                         int n = (max >> 4) * comp;
456
457                         ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
458                         if (ret)
459                                 mem->tag = NULL;
460                 }
461
462                 if (unlikely(!mem->tag))
463                         comp = 0;
464         }
465
466         INIT_LIST_HEAD(&mem->regions);
467         mem->memtype = (comp << 7) | type;
468         mem->size = max;
469
470         type = nv50_fb_memtype[type];
471         do {
472                 if (back)
473                         ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
474                 else
475                         ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
476                 if (ret) {
477                         mutex_unlock(&fb->subdev.mutex);
478                         fb->ram->put(fb, &mem);
479                         return ret;
480                 }
481
482                 list_add_tail(&r->rl_entry, &mem->regions);
483                 max -= r->length;
484         } while (max);
485         mutex_unlock(&fb->subdev.mutex);
486
487         r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
488         mem->offset = (u64)r->offset << 12;
489         *pmem = mem;
490         return 0;
491 }
492
493 static u32
494 nv50_fb_vram_rblock(struct nvkm_fb *fb, struct nvkm_ram *ram)
495 {
496         int colbits, rowbitsa, rowbitsb, banks;
497         u64 rowsize, predicted;
498         u32 r0, r4, rt, rblock_size;
499
500         r0 = nv_rd32(fb, 0x100200);
501         r4 = nv_rd32(fb, 0x100204);
502         rt = nv_rd32(fb, 0x100250);
503         nv_debug(fb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n",
504                  r0, r4, rt, nv_rd32(fb, 0x001540));
505
506         colbits  =  (r4 & 0x0000f000) >> 12;
507         rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
508         rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
509         banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
510
511         rowsize = ram->parts * banks * (1 << colbits) * 8;
512         predicted = rowsize << rowbitsa;
513         if (r0 & 0x00000004)
514                 predicted += rowsize << rowbitsb;
515
516         if (predicted != ram->size) {
517                 nv_warn(fb, "memory controller reports %d MiB VRAM\n",
518                         (u32)(ram->size >> 20));
519         }
520
521         rblock_size = rowsize;
522         if (rt & 1)
523                 rblock_size *= 3;
524
525         nv_debug(fb, "rblock %d bytes\n", rblock_size);
526         return rblock_size;
527 }
528
529 int
530 nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
531                  struct nvkm_oclass *oclass, int length, void **pobject)
532 {
533         const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
534         const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
535         struct nvkm_bios *bios = nvkm_bios(parent);
536         struct nvkm_fb *fb = nvkm_fb(parent);
537         struct nvkm_ram *ram;
538         int ret;
539
540         ret = nvkm_ram_create_(parent, engine, oclass, length, pobject);
541         ram = *pobject;
542         if (ret)
543                 return ret;
544
545         ram->size = nv_rd32(fb, 0x10020c);
546         ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
547
548         ram->part_mask = (nv_rd32(fb, 0x001540) & 0x00ff0000) >> 16;
549         ram->parts = hweight8(ram->part_mask);
550
551         switch (nv_rd32(fb, 0x100714) & 0x00000007) {
552         case 0: ram->type = NV_MEM_TYPE_DDR1; break;
553         case 1:
554                 if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
555                         ram->type = NV_MEM_TYPE_DDR3;
556                 else
557                         ram->type = NV_MEM_TYPE_DDR2;
558                 break;
559         case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
560         case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
561         case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
562         default:
563                 break;
564         }
565
566         ret = nvkm_mm_init(&fb->vram, rsvd_head, (ram->size >> 12) -
567                            (rsvd_head + rsvd_tail),
568                            nv50_fb_vram_rblock(fb, ram) >> 12);
569         if (ret)
570                 return ret;
571
572         ram->ranks = (nv_rd32(fb, 0x100200) & 0x4) ? 2 : 1;
573         ram->tags  =  nv_rd32(fb, 0x100320);
574         ram->get = nv50_ram_get;
575         ram->put = nv50_ram_put;
576         return 0;
577 }
578
579 static int
580 nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
581               struct nvkm_oclass *oclass, void *data, u32 datasize,
582               struct nvkm_object **pobject)
583 {
584         struct nv50_ram *ram;
585         int ret, i;
586
587         ret = nv50_ram_create(parent, engine, oclass, &ram);
588         *pobject = nv_object(ram);
589         if (ret)
590                 return ret;
591
592         switch (ram->base.type) {
593         case NV_MEM_TYPE_GDDR3:
594                 ram->base.calc = nv50_ram_calc;
595                 ram->base.prog = nv50_ram_prog;
596                 ram->base.tidy = nv50_ram_tidy;
597                 break;
598         case NV_MEM_TYPE_DDR2:
599         default:
600                 nv_warn(ram, "reclocking of this ram type unsupported\n");
601                 return 0;
602         }
603
604         ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
605         ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
606         ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
607         ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
608         ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
609         ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
610         ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
611         ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
612         ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
613         ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
614         ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
615         ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
616         ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
617         ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
618         ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
619         ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
620         ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
621         ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
622         ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
623         ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
624         ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
625
626         for (i = 0; i < 9; i++)
627                 ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
628
629         if (ram->base.ranks > 1) {
630                 ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
631                 ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
632                 ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
633                 ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
634         } else {
635                 ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
636                 ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
637                 ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
638                 ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
639         }
640
641         return 0;
642 }
643
644 struct nvkm_oclass
645 nv50_ram_oclass = {
646         .ofuncs = &(struct nvkm_ofuncs) {
647                 .ctor = nv50_ram_ctor,
648                 .dtor = _nvkm_ram_dtor,
649                 .init = _nvkm_ram_init,
650                 .fini = _nvkm_ram_fini,
651         }
652 };