drm: rcar-du: Wait for page flip completion when turning the CRTC off
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_kms.h"
27 #include "rcar_du_plane.h"
28 #include "rcar_du_regs.h"
29
30 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
31 {
32         struct rcar_du_device *rcdu = rcrtc->group->dev;
33
34         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
35 }
36
37 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
38 {
39         struct rcar_du_device *rcdu = rcrtc->group->dev;
40
41         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
42 }
43
44 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
45 {
46         struct rcar_du_device *rcdu = rcrtc->group->dev;
47
48         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
49                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
50 }
51
52 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
53 {
54         struct rcar_du_device *rcdu = rcrtc->group->dev;
55
56         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
57                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
58 }
59
60 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
61                                  u32 clr, u32 set)
62 {
63         struct rcar_du_device *rcdu = rcrtc->group->dev;
64         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
65
66         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
67 }
68
69 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
70 {
71         int ret;
72
73         ret = clk_prepare_enable(rcrtc->clock);
74         if (ret < 0)
75                 return ret;
76
77         ret = clk_prepare_enable(rcrtc->extclock);
78         if (ret < 0)
79                 goto error_clock;
80
81         ret = rcar_du_group_get(rcrtc->group);
82         if (ret < 0)
83                 goto error_group;
84
85         return 0;
86
87 error_group:
88         clk_disable_unprepare(rcrtc->extclock);
89 error_clock:
90         clk_disable_unprepare(rcrtc->clock);
91         return ret;
92 }
93
94 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
95 {
96         rcar_du_group_put(rcrtc->group);
97
98         clk_disable_unprepare(rcrtc->extclock);
99         clk_disable_unprepare(rcrtc->clock);
100 }
101
102 /* -----------------------------------------------------------------------------
103  * Hardware Setup
104  */
105
106 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
107 {
108         const struct drm_display_mode *mode = &rcrtc->crtc.mode;
109         unsigned long mode_clock = mode->clock * 1000;
110         unsigned long clk;
111         u32 value;
112         u32 escr;
113         u32 div;
114
115         /* Compute the clock divisor and select the internal or external dot
116          * clock based on the requested frequency.
117          */
118         clk = clk_get_rate(rcrtc->clock);
119         div = DIV_ROUND_CLOSEST(clk, mode_clock);
120         div = clamp(div, 1U, 64U) - 1;
121         escr = div | ESCR_DCLKSEL_CLKS;
122
123         if (rcrtc->extclock) {
124                 unsigned long extclk;
125                 unsigned long extrate;
126                 unsigned long rate;
127                 u32 extdiv;
128
129                 extclk = clk_get_rate(rcrtc->extclock);
130                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
131                 extdiv = clamp(extdiv, 1U, 64U) - 1;
132
133                 rate = clk / (div + 1);
134                 extrate = extclk / (extdiv + 1);
135
136                 if (abs((long)extrate - (long)mode_clock) <
137                     abs((long)rate - (long)mode_clock)) {
138                         dev_dbg(rcrtc->group->dev->dev,
139                                 "crtc%u: using external clock\n", rcrtc->index);
140                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
141                 }
142         }
143
144         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
145                             escr);
146         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
147
148         /* Signal polarities */
149         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
150               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
151               | DSMR_DIPM_DE | DSMR_CSPM;
152         rcar_du_crtc_write(rcrtc, DSMR, value);
153
154         /* Display timings */
155         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
156         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
157                                         mode->hdisplay - 19);
158         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
159                                         mode->hsync_start - 1);
160         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
161
162         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
163                                         mode->crtc_vsync_end - 2);
164         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
165                                         mode->crtc_vsync_end +
166                                         mode->crtc_vdisplay - 2);
167         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
168                                         mode->crtc_vsync_end +
169                                         mode->crtc_vsync_start - 1);
170         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
171
172         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
173         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
174 }
175
176 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
177                                enum rcar_du_output output)
178 {
179         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
180         struct rcar_du_device *rcdu = rcrtc->group->dev;
181
182         /* Store the route from the CRTC output to the DU output. The DU will be
183          * configured when starting the CRTC.
184          */
185         rcrtc->outputs |= BIT(output);
186
187         /* Store RGB routing to DPAD0, the hardware will be configured when
188          * starting the CRTC.
189          */
190         if (output == RCAR_DU_OUTPUT_DPAD0)
191                 rcdu->dpad0_source = rcrtc->index;
192 }
193
194 void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
195 {
196         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
197         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
198         unsigned int num_planes = 0;
199         unsigned int prio = 0;
200         unsigned int i;
201         u32 dptsr = 0;
202         u32 dspr = 0;
203
204         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
205                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
206                 unsigned int j;
207
208                 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
209                         continue;
210
211                 /* Insert the plane in the sorted planes array. */
212                 for (j = num_planes++; j > 0; --j) {
213                         if (planes[j-1]->zpos <= plane->zpos)
214                                 break;
215                         planes[j] = planes[j-1];
216                 }
217
218                 planes[j] = plane;
219                 prio += plane->format->planes * 4;
220         }
221
222         for (i = 0; i < num_planes; ++i) {
223                 struct rcar_du_plane *plane = planes[i];
224                 unsigned int index = plane->hwindex;
225
226                 prio -= 4;
227                 dspr |= (index + 1) << prio;
228                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
229
230                 if (plane->format->planes == 2) {
231                         index = (index + 1) % 8;
232
233                         prio -= 4;
234                         dspr |= (index + 1) << prio;
235                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
236                 }
237         }
238
239         /* Select display timing and dot clock generator 2 for planes associated
240          * with superposition controller 2.
241          */
242         if (rcrtc->index % 2) {
243                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
244
245                 /* The DPTSR register is updated when the display controller is
246                  * stopped. We thus need to restart the DU. Once again, sorry
247                  * for the flicker. One way to mitigate the issue would be to
248                  * pre-associate planes with CRTCs (either with a fixed 4/4
249                  * split, or through a module parameter). Flicker would then
250                  * occur only if we need to break the pre-association.
251                  */
252                 if (value != dptsr) {
253                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
254                         if (rcrtc->group->used_crtcs)
255                                 rcar_du_group_restart(rcrtc->group);
256                 }
257         }
258
259         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
260                             dspr);
261 }
262
263 /* -----------------------------------------------------------------------------
264  * Page Flip
265  */
266
267 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
268                                    struct drm_file *file)
269 {
270         struct drm_pending_vblank_event *event;
271         struct drm_device *dev = rcrtc->crtc.dev;
272         unsigned long flags;
273
274         /* Destroy the pending vertical blanking event associated with the
275          * pending page flip, if any, and disable vertical blanking interrupts.
276          */
277         spin_lock_irqsave(&dev->event_lock, flags);
278         event = rcrtc->event;
279         if (event && event->base.file_priv == file) {
280                 rcrtc->event = NULL;
281                 event->base.destroy(&event->base);
282                 drm_vblank_put(dev, rcrtc->index);
283         }
284         spin_unlock_irqrestore(&dev->event_lock, flags);
285 }
286
287 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
288 {
289         struct drm_pending_vblank_event *event;
290         struct drm_device *dev = rcrtc->crtc.dev;
291         unsigned long flags;
292
293         spin_lock_irqsave(&dev->event_lock, flags);
294         event = rcrtc->event;
295         rcrtc->event = NULL;
296         spin_unlock_irqrestore(&dev->event_lock, flags);
297
298         if (event == NULL)
299                 return;
300
301         spin_lock_irqsave(&dev->event_lock, flags);
302         drm_send_vblank_event(dev, rcrtc->index, event);
303         wake_up(&rcrtc->flip_wait);
304         spin_unlock_irqrestore(&dev->event_lock, flags);
305
306         drm_vblank_put(dev, rcrtc->index);
307 }
308
309 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
310 {
311         struct drm_device *dev = rcrtc->crtc.dev;
312         unsigned long flags;
313         bool pending;
314
315         spin_lock_irqsave(&dev->event_lock, flags);
316         pending = rcrtc->event != NULL;
317         spin_unlock_irqrestore(&dev->event_lock, flags);
318
319         return pending;
320 }
321
322 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
323 {
324         struct rcar_du_device *rcdu = rcrtc->group->dev;
325
326         if (wait_event_timeout(rcrtc->flip_wait,
327                                !rcar_du_crtc_page_flip_pending(rcrtc),
328                                msecs_to_jiffies(50)))
329                 return;
330
331         dev_warn(rcdu->dev, "page flip timeout\n");
332
333         rcar_du_crtc_finish_page_flip(rcrtc);
334 }
335
336 /* -----------------------------------------------------------------------------
337  * Start/Stop and Suspend/Resume
338  */
339
340 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
341 {
342         struct drm_crtc *crtc = &rcrtc->crtc;
343         bool interlaced;
344         unsigned int i;
345
346         if (rcrtc->started)
347                 return;
348
349         if (WARN_ON(rcrtc->plane->format == NULL))
350                 return;
351
352         /* Set display off and background to black */
353         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
354         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
355
356         /* Configure display timings and output routing */
357         rcar_du_crtc_set_display_timing(rcrtc);
358         rcar_du_group_set_routing(rcrtc->group);
359
360         mutex_lock(&rcrtc->group->planes.lock);
361         rcrtc->plane->enabled = true;
362         rcar_du_crtc_update_planes(crtc);
363         mutex_unlock(&rcrtc->group->planes.lock);
364
365         /* Setup planes. */
366         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
367                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
368
369                 if (plane->crtc != crtc || !plane->enabled)
370                         continue;
371
372                 rcar_du_plane_setup(plane);
373         }
374
375         /* Select master sync mode. This enables display operation in master
376          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
377          * actively driven).
378          */
379         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
380         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
381                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
382                              DSYSR_TVM_MASTER);
383
384         rcar_du_group_start_stop(rcrtc->group, true);
385
386         rcrtc->started = true;
387 }
388
389 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
390 {
391         struct drm_crtc *crtc = &rcrtc->crtc;
392
393         if (!rcrtc->started)
394                 return;
395
396         /* Wait for page flip completion before stopping the CRTC as userspace
397          * excepts page flips to eventually complete.
398          */
399         rcar_du_crtc_wait_page_flip(rcrtc);
400
401         mutex_lock(&rcrtc->group->planes.lock);
402         rcrtc->plane->enabled = false;
403         rcar_du_crtc_update_planes(crtc);
404         mutex_unlock(&rcrtc->group->planes.lock);
405
406         /* Select switch sync mode. This stops display operation and configures
407          * the HSYNC and VSYNC signals as inputs.
408          */
409         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
410
411         rcar_du_group_start_stop(rcrtc->group, false);
412
413         rcrtc->started = false;
414 }
415
416 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
417 {
418         rcar_du_crtc_stop(rcrtc);
419         rcar_du_crtc_put(rcrtc);
420 }
421
422 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
423 {
424         if (rcrtc->dpms != DRM_MODE_DPMS_ON)
425                 return;
426
427         rcar_du_crtc_get(rcrtc);
428         rcar_du_crtc_start(rcrtc);
429 }
430
431 static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
432 {
433         struct drm_crtc *crtc = &rcrtc->crtc;
434
435         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
436         rcar_du_plane_update_base(rcrtc->plane);
437 }
438
439 /* -----------------------------------------------------------------------------
440  * CRTC Functions
441  */
442
443 static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
444 {
445         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
446
447         if (mode != DRM_MODE_DPMS_ON)
448                 mode = DRM_MODE_DPMS_OFF;
449
450         if (rcrtc->dpms == mode)
451                 return;
452
453         if (mode == DRM_MODE_DPMS_ON) {
454                 rcar_du_crtc_get(rcrtc);
455                 rcar_du_crtc_start(rcrtc);
456         } else {
457                 rcar_du_crtc_stop(rcrtc);
458                 rcar_du_crtc_put(rcrtc);
459         }
460
461         rcrtc->dpms = mode;
462 }
463
464 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
465                                     const struct drm_display_mode *mode,
466                                     struct drm_display_mode *adjusted_mode)
467 {
468         /* TODO Fixup modes */
469         return true;
470 }
471
472 static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
473 {
474         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
475
476         /* We need to access the hardware during mode set, acquire a reference
477          * to the CRTC.
478          */
479         rcar_du_crtc_get(rcrtc);
480
481         /* Stop the CRTC and release the plane. Force the DPMS mode to off as a
482          * result.
483          */
484         rcar_du_crtc_stop(rcrtc);
485         rcar_du_plane_release(rcrtc->plane);
486
487         rcrtc->dpms = DRM_MODE_DPMS_OFF;
488 }
489
490 static int rcar_du_crtc_mode_set(struct drm_crtc *crtc,
491                                  struct drm_display_mode *mode,
492                                  struct drm_display_mode *adjusted_mode,
493                                  int x, int y,
494                                  struct drm_framebuffer *old_fb)
495 {
496         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
497         struct rcar_du_device *rcdu = rcrtc->group->dev;
498         const struct rcar_du_format_info *format;
499         int ret;
500
501         format = rcar_du_format_info(crtc->primary->fb->pixel_format);
502         if (format == NULL) {
503                 dev_dbg(rcdu->dev, "mode_set: unsupported format %08x\n",
504                         crtc->primary->fb->pixel_format);
505                 ret = -EINVAL;
506                 goto error;
507         }
508
509         ret = rcar_du_plane_reserve(rcrtc->plane, format);
510         if (ret < 0)
511                 goto error;
512
513         rcrtc->plane->format = format;
514
515         rcrtc->plane->src_x = x;
516         rcrtc->plane->src_y = y;
517         rcrtc->plane->width = mode->hdisplay;
518         rcrtc->plane->height = mode->vdisplay;
519
520         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
521
522         rcrtc->outputs = 0;
523
524         return 0;
525
526 error:
527         /* There's no rollback/abort operation to clean up in case of error. We
528          * thus need to release the reference to the CRTC acquired in prepare()
529          * here.
530          */
531         rcar_du_crtc_put(rcrtc);
532         return ret;
533 }
534
535 static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
536 {
537         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
538
539         /* We're done, restart the CRTC and set the DPMS mode to on. The
540          * reference to the DU acquired at prepare() time will thus be released
541          * by the DPMS handler (possibly called by the disable() handler).
542          */
543         rcar_du_crtc_start(rcrtc);
544         rcrtc->dpms = DRM_MODE_DPMS_ON;
545 }
546
547 static int rcar_du_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
548                                       struct drm_framebuffer *old_fb)
549 {
550         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
551
552         rcrtc->plane->src_x = x;
553         rcrtc->plane->src_y = y;
554
555         rcar_du_crtc_update_base(rcrtc);
556
557         return 0;
558 }
559
560 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
561 {
562         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
563
564         rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
565         rcar_du_plane_release(rcrtc->plane);
566 }
567
568 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
569         .dpms = rcar_du_crtc_dpms,
570         .mode_fixup = rcar_du_crtc_mode_fixup,
571         .prepare = rcar_du_crtc_mode_prepare,
572         .commit = rcar_du_crtc_mode_commit,
573         .mode_set = rcar_du_crtc_mode_set,
574         .mode_set_base = rcar_du_crtc_mode_set_base,
575         .disable = rcar_du_crtc_disable,
576 };
577
578 static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
579                                   struct drm_framebuffer *fb,
580                                   struct drm_pending_vblank_event *event,
581                                   uint32_t page_flip_flags)
582 {
583         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
584         struct drm_device *dev = rcrtc->crtc.dev;
585         unsigned long flags;
586
587         spin_lock_irqsave(&dev->event_lock, flags);
588         if (rcrtc->event != NULL) {
589                 spin_unlock_irqrestore(&dev->event_lock, flags);
590                 return -EBUSY;
591         }
592         spin_unlock_irqrestore(&dev->event_lock, flags);
593
594         crtc->primary->fb = fb;
595         rcar_du_crtc_update_base(rcrtc);
596
597         if (event) {
598                 event->pipe = rcrtc->index;
599                 drm_vblank_get(dev, rcrtc->index);
600                 spin_lock_irqsave(&dev->event_lock, flags);
601                 rcrtc->event = event;
602                 spin_unlock_irqrestore(&dev->event_lock, flags);
603         }
604
605         return 0;
606 }
607
608 static const struct drm_crtc_funcs crtc_funcs = {
609         .destroy = drm_crtc_cleanup,
610         .set_config = drm_crtc_helper_set_config,
611         .page_flip = rcar_du_crtc_page_flip,
612 };
613
614 /* -----------------------------------------------------------------------------
615  * Interrupt Handling
616  */
617
618 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
619 {
620         struct rcar_du_crtc *rcrtc = arg;
621         irqreturn_t ret = IRQ_NONE;
622         u32 status;
623
624         status = rcar_du_crtc_read(rcrtc, DSSR);
625         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
626
627         if (status & DSSR_FRM) {
628                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
629                 rcar_du_crtc_finish_page_flip(rcrtc);
630                 ret = IRQ_HANDLED;
631         }
632
633         return ret;
634 }
635
636 /* -----------------------------------------------------------------------------
637  * Initialization
638  */
639
640 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
641 {
642         static const unsigned int mmio_offsets[] = {
643                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
644         };
645
646         struct rcar_du_device *rcdu = rgrp->dev;
647         struct platform_device *pdev = to_platform_device(rcdu->dev);
648         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
649         struct drm_crtc *crtc = &rcrtc->crtc;
650         unsigned int irqflags;
651         struct clk *clk;
652         char clk_name[9];
653         char *name;
654         int irq;
655         int ret;
656
657         /* Get the CRTC clock and the optional external clock. */
658         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
659                 sprintf(clk_name, "du.%u", index);
660                 name = clk_name;
661         } else {
662                 name = NULL;
663         }
664
665         rcrtc->clock = devm_clk_get(rcdu->dev, name);
666         if (IS_ERR(rcrtc->clock)) {
667                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
668                 return PTR_ERR(rcrtc->clock);
669         }
670
671         sprintf(clk_name, "dclkin.%u", index);
672         clk = devm_clk_get(rcdu->dev, clk_name);
673         if (!IS_ERR(clk)) {
674                 rcrtc->extclock = clk;
675         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
676                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
677                 return -EPROBE_DEFER;
678         }
679
680         init_waitqueue_head(&rcrtc->flip_wait);
681
682         rcrtc->group = rgrp;
683         rcrtc->mmio_offset = mmio_offsets[index];
684         rcrtc->index = index;
685         rcrtc->dpms = DRM_MODE_DPMS_OFF;
686         rcrtc->plane = &rgrp->planes.planes[index % 2];
687
688         rcrtc->plane->crtc = crtc;
689
690         ret = drm_crtc_init(rcdu->ddev, crtc, &crtc_funcs);
691         if (ret < 0)
692                 return ret;
693
694         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
695
696         /* Register the interrupt handler. */
697         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
698                 irq = platform_get_irq(pdev, index);
699                 irqflags = 0;
700         } else {
701                 irq = platform_get_irq(pdev, 0);
702                 irqflags = IRQF_SHARED;
703         }
704
705         if (irq < 0) {
706                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
707                 return irq;
708         }
709
710         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
711                                dev_name(rcdu->dev), rcrtc);
712         if (ret < 0) {
713                 dev_err(rcdu->dev,
714                         "failed to register IRQ for CRTC %u\n", index);
715                 return ret;
716         }
717
718         return 0;
719 }
720
721 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
722 {
723         if (enable) {
724                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
725                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
726         } else {
727                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
728         }
729 }