drm: rcar-du: Wire up atomic state object scaffolding
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_crtc.h>
21 #include <drm/drm_crtc_helper.h>
22 #include <drm/drm_fb_cma_helper.h>
23 #include <drm/drm_gem_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_kms.h"
29 #include "rcar_du_plane.h"
30 #include "rcar_du_regs.h"
31
32 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
33 {
34         struct rcar_du_device *rcdu = rcrtc->group->dev;
35
36         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
37 }
38
39 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
40 {
41         struct rcar_du_device *rcdu = rcrtc->group->dev;
42
43         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
44 }
45
46 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
47 {
48         struct rcar_du_device *rcdu = rcrtc->group->dev;
49
50         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
51                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
52 }
53
54 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
55 {
56         struct rcar_du_device *rcdu = rcrtc->group->dev;
57
58         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
59                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
60 }
61
62 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
63                                  u32 clr, u32 set)
64 {
65         struct rcar_du_device *rcdu = rcrtc->group->dev;
66         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
67
68         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
69 }
70
71 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
72 {
73         int ret;
74
75         ret = clk_prepare_enable(rcrtc->clock);
76         if (ret < 0)
77                 return ret;
78
79         ret = clk_prepare_enable(rcrtc->extclock);
80         if (ret < 0)
81                 goto error_clock;
82
83         ret = rcar_du_group_get(rcrtc->group);
84         if (ret < 0)
85                 goto error_group;
86
87         return 0;
88
89 error_group:
90         clk_disable_unprepare(rcrtc->extclock);
91 error_clock:
92         clk_disable_unprepare(rcrtc->clock);
93         return ret;
94 }
95
96 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
97 {
98         rcar_du_group_put(rcrtc->group);
99
100         clk_disable_unprepare(rcrtc->extclock);
101         clk_disable_unprepare(rcrtc->clock);
102 }
103
104 /* -----------------------------------------------------------------------------
105  * Hardware Setup
106  */
107
108 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
109 {
110         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
111         unsigned long mode_clock = mode->clock * 1000;
112         unsigned long clk;
113         u32 value;
114         u32 escr;
115         u32 div;
116
117         /* Compute the clock divisor and select the internal or external dot
118          * clock based on the requested frequency.
119          */
120         clk = clk_get_rate(rcrtc->clock);
121         div = DIV_ROUND_CLOSEST(clk, mode_clock);
122         div = clamp(div, 1U, 64U) - 1;
123         escr = div | ESCR_DCLKSEL_CLKS;
124
125         if (rcrtc->extclock) {
126                 unsigned long extclk;
127                 unsigned long extrate;
128                 unsigned long rate;
129                 u32 extdiv;
130
131                 extclk = clk_get_rate(rcrtc->extclock);
132                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
133                 extdiv = clamp(extdiv, 1U, 64U) - 1;
134
135                 rate = clk / (div + 1);
136                 extrate = extclk / (extdiv + 1);
137
138                 if (abs((long)extrate - (long)mode_clock) <
139                     abs((long)rate - (long)mode_clock)) {
140                         dev_dbg(rcrtc->group->dev->dev,
141                                 "crtc%u: using external clock\n", rcrtc->index);
142                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
143                 }
144         }
145
146         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
147                             escr);
148         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
149
150         /* Signal polarities */
151         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
152               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
153               | DSMR_DIPM_DE | DSMR_CSPM;
154         rcar_du_crtc_write(rcrtc, DSMR, value);
155
156         /* Display timings */
157         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
158         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
159                                         mode->hdisplay - 19);
160         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
161                                         mode->hsync_start - 1);
162         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
163
164         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
165                                         mode->crtc_vsync_end - 2);
166         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
167                                         mode->crtc_vsync_end +
168                                         mode->crtc_vdisplay - 2);
169         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
170                                         mode->crtc_vsync_end +
171                                         mode->crtc_vsync_start - 1);
172         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
173
174         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
175         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
176 }
177
178 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
179                                enum rcar_du_output output)
180 {
181         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
182         struct rcar_du_device *rcdu = rcrtc->group->dev;
183
184         /* Store the route from the CRTC output to the DU output. The DU will be
185          * configured when starting the CRTC.
186          */
187         rcrtc->outputs |= BIT(output);
188
189         /* Store RGB routing to DPAD0, the hardware will be configured when
190          * starting the CRTC.
191          */
192         if (output == RCAR_DU_OUTPUT_DPAD0)
193                 rcdu->dpad0_source = rcrtc->index;
194 }
195
196 void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
197 {
198         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
199         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
200         unsigned int num_planes = 0;
201         unsigned int prio = 0;
202         unsigned int i;
203         u32 dptsr = 0;
204         u32 dspr = 0;
205
206         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
207                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
208                 unsigned int j;
209
210                 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
211                         continue;
212
213                 /* Insert the plane in the sorted planes array. */
214                 for (j = num_planes++; j > 0; --j) {
215                         if (planes[j-1]->zpos <= plane->zpos)
216                                 break;
217                         planes[j] = planes[j-1];
218                 }
219
220                 planes[j] = plane;
221                 prio += plane->format->planes * 4;
222         }
223
224         for (i = 0; i < num_planes; ++i) {
225                 struct rcar_du_plane *plane = planes[i];
226                 unsigned int index = plane->hwindex;
227
228                 prio -= 4;
229                 dspr |= (index + 1) << prio;
230                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
231
232                 if (plane->format->planes == 2) {
233                         index = (index + 1) % 8;
234
235                         prio -= 4;
236                         dspr |= (index + 1) << prio;
237                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
238                 }
239         }
240
241         /* Select display timing and dot clock generator 2 for planes associated
242          * with superposition controller 2.
243          */
244         if (rcrtc->index % 2) {
245                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
246
247                 /* The DPTSR register is updated when the display controller is
248                  * stopped. We thus need to restart the DU. Once again, sorry
249                  * for the flicker. One way to mitigate the issue would be to
250                  * pre-associate planes with CRTCs (either with a fixed 4/4
251                  * split, or through a module parameter). Flicker would then
252                  * occur only if we need to break the pre-association.
253                  */
254                 if (value != dptsr) {
255                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
256                         if (rcrtc->group->used_crtcs)
257                                 rcar_du_group_restart(rcrtc->group);
258                 }
259         }
260
261         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
262                             dspr);
263 }
264
265 /* -----------------------------------------------------------------------------
266  * Page Flip
267  */
268
269 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
270                                    struct drm_file *file)
271 {
272         struct drm_pending_vblank_event *event;
273         struct drm_device *dev = rcrtc->crtc.dev;
274         unsigned long flags;
275
276         /* Destroy the pending vertical blanking event associated with the
277          * pending page flip, if any, and disable vertical blanking interrupts.
278          */
279         spin_lock_irqsave(&dev->event_lock, flags);
280         event = rcrtc->event;
281         if (event && event->base.file_priv == file) {
282                 rcrtc->event = NULL;
283                 event->base.destroy(&event->base);
284                 drm_crtc_vblank_put(&rcrtc->crtc);
285         }
286         spin_unlock_irqrestore(&dev->event_lock, flags);
287 }
288
289 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
290 {
291         struct drm_pending_vblank_event *event;
292         struct drm_device *dev = rcrtc->crtc.dev;
293         unsigned long flags;
294
295         spin_lock_irqsave(&dev->event_lock, flags);
296         event = rcrtc->event;
297         rcrtc->event = NULL;
298         spin_unlock_irqrestore(&dev->event_lock, flags);
299
300         if (event == NULL)
301                 return;
302
303         spin_lock_irqsave(&dev->event_lock, flags);
304         drm_send_vblank_event(dev, rcrtc->index, event);
305         wake_up(&rcrtc->flip_wait);
306         spin_unlock_irqrestore(&dev->event_lock, flags);
307
308         drm_crtc_vblank_put(&rcrtc->crtc);
309 }
310
311 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
312 {
313         struct drm_device *dev = rcrtc->crtc.dev;
314         unsigned long flags;
315         bool pending;
316
317         spin_lock_irqsave(&dev->event_lock, flags);
318         pending = rcrtc->event != NULL;
319         spin_unlock_irqrestore(&dev->event_lock, flags);
320
321         return pending;
322 }
323
324 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
325 {
326         struct rcar_du_device *rcdu = rcrtc->group->dev;
327
328         if (wait_event_timeout(rcrtc->flip_wait,
329                                !rcar_du_crtc_page_flip_pending(rcrtc),
330                                msecs_to_jiffies(50)))
331                 return;
332
333         dev_warn(rcdu->dev, "page flip timeout\n");
334
335         rcar_du_crtc_finish_page_flip(rcrtc);
336 }
337
338 /* -----------------------------------------------------------------------------
339  * Start/Stop and Suspend/Resume
340  */
341
342 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
343 {
344         struct drm_crtc *crtc = &rcrtc->crtc;
345         bool interlaced;
346         unsigned int i;
347
348         if (rcrtc->started)
349                 return;
350
351         if (WARN_ON(rcrtc->plane->format == NULL))
352                 return;
353
354         /* Set display off and background to black */
355         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
356         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
357
358         /* Configure display timings and output routing */
359         rcar_du_crtc_set_display_timing(rcrtc);
360         rcar_du_group_set_routing(rcrtc->group);
361
362         /* FIXME: Commit the planes state. This is required here as the CRTC can
363          * be started from the DPMS and system resume handler, which don't go
364          * through .atomic_plane_update() and .atomic_flush() to commit plane
365          * state. Similarly a mode set operation without any update to planes
366          * will not go through atomic plane configuration either. Additionally,
367          * given that the plane state atomic commit occurs between CRTC disable
368          * and enable, the hardware state could also be lost due to runtime PM,
369          * requiring a full commit here. This will be fixed later after
370          * switching to atomic updates completely.
371          */
372         mutex_lock(&rcrtc->group->planes.lock);
373         rcar_du_crtc_update_planes(crtc);
374         mutex_unlock(&rcrtc->group->planes.lock);
375
376         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
377                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
378
379                 if (plane->crtc != crtc || !plane->enabled)
380                         continue;
381
382                 rcar_du_plane_setup(plane);
383         }
384
385         /* Select master sync mode. This enables display operation in master
386          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
387          * actively driven).
388          */
389         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
390         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
391                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
392                              DSYSR_TVM_MASTER);
393
394         rcar_du_group_start_stop(rcrtc->group, true);
395
396         /* Turn vertical blanking interrupt reporting back on. */
397         drm_crtc_vblank_on(crtc);
398
399         rcrtc->started = true;
400 }
401
402 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
403 {
404         struct drm_crtc *crtc = &rcrtc->crtc;
405
406         if (!rcrtc->started)
407                 return;
408
409         /* Disable vertical blanking interrupt reporting. We first need to wait
410          * for page flip completion before stopping the CRTC as userspace
411          * expects page flips to eventually complete.
412          */
413         rcar_du_crtc_wait_page_flip(rcrtc);
414         drm_crtc_vblank_off(crtc);
415
416         /* Select switch sync mode. This stops display operation and configures
417          * the HSYNC and VSYNC signals as inputs.
418          */
419         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
420
421         rcar_du_group_start_stop(rcrtc->group, false);
422
423         rcrtc->started = false;
424 }
425
426 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
427 {
428         rcar_du_crtc_stop(rcrtc);
429         rcar_du_crtc_put(rcrtc);
430 }
431
432 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
433 {
434         if (rcrtc->dpms != DRM_MODE_DPMS_ON)
435                 return;
436
437         rcar_du_crtc_get(rcrtc);
438         rcar_du_crtc_start(rcrtc);
439 }
440
441 static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
442 {
443         struct drm_crtc *crtc = &rcrtc->crtc;
444
445         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
446         rcar_du_plane_update_base(rcrtc->plane);
447 }
448
449 /* -----------------------------------------------------------------------------
450  * CRTC Functions
451  */
452
453 static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
454 {
455         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
456
457         if (mode != DRM_MODE_DPMS_ON)
458                 mode = DRM_MODE_DPMS_OFF;
459
460         if (rcrtc->dpms == mode)
461                 return;
462
463         if (mode == DRM_MODE_DPMS_ON) {
464                 rcar_du_crtc_get(rcrtc);
465                 rcar_du_crtc_start(rcrtc);
466         } else {
467                 rcar_du_crtc_stop(rcrtc);
468                 rcar_du_crtc_put(rcrtc);
469         }
470
471         rcrtc->dpms = mode;
472 }
473
474 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
475                                     const struct drm_display_mode *mode,
476                                     struct drm_display_mode *adjusted_mode)
477 {
478         /* TODO Fixup modes */
479         return true;
480 }
481
482 static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
483 {
484         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
485
486         /* We need to access the hardware during mode set, acquire a reference
487          * to the CRTC.
488          */
489         rcar_du_crtc_get(rcrtc);
490
491         /* Stop the CRTC, force the DPMS mode to off as a result. */
492         rcar_du_crtc_stop(rcrtc);
493
494         rcrtc->dpms = DRM_MODE_DPMS_OFF;
495         rcrtc->outputs = 0;
496 }
497
498 static void rcar_du_crtc_mode_set_nofb(struct drm_crtc *crtc)
499 {
500         /* No-op. We should configure the display timings here, but as we're
501          * called with the CRTC disabled clocks might be off, and we thus can't
502          * access the hardware. Let's just configure everything when enabling
503          * the CRTC.
504          */
505 }
506
507 static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
508 {
509         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
510
511         /* We're done, restart the CRTC and set the DPMS mode to on. The
512          * reference to the DU acquired at prepare() time will thus be released
513          * by the DPMS handler (possibly called by the disable() handler).
514          */
515         rcar_du_crtc_start(rcrtc);
516         rcrtc->dpms = DRM_MODE_DPMS_ON;
517 }
518
519 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
520 {
521         rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
522 }
523
524 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc)
525 {
526         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
527
528         /* We need to access the hardware during atomic update, acquire a
529          * reference to the CRTC.
530          */
531         rcar_du_crtc_get(rcrtc);
532 }
533
534 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc)
535 {
536         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
537
538         /* We're done, apply the configuration and drop the reference acquired
539          * in .atomic_begin().
540          */
541         mutex_lock(&rcrtc->group->planes.lock);
542         rcar_du_crtc_update_planes(crtc);
543         mutex_unlock(&rcrtc->group->planes.lock);
544
545         rcar_du_crtc_put(rcrtc);
546 }
547
548 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
549         .dpms = rcar_du_crtc_dpms,
550         .mode_fixup = rcar_du_crtc_mode_fixup,
551         .prepare = rcar_du_crtc_mode_prepare,
552         .commit = rcar_du_crtc_mode_commit,
553         .mode_set = drm_helper_crtc_mode_set,
554         .mode_set_nofb = rcar_du_crtc_mode_set_nofb,
555         .mode_set_base = drm_helper_crtc_mode_set_base,
556         .disable = rcar_du_crtc_disable,
557         .atomic_begin = rcar_du_crtc_atomic_begin,
558         .atomic_flush = rcar_du_crtc_atomic_flush,
559 };
560
561 static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
562                                   struct drm_framebuffer *fb,
563                                   struct drm_pending_vblank_event *event,
564                                   uint32_t page_flip_flags)
565 {
566         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
567         struct drm_device *dev = rcrtc->crtc.dev;
568         unsigned long flags;
569
570         spin_lock_irqsave(&dev->event_lock, flags);
571         if (rcrtc->event != NULL) {
572                 spin_unlock_irqrestore(&dev->event_lock, flags);
573                 return -EBUSY;
574         }
575         spin_unlock_irqrestore(&dev->event_lock, flags);
576
577         drm_atomic_set_fb_for_plane(crtc->primary->state, fb);
578
579         crtc->primary->fb = fb;
580         rcar_du_crtc_update_base(rcrtc);
581
582         if (event) {
583                 event->pipe = rcrtc->index;
584                 drm_crtc_vblank_get(crtc);
585                 spin_lock_irqsave(&dev->event_lock, flags);
586                 rcrtc->event = event;
587                 spin_unlock_irqrestore(&dev->event_lock, flags);
588         }
589
590         return 0;
591 }
592
593 static const struct drm_crtc_funcs crtc_funcs = {
594         .reset = drm_atomic_helper_crtc_reset,
595         .destroy = drm_crtc_cleanup,
596         .set_config = drm_crtc_helper_set_config,
597         .page_flip = rcar_du_crtc_page_flip,
598         .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
599         .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
600 };
601
602 /* -----------------------------------------------------------------------------
603  * Interrupt Handling
604  */
605
606 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
607 {
608         struct rcar_du_crtc *rcrtc = arg;
609         irqreturn_t ret = IRQ_NONE;
610         u32 status;
611
612         status = rcar_du_crtc_read(rcrtc, DSSR);
613         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
614
615         if (status & DSSR_FRM) {
616                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
617                 rcar_du_crtc_finish_page_flip(rcrtc);
618                 ret = IRQ_HANDLED;
619         }
620
621         return ret;
622 }
623
624 /* -----------------------------------------------------------------------------
625  * Initialization
626  */
627
628 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
629 {
630         static const unsigned int mmio_offsets[] = {
631                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
632         };
633
634         struct rcar_du_device *rcdu = rgrp->dev;
635         struct platform_device *pdev = to_platform_device(rcdu->dev);
636         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
637         struct drm_crtc *crtc = &rcrtc->crtc;
638         unsigned int irqflags;
639         struct clk *clk;
640         char clk_name[9];
641         char *name;
642         int irq;
643         int ret;
644
645         /* Get the CRTC clock and the optional external clock. */
646         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
647                 sprintf(clk_name, "du.%u", index);
648                 name = clk_name;
649         } else {
650                 name = NULL;
651         }
652
653         rcrtc->clock = devm_clk_get(rcdu->dev, name);
654         if (IS_ERR(rcrtc->clock)) {
655                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
656                 return PTR_ERR(rcrtc->clock);
657         }
658
659         sprintf(clk_name, "dclkin.%u", index);
660         clk = devm_clk_get(rcdu->dev, clk_name);
661         if (!IS_ERR(clk)) {
662                 rcrtc->extclock = clk;
663         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
664                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
665                 return -EPROBE_DEFER;
666         }
667
668         init_waitqueue_head(&rcrtc->flip_wait);
669
670         rcrtc->group = rgrp;
671         rcrtc->mmio_offset = mmio_offsets[index];
672         rcrtc->index = index;
673         rcrtc->dpms = DRM_MODE_DPMS_OFF;
674         rcrtc->plane = &rgrp->planes.planes[index % 2];
675
676         rcrtc->plane->crtc = crtc;
677
678         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane,
679                                         NULL, &crtc_funcs);
680         if (ret < 0)
681                 return ret;
682
683         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
684
685         /* Start with vertical blanking interrupt reporting disabled. */
686         drm_crtc_vblank_off(crtc);
687
688         /* Register the interrupt handler. */
689         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
690                 irq = platform_get_irq(pdev, index);
691                 irqflags = 0;
692         } else {
693                 irq = platform_get_irq(pdev, 0);
694                 irqflags = IRQF_SHARED;
695         }
696
697         if (irq < 0) {
698                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
699                 return irq;
700         }
701
702         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
703                                dev_name(rcdu->dev), rcrtc);
704         if (ret < 0) {
705                 dev_err(rcdu->dev,
706                         "failed to register IRQ for CRTC %u\n", index);
707                 return ret;
708         }
709
710         return 0;
711 }
712
713 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
714 {
715         if (enable) {
716                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
717                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
718         } else {
719                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
720         }
721 }