drm: rcar-du: Switch plane set_property to atomic helpers
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_crtc.h>
21 #include <drm/drm_crtc_helper.h>
22 #include <drm/drm_fb_cma_helper.h>
23 #include <drm/drm_gem_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_kms.h"
29 #include "rcar_du_plane.h"
30 #include "rcar_du_regs.h"
31
32 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
33 {
34         struct rcar_du_device *rcdu = rcrtc->group->dev;
35
36         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
37 }
38
39 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
40 {
41         struct rcar_du_device *rcdu = rcrtc->group->dev;
42
43         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
44 }
45
46 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
47 {
48         struct rcar_du_device *rcdu = rcrtc->group->dev;
49
50         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
51                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
52 }
53
54 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
55 {
56         struct rcar_du_device *rcdu = rcrtc->group->dev;
57
58         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
59                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
60 }
61
62 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
63                                  u32 clr, u32 set)
64 {
65         struct rcar_du_device *rcdu = rcrtc->group->dev;
66         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
67
68         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
69 }
70
71 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
72 {
73         int ret;
74
75         ret = clk_prepare_enable(rcrtc->clock);
76         if (ret < 0)
77                 return ret;
78
79         ret = clk_prepare_enable(rcrtc->extclock);
80         if (ret < 0)
81                 goto error_clock;
82
83         ret = rcar_du_group_get(rcrtc->group);
84         if (ret < 0)
85                 goto error_group;
86
87         return 0;
88
89 error_group:
90         clk_disable_unprepare(rcrtc->extclock);
91 error_clock:
92         clk_disable_unprepare(rcrtc->clock);
93         return ret;
94 }
95
96 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
97 {
98         rcar_du_group_put(rcrtc->group);
99
100         clk_disable_unprepare(rcrtc->extclock);
101         clk_disable_unprepare(rcrtc->clock);
102 }
103
104 /* -----------------------------------------------------------------------------
105  * Hardware Setup
106  */
107
108 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
109 {
110         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
111         unsigned long mode_clock = mode->clock * 1000;
112         unsigned long clk;
113         u32 value;
114         u32 escr;
115         u32 div;
116
117         /* Compute the clock divisor and select the internal or external dot
118          * clock based on the requested frequency.
119          */
120         clk = clk_get_rate(rcrtc->clock);
121         div = DIV_ROUND_CLOSEST(clk, mode_clock);
122         div = clamp(div, 1U, 64U) - 1;
123         escr = div | ESCR_DCLKSEL_CLKS;
124
125         if (rcrtc->extclock) {
126                 unsigned long extclk;
127                 unsigned long extrate;
128                 unsigned long rate;
129                 u32 extdiv;
130
131                 extclk = clk_get_rate(rcrtc->extclock);
132                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
133                 extdiv = clamp(extdiv, 1U, 64U) - 1;
134
135                 rate = clk / (div + 1);
136                 extrate = extclk / (extdiv + 1);
137
138                 if (abs((long)extrate - (long)mode_clock) <
139                     abs((long)rate - (long)mode_clock)) {
140                         dev_dbg(rcrtc->group->dev->dev,
141                                 "crtc%u: using external clock\n", rcrtc->index);
142                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
143                 }
144         }
145
146         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
147                             escr);
148         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
149
150         /* Signal polarities */
151         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
152               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
153               | DSMR_DIPM_DE | DSMR_CSPM;
154         rcar_du_crtc_write(rcrtc, DSMR, value);
155
156         /* Display timings */
157         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
158         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
159                                         mode->hdisplay - 19);
160         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
161                                         mode->hsync_start - 1);
162         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
163
164         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
165                                         mode->crtc_vsync_end - 2);
166         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
167                                         mode->crtc_vsync_end +
168                                         mode->crtc_vdisplay - 2);
169         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
170                                         mode->crtc_vsync_end +
171                                         mode->crtc_vsync_start - 1);
172         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
173
174         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
175         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
176 }
177
178 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
179                                enum rcar_du_output output)
180 {
181         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
182         struct rcar_du_device *rcdu = rcrtc->group->dev;
183
184         /* Store the route from the CRTC output to the DU output. The DU will be
185          * configured when starting the CRTC.
186          */
187         rcrtc->outputs |= BIT(output);
188
189         /* Store RGB routing to DPAD0, the hardware will be configured when
190          * starting the CRTC.
191          */
192         if (output == RCAR_DU_OUTPUT_DPAD0)
193                 rcdu->dpad0_source = rcrtc->index;
194 }
195
196 static unsigned int plane_zpos(struct rcar_du_plane *plane)
197 {
198         return to_rcar_du_plane_state(plane->plane.state)->zpos;
199 }
200
201 static void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
202 {
203         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
204         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
205         unsigned int num_planes = 0;
206         unsigned int prio = 0;
207         unsigned int i;
208         u32 dptsr = 0;
209         u32 dspr = 0;
210
211         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
212                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
213                 unsigned int j;
214
215                 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
216                         continue;
217
218                 /* Insert the plane in the sorted planes array. */
219                 for (j = num_planes++; j > 0; --j) {
220                         if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
221                                 break;
222                         planes[j] = planes[j-1];
223                 }
224
225                 planes[j] = plane;
226                 prio += plane->format->planes * 4;
227         }
228
229         for (i = 0; i < num_planes; ++i) {
230                 struct rcar_du_plane *plane = planes[i];
231                 unsigned int index = plane->hwindex;
232
233                 prio -= 4;
234                 dspr |= (index + 1) << prio;
235                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
236
237                 if (plane->format->planes == 2) {
238                         index = (index + 1) % 8;
239
240                         prio -= 4;
241                         dspr |= (index + 1) << prio;
242                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
243                 }
244         }
245
246         /* Select display timing and dot clock generator 2 for planes associated
247          * with superposition controller 2.
248          */
249         if (rcrtc->index % 2) {
250                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
251
252                 /* The DPTSR register is updated when the display controller is
253                  * stopped. We thus need to restart the DU. Once again, sorry
254                  * for the flicker. One way to mitigate the issue would be to
255                  * pre-associate planes with CRTCs (either with a fixed 4/4
256                  * split, or through a module parameter). Flicker would then
257                  * occur only if we need to break the pre-association.
258                  */
259                 if (value != dptsr) {
260                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
261                         if (rcrtc->group->used_crtcs)
262                                 rcar_du_group_restart(rcrtc->group);
263                 }
264         }
265
266         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
267                             dspr);
268 }
269
270 /* -----------------------------------------------------------------------------
271  * Page Flip
272  */
273
274 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
275                                    struct drm_file *file)
276 {
277         struct drm_pending_vblank_event *event;
278         struct drm_device *dev = rcrtc->crtc.dev;
279         unsigned long flags;
280
281         /* Destroy the pending vertical blanking event associated with the
282          * pending page flip, if any, and disable vertical blanking interrupts.
283          */
284         spin_lock_irqsave(&dev->event_lock, flags);
285         event = rcrtc->event;
286         if (event && event->base.file_priv == file) {
287                 rcrtc->event = NULL;
288                 event->base.destroy(&event->base);
289                 drm_crtc_vblank_put(&rcrtc->crtc);
290         }
291         spin_unlock_irqrestore(&dev->event_lock, flags);
292 }
293
294 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
295 {
296         struct drm_pending_vblank_event *event;
297         struct drm_device *dev = rcrtc->crtc.dev;
298         unsigned long flags;
299
300         spin_lock_irqsave(&dev->event_lock, flags);
301         event = rcrtc->event;
302         rcrtc->event = NULL;
303         spin_unlock_irqrestore(&dev->event_lock, flags);
304
305         if (event == NULL)
306                 return;
307
308         spin_lock_irqsave(&dev->event_lock, flags);
309         drm_send_vblank_event(dev, rcrtc->index, event);
310         wake_up(&rcrtc->flip_wait);
311         spin_unlock_irqrestore(&dev->event_lock, flags);
312
313         drm_crtc_vblank_put(&rcrtc->crtc);
314 }
315
316 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
317 {
318         struct drm_device *dev = rcrtc->crtc.dev;
319         unsigned long flags;
320         bool pending;
321
322         spin_lock_irqsave(&dev->event_lock, flags);
323         pending = rcrtc->event != NULL;
324         spin_unlock_irqrestore(&dev->event_lock, flags);
325
326         return pending;
327 }
328
329 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
330 {
331         struct rcar_du_device *rcdu = rcrtc->group->dev;
332
333         if (wait_event_timeout(rcrtc->flip_wait,
334                                !rcar_du_crtc_page_flip_pending(rcrtc),
335                                msecs_to_jiffies(50)))
336                 return;
337
338         dev_warn(rcdu->dev, "page flip timeout\n");
339
340         rcar_du_crtc_finish_page_flip(rcrtc);
341 }
342
343 /* -----------------------------------------------------------------------------
344  * Start/Stop and Suspend/Resume
345  */
346
347 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
348 {
349         struct drm_crtc *crtc = &rcrtc->crtc;
350         bool interlaced;
351         unsigned int i;
352
353         if (rcrtc->started)
354                 return;
355
356         if (WARN_ON(rcrtc->plane->format == NULL))
357                 return;
358
359         /* Set display off and background to black */
360         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
361         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
362
363         /* Configure display timings and output routing */
364         rcar_du_crtc_set_display_timing(rcrtc);
365         rcar_du_group_set_routing(rcrtc->group);
366
367         /* FIXME: Commit the planes state. This is required here as the CRTC can
368          * be started from the system resume handler, which don't go
369          * through .atomic_plane_update() and .atomic_flush() to commit plane
370          * state. Additionally, given that the plane state atomic commit occurs
371          * between CRTC disable and enable, the hardware state could also be
372          * lost due to runtime PM, requiring a full commit here. This will be
373          * fixed later after switching to atomic updates completely.
374          */
375         mutex_lock(&rcrtc->group->planes.lock);
376         rcar_du_crtc_update_planes(crtc);
377         mutex_unlock(&rcrtc->group->planes.lock);
378
379         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
380                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
381
382                 if (plane->crtc != crtc || !plane->enabled)
383                         continue;
384
385                 rcar_du_plane_setup(plane);
386         }
387
388         /* Select master sync mode. This enables display operation in master
389          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
390          * actively driven).
391          */
392         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
393         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
394                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
395                              DSYSR_TVM_MASTER);
396
397         rcar_du_group_start_stop(rcrtc->group, true);
398
399         /* Turn vertical blanking interrupt reporting back on. */
400         drm_crtc_vblank_on(crtc);
401
402         rcrtc->started = true;
403 }
404
405 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
406 {
407         struct drm_crtc *crtc = &rcrtc->crtc;
408
409         if (!rcrtc->started)
410                 return;
411
412         /* Disable vertical blanking interrupt reporting. We first need to wait
413          * for page flip completion before stopping the CRTC as userspace
414          * expects page flips to eventually complete.
415          */
416         rcar_du_crtc_wait_page_flip(rcrtc);
417         drm_crtc_vblank_off(crtc);
418
419         /* Select switch sync mode. This stops display operation and configures
420          * the HSYNC and VSYNC signals as inputs.
421          */
422         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
423
424         rcar_du_group_start_stop(rcrtc->group, false);
425
426         rcrtc->started = false;
427 }
428
429 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
430 {
431         rcar_du_crtc_stop(rcrtc);
432         rcar_du_crtc_put(rcrtc);
433 }
434
435 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
436 {
437         if (!rcrtc->enabled)
438                 return;
439
440         rcar_du_crtc_get(rcrtc);
441         rcar_du_crtc_start(rcrtc);
442 }
443
444 /* -----------------------------------------------------------------------------
445  * CRTC Functions
446  */
447
448 static void rcar_du_crtc_enable(struct drm_crtc *crtc)
449 {
450         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
451
452         if (rcrtc->enabled)
453                 return;
454
455         rcar_du_crtc_get(rcrtc);
456         rcar_du_crtc_start(rcrtc);
457
458         rcrtc->enabled = true;
459 }
460
461 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
462 {
463         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
464
465         if (!rcrtc->enabled)
466                 return;
467
468         rcar_du_crtc_stop(rcrtc);
469         rcar_du_crtc_put(rcrtc);
470
471         rcrtc->enabled = false;
472         rcrtc->outputs = 0;
473 }
474
475 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
476                                     const struct drm_display_mode *mode,
477                                     struct drm_display_mode *adjusted_mode)
478 {
479         /* TODO Fixup modes */
480         return true;
481 }
482
483 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc)
484 {
485         struct drm_pending_vblank_event *event = crtc->state->event;
486         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
487         struct drm_device *dev = rcrtc->crtc.dev;
488         unsigned long flags;
489
490         /* We need to access the hardware during atomic update, acquire a
491          * reference to the CRTC.
492          */
493         rcar_du_crtc_get(rcrtc);
494
495         if (event) {
496                 event->pipe = rcrtc->index;
497
498                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
499
500                 spin_lock_irqsave(&dev->event_lock, flags);
501                 rcrtc->event = event;
502                 spin_unlock_irqrestore(&dev->event_lock, flags);
503         }
504 }
505
506 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc)
507 {
508         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
509
510         /* We're done, apply the configuration and drop the reference acquired
511          * in .atomic_begin().
512          */
513         mutex_lock(&rcrtc->group->planes.lock);
514         rcar_du_crtc_update_planes(crtc);
515         mutex_unlock(&rcrtc->group->planes.lock);
516
517         rcar_du_crtc_put(rcrtc);
518 }
519
520 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
521         .mode_fixup = rcar_du_crtc_mode_fixup,
522         .disable = rcar_du_crtc_disable,
523         .enable = rcar_du_crtc_enable,
524         .atomic_begin = rcar_du_crtc_atomic_begin,
525         .atomic_flush = rcar_du_crtc_atomic_flush,
526 };
527
528 static const struct drm_crtc_funcs crtc_funcs = {
529         .reset = drm_atomic_helper_crtc_reset,
530         .destroy = drm_crtc_cleanup,
531         .set_config = drm_atomic_helper_set_config,
532         .page_flip = drm_atomic_helper_page_flip,
533         .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
534         .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
535 };
536
537 /* -----------------------------------------------------------------------------
538  * Interrupt Handling
539  */
540
541 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
542 {
543         struct rcar_du_crtc *rcrtc = arg;
544         irqreturn_t ret = IRQ_NONE;
545         u32 status;
546
547         status = rcar_du_crtc_read(rcrtc, DSSR);
548         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
549
550         if (status & DSSR_FRM) {
551                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
552                 rcar_du_crtc_finish_page_flip(rcrtc);
553                 ret = IRQ_HANDLED;
554         }
555
556         return ret;
557 }
558
559 /* -----------------------------------------------------------------------------
560  * Initialization
561  */
562
563 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
564 {
565         static const unsigned int mmio_offsets[] = {
566                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
567         };
568
569         struct rcar_du_device *rcdu = rgrp->dev;
570         struct platform_device *pdev = to_platform_device(rcdu->dev);
571         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
572         struct drm_crtc *crtc = &rcrtc->crtc;
573         unsigned int irqflags;
574         struct clk *clk;
575         char clk_name[9];
576         char *name;
577         int irq;
578         int ret;
579
580         /* Get the CRTC clock and the optional external clock. */
581         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
582                 sprintf(clk_name, "du.%u", index);
583                 name = clk_name;
584         } else {
585                 name = NULL;
586         }
587
588         rcrtc->clock = devm_clk_get(rcdu->dev, name);
589         if (IS_ERR(rcrtc->clock)) {
590                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
591                 return PTR_ERR(rcrtc->clock);
592         }
593
594         sprintf(clk_name, "dclkin.%u", index);
595         clk = devm_clk_get(rcdu->dev, clk_name);
596         if (!IS_ERR(clk)) {
597                 rcrtc->extclock = clk;
598         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
599                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
600                 return -EPROBE_DEFER;
601         }
602
603         init_waitqueue_head(&rcrtc->flip_wait);
604
605         rcrtc->group = rgrp;
606         rcrtc->mmio_offset = mmio_offsets[index];
607         rcrtc->index = index;
608         rcrtc->enabled = false;
609         rcrtc->plane = &rgrp->planes.planes[index % 2];
610
611         rcrtc->plane->crtc = crtc;
612
613         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane,
614                                         NULL, &crtc_funcs);
615         if (ret < 0)
616                 return ret;
617
618         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
619
620         /* Start with vertical blanking interrupt reporting disabled. */
621         drm_crtc_vblank_off(crtc);
622
623         /* Register the interrupt handler. */
624         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
625                 irq = platform_get_irq(pdev, index);
626                 irqflags = 0;
627         } else {
628                 irq = platform_get_irq(pdev, 0);
629                 irqflags = IRQF_SHARED;
630         }
631
632         if (irq < 0) {
633                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
634                 return irq;
635         }
636
637         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
638                                dev_name(rcdu->dev), rcrtc);
639         if (ret < 0) {
640                 dev_err(rcdu->dev,
641                         "failed to register IRQ for CRTC %u\n", index);
642                 return ret;
643         }
644
645         return 0;
646 }
647
648 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
649 {
650         if (enable) {
651                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
652                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
653         } else {
654                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
655         }
656 }