drm: rcar-du: Move plane format to plane state
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_crtc.h>
21 #include <drm/drm_crtc_helper.h>
22 #include <drm/drm_fb_cma_helper.h>
23 #include <drm/drm_gem_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_kms.h"
29 #include "rcar_du_plane.h"
30 #include "rcar_du_regs.h"
31
32 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
33 {
34         struct rcar_du_device *rcdu = rcrtc->group->dev;
35
36         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
37 }
38
39 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
40 {
41         struct rcar_du_device *rcdu = rcrtc->group->dev;
42
43         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
44 }
45
46 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
47 {
48         struct rcar_du_device *rcdu = rcrtc->group->dev;
49
50         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
51                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
52 }
53
54 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
55 {
56         struct rcar_du_device *rcdu = rcrtc->group->dev;
57
58         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
59                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
60 }
61
62 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
63                                  u32 clr, u32 set)
64 {
65         struct rcar_du_device *rcdu = rcrtc->group->dev;
66         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
67
68         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
69 }
70
71 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
72 {
73         int ret;
74
75         ret = clk_prepare_enable(rcrtc->clock);
76         if (ret < 0)
77                 return ret;
78
79         ret = clk_prepare_enable(rcrtc->extclock);
80         if (ret < 0)
81                 goto error_clock;
82
83         ret = rcar_du_group_get(rcrtc->group);
84         if (ret < 0)
85                 goto error_group;
86
87         return 0;
88
89 error_group:
90         clk_disable_unprepare(rcrtc->extclock);
91 error_clock:
92         clk_disable_unprepare(rcrtc->clock);
93         return ret;
94 }
95
96 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
97 {
98         rcar_du_group_put(rcrtc->group);
99
100         clk_disable_unprepare(rcrtc->extclock);
101         clk_disable_unprepare(rcrtc->clock);
102 }
103
104 /* -----------------------------------------------------------------------------
105  * Hardware Setup
106  */
107
108 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
109 {
110         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
111         unsigned long mode_clock = mode->clock * 1000;
112         unsigned long clk;
113         u32 value;
114         u32 escr;
115         u32 div;
116
117         /* Compute the clock divisor and select the internal or external dot
118          * clock based on the requested frequency.
119          */
120         clk = clk_get_rate(rcrtc->clock);
121         div = DIV_ROUND_CLOSEST(clk, mode_clock);
122         div = clamp(div, 1U, 64U) - 1;
123         escr = div | ESCR_DCLKSEL_CLKS;
124
125         if (rcrtc->extclock) {
126                 unsigned long extclk;
127                 unsigned long extrate;
128                 unsigned long rate;
129                 u32 extdiv;
130
131                 extclk = clk_get_rate(rcrtc->extclock);
132                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
133                 extdiv = clamp(extdiv, 1U, 64U) - 1;
134
135                 rate = clk / (div + 1);
136                 extrate = extclk / (extdiv + 1);
137
138                 if (abs((long)extrate - (long)mode_clock) <
139                     abs((long)rate - (long)mode_clock)) {
140                         dev_dbg(rcrtc->group->dev->dev,
141                                 "crtc%u: using external clock\n", rcrtc->index);
142                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
143                 }
144         }
145
146         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
147                             escr);
148         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
149
150         /* Signal polarities */
151         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
152               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
153               | DSMR_DIPM_DE | DSMR_CSPM;
154         rcar_du_crtc_write(rcrtc, DSMR, value);
155
156         /* Display timings */
157         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
158         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
159                                         mode->hdisplay - 19);
160         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
161                                         mode->hsync_start - 1);
162         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
163
164         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
165                                         mode->crtc_vsync_end - 2);
166         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
167                                         mode->crtc_vsync_end +
168                                         mode->crtc_vdisplay - 2);
169         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
170                                         mode->crtc_vsync_end +
171                                         mode->crtc_vsync_start - 1);
172         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
173
174         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
175         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
176 }
177
178 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
179                                enum rcar_du_output output)
180 {
181         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
182         struct rcar_du_device *rcdu = rcrtc->group->dev;
183
184         /* Store the route from the CRTC output to the DU output. The DU will be
185          * configured when starting the CRTC.
186          */
187         rcrtc->outputs |= BIT(output);
188
189         /* Store RGB routing to DPAD0, the hardware will be configured when
190          * starting the CRTC.
191          */
192         if (output == RCAR_DU_OUTPUT_DPAD0)
193                 rcdu->dpad0_source = rcrtc->index;
194 }
195
196 static unsigned int plane_zpos(struct rcar_du_plane *plane)
197 {
198         return to_rcar_du_plane_state(plane->plane.state)->zpos;
199 }
200
201 static const struct rcar_du_format_info *
202 plane_format(struct rcar_du_plane *plane)
203 {
204         return to_rcar_du_plane_state(plane->plane.state)->format;
205 }
206
207 static void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
208 {
209         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
210         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
211         unsigned int num_planes = 0;
212         unsigned int prio = 0;
213         unsigned int i;
214         u32 dptsr = 0;
215         u32 dspr = 0;
216
217         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
218                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
219                 unsigned int j;
220
221                 if (plane->plane.state->crtc != &rcrtc->crtc)
222                         continue;
223
224                 /* Insert the plane in the sorted planes array. */
225                 for (j = num_planes++; j > 0; --j) {
226                         if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
227                                 break;
228                         planes[j] = planes[j-1];
229                 }
230
231                 planes[j] = plane;
232                 prio += plane_format(plane)->planes * 4;
233         }
234
235         for (i = 0; i < num_planes; ++i) {
236                 struct rcar_du_plane *plane = planes[i];
237                 unsigned int index = plane->hwindex;
238
239                 prio -= 4;
240                 dspr |= (index + 1) << prio;
241                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
242
243                 if (plane_format(plane)->planes == 2) {
244                         index = (index + 1) % 8;
245
246                         prio -= 4;
247                         dspr |= (index + 1) << prio;
248                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
249                 }
250         }
251
252         /* Select display timing and dot clock generator 2 for planes associated
253          * with superposition controller 2.
254          */
255         if (rcrtc->index % 2) {
256                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
257
258                 /* The DPTSR register is updated when the display controller is
259                  * stopped. We thus need to restart the DU. Once again, sorry
260                  * for the flicker. One way to mitigate the issue would be to
261                  * pre-associate planes with CRTCs (either with a fixed 4/4
262                  * split, or through a module parameter). Flicker would then
263                  * occur only if we need to break the pre-association.
264                  */
265                 if (value != dptsr) {
266                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
267                         if (rcrtc->group->used_crtcs)
268                                 rcar_du_group_restart(rcrtc->group);
269                 }
270         }
271
272         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
273                             dspr);
274 }
275
276 /* -----------------------------------------------------------------------------
277  * Page Flip
278  */
279
280 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
281                                    struct drm_file *file)
282 {
283         struct drm_pending_vblank_event *event;
284         struct drm_device *dev = rcrtc->crtc.dev;
285         unsigned long flags;
286
287         /* Destroy the pending vertical blanking event associated with the
288          * pending page flip, if any, and disable vertical blanking interrupts.
289          */
290         spin_lock_irqsave(&dev->event_lock, flags);
291         event = rcrtc->event;
292         if (event && event->base.file_priv == file) {
293                 rcrtc->event = NULL;
294                 event->base.destroy(&event->base);
295                 drm_crtc_vblank_put(&rcrtc->crtc);
296         }
297         spin_unlock_irqrestore(&dev->event_lock, flags);
298 }
299
300 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
301 {
302         struct drm_pending_vblank_event *event;
303         struct drm_device *dev = rcrtc->crtc.dev;
304         unsigned long flags;
305
306         spin_lock_irqsave(&dev->event_lock, flags);
307         event = rcrtc->event;
308         rcrtc->event = NULL;
309         spin_unlock_irqrestore(&dev->event_lock, flags);
310
311         if (event == NULL)
312                 return;
313
314         spin_lock_irqsave(&dev->event_lock, flags);
315         drm_send_vblank_event(dev, rcrtc->index, event);
316         wake_up(&rcrtc->flip_wait);
317         spin_unlock_irqrestore(&dev->event_lock, flags);
318
319         drm_crtc_vblank_put(&rcrtc->crtc);
320 }
321
322 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
323 {
324         struct drm_device *dev = rcrtc->crtc.dev;
325         unsigned long flags;
326         bool pending;
327
328         spin_lock_irqsave(&dev->event_lock, flags);
329         pending = rcrtc->event != NULL;
330         spin_unlock_irqrestore(&dev->event_lock, flags);
331
332         return pending;
333 }
334
335 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
336 {
337         struct rcar_du_device *rcdu = rcrtc->group->dev;
338
339         if (wait_event_timeout(rcrtc->flip_wait,
340                                !rcar_du_crtc_page_flip_pending(rcrtc),
341                                msecs_to_jiffies(50)))
342                 return;
343
344         dev_warn(rcdu->dev, "page flip timeout\n");
345
346         rcar_du_crtc_finish_page_flip(rcrtc);
347 }
348
349 /* -----------------------------------------------------------------------------
350  * Start/Stop and Suspend/Resume
351  */
352
353 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
354 {
355         struct drm_crtc *crtc = &rcrtc->crtc;
356         bool interlaced;
357         unsigned int i;
358
359         if (rcrtc->started)
360                 return;
361
362         /* Set display off and background to black */
363         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
364         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
365
366         /* Configure display timings and output routing */
367         rcar_du_crtc_set_display_timing(rcrtc);
368         rcar_du_group_set_routing(rcrtc->group);
369
370         /* FIXME: Commit the planes state. This is required here as the CRTC can
371          * be started from the system resume handler, which don't go
372          * through .atomic_plane_update() and .atomic_flush() to commit plane
373          * state. Additionally, given that the plane state atomic commit occurs
374          * between CRTC disable and enable, the hardware state could also be
375          * lost due to runtime PM, requiring a full commit here. This will be
376          * fixed later after switching to atomic updates completely.
377          */
378         mutex_lock(&rcrtc->group->planes.lock);
379         rcar_du_crtc_update_planes(crtc);
380         mutex_unlock(&rcrtc->group->planes.lock);
381
382         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
383                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
384
385                 if (plane->plane.state->crtc != crtc)
386                         continue;
387
388                 rcar_du_plane_setup(plane);
389         }
390
391         /* Select master sync mode. This enables display operation in master
392          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
393          * actively driven).
394          */
395         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
396         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
397                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
398                              DSYSR_TVM_MASTER);
399
400         rcar_du_group_start_stop(rcrtc->group, true);
401
402         /* Turn vertical blanking interrupt reporting back on. */
403         drm_crtc_vblank_on(crtc);
404
405         rcrtc->started = true;
406 }
407
408 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
409 {
410         struct drm_crtc *crtc = &rcrtc->crtc;
411
412         if (!rcrtc->started)
413                 return;
414
415         /* Disable vertical blanking interrupt reporting. We first need to wait
416          * for page flip completion before stopping the CRTC as userspace
417          * expects page flips to eventually complete.
418          */
419         rcar_du_crtc_wait_page_flip(rcrtc);
420         drm_crtc_vblank_off(crtc);
421
422         /* Select switch sync mode. This stops display operation and configures
423          * the HSYNC and VSYNC signals as inputs.
424          */
425         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
426
427         rcar_du_group_start_stop(rcrtc->group, false);
428
429         rcrtc->started = false;
430 }
431
432 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
433 {
434         rcar_du_crtc_stop(rcrtc);
435         rcar_du_crtc_put(rcrtc);
436 }
437
438 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
439 {
440         if (!rcrtc->enabled)
441                 return;
442
443         rcar_du_crtc_get(rcrtc);
444         rcar_du_crtc_start(rcrtc);
445 }
446
447 /* -----------------------------------------------------------------------------
448  * CRTC Functions
449  */
450
451 static void rcar_du_crtc_enable(struct drm_crtc *crtc)
452 {
453         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
454
455         if (rcrtc->enabled)
456                 return;
457
458         rcar_du_crtc_get(rcrtc);
459         rcar_du_crtc_start(rcrtc);
460
461         rcrtc->enabled = true;
462 }
463
464 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
465 {
466         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
467
468         if (!rcrtc->enabled)
469                 return;
470
471         rcar_du_crtc_stop(rcrtc);
472         rcar_du_crtc_put(rcrtc);
473
474         rcrtc->enabled = false;
475         rcrtc->outputs = 0;
476 }
477
478 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
479                                     const struct drm_display_mode *mode,
480                                     struct drm_display_mode *adjusted_mode)
481 {
482         /* TODO Fixup modes */
483         return true;
484 }
485
486 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc)
487 {
488         struct drm_pending_vblank_event *event = crtc->state->event;
489         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
490         struct drm_device *dev = rcrtc->crtc.dev;
491         unsigned long flags;
492
493         /* We need to access the hardware during atomic update, acquire a
494          * reference to the CRTC.
495          */
496         rcar_du_crtc_get(rcrtc);
497
498         if (event) {
499                 event->pipe = rcrtc->index;
500
501                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
502
503                 spin_lock_irqsave(&dev->event_lock, flags);
504                 rcrtc->event = event;
505                 spin_unlock_irqrestore(&dev->event_lock, flags);
506         }
507 }
508
509 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc)
510 {
511         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
512
513         /* We're done, apply the configuration and drop the reference acquired
514          * in .atomic_begin().
515          */
516         mutex_lock(&rcrtc->group->planes.lock);
517         rcar_du_crtc_update_planes(crtc);
518         mutex_unlock(&rcrtc->group->planes.lock);
519
520         rcar_du_crtc_put(rcrtc);
521 }
522
523 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
524         .mode_fixup = rcar_du_crtc_mode_fixup,
525         .disable = rcar_du_crtc_disable,
526         .enable = rcar_du_crtc_enable,
527         .atomic_begin = rcar_du_crtc_atomic_begin,
528         .atomic_flush = rcar_du_crtc_atomic_flush,
529 };
530
531 static const struct drm_crtc_funcs crtc_funcs = {
532         .reset = drm_atomic_helper_crtc_reset,
533         .destroy = drm_crtc_cleanup,
534         .set_config = drm_atomic_helper_set_config,
535         .page_flip = drm_atomic_helper_page_flip,
536         .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
537         .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
538 };
539
540 /* -----------------------------------------------------------------------------
541  * Interrupt Handling
542  */
543
544 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
545 {
546         struct rcar_du_crtc *rcrtc = arg;
547         irqreturn_t ret = IRQ_NONE;
548         u32 status;
549
550         status = rcar_du_crtc_read(rcrtc, DSSR);
551         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
552
553         if (status & DSSR_FRM) {
554                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
555                 rcar_du_crtc_finish_page_flip(rcrtc);
556                 ret = IRQ_HANDLED;
557         }
558
559         return ret;
560 }
561
562 /* -----------------------------------------------------------------------------
563  * Initialization
564  */
565
566 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
567 {
568         static const unsigned int mmio_offsets[] = {
569                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
570         };
571
572         struct rcar_du_device *rcdu = rgrp->dev;
573         struct platform_device *pdev = to_platform_device(rcdu->dev);
574         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
575         struct drm_crtc *crtc = &rcrtc->crtc;
576         unsigned int irqflags;
577         struct clk *clk;
578         char clk_name[9];
579         char *name;
580         int irq;
581         int ret;
582
583         /* Get the CRTC clock and the optional external clock. */
584         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
585                 sprintf(clk_name, "du.%u", index);
586                 name = clk_name;
587         } else {
588                 name = NULL;
589         }
590
591         rcrtc->clock = devm_clk_get(rcdu->dev, name);
592         if (IS_ERR(rcrtc->clock)) {
593                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
594                 return PTR_ERR(rcrtc->clock);
595         }
596
597         sprintf(clk_name, "dclkin.%u", index);
598         clk = devm_clk_get(rcdu->dev, clk_name);
599         if (!IS_ERR(clk)) {
600                 rcrtc->extclock = clk;
601         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
602                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
603                 return -EPROBE_DEFER;
604         }
605
606         init_waitqueue_head(&rcrtc->flip_wait);
607
608         rcrtc->group = rgrp;
609         rcrtc->mmio_offset = mmio_offsets[index];
610         rcrtc->index = index;
611         rcrtc->enabled = false;
612
613         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc,
614                                         &rgrp->planes.planes[index % 2].plane,
615                                         NULL, &crtc_funcs);
616         if (ret < 0)
617                 return ret;
618
619         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
620
621         /* Start with vertical blanking interrupt reporting disabled. */
622         drm_crtc_vblank_off(crtc);
623
624         /* Register the interrupt handler. */
625         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
626                 irq = platform_get_irq(pdev, index);
627                 irqflags = 0;
628         } else {
629                 irq = platform_get_irq(pdev, 0);
630                 irqflags = IRQF_SHARED;
631         }
632
633         if (irq < 0) {
634                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
635                 return irq;
636         }
637
638         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
639                                dev_name(rcdu->dev), rcrtc);
640         if (ret < 0) {
641                 dev_err(rcdu->dev,
642                         "failed to register IRQ for CRTC %u\n", index);
643                 return ret;
644         }
645
646         return 0;
647 }
648
649 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
650 {
651         if (enable) {
652                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
653                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
654         } else {
655                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
656         }
657 }