drm: rcar-du: Handle primary plane config through atomic plane ops
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_kms.h"
27 #include "rcar_du_plane.h"
28 #include "rcar_du_regs.h"
29
30 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
31 {
32         struct rcar_du_device *rcdu = rcrtc->group->dev;
33
34         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
35 }
36
37 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
38 {
39         struct rcar_du_device *rcdu = rcrtc->group->dev;
40
41         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
42 }
43
44 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
45 {
46         struct rcar_du_device *rcdu = rcrtc->group->dev;
47
48         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
49                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
50 }
51
52 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
53 {
54         struct rcar_du_device *rcdu = rcrtc->group->dev;
55
56         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
57                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
58 }
59
60 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
61                                  u32 clr, u32 set)
62 {
63         struct rcar_du_device *rcdu = rcrtc->group->dev;
64         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
65
66         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
67 }
68
69 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
70 {
71         int ret;
72
73         ret = clk_prepare_enable(rcrtc->clock);
74         if (ret < 0)
75                 return ret;
76
77         ret = clk_prepare_enable(rcrtc->extclock);
78         if (ret < 0)
79                 goto error_clock;
80
81         ret = rcar_du_group_get(rcrtc->group);
82         if (ret < 0)
83                 goto error_group;
84
85         return 0;
86
87 error_group:
88         clk_disable_unprepare(rcrtc->extclock);
89 error_clock:
90         clk_disable_unprepare(rcrtc->clock);
91         return ret;
92 }
93
94 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
95 {
96         rcar_du_group_put(rcrtc->group);
97
98         clk_disable_unprepare(rcrtc->extclock);
99         clk_disable_unprepare(rcrtc->clock);
100 }
101
102 /* -----------------------------------------------------------------------------
103  * Hardware Setup
104  */
105
106 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
107 {
108         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
109         unsigned long mode_clock = mode->clock * 1000;
110         unsigned long clk;
111         u32 value;
112         u32 escr;
113         u32 div;
114
115         /* Compute the clock divisor and select the internal or external dot
116          * clock based on the requested frequency.
117          */
118         clk = clk_get_rate(rcrtc->clock);
119         div = DIV_ROUND_CLOSEST(clk, mode_clock);
120         div = clamp(div, 1U, 64U) - 1;
121         escr = div | ESCR_DCLKSEL_CLKS;
122
123         if (rcrtc->extclock) {
124                 unsigned long extclk;
125                 unsigned long extrate;
126                 unsigned long rate;
127                 u32 extdiv;
128
129                 extclk = clk_get_rate(rcrtc->extclock);
130                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
131                 extdiv = clamp(extdiv, 1U, 64U) - 1;
132
133                 rate = clk / (div + 1);
134                 extrate = extclk / (extdiv + 1);
135
136                 if (abs((long)extrate - (long)mode_clock) <
137                     abs((long)rate - (long)mode_clock)) {
138                         dev_dbg(rcrtc->group->dev->dev,
139                                 "crtc%u: using external clock\n", rcrtc->index);
140                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
141                 }
142         }
143
144         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
145                             escr);
146         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
147
148         /* Signal polarities */
149         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
150               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
151               | DSMR_DIPM_DE | DSMR_CSPM;
152         rcar_du_crtc_write(rcrtc, DSMR, value);
153
154         /* Display timings */
155         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
156         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
157                                         mode->hdisplay - 19);
158         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
159                                         mode->hsync_start - 1);
160         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
161
162         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
163                                         mode->crtc_vsync_end - 2);
164         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
165                                         mode->crtc_vsync_end +
166                                         mode->crtc_vdisplay - 2);
167         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
168                                         mode->crtc_vsync_end +
169                                         mode->crtc_vsync_start - 1);
170         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
171
172         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
173         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
174 }
175
176 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
177                                enum rcar_du_output output)
178 {
179         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
180         struct rcar_du_device *rcdu = rcrtc->group->dev;
181
182         /* Store the route from the CRTC output to the DU output. The DU will be
183          * configured when starting the CRTC.
184          */
185         rcrtc->outputs |= BIT(output);
186
187         /* Store RGB routing to DPAD0, the hardware will be configured when
188          * starting the CRTC.
189          */
190         if (output == RCAR_DU_OUTPUT_DPAD0)
191                 rcdu->dpad0_source = rcrtc->index;
192 }
193
194 void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
195 {
196         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
197         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
198         unsigned int num_planes = 0;
199         unsigned int prio = 0;
200         unsigned int i;
201         u32 dptsr = 0;
202         u32 dspr = 0;
203
204         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
205                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
206                 unsigned int j;
207
208                 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
209                         continue;
210
211                 /* Insert the plane in the sorted planes array. */
212                 for (j = num_planes++; j > 0; --j) {
213                         if (planes[j-1]->zpos <= plane->zpos)
214                                 break;
215                         planes[j] = planes[j-1];
216                 }
217
218                 planes[j] = plane;
219                 prio += plane->format->planes * 4;
220         }
221
222         for (i = 0; i < num_planes; ++i) {
223                 struct rcar_du_plane *plane = planes[i];
224                 unsigned int index = plane->hwindex;
225
226                 prio -= 4;
227                 dspr |= (index + 1) << prio;
228                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
229
230                 if (plane->format->planes == 2) {
231                         index = (index + 1) % 8;
232
233                         prio -= 4;
234                         dspr |= (index + 1) << prio;
235                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
236                 }
237         }
238
239         /* Select display timing and dot clock generator 2 for planes associated
240          * with superposition controller 2.
241          */
242         if (rcrtc->index % 2) {
243                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
244
245                 /* The DPTSR register is updated when the display controller is
246                  * stopped. We thus need to restart the DU. Once again, sorry
247                  * for the flicker. One way to mitigate the issue would be to
248                  * pre-associate planes with CRTCs (either with a fixed 4/4
249                  * split, or through a module parameter). Flicker would then
250                  * occur only if we need to break the pre-association.
251                  */
252                 if (value != dptsr) {
253                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
254                         if (rcrtc->group->used_crtcs)
255                                 rcar_du_group_restart(rcrtc->group);
256                 }
257         }
258
259         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
260                             dspr);
261 }
262
263 /* -----------------------------------------------------------------------------
264  * Page Flip
265  */
266
267 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
268                                    struct drm_file *file)
269 {
270         struct drm_pending_vblank_event *event;
271         struct drm_device *dev = rcrtc->crtc.dev;
272         unsigned long flags;
273
274         /* Destroy the pending vertical blanking event associated with the
275          * pending page flip, if any, and disable vertical blanking interrupts.
276          */
277         spin_lock_irqsave(&dev->event_lock, flags);
278         event = rcrtc->event;
279         if (event && event->base.file_priv == file) {
280                 rcrtc->event = NULL;
281                 event->base.destroy(&event->base);
282                 drm_crtc_vblank_put(&rcrtc->crtc);
283         }
284         spin_unlock_irqrestore(&dev->event_lock, flags);
285 }
286
287 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
288 {
289         struct drm_pending_vblank_event *event;
290         struct drm_device *dev = rcrtc->crtc.dev;
291         unsigned long flags;
292
293         spin_lock_irqsave(&dev->event_lock, flags);
294         event = rcrtc->event;
295         rcrtc->event = NULL;
296         spin_unlock_irqrestore(&dev->event_lock, flags);
297
298         if (event == NULL)
299                 return;
300
301         spin_lock_irqsave(&dev->event_lock, flags);
302         drm_send_vblank_event(dev, rcrtc->index, event);
303         wake_up(&rcrtc->flip_wait);
304         spin_unlock_irqrestore(&dev->event_lock, flags);
305
306         drm_crtc_vblank_put(&rcrtc->crtc);
307 }
308
309 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
310 {
311         struct drm_device *dev = rcrtc->crtc.dev;
312         unsigned long flags;
313         bool pending;
314
315         spin_lock_irqsave(&dev->event_lock, flags);
316         pending = rcrtc->event != NULL;
317         spin_unlock_irqrestore(&dev->event_lock, flags);
318
319         return pending;
320 }
321
322 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
323 {
324         struct rcar_du_device *rcdu = rcrtc->group->dev;
325
326         if (wait_event_timeout(rcrtc->flip_wait,
327                                !rcar_du_crtc_page_flip_pending(rcrtc),
328                                msecs_to_jiffies(50)))
329                 return;
330
331         dev_warn(rcdu->dev, "page flip timeout\n");
332
333         rcar_du_crtc_finish_page_flip(rcrtc);
334 }
335
336 /* -----------------------------------------------------------------------------
337  * Start/Stop and Suspend/Resume
338  */
339
340 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
341 {
342         struct drm_crtc *crtc = &rcrtc->crtc;
343         bool interlaced;
344         unsigned int i;
345
346         if (rcrtc->started)
347                 return;
348
349         if (WARN_ON(rcrtc->plane->format == NULL))
350                 return;
351
352         /* Set display off and background to black */
353         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
354         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
355
356         /* Configure display timings and output routing */
357         rcar_du_crtc_set_display_timing(rcrtc);
358         rcar_du_group_set_routing(rcrtc->group);
359
360         /* FIXME: Commit the planes state. This is required here as the CRTC can
361          * be started from the DPMS and system resume handler, which don't go
362          * through .atomic_plane_update() and .atomic_flush() to commit plane
363          * state. Similarly a mode set operation without any update to planes
364          * will not go through atomic plane configuration either. Additionally,
365          * given that the plane state atomic commit occurs between CRTC disable
366          * and enable, the hardware state could also be lost due to runtime PM,
367          * requiring a full commit here. This will be fixed later after
368          * switching to atomic updates completely.
369          */
370         mutex_lock(&rcrtc->group->planes.lock);
371         rcar_du_crtc_update_planes(crtc);
372         mutex_unlock(&rcrtc->group->planes.lock);
373
374         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
375                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
376
377                 if (plane->crtc != crtc || !plane->enabled)
378                         continue;
379
380                 rcar_du_plane_setup(plane);
381         }
382
383         /* Select master sync mode. This enables display operation in master
384          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
385          * actively driven).
386          */
387         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
388         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
389                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
390                              DSYSR_TVM_MASTER);
391
392         rcar_du_group_start_stop(rcrtc->group, true);
393
394         /* Turn vertical blanking interrupt reporting back on. */
395         drm_crtc_vblank_on(crtc);
396
397         rcrtc->started = true;
398 }
399
400 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
401 {
402         struct drm_crtc *crtc = &rcrtc->crtc;
403
404         if (!rcrtc->started)
405                 return;
406
407         /* Disable vertical blanking interrupt reporting. We first need to wait
408          * for page flip completion before stopping the CRTC as userspace
409          * expects page flips to eventually complete.
410          */
411         rcar_du_crtc_wait_page_flip(rcrtc);
412         drm_crtc_vblank_off(crtc);
413
414         /* Select switch sync mode. This stops display operation and configures
415          * the HSYNC and VSYNC signals as inputs.
416          */
417         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
418
419         rcar_du_group_start_stop(rcrtc->group, false);
420
421         rcrtc->started = false;
422 }
423
424 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
425 {
426         rcar_du_crtc_stop(rcrtc);
427         rcar_du_crtc_put(rcrtc);
428 }
429
430 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
431 {
432         if (rcrtc->dpms != DRM_MODE_DPMS_ON)
433                 return;
434
435         rcar_du_crtc_get(rcrtc);
436         rcar_du_crtc_start(rcrtc);
437 }
438
439 static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
440 {
441         struct drm_crtc *crtc = &rcrtc->crtc;
442
443         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
444         rcar_du_plane_update_base(rcrtc->plane);
445 }
446
447 /* -----------------------------------------------------------------------------
448  * CRTC Functions
449  */
450
451 static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
452 {
453         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
454
455         if (mode != DRM_MODE_DPMS_ON)
456                 mode = DRM_MODE_DPMS_OFF;
457
458         if (rcrtc->dpms == mode)
459                 return;
460
461         if (mode == DRM_MODE_DPMS_ON) {
462                 rcar_du_crtc_get(rcrtc);
463                 rcar_du_crtc_start(rcrtc);
464         } else {
465                 rcar_du_crtc_stop(rcrtc);
466                 rcar_du_crtc_put(rcrtc);
467         }
468
469         rcrtc->dpms = mode;
470 }
471
472 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
473                                     const struct drm_display_mode *mode,
474                                     struct drm_display_mode *adjusted_mode)
475 {
476         /* TODO Fixup modes */
477         return true;
478 }
479
480 static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
481 {
482         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
483
484         /* We need to access the hardware during mode set, acquire a reference
485          * to the CRTC.
486          */
487         rcar_du_crtc_get(rcrtc);
488
489         /* Stop the CRTC, force the DPMS mode to off as a result. */
490         rcar_du_crtc_stop(rcrtc);
491
492         rcrtc->dpms = DRM_MODE_DPMS_OFF;
493         rcrtc->outputs = 0;
494 }
495
496 static void rcar_du_crtc_mode_set_nofb(struct drm_crtc *crtc)
497 {
498         /* No-op. We should configure the display timings here, but as we're
499          * called with the CRTC disabled clocks might be off, and we thus can't
500          * access the hardware. Let's just configure everything when enabling
501          * the CRTC.
502          */
503 }
504
505 static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
506 {
507         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
508
509         /* We're done, restart the CRTC and set the DPMS mode to on. The
510          * reference to the DU acquired at prepare() time will thus be released
511          * by the DPMS handler (possibly called by the disable() handler).
512          */
513         rcar_du_crtc_start(rcrtc);
514         rcrtc->dpms = DRM_MODE_DPMS_ON;
515 }
516
517 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
518 {
519         rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
520 }
521
522 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc)
523 {
524         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
525
526         /* We need to access the hardware during atomic update, acquire a
527          * reference to the CRTC.
528          */
529         rcar_du_crtc_get(rcrtc);
530 }
531
532 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc)
533 {
534         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
535
536         /* We're done, apply the configuration and drop the reference acquired
537          * in .atomic_begin().
538          */
539         mutex_lock(&rcrtc->group->planes.lock);
540         rcar_du_crtc_update_planes(crtc);
541         mutex_unlock(&rcrtc->group->planes.lock);
542
543         rcar_du_crtc_put(rcrtc);
544 }
545
546 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
547         .dpms = rcar_du_crtc_dpms,
548         .mode_fixup = rcar_du_crtc_mode_fixup,
549         .prepare = rcar_du_crtc_mode_prepare,
550         .commit = rcar_du_crtc_mode_commit,
551         .mode_set = drm_helper_crtc_mode_set,
552         .mode_set_nofb = rcar_du_crtc_mode_set_nofb,
553         .mode_set_base = drm_helper_crtc_mode_set_base,
554         .disable = rcar_du_crtc_disable,
555         .atomic_begin = rcar_du_crtc_atomic_begin,
556         .atomic_flush = rcar_du_crtc_atomic_flush,
557 };
558
559 static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
560                                   struct drm_framebuffer *fb,
561                                   struct drm_pending_vblank_event *event,
562                                   uint32_t page_flip_flags)
563 {
564         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
565         struct drm_device *dev = rcrtc->crtc.dev;
566         unsigned long flags;
567
568         spin_lock_irqsave(&dev->event_lock, flags);
569         if (rcrtc->event != NULL) {
570                 spin_unlock_irqrestore(&dev->event_lock, flags);
571                 return -EBUSY;
572         }
573         spin_unlock_irqrestore(&dev->event_lock, flags);
574
575         crtc->primary->fb = fb;
576         rcar_du_crtc_update_base(rcrtc);
577
578         if (event) {
579                 event->pipe = rcrtc->index;
580                 drm_crtc_vblank_get(crtc);
581                 spin_lock_irqsave(&dev->event_lock, flags);
582                 rcrtc->event = event;
583                 spin_unlock_irqrestore(&dev->event_lock, flags);
584         }
585
586         return 0;
587 }
588
589 static const struct drm_crtc_funcs crtc_funcs = {
590         .destroy = drm_crtc_cleanup,
591         .set_config = drm_crtc_helper_set_config,
592         .page_flip = rcar_du_crtc_page_flip,
593 };
594
595 /* -----------------------------------------------------------------------------
596  * Interrupt Handling
597  */
598
599 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
600 {
601         struct rcar_du_crtc *rcrtc = arg;
602         irqreturn_t ret = IRQ_NONE;
603         u32 status;
604
605         status = rcar_du_crtc_read(rcrtc, DSSR);
606         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
607
608         if (status & DSSR_FRM) {
609                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
610                 rcar_du_crtc_finish_page_flip(rcrtc);
611                 ret = IRQ_HANDLED;
612         }
613
614         return ret;
615 }
616
617 /* -----------------------------------------------------------------------------
618  * Initialization
619  */
620
621 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
622 {
623         static const unsigned int mmio_offsets[] = {
624                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
625         };
626
627         struct rcar_du_device *rcdu = rgrp->dev;
628         struct platform_device *pdev = to_platform_device(rcdu->dev);
629         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
630         struct drm_crtc *crtc = &rcrtc->crtc;
631         unsigned int irqflags;
632         struct clk *clk;
633         char clk_name[9];
634         char *name;
635         int irq;
636         int ret;
637
638         /* Get the CRTC clock and the optional external clock. */
639         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
640                 sprintf(clk_name, "du.%u", index);
641                 name = clk_name;
642         } else {
643                 name = NULL;
644         }
645
646         rcrtc->clock = devm_clk_get(rcdu->dev, name);
647         if (IS_ERR(rcrtc->clock)) {
648                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
649                 return PTR_ERR(rcrtc->clock);
650         }
651
652         sprintf(clk_name, "dclkin.%u", index);
653         clk = devm_clk_get(rcdu->dev, clk_name);
654         if (!IS_ERR(clk)) {
655                 rcrtc->extclock = clk;
656         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
657                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
658                 return -EPROBE_DEFER;
659         }
660
661         init_waitqueue_head(&rcrtc->flip_wait);
662
663         rcrtc->group = rgrp;
664         rcrtc->mmio_offset = mmio_offsets[index];
665         rcrtc->index = index;
666         rcrtc->dpms = DRM_MODE_DPMS_OFF;
667         rcrtc->plane = &rgrp->planes.planes[index % 2];
668
669         rcrtc->plane->crtc = crtc;
670
671         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane,
672                                         NULL, &crtc_funcs);
673         if (ret < 0)
674                 return ret;
675
676         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
677
678         /* Start with vertical blanking interrupt reporting disabled. */
679         drm_crtc_vblank_off(crtc);
680
681         /* Register the interrupt handler. */
682         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
683                 irq = platform_get_irq(pdev, index);
684                 irqflags = 0;
685         } else {
686                 irq = platform_get_irq(pdev, 0);
687                 irqflags = IRQF_SHARED;
688         }
689
690         if (irq < 0) {
691                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
692                 return irq;
693         }
694
695         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
696                                dev_name(rcdu->dev), rcrtc);
697         if (ret < 0) {
698                 dev_err(rcdu->dev,
699                         "failed to register IRQ for CRTC %u\n", index);
700                 return ret;
701         }
702
703         return 0;
704 }
705
706 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
707 {
708         if (enable) {
709                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
710                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
711         } else {
712                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
713         }
714 }