drm: rcar-du: Implement planes atomic operations
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_kms.h"
27 #include "rcar_du_plane.h"
28 #include "rcar_du_regs.h"
29
30 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
31 {
32         struct rcar_du_device *rcdu = rcrtc->group->dev;
33
34         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
35 }
36
37 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
38 {
39         struct rcar_du_device *rcdu = rcrtc->group->dev;
40
41         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
42 }
43
44 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
45 {
46         struct rcar_du_device *rcdu = rcrtc->group->dev;
47
48         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
49                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
50 }
51
52 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
53 {
54         struct rcar_du_device *rcdu = rcrtc->group->dev;
55
56         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
57                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
58 }
59
60 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
61                                  u32 clr, u32 set)
62 {
63         struct rcar_du_device *rcdu = rcrtc->group->dev;
64         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
65
66         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
67 }
68
69 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
70 {
71         int ret;
72
73         ret = clk_prepare_enable(rcrtc->clock);
74         if (ret < 0)
75                 return ret;
76
77         ret = clk_prepare_enable(rcrtc->extclock);
78         if (ret < 0)
79                 goto error_clock;
80
81         ret = rcar_du_group_get(rcrtc->group);
82         if (ret < 0)
83                 goto error_group;
84
85         return 0;
86
87 error_group:
88         clk_disable_unprepare(rcrtc->extclock);
89 error_clock:
90         clk_disable_unprepare(rcrtc->clock);
91         return ret;
92 }
93
94 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
95 {
96         rcar_du_group_put(rcrtc->group);
97
98         clk_disable_unprepare(rcrtc->extclock);
99         clk_disable_unprepare(rcrtc->clock);
100 }
101
102 /* -----------------------------------------------------------------------------
103  * Hardware Setup
104  */
105
106 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
107 {
108         const struct drm_display_mode *mode = &rcrtc->crtc.mode;
109         unsigned long mode_clock = mode->clock * 1000;
110         unsigned long clk;
111         u32 value;
112         u32 escr;
113         u32 div;
114
115         /* Compute the clock divisor and select the internal or external dot
116          * clock based on the requested frequency.
117          */
118         clk = clk_get_rate(rcrtc->clock);
119         div = DIV_ROUND_CLOSEST(clk, mode_clock);
120         div = clamp(div, 1U, 64U) - 1;
121         escr = div | ESCR_DCLKSEL_CLKS;
122
123         if (rcrtc->extclock) {
124                 unsigned long extclk;
125                 unsigned long extrate;
126                 unsigned long rate;
127                 u32 extdiv;
128
129                 extclk = clk_get_rate(rcrtc->extclock);
130                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
131                 extdiv = clamp(extdiv, 1U, 64U) - 1;
132
133                 rate = clk / (div + 1);
134                 extrate = extclk / (extdiv + 1);
135
136                 if (abs((long)extrate - (long)mode_clock) <
137                     abs((long)rate - (long)mode_clock)) {
138                         dev_dbg(rcrtc->group->dev->dev,
139                                 "crtc%u: using external clock\n", rcrtc->index);
140                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
141                 }
142         }
143
144         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
145                             escr);
146         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
147
148         /* Signal polarities */
149         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
150               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
151               | DSMR_DIPM_DE | DSMR_CSPM;
152         rcar_du_crtc_write(rcrtc, DSMR, value);
153
154         /* Display timings */
155         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
156         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
157                                         mode->hdisplay - 19);
158         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
159                                         mode->hsync_start - 1);
160         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
161
162         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
163                                         mode->crtc_vsync_end - 2);
164         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
165                                         mode->crtc_vsync_end +
166                                         mode->crtc_vdisplay - 2);
167         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
168                                         mode->crtc_vsync_end +
169                                         mode->crtc_vsync_start - 1);
170         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
171
172         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
173         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
174 }
175
176 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
177                                enum rcar_du_output output)
178 {
179         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
180         struct rcar_du_device *rcdu = rcrtc->group->dev;
181
182         /* Store the route from the CRTC output to the DU output. The DU will be
183          * configured when starting the CRTC.
184          */
185         rcrtc->outputs |= BIT(output);
186
187         /* Store RGB routing to DPAD0, the hardware will be configured when
188          * starting the CRTC.
189          */
190         if (output == RCAR_DU_OUTPUT_DPAD0)
191                 rcdu->dpad0_source = rcrtc->index;
192 }
193
194 void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
195 {
196         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
197         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
198         unsigned int num_planes = 0;
199         unsigned int prio = 0;
200         unsigned int i;
201         u32 dptsr = 0;
202         u32 dspr = 0;
203
204         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
205                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
206                 unsigned int j;
207
208                 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
209                         continue;
210
211                 /* Insert the plane in the sorted planes array. */
212                 for (j = num_planes++; j > 0; --j) {
213                         if (planes[j-1]->zpos <= plane->zpos)
214                                 break;
215                         planes[j] = planes[j-1];
216                 }
217
218                 planes[j] = plane;
219                 prio += plane->format->planes * 4;
220         }
221
222         for (i = 0; i < num_planes; ++i) {
223                 struct rcar_du_plane *plane = planes[i];
224                 unsigned int index = plane->hwindex;
225
226                 prio -= 4;
227                 dspr |= (index + 1) << prio;
228                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
229
230                 if (plane->format->planes == 2) {
231                         index = (index + 1) % 8;
232
233                         prio -= 4;
234                         dspr |= (index + 1) << prio;
235                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
236                 }
237         }
238
239         /* Select display timing and dot clock generator 2 for planes associated
240          * with superposition controller 2.
241          */
242         if (rcrtc->index % 2) {
243                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
244
245                 /* The DPTSR register is updated when the display controller is
246                  * stopped. We thus need to restart the DU. Once again, sorry
247                  * for the flicker. One way to mitigate the issue would be to
248                  * pre-associate planes with CRTCs (either with a fixed 4/4
249                  * split, or through a module parameter). Flicker would then
250                  * occur only if we need to break the pre-association.
251                  */
252                 if (value != dptsr) {
253                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
254                         if (rcrtc->group->used_crtcs)
255                                 rcar_du_group_restart(rcrtc->group);
256                 }
257         }
258
259         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
260                             dspr);
261 }
262
263 /* -----------------------------------------------------------------------------
264  * Page Flip
265  */
266
267 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
268                                    struct drm_file *file)
269 {
270         struct drm_pending_vblank_event *event;
271         struct drm_device *dev = rcrtc->crtc.dev;
272         unsigned long flags;
273
274         /* Destroy the pending vertical blanking event associated with the
275          * pending page flip, if any, and disable vertical blanking interrupts.
276          */
277         spin_lock_irqsave(&dev->event_lock, flags);
278         event = rcrtc->event;
279         if (event && event->base.file_priv == file) {
280                 rcrtc->event = NULL;
281                 event->base.destroy(&event->base);
282                 drm_crtc_vblank_put(&rcrtc->crtc);
283         }
284         spin_unlock_irqrestore(&dev->event_lock, flags);
285 }
286
287 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
288 {
289         struct drm_pending_vblank_event *event;
290         struct drm_device *dev = rcrtc->crtc.dev;
291         unsigned long flags;
292
293         spin_lock_irqsave(&dev->event_lock, flags);
294         event = rcrtc->event;
295         rcrtc->event = NULL;
296         spin_unlock_irqrestore(&dev->event_lock, flags);
297
298         if (event == NULL)
299                 return;
300
301         spin_lock_irqsave(&dev->event_lock, flags);
302         drm_send_vblank_event(dev, rcrtc->index, event);
303         wake_up(&rcrtc->flip_wait);
304         spin_unlock_irqrestore(&dev->event_lock, flags);
305
306         drm_crtc_vblank_put(&rcrtc->crtc);
307 }
308
309 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
310 {
311         struct drm_device *dev = rcrtc->crtc.dev;
312         unsigned long flags;
313         bool pending;
314
315         spin_lock_irqsave(&dev->event_lock, flags);
316         pending = rcrtc->event != NULL;
317         spin_unlock_irqrestore(&dev->event_lock, flags);
318
319         return pending;
320 }
321
322 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
323 {
324         struct rcar_du_device *rcdu = rcrtc->group->dev;
325
326         if (wait_event_timeout(rcrtc->flip_wait,
327                                !rcar_du_crtc_page_flip_pending(rcrtc),
328                                msecs_to_jiffies(50)))
329                 return;
330
331         dev_warn(rcdu->dev, "page flip timeout\n");
332
333         rcar_du_crtc_finish_page_flip(rcrtc);
334 }
335
336 /* -----------------------------------------------------------------------------
337  * Start/Stop and Suspend/Resume
338  */
339
340 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
341 {
342         struct drm_crtc *crtc = &rcrtc->crtc;
343         bool interlaced;
344         unsigned int i;
345
346         if (rcrtc->started)
347                 return;
348
349         if (WARN_ON(rcrtc->plane->format == NULL))
350                 return;
351
352         /* Set display off and background to black */
353         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
354         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
355
356         /* Configure display timings and output routing */
357         rcar_du_crtc_set_display_timing(rcrtc);
358         rcar_du_group_set_routing(rcrtc->group);
359
360         /* FIXME: Commit the planes state. This is required here as the CRTC can
361          * be started from the DPMS and system resume handler, which don't go
362          * through .atomic_plane_update() and .atomic_flush() to commit plane
363          * state. Similarly a mode set operation without any update to planes
364          * will not go through atomic plane configuration either. Additionally,
365          * given that the plane state atomic commit occurs between CRTC disable
366          * and enable, the hardware state could also be lost due to runtime PM,
367          * requiring a full commit here. This will be fixed later after
368          * switching to atomic updates completely.
369          */
370         mutex_lock(&rcrtc->group->planes.lock);
371         rcrtc->plane->enabled = true;
372         rcar_du_crtc_update_planes(crtc);
373         mutex_unlock(&rcrtc->group->planes.lock);
374
375         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
376                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
377
378                 if (plane->crtc != crtc || !plane->enabled)
379                         continue;
380
381                 rcar_du_plane_setup(plane);
382         }
383
384         /* Select master sync mode. This enables display operation in master
385          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
386          * actively driven).
387          */
388         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
389         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
390                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
391                              DSYSR_TVM_MASTER);
392
393         rcar_du_group_start_stop(rcrtc->group, true);
394
395         /* Turn vertical blanking interrupt reporting back on. */
396         drm_crtc_vblank_on(crtc);
397
398         rcrtc->started = true;
399 }
400
401 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
402 {
403         struct drm_crtc *crtc = &rcrtc->crtc;
404
405         if (!rcrtc->started)
406                 return;
407
408         /* Disable vertical blanking interrupt reporting. We first need to wait
409          * for page flip completion before stopping the CRTC as userspace
410          * expects page flips to eventually complete.
411          */
412         rcar_du_crtc_wait_page_flip(rcrtc);
413         drm_crtc_vblank_off(crtc);
414
415         mutex_lock(&rcrtc->group->planes.lock);
416         rcrtc->plane->enabled = false;
417         rcar_du_crtc_update_planes(crtc);
418         mutex_unlock(&rcrtc->group->planes.lock);
419
420         /* Select switch sync mode. This stops display operation and configures
421          * the HSYNC and VSYNC signals as inputs.
422          */
423         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
424
425         rcar_du_group_start_stop(rcrtc->group, false);
426
427         rcrtc->started = false;
428 }
429
430 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
431 {
432         rcar_du_crtc_stop(rcrtc);
433         rcar_du_crtc_put(rcrtc);
434 }
435
436 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
437 {
438         if (rcrtc->dpms != DRM_MODE_DPMS_ON)
439                 return;
440
441         rcar_du_crtc_get(rcrtc);
442         rcar_du_crtc_start(rcrtc);
443 }
444
445 static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
446 {
447         struct drm_crtc *crtc = &rcrtc->crtc;
448
449         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
450         rcar_du_plane_update_base(rcrtc->plane);
451 }
452
453 /* -----------------------------------------------------------------------------
454  * CRTC Functions
455  */
456
457 static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
458 {
459         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
460
461         if (mode != DRM_MODE_DPMS_ON)
462                 mode = DRM_MODE_DPMS_OFF;
463
464         if (rcrtc->dpms == mode)
465                 return;
466
467         if (mode == DRM_MODE_DPMS_ON) {
468                 rcar_du_crtc_get(rcrtc);
469                 rcar_du_crtc_start(rcrtc);
470         } else {
471                 rcar_du_crtc_stop(rcrtc);
472                 rcar_du_crtc_put(rcrtc);
473         }
474
475         rcrtc->dpms = mode;
476 }
477
478 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
479                                     const struct drm_display_mode *mode,
480                                     struct drm_display_mode *adjusted_mode)
481 {
482         /* TODO Fixup modes */
483         return true;
484 }
485
486 static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
487 {
488         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
489
490         /* We need to access the hardware during mode set, acquire a reference
491          * to the CRTC.
492          */
493         rcar_du_crtc_get(rcrtc);
494
495         /* Stop the CRTC and release the plane. Force the DPMS mode to off as a
496          * result.
497          */
498         rcar_du_crtc_stop(rcrtc);
499         rcar_du_plane_release(rcrtc->plane);
500
501         rcrtc->dpms = DRM_MODE_DPMS_OFF;
502 }
503
504 static int rcar_du_crtc_mode_set(struct drm_crtc *crtc,
505                                  struct drm_display_mode *mode,
506                                  struct drm_display_mode *adjusted_mode,
507                                  int x, int y,
508                                  struct drm_framebuffer *old_fb)
509 {
510         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
511         struct rcar_du_device *rcdu = rcrtc->group->dev;
512         const struct rcar_du_format_info *format;
513         int ret;
514
515         format = rcar_du_format_info(crtc->primary->fb->pixel_format);
516         if (format == NULL) {
517                 dev_dbg(rcdu->dev, "mode_set: unsupported format %08x\n",
518                         crtc->primary->fb->pixel_format);
519                 ret = -EINVAL;
520                 goto error;
521         }
522
523         ret = rcar_du_plane_reserve(rcrtc->plane, format);
524         if (ret < 0)
525                 goto error;
526
527         rcrtc->plane->format = format;
528
529         rcrtc->plane->src_x = x;
530         rcrtc->plane->src_y = y;
531         rcrtc->plane->width = mode->hdisplay;
532         rcrtc->plane->height = mode->vdisplay;
533
534         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
535
536         rcrtc->outputs = 0;
537
538         return 0;
539
540 error:
541         /* There's no rollback/abort operation to clean up in case of error. We
542          * thus need to release the reference to the CRTC acquired in prepare()
543          * here.
544          */
545         rcar_du_crtc_put(rcrtc);
546         return ret;
547 }
548
549 static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
550 {
551         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
552
553         /* We're done, restart the CRTC and set the DPMS mode to on. The
554          * reference to the DU acquired at prepare() time will thus be released
555          * by the DPMS handler (possibly called by the disable() handler).
556          */
557         rcar_du_crtc_start(rcrtc);
558         rcrtc->dpms = DRM_MODE_DPMS_ON;
559 }
560
561 static int rcar_du_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
562                                       struct drm_framebuffer *old_fb)
563 {
564         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
565
566         rcrtc->plane->src_x = x;
567         rcrtc->plane->src_y = y;
568
569         rcar_du_crtc_update_base(rcrtc);
570
571         return 0;
572 }
573
574 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
575 {
576         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
577
578         rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
579         rcar_du_plane_release(rcrtc->plane);
580 }
581
582 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc)
583 {
584         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
585
586         /* We need to access the hardware during atomic update, acquire a
587          * reference to the CRTC.
588          */
589         rcar_du_crtc_get(rcrtc);
590 }
591
592 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc)
593 {
594         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
595
596         /* We're done, apply the configuration and drop the reference acquired
597          * in .atomic_begin().
598          */
599         mutex_lock(&rcrtc->group->planes.lock);
600         rcar_du_crtc_update_planes(crtc);
601         mutex_unlock(&rcrtc->group->planes.lock);
602
603         rcar_du_crtc_put(rcrtc);
604 }
605
606 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
607         .dpms = rcar_du_crtc_dpms,
608         .mode_fixup = rcar_du_crtc_mode_fixup,
609         .prepare = rcar_du_crtc_mode_prepare,
610         .commit = rcar_du_crtc_mode_commit,
611         .mode_set = rcar_du_crtc_mode_set,
612         .mode_set_base = rcar_du_crtc_mode_set_base,
613         .disable = rcar_du_crtc_disable,
614         .atomic_begin = rcar_du_crtc_atomic_begin,
615         .atomic_flush = rcar_du_crtc_atomic_flush,
616 };
617
618 static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
619                                   struct drm_framebuffer *fb,
620                                   struct drm_pending_vblank_event *event,
621                                   uint32_t page_flip_flags)
622 {
623         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
624         struct drm_device *dev = rcrtc->crtc.dev;
625         unsigned long flags;
626
627         spin_lock_irqsave(&dev->event_lock, flags);
628         if (rcrtc->event != NULL) {
629                 spin_unlock_irqrestore(&dev->event_lock, flags);
630                 return -EBUSY;
631         }
632         spin_unlock_irqrestore(&dev->event_lock, flags);
633
634         crtc->primary->fb = fb;
635         rcar_du_crtc_update_base(rcrtc);
636
637         if (event) {
638                 event->pipe = rcrtc->index;
639                 drm_crtc_vblank_get(crtc);
640                 spin_lock_irqsave(&dev->event_lock, flags);
641                 rcrtc->event = event;
642                 spin_unlock_irqrestore(&dev->event_lock, flags);
643         }
644
645         return 0;
646 }
647
648 static const struct drm_crtc_funcs crtc_funcs = {
649         .destroy = drm_crtc_cleanup,
650         .set_config = drm_crtc_helper_set_config,
651         .page_flip = rcar_du_crtc_page_flip,
652 };
653
654 /* -----------------------------------------------------------------------------
655  * Interrupt Handling
656  */
657
658 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
659 {
660         struct rcar_du_crtc *rcrtc = arg;
661         irqreturn_t ret = IRQ_NONE;
662         u32 status;
663
664         status = rcar_du_crtc_read(rcrtc, DSSR);
665         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
666
667         if (status & DSSR_FRM) {
668                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
669                 rcar_du_crtc_finish_page_flip(rcrtc);
670                 ret = IRQ_HANDLED;
671         }
672
673         return ret;
674 }
675
676 /* -----------------------------------------------------------------------------
677  * Initialization
678  */
679
680 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
681 {
682         static const unsigned int mmio_offsets[] = {
683                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
684         };
685
686         struct rcar_du_device *rcdu = rgrp->dev;
687         struct platform_device *pdev = to_platform_device(rcdu->dev);
688         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
689         struct drm_crtc *crtc = &rcrtc->crtc;
690         unsigned int irqflags;
691         struct clk *clk;
692         char clk_name[9];
693         char *name;
694         int irq;
695         int ret;
696
697         /* Get the CRTC clock and the optional external clock. */
698         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
699                 sprintf(clk_name, "du.%u", index);
700                 name = clk_name;
701         } else {
702                 name = NULL;
703         }
704
705         rcrtc->clock = devm_clk_get(rcdu->dev, name);
706         if (IS_ERR(rcrtc->clock)) {
707                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
708                 return PTR_ERR(rcrtc->clock);
709         }
710
711         sprintf(clk_name, "dclkin.%u", index);
712         clk = devm_clk_get(rcdu->dev, clk_name);
713         if (!IS_ERR(clk)) {
714                 rcrtc->extclock = clk;
715         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
716                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
717                 return -EPROBE_DEFER;
718         }
719
720         init_waitqueue_head(&rcrtc->flip_wait);
721
722         rcrtc->group = rgrp;
723         rcrtc->mmio_offset = mmio_offsets[index];
724         rcrtc->index = index;
725         rcrtc->dpms = DRM_MODE_DPMS_OFF;
726         rcrtc->plane = &rgrp->planes.planes[index % 2];
727
728         rcrtc->plane->crtc = crtc;
729
730         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane,
731                                         NULL, &crtc_funcs);
732         if (ret < 0)
733                 return ret;
734
735         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
736
737         /* Start with vertical blanking interrupt reporting disabled. */
738         drm_crtc_vblank_off(crtc);
739
740         /* Register the interrupt handler. */
741         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
742                 irq = platform_get_irq(pdev, index);
743                 irqflags = 0;
744         } else {
745                 irq = platform_get_irq(pdev, 0);
746                 irqflags = IRQF_SHARED;
747         }
748
749         if (irq < 0) {
750                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
751                 return irq;
752         }
753
754         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
755                                dev_name(rcdu->dev), rcrtc);
756         if (ret < 0) {
757                 dev_err(rcdu->dev,
758                         "failed to register IRQ for CRTC %u\n", index);
759                 return ret;
760         }
761
762         return 0;
763 }
764
765 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
766 {
767         if (enable) {
768                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
769                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
770         } else {
771                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
772         }
773 }