ef223d581a705062a24958966e5530da5f32628c
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53         .name = "bo_count",
54         .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59         int i;
60
61         for (i = 0; i <= TTM_PL_PRIV5; i++)
62                 if (flags & (1 << i)) {
63                         *mem_type = i;
64                         return 0;
65                 }
66         return -EINVAL;
67 }
68
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73         pr_err("    has_type: %d\n", man->has_type);
74         pr_err("    use_type: %d\n", man->use_type);
75         pr_err("    flags: 0x%08X\n", man->flags);
76         pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77         pr_err("    size: %llu\n", man->size);
78         pr_err("    available_caching: 0x%08X\n", man->available_caching);
79         pr_err("    default_caching: 0x%08X\n", man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90                bo, bo->mem.num_pages, bo->mem.size >> 10,
91                bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 pr_err("  placement[%d]=0x%08X (%d)\n",
98                        i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140         size_t acc_size = bo->acc_size;
141
142         BUG_ON(atomic_read(&bo->list_kref.refcount));
143         BUG_ON(atomic_read(&bo->kref.refcount));
144         BUG_ON(atomic_read(&bo->cpu_writers));
145         BUG_ON(bo->sync_obj != NULL);
146         BUG_ON(bo->mem.mm_node != NULL);
147         BUG_ON(!list_empty(&bo->lru));
148         BUG_ON(!list_empty(&bo->ddestroy));
149
150         if (bo->ttm)
151                 ttm_tt_destroy(bo->ttm);
152         atomic_dec(&bo->glob->bo_count);
153         if (bo->destroy)
154                 bo->destroy(bo);
155         else {
156                 kfree(bo);
157         }
158         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163         if (interruptible) {
164                 return wait_event_interruptible(bo->event_queue,
165                                                !ttm_bo_is_reserved(bo));
166         } else {
167                 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
168                 return 0;
169         }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175         struct ttm_bo_device *bdev = bo->bdev;
176         struct ttm_mem_type_manager *man;
177
178         BUG_ON(!ttm_bo_is_reserved(bo));
179
180         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182                 BUG_ON(!list_empty(&bo->lru));
183
184                 man = &bdev->man[bo->mem.mem_type];
185                 list_add_tail(&bo->lru, &man->lru);
186                 kref_get(&bo->list_kref);
187
188                 if (bo->ttm != NULL) {
189                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
190                         kref_get(&bo->list_kref);
191                 }
192         }
193 }
194
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197         int put_count = 0;
198
199         if (!list_empty(&bo->swap)) {
200                 list_del_init(&bo->swap);
201                 ++put_count;
202         }
203         if (!list_empty(&bo->lru)) {
204                 list_del_init(&bo->lru);
205                 ++put_count;
206         }
207
208         /*
209          * TODO: Add a driver hook to delete from
210          * driver-specific LRU's here.
211          */
212
213         return put_count;
214 }
215
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217                           bool interruptible,
218                           bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220         struct ttm_bo_global *glob = bo->glob;
221         int ret;
222
223         while (unlikely(atomic_read(&bo->reserved) != 0)) {
224                 /**
225                  * Deadlock avoidance for multi-bo reserving.
226                  */
227                 if (use_sequence && bo->seq_valid) {
228                         /**
229                          * We've already reserved this one.
230                          */
231                         if (unlikely(sequence == bo->val_seq))
232                                 return -EDEADLK;
233                         /**
234                          * Already reserved by a thread that will not back
235                          * off for us. We need to back off.
236                          */
237                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
238                                 return -EAGAIN;
239                 }
240
241                 if (no_wait)
242                         return -EBUSY;
243
244                 spin_unlock(&glob->lru_lock);
245                 ret = ttm_bo_wait_unreserved(bo, interruptible);
246                 spin_lock(&glob->lru_lock);
247
248                 if (unlikely(ret))
249                         return ret;
250         }
251
252         atomic_set(&bo->reserved, 1);
253         if (use_sequence) {
254                 /**
255                  * Wake up waiters that may need to recheck for deadlock,
256                  * if we decreased the sequence number.
257                  */
258                 if (unlikely((bo->val_seq - sequence < (1 << 31))
259                              || !bo->seq_valid))
260                         wake_up_all(&bo->event_queue);
261
262                 bo->val_seq = sequence;
263                 bo->seq_valid = true;
264         } else {
265                 bo->seq_valid = false;
266         }
267
268         return 0;
269 }
270 EXPORT_SYMBOL(ttm_bo_reserve);
271
272 static void ttm_bo_ref_bug(struct kref *list_kref)
273 {
274         BUG();
275 }
276
277 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
278                          bool never_free)
279 {
280         kref_sub(&bo->list_kref, count,
281                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
282 }
283
284 int ttm_bo_reserve(struct ttm_buffer_object *bo,
285                    bool interruptible,
286                    bool no_wait, bool use_sequence, uint32_t sequence)
287 {
288         struct ttm_bo_global *glob = bo->glob;
289         int put_count = 0;
290         int ret;
291
292         spin_lock(&glob->lru_lock);
293         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
294                                     sequence);
295         if (likely(ret == 0))
296                 put_count = ttm_bo_del_from_lru(bo);
297         spin_unlock(&glob->lru_lock);
298
299         ttm_bo_list_ref_sub(bo, put_count, true);
300
301         return ret;
302 }
303
304 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
305 {
306         ttm_bo_add_to_lru(bo);
307         atomic_set(&bo->reserved, 0);
308         wake_up_all(&bo->event_queue);
309 }
310
311 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
312 {
313         struct ttm_bo_global *glob = bo->glob;
314
315         spin_lock(&glob->lru_lock);
316         ttm_bo_unreserve_locked(bo);
317         spin_unlock(&glob->lru_lock);
318 }
319 EXPORT_SYMBOL(ttm_bo_unreserve);
320
321 /*
322  * Call bo->mutex locked.
323  */
324 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
325 {
326         struct ttm_bo_device *bdev = bo->bdev;
327         struct ttm_bo_global *glob = bo->glob;
328         int ret = 0;
329         uint32_t page_flags = 0;
330
331         TTM_ASSERT_LOCKED(&bo->mutex);
332         bo->ttm = NULL;
333
334         if (bdev->need_dma32)
335                 page_flags |= TTM_PAGE_FLAG_DMA32;
336
337         switch (bo->type) {
338         case ttm_bo_type_device:
339                 if (zero_alloc)
340                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
341         case ttm_bo_type_kernel:
342                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
343                                                       page_flags, glob->dummy_read_page);
344                 if (unlikely(bo->ttm == NULL))
345                         ret = -ENOMEM;
346                 break;
347         case ttm_bo_type_sg:
348                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
349                                                       page_flags | TTM_PAGE_FLAG_SG,
350                                                       glob->dummy_read_page);
351                 if (unlikely(bo->ttm == NULL)) {
352                         ret = -ENOMEM;
353                         break;
354                 }
355                 bo->ttm->sg = bo->sg;
356                 break;
357         default:
358                 pr_err("Illegal buffer object type\n");
359                 ret = -EINVAL;
360                 break;
361         }
362
363         return ret;
364 }
365
366 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
367                                   struct ttm_mem_reg *mem,
368                                   bool evict, bool interruptible,
369                                   bool no_wait_reserve, bool no_wait_gpu)
370 {
371         struct ttm_bo_device *bdev = bo->bdev;
372         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
373         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
374         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
375         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
376         int ret = 0;
377
378         if (old_is_pci || new_is_pci ||
379             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
380                 ret = ttm_mem_io_lock(old_man, true);
381                 if (unlikely(ret != 0))
382                         goto out_err;
383                 ttm_bo_unmap_virtual_locked(bo);
384                 ttm_mem_io_unlock(old_man);
385         }
386
387         /*
388          * Create and bind a ttm if required.
389          */
390
391         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
392                 if (bo->ttm == NULL) {
393                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
394                         ret = ttm_bo_add_ttm(bo, zero);
395                         if (ret)
396                                 goto out_err;
397                 }
398
399                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
400                 if (ret)
401                         goto out_err;
402
403                 if (mem->mem_type != TTM_PL_SYSTEM) {
404                         ret = ttm_tt_bind(bo->ttm, mem);
405                         if (ret)
406                                 goto out_err;
407                 }
408
409                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
410                         if (bdev->driver->move_notify)
411                                 bdev->driver->move_notify(bo, mem);
412                         bo->mem = *mem;
413                         mem->mm_node = NULL;
414                         goto moved;
415                 }
416         }
417
418         if (bdev->driver->move_notify)
419                 bdev->driver->move_notify(bo, mem);
420
421         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
422             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
423                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
424         else if (bdev->driver->move)
425                 ret = bdev->driver->move(bo, evict, interruptible,
426                                          no_wait_reserve, no_wait_gpu, mem);
427         else
428                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
429
430         if (ret) {
431                 if (bdev->driver->move_notify) {
432                         struct ttm_mem_reg tmp_mem = *mem;
433                         *mem = bo->mem;
434                         bo->mem = tmp_mem;
435                         bdev->driver->move_notify(bo, mem);
436                         bo->mem = *mem;
437                 }
438
439                 goto out_err;
440         }
441
442 moved:
443         if (bo->evicted) {
444                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
445                 if (ret)
446                         pr_err("Can not flush read caches\n");
447                 bo->evicted = false;
448         }
449
450         if (bo->mem.mm_node) {
451                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
452                     bdev->man[bo->mem.mem_type].gpu_offset;
453                 bo->cur_placement = bo->mem.placement;
454         } else
455                 bo->offset = 0;
456
457         return 0;
458
459 out_err:
460         new_man = &bdev->man[bo->mem.mem_type];
461         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
462                 ttm_tt_unbind(bo->ttm);
463                 ttm_tt_destroy(bo->ttm);
464                 bo->ttm = NULL;
465         }
466
467         return ret;
468 }
469
470 /**
471  * Call bo::reserved.
472  * Will release GPU memory type usage on destruction.
473  * This is the place to put in driver specific hooks to release
474  * driver private resources.
475  * Will release the bo::reserved lock.
476  */
477
478 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
479 {
480         if (bo->bdev->driver->move_notify)
481                 bo->bdev->driver->move_notify(bo, NULL);
482
483         if (bo->ttm) {
484                 ttm_tt_unbind(bo->ttm);
485                 ttm_tt_destroy(bo->ttm);
486                 bo->ttm = NULL;
487         }
488         ttm_bo_mem_put(bo, &bo->mem);
489
490         atomic_set(&bo->reserved, 0);
491         wake_up_all(&bo->event_queue);
492
493         /*
494          * Since the final reference to this bo may not be dropped by
495          * the current task we have to put a memory barrier here to make
496          * sure the changes done in this function are always visible.
497          *
498          * This function only needs protection against the final kref_put.
499          */
500         smp_mb__before_atomic_dec();
501 }
502
503 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
504 {
505         struct ttm_bo_device *bdev = bo->bdev;
506         struct ttm_bo_global *glob = bo->glob;
507         struct ttm_bo_driver *driver = bdev->driver;
508         void *sync_obj = NULL;
509         int put_count;
510         int ret;
511
512         spin_lock(&glob->lru_lock);
513         ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
514
515         spin_lock(&bdev->fence_lock);
516         (void) ttm_bo_wait(bo, false, false, true);
517         if (!ret && !bo->sync_obj) {
518                 spin_unlock(&bdev->fence_lock);
519                 put_count = ttm_bo_del_from_lru(bo);
520
521                 spin_unlock(&glob->lru_lock);
522                 ttm_bo_cleanup_memtype_use(bo);
523
524                 ttm_bo_list_ref_sub(bo, put_count, true);
525
526                 return;
527         }
528         if (bo->sync_obj)
529                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
530         spin_unlock(&bdev->fence_lock);
531
532         if (!ret) {
533                 atomic_set(&bo->reserved, 0);
534                 wake_up_all(&bo->event_queue);
535         }
536
537         kref_get(&bo->list_kref);
538         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
539         spin_unlock(&glob->lru_lock);
540
541         if (sync_obj) {
542                 driver->sync_obj_flush(sync_obj);
543                 driver->sync_obj_unref(&sync_obj);
544         }
545         schedule_delayed_work(&bdev->wq,
546                               ((HZ / 100) < 1) ? 1 : HZ / 100);
547 }
548
549 /**
550  * function ttm_bo_cleanup_refs_and_unlock
551  * If bo idle, remove from delayed- and lru lists, and unref.
552  * If not idle, do nothing.
553  *
554  * Must be called with lru_lock and reservation held, this function
555  * will drop both before returning.
556  *
557  * @interruptible         Any sleeps should occur interruptibly.
558  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
559  */
560
561 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
562                                           bool interruptible,
563                                           bool no_wait_gpu)
564 {
565         struct ttm_bo_device *bdev = bo->bdev;
566         struct ttm_bo_driver *driver = bdev->driver;
567         struct ttm_bo_global *glob = bo->glob;
568         int put_count;
569         int ret;
570
571         spin_lock(&bdev->fence_lock);
572         ret = ttm_bo_wait(bo, false, false, true);
573
574         if (ret && !no_wait_gpu) {
575                 void *sync_obj;
576
577                 /*
578                  * Take a reference to the fence and unreserve,
579                  * at this point the buffer should be dead, so
580                  * no new sync objects can be attached.
581                  */
582                 sync_obj = driver->sync_obj_ref(&bo->sync_obj);
583                 spin_unlock(&bdev->fence_lock);
584
585                 atomic_set(&bo->reserved, 0);
586                 wake_up_all(&bo->event_queue);
587                 spin_unlock(&glob->lru_lock);
588
589                 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
590                 driver->sync_obj_unref(&sync_obj);
591                 if (ret)
592                         return ret;
593
594                 /*
595                  * remove sync_obj with ttm_bo_wait, the wait should be
596                  * finished, and no new wait object should have been added.
597                  */
598                 spin_lock(&bdev->fence_lock);
599                 ret = ttm_bo_wait(bo, false, false, true);
600                 WARN_ON(ret);
601                 spin_unlock(&bdev->fence_lock);
602                 if (ret)
603                         return ret;
604
605                 spin_lock(&glob->lru_lock);
606                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
607
608                 /*
609                  * We raced, and lost, someone else holds the reservation now,
610                  * and is probably busy in ttm_bo_cleanup_memtype_use.
611                  *
612                  * Even if it's not the case, because we finished waiting any
613                  * delayed destruction would succeed, so just return success
614                  * here.
615                  */
616                 if (ret) {
617                         spin_unlock(&glob->lru_lock);
618                         return 0;
619                 }
620         } else
621                 spin_unlock(&bdev->fence_lock);
622
623         if (ret || unlikely(list_empty(&bo->ddestroy))) {
624                 atomic_set(&bo->reserved, 0);
625                 wake_up_all(&bo->event_queue);
626                 spin_unlock(&glob->lru_lock);
627                 return ret;
628         }
629
630         put_count = ttm_bo_del_from_lru(bo);
631         list_del_init(&bo->ddestroy);
632         ++put_count;
633
634         spin_unlock(&glob->lru_lock);
635         ttm_bo_cleanup_memtype_use(bo);
636
637         ttm_bo_list_ref_sub(bo, put_count, true);
638
639         return 0;
640 }
641
642 /**
643  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
644  * encountered buffers.
645  */
646
647 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
648 {
649         struct ttm_bo_global *glob = bdev->glob;
650         struct ttm_buffer_object *entry = NULL;
651         int ret = 0;
652
653         spin_lock(&glob->lru_lock);
654         if (list_empty(&bdev->ddestroy))
655                 goto out_unlock;
656
657         entry = list_first_entry(&bdev->ddestroy,
658                 struct ttm_buffer_object, ddestroy);
659         kref_get(&entry->list_kref);
660
661         for (;;) {
662                 struct ttm_buffer_object *nentry = NULL;
663
664                 if (entry->ddestroy.next != &bdev->ddestroy) {
665                         nentry = list_first_entry(&entry->ddestroy,
666                                 struct ttm_buffer_object, ddestroy);
667                         kref_get(&nentry->list_kref);
668                 }
669
670                 ret = ttm_bo_reserve_locked(entry, false, !remove_all, false, 0);
671                 if (!ret)
672                         ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
673                                                              !remove_all);
674                 else
675                         spin_unlock(&glob->lru_lock);
676
677                 kref_put(&entry->list_kref, ttm_bo_release_list);
678                 entry = nentry;
679
680                 if (ret || !entry)
681                         goto out;
682
683                 spin_lock(&glob->lru_lock);
684                 if (list_empty(&entry->ddestroy))
685                         break;
686         }
687
688 out_unlock:
689         spin_unlock(&glob->lru_lock);
690 out:
691         if (entry)
692                 kref_put(&entry->list_kref, ttm_bo_release_list);
693         return ret;
694 }
695
696 static void ttm_bo_delayed_workqueue(struct work_struct *work)
697 {
698         struct ttm_bo_device *bdev =
699             container_of(work, struct ttm_bo_device, wq.work);
700
701         if (ttm_bo_delayed_delete(bdev, false)) {
702                 schedule_delayed_work(&bdev->wq,
703                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
704         }
705 }
706
707 static void ttm_bo_release(struct kref *kref)
708 {
709         struct ttm_buffer_object *bo =
710             container_of(kref, struct ttm_buffer_object, kref);
711         struct ttm_bo_device *bdev = bo->bdev;
712         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
713
714         write_lock(&bdev->vm_lock);
715         if (likely(bo->vm_node != NULL)) {
716                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
717                 drm_mm_put_block(bo->vm_node);
718                 bo->vm_node = NULL;
719         }
720         write_unlock(&bdev->vm_lock);
721         ttm_mem_io_lock(man, false);
722         ttm_mem_io_free_vm(bo);
723         ttm_mem_io_unlock(man);
724         ttm_bo_cleanup_refs_or_queue(bo);
725         kref_put(&bo->list_kref, ttm_bo_release_list);
726 }
727
728 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
729 {
730         struct ttm_buffer_object *bo = *p_bo;
731
732         *p_bo = NULL;
733         kref_put(&bo->kref, ttm_bo_release);
734 }
735 EXPORT_SYMBOL(ttm_bo_unref);
736
737 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
738 {
739         return cancel_delayed_work_sync(&bdev->wq);
740 }
741 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
742
743 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
744 {
745         if (resched)
746                 schedule_delayed_work(&bdev->wq,
747                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
748 }
749 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
750
751 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
752                         bool no_wait_reserve, bool no_wait_gpu)
753 {
754         struct ttm_bo_device *bdev = bo->bdev;
755         struct ttm_mem_reg evict_mem;
756         struct ttm_placement placement;
757         int ret = 0;
758
759         spin_lock(&bdev->fence_lock);
760         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
761         spin_unlock(&bdev->fence_lock);
762
763         if (unlikely(ret != 0)) {
764                 if (ret != -ERESTARTSYS) {
765                         pr_err("Failed to expire sync object before buffer eviction\n");
766                 }
767                 goto out;
768         }
769
770         BUG_ON(!ttm_bo_is_reserved(bo));
771
772         evict_mem = bo->mem;
773         evict_mem.mm_node = NULL;
774         evict_mem.bus.io_reserved_vm = false;
775         evict_mem.bus.io_reserved_count = 0;
776
777         placement.fpfn = 0;
778         placement.lpfn = 0;
779         placement.num_placement = 0;
780         placement.num_busy_placement = 0;
781         bdev->driver->evict_flags(bo, &placement);
782         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
783                                 no_wait_reserve, no_wait_gpu);
784         if (ret) {
785                 if (ret != -ERESTARTSYS) {
786                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
787                                bo);
788                         ttm_bo_mem_space_debug(bo, &placement);
789                 }
790                 goto out;
791         }
792
793         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
794                                      no_wait_reserve, no_wait_gpu);
795         if (ret) {
796                 if (ret != -ERESTARTSYS)
797                         pr_err("Buffer eviction failed\n");
798                 ttm_bo_mem_put(bo, &evict_mem);
799                 goto out;
800         }
801         bo->evicted = true;
802 out:
803         return ret;
804 }
805
806 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
807                                 uint32_t mem_type,
808                                 bool interruptible, bool no_wait_reserve,
809                                 bool no_wait_gpu)
810 {
811         struct ttm_bo_global *glob = bdev->glob;
812         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
813         struct ttm_buffer_object *bo;
814         int ret, put_count = 0;
815
816 retry:
817         spin_lock(&glob->lru_lock);
818         if (list_empty(&man->lru)) {
819                 spin_unlock(&glob->lru_lock);
820                 return -EBUSY;
821         }
822
823         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
824         kref_get(&bo->list_kref);
825
826         if (!list_empty(&bo->ddestroy)) {
827                 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait_reserve, false, 0);
828                 if (!ret)
829                         ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
830                                                              no_wait_gpu);
831                 else
832                         spin_unlock(&glob->lru_lock);
833
834                 kref_put(&bo->list_kref, ttm_bo_release_list);
835
836                 return ret;
837         }
838
839         ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
840
841         if (unlikely(ret == -EBUSY)) {
842                 spin_unlock(&glob->lru_lock);
843                 if (likely(!no_wait_reserve))
844                         ret = ttm_bo_wait_unreserved(bo, interruptible);
845
846                 kref_put(&bo->list_kref, ttm_bo_release_list);
847
848                 /**
849                  * We *need* to retry after releasing the lru lock.
850                  */
851
852                 if (unlikely(ret != 0))
853                         return ret;
854                 goto retry;
855         }
856
857         put_count = ttm_bo_del_from_lru(bo);
858         spin_unlock(&glob->lru_lock);
859
860         BUG_ON(ret != 0);
861
862         ttm_bo_list_ref_sub(bo, put_count, true);
863
864         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
865         ttm_bo_unreserve(bo);
866
867         kref_put(&bo->list_kref, ttm_bo_release_list);
868         return ret;
869 }
870
871 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
872 {
873         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
874
875         if (mem->mm_node)
876                 (*man->func->put_node)(man, mem);
877 }
878 EXPORT_SYMBOL(ttm_bo_mem_put);
879
880 /**
881  * Repeatedly evict memory from the LRU for @mem_type until we create enough
882  * space, or we've evicted everything and there isn't enough space.
883  */
884 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
885                                         uint32_t mem_type,
886                                         struct ttm_placement *placement,
887                                         struct ttm_mem_reg *mem,
888                                         bool interruptible,
889                                         bool no_wait_reserve,
890                                         bool no_wait_gpu)
891 {
892         struct ttm_bo_device *bdev = bo->bdev;
893         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
894         int ret;
895
896         do {
897                 ret = (*man->func->get_node)(man, bo, placement, mem);
898                 if (unlikely(ret != 0))
899                         return ret;
900                 if (mem->mm_node)
901                         break;
902                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
903                                                 no_wait_reserve, no_wait_gpu);
904                 if (unlikely(ret != 0))
905                         return ret;
906         } while (1);
907         if (mem->mm_node == NULL)
908                 return -ENOMEM;
909         mem->mem_type = mem_type;
910         return 0;
911 }
912
913 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
914                                       uint32_t cur_placement,
915                                       uint32_t proposed_placement)
916 {
917         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
918         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
919
920         /**
921          * Keep current caching if possible.
922          */
923
924         if ((cur_placement & caching) != 0)
925                 result |= (cur_placement & caching);
926         else if ((man->default_caching & caching) != 0)
927                 result |= man->default_caching;
928         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
929                 result |= TTM_PL_FLAG_CACHED;
930         else if ((TTM_PL_FLAG_WC & caching) != 0)
931                 result |= TTM_PL_FLAG_WC;
932         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
933                 result |= TTM_PL_FLAG_UNCACHED;
934
935         return result;
936 }
937
938 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
939                                  uint32_t mem_type,
940                                  uint32_t proposed_placement,
941                                  uint32_t *masked_placement)
942 {
943         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
944
945         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
946                 return false;
947
948         if ((proposed_placement & man->available_caching) == 0)
949                 return false;
950
951         cur_flags |= (proposed_placement & man->available_caching);
952
953         *masked_placement = cur_flags;
954         return true;
955 }
956
957 /**
958  * Creates space for memory region @mem according to its type.
959  *
960  * This function first searches for free space in compatible memory types in
961  * the priority order defined by the driver.  If free space isn't found, then
962  * ttm_bo_mem_force_space is attempted in priority order to evict and find
963  * space.
964  */
965 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
966                         struct ttm_placement *placement,
967                         struct ttm_mem_reg *mem,
968                         bool interruptible, bool no_wait_reserve,
969                         bool no_wait_gpu)
970 {
971         struct ttm_bo_device *bdev = bo->bdev;
972         struct ttm_mem_type_manager *man;
973         uint32_t mem_type = TTM_PL_SYSTEM;
974         uint32_t cur_flags = 0;
975         bool type_found = false;
976         bool type_ok = false;
977         bool has_erestartsys = false;
978         int i, ret;
979
980         mem->mm_node = NULL;
981         for (i = 0; i < placement->num_placement; ++i) {
982                 ret = ttm_mem_type_from_flags(placement->placement[i],
983                                                 &mem_type);
984                 if (ret)
985                         return ret;
986                 man = &bdev->man[mem_type];
987
988                 type_ok = ttm_bo_mt_compatible(man,
989                                                 mem_type,
990                                                 placement->placement[i],
991                                                 &cur_flags);
992
993                 if (!type_ok)
994                         continue;
995
996                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
997                                                   cur_flags);
998                 /*
999                  * Use the access and other non-mapping-related flag bits from
1000                  * the memory placement flags to the current flags
1001                  */
1002                 ttm_flag_masked(&cur_flags, placement->placement[i],
1003                                 ~TTM_PL_MASK_MEMTYPE);
1004
1005                 if (mem_type == TTM_PL_SYSTEM)
1006                         break;
1007
1008                 if (man->has_type && man->use_type) {
1009                         type_found = true;
1010                         ret = (*man->func->get_node)(man, bo, placement, mem);
1011                         if (unlikely(ret))
1012                                 return ret;
1013                 }
1014                 if (mem->mm_node)
1015                         break;
1016         }
1017
1018         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1019                 mem->mem_type = mem_type;
1020                 mem->placement = cur_flags;
1021                 return 0;
1022         }
1023
1024         if (!type_found)
1025                 return -EINVAL;
1026
1027         for (i = 0; i < placement->num_busy_placement; ++i) {
1028                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1029                                                 &mem_type);
1030                 if (ret)
1031                         return ret;
1032                 man = &bdev->man[mem_type];
1033                 if (!man->has_type)
1034                         continue;
1035                 if (!ttm_bo_mt_compatible(man,
1036                                                 mem_type,
1037                                                 placement->busy_placement[i],
1038                                                 &cur_flags))
1039                         continue;
1040
1041                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1042                                                   cur_flags);
1043                 /*
1044                  * Use the access and other non-mapping-related flag bits from
1045                  * the memory placement flags to the current flags
1046                  */
1047                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1048                                 ~TTM_PL_MASK_MEMTYPE);
1049
1050
1051                 if (mem_type == TTM_PL_SYSTEM) {
1052                         mem->mem_type = mem_type;
1053                         mem->placement = cur_flags;
1054                         mem->mm_node = NULL;
1055                         return 0;
1056                 }
1057
1058                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1059                                                 interruptible, no_wait_reserve, no_wait_gpu);
1060                 if (ret == 0 && mem->mm_node) {
1061                         mem->placement = cur_flags;
1062                         return 0;
1063                 }
1064                 if (ret == -ERESTARTSYS)
1065                         has_erestartsys = true;
1066         }
1067         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1068         return ret;
1069 }
1070 EXPORT_SYMBOL(ttm_bo_mem_space);
1071
1072 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1073                         struct ttm_placement *placement,
1074                         bool interruptible, bool no_wait_reserve,
1075                         bool no_wait_gpu)
1076 {
1077         int ret = 0;
1078         struct ttm_mem_reg mem;
1079         struct ttm_bo_device *bdev = bo->bdev;
1080
1081         BUG_ON(!ttm_bo_is_reserved(bo));
1082
1083         /*
1084          * FIXME: It's possible to pipeline buffer moves.
1085          * Have the driver move function wait for idle when necessary,
1086          * instead of doing it here.
1087          */
1088         spin_lock(&bdev->fence_lock);
1089         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1090         spin_unlock(&bdev->fence_lock);
1091         if (ret)
1092                 return ret;
1093         mem.num_pages = bo->num_pages;
1094         mem.size = mem.num_pages << PAGE_SHIFT;
1095         mem.page_alignment = bo->mem.page_alignment;
1096         mem.bus.io_reserved_vm = false;
1097         mem.bus.io_reserved_count = 0;
1098         /*
1099          * Determine where to move the buffer.
1100          */
1101         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1102         if (ret)
1103                 goto out_unlock;
1104         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1105 out_unlock:
1106         if (ret && mem.mm_node)
1107                 ttm_bo_mem_put(bo, &mem);
1108         return ret;
1109 }
1110
1111 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1112                              struct ttm_mem_reg *mem)
1113 {
1114         int i;
1115
1116         if (mem->mm_node && placement->lpfn != 0 &&
1117             (mem->start < placement->fpfn ||
1118              mem->start + mem->num_pages > placement->lpfn))
1119                 return -1;
1120
1121         for (i = 0; i < placement->num_placement; i++) {
1122                 if ((placement->placement[i] & mem->placement &
1123                         TTM_PL_MASK_CACHING) &&
1124                         (placement->placement[i] & mem->placement &
1125                         TTM_PL_MASK_MEM))
1126                         return i;
1127         }
1128         return -1;
1129 }
1130
1131 int ttm_bo_validate(struct ttm_buffer_object *bo,
1132                         struct ttm_placement *placement,
1133                         bool interruptible, bool no_wait_reserve,
1134                         bool no_wait_gpu)
1135 {
1136         int ret;
1137
1138         BUG_ON(!ttm_bo_is_reserved(bo));
1139         /* Check that range is valid */
1140         if (placement->lpfn || placement->fpfn)
1141                 if (placement->fpfn > placement->lpfn ||
1142                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1143                         return -EINVAL;
1144         /*
1145          * Check whether we need to move buffer.
1146          */
1147         ret = ttm_bo_mem_compat(placement, &bo->mem);
1148         if (ret < 0) {
1149                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1150                 if (ret)
1151                         return ret;
1152         } else {
1153                 /*
1154                  * Use the access and other non-mapping-related flag bits from
1155                  * the compatible memory placement flags to the active flags
1156                  */
1157                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1158                                 ~TTM_PL_MASK_MEMTYPE);
1159         }
1160         /*
1161          * We might need to add a TTM.
1162          */
1163         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1164                 ret = ttm_bo_add_ttm(bo, true);
1165                 if (ret)
1166                         return ret;
1167         }
1168         return 0;
1169 }
1170 EXPORT_SYMBOL(ttm_bo_validate);
1171
1172 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1173                                 struct ttm_placement *placement)
1174 {
1175         BUG_ON((placement->fpfn || placement->lpfn) &&
1176                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1177
1178         return 0;
1179 }
1180
1181 int ttm_bo_init(struct ttm_bo_device *bdev,
1182                 struct ttm_buffer_object *bo,
1183                 unsigned long size,
1184                 enum ttm_bo_type type,
1185                 struct ttm_placement *placement,
1186                 uint32_t page_alignment,
1187                 bool interruptible,
1188                 struct file *persistent_swap_storage,
1189                 size_t acc_size,
1190                 struct sg_table *sg,
1191                 void (*destroy) (struct ttm_buffer_object *))
1192 {
1193         int ret = 0;
1194         unsigned long num_pages;
1195         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1196
1197         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1198         if (ret) {
1199                 pr_err("Out of kernel memory\n");
1200                 if (destroy)
1201                         (*destroy)(bo);
1202                 else
1203                         kfree(bo);
1204                 return -ENOMEM;
1205         }
1206
1207         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1208         if (num_pages == 0) {
1209                 pr_err("Illegal buffer object size\n");
1210                 if (destroy)
1211                         (*destroy)(bo);
1212                 else
1213                         kfree(bo);
1214                 ttm_mem_global_free(mem_glob, acc_size);
1215                 return -EINVAL;
1216         }
1217         bo->destroy = destroy;
1218
1219         kref_init(&bo->kref);
1220         kref_init(&bo->list_kref);
1221         atomic_set(&bo->cpu_writers, 0);
1222         atomic_set(&bo->reserved, 1);
1223         init_waitqueue_head(&bo->event_queue);
1224         INIT_LIST_HEAD(&bo->lru);
1225         INIT_LIST_HEAD(&bo->ddestroy);
1226         INIT_LIST_HEAD(&bo->swap);
1227         INIT_LIST_HEAD(&bo->io_reserve_lru);
1228         bo->bdev = bdev;
1229         bo->glob = bdev->glob;
1230         bo->type = type;
1231         bo->num_pages = num_pages;
1232         bo->mem.size = num_pages << PAGE_SHIFT;
1233         bo->mem.mem_type = TTM_PL_SYSTEM;
1234         bo->mem.num_pages = bo->num_pages;
1235         bo->mem.mm_node = NULL;
1236         bo->mem.page_alignment = page_alignment;
1237         bo->mem.bus.io_reserved_vm = false;
1238         bo->mem.bus.io_reserved_count = 0;
1239         bo->priv_flags = 0;
1240         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1241         bo->seq_valid = false;
1242         bo->persistent_swap_storage = persistent_swap_storage;
1243         bo->acc_size = acc_size;
1244         bo->sg = sg;
1245         atomic_inc(&bo->glob->bo_count);
1246
1247         ret = ttm_bo_check_placement(bo, placement);
1248         if (unlikely(ret != 0))
1249                 goto out_err;
1250
1251         /*
1252          * For ttm_bo_type_device buffers, allocate
1253          * address space from the device.
1254          */
1255         if (bo->type == ttm_bo_type_device ||
1256             bo->type == ttm_bo_type_sg) {
1257                 ret = ttm_bo_setup_vm(bo);
1258                 if (ret)
1259                         goto out_err;
1260         }
1261
1262         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1263         if (ret)
1264                 goto out_err;
1265
1266         ttm_bo_unreserve(bo);
1267         return 0;
1268
1269 out_err:
1270         ttm_bo_unreserve(bo);
1271         ttm_bo_unref(&bo);
1272
1273         return ret;
1274 }
1275 EXPORT_SYMBOL(ttm_bo_init);
1276
1277 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1278                        unsigned long bo_size,
1279                        unsigned struct_size)
1280 {
1281         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1282         size_t size = 0;
1283
1284         size += ttm_round_pot(struct_size);
1285         size += PAGE_ALIGN(npages * sizeof(void *));
1286         size += ttm_round_pot(sizeof(struct ttm_tt));
1287         return size;
1288 }
1289 EXPORT_SYMBOL(ttm_bo_acc_size);
1290
1291 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1292                            unsigned long bo_size,
1293                            unsigned struct_size)
1294 {
1295         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1296         size_t size = 0;
1297
1298         size += ttm_round_pot(struct_size);
1299         size += PAGE_ALIGN(npages * sizeof(void *));
1300         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1301         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1302         return size;
1303 }
1304 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1305
1306 int ttm_bo_create(struct ttm_bo_device *bdev,
1307                         unsigned long size,
1308                         enum ttm_bo_type type,
1309                         struct ttm_placement *placement,
1310                         uint32_t page_alignment,
1311                         bool interruptible,
1312                         struct file *persistent_swap_storage,
1313                         struct ttm_buffer_object **p_bo)
1314 {
1315         struct ttm_buffer_object *bo;
1316         size_t acc_size;
1317         int ret;
1318
1319         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1320         if (unlikely(bo == NULL))
1321                 return -ENOMEM;
1322
1323         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1324         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1325                           interruptible, persistent_swap_storage, acc_size,
1326                           NULL, NULL);
1327         if (likely(ret == 0))
1328                 *p_bo = bo;
1329
1330         return ret;
1331 }
1332 EXPORT_SYMBOL(ttm_bo_create);
1333
1334 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1335                                         unsigned mem_type, bool allow_errors)
1336 {
1337         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1338         struct ttm_bo_global *glob = bdev->glob;
1339         int ret;
1340
1341         /*
1342          * Can't use standard list traversal since we're unlocking.
1343          */
1344
1345         spin_lock(&glob->lru_lock);
1346         while (!list_empty(&man->lru)) {
1347                 spin_unlock(&glob->lru_lock);
1348                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1349                 if (ret) {
1350                         if (allow_errors) {
1351                                 return ret;
1352                         } else {
1353                                 pr_err("Cleanup eviction failed\n");
1354                         }
1355                 }
1356                 spin_lock(&glob->lru_lock);
1357         }
1358         spin_unlock(&glob->lru_lock);
1359         return 0;
1360 }
1361
1362 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1363 {
1364         struct ttm_mem_type_manager *man;
1365         int ret = -EINVAL;
1366
1367         if (mem_type >= TTM_NUM_MEM_TYPES) {
1368                 pr_err("Illegal memory type %d\n", mem_type);
1369                 return ret;
1370         }
1371         man = &bdev->man[mem_type];
1372
1373         if (!man->has_type) {
1374                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1375                        mem_type);
1376                 return ret;
1377         }
1378
1379         man->use_type = false;
1380         man->has_type = false;
1381
1382         ret = 0;
1383         if (mem_type > 0) {
1384                 ttm_bo_force_list_clean(bdev, mem_type, false);
1385
1386                 ret = (*man->func->takedown)(man);
1387         }
1388
1389         return ret;
1390 }
1391 EXPORT_SYMBOL(ttm_bo_clean_mm);
1392
1393 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1394 {
1395         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1396
1397         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1398                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1399                 return -EINVAL;
1400         }
1401
1402         if (!man->has_type) {
1403                 pr_err("Memory type %u has not been initialized\n", mem_type);
1404                 return 0;
1405         }
1406
1407         return ttm_bo_force_list_clean(bdev, mem_type, true);
1408 }
1409 EXPORT_SYMBOL(ttm_bo_evict_mm);
1410
1411 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1412                         unsigned long p_size)
1413 {
1414         int ret = -EINVAL;
1415         struct ttm_mem_type_manager *man;
1416
1417         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1418         man = &bdev->man[type];
1419         BUG_ON(man->has_type);
1420         man->io_reserve_fastpath = true;
1421         man->use_io_reserve_lru = false;
1422         mutex_init(&man->io_reserve_mutex);
1423         INIT_LIST_HEAD(&man->io_reserve_lru);
1424
1425         ret = bdev->driver->init_mem_type(bdev, type, man);
1426         if (ret)
1427                 return ret;
1428         man->bdev = bdev;
1429
1430         ret = 0;
1431         if (type != TTM_PL_SYSTEM) {
1432                 ret = (*man->func->init)(man, p_size);
1433                 if (ret)
1434                         return ret;
1435         }
1436         man->has_type = true;
1437         man->use_type = true;
1438         man->size = p_size;
1439
1440         INIT_LIST_HEAD(&man->lru);
1441
1442         return 0;
1443 }
1444 EXPORT_SYMBOL(ttm_bo_init_mm);
1445
1446 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1447 {
1448         struct ttm_bo_global *glob =
1449                 container_of(kobj, struct ttm_bo_global, kobj);
1450
1451         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1452         __free_page(glob->dummy_read_page);
1453         kfree(glob);
1454 }
1455
1456 void ttm_bo_global_release(struct drm_global_reference *ref)
1457 {
1458         struct ttm_bo_global *glob = ref->object;
1459
1460         kobject_del(&glob->kobj);
1461         kobject_put(&glob->kobj);
1462 }
1463 EXPORT_SYMBOL(ttm_bo_global_release);
1464
1465 int ttm_bo_global_init(struct drm_global_reference *ref)
1466 {
1467         struct ttm_bo_global_ref *bo_ref =
1468                 container_of(ref, struct ttm_bo_global_ref, ref);
1469         struct ttm_bo_global *glob = ref->object;
1470         int ret;
1471
1472         mutex_init(&glob->device_list_mutex);
1473         spin_lock_init(&glob->lru_lock);
1474         glob->mem_glob = bo_ref->mem_glob;
1475         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1476
1477         if (unlikely(glob->dummy_read_page == NULL)) {
1478                 ret = -ENOMEM;
1479                 goto out_no_drp;
1480         }
1481
1482         INIT_LIST_HEAD(&glob->swap_lru);
1483         INIT_LIST_HEAD(&glob->device_list);
1484
1485         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1486         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1487         if (unlikely(ret != 0)) {
1488                 pr_err("Could not register buffer object swapout\n");
1489                 goto out_no_shrink;
1490         }
1491
1492         atomic_set(&glob->bo_count, 0);
1493
1494         ret = kobject_init_and_add(
1495                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1496         if (unlikely(ret != 0))
1497                 kobject_put(&glob->kobj);
1498         return ret;
1499 out_no_shrink:
1500         __free_page(glob->dummy_read_page);
1501 out_no_drp:
1502         kfree(glob);
1503         return ret;
1504 }
1505 EXPORT_SYMBOL(ttm_bo_global_init);
1506
1507
1508 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1509 {
1510         int ret = 0;
1511         unsigned i = TTM_NUM_MEM_TYPES;
1512         struct ttm_mem_type_manager *man;
1513         struct ttm_bo_global *glob = bdev->glob;
1514
1515         while (i--) {
1516                 man = &bdev->man[i];
1517                 if (man->has_type) {
1518                         man->use_type = false;
1519                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1520                                 ret = -EBUSY;
1521                                 pr_err("DRM memory manager type %d is not clean\n",
1522                                        i);
1523                         }
1524                         man->has_type = false;
1525                 }
1526         }
1527
1528         mutex_lock(&glob->device_list_mutex);
1529         list_del(&bdev->device_list);
1530         mutex_unlock(&glob->device_list_mutex);
1531
1532         cancel_delayed_work_sync(&bdev->wq);
1533
1534         while (ttm_bo_delayed_delete(bdev, true))
1535                 ;
1536
1537         spin_lock(&glob->lru_lock);
1538         if (list_empty(&bdev->ddestroy))
1539                 TTM_DEBUG("Delayed destroy list was clean\n");
1540
1541         if (list_empty(&bdev->man[0].lru))
1542                 TTM_DEBUG("Swap list was clean\n");
1543         spin_unlock(&glob->lru_lock);
1544
1545         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1546         write_lock(&bdev->vm_lock);
1547         drm_mm_takedown(&bdev->addr_space_mm);
1548         write_unlock(&bdev->vm_lock);
1549
1550         return ret;
1551 }
1552 EXPORT_SYMBOL(ttm_bo_device_release);
1553
1554 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1555                        struct ttm_bo_global *glob,
1556                        struct ttm_bo_driver *driver,
1557                        uint64_t file_page_offset,
1558                        bool need_dma32)
1559 {
1560         int ret = -EINVAL;
1561
1562         rwlock_init(&bdev->vm_lock);
1563         bdev->driver = driver;
1564
1565         memset(bdev->man, 0, sizeof(bdev->man));
1566
1567         /*
1568          * Initialize the system memory buffer type.
1569          * Other types need to be driver / IOCTL initialized.
1570          */
1571         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1572         if (unlikely(ret != 0))
1573                 goto out_no_sys;
1574
1575         bdev->addr_space_rb = RB_ROOT;
1576         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1577         if (unlikely(ret != 0))
1578                 goto out_no_addr_mm;
1579
1580         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1581         INIT_LIST_HEAD(&bdev->ddestroy);
1582         bdev->dev_mapping = NULL;
1583         bdev->glob = glob;
1584         bdev->need_dma32 = need_dma32;
1585         bdev->val_seq = 0;
1586         spin_lock_init(&bdev->fence_lock);
1587         mutex_lock(&glob->device_list_mutex);
1588         list_add_tail(&bdev->device_list, &glob->device_list);
1589         mutex_unlock(&glob->device_list_mutex);
1590
1591         return 0;
1592 out_no_addr_mm:
1593         ttm_bo_clean_mm(bdev, 0);
1594 out_no_sys:
1595         return ret;
1596 }
1597 EXPORT_SYMBOL(ttm_bo_device_init);
1598
1599 /*
1600  * buffer object vm functions.
1601  */
1602
1603 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1604 {
1605         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1606
1607         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1608                 if (mem->mem_type == TTM_PL_SYSTEM)
1609                         return false;
1610
1611                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1612                         return false;
1613
1614                 if (mem->placement & TTM_PL_FLAG_CACHED)
1615                         return false;
1616         }
1617         return true;
1618 }
1619
1620 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1621 {
1622         struct ttm_bo_device *bdev = bo->bdev;
1623         loff_t offset = (loff_t) bo->addr_space_offset;
1624         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1625
1626         if (!bdev->dev_mapping)
1627                 return;
1628         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1629         ttm_mem_io_free_vm(bo);
1630 }
1631
1632 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1633 {
1634         struct ttm_bo_device *bdev = bo->bdev;
1635         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1636
1637         ttm_mem_io_lock(man, false);
1638         ttm_bo_unmap_virtual_locked(bo);
1639         ttm_mem_io_unlock(man);
1640 }
1641
1642
1643 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1644
1645 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1646 {
1647         struct ttm_bo_device *bdev = bo->bdev;
1648         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1649         struct rb_node *parent = NULL;
1650         struct ttm_buffer_object *cur_bo;
1651         unsigned long offset = bo->vm_node->start;
1652         unsigned long cur_offset;
1653
1654         while (*cur) {
1655                 parent = *cur;
1656                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1657                 cur_offset = cur_bo->vm_node->start;
1658                 if (offset < cur_offset)
1659                         cur = &parent->rb_left;
1660                 else if (offset > cur_offset)
1661                         cur = &parent->rb_right;
1662                 else
1663                         BUG();
1664         }
1665
1666         rb_link_node(&bo->vm_rb, parent, cur);
1667         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1668 }
1669
1670 /**
1671  * ttm_bo_setup_vm:
1672  *
1673  * @bo: the buffer to allocate address space for
1674  *
1675  * Allocate address space in the drm device so that applications
1676  * can mmap the buffer and access the contents. This only
1677  * applies to ttm_bo_type_device objects as others are not
1678  * placed in the drm device address space.
1679  */
1680
1681 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1682 {
1683         struct ttm_bo_device *bdev = bo->bdev;
1684         int ret;
1685
1686 retry_pre_get:
1687         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1688         if (unlikely(ret != 0))
1689                 return ret;
1690
1691         write_lock(&bdev->vm_lock);
1692         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1693                                          bo->mem.num_pages, 0, 0);
1694
1695         if (unlikely(bo->vm_node == NULL)) {
1696                 ret = -ENOMEM;
1697                 goto out_unlock;
1698         }
1699
1700         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1701                                               bo->mem.num_pages, 0);
1702
1703         if (unlikely(bo->vm_node == NULL)) {
1704                 write_unlock(&bdev->vm_lock);
1705                 goto retry_pre_get;
1706         }
1707
1708         ttm_bo_vm_insert_rb(bo);
1709         write_unlock(&bdev->vm_lock);
1710         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1711
1712         return 0;
1713 out_unlock:
1714         write_unlock(&bdev->vm_lock);
1715         return ret;
1716 }
1717
1718 int ttm_bo_wait(struct ttm_buffer_object *bo,
1719                 bool lazy, bool interruptible, bool no_wait)
1720 {
1721         struct ttm_bo_driver *driver = bo->bdev->driver;
1722         struct ttm_bo_device *bdev = bo->bdev;
1723         void *sync_obj;
1724         int ret = 0;
1725
1726         if (likely(bo->sync_obj == NULL))
1727                 return 0;
1728
1729         while (bo->sync_obj) {
1730
1731                 if (driver->sync_obj_signaled(bo->sync_obj)) {
1732                         void *tmp_obj = bo->sync_obj;
1733                         bo->sync_obj = NULL;
1734                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1735                         spin_unlock(&bdev->fence_lock);
1736                         driver->sync_obj_unref(&tmp_obj);
1737                         spin_lock(&bdev->fence_lock);
1738                         continue;
1739                 }
1740
1741                 if (no_wait)
1742                         return -EBUSY;
1743
1744                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1745                 spin_unlock(&bdev->fence_lock);
1746                 ret = driver->sync_obj_wait(sync_obj,
1747                                             lazy, interruptible);
1748                 if (unlikely(ret != 0)) {
1749                         driver->sync_obj_unref(&sync_obj);
1750                         spin_lock(&bdev->fence_lock);
1751                         return ret;
1752                 }
1753                 spin_lock(&bdev->fence_lock);
1754                 if (likely(bo->sync_obj == sync_obj)) {
1755                         void *tmp_obj = bo->sync_obj;
1756                         bo->sync_obj = NULL;
1757                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1758                                   &bo->priv_flags);
1759                         spin_unlock(&bdev->fence_lock);
1760                         driver->sync_obj_unref(&sync_obj);
1761                         driver->sync_obj_unref(&tmp_obj);
1762                         spin_lock(&bdev->fence_lock);
1763                 } else {
1764                         spin_unlock(&bdev->fence_lock);
1765                         driver->sync_obj_unref(&sync_obj);
1766                         spin_lock(&bdev->fence_lock);
1767                 }
1768         }
1769         return 0;
1770 }
1771 EXPORT_SYMBOL(ttm_bo_wait);
1772
1773 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1774 {
1775         struct ttm_bo_device *bdev = bo->bdev;
1776         int ret = 0;
1777
1778         /*
1779          * Using ttm_bo_reserve makes sure the lru lists are updated.
1780          */
1781
1782         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1783         if (unlikely(ret != 0))
1784                 return ret;
1785         spin_lock(&bdev->fence_lock);
1786         ret = ttm_bo_wait(bo, false, true, no_wait);
1787         spin_unlock(&bdev->fence_lock);
1788         if (likely(ret == 0))
1789                 atomic_inc(&bo->cpu_writers);
1790         ttm_bo_unreserve(bo);
1791         return ret;
1792 }
1793 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1794
1795 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1796 {
1797         atomic_dec(&bo->cpu_writers);
1798 }
1799 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1800
1801 /**
1802  * A buffer object shrink method that tries to swap out the first
1803  * buffer object on the bo_global::swap_lru list.
1804  */
1805
1806 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1807 {
1808         struct ttm_bo_global *glob =
1809             container_of(shrink, struct ttm_bo_global, shrink);
1810         struct ttm_buffer_object *bo;
1811         int ret = -EBUSY;
1812         int put_count;
1813         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1814
1815         spin_lock(&glob->lru_lock);
1816         while (ret == -EBUSY) {
1817                 if (unlikely(list_empty(&glob->swap_lru))) {
1818                         spin_unlock(&glob->lru_lock);
1819                         return -EBUSY;
1820                 }
1821
1822                 bo = list_first_entry(&glob->swap_lru,
1823                                       struct ttm_buffer_object, swap);
1824                 kref_get(&bo->list_kref);
1825
1826                 if (!list_empty(&bo->ddestroy)) {
1827                         ttm_bo_reserve_locked(bo, false, false, false, 0);
1828                         ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1829
1830                         kref_put(&bo->list_kref, ttm_bo_release_list);
1831                         spin_lock(&glob->lru_lock);
1832                         continue;
1833                 }
1834
1835                 /**
1836                  * Reserve buffer. Since we unlock while sleeping, we need
1837                  * to re-check that nobody removed us from the swap-list while
1838                  * we slept.
1839                  */
1840
1841                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1842                 if (unlikely(ret == -EBUSY)) {
1843                         spin_unlock(&glob->lru_lock);
1844                         ttm_bo_wait_unreserved(bo, false);
1845                         kref_put(&bo->list_kref, ttm_bo_release_list);
1846                         spin_lock(&glob->lru_lock);
1847                 }
1848         }
1849
1850         BUG_ON(ret != 0);
1851         put_count = ttm_bo_del_from_lru(bo);
1852         spin_unlock(&glob->lru_lock);
1853
1854         ttm_bo_list_ref_sub(bo, put_count, true);
1855
1856         /**
1857          * Wait for GPU, then move to system cached.
1858          */
1859
1860         spin_lock(&bo->bdev->fence_lock);
1861         ret = ttm_bo_wait(bo, false, false, false);
1862         spin_unlock(&bo->bdev->fence_lock);
1863
1864         if (unlikely(ret != 0))
1865                 goto out;
1866
1867         if ((bo->mem.placement & swap_placement) != swap_placement) {
1868                 struct ttm_mem_reg evict_mem;
1869
1870                 evict_mem = bo->mem;
1871                 evict_mem.mm_node = NULL;
1872                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1873                 evict_mem.mem_type = TTM_PL_SYSTEM;
1874
1875                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1876                                              false, false, false);
1877                 if (unlikely(ret != 0))
1878                         goto out;
1879         }
1880
1881         ttm_bo_unmap_virtual(bo);
1882
1883         /**
1884          * Swap out. Buffer will be swapped in again as soon as
1885          * anyone tries to access a ttm page.
1886          */
1887
1888         if (bo->bdev->driver->swap_notify)
1889                 bo->bdev->driver->swap_notify(bo);
1890
1891         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1892 out:
1893
1894         /**
1895          *
1896          * Unreserve without putting on LRU to avoid swapping out an
1897          * already swapped buffer.
1898          */
1899
1900         atomic_set(&bo->reserved, 0);
1901         wake_up_all(&bo->event_queue);
1902         kref_put(&bo->list_kref, ttm_bo_release_list);
1903         return ret;
1904 }
1905
1906 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1907 {
1908         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1909                 ;
1910 }
1911 EXPORT_SYMBOL(ttm_bo_swapout_all);