Merge tag 'drm/tegra/for-4.4-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[firefly-linux-kernel-4.4.55.git] / drivers / hwmon / emc1403.c
1 /*
2  * emc1403.c - SMSC Thermal Driver
3  *
4  * Copyright (C) 2008 Intel Corp
5  *
6  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/hwmon.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/err.h>
30 #include <linux/sysfs.h>
31 #include <linux/mutex.h>
32 #include <linux/regmap.h>
33
34 #define THERMAL_PID_REG         0xfd
35 #define THERMAL_SMSC_ID_REG     0xfe
36 #define THERMAL_REVISION_REG    0xff
37
38 enum emc1403_chip { emc1402, emc1403, emc1404 };
39
40 struct thermal_data {
41         struct regmap *regmap;
42         struct mutex mutex;
43         const struct attribute_group *groups[4];
44 };
45
46 static ssize_t show_temp(struct device *dev,
47                         struct device_attribute *attr, char *buf)
48 {
49         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
50         struct thermal_data *data = dev_get_drvdata(dev);
51         unsigned int val;
52         int retval;
53
54         retval = regmap_read(data->regmap, sda->index, &val);
55         if (retval < 0)
56                 return retval;
57         return sprintf(buf, "%d000\n", val);
58 }
59
60 static ssize_t show_bit(struct device *dev,
61                         struct device_attribute *attr, char *buf)
62 {
63         struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
64         struct thermal_data *data = dev_get_drvdata(dev);
65         unsigned int val;
66         int retval;
67
68         retval = regmap_read(data->regmap, sda->nr, &val);
69         if (retval < 0)
70                 return retval;
71         return sprintf(buf, "%d\n", !!(val & sda->index));
72 }
73
74 static ssize_t store_temp(struct device *dev,
75                 struct device_attribute *attr, const char *buf, size_t count)
76 {
77         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
78         struct thermal_data *data = dev_get_drvdata(dev);
79         unsigned long val;
80         int retval;
81
82         if (kstrtoul(buf, 10, &val))
83                 return -EINVAL;
84         retval = regmap_write(data->regmap, sda->index,
85                               DIV_ROUND_CLOSEST(val, 1000));
86         if (retval < 0)
87                 return retval;
88         return count;
89 }
90
91 static ssize_t store_bit(struct device *dev,
92                 struct device_attribute *attr, const char *buf, size_t count)
93 {
94         struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
95         struct thermal_data *data = dev_get_drvdata(dev);
96         unsigned long val;
97         int retval;
98
99         if (kstrtoul(buf, 10, &val))
100                 return -EINVAL;
101
102         retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
103                                     val ? sda->index : 0);
104         if (retval < 0)
105                 return retval;
106         return count;
107 }
108
109 static ssize_t show_hyst_common(struct device *dev,
110                                 struct device_attribute *attr, char *buf,
111                                 bool is_min)
112 {
113         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
114         struct thermal_data *data = dev_get_drvdata(dev);
115         struct regmap *regmap = data->regmap;
116         unsigned int limit;
117         unsigned int hyst;
118         int retval;
119
120         retval = regmap_read(regmap, sda->index, &limit);
121         if (retval < 0)
122                 return retval;
123
124         retval = regmap_read(regmap, 0x21, &hyst);
125         if (retval < 0)
126                 return retval;
127
128         return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
129 }
130
131 static ssize_t show_hyst(struct device *dev,
132                          struct device_attribute *attr, char *buf)
133 {
134         return show_hyst_common(dev, attr, buf, false);
135 }
136
137 static ssize_t show_min_hyst(struct device *dev,
138                              struct device_attribute *attr, char *buf)
139 {
140         return show_hyst_common(dev, attr, buf, true);
141 }
142
143 static ssize_t store_hyst(struct device *dev,
144                 struct device_attribute *attr, const char *buf, size_t count)
145 {
146         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
147         struct thermal_data *data = dev_get_drvdata(dev);
148         struct regmap *regmap = data->regmap;
149         unsigned int limit;
150         int retval;
151         int hyst;
152         unsigned long val;
153
154         if (kstrtoul(buf, 10, &val))
155                 return -EINVAL;
156
157         mutex_lock(&data->mutex);
158         retval = regmap_read(regmap, sda->index, &limit);
159         if (retval < 0)
160                 goto fail;
161
162         hyst = limit * 1000 - val;
163         hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
164         retval = regmap_write(regmap, 0x21, hyst);
165         if (retval == 0)
166                 retval = count;
167 fail:
168         mutex_unlock(&data->mutex);
169         return retval;
170 }
171
172 /*
173  *      Sensors. We pass the actual i2c register to the methods.
174  */
175
176 static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR,
177         show_temp, store_temp, 0x06);
178 static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR,
179         show_temp, store_temp, 0x05);
180 static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO | S_IWUSR,
181         show_temp, store_temp, 0x20);
182 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0x00);
183 static SENSOR_DEVICE_ATTR_2(temp1_min_alarm, S_IRUGO,
184         show_bit, NULL, 0x36, 0x01);
185 static SENSOR_DEVICE_ATTR_2(temp1_max_alarm, S_IRUGO,
186         show_bit, NULL, 0x35, 0x01);
187 static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO,
188         show_bit, NULL, 0x37, 0x01);
189 static SENSOR_DEVICE_ATTR(temp1_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x06);
190 static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IRUGO, show_hyst, NULL, 0x05);
191 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO | S_IWUSR,
192         show_hyst, store_hyst, 0x20);
193
194 static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR,
195         show_temp, store_temp, 0x08);
196 static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR,
197         show_temp, store_temp, 0x07);
198 static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO | S_IWUSR,
199         show_temp, store_temp, 0x19);
200 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0x01);
201 static SENSOR_DEVICE_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x02);
202 static SENSOR_DEVICE_ATTR_2(temp2_min_alarm, S_IRUGO,
203         show_bit, NULL, 0x36, 0x02);
204 static SENSOR_DEVICE_ATTR_2(temp2_max_alarm, S_IRUGO,
205         show_bit, NULL, 0x35, 0x02);
206 static SENSOR_DEVICE_ATTR_2(temp2_crit_alarm, S_IRUGO,
207         show_bit, NULL, 0x37, 0x02);
208 static SENSOR_DEVICE_ATTR(temp2_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x08);
209 static SENSOR_DEVICE_ATTR(temp2_max_hyst, S_IRUGO, show_hyst, NULL, 0x07);
210 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_hyst, NULL, 0x19);
211
212 static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR,
213         show_temp, store_temp, 0x16);
214 static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR,
215         show_temp, store_temp, 0x15);
216 static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO | S_IWUSR,
217         show_temp, store_temp, 0x1A);
218 static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 0x23);
219 static SENSOR_DEVICE_ATTR_2(temp3_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x04);
220 static SENSOR_DEVICE_ATTR_2(temp3_min_alarm, S_IRUGO,
221         show_bit, NULL, 0x36, 0x04);
222 static SENSOR_DEVICE_ATTR_2(temp3_max_alarm, S_IRUGO,
223         show_bit, NULL, 0x35, 0x04);
224 static SENSOR_DEVICE_ATTR_2(temp3_crit_alarm, S_IRUGO,
225         show_bit, NULL, 0x37, 0x04);
226 static SENSOR_DEVICE_ATTR(temp3_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x16);
227 static SENSOR_DEVICE_ATTR(temp3_max_hyst, S_IRUGO, show_hyst, NULL, 0x15);
228 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_hyst, NULL, 0x1A);
229
230 static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR,
231         show_temp, store_temp, 0x2D);
232 static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR,
233         show_temp, store_temp, 0x2C);
234 static SENSOR_DEVICE_ATTR(temp4_crit, S_IRUGO | S_IWUSR,
235         show_temp, store_temp, 0x30);
236 static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 0x2A);
237 static SENSOR_DEVICE_ATTR_2(temp4_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x08);
238 static SENSOR_DEVICE_ATTR_2(temp4_min_alarm, S_IRUGO,
239         show_bit, NULL, 0x36, 0x08);
240 static SENSOR_DEVICE_ATTR_2(temp4_max_alarm, S_IRUGO,
241         show_bit, NULL, 0x35, 0x08);
242 static SENSOR_DEVICE_ATTR_2(temp4_crit_alarm, S_IRUGO,
243         show_bit, NULL, 0x37, 0x08);
244 static SENSOR_DEVICE_ATTR(temp4_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x2D);
245 static SENSOR_DEVICE_ATTR(temp4_max_hyst, S_IRUGO, show_hyst, NULL, 0x2C);
246 static SENSOR_DEVICE_ATTR(temp4_crit_hyst, S_IRUGO, show_hyst, NULL, 0x30);
247
248 static SENSOR_DEVICE_ATTR_2(power_state, S_IRUGO | S_IWUSR,
249         show_bit, store_bit, 0x03, 0x40);
250
251 static struct attribute *emc1402_attrs[] = {
252         &sensor_dev_attr_temp1_min.dev_attr.attr,
253         &sensor_dev_attr_temp1_max.dev_attr.attr,
254         &sensor_dev_attr_temp1_crit.dev_attr.attr,
255         &sensor_dev_attr_temp1_input.dev_attr.attr,
256         &sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
257         &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
258         &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
259
260         &sensor_dev_attr_temp2_min.dev_attr.attr,
261         &sensor_dev_attr_temp2_max.dev_attr.attr,
262         &sensor_dev_attr_temp2_crit.dev_attr.attr,
263         &sensor_dev_attr_temp2_input.dev_attr.attr,
264         &sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
265         &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
266         &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
267
268         &sensor_dev_attr_power_state.dev_attr.attr,
269         NULL
270 };
271
272 static const struct attribute_group emc1402_group = {
273                 .attrs = emc1402_attrs,
274 };
275
276 static struct attribute *emc1403_attrs[] = {
277         &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
278         &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
279         &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
280
281         &sensor_dev_attr_temp2_fault.dev_attr.attr,
282         &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
283         &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
284         &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
285
286         &sensor_dev_attr_temp3_min.dev_attr.attr,
287         &sensor_dev_attr_temp3_max.dev_attr.attr,
288         &sensor_dev_attr_temp3_crit.dev_attr.attr,
289         &sensor_dev_attr_temp3_input.dev_attr.attr,
290         &sensor_dev_attr_temp3_fault.dev_attr.attr,
291         &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
292         &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
293         &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
294         &sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
295         &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
296         &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
297         NULL
298 };
299
300 static const struct attribute_group emc1403_group = {
301         .attrs = emc1403_attrs,
302 };
303
304 static struct attribute *emc1404_attrs[] = {
305         &sensor_dev_attr_temp4_min.dev_attr.attr,
306         &sensor_dev_attr_temp4_max.dev_attr.attr,
307         &sensor_dev_attr_temp4_crit.dev_attr.attr,
308         &sensor_dev_attr_temp4_input.dev_attr.attr,
309         &sensor_dev_attr_temp4_fault.dev_attr.attr,
310         &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
311         &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
312         &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
313         &sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
314         &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
315         &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
316         NULL
317 };
318
319 static const struct attribute_group emc1404_group = {
320         .attrs = emc1404_attrs,
321 };
322
323 /*
324  * EMC14x2 uses a different register and different bits to report alarm and
325  * fault status. For simplicity, provide a separate attribute group for this
326  * chip series.
327  * Since we can not re-use the same attribute names, create a separate attribute
328  * array.
329  */
330 static struct sensor_device_attribute_2 emc1402_alarms[] = {
331         SENSOR_ATTR_2(temp1_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x20),
332         SENSOR_ATTR_2(temp1_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x40),
333         SENSOR_ATTR_2(temp1_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x01),
334
335         SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x02, 0x04),
336         SENSOR_ATTR_2(temp2_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x08),
337         SENSOR_ATTR_2(temp2_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x10),
338         SENSOR_ATTR_2(temp2_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x02),
339 };
340
341 static struct attribute *emc1402_alarm_attrs[] = {
342         &emc1402_alarms[0].dev_attr.attr,
343         &emc1402_alarms[1].dev_attr.attr,
344         &emc1402_alarms[2].dev_attr.attr,
345         &emc1402_alarms[3].dev_attr.attr,
346         &emc1402_alarms[4].dev_attr.attr,
347         &emc1402_alarms[5].dev_attr.attr,
348         &emc1402_alarms[6].dev_attr.attr,
349         NULL,
350 };
351
352 static const struct attribute_group emc1402_alarm_group = {
353         .attrs = emc1402_alarm_attrs,
354 };
355
356 static int emc1403_detect(struct i2c_client *client,
357                         struct i2c_board_info *info)
358 {
359         int id;
360         /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
361
362         id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
363         if (id != 0x5d)
364                 return -ENODEV;
365
366         id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
367         switch (id) {
368         case 0x20:
369                 strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
370                 break;
371         case 0x21:
372                 strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
373                 break;
374         case 0x22:
375                 strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
376                 break;
377         case 0x23:
378                 strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
379                 break;
380         case 0x25:
381                 strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
382                 break;
383         case 0x27:
384                 strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
385                 break;
386         default:
387                 return -ENODEV;
388         }
389
390         id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
391         if (id < 0x01 || id > 0x04)
392                 return -ENODEV;
393
394         return 0;
395 }
396
397 static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
398 {
399         switch (reg) {
400         case 0x00:      /* internal diode high byte */
401         case 0x01:      /* external diode 1 high byte */
402         case 0x02:      /* status */
403         case 0x10:      /* external diode 1 low byte */
404         case 0x1b:      /* external diode fault */
405         case 0x23:      /* external diode 2 high byte */
406         case 0x24:      /* external diode 2 low byte */
407         case 0x29:      /* internal diode low byte */
408         case 0x2a:      /* externl diode 3 high byte */
409         case 0x2b:      /* external diode 3 low byte */
410         case 0x35:      /* high limit status */
411         case 0x36:      /* low limit status */
412         case 0x37:      /* therm limit status */
413                 return true;
414         default:
415                 return false;
416         }
417 }
418
419 static const struct regmap_config emc1403_regmap_config = {
420         .reg_bits = 8,
421         .val_bits = 8,
422         .cache_type = REGCACHE_RBTREE,
423         .volatile_reg = emc1403_regmap_is_volatile,
424 };
425
426 static int emc1403_probe(struct i2c_client *client,
427                         const struct i2c_device_id *id)
428 {
429         struct thermal_data *data;
430         struct device *hwmon_dev;
431
432         data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
433                             GFP_KERNEL);
434         if (data == NULL)
435                 return -ENOMEM;
436
437         data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
438         if (IS_ERR(data->regmap))
439                 return PTR_ERR(data->regmap);
440
441         mutex_init(&data->mutex);
442
443         switch (id->driver_data) {
444         case emc1404:
445                 data->groups[2] = &emc1404_group;
446         case emc1403:
447                 data->groups[1] = &emc1403_group;
448         case emc1402:
449                 data->groups[0] = &emc1402_group;
450         }
451
452         if (id->driver_data == emc1402)
453                 data->groups[1] = &emc1402_alarm_group;
454
455         hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
456                                                            client->name, data,
457                                                            data->groups);
458         if (IS_ERR(hwmon_dev))
459                 return PTR_ERR(hwmon_dev);
460
461         dev_info(&client->dev, "%s Thermal chip found\n", id->name);
462         return 0;
463 }
464
465 static const unsigned short emc1403_address_list[] = {
466         0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
467 };
468
469 /* Last digit of chip name indicates number of channels */
470 static const struct i2c_device_id emc1403_idtable[] = {
471         { "emc1402", emc1402 },
472         { "emc1403", emc1403 },
473         { "emc1404", emc1404 },
474         { "emc1412", emc1402 },
475         { "emc1413", emc1403 },
476         { "emc1414", emc1404 },
477         { "emc1422", emc1402 },
478         { "emc1423", emc1403 },
479         { "emc1424", emc1404 },
480         { }
481 };
482 MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
483
484 static struct i2c_driver sensor_emc1403 = {
485         .class = I2C_CLASS_HWMON,
486         .driver = {
487                 .name = "emc1403",
488         },
489         .detect = emc1403_detect,
490         .probe = emc1403_probe,
491         .id_table = emc1403_idtable,
492         .address_list = emc1403_address_list,
493 };
494
495 module_i2c_driver(sensor_emc1403);
496
497 MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
498 MODULE_DESCRIPTION("emc1403 Thermal Driver");
499 MODULE_LICENSE("GPL v2");