Merge branch 'v3.10/topic/pinctrl' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / hwmon / smm665.c
1 /*
2  * Driver for SMM665 Power Controller / Monitor
3  *
4  * Copyright (C) 2010 Ericsson AB.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This driver should also work for SMM465, SMM764, and SMM766, but is untested
11  * for those chips. Only monitoring functionality is implemented.
12  *
13  * Datasheets:
14  * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
15  * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 #include <linux/i2c.h>
24 #include <linux/hwmon.h>
25 #include <linux/hwmon-sysfs.h>
26 #include <linux/delay.h>
27 #include <linux/jiffies.h>
28
29 /* Internal reference voltage (VREF, x 1000 */
30 #define SMM665_VREF_ADC_X1000   1250
31
32 /* module parameters */
33 static int vref = SMM665_VREF_ADC_X1000;
34 module_param(vref, int, 0);
35 MODULE_PARM_DESC(vref, "Reference voltage in mV");
36
37 enum chips { smm465, smm665, smm665c, smm764, smm766 };
38
39 /*
40  * ADC channel addresses
41  */
42 #define SMM665_MISC16_ADC_DATA_A        0x00
43 #define SMM665_MISC16_ADC_DATA_B        0x01
44 #define SMM665_MISC16_ADC_DATA_C        0x02
45 #define SMM665_MISC16_ADC_DATA_D        0x03
46 #define SMM665_MISC16_ADC_DATA_E        0x04
47 #define SMM665_MISC16_ADC_DATA_F        0x05
48 #define SMM665_MISC16_ADC_DATA_VDD      0x06
49 #define SMM665_MISC16_ADC_DATA_12V      0x07
50 #define SMM665_MISC16_ADC_DATA_INT_TEMP 0x08
51 #define SMM665_MISC16_ADC_DATA_AIN1     0x09
52 #define SMM665_MISC16_ADC_DATA_AIN2     0x0a
53
54 /*
55  * Command registers
56  */
57 #define SMM665_MISC8_CMD_STS            0x80
58 #define SMM665_MISC8_STATUS1            0x81
59 #define SMM665_MISC8_STATUSS2           0x82
60 #define SMM665_MISC8_IO_POLARITY        0x83
61 #define SMM665_MISC8_PUP_POLARITY       0x84
62 #define SMM665_MISC8_ADOC_STATUS1       0x85
63 #define SMM665_MISC8_ADOC_STATUS2       0x86
64 #define SMM665_MISC8_WRITE_PROT         0x87
65 #define SMM665_MISC8_STS_TRACK          0x88
66
67 /*
68  * Configuration registers and register groups
69  */
70 #define SMM665_ADOC_ENABLE              0x0d
71 #define SMM665_LIMIT_BASE               0x80    /* First limit register */
72
73 /*
74  * Limit register bit masks
75  */
76 #define SMM665_TRIGGER_RST              0x8000
77 #define SMM665_TRIGGER_HEALTHY          0x4000
78 #define SMM665_TRIGGER_POWEROFF         0x2000
79 #define SMM665_TRIGGER_SHUTDOWN         0x1000
80 #define SMM665_ADC_MASK                 0x03ff
81
82 #define smm665_is_critical(lim) ((lim) & (SMM665_TRIGGER_RST \
83                                         | SMM665_TRIGGER_POWEROFF \
84                                         | SMM665_TRIGGER_SHUTDOWN))
85 /*
86  * Fault register bit definitions
87  * Values are merged from status registers 1/2,
88  * with status register 1 providing the upper 8 bits.
89  */
90 #define SMM665_FAULT_A          0x0001
91 #define SMM665_FAULT_B          0x0002
92 #define SMM665_FAULT_C          0x0004
93 #define SMM665_FAULT_D          0x0008
94 #define SMM665_FAULT_E          0x0010
95 #define SMM665_FAULT_F          0x0020
96 #define SMM665_FAULT_VDD        0x0040
97 #define SMM665_FAULT_12V        0x0080
98 #define SMM665_FAULT_TEMP       0x0100
99 #define SMM665_FAULT_AIN1       0x0200
100 #define SMM665_FAULT_AIN2       0x0400
101
102 /*
103  * I2C Register addresses
104  *
105  * The configuration register needs to be the configured base register.
106  * The command/status register address is derived from it.
107  */
108 #define SMM665_REGMASK          0x78
109 #define SMM665_CMDREG_BASE      0x48
110 #define SMM665_CONFREG_BASE     0x50
111
112 /*
113  *  Equations given by chip manufacturer to calculate voltage/temperature values
114  *  vref = Reference voltage on VREF_ADC pin (module parameter)
115  *  adc  = 10bit ADC value read back from registers
116  */
117
118 /* Voltage A-F and VDD */
119 #define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
120
121 /* Voltage 12VIN */
122 #define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
123
124 /* Voltage AIN1, AIN2 */
125 #define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
126
127 /* Temp Sensor */
128 #define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?                  \
129                                          ((int)(adc) * 1000 / 4) :         \
130                                          (((int)(adc) - 0x400) * 1000 / 4))
131
132 #define SMM665_NUM_ADC          11
133
134 /*
135  * Chip dependent ADC conversion time, in uS
136  */
137 #define SMM665_ADC_WAIT_SMM665  70
138 #define SMM665_ADC_WAIT_SMM766  185
139
140 struct smm665_data {
141         enum chips type;
142         int conversion_time;            /* ADC conversion time */
143         struct device *hwmon_dev;
144         struct mutex update_lock;
145         bool valid;
146         unsigned long last_updated;     /* in jiffies */
147         u16 adc[SMM665_NUM_ADC];        /* adc values (raw) */
148         u16 faults;                     /* fault status */
149         /* The following values are in mV */
150         int critical_min_limit[SMM665_NUM_ADC];
151         int alarm_min_limit[SMM665_NUM_ADC];
152         int critical_max_limit[SMM665_NUM_ADC];
153         int alarm_max_limit[SMM665_NUM_ADC];
154         struct i2c_client *cmdreg;
155 };
156
157 /*
158  * smm665_read16()
159  *
160  * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
161  */
162 static int smm665_read16(struct i2c_client *client, int reg)
163 {
164         int rv, val;
165
166         rv = i2c_smbus_read_byte_data(client, reg);
167         if (rv < 0)
168                 return rv;
169         val = rv << 8;
170         rv = i2c_smbus_read_byte_data(client, reg + 1);
171         if (rv < 0)
172                 return rv;
173         val |= rv;
174         return val;
175 }
176
177 /*
178  * Read adc value.
179  */
180 static int smm665_read_adc(struct smm665_data *data, int adc)
181 {
182         struct i2c_client *client = data->cmdreg;
183         int rv;
184         int radc;
185
186         /*
187          * Algorithm for reading ADC, per SMM665 datasheet
188          *
189          *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
190          * [wait conversion time]
191          *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
192          *
193          * To implement the first part of this exchange,
194          * do a full read transaction and expect a failure/Nack.
195          * This sets up the address pointer on the SMM665
196          * and starts the ADC conversion.
197          * Then do a two-byte read transaction.
198          */
199         rv = i2c_smbus_read_byte_data(client, adc << 3);
200         if (rv != -ENXIO) {
201                 /*
202                  * We expect ENXIO to reflect NACK
203                  * (per Documentation/i2c/fault-codes).
204                  * Everything else is an error.
205                  */
206                 dev_dbg(&client->dev,
207                         "Unexpected return code %d when setting ADC index", rv);
208                 return (rv < 0) ? rv : -EIO;
209         }
210
211         udelay(data->conversion_time);
212
213         /*
214          * Now read two bytes.
215          *
216          * Neither i2c_smbus_read_byte() nor
217          * i2c_smbus_read_block_data() worked here,
218          * so use i2c_smbus_read_word_swapped() instead.
219          * We could also try to use i2c_master_recv(),
220          * but that is not always supported.
221          */
222         rv = i2c_smbus_read_word_swapped(client, 0);
223         if (rv < 0) {
224                 dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
225                 return -1;
226         }
227         /*
228          * Validate/verify readback adc channel (in bit 11..14).
229          */
230         radc = (rv >> 11) & 0x0f;
231         if (radc != adc) {
232                 dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
233                         adc, radc);
234                 return -EIO;
235         }
236
237         return rv & SMM665_ADC_MASK;
238 }
239
240 static struct smm665_data *smm665_update_device(struct device *dev)
241 {
242         struct i2c_client *client = to_i2c_client(dev);
243         struct smm665_data *data = i2c_get_clientdata(client);
244         struct smm665_data *ret = data;
245
246         mutex_lock(&data->update_lock);
247
248         if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
249                 int i, val;
250
251                 /*
252                  * read status registers
253                  */
254                 val = smm665_read16(client, SMM665_MISC8_STATUS1);
255                 if (unlikely(val < 0)) {
256                         ret = ERR_PTR(val);
257                         goto abort;
258                 }
259                 data->faults = val;
260
261                 /* Read adc registers */
262                 for (i = 0; i < SMM665_NUM_ADC; i++) {
263                         val = smm665_read_adc(data, i);
264                         if (unlikely(val < 0)) {
265                                 ret = ERR_PTR(val);
266                                 goto abort;
267                         }
268                         data->adc[i] = val;
269                 }
270                 data->last_updated = jiffies;
271                 data->valid = 1;
272         }
273 abort:
274         mutex_unlock(&data->update_lock);
275         return ret;
276 }
277
278 /* Return converted value from given adc */
279 static int smm665_convert(u16 adcval, int index)
280 {
281         int val = 0;
282
283         switch (index) {
284         case SMM665_MISC16_ADC_DATA_12V:
285                 val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
286                 break;
287
288         case SMM665_MISC16_ADC_DATA_VDD:
289         case SMM665_MISC16_ADC_DATA_A:
290         case SMM665_MISC16_ADC_DATA_B:
291         case SMM665_MISC16_ADC_DATA_C:
292         case SMM665_MISC16_ADC_DATA_D:
293         case SMM665_MISC16_ADC_DATA_E:
294         case SMM665_MISC16_ADC_DATA_F:
295                 val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
296                 break;
297
298         case SMM665_MISC16_ADC_DATA_AIN1:
299         case SMM665_MISC16_ADC_DATA_AIN2:
300                 val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
301                 break;
302
303         case SMM665_MISC16_ADC_DATA_INT_TEMP:
304                 val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
305                 break;
306
307         default:
308                 /* If we get here, the developer messed up */
309                 WARN_ON_ONCE(1);
310                 break;
311         }
312
313         return val;
314 }
315
316 static int smm665_get_min(struct device *dev, int index)
317 {
318         struct i2c_client *client = to_i2c_client(dev);
319         struct smm665_data *data = i2c_get_clientdata(client);
320
321         return data->alarm_min_limit[index];
322 }
323
324 static int smm665_get_max(struct device *dev, int index)
325 {
326         struct i2c_client *client = to_i2c_client(dev);
327         struct smm665_data *data = i2c_get_clientdata(client);
328
329         return data->alarm_max_limit[index];
330 }
331
332 static int smm665_get_lcrit(struct device *dev, int index)
333 {
334         struct i2c_client *client = to_i2c_client(dev);
335         struct smm665_data *data = i2c_get_clientdata(client);
336
337         return data->critical_min_limit[index];
338 }
339
340 static int smm665_get_crit(struct device *dev, int index)
341 {
342         struct i2c_client *client = to_i2c_client(dev);
343         struct smm665_data *data = i2c_get_clientdata(client);
344
345         return data->critical_max_limit[index];
346 }
347
348 static ssize_t smm665_show_crit_alarm(struct device *dev,
349                                       struct device_attribute *da, char *buf)
350 {
351         struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
352         struct smm665_data *data = smm665_update_device(dev);
353         int val = 0;
354
355         if (IS_ERR(data))
356                 return PTR_ERR(data);
357
358         if (data->faults & (1 << attr->index))
359                 val = 1;
360
361         return snprintf(buf, PAGE_SIZE, "%d\n", val);
362 }
363
364 static ssize_t smm665_show_input(struct device *dev,
365                                  struct device_attribute *da, char *buf)
366 {
367         struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
368         struct smm665_data *data = smm665_update_device(dev);
369         int adc = attr->index;
370         int val;
371
372         if (IS_ERR(data))
373                 return PTR_ERR(data);
374
375         val = smm665_convert(data->adc[adc], adc);
376         return snprintf(buf, PAGE_SIZE, "%d\n", val);
377 }
378
379 #define SMM665_SHOW(what) \
380 static ssize_t smm665_show_##what(struct device *dev, \
381                                     struct device_attribute *da, char *buf) \
382 { \
383         struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
384         const int val = smm665_get_##what(dev, attr->index); \
385         return snprintf(buf, PAGE_SIZE, "%d\n", val); \
386 }
387
388 SMM665_SHOW(min);
389 SMM665_SHOW(max);
390 SMM665_SHOW(lcrit);
391 SMM665_SHOW(crit);
392
393 /*
394  * These macros are used below in constructing device attribute objects
395  * for use with sysfs_create_group() to make a sysfs device file
396  * for each register.
397  */
398
399 #define SMM665_ATTR(name, type, cmd_idx) \
400         static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
401                                   smm665_show_##type, NULL, cmd_idx)
402
403 /* Construct a sensor_device_attribute structure for each register */
404
405 /* Input voltages */
406 SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
407 SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
408 SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
409 SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
410 SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
411 SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
412 SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
413 SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
414 SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
415 SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
416
417 /* Input voltages min */
418 SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
419 SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
420 SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
421 SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
422 SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
423 SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
424 SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
425 SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
426 SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
427 SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
428
429 /* Input voltages max */
430 SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
431 SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
432 SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
433 SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
434 SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
435 SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
436 SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
437 SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
438 SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
439 SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
440
441 /* Input voltages lcrit */
442 SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
443 SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
444 SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
445 SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
446 SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
447 SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
448 SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
449 SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
450 SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
451 SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
452
453 /* Input voltages crit */
454 SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
455 SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
456 SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
457 SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
458 SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
459 SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
460 SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
461 SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
462 SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
463 SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
464
465 /* critical alarms */
466 SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
467 SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
468 SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
469 SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
470 SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
471 SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
472 SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
473 SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
474 SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
475 SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
476
477 /* Temperature */
478 SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
479 SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
480 SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
481 SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
482 SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
483 SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
484
485 /*
486  * Finally, construct an array of pointers to members of the above objects,
487  * as required for sysfs_create_group()
488  */
489 static struct attribute *smm665_attributes[] = {
490         &sensor_dev_attr_in1_input.dev_attr.attr,
491         &sensor_dev_attr_in1_min.dev_attr.attr,
492         &sensor_dev_attr_in1_max.dev_attr.attr,
493         &sensor_dev_attr_in1_lcrit.dev_attr.attr,
494         &sensor_dev_attr_in1_crit.dev_attr.attr,
495         &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
496
497         &sensor_dev_attr_in2_input.dev_attr.attr,
498         &sensor_dev_attr_in2_min.dev_attr.attr,
499         &sensor_dev_attr_in2_max.dev_attr.attr,
500         &sensor_dev_attr_in2_lcrit.dev_attr.attr,
501         &sensor_dev_attr_in2_crit.dev_attr.attr,
502         &sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
503
504         &sensor_dev_attr_in3_input.dev_attr.attr,
505         &sensor_dev_attr_in3_min.dev_attr.attr,
506         &sensor_dev_attr_in3_max.dev_attr.attr,
507         &sensor_dev_attr_in3_lcrit.dev_attr.attr,
508         &sensor_dev_attr_in3_crit.dev_attr.attr,
509         &sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
510
511         &sensor_dev_attr_in4_input.dev_attr.attr,
512         &sensor_dev_attr_in4_min.dev_attr.attr,
513         &sensor_dev_attr_in4_max.dev_attr.attr,
514         &sensor_dev_attr_in4_lcrit.dev_attr.attr,
515         &sensor_dev_attr_in4_crit.dev_attr.attr,
516         &sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
517
518         &sensor_dev_attr_in5_input.dev_attr.attr,
519         &sensor_dev_attr_in5_min.dev_attr.attr,
520         &sensor_dev_attr_in5_max.dev_attr.attr,
521         &sensor_dev_attr_in5_lcrit.dev_attr.attr,
522         &sensor_dev_attr_in5_crit.dev_attr.attr,
523         &sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
524
525         &sensor_dev_attr_in6_input.dev_attr.attr,
526         &sensor_dev_attr_in6_min.dev_attr.attr,
527         &sensor_dev_attr_in6_max.dev_attr.attr,
528         &sensor_dev_attr_in6_lcrit.dev_attr.attr,
529         &sensor_dev_attr_in6_crit.dev_attr.attr,
530         &sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
531
532         &sensor_dev_attr_in7_input.dev_attr.attr,
533         &sensor_dev_attr_in7_min.dev_attr.attr,
534         &sensor_dev_attr_in7_max.dev_attr.attr,
535         &sensor_dev_attr_in7_lcrit.dev_attr.attr,
536         &sensor_dev_attr_in7_crit.dev_attr.attr,
537         &sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
538
539         &sensor_dev_attr_in8_input.dev_attr.attr,
540         &sensor_dev_attr_in8_min.dev_attr.attr,
541         &sensor_dev_attr_in8_max.dev_attr.attr,
542         &sensor_dev_attr_in8_lcrit.dev_attr.attr,
543         &sensor_dev_attr_in8_crit.dev_attr.attr,
544         &sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
545
546         &sensor_dev_attr_in9_input.dev_attr.attr,
547         &sensor_dev_attr_in9_min.dev_attr.attr,
548         &sensor_dev_attr_in9_max.dev_attr.attr,
549         &sensor_dev_attr_in9_lcrit.dev_attr.attr,
550         &sensor_dev_attr_in9_crit.dev_attr.attr,
551         &sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
552
553         &sensor_dev_attr_in10_input.dev_attr.attr,
554         &sensor_dev_attr_in10_min.dev_attr.attr,
555         &sensor_dev_attr_in10_max.dev_attr.attr,
556         &sensor_dev_attr_in10_lcrit.dev_attr.attr,
557         &sensor_dev_attr_in10_crit.dev_attr.attr,
558         &sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
559
560         &sensor_dev_attr_temp1_input.dev_attr.attr,
561         &sensor_dev_attr_temp1_min.dev_attr.attr,
562         &sensor_dev_attr_temp1_max.dev_attr.attr,
563         &sensor_dev_attr_temp1_lcrit.dev_attr.attr,
564         &sensor_dev_attr_temp1_crit.dev_attr.attr,
565         &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
566
567         NULL,
568 };
569
570 static const struct attribute_group smm665_group = {
571         .attrs = smm665_attributes,
572 };
573
574 static int smm665_probe(struct i2c_client *client,
575                         const struct i2c_device_id *id)
576 {
577         struct i2c_adapter *adapter = client->adapter;
578         struct smm665_data *data;
579         int i, ret;
580
581         if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
582                                      | I2C_FUNC_SMBUS_WORD_DATA))
583                 return -ENODEV;
584
585         if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
586                 return -ENODEV;
587
588         data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
589         if (!data)
590                 return -ENOMEM;
591
592         i2c_set_clientdata(client, data);
593         mutex_init(&data->update_lock);
594
595         data->type = id->driver_data;
596         data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
597                                      | SMM665_CMDREG_BASE);
598         if (!data->cmdreg)
599                 return -ENOMEM;
600
601         switch (data->type) {
602         case smm465:
603         case smm665:
604                 data->conversion_time = SMM665_ADC_WAIT_SMM665;
605                 break;
606         case smm665c:
607         case smm764:
608         case smm766:
609                 data->conversion_time = SMM665_ADC_WAIT_SMM766;
610                 break;
611         }
612
613         ret = -ENODEV;
614         if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
615                 goto out_unregister;
616
617         /*
618          * Read limits.
619          *
620          * Limit registers start with register SMM665_LIMIT_BASE.
621          * Each channel uses 8 registers, providing four limit values
622          * per channel. Each limit value requires two registers, with the
623          * high byte in the first register and the low byte in the second
624          * register. The first two limits are under limit values, followed
625          * by two over limit values.
626          *
627          * Limit register order matches the ADC register order, so we use
628          * ADC register defines throughout the code to index limit registers.
629          *
630          * We save the first retrieved value both as "critical" and "alarm"
631          * value. The second value overwrites either the critical or the
632          * alarm value, depending on its configuration. This ensures that both
633          * critical and alarm values are initialized, even if both registers are
634          * configured as critical or non-critical.
635          */
636         for (i = 0; i < SMM665_NUM_ADC; i++) {
637                 int val;
638
639                 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
640                 if (unlikely(val < 0))
641                         goto out_unregister;
642                 data->critical_min_limit[i] = data->alarm_min_limit[i]
643                   = smm665_convert(val, i);
644                 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
645                 if (unlikely(val < 0))
646                         goto out_unregister;
647                 if (smm665_is_critical(val))
648                         data->critical_min_limit[i] = smm665_convert(val, i);
649                 else
650                         data->alarm_min_limit[i] = smm665_convert(val, i);
651                 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
652                 if (unlikely(val < 0))
653                         goto out_unregister;
654                 data->critical_max_limit[i] = data->alarm_max_limit[i]
655                   = smm665_convert(val, i);
656                 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
657                 if (unlikely(val < 0))
658                         goto out_unregister;
659                 if (smm665_is_critical(val))
660                         data->critical_max_limit[i] = smm665_convert(val, i);
661                 else
662                         data->alarm_max_limit[i] = smm665_convert(val, i);
663         }
664
665         /* Register sysfs hooks */
666         ret = sysfs_create_group(&client->dev.kobj, &smm665_group);
667         if (ret)
668                 goto out_unregister;
669
670         data->hwmon_dev = hwmon_device_register(&client->dev);
671         if (IS_ERR(data->hwmon_dev)) {
672                 ret = PTR_ERR(data->hwmon_dev);
673                 goto out_remove_group;
674         }
675
676         return 0;
677
678 out_remove_group:
679         sysfs_remove_group(&client->dev.kobj, &smm665_group);
680 out_unregister:
681         i2c_unregister_device(data->cmdreg);
682         return ret;
683 }
684
685 static int smm665_remove(struct i2c_client *client)
686 {
687         struct smm665_data *data = i2c_get_clientdata(client);
688
689         i2c_unregister_device(data->cmdreg);
690         hwmon_device_unregister(data->hwmon_dev);
691         sysfs_remove_group(&client->dev.kobj, &smm665_group);
692
693         return 0;
694 }
695
696 static const struct i2c_device_id smm665_id[] = {
697         {"smm465", smm465},
698         {"smm665", smm665},
699         {"smm665c", smm665c},
700         {"smm764", smm764},
701         {"smm766", smm766},
702         {}
703 };
704
705 MODULE_DEVICE_TABLE(i2c, smm665_id);
706
707 /* This is the driver that will be inserted */
708 static struct i2c_driver smm665_driver = {
709         .driver = {
710                    .name = "smm665",
711                    },
712         .probe = smm665_probe,
713         .remove = smm665_remove,
714         .id_table = smm665_id,
715 };
716
717 module_i2c_driver(smm665_driver);
718
719 MODULE_AUTHOR("Guenter Roeck");
720 MODULE_DESCRIPTION("SMM665 driver");
721 MODULE_LICENSE("GPL");