086eceaeeafdc8cf8cb7faa82457c5968a1e8292
[firefly-linux-kernel-4.4.55.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91
92         if (port_ops && port_ops->selectproc)
93                 port_ops->selectproc(drive);
94
95         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96 }
97
98 void SELECT_MASK(ide_drive_t *drive, int mask)
99 {
100         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102         if (port_ops && port_ops->maskproc)
103                 port_ops->maskproc(drive, mask);
104 }
105
106 static void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
107 {
108         if (hwif->host_flags & IDE_HFLAG_MMIO)
109                 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
110         else
111                 outb(cmd, hwif->io_ports.command_addr);
112 }
113
114 static u8 ide_read_status(ide_hwif_t *hwif)
115 {
116         if (hwif->host_flags & IDE_HFLAG_MMIO)
117                 return readb((void __iomem *)hwif->io_ports.status_addr);
118         else
119                 return inb(hwif->io_ports.status_addr);
120 }
121
122 static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
123 {
124         if (hwif->host_flags & IDE_HFLAG_MMIO)
125                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
126         else
127                 return inb(hwif->dma_base + ATA_DMA_STATUS);
128 }
129
130 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
131 {
132         ide_hwif_t *hwif = drive->hwif;
133         struct ide_io_ports *io_ports = &hwif->io_ports;
134         struct ide_taskfile *tf = &task->tf;
135         void (*tf_outb)(u8 addr, unsigned long port);
136         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
137         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
138
139         if (mmio)
140                 tf_outb = ide_mm_outb;
141         else
142                 tf_outb = ide_outb;
143
144         if (task->tf_flags & IDE_TFLAG_FLAGGED)
145                 HIHI = 0xFF;
146
147         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
148                 u16 data = (tf->hob_data << 8) | tf->data;
149
150                 if (mmio)
151                         writew(data, (void __iomem *)io_ports->data_addr);
152                 else
153                         outw(data, io_ports->data_addr);
154         }
155
156         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
157                 tf_outb(tf->hob_feature, io_ports->feature_addr);
158         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
159                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
160         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
161                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
162         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
163                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
164         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
165                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
166
167         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
168                 tf_outb(tf->feature, io_ports->feature_addr);
169         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
170                 tf_outb(tf->nsect, io_ports->nsect_addr);
171         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
172                 tf_outb(tf->lbal, io_ports->lbal_addr);
173         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
174                 tf_outb(tf->lbam, io_ports->lbam_addr);
175         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
176                 tf_outb(tf->lbah, io_ports->lbah_addr);
177
178         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
179                 tf_outb((tf->device & HIHI) | drive->select.all,
180                          io_ports->device_addr);
181 }
182
183 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
184 {
185         ide_hwif_t *hwif = drive->hwif;
186         struct ide_io_ports *io_ports = &hwif->io_ports;
187         struct ide_taskfile *tf = &task->tf;
188         void (*tf_outb)(u8 addr, unsigned long port);
189         u8 (*tf_inb)(unsigned long port);
190         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
191
192         if (mmio) {
193                 tf_outb = ide_mm_outb;
194                 tf_inb  = ide_mm_inb;
195         } else {
196                 tf_outb = ide_outb;
197                 tf_inb  = ide_inb;
198         }
199
200         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
201                 u16 data;
202
203                 if (mmio)
204                         data = readw((void __iomem *)io_ports->data_addr);
205                 else
206                         data = inw(io_ports->data_addr);
207
208                 tf->data = data & 0xff;
209                 tf->hob_data = (data >> 8) & 0xff;
210         }
211
212         /* be sure we're looking at the low order bits */
213         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
214
215         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
216                 tf->nsect  = tf_inb(io_ports->nsect_addr);
217         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
218                 tf->lbal   = tf_inb(io_ports->lbal_addr);
219         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
220                 tf->lbam   = tf_inb(io_ports->lbam_addr);
221         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
222                 tf->lbah   = tf_inb(io_ports->lbah_addr);
223         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
224                 tf->device = tf_inb(io_ports->device_addr);
225
226         if (task->tf_flags & IDE_TFLAG_LBA48) {
227                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
228
229                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
230                         tf->hob_feature = tf_inb(io_ports->feature_addr);
231                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
232                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
233                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
234                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
235                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
236                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
237                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
238                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
239         }
240 }
241
242 /*
243  * Some localbus EIDE interfaces require a special access sequence
244  * when using 32-bit I/O instructions to transfer data.  We call this
245  * the "vlb_sync" sequence, which consists of three successive reads
246  * of the sector count register location, with interrupts disabled
247  * to ensure that the reads all happen together.
248  */
249 static void ata_vlb_sync(unsigned long port)
250 {
251         (void)inb(port);
252         (void)inb(port);
253         (void)inb(port);
254 }
255
256 /*
257  * This is used for most PIO data transfers *from* the IDE interface
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd len is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
263 static void ata_input_data(ide_drive_t *drive, struct request *rq,
264                            void *buf, unsigned int len)
265 {
266         ide_hwif_t *hwif = drive->hwif;
267         struct ide_io_ports *io_ports = &hwif->io_ports;
268         unsigned long data_addr = io_ports->data_addr;
269         u8 io_32bit = drive->io_32bit;
270         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
271
272         len++;
273
274         if (io_32bit) {
275                 unsigned long uninitialized_var(flags);
276
277                 if ((io_32bit & 2) && !mmio) {
278                         local_irq_save(flags);
279                         ata_vlb_sync(io_ports->nsect_addr);
280                 }
281
282                 if (mmio)
283                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
284                 else
285                         insl(data_addr, buf, len / 4);
286
287                 if ((io_32bit & 2) && !mmio)
288                         local_irq_restore(flags);
289
290                 if ((len & 3) >= 2) {
291                         if (mmio)
292                                 __ide_mm_insw((void __iomem *)data_addr,
293                                                 (u8 *)buf + (len & ~3), 1);
294                         else
295                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
296                 }
297         } else {
298                 if (mmio)
299                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
300                 else
301                         insw(data_addr, buf, len / 2);
302         }
303 }
304
305 /*
306  * This is used for most PIO data transfers *to* the IDE interface
307  */
308 static void ata_output_data(ide_drive_t *drive, struct request *rq,
309                             void *buf, unsigned int len)
310 {
311         ide_hwif_t *hwif = drive->hwif;
312         struct ide_io_ports *io_ports = &hwif->io_ports;
313         unsigned long data_addr = io_ports->data_addr;
314         u8 io_32bit = drive->io_32bit;
315         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
316
317         if (io_32bit) {
318                 unsigned long uninitialized_var(flags);
319
320                 if ((io_32bit & 2) && !mmio) {
321                         local_irq_save(flags);
322                         ata_vlb_sync(io_ports->nsect_addr);
323                 }
324
325                 if (mmio)
326                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
327                 else
328                         outsl(data_addr, buf, len / 4);
329
330                 if ((io_32bit & 2) && !mmio)
331                         local_irq_restore(flags);
332
333                 if ((len & 3) >= 2) {
334                         if (mmio)
335                                 __ide_mm_outsw((void __iomem *)data_addr,
336                                                  (u8 *)buf + (len & ~3), 1);
337                         else
338                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
339                 }
340         } else {
341                 if (mmio)
342                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
343                 else
344                         outsw(data_addr, buf, len / 2);
345         }
346 }
347
348 void default_hwif_transport(ide_hwif_t *hwif)
349 {
350         hwif->exec_command        = ide_exec_command;
351         hwif->read_status         = ide_read_status;
352         hwif->read_sff_dma_status = ide_read_sff_dma_status;
353
354         hwif->tf_load     = ide_tf_load;
355         hwif->tf_read     = ide_tf_read;
356
357         hwif->input_data  = ata_input_data;
358         hwif->output_data = ata_output_data;
359 }
360
361 void ide_fix_driveid (struct hd_driveid *id)
362 {
363 #ifndef __LITTLE_ENDIAN
364 # ifdef __BIG_ENDIAN
365         int i;
366         u16 *stringcast;
367
368         id->config         = __le16_to_cpu(id->config);
369         id->cyls           = __le16_to_cpu(id->cyls);
370         id->reserved2      = __le16_to_cpu(id->reserved2);
371         id->heads          = __le16_to_cpu(id->heads);
372         id->track_bytes    = __le16_to_cpu(id->track_bytes);
373         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
374         id->sectors        = __le16_to_cpu(id->sectors);
375         id->vendor0        = __le16_to_cpu(id->vendor0);
376         id->vendor1        = __le16_to_cpu(id->vendor1);
377         id->vendor2        = __le16_to_cpu(id->vendor2);
378         stringcast = (u16 *)&id->serial_no[0];
379         for (i = 0; i < (20/2); i++)
380                 stringcast[i] = __le16_to_cpu(stringcast[i]);
381         id->buf_type       = __le16_to_cpu(id->buf_type);
382         id->buf_size       = __le16_to_cpu(id->buf_size);
383         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
384         stringcast = (u16 *)&id->fw_rev[0];
385         for (i = 0; i < (8/2); i++)
386                 stringcast[i] = __le16_to_cpu(stringcast[i]);
387         stringcast = (u16 *)&id->model[0];
388         for (i = 0; i < (40/2); i++)
389                 stringcast[i] = __le16_to_cpu(stringcast[i]);
390         id->dword_io       = __le16_to_cpu(id->dword_io);
391         id->reserved50     = __le16_to_cpu(id->reserved50);
392         id->field_valid    = __le16_to_cpu(id->field_valid);
393         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
394         id->cur_heads      = __le16_to_cpu(id->cur_heads);
395         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
396         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
397         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
398         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
399         id->dma_1word      = __le16_to_cpu(id->dma_1word);
400         id->dma_mword      = __le16_to_cpu(id->dma_mword);
401         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
402         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
403         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
404         id->eide_pio       = __le16_to_cpu(id->eide_pio);
405         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
406         for (i = 0; i < 2; ++i)
407                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
408         for (i = 0; i < 4; ++i)
409                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
410         id->queue_depth    = __le16_to_cpu(id->queue_depth);
411         for (i = 0; i < 4; ++i)
412                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
413         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
414         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
415         id->command_set_1  = __le16_to_cpu(id->command_set_1);
416         id->command_set_2  = __le16_to_cpu(id->command_set_2);
417         id->cfsse          = __le16_to_cpu(id->cfsse);
418         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
419         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
420         id->csf_default    = __le16_to_cpu(id->csf_default);
421         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
422         id->trseuc         = __le16_to_cpu(id->trseuc);
423         id->trsEuc         = __le16_to_cpu(id->trsEuc);
424         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
425         id->mprc           = __le16_to_cpu(id->mprc);
426         id->hw_config      = __le16_to_cpu(id->hw_config);
427         id->acoustic       = __le16_to_cpu(id->acoustic);
428         id->msrqs          = __le16_to_cpu(id->msrqs);
429         id->sxfert         = __le16_to_cpu(id->sxfert);
430         id->sal            = __le16_to_cpu(id->sal);
431         id->spg            = __le32_to_cpu(id->spg);
432         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
433         for (i = 0; i < 22; i++)
434                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
435         id->last_lun       = __le16_to_cpu(id->last_lun);
436         id->word127        = __le16_to_cpu(id->word127);
437         id->dlf            = __le16_to_cpu(id->dlf);
438         id->csfo           = __le16_to_cpu(id->csfo);
439         for (i = 0; i < 26; i++)
440                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
441         id->word156        = __le16_to_cpu(id->word156);
442         for (i = 0; i < 3; i++)
443                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
444         id->cfa_power      = __le16_to_cpu(id->cfa_power);
445         for (i = 0; i < 14; i++)
446                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
447         for (i = 0; i < 31; i++)
448                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
449         for (i = 0; i < 48; i++)
450                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
451         id->integrity_word  = __le16_to_cpu(id->integrity_word);
452 # else
453 #  error "Please fix <asm/byteorder.h>"
454 # endif
455 #endif
456 }
457
458 /*
459  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
460  * removing leading/trailing blanks and compressing internal blanks.
461  * It is primarily used to tidy up the model name/number fields as
462  * returned by the WIN_[P]IDENTIFY commands.
463  */
464
465 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
466 {
467         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
468
469         if (byteswap) {
470                 /* convert from big-endian to host byte order */
471                 for (p = end ; p != s;) {
472                         unsigned short *pp = (unsigned short *) (p -= 2);
473                         *pp = ntohs(*pp);
474                 }
475         }
476         /* strip leading blanks */
477         while (s != end && *s == ' ')
478                 ++s;
479         /* compress internal blanks and strip trailing blanks */
480         while (s != end && *s) {
481                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
482                         *p++ = *(s-1);
483         }
484         /* wipe out trailing garbage */
485         while (p != end)
486                 *p++ = '\0';
487 }
488
489 EXPORT_SYMBOL(ide_fixstring);
490
491 /*
492  * Needed for PCI irq sharing
493  */
494 int drive_is_ready (ide_drive_t *drive)
495 {
496         ide_hwif_t *hwif        = HWIF(drive);
497         u8 stat                 = 0;
498
499         if (drive->waiting_for_dma)
500                 return hwif->dma_ops->dma_test_irq(drive);
501
502 #if 0
503         /* need to guarantee 400ns since last command was issued */
504         udelay(1);
505 #endif
506
507         /*
508          * We do a passive status test under shared PCI interrupts on
509          * cards that truly share the ATA side interrupt, but may also share
510          * an interrupt with another pci card/device.  We make no assumptions
511          * about possible isa-pnp and pci-pnp issues yet.
512          */
513         if (hwif->io_ports.ctl_addr)
514                 stat = ide_read_altstatus(drive);
515         else
516                 /* Note: this may clear a pending IRQ!! */
517                 stat = hwif->read_status(hwif);
518
519         if (stat & BUSY_STAT)
520                 /* drive busy:  definitely not interrupting */
521                 return 0;
522
523         /* drive ready: *might* be interrupting */
524         return 1;
525 }
526
527 EXPORT_SYMBOL(drive_is_ready);
528
529 /*
530  * This routine busy-waits for the drive status to be not "busy".
531  * It then checks the status for all of the "good" bits and none
532  * of the "bad" bits, and if all is okay it returns 0.  All other
533  * cases return error -- caller may then invoke ide_error().
534  *
535  * This routine should get fixed to not hog the cpu during extra long waits..
536  * That could be done by busy-waiting for the first jiffy or two, and then
537  * setting a timer to wake up at half second intervals thereafter,
538  * until timeout is achieved, before timing out.
539  */
540 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
541 {
542         ide_hwif_t *hwif = drive->hwif;
543         unsigned long flags;
544         int i;
545         u8 stat;
546
547         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
548         stat = hwif->read_status(hwif);
549
550         if (stat & BUSY_STAT) {
551                 local_irq_set(flags);
552                 timeout += jiffies;
553                 while ((stat = hwif->read_status(hwif)) & BUSY_STAT) {
554                         if (time_after(jiffies, timeout)) {
555                                 /*
556                                  * One last read after the timeout in case
557                                  * heavy interrupt load made us not make any
558                                  * progress during the timeout..
559                                  */
560                                 stat = hwif->read_status(hwif);
561                                 if (!(stat & BUSY_STAT))
562                                         break;
563
564                                 local_irq_restore(flags);
565                                 *rstat = stat;
566                                 return -EBUSY;
567                         }
568                 }
569                 local_irq_restore(flags);
570         }
571         /*
572          * Allow status to settle, then read it again.
573          * A few rare drives vastly violate the 400ns spec here,
574          * so we'll wait up to 10usec for a "good" status
575          * rather than expensively fail things immediately.
576          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
577          */
578         for (i = 0; i < 10; i++) {
579                 udelay(1);
580                 stat = hwif->read_status(hwif);
581
582                 if (OK_STAT(stat, good, bad)) {
583                         *rstat = stat;
584                         return 0;
585                 }
586         }
587         *rstat = stat;
588         return -EFAULT;
589 }
590
591 /*
592  * In case of error returns error value after doing "*startstop = ide_error()".
593  * The caller should return the updated value of "startstop" in this case,
594  * "startstop" is unchanged when the function returns 0.
595  */
596 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
597 {
598         int err;
599         u8 stat;
600
601         /* bail early if we've exceeded max_failures */
602         if (drive->max_failures && (drive->failures > drive->max_failures)) {
603                 *startstop = ide_stopped;
604                 return 1;
605         }
606
607         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
608
609         if (err) {
610                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
611                 *startstop = ide_error(drive, s, stat);
612         }
613
614         return err;
615 }
616
617 EXPORT_SYMBOL(ide_wait_stat);
618
619 /**
620  *      ide_in_drive_list       -       look for drive in black/white list
621  *      @id: drive identifier
622  *      @drive_table: list to inspect
623  *
624  *      Look for a drive in the blacklist and the whitelist tables
625  *      Returns 1 if the drive is found in the table.
626  */
627
628 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
629 {
630         for ( ; drive_table->id_model; drive_table++)
631                 if ((!strcmp(drive_table->id_model, id->model)) &&
632                     (!drive_table->id_firmware ||
633                      strstr(id->fw_rev, drive_table->id_firmware)))
634                         return 1;
635         return 0;
636 }
637
638 EXPORT_SYMBOL_GPL(ide_in_drive_list);
639
640 /*
641  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
642  * We list them here and depend on the device side cable detection for them.
643  *
644  * Some optical devices with the buggy firmwares have the same problem.
645  */
646 static const struct drive_list_entry ivb_list[] = {
647         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
648         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
649         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
650         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
651         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
652         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
653         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
654         { NULL                          , NULL          }
655 };
656
657 /*
658  *  All hosts that use the 80c ribbon must use!
659  *  The name is derived from upper byte of word 93 and the 80c ribbon.
660  */
661 u8 eighty_ninty_three (ide_drive_t *drive)
662 {
663         ide_hwif_t *hwif = drive->hwif;
664         struct hd_driveid *id = drive->id;
665         int ivb = ide_in_drive_list(id, ivb_list);
666
667         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
668                 return 1;
669
670         if (ivb)
671                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
672                                   drive->name);
673
674         if (ide_dev_is_sata(id) && !ivb)
675                 return 1;
676
677         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
678                 goto no_80w;
679
680         /*
681          * FIXME:
682          * - change master/slave IDENTIFY order
683          * - force bit13 (80c cable present) check also for !ivb devices
684          *   (unless the slave device is pre-ATA3)
685          */
686         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
687                 return 1;
688
689 no_80w:
690         if (drive->udma33_warned == 1)
691                 return 0;
692
693         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
694                             "limiting max speed to UDMA33\n",
695                             drive->name,
696                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
697
698         drive->udma33_warned = 1;
699
700         return 0;
701 }
702
703 int ide_driveid_update(ide_drive_t *drive)
704 {
705         ide_hwif_t *hwif = drive->hwif;
706         struct hd_driveid *id;
707         unsigned long timeout, flags;
708         u8 stat;
709
710         /*
711          * Re-read drive->id for possible DMA mode
712          * change (copied from ide-probe.c)
713          */
714
715         SELECT_MASK(drive, 1);
716         ide_set_irq(drive, 0);
717         msleep(50);
718         hwif->exec_command(hwif, WIN_IDENTIFY);
719         timeout = jiffies + WAIT_WORSTCASE;
720         do {
721                 if (time_after(jiffies, timeout)) {
722                         SELECT_MASK(drive, 0);
723                         return 0;       /* drive timed-out */
724                 }
725
726                 msleep(50);     /* give drive a breather */
727                 stat = ide_read_altstatus(drive);
728         } while (stat & BUSY_STAT);
729
730         msleep(50);     /* wait for IRQ and DRQ_STAT */
731         stat = hwif->read_status(hwif);
732
733         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
734                 SELECT_MASK(drive, 0);
735                 printk("%s: CHECK for good STATUS\n", drive->name);
736                 return 0;
737         }
738         local_irq_save(flags);
739         SELECT_MASK(drive, 0);
740         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
741         if (!id) {
742                 local_irq_restore(flags);
743                 return 0;
744         }
745         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
746         (void)hwif->read_status(hwif);  /* clear drive IRQ */
747         local_irq_enable();
748         local_irq_restore(flags);
749         ide_fix_driveid(id);
750         if (id) {
751                 drive->id->dma_ultra = id->dma_ultra;
752                 drive->id->dma_mword = id->dma_mword;
753                 drive->id->dma_1word = id->dma_1word;
754                 /* anything more ? */
755                 kfree(id);
756
757                 if (drive->using_dma && ide_id_dma_bug(drive))
758                         ide_dma_off(drive);
759         }
760
761         return 1;
762 }
763
764 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
765 {
766         ide_hwif_t *hwif = drive->hwif;
767         struct ide_io_ports *io_ports = &hwif->io_ports;
768         int error = 0;
769         u8 stat;
770
771 #ifdef CONFIG_BLK_DEV_IDEDMA
772         if (hwif->dma_ops)      /* check if host supports DMA */
773                 hwif->dma_ops->dma_host_set(drive, 0);
774 #endif
775
776         /* Skip setting PIO flow-control modes on pre-EIDE drives */
777         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
778                 goto skip;
779
780         /*
781          * Don't use ide_wait_cmd here - it will
782          * attempt to set_geometry and recalibrate,
783          * but for some reason these don't work at
784          * this point (lost interrupt).
785          */
786         /*
787          * Select the drive, and issue the SETFEATURES command
788          */
789         disable_irq_nosync(hwif->irq);
790         
791         /*
792          *      FIXME: we race against the running IRQ here if
793          *      this is called from non IRQ context. If we use
794          *      disable_irq() we hang on the error path. Work
795          *      is needed.
796          */
797          
798         udelay(1);
799         SELECT_DRIVE(drive);
800         SELECT_MASK(drive, 0);
801         udelay(1);
802         ide_set_irq(drive, 0);
803         hwif->OUTB(speed, io_ports->nsect_addr);
804         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
805         hwif->exec_command(hwif, WIN_SETFEATURES);
806         if (drive->quirk_list == 2)
807                 ide_set_irq(drive, 1);
808
809         error = __ide_wait_stat(drive, drive->ready_stat,
810                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
811                                 WAIT_CMD, &stat);
812
813         SELECT_MASK(drive, 0);
814
815         enable_irq(hwif->irq);
816
817         if (error) {
818                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
819                 return error;
820         }
821
822         drive->id->dma_ultra &= ~0xFF00;
823         drive->id->dma_mword &= ~0x0F00;
824         drive->id->dma_1word &= ~0x0F00;
825
826  skip:
827 #ifdef CONFIG_BLK_DEV_IDEDMA
828         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
829             drive->using_dma)
830                 hwif->dma_ops->dma_host_set(drive, 1);
831         else if (hwif->dma_ops) /* check if host supports DMA */
832                 ide_dma_off_quietly(drive);
833 #endif
834
835         switch(speed) {
836                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
837                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
838                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
839                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
840                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
841                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
842                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
843                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
844                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
845                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
846                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
847                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
848                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
849                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
850                 default: break;
851         }
852         if (!drive->init_speed)
853                 drive->init_speed = speed;
854         drive->current_speed = speed;
855         return error;
856 }
857
858 /*
859  * This should get invoked any time we exit the driver to
860  * wait for an interrupt response from a drive.  handler() points
861  * at the appropriate code to handle the next interrupt, and a
862  * timer is started to prevent us from waiting forever in case
863  * something goes wrong (see the ide_timer_expiry() handler later on).
864  *
865  * See also ide_execute_command
866  */
867 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
868                       unsigned int timeout, ide_expiry_t *expiry)
869 {
870         ide_hwgroup_t *hwgroup = HWGROUP(drive);
871
872         BUG_ON(hwgroup->handler);
873         hwgroup->handler        = handler;
874         hwgroup->expiry         = expiry;
875         hwgroup->timer.expires  = jiffies + timeout;
876         hwgroup->req_gen_timer  = hwgroup->req_gen;
877         add_timer(&hwgroup->timer);
878 }
879
880 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
881                       unsigned int timeout, ide_expiry_t *expiry)
882 {
883         unsigned long flags;
884         spin_lock_irqsave(&ide_lock, flags);
885         __ide_set_handler(drive, handler, timeout, expiry);
886         spin_unlock_irqrestore(&ide_lock, flags);
887 }
888
889 EXPORT_SYMBOL(ide_set_handler);
890  
891 /**
892  *      ide_execute_command     -       execute an IDE command
893  *      @drive: IDE drive to issue the command against
894  *      @command: command byte to write
895  *      @handler: handler for next phase
896  *      @timeout: timeout for command
897  *      @expiry:  handler to run on timeout
898  *
899  *      Helper function to issue an IDE command. This handles the
900  *      atomicity requirements, command timing and ensures that the 
901  *      handler and IRQ setup do not race. All IDE command kick off
902  *      should go via this function or do equivalent locking.
903  */
904
905 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
906                          unsigned timeout, ide_expiry_t *expiry)
907 {
908         unsigned long flags;
909         ide_hwif_t *hwif = HWIF(drive);
910
911         spin_lock_irqsave(&ide_lock, flags);
912         __ide_set_handler(drive, handler, timeout, expiry);
913         hwif->exec_command(hwif, cmd);
914         /*
915          * Drive takes 400nS to respond, we must avoid the IRQ being
916          * serviced before that.
917          *
918          * FIXME: we could skip this delay with care on non shared devices
919          */
920         ndelay(400);
921         spin_unlock_irqrestore(&ide_lock, flags);
922 }
923 EXPORT_SYMBOL(ide_execute_command);
924
925 void ide_execute_pkt_cmd(ide_drive_t *drive)
926 {
927         ide_hwif_t *hwif = drive->hwif;
928         unsigned long flags;
929
930         spin_lock_irqsave(&ide_lock, flags);
931         hwif->exec_command(hwif, WIN_PACKETCMD);
932         ndelay(400);
933         spin_unlock_irqrestore(&ide_lock, flags);
934 }
935 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
936
937 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
938 {
939         struct request *rq = drive->hwif->hwgroup->rq;
940
941         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
942                 ide_end_request(drive, err ? err : 1, 0);
943 }
944
945 /* needed below */
946 static ide_startstop_t do_reset1 (ide_drive_t *, int);
947
948 /*
949  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
950  * during an atapi drive reset operation. If the drive has not yet responded,
951  * and we have not yet hit our maximum waiting time, then the timer is restarted
952  * for another 50ms.
953  */
954 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
955 {
956         ide_hwif_t *hwif = drive->hwif;
957         ide_hwgroup_t *hwgroup = hwif->hwgroup;
958         u8 stat;
959
960         SELECT_DRIVE(drive);
961         udelay (10);
962         stat = hwif->read_status(hwif);
963
964         if (OK_STAT(stat, 0, BUSY_STAT))
965                 printk("%s: ATAPI reset complete\n", drive->name);
966         else {
967                 if (time_before(jiffies, hwgroup->poll_timeout)) {
968                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
969                         /* continue polling */
970                         return ide_started;
971                 }
972                 /* end of polling */
973                 hwgroup->polling = 0;
974                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
975                                 drive->name, stat);
976                 /* do it the old fashioned way */
977                 return do_reset1(drive, 1);
978         }
979         /* done polling */
980         hwgroup->polling = 0;
981         ide_complete_drive_reset(drive, 0);
982         return ide_stopped;
983 }
984
985 /*
986  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
987  * during an ide reset operation. If the drives have not yet responded,
988  * and we have not yet hit our maximum waiting time, then the timer is restarted
989  * for another 50ms.
990  */
991 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
992 {
993         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
994         ide_hwif_t *hwif        = HWIF(drive);
995         const struct ide_port_ops *port_ops = hwif->port_ops;
996         u8 tmp;
997         int err = 0;
998
999         if (port_ops && port_ops->reset_poll) {
1000                 err = port_ops->reset_poll(drive);
1001                 if (err) {
1002                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1003                                 hwif->name, drive->name);
1004                         goto out;
1005                 }
1006         }
1007
1008         tmp = hwif->read_status(hwif);
1009
1010         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1011                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1012                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1013                         /* continue polling */
1014                         return ide_started;
1015                 }
1016                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1017                 drive->failures++;
1018                 err = -EIO;
1019         } else  {
1020                 printk("%s: reset: ", hwif->name);
1021                 tmp = ide_read_error(drive);
1022
1023                 if (tmp == 1) {
1024                         printk("success\n");
1025                         drive->failures = 0;
1026                 } else {
1027                         drive->failures++;
1028                         printk("master: ");
1029                         switch (tmp & 0x7f) {
1030                                 case 1: printk("passed");
1031                                         break;
1032                                 case 2: printk("formatter device error");
1033                                         break;
1034                                 case 3: printk("sector buffer error");
1035                                         break;
1036                                 case 4: printk("ECC circuitry error");
1037                                         break;
1038                                 case 5: printk("controlling MPU error");
1039                                         break;
1040                                 default:printk("error (0x%02x?)", tmp);
1041                         }
1042                         if (tmp & 0x80)
1043                                 printk("; slave: failed");
1044                         printk("\n");
1045                         err = -EIO;
1046                 }
1047         }
1048 out:
1049         hwgroup->polling = 0;   /* done polling */
1050         ide_complete_drive_reset(drive, err);
1051         return ide_stopped;
1052 }
1053
1054 static void ide_disk_pre_reset(ide_drive_t *drive)
1055 {
1056         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1057
1058         drive->special.all = 0;
1059         drive->special.b.set_geometry = legacy;
1060         drive->special.b.recalibrate  = legacy;
1061         drive->mult_count = 0;
1062         if (!drive->keep_settings && !drive->using_dma)
1063                 drive->mult_req = 0;
1064         if (drive->mult_req != drive->mult_count)
1065                 drive->special.b.set_multmode = 1;
1066 }
1067
1068 static void pre_reset(ide_drive_t *drive)
1069 {
1070         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1071
1072         if (drive->media == ide_disk)
1073                 ide_disk_pre_reset(drive);
1074         else
1075                 drive->post_reset = 1;
1076
1077         if (drive->using_dma) {
1078                 if (drive->crc_count)
1079                         ide_check_dma_crc(drive);
1080                 else
1081                         ide_dma_off(drive);
1082         }
1083
1084         if (!drive->keep_settings) {
1085                 if (!drive->using_dma) {
1086                         drive->unmask = 0;
1087                         drive->io_32bit = 0;
1088                 }
1089                 return;
1090         }
1091
1092         if (port_ops && port_ops->pre_reset)
1093                 port_ops->pre_reset(drive);
1094
1095         if (drive->current_speed != 0xff)
1096                 drive->desired_speed = drive->current_speed;
1097         drive->current_speed = 0xff;
1098 }
1099
1100 /*
1101  * do_reset1() attempts to recover a confused drive by resetting it.
1102  * Unfortunately, resetting a disk drive actually resets all devices on
1103  * the same interface, so it can really be thought of as resetting the
1104  * interface rather than resetting the drive.
1105  *
1106  * ATAPI devices have their own reset mechanism which allows them to be
1107  * individually reset without clobbering other devices on the same interface.
1108  *
1109  * Unfortunately, the IDE interface does not generate an interrupt to let
1110  * us know when the reset operation has finished, so we must poll for this.
1111  * Equally poor, though, is the fact that this may a very long time to complete,
1112  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1113  * we set a timer to poll at 50ms intervals.
1114  */
1115 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1116 {
1117         unsigned int unit;
1118         unsigned long flags;
1119         ide_hwif_t *hwif;
1120         ide_hwgroup_t *hwgroup;
1121         struct ide_io_ports *io_ports;
1122         const struct ide_port_ops *port_ops;
1123         u8 ctl;
1124
1125         spin_lock_irqsave(&ide_lock, flags);
1126         hwif = HWIF(drive);
1127         hwgroup = HWGROUP(drive);
1128
1129         io_ports = &hwif->io_ports;
1130
1131         /* We must not reset with running handlers */
1132         BUG_ON(hwgroup->handler != NULL);
1133
1134         /* For an ATAPI device, first try an ATAPI SRST. */
1135         if (drive->media != ide_disk && !do_not_try_atapi) {
1136                 pre_reset(drive);
1137                 SELECT_DRIVE(drive);
1138                 udelay (20);
1139                 hwif->exec_command(hwif, WIN_SRST);
1140                 ndelay(400);
1141                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1142                 hwgroup->polling = 1;
1143                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1144                 spin_unlock_irqrestore(&ide_lock, flags);
1145                 return ide_started;
1146         }
1147
1148         /*
1149          * First, reset any device state data we were maintaining
1150          * for any of the drives on this interface.
1151          */
1152         for (unit = 0; unit < MAX_DRIVES; ++unit)
1153                 pre_reset(&hwif->drives[unit]);
1154
1155         if (io_ports->ctl_addr == 0) {
1156                 spin_unlock_irqrestore(&ide_lock, flags);
1157                 ide_complete_drive_reset(drive, -ENXIO);
1158                 return ide_stopped;
1159         }
1160
1161         /*
1162          * Note that we also set nIEN while resetting the device,
1163          * to mask unwanted interrupts from the interface during the reset.
1164          * However, due to the design of PC hardware, this will cause an
1165          * immediate interrupt due to the edge transition it produces.
1166          * This single interrupt gives us a "fast poll" for drives that
1167          * recover from reset very quickly, saving us the first 50ms wait time.
1168          */
1169         /* set SRST and nIEN */
1170         hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1171         /* more than enough time */
1172         udelay(10);
1173         if (drive->quirk_list == 2)
1174                 ctl = ATA_DEVCTL_OBS;           /* clear SRST and nIEN */
1175         else
1176                 ctl = ATA_DEVCTL_OBS | 2;       /* clear SRST, leave nIEN */
1177         hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1178         /* more than enough time */
1179         udelay(10);
1180         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1181         hwgroup->polling = 1;
1182         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1183
1184         /*
1185          * Some weird controller like resetting themselves to a strange
1186          * state when the disks are reset this way. At least, the Winbond
1187          * 553 documentation says that
1188          */
1189         port_ops = hwif->port_ops;
1190         if (port_ops && port_ops->resetproc)
1191                 port_ops->resetproc(drive);
1192
1193         spin_unlock_irqrestore(&ide_lock, flags);
1194         return ide_started;
1195 }
1196
1197 /*
1198  * ide_do_reset() is the entry point to the drive/interface reset code.
1199  */
1200
1201 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1202 {
1203         return do_reset1(drive, 0);
1204 }
1205
1206 EXPORT_SYMBOL(ide_do_reset);
1207
1208 /*
1209  * ide_wait_not_busy() waits for the currently selected device on the hwif
1210  * to report a non-busy status, see comments in ide_probe_port().
1211  */
1212 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1213 {
1214         u8 stat = 0;
1215
1216         while(timeout--) {
1217                 /*
1218                  * Turn this into a schedule() sleep once I'm sure
1219                  * about locking issues (2.5 work ?).
1220                  */
1221                 mdelay(1);
1222                 stat = hwif->read_status(hwif);
1223                 if ((stat & BUSY_STAT) == 0)
1224                         return 0;
1225                 /*
1226                  * Assume a value of 0xff means nothing is connected to
1227                  * the interface and it doesn't implement the pull-down
1228                  * resistor on D7.
1229                  */
1230                 if (stat == 0xff)
1231                         return -ENODEV;
1232                 touch_softlockup_watchdog();
1233                 touch_nmi_watchdog();
1234         }
1235         return -EBUSY;
1236 }
1237
1238 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1239