Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[firefly-linux-kernel-4.4.55.git] / drivers / ide / pmac.c
1 /*
2  * Support for IDE interfaces on PowerMacs.
3  *
4  * These IDE interfaces are memory-mapped and have a DBDMA channel
5  * for doing DMA.
6  *
7  *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8  *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9  *
10  *  This program is free software; you can redistribute it and/or
11  *  modify it under the terms of the GNU General Public License
12  *  as published by the Free Software Foundation; either version
13  *  2 of the License, or (at your option) any later version.
14  *
15  * Some code taken from drivers/ide/ide-dma.c:
16  *
17  *  Copyright (c) 1995-1998  Mark Lord
18  *
19  * TODO: - Use pre-calculated (kauai) timing tables all the time and
20  * get rid of the "rounded" tables used previously, so we have the
21  * same table format for all controllers and can then just have one
22  * big table
23  * 
24  */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/module.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38
39 #include <asm/prom.h>
40 #include <asm/io.h>
41 #include <asm/dbdma.h>
42 #include <asm/ide.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/sections.h>
47 #include <asm/irq.h>
48 #include <asm/mediabay.h>
49
50 #define DRV_NAME "ide-pmac"
51
52 #undef IDE_PMAC_DEBUG
53
54 #define DMA_WAIT_TIMEOUT        50
55
56 typedef struct pmac_ide_hwif {
57         unsigned long                   regbase;
58         int                             irq;
59         int                             kind;
60         int                             aapl_bus_id;
61         unsigned                        broken_dma : 1;
62         unsigned                        broken_dma_warn : 1;
63         struct device_node*             node;
64         struct macio_dev                *mdev;
65         u32                             timings[4];
66         volatile u32 __iomem *          *kauai_fcr;
67         ide_hwif_t                      *hwif;
68
69         /* Those fields are duplicating what is in hwif. We currently
70          * can't use the hwif ones because of some assumptions that are
71          * beeing done by the generic code about the kind of dma controller
72          * and format of the dma table. This will have to be fixed though.
73          */
74         volatile struct dbdma_regs __iomem *    dma_regs;
75         struct dbdma_cmd*               dma_table_cpu;
76 } pmac_ide_hwif_t;
77
78 enum {
79         controller_ohare,       /* OHare based */
80         controller_heathrow,    /* Heathrow/Paddington */
81         controller_kl_ata3,     /* KeyLargo ATA-3 */
82         controller_kl_ata4,     /* KeyLargo ATA-4 */
83         controller_un_ata6,     /* UniNorth2 ATA-6 */
84         controller_k2_ata6,     /* K2 ATA-6 */
85         controller_sh_ata6,     /* Shasta ATA-6 */
86 };
87
88 static const char* model_name[] = {
89         "OHare ATA",            /* OHare based */
90         "Heathrow ATA",         /* Heathrow/Paddington */
91         "KeyLargo ATA-3",       /* KeyLargo ATA-3 (MDMA only) */
92         "KeyLargo ATA-4",       /* KeyLargo ATA-4 (UDMA/66) */
93         "UniNorth ATA-6",       /* UniNorth2 ATA-6 (UDMA/100) */
94         "K2 ATA-6",             /* K2 ATA-6 (UDMA/100) */
95         "Shasta ATA-6",         /* Shasta ATA-6 (UDMA/133) */
96 };
97
98 /*
99  * Extra registers, both 32-bit little-endian
100  */
101 #define IDE_TIMING_CONFIG       0x200
102 #define IDE_INTERRUPT           0x300
103
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG    0x200
106 #define IDE_KAUAI_ULTRA_CONFIG  0x210
107 #define IDE_KAUAI_POLL_CONFIG   0x220
108
109 /*
110  * Timing configuration register definitions
111  */
112
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t)         (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t)      (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS           30      /* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS        15      /* 66Mhz cell */
118
119 /* 133Mhz cell, found in shasta.
120  * See comments about 100 Mhz Uninorth 2...
121  * Note that PIO_MASK and MDMA_MASK seem to overlap
122  */
123 #define TR_133_PIOREG_PIO_MASK          0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK         0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK        0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN          0x00000001
127
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129  * this one yet, it appears as a pci device (106b/0033) on uninorth
130  * internal PCI bus and it's clock is controlled like gem or fw. It
131  * appears to be an evolution of keylargo ATA4 with a timing register
132  * extended to 2 32bits registers and a similar DBDMA channel. Other
133  * registers seem to exist but I can't tell much about them.
134  * 
135  * So far, I'm using pre-calculated tables for this extracted from
136  * the values used by the MacOS X driver.
137  * 
138  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139  * register controls the UDMA timings. At least, it seems bit 0
140  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141  * cycle time in units of 10ns. Bits 8..15 are used by I don't
142  * know their meaning yet
143  */
144 #define TR_100_PIOREG_PIO_MASK          0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK         0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK        0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN          0x00000001
148
149
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151  * 40 connector cable and to 4 on 80 connector one.
152  * Clock unit is 15ns (66Mhz)
153  * 
154  * 3 Values can be programmed:
155  *  - Write data setup, which appears to match the cycle time. They
156  *    also call it DIOW setup.
157  *  - Ready to pause time (from spec)
158  *  - Address setup. That one is weird. I don't see where exactly
159  *    it fits in UDMA cycles, I got it's name from an obscure piece
160  *    of commented out code in Darwin. They leave it to 0, we do as
161  *    well, despite a comment that would lead to think it has a
162  *    min value of 45ns.
163  * Apple also add 60ns to the write data setup (or cycle time ?) on
164  * reads.
165  */
166 #define TR_66_UDMA_MASK                 0xfff00000
167 #define TR_66_UDMA_EN                   0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK       0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT      29
170 #define TR_66_UDMA_RDY2PAUS_MASK        0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT       25
172 #define TR_66_UDMA_WRDATASETUP_MASK     0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT    21
174 #define TR_66_MDMA_MASK                 0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK        0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT       15
177 #define TR_66_MDMA_ACCESS_MASK          0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT         10
179 #define TR_66_PIO_MASK                  0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK         0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT        5
182 #define TR_66_PIO_ACCESS_MASK           0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT          0
184
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
187  * 
188  * The access time and recovery time can be programmed. Some older
189  * Darwin code base limit OHare to 150ns cycle time. I decided to do
190  * the same here fore safety against broken old hardware ;)
191  * The HalfTick bit, when set, adds half a clock (15ns) to the access
192  * time and removes one from recovery. It's not supported on KeyLargo
193  * implementation afaik. The E bit appears to be set for PIO mode 0 and
194  * is used to reach long timings used in this mode.
195  */
196 #define TR_33_MDMA_MASK                 0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK        0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT       16
199 #define TR_33_MDMA_ACCESS_MASK          0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT         11
201 #define TR_33_MDMA_HALFTICK             0x00200000
202 #define TR_33_PIO_MASK                  0x000007ff
203 #define TR_33_PIO_E                     0x00000400
204 #define TR_33_PIO_RECOVERY_MASK         0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT        5
206 #define TR_33_PIO_ACCESS_MASK           0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT          0
208
209 /*
210  * Interrupt register definitions
211  */
212 #define IDE_INTR_DMA                    0x80000000
213 #define IDE_INTR_DEVICE                 0x40000000
214
215 /*
216  * FCR Register on Kauai. Not sure what bit 0x4 is  ...
217  */
218 #define KAUAI_FCR_UATA_MAGIC            0x00000004
219 #define KAUAI_FCR_UATA_RESET_N          0x00000002
220 #define KAUAI_FCR_UATA_ENABLE           0x00000001
221
222 /* Rounded Multiword DMA timings
223  * 
224  * I gave up finding a generic formula for all controller
225  * types and instead, built tables based on timing values
226  * used by Apple in Darwin's implementation.
227  */
228 struct mdma_timings_t {
229         int     accessTime;
230         int     recoveryTime;
231         int     cycleTime;
232 };
233
234 struct mdma_timings_t mdma_timings_33[] =
235 {
236     { 240, 240, 480 },
237     { 180, 180, 360 },
238     { 135, 135, 270 },
239     { 120, 120, 240 },
240     { 105, 105, 210 },
241     {  90,  90, 180 },
242     {  75,  75, 150 },
243     {  75,  45, 120 },
244     {   0,   0,   0 }
245 };
246
247 struct mdma_timings_t mdma_timings_33k[] =
248 {
249     { 240, 240, 480 },
250     { 180, 180, 360 },
251     { 150, 150, 300 },
252     { 120, 120, 240 },
253     {  90, 120, 210 },
254     {  90,  90, 180 },
255     {  90,  60, 150 },
256     {  90,  30, 120 },
257     {   0,   0,   0 }
258 };
259
260 struct mdma_timings_t mdma_timings_66[] =
261 {
262     { 240, 240, 480 },
263     { 180, 180, 360 },
264     { 135, 135, 270 },
265     { 120, 120, 240 },
266     { 105, 105, 210 },
267     {  90,  90, 180 },
268     {  90,  75, 165 },
269     {  75,  45, 120 },
270     {   0,   0,   0 }
271 };
272
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
274 struct {
275         int     addrSetup; /* ??? */
276         int     rdy2pause;
277         int     wrDataSetup;
278 } kl66_udma_timings[] =
279 {
280     {   0, 180,  120 }, /* Mode 0 */
281     {   0, 150,  90 },  /*      1 */
282     {   0, 120,  60 },  /*      2 */
283     {   0, 90,   45 },  /*      3 */
284     {   0, 90,   30 }   /*      4 */
285 };
286
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing {
289         int     cycle_time;
290         u32     timing_reg;
291 };
292
293 static struct kauai_timing      kauai_pio_timings[] =
294 {
295         { 930   , 0x08000fff },
296         { 600   , 0x08000a92 },
297         { 383   , 0x0800060f },
298         { 360   , 0x08000492 },
299         { 330   , 0x0800048f },
300         { 300   , 0x080003cf },
301         { 270   , 0x080003cc },
302         { 240   , 0x0800038b },
303         { 239   , 0x0800030c },
304         { 180   , 0x05000249 },
305         { 120   , 0x04000148 },
306         { 0     , 0 },
307 };
308
309 static struct kauai_timing      kauai_mdma_timings[] =
310 {
311         { 1260  , 0x00fff000 },
312         { 480   , 0x00618000 },
313         { 360   , 0x00492000 },
314         { 270   , 0x0038e000 },
315         { 240   , 0x0030c000 },
316         { 210   , 0x002cb000 },
317         { 180   , 0x00249000 },
318         { 150   , 0x00209000 },
319         { 120   , 0x00148000 },
320         { 0     , 0 },
321 };
322
323 static struct kauai_timing      kauai_udma_timings[] =
324 {
325         { 120   , 0x000070c0 },
326         { 90    , 0x00005d80 },
327         { 60    , 0x00004a60 },
328         { 45    , 0x00003a50 },
329         { 30    , 0x00002a30 },
330         { 20    , 0x00002921 },
331         { 0     , 0 },
332 };
333
334 static struct kauai_timing      shasta_pio_timings[] =
335 {
336         { 930   , 0x08000fff },
337         { 600   , 0x0A000c97 },
338         { 383   , 0x07000712 },
339         { 360   , 0x040003cd },
340         { 330   , 0x040003cd },
341         { 300   , 0x040003cd },
342         { 270   , 0x040003cd },
343         { 240   , 0x040003cd },
344         { 239   , 0x040003cd },
345         { 180   , 0x0400028b },
346         { 120   , 0x0400010a },
347         { 0     , 0 },
348 };
349
350 static struct kauai_timing      shasta_mdma_timings[] =
351 {
352         { 1260  , 0x00fff000 },
353         { 480   , 0x00820800 },
354         { 360   , 0x00820800 },
355         { 270   , 0x00820800 },
356         { 240   , 0x00820800 },
357         { 210   , 0x00820800 },
358         { 180   , 0x00820800 },
359         { 150   , 0x0028b000 },
360         { 120   , 0x001ca000 },
361         { 0     , 0 },
362 };
363
364 static struct kauai_timing      shasta_udma133_timings[] =
365 {
366         { 120   , 0x00035901, },
367         { 90    , 0x000348b1, },
368         { 60    , 0x00033881, },
369         { 45    , 0x00033861, },
370         { 30    , 0x00033841, },
371         { 20    , 0x00033031, },
372         { 15    , 0x00033021, },
373         { 0     , 0 },
374 };
375
376
377 static inline u32
378 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
379 {
380         int i;
381         
382         for (i=0; table[i].cycle_time; i++)
383                 if (cycle_time > table[i+1].cycle_time)
384                         return table[i].timing_reg;
385         BUG();
386         return 0;
387 }
388
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS               256
391
392 /* 
393  * Wait 1s for disk to answer on IDE bus after a hard reset
394  * of the device (via GPIO/FCR).
395  * 
396  * Some devices seem to "pollute" the bus even after dropping
397  * the BSY bit (typically some combo drives slave on the UDMA
398  * bus) after a hard reset. Since we hard reset all drives on
399  * KeyLargo ATA66, we have to keep that delay around. I may end
400  * up not hard resetting anymore on these and keep the delay only
401  * for older interfaces instead (we have to reset when coming
402  * from MacOS...) --BenH. 
403  */
404 #define IDE_WAKEUP_DELAY        (1*HZ)
405
406 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
407
408 #define PMAC_IDE_REG(x) \
409         ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
410
411 /*
412  * Apply the timings of the proper unit (master/slave) to the shared
413  * timing register when selecting that unit. This version is for
414  * ASICs with a single timing register
415  */
416 static void pmac_ide_apply_timings(ide_drive_t *drive)
417 {
418         ide_hwif_t *hwif = drive->hwif;
419         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
420
421         if (drive->dn & 1)
422                 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
423         else
424                 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
425         (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
426 }
427
428 /*
429  * Apply the timings of the proper unit (master/slave) to the shared
430  * timing register when selecting that unit. This version is for
431  * ASICs with a dual timing register (Kauai)
432  */
433 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
434 {
435         ide_hwif_t *hwif = drive->hwif;
436         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
437
438         if (drive->dn & 1) {
439                 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
440                 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
441         } else {
442                 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
443                 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
444         }
445         (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
446 }
447
448 /*
449  * Force an update of controller timing values for a given drive
450  */
451 static void
452 pmac_ide_do_update_timings(ide_drive_t *drive)
453 {
454         ide_hwif_t *hwif = drive->hwif;
455         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
456
457         if (pmif->kind == controller_sh_ata6 ||
458             pmif->kind == controller_un_ata6 ||
459             pmif->kind == controller_k2_ata6)
460                 pmac_ide_kauai_apply_timings(drive);
461         else
462                 pmac_ide_apply_timings(drive);
463 }
464
465 static void pmac_dev_select(ide_drive_t *drive)
466 {
467         pmac_ide_apply_timings(drive);
468
469         writeb(drive->select | ATA_DEVICE_OBS,
470                (void __iomem *)drive->hwif->io_ports.device_addr);
471 }
472
473 static void pmac_kauai_dev_select(ide_drive_t *drive)
474 {
475         pmac_ide_kauai_apply_timings(drive);
476
477         writeb(drive->select | ATA_DEVICE_OBS,
478                (void __iomem *)drive->hwif->io_ports.device_addr);
479 }
480
481 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
482 {
483         writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
484         (void)readl((void __iomem *)(hwif->io_ports.data_addr
485                                      + IDE_TIMING_CONFIG));
486 }
487
488 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
489 {
490         writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
491         (void)readl((void __iomem *)(hwif->io_ports.data_addr
492                                      + IDE_TIMING_CONFIG));
493 }
494
495 /*
496  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
497  */
498 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
499 {
500         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
501         const u8 pio = drive->pio_mode - XFER_PIO_0;
502         struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
503         u32 *timings, t;
504         unsigned accessTicks, recTicks;
505         unsigned accessTime, recTime;
506         unsigned int cycle_time;
507
508         /* which drive is it ? */
509         timings = &pmif->timings[drive->dn & 1];
510         t = *timings;
511
512         cycle_time = ide_pio_cycle_time(drive, pio);
513
514         switch (pmif->kind) {
515         case controller_sh_ata6: {
516                 /* 133Mhz cell */
517                 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
518                 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
519                 break;
520                 }
521         case controller_un_ata6:
522         case controller_k2_ata6: {
523                 /* 100Mhz cell */
524                 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
525                 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
526                 break;
527                 }
528         case controller_kl_ata4:
529                 /* 66Mhz cell */
530                 recTime = cycle_time - tim->active - tim->setup;
531                 recTime = max(recTime, 150U);
532                 accessTime = tim->active;
533                 accessTime = max(accessTime, 150U);
534                 accessTicks = SYSCLK_TICKS_66(accessTime);
535                 accessTicks = min(accessTicks, 0x1fU);
536                 recTicks = SYSCLK_TICKS_66(recTime);
537                 recTicks = min(recTicks, 0x1fU);
538                 t = (t & ~TR_66_PIO_MASK) |
539                         (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
540                         (recTicks << TR_66_PIO_RECOVERY_SHIFT);
541                 break;
542         default: {
543                 /* 33Mhz cell */
544                 int ebit = 0;
545                 recTime = cycle_time - tim->active - tim->setup;
546                 recTime = max(recTime, 150U);
547                 accessTime = tim->active;
548                 accessTime = max(accessTime, 150U);
549                 accessTicks = SYSCLK_TICKS(accessTime);
550                 accessTicks = min(accessTicks, 0x1fU);
551                 accessTicks = max(accessTicks, 4U);
552                 recTicks = SYSCLK_TICKS(recTime);
553                 recTicks = min(recTicks, 0x1fU);
554                 recTicks = max(recTicks, 5U) - 4;
555                 if (recTicks > 9) {
556                         recTicks--; /* guess, but it's only for PIO0, so... */
557                         ebit = 1;
558                 }
559                 t = (t & ~TR_33_PIO_MASK) |
560                                 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
561                                 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
562                 if (ebit)
563                         t |= TR_33_PIO_E;
564                 break;
565                 }
566         }
567
568 #ifdef IDE_PMAC_DEBUG
569         printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
570                 drive->name, pio,  *timings);
571 #endif  
572
573         *timings = t;
574         pmac_ide_do_update_timings(drive);
575 }
576
577 /*
578  * Calculate KeyLargo ATA/66 UDMA timings
579  */
580 static int
581 set_timings_udma_ata4(u32 *timings, u8 speed)
582 {
583         unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
584
585         if (speed > XFER_UDMA_4)
586                 return 1;
587
588         rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
589         wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
590         addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
591
592         *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
593                         (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | 
594                         (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
595                         (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
596                         TR_66_UDMA_EN;
597 #ifdef IDE_PMAC_DEBUG
598         printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
599                 speed & 0xf,  *timings);
600 #endif  
601
602         return 0;
603 }
604
605 /*
606  * Calculate Kauai ATA/100 UDMA timings
607  */
608 static int
609 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
610 {
611         struct ide_timing *t = ide_timing_find_mode(speed);
612         u32 tr;
613
614         if (speed > XFER_UDMA_5 || t == NULL)
615                 return 1;
616         tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
617         *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
618         *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
619
620         return 0;
621 }
622
623 /*
624  * Calculate Shasta ATA/133 UDMA timings
625  */
626 static int
627 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
628 {
629         struct ide_timing *t = ide_timing_find_mode(speed);
630         u32 tr;
631
632         if (speed > XFER_UDMA_6 || t == NULL)
633                 return 1;
634         tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
635         *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
636         *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
637
638         return 0;
639 }
640
641 /*
642  * Calculate MDMA timings for all cells
643  */
644 static void
645 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
646                         u8 speed)
647 {
648         u16 *id = drive->id;
649         int cycleTime, accessTime = 0, recTime = 0;
650         unsigned accessTicks, recTicks;
651         struct mdma_timings_t* tm = NULL;
652         int i;
653
654         /* Get default cycle time for mode */
655         switch(speed & 0xf) {
656                 case 0: cycleTime = 480; break;
657                 case 1: cycleTime = 150; break;
658                 case 2: cycleTime = 120; break;
659                 default:
660                         BUG();
661                         break;
662         }
663
664         /* Check if drive provides explicit DMA cycle time */
665         if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
666                 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
667
668         /* OHare limits according to some old Apple sources */  
669         if ((intf_type == controller_ohare) && (cycleTime < 150))
670                 cycleTime = 150;
671         /* Get the proper timing array for this controller */
672         switch(intf_type) {
673                 case controller_sh_ata6:
674                 case controller_un_ata6:
675                 case controller_k2_ata6:
676                         break;
677                 case controller_kl_ata4:
678                         tm = mdma_timings_66;
679                         break;
680                 case controller_kl_ata3:
681                         tm = mdma_timings_33k;
682                         break;
683                 default:
684                         tm = mdma_timings_33;
685                         break;
686         }
687         if (tm != NULL) {
688                 /* Lookup matching access & recovery times */
689                 i = -1;
690                 for (;;) {
691                         if (tm[i+1].cycleTime < cycleTime)
692                                 break;
693                         i++;
694                 }
695                 cycleTime = tm[i].cycleTime;
696                 accessTime = tm[i].accessTime;
697                 recTime = tm[i].recoveryTime;
698
699 #ifdef IDE_PMAC_DEBUG
700                 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
701                         drive->name, cycleTime, accessTime, recTime);
702 #endif
703         }
704         switch(intf_type) {
705         case controller_sh_ata6: {
706                 /* 133Mhz cell */
707                 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
708                 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
709                 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
710                 }
711         case controller_un_ata6:
712         case controller_k2_ata6: {
713                 /* 100Mhz cell */
714                 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
715                 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
716                 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
717                 }
718                 break;
719         case controller_kl_ata4:
720                 /* 66Mhz cell */
721                 accessTicks = SYSCLK_TICKS_66(accessTime);
722                 accessTicks = min(accessTicks, 0x1fU);
723                 accessTicks = max(accessTicks, 0x1U);
724                 recTicks = SYSCLK_TICKS_66(recTime);
725                 recTicks = min(recTicks, 0x1fU);
726                 recTicks = max(recTicks, 0x3U);
727                 /* Clear out mdma bits and disable udma */
728                 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
729                         (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
730                         (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
731                 break;
732         case controller_kl_ata3:
733                 /* 33Mhz cell on KeyLargo */
734                 accessTicks = SYSCLK_TICKS(accessTime);
735                 accessTicks = max(accessTicks, 1U);
736                 accessTicks = min(accessTicks, 0x1fU);
737                 accessTime = accessTicks * IDE_SYSCLK_NS;
738                 recTicks = SYSCLK_TICKS(recTime);
739                 recTicks = max(recTicks, 1U);
740                 recTicks = min(recTicks, 0x1fU);
741                 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
742                                 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
743                                 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
744                 break;
745         default: {
746                 /* 33Mhz cell on others */
747                 int halfTick = 0;
748                 int origAccessTime = accessTime;
749                 int origRecTime = recTime;
750                 
751                 accessTicks = SYSCLK_TICKS(accessTime);
752                 accessTicks = max(accessTicks, 1U);
753                 accessTicks = min(accessTicks, 0x1fU);
754                 accessTime = accessTicks * IDE_SYSCLK_NS;
755                 recTicks = SYSCLK_TICKS(recTime);
756                 recTicks = max(recTicks, 2U) - 1;
757                 recTicks = min(recTicks, 0x1fU);
758                 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
759                 if ((accessTicks > 1) &&
760                     ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
761                     ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
762                         halfTick = 1;
763                         accessTicks--;
764                 }
765                 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
766                                 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
767                                 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
768                 if (halfTick)
769                         *timings |= TR_33_MDMA_HALFTICK;
770                 }
771         }
772 #ifdef IDE_PMAC_DEBUG
773         printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
774                 drive->name, speed & 0xf,  *timings);
775 #endif  
776 }
777
778 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
779 {
780         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
781         int ret = 0;
782         u32 *timings, *timings2, tl[2];
783         u8 unit = drive->dn & 1;
784         const u8 speed = drive->dma_mode;
785
786         timings = &pmif->timings[unit];
787         timings2 = &pmif->timings[unit+2];
788
789         /* Copy timings to local image */
790         tl[0] = *timings;
791         tl[1] = *timings2;
792
793         if (speed >= XFER_UDMA_0) {
794                 if (pmif->kind == controller_kl_ata4)
795                         ret = set_timings_udma_ata4(&tl[0], speed);
796                 else if (pmif->kind == controller_un_ata6
797                          || pmif->kind == controller_k2_ata6)
798                         ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
799                 else if (pmif->kind == controller_sh_ata6)
800                         ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
801                 else
802                         ret = -1;
803         } else
804                 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
805
806         if (ret)
807                 return;
808
809         /* Apply timings to controller */
810         *timings = tl[0];
811         *timings2 = tl[1];
812
813         pmac_ide_do_update_timings(drive);      
814 }
815
816 /*
817  * Blast some well known "safe" values to the timing registers at init or
818  * wakeup from sleep time, before we do real calculation
819  */
820 static void
821 sanitize_timings(pmac_ide_hwif_t *pmif)
822 {
823         unsigned int value, value2 = 0;
824         
825         switch(pmif->kind) {
826                 case controller_sh_ata6:
827                         value = 0x0a820c97;
828                         value2 = 0x00033031;
829                         break;
830                 case controller_un_ata6:
831                 case controller_k2_ata6:
832                         value = 0x08618a92;
833                         value2 = 0x00002921;
834                         break;
835                 case controller_kl_ata4:
836                         value = 0x0008438c;
837                         break;
838                 case controller_kl_ata3:
839                         value = 0x00084526;
840                         break;
841                 case controller_heathrow:
842                 case controller_ohare:
843                 default:
844                         value = 0x00074526;
845                         break;
846         }
847         pmif->timings[0] = pmif->timings[1] = value;
848         pmif->timings[2] = pmif->timings[3] = value2;
849 }
850
851 static int on_media_bay(pmac_ide_hwif_t *pmif)
852 {
853         return pmif->mdev && pmif->mdev->media_bay != NULL;
854 }
855
856 /* Suspend call back, should be called after the child devices
857  * have actually been suspended
858  */
859 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
860 {
861         /* We clear the timings */
862         pmif->timings[0] = 0;
863         pmif->timings[1] = 0;
864         
865         disable_irq(pmif->irq);
866
867         /* The media bay will handle itself just fine */
868         if (on_media_bay(pmif))
869                 return 0;
870         
871         /* Kauai has bus control FCRs directly here */
872         if (pmif->kauai_fcr) {
873                 u32 fcr = readl(pmif->kauai_fcr);
874                 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
875                 writel(fcr, pmif->kauai_fcr);
876         }
877
878         /* Disable the bus on older machines and the cell on kauai */
879         ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
880                             0);
881
882         return 0;
883 }
884
885 /* Resume call back, should be called before the child devices
886  * are resumed
887  */
888 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
889 {
890         /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
891         if (!on_media_bay(pmif)) {
892                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
893                 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
894                 msleep(10);
895                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
896
897                 /* Kauai has it different */
898                 if (pmif->kauai_fcr) {
899                         u32 fcr = readl(pmif->kauai_fcr);
900                         fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
901                         writel(fcr, pmif->kauai_fcr);
902                 }
903
904                 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
905         }
906
907         /* Sanitize drive timings */
908         sanitize_timings(pmif);
909
910         enable_irq(pmif->irq);
911
912         return 0;
913 }
914
915 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
916 {
917         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
918         struct device_node *np = pmif->node;
919         const char *cable = of_get_property(np, "cable-type", NULL);
920         struct device_node *root = of_find_node_by_path("/");
921         const char *model = of_get_property(root, "model", NULL);
922
923         /* Get cable type from device-tree. */
924         if (cable && !strncmp(cable, "80-", 3)) {
925                 /* Some drives fail to detect 80c cable in PowerBook */
926                 /* These machine use proprietary short IDE cable anyway */
927                 if (!strncmp(model, "PowerBook", 9))
928                         return ATA_CBL_PATA40_SHORT;
929                 else
930                         return ATA_CBL_PATA80;
931         }
932
933         /*
934          * G5's seem to have incorrect cable type in device-tree.
935          * Let's assume they have a 80 conductor cable, this seem
936          * to be always the case unless the user mucked around.
937          */
938         if (of_device_is_compatible(np, "K2-UATA") ||
939             of_device_is_compatible(np, "shasta-ata"))
940                 return ATA_CBL_PATA80;
941
942         return ATA_CBL_PATA40;
943 }
944
945 static void pmac_ide_init_dev(ide_drive_t *drive)
946 {
947         ide_hwif_t *hwif = drive->hwif;
948         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
949
950         if (on_media_bay(pmif)) {
951                 if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
952                         drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
953                         return;
954                 }
955                 drive->dev_flags |= IDE_DFLAG_NOPROBE;
956         }
957 }
958
959 static const struct ide_tp_ops pmac_tp_ops = {
960         .exec_command           = pmac_exec_command,
961         .read_status            = ide_read_status,
962         .read_altstatus         = ide_read_altstatus,
963         .write_devctl           = pmac_write_devctl,
964
965         .dev_select             = pmac_dev_select,
966         .tf_load                = ide_tf_load,
967         .tf_read                = ide_tf_read,
968
969         .input_data             = ide_input_data,
970         .output_data            = ide_output_data,
971 };
972
973 static const struct ide_tp_ops pmac_ata6_tp_ops = {
974         .exec_command           = pmac_exec_command,
975         .read_status            = ide_read_status,
976         .read_altstatus         = ide_read_altstatus,
977         .write_devctl           = pmac_write_devctl,
978
979         .dev_select             = pmac_kauai_dev_select,
980         .tf_load                = ide_tf_load,
981         .tf_read                = ide_tf_read,
982
983         .input_data             = ide_input_data,
984         .output_data            = ide_output_data,
985 };
986
987 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
988         .init_dev               = pmac_ide_init_dev,
989         .set_pio_mode           = pmac_ide_set_pio_mode,
990         .set_dma_mode           = pmac_ide_set_dma_mode,
991         .cable_detect           = pmac_ide_cable_detect,
992 };
993
994 static const struct ide_port_ops pmac_ide_port_ops = {
995         .init_dev               = pmac_ide_init_dev,
996         .set_pio_mode           = pmac_ide_set_pio_mode,
997         .set_dma_mode           = pmac_ide_set_dma_mode,
998 };
999
1000 static const struct ide_dma_ops pmac_dma_ops;
1001
1002 static const struct ide_port_info pmac_port_info = {
1003         .name                   = DRV_NAME,
1004         .init_dma               = pmac_ide_init_dma,
1005         .chipset                = ide_pmac,
1006         .tp_ops                 = &pmac_tp_ops,
1007         .port_ops               = &pmac_ide_port_ops,
1008         .dma_ops                = &pmac_dma_ops,
1009         .host_flags             = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1010                                   IDE_HFLAG_POST_SET_MODE |
1011                                   IDE_HFLAG_MMIO |
1012                                   IDE_HFLAG_UNMASK_IRQS,
1013         .pio_mask               = ATA_PIO4,
1014         .mwdma_mask             = ATA_MWDMA2,
1015 };
1016
1017 /*
1018  * Setup, register & probe an IDE channel driven by this driver, this is
1019  * called by one of the 2 probe functions (macio or PCI).
1020  */
1021 static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw)
1022 {
1023         struct device_node *np = pmif->node;
1024         const int *bidp;
1025         struct ide_host *host;
1026         ide_hwif_t *hwif;
1027         struct ide_hw *hws[] = { hw };
1028         struct ide_port_info d = pmac_port_info;
1029         int rc;
1030
1031         pmif->broken_dma = pmif->broken_dma_warn = 0;
1032         if (of_device_is_compatible(np, "shasta-ata")) {
1033                 pmif->kind = controller_sh_ata6;
1034                 d.tp_ops = &pmac_ata6_tp_ops;
1035                 d.port_ops = &pmac_ide_ata4_port_ops;
1036                 d.udma_mask = ATA_UDMA6;
1037         } else if (of_device_is_compatible(np, "kauai-ata")) {
1038                 pmif->kind = controller_un_ata6;
1039                 d.tp_ops = &pmac_ata6_tp_ops;
1040                 d.port_ops = &pmac_ide_ata4_port_ops;
1041                 d.udma_mask = ATA_UDMA5;
1042         } else if (of_device_is_compatible(np, "K2-UATA")) {
1043                 pmif->kind = controller_k2_ata6;
1044                 d.tp_ops = &pmac_ata6_tp_ops;
1045                 d.port_ops = &pmac_ide_ata4_port_ops;
1046                 d.udma_mask = ATA_UDMA5;
1047         } else if (of_device_is_compatible(np, "keylargo-ata")) {
1048                 if (strcmp(np->name, "ata-4") == 0) {
1049                         pmif->kind = controller_kl_ata4;
1050                         d.port_ops = &pmac_ide_ata4_port_ops;
1051                         d.udma_mask = ATA_UDMA4;
1052                 } else
1053                         pmif->kind = controller_kl_ata3;
1054         } else if (of_device_is_compatible(np, "heathrow-ata")) {
1055                 pmif->kind = controller_heathrow;
1056         } else {
1057                 pmif->kind = controller_ohare;
1058                 pmif->broken_dma = 1;
1059         }
1060
1061         bidp = of_get_property(np, "AAPL,bus-id", NULL);
1062         pmif->aapl_bus_id =  bidp ? *bidp : 0;
1063
1064         /* On Kauai-type controllers, we make sure the FCR is correct */
1065         if (pmif->kauai_fcr)
1066                 writel(KAUAI_FCR_UATA_MAGIC |
1067                        KAUAI_FCR_UATA_RESET_N |
1068                        KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1069         
1070         /* Make sure we have sane timings */
1071         sanitize_timings(pmif);
1072
1073         /* If we are on a media bay, wait for it to settle and lock it */
1074         if (pmif->mdev)
1075                 lock_media_bay(pmif->mdev->media_bay);
1076
1077         host = ide_host_alloc(&d, hws, 1);
1078         if (host == NULL) {
1079                 rc = -ENOMEM;
1080                 goto bail;
1081         }
1082         hwif = pmif->hwif = host->ports[0];
1083
1084         if (on_media_bay(pmif)) {
1085                 /* Fixup bus ID for media bay */
1086                 if (!bidp)
1087                         pmif->aapl_bus_id = 1;
1088         } else if (pmif->kind == controller_ohare) {
1089                 /* The code below is having trouble on some ohare machines
1090                  * (timing related ?). Until I can put my hand on one of these
1091                  * units, I keep the old way
1092                  */
1093                 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1094         } else {
1095                 /* This is necessary to enable IDE when net-booting */
1096                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1097                 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1098                 msleep(10);
1099                 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1100                 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1101         }
1102
1103         printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1104                "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1105                pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1106                on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1107
1108         rc = ide_host_register(host, &d, hws);
1109         if (rc)
1110                 pmif->hwif = NULL;
1111
1112         if (pmif->mdev)
1113                 unlock_media_bay(pmif->mdev->media_bay);
1114
1115  bail:
1116         if (rc && host)
1117                 ide_host_free(host);
1118         return rc;
1119 }
1120
1121 static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1122 {
1123         int i;
1124
1125         for (i = 0; i < 8; ++i)
1126                 hw->io_ports_array[i] = base + i * 0x10;
1127
1128         hw->io_ports.ctl_addr = base + 0x160;
1129 }
1130
1131 /*
1132  * Attach to a macio probed interface
1133  */
1134 static int pmac_ide_macio_attach(struct macio_dev *mdev,
1135                                  const struct of_device_id *match)
1136 {
1137         void __iomem *base;
1138         unsigned long regbase;
1139         pmac_ide_hwif_t *pmif;
1140         int irq, rc;
1141         struct ide_hw hw;
1142
1143         pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1144         if (pmif == NULL)
1145                 return -ENOMEM;
1146
1147         if (macio_resource_count(mdev) == 0) {
1148                 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1149                                     mdev->ofdev.dev.of_node->full_name);
1150                 rc = -ENXIO;
1151                 goto out_free_pmif;
1152         }
1153
1154         /* Request memory resource for IO ports */
1155         if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1156                 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1157                                 "%s!\n", mdev->ofdev.dev.of_node->full_name);
1158                 rc = -EBUSY;
1159                 goto out_free_pmif;
1160         }
1161                         
1162         /* XXX This is bogus. Should be fixed in the registry by checking
1163          * the kind of host interrupt controller, a bit like gatwick
1164          * fixes in irq.c. That works well enough for the single case
1165          * where that happens though...
1166          */
1167         if (macio_irq_count(mdev) == 0) {
1168                 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1169                                     "13\n", mdev->ofdev.dev.of_node->full_name);
1170                 irq = irq_create_mapping(NULL, 13);
1171         } else
1172                 irq = macio_irq(mdev, 0);
1173
1174         base = ioremap(macio_resource_start(mdev, 0), 0x400);
1175         regbase = (unsigned long) base;
1176
1177         pmif->mdev = mdev;
1178         pmif->node = mdev->ofdev.dev.of_node;
1179         pmif->regbase = regbase;
1180         pmif->irq = irq;
1181         pmif->kauai_fcr = NULL;
1182
1183         if (macio_resource_count(mdev) >= 2) {
1184                 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1185                         printk(KERN_WARNING "ide-pmac: can't request DMA "
1186                                             "resource for %s!\n",
1187                                             mdev->ofdev.dev.of_node->full_name);
1188                 else
1189                         pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1190         } else
1191                 pmif->dma_regs = NULL;
1192
1193         dev_set_drvdata(&mdev->ofdev.dev, pmif);
1194
1195         memset(&hw, 0, sizeof(hw));
1196         pmac_ide_init_ports(&hw, pmif->regbase);
1197         hw.irq = irq;
1198         hw.dev = &mdev->bus->pdev->dev;
1199         hw.parent = &mdev->ofdev.dev;
1200
1201         rc = pmac_ide_setup_device(pmif, &hw);
1202         if (rc != 0) {
1203                 /* The inteface is released to the common IDE layer */
1204                 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1205                 iounmap(base);
1206                 if (pmif->dma_regs) {
1207                         iounmap(pmif->dma_regs);
1208                         macio_release_resource(mdev, 1);
1209                 }
1210                 macio_release_resource(mdev, 0);
1211                 kfree(pmif);
1212         }
1213
1214         return rc;
1215
1216 out_free_pmif:
1217         kfree(pmif);
1218         return rc;
1219 }
1220
1221 static int
1222 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1223 {
1224         pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1225         int rc = 0;
1226
1227         if (mesg.event != mdev->ofdev.dev.power.power_state.event
1228                         && (mesg.event & PM_EVENT_SLEEP)) {
1229                 rc = pmac_ide_do_suspend(pmif);
1230                 if (rc == 0)
1231                         mdev->ofdev.dev.power.power_state = mesg;
1232         }
1233
1234         return rc;
1235 }
1236
1237 static int
1238 pmac_ide_macio_resume(struct macio_dev *mdev)
1239 {
1240         pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1241         int rc = 0;
1242
1243         if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1244                 rc = pmac_ide_do_resume(pmif);
1245                 if (rc == 0)
1246                         mdev->ofdev.dev.power.power_state = PMSG_ON;
1247         }
1248
1249         return rc;
1250 }
1251
1252 /*
1253  * Attach to a PCI probed interface
1254  */
1255 static int pmac_ide_pci_attach(struct pci_dev *pdev,
1256                                const struct pci_device_id *id)
1257 {
1258         struct device_node *np;
1259         pmac_ide_hwif_t *pmif;
1260         void __iomem *base;
1261         unsigned long rbase, rlen;
1262         int rc;
1263         struct ide_hw hw;
1264
1265         np = pci_device_to_OF_node(pdev);
1266         if (np == NULL) {
1267                 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1268                 return -ENODEV;
1269         }
1270
1271         pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1272         if (pmif == NULL)
1273                 return -ENOMEM;
1274
1275         if (pci_enable_device(pdev)) {
1276                 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1277                                     "%s\n", np->full_name);
1278                 rc = -ENXIO;
1279                 goto out_free_pmif;
1280         }
1281         pci_set_master(pdev);
1282                         
1283         if (pci_request_regions(pdev, "Kauai ATA")) {
1284                 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1285                                 "%s\n", np->full_name);
1286                 rc = -ENXIO;
1287                 goto out_free_pmif;
1288         }
1289
1290         pmif->mdev = NULL;
1291         pmif->node = np;
1292
1293         rbase = pci_resource_start(pdev, 0);
1294         rlen = pci_resource_len(pdev, 0);
1295
1296         base = ioremap(rbase, rlen);
1297         pmif->regbase = (unsigned long) base + 0x2000;
1298         pmif->dma_regs = base + 0x1000;
1299         pmif->kauai_fcr = base;
1300         pmif->irq = pdev->irq;
1301
1302         pci_set_drvdata(pdev, pmif);
1303
1304         memset(&hw, 0, sizeof(hw));
1305         pmac_ide_init_ports(&hw, pmif->regbase);
1306         hw.irq = pdev->irq;
1307         hw.dev = &pdev->dev;
1308
1309         rc = pmac_ide_setup_device(pmif, &hw);
1310         if (rc != 0) {
1311                 /* The inteface is released to the common IDE layer */
1312                 iounmap(base);
1313                 pci_release_regions(pdev);
1314                 kfree(pmif);
1315         }
1316
1317         return rc;
1318
1319 out_free_pmif:
1320         kfree(pmif);
1321         return rc;
1322 }
1323
1324 static int
1325 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1326 {
1327         pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1328         int rc = 0;
1329
1330         if (mesg.event != pdev->dev.power.power_state.event
1331                         && (mesg.event & PM_EVENT_SLEEP)) {
1332                 rc = pmac_ide_do_suspend(pmif);
1333                 if (rc == 0)
1334                         pdev->dev.power.power_state = mesg;
1335         }
1336
1337         return rc;
1338 }
1339
1340 static int
1341 pmac_ide_pci_resume(struct pci_dev *pdev)
1342 {
1343         pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1344         int rc = 0;
1345
1346         if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1347                 rc = pmac_ide_do_resume(pmif);
1348                 if (rc == 0)
1349                         pdev->dev.power.power_state = PMSG_ON;
1350         }
1351
1352         return rc;
1353 }
1354
1355 #ifdef CONFIG_PMAC_MEDIABAY
1356 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1357 {
1358         pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1359
1360         switch(mb_state) {
1361         case MB_CD:
1362                 if (!pmif->hwif->present)
1363                         ide_port_scan(pmif->hwif);
1364                 break;
1365         default:
1366                 if (pmif->hwif->present)
1367                         ide_port_unregister_devices(pmif->hwif);
1368         }
1369 }
1370 #endif /* CONFIG_PMAC_MEDIABAY */
1371
1372
1373 static struct of_device_id pmac_ide_macio_match[] = 
1374 {
1375         {
1376         .name           = "IDE",
1377         },
1378         {
1379         .name           = "ATA",
1380         },
1381         {
1382         .type           = "ide",
1383         },
1384         {
1385         .type           = "ata",
1386         },
1387         {},
1388 };
1389
1390 static struct macio_driver pmac_ide_macio_driver = 
1391 {
1392         .driver = {
1393                 .name           = "ide-pmac",
1394                 .owner          = THIS_MODULE,
1395                 .of_match_table = pmac_ide_macio_match,
1396         },
1397         .probe          = pmac_ide_macio_attach,
1398         .suspend        = pmac_ide_macio_suspend,
1399         .resume         = pmac_ide_macio_resume,
1400 #ifdef CONFIG_PMAC_MEDIABAY
1401         .mediabay_event = pmac_ide_macio_mb_event,
1402 #endif
1403 };
1404
1405 static const struct pci_device_id pmac_ide_pci_match[] = {
1406         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),    0 },
1407         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),  0 },
1408         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),    0 },
1409         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),       0 },
1410         { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),    0 },
1411         {},
1412 };
1413
1414 static struct pci_driver pmac_ide_pci_driver = {
1415         .name           = "ide-pmac",
1416         .id_table       = pmac_ide_pci_match,
1417         .probe          = pmac_ide_pci_attach,
1418         .suspend        = pmac_ide_pci_suspend,
1419         .resume         = pmac_ide_pci_resume,
1420 };
1421 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1422
1423 int __init pmac_ide_probe(void)
1424 {
1425         int error;
1426
1427         if (!machine_is(powermac))
1428                 return -ENODEV;
1429
1430 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1431         error = pci_register_driver(&pmac_ide_pci_driver);
1432         if (error)
1433                 goto out;
1434         error = macio_register_driver(&pmac_ide_macio_driver);
1435         if (error) {
1436                 pci_unregister_driver(&pmac_ide_pci_driver);
1437                 goto out;
1438         }
1439 #else
1440         error = macio_register_driver(&pmac_ide_macio_driver);
1441         if (error)
1442                 goto out;
1443         error = pci_register_driver(&pmac_ide_pci_driver);
1444         if (error) {
1445                 macio_unregister_driver(&pmac_ide_macio_driver);
1446                 goto out;
1447         }
1448 #endif
1449 out:
1450         return error;
1451 }
1452
1453 /*
1454  * pmac_ide_build_dmatable builds the DBDMA command list
1455  * for a transfer and sets the DBDMA channel to point to it.
1456  */
1457 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1458 {
1459         ide_hwif_t *hwif = drive->hwif;
1460         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1461         struct dbdma_cmd *table;
1462         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1463         struct scatterlist *sg;
1464         int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1465         int i = cmd->sg_nents, count = 0;
1466
1467         /* DMA table is already aligned */
1468         table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1469
1470         /* Make sure DMA controller is stopped (necessary ?) */
1471         writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1472         while (readl(&dma->status) & RUN)
1473                 udelay(1);
1474
1475         /* Build DBDMA commands list */
1476         sg = hwif->sg_table;
1477         while (i && sg_dma_len(sg)) {
1478                 u32 cur_addr;
1479                 u32 cur_len;
1480
1481                 cur_addr = sg_dma_address(sg);
1482                 cur_len = sg_dma_len(sg);
1483
1484                 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1485                         if (pmif->broken_dma_warn == 0) {
1486                                 printk(KERN_WARNING "%s: DMA on non aligned address, "
1487                                        "switching to PIO on Ohare chipset\n", drive->name);
1488                                 pmif->broken_dma_warn = 1;
1489                         }
1490                         return 0;
1491                 }
1492                 while (cur_len) {
1493                         unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1494
1495                         if (count++ >= MAX_DCMDS) {
1496                                 printk(KERN_WARNING "%s: DMA table too small\n",
1497                                        drive->name);
1498                                 return 0;
1499                         }
1500                         st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1501                         st_le16(&table->req_count, tc);
1502                         st_le32(&table->phy_addr, cur_addr);
1503                         table->cmd_dep = 0;
1504                         table->xfer_status = 0;
1505                         table->res_count = 0;
1506                         cur_addr += tc;
1507                         cur_len -= tc;
1508                         ++table;
1509                 }
1510                 sg = sg_next(sg);
1511                 i--;
1512         }
1513
1514         /* convert the last command to an input/output last command */
1515         if (count) {
1516                 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1517                 /* add the stop command to the end of the list */
1518                 memset(table, 0, sizeof(struct dbdma_cmd));
1519                 st_le16(&table->command, DBDMA_STOP);
1520                 mb();
1521                 writel(hwif->dmatable_dma, &dma->cmdptr);
1522                 return 1;
1523         }
1524
1525         printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1526
1527         return 0; /* revert to PIO for this request */
1528 }
1529
1530 /*
1531  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1532  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1533  */
1534 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1535 {
1536         ide_hwif_t *hwif = drive->hwif;
1537         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1538         u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1539         u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1540
1541         if (pmac_ide_build_dmatable(drive, cmd) == 0)
1542                 return 1;
1543
1544         /* Apple adds 60ns to wrDataSetup on reads */
1545         if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1546                 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1547                         PMAC_IDE_REG(IDE_TIMING_CONFIG));
1548                 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1549         }
1550
1551         return 0;
1552 }
1553
1554 /*
1555  * Kick the DMA controller into life after the DMA command has been issued
1556  * to the drive.
1557  */
1558 static void
1559 pmac_ide_dma_start(ide_drive_t *drive)
1560 {
1561         ide_hwif_t *hwif = drive->hwif;
1562         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1563         volatile struct dbdma_regs __iomem *dma;
1564
1565         dma = pmif->dma_regs;
1566
1567         writel((RUN << 16) | RUN, &dma->control);
1568         /* Make sure it gets to the controller right now */
1569         (void)readl(&dma->control);
1570 }
1571
1572 /*
1573  * After a DMA transfer, make sure the controller is stopped
1574  */
1575 static int
1576 pmac_ide_dma_end (ide_drive_t *drive)
1577 {
1578         ide_hwif_t *hwif = drive->hwif;
1579         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1580         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1581         u32 dstat;
1582
1583         dstat = readl(&dma->status);
1584         writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1585
1586         /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1587          * in theory, but with ATAPI decices doing buffer underruns, that would
1588          * cause us to disable DMA, which isn't what we want
1589          */
1590         return (dstat & (RUN|DEAD)) != RUN;
1591 }
1592
1593 /*
1594  * Check out that the interrupt we got was for us. We can't always know this
1595  * for sure with those Apple interfaces (well, we could on the recent ones but
1596  * that's not implemented yet), on the other hand, we don't have shared interrupts
1597  * so it's not really a problem
1598  */
1599 static int
1600 pmac_ide_dma_test_irq (ide_drive_t *drive)
1601 {
1602         ide_hwif_t *hwif = drive->hwif;
1603         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1604         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1605         unsigned long status, timeout;
1606
1607         /* We have to things to deal with here:
1608          * 
1609          * - The dbdma won't stop if the command was started
1610          * but completed with an error without transferring all
1611          * datas. This happens when bad blocks are met during
1612          * a multi-block transfer.
1613          * 
1614          * - The dbdma fifo hasn't yet finished flushing to
1615          * to system memory when the disk interrupt occurs.
1616          * 
1617          */
1618
1619         /* If ACTIVE is cleared, the STOP command have passed and
1620          * transfer is complete.
1621          */
1622         status = readl(&dma->status);
1623         if (!(status & ACTIVE))
1624                 return 1;
1625
1626         /* If dbdma didn't execute the STOP command yet, the
1627          * active bit is still set. We consider that we aren't
1628          * sharing interrupts (which is hopefully the case with
1629          * those controllers) and so we just try to flush the
1630          * channel for pending data in the fifo
1631          */
1632         udelay(1);
1633         writel((FLUSH << 16) | FLUSH, &dma->control);
1634         timeout = 0;
1635         for (;;) {
1636                 udelay(1);
1637                 status = readl(&dma->status);
1638                 if ((status & FLUSH) == 0)
1639                         break;
1640                 if (++timeout > 100) {
1641                         printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1642                                hwif->index);
1643                         break;
1644                 }
1645         }       
1646         return 1;
1647 }
1648
1649 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1650 {
1651 }
1652
1653 static void
1654 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1655 {
1656         ide_hwif_t *hwif = drive->hwif;
1657         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1658         volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1659         unsigned long status = readl(&dma->status);
1660
1661         printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1662 }
1663
1664 static const struct ide_dma_ops pmac_dma_ops = {
1665         .dma_host_set           = pmac_ide_dma_host_set,
1666         .dma_setup              = pmac_ide_dma_setup,
1667         .dma_start              = pmac_ide_dma_start,
1668         .dma_end                = pmac_ide_dma_end,
1669         .dma_test_irq           = pmac_ide_dma_test_irq,
1670         .dma_lost_irq           = pmac_ide_dma_lost_irq,
1671 };
1672
1673 /*
1674  * Allocate the data structures needed for using DMA with an interface
1675  * and fill the proper list of functions pointers
1676  */
1677 static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d)
1678 {
1679         pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1680         struct pci_dev *dev = to_pci_dev(hwif->dev);
1681
1682         /* We won't need pci_dev if we switch to generic consistent
1683          * DMA routines ...
1684          */
1685         if (dev == NULL || pmif->dma_regs == 0)
1686                 return -ENODEV;
1687         /*
1688          * Allocate space for the DBDMA commands.
1689          * The +2 is +1 for the stop command and +1 to allow for
1690          * aligning the start address to a multiple of 16 bytes.
1691          */
1692         pmif->dma_table_cpu = pci_alloc_consistent(
1693                 dev,
1694                 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1695                 &hwif->dmatable_dma);
1696         if (pmif->dma_table_cpu == NULL) {
1697                 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1698                        hwif->name);
1699                 return -ENOMEM;
1700         }
1701
1702         hwif->sg_max_nents = MAX_DCMDS;
1703
1704         return 0;
1705 }
1706
1707 module_init(pmac_ide_probe);
1708
1709 MODULE_LICENSE("GPL");