iommu/arm-smmu: allow translation stage to be forced on the cmdline
[firefly-linux-kernel-4.4.55.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - 4k and 64k pages, with contiguous pte hints.
27  *      - Up to 42-bit addressing (dependent on VA_BITS)
28  *      - Context fault reporting
29  */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include <asm/pgalloc.h>
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS                128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS               128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (smmu)->pagesize)
63
64 /*
65  * SMMU global address space with conditional offset to access secure
66  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67  * nsGFSYNR0: 0x450)
68  */
69 #define ARM_SMMU_GR0_NS(smmu)                                           \
70         ((smmu)->base +                                                 \
71                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
72                         ? 0x400 : 0))
73
74 /* Page table bits */
75 #define ARM_SMMU_PTE_XN                 (((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
82
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES       16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES       32
87 #else
88 #define ARM_SMMU_PTE_CONT_ENTRIES       1
89 #endif
90
91 #define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
93
94 /* Stage-1 PTE */
95 #define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
98 #define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
99
100 /* Stage-2 PTE */
101 #define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
107
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0               0x0
110 #define sCR0_CLIENTPD                   (1 << 0)
111 #define sCR0_GFRE                       (1 << 1)
112 #define sCR0_GFIE                       (1 << 2)
113 #define sCR0_GCFGFRE                    (1 << 4)
114 #define sCR0_GCFGFIE                    (1 << 5)
115 #define sCR0_USFCFG                     (1 << 10)
116 #define sCR0_VMIDPNE                    (1 << 11)
117 #define sCR0_PTM                        (1 << 12)
118 #define sCR0_FB                         (1 << 13)
119 #define sCR0_BSU_SHIFT                  14
120 #define sCR0_BSU_MASK                   0x3
121
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0                0x20
124 #define ARM_SMMU_GR0_ID1                0x24
125 #define ARM_SMMU_GR0_ID2                0x28
126 #define ARM_SMMU_GR0_ID3                0x2c
127 #define ARM_SMMU_GR0_ID4                0x30
128 #define ARM_SMMU_GR0_ID5                0x34
129 #define ARM_SMMU_GR0_ID6                0x38
130 #define ARM_SMMU_GR0_ID7                0x3c
131 #define ARM_SMMU_GR0_sGFSR              0x48
132 #define ARM_SMMU_GR0_sGFSYNR0           0x50
133 #define ARM_SMMU_GR0_sGFSYNR1           0x54
134 #define ARM_SMMU_GR0_sGFSYNR2           0x58
135 #define ARM_SMMU_GR0_PIDR0              0xfe0
136 #define ARM_SMMU_GR0_PIDR1              0xfe4
137 #define ARM_SMMU_GR0_PIDR2              0xfe8
138
139 #define ID0_S1TS                        (1 << 30)
140 #define ID0_S2TS                        (1 << 29)
141 #define ID0_NTS                         (1 << 28)
142 #define ID0_SMS                         (1 << 27)
143 #define ID0_PTFS_SHIFT                  24
144 #define ID0_PTFS_MASK                   0x2
145 #define ID0_PTFS_V8_ONLY                0x2
146 #define ID0_CTTW                        (1 << 14)
147 #define ID0_NUMIRPT_SHIFT               16
148 #define ID0_NUMIRPT_MASK                0xff
149 #define ID0_NUMSIDB_SHIFT               9
150 #define ID0_NUMSIDB_MASK                0xf
151 #define ID0_NUMSMRG_SHIFT               0
152 #define ID0_NUMSMRG_MASK                0xff
153
154 #define ID1_PAGESIZE                    (1 << 31)
155 #define ID1_NUMPAGENDXB_SHIFT           28
156 #define ID1_NUMPAGENDXB_MASK            7
157 #define ID1_NUMS2CB_SHIFT               16
158 #define ID1_NUMS2CB_MASK                0xff
159 #define ID1_NUMCB_SHIFT                 0
160 #define ID1_NUMCB_MASK                  0xff
161
162 #define ID2_OAS_SHIFT                   4
163 #define ID2_OAS_MASK                    0xf
164 #define ID2_IAS_SHIFT                   0
165 #define ID2_IAS_MASK                    0xf
166 #define ID2_UBS_SHIFT                   8
167 #define ID2_UBS_MASK                    0xf
168 #define ID2_PTFS_4K                     (1 << 12)
169 #define ID2_PTFS_16K                    (1 << 13)
170 #define ID2_PTFS_64K                    (1 << 14)
171
172 #define PIDR2_ARCH_SHIFT                4
173 #define PIDR2_ARCH_MASK                 0xf
174
175 /* Global TLB invalidation */
176 #define ARM_SMMU_GR0_STLBIALL           0x60
177 #define ARM_SMMU_GR0_TLBIVMID           0x64
178 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
179 #define ARM_SMMU_GR0_TLBIALLH           0x6c
180 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
181 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
182 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
183 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
184
185 /* Stream mapping registers */
186 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
187 #define SMR_VALID                       (1 << 31)
188 #define SMR_MASK_SHIFT                  16
189 #define SMR_MASK_MASK                   0x7fff
190 #define SMR_ID_SHIFT                    0
191 #define SMR_ID_MASK                     0x7fff
192
193 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
194 #define S2CR_CBNDX_SHIFT                0
195 #define S2CR_CBNDX_MASK                 0xff
196 #define S2CR_TYPE_SHIFT                 16
197 #define S2CR_TYPE_MASK                  0x3
198 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
199 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
200 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
201
202 /* Context bank attribute registers */
203 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
204 #define CBAR_VMID_SHIFT                 0
205 #define CBAR_VMID_MASK                  0xff
206 #define CBAR_S1_BPSHCFG_SHIFT           8
207 #define CBAR_S1_BPSHCFG_MASK            3
208 #define CBAR_S1_BPSHCFG_NSH             3
209 #define CBAR_S1_MEMATTR_SHIFT           12
210 #define CBAR_S1_MEMATTR_MASK            0xf
211 #define CBAR_S1_MEMATTR_WB              0xf
212 #define CBAR_TYPE_SHIFT                 16
213 #define CBAR_TYPE_MASK                  0x3
214 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
216 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
217 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
218 #define CBAR_IRPTNDX_SHIFT              24
219 #define CBAR_IRPTNDX_MASK               0xff
220
221 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
222 #define CBA2R_RW64_32BIT                (0 << 0)
223 #define CBA2R_RW64_64BIT                (1 << 0)
224
225 /* Translation context bank */
226 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
227 #define ARM_SMMU_CB(smmu, n)            ((n) * (smmu)->pagesize)
228
229 #define ARM_SMMU_CB_SCTLR               0x0
230 #define ARM_SMMU_CB_RESUME              0x8
231 #define ARM_SMMU_CB_TTBCR2              0x10
232 #define ARM_SMMU_CB_TTBR0_LO            0x20
233 #define ARM_SMMU_CB_TTBR0_HI            0x24
234 #define ARM_SMMU_CB_TTBCR               0x30
235 #define ARM_SMMU_CB_S1_MAIR0            0x38
236 #define ARM_SMMU_CB_FSR                 0x58
237 #define ARM_SMMU_CB_FAR_LO              0x60
238 #define ARM_SMMU_CB_FAR_HI              0x64
239 #define ARM_SMMU_CB_FSYNR0              0x68
240 #define ARM_SMMU_CB_S1_TLBIASID         0x610
241
242 #define SCTLR_S1_ASIDPNE                (1 << 12)
243 #define SCTLR_CFCFG                     (1 << 7)
244 #define SCTLR_CFIE                      (1 << 6)
245 #define SCTLR_CFRE                      (1 << 5)
246 #define SCTLR_E                         (1 << 4)
247 #define SCTLR_AFE                       (1 << 2)
248 #define SCTLR_TRE                       (1 << 1)
249 #define SCTLR_M                         (1 << 0)
250 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
251
252 #define RESUME_RETRY                    (0 << 0)
253 #define RESUME_TERMINATE                (1 << 0)
254
255 #define TTBCR_EAE                       (1 << 31)
256
257 #define TTBCR_PASIZE_SHIFT              16
258 #define TTBCR_PASIZE_MASK               0x7
259
260 #define TTBCR_TG0_4K                    (0 << 14)
261 #define TTBCR_TG0_64K                   (1 << 14)
262
263 #define TTBCR_SH0_SHIFT                 12
264 #define TTBCR_SH0_MASK                  0x3
265 #define TTBCR_SH_NS                     0
266 #define TTBCR_SH_OS                     2
267 #define TTBCR_SH_IS                     3
268
269 #define TTBCR_ORGN0_SHIFT               10
270 #define TTBCR_IRGN0_SHIFT               8
271 #define TTBCR_RGN_MASK                  0x3
272 #define TTBCR_RGN_NC                    0
273 #define TTBCR_RGN_WBWA                  1
274 #define TTBCR_RGN_WT                    2
275 #define TTBCR_RGN_WB                    3
276
277 #define TTBCR_SL0_SHIFT                 6
278 #define TTBCR_SL0_MASK                  0x3
279 #define TTBCR_SL0_LVL_2                 0
280 #define TTBCR_SL0_LVL_1                 1
281
282 #define TTBCR_T1SZ_SHIFT                16
283 #define TTBCR_T0SZ_SHIFT                0
284 #define TTBCR_SZ_MASK                   0xf
285
286 #define TTBCR2_SEP_SHIFT                15
287 #define TTBCR2_SEP_MASK                 0x7
288
289 #define TTBCR2_PASIZE_SHIFT             0
290 #define TTBCR2_PASIZE_MASK              0x7
291
292 /* Common definitions for PASize and SEP fields */
293 #define TTBCR2_ADDR_32                  0
294 #define TTBCR2_ADDR_36                  1
295 #define TTBCR2_ADDR_40                  2
296 #define TTBCR2_ADDR_42                  3
297 #define TTBCR2_ADDR_44                  4
298 #define TTBCR2_ADDR_48                  5
299
300 #define TTBRn_HI_ASID_SHIFT             16
301
302 #define MAIR_ATTR_SHIFT(n)              ((n) << 3)
303 #define MAIR_ATTR_MASK                  0xff
304 #define MAIR_ATTR_DEVICE                0x04
305 #define MAIR_ATTR_NC                    0x44
306 #define MAIR_ATTR_WBRWA                 0xff
307 #define MAIR_ATTR_IDX_NC                0
308 #define MAIR_ATTR_IDX_CACHE             1
309 #define MAIR_ATTR_IDX_DEV               2
310
311 #define FSR_MULTI                       (1 << 31)
312 #define FSR_SS                          (1 << 30)
313 #define FSR_UUT                         (1 << 8)
314 #define FSR_ASF                         (1 << 7)
315 #define FSR_TLBLKF                      (1 << 6)
316 #define FSR_TLBMCF                      (1 << 5)
317 #define FSR_EF                          (1 << 4)
318 #define FSR_PF                          (1 << 3)
319 #define FSR_AFF                         (1 << 2)
320 #define FSR_TF                          (1 << 1)
321
322 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
323                                          FSR_TLBMCF | FSR_TLBLKF)
324 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
325                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326
327 #define FSYNR0_WNR                      (1 << 4)
328
329 static int force_stage;
330 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
331 MODULE_PARM_DESC(force_stage,
332         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
333
334 struct arm_smmu_smr {
335         u8                              idx;
336         u16                             mask;
337         u16                             id;
338 };
339
340 struct arm_smmu_master_cfg {
341         int                             num_streamids;
342         u16                             streamids[MAX_MASTER_STREAMIDS];
343         struct arm_smmu_smr             *smrs;
344 };
345
346 struct arm_smmu_master {
347         struct device_node              *of_node;
348         struct rb_node                  node;
349         struct arm_smmu_master_cfg      cfg;
350 };
351
352 struct arm_smmu_device {
353         struct device                   *dev;
354
355         void __iomem                    *base;
356         unsigned long                   size;
357         unsigned long                   pagesize;
358
359 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
360 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
361 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
362 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
363 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
364         u32                             features;
365
366 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
367         u32                             options;
368         int                             version;
369
370         u32                             num_context_banks;
371         u32                             num_s2_context_banks;
372         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
373         atomic_t                        irptndx;
374
375         u32                             num_mapping_groups;
376         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
377
378         unsigned long                   input_size;
379         unsigned long                   s1_output_size;
380         unsigned long                   s2_output_size;
381
382         u32                             num_global_irqs;
383         u32                             num_context_irqs;
384         unsigned int                    *irqs;
385
386         struct list_head                list;
387         struct rb_root                  masters;
388 };
389
390 struct arm_smmu_cfg {
391         u8                              cbndx;
392         u8                              irptndx;
393         u32                             cbar;
394         pgd_t                           *pgd;
395 };
396 #define INVALID_IRPTNDX                 0xff
397
398 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
399 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
400
401 struct arm_smmu_domain {
402         struct arm_smmu_device          *smmu;
403         struct arm_smmu_cfg             cfg;
404         spinlock_t                      lock;
405 };
406
407 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
408 static LIST_HEAD(arm_smmu_devices);
409
410 struct arm_smmu_option_prop {
411         u32 opt;
412         const char *prop;
413 };
414
415 static struct arm_smmu_option_prop arm_smmu_options[] = {
416         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
417         { 0, NULL},
418 };
419
420 static void parse_driver_options(struct arm_smmu_device *smmu)
421 {
422         int i = 0;
423
424         do {
425                 if (of_property_read_bool(smmu->dev->of_node,
426                                                 arm_smmu_options[i].prop)) {
427                         smmu->options |= arm_smmu_options[i].opt;
428                         dev_notice(smmu->dev, "option %s\n",
429                                 arm_smmu_options[i].prop);
430                 }
431         } while (arm_smmu_options[++i].opt);
432 }
433
434 static struct device *dev_get_master_dev(struct device *dev)
435 {
436         if (dev_is_pci(dev)) {
437                 struct pci_bus *bus = to_pci_dev(dev)->bus;
438
439                 while (!pci_is_root_bus(bus))
440                         bus = bus->parent;
441                 return bus->bridge->parent;
442         }
443
444         return dev;
445 }
446
447 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
448                                                 struct device_node *dev_node)
449 {
450         struct rb_node *node = smmu->masters.rb_node;
451
452         while (node) {
453                 struct arm_smmu_master *master;
454
455                 master = container_of(node, struct arm_smmu_master, node);
456
457                 if (dev_node < master->of_node)
458                         node = node->rb_left;
459                 else if (dev_node > master->of_node)
460                         node = node->rb_right;
461                 else
462                         return master;
463         }
464
465         return NULL;
466 }
467
468 static struct arm_smmu_master_cfg *
469 find_smmu_master_cfg(struct arm_smmu_device *smmu, struct device *dev)
470 {
471         struct arm_smmu_master *master;
472
473         if (dev_is_pci(dev))
474                 return dev->archdata.iommu;
475
476         master = find_smmu_master(smmu, dev->of_node);
477         return master ? &master->cfg : NULL;
478 }
479
480 static int insert_smmu_master(struct arm_smmu_device *smmu,
481                               struct arm_smmu_master *master)
482 {
483         struct rb_node **new, *parent;
484
485         new = &smmu->masters.rb_node;
486         parent = NULL;
487         while (*new) {
488                 struct arm_smmu_master *this
489                         = container_of(*new, struct arm_smmu_master, node);
490
491                 parent = *new;
492                 if (master->of_node < this->of_node)
493                         new = &((*new)->rb_left);
494                 else if (master->of_node > this->of_node)
495                         new = &((*new)->rb_right);
496                 else
497                         return -EEXIST;
498         }
499
500         rb_link_node(&master->node, parent, new);
501         rb_insert_color(&master->node, &smmu->masters);
502         return 0;
503 }
504
505 static int register_smmu_master(struct arm_smmu_device *smmu,
506                                 struct device *dev,
507                                 struct of_phandle_args *masterspec)
508 {
509         int i;
510         struct arm_smmu_master *master;
511
512         master = find_smmu_master(smmu, masterspec->np);
513         if (master) {
514                 dev_err(dev,
515                         "rejecting multiple registrations for master device %s\n",
516                         masterspec->np->name);
517                 return -EBUSY;
518         }
519
520         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
521                 dev_err(dev,
522                         "reached maximum number (%d) of stream IDs for master device %s\n",
523                         MAX_MASTER_STREAMIDS, masterspec->np->name);
524                 return -ENOSPC;
525         }
526
527         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
528         if (!master)
529                 return -ENOMEM;
530
531         master->of_node                 = masterspec->np;
532         master->cfg.num_streamids       = masterspec->args_count;
533
534         for (i = 0; i < master->cfg.num_streamids; ++i) {
535                 u16 streamid = masterspec->args[i];
536
537                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
538                      (streamid >= smmu->num_mapping_groups)) {
539                         dev_err(dev,
540                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
541                                 masterspec->np->name, smmu->num_mapping_groups);
542                         return -ERANGE;
543                 }
544                 master->cfg.streamids[i] = streamid;
545         }
546         return insert_smmu_master(smmu, master);
547 }
548
549 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
550 {
551         struct arm_smmu_device *smmu;
552         struct arm_smmu_master *master = NULL;
553         struct device_node *dev_node = dev_get_master_dev(dev)->of_node;
554
555         spin_lock(&arm_smmu_devices_lock);
556         list_for_each_entry(smmu, &arm_smmu_devices, list) {
557                 master = find_smmu_master(smmu, dev_node);
558                 if (master)
559                         break;
560         }
561         spin_unlock(&arm_smmu_devices_lock);
562
563         return master ? smmu : NULL;
564 }
565
566 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
567 {
568         int idx;
569
570         do {
571                 idx = find_next_zero_bit(map, end, start);
572                 if (idx == end)
573                         return -ENOSPC;
574         } while (test_and_set_bit(idx, map));
575
576         return idx;
577 }
578
579 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
580 {
581         clear_bit(idx, map);
582 }
583
584 /* Wait for any pending TLB invalidations to complete */
585 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
586 {
587         int count = 0;
588         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
589
590         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
591         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
592                & sTLBGSTATUS_GSACTIVE) {
593                 cpu_relax();
594                 if (++count == TLB_LOOP_TIMEOUT) {
595                         dev_err_ratelimited(smmu->dev,
596                         "TLB sync timed out -- SMMU may be deadlocked\n");
597                         return;
598                 }
599                 udelay(1);
600         }
601 }
602
603 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
604 {
605         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
606         struct arm_smmu_device *smmu = smmu_domain->smmu;
607         void __iomem *base = ARM_SMMU_GR0(smmu);
608         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
609
610         if (stage1) {
611                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
612                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
613                                base + ARM_SMMU_CB_S1_TLBIASID);
614         } else {
615                 base = ARM_SMMU_GR0(smmu);
616                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
617                                base + ARM_SMMU_GR0_TLBIVMID);
618         }
619
620         arm_smmu_tlb_sync(smmu);
621 }
622
623 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
624 {
625         int flags, ret;
626         u32 fsr, far, fsynr, resume;
627         unsigned long iova;
628         struct iommu_domain *domain = dev;
629         struct arm_smmu_domain *smmu_domain = domain->priv;
630         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
631         struct arm_smmu_device *smmu = smmu_domain->smmu;
632         void __iomem *cb_base;
633
634         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
635         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
636
637         if (!(fsr & FSR_FAULT))
638                 return IRQ_NONE;
639
640         if (fsr & FSR_IGN)
641                 dev_err_ratelimited(smmu->dev,
642                                     "Unexpected context fault (fsr 0x%x)\n",
643                                     fsr);
644
645         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
646         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
647
648         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
649         iova = far;
650 #ifdef CONFIG_64BIT
651         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
652         iova |= ((unsigned long)far << 32);
653 #endif
654
655         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
656                 ret = IRQ_HANDLED;
657                 resume = RESUME_RETRY;
658         } else {
659                 dev_err_ratelimited(smmu->dev,
660                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
661                     iova, fsynr, cfg->cbndx);
662                 ret = IRQ_NONE;
663                 resume = RESUME_TERMINATE;
664         }
665
666         /* Clear the faulting FSR */
667         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
668
669         /* Retry or terminate any stalled transactions */
670         if (fsr & FSR_SS)
671                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
672
673         return ret;
674 }
675
676 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
677 {
678         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
679         struct arm_smmu_device *smmu = dev;
680         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
681
682         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
683         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
684         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
685         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
686
687         if (!gfsr)
688                 return IRQ_NONE;
689
690         dev_err_ratelimited(smmu->dev,
691                 "Unexpected global fault, this could be serious\n");
692         dev_err_ratelimited(smmu->dev,
693                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
694                 gfsr, gfsynr0, gfsynr1, gfsynr2);
695
696         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
697         return IRQ_HANDLED;
698 }
699
700 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
701                                    size_t size)
702 {
703         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
704
705
706         /* Ensure new page tables are visible to the hardware walker */
707         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
708                 dsb(ishst);
709         } else {
710                 /*
711                  * If the SMMU can't walk tables in the CPU caches, treat them
712                  * like non-coherent DMA since we need to flush the new entries
713                  * all the way out to memory. There's no possibility of
714                  * recursion here as the SMMU table walker will not be wired
715                  * through another SMMU.
716                  */
717                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
718                                 DMA_TO_DEVICE);
719         }
720 }
721
722 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
723 {
724         u32 reg;
725         bool stage1;
726         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
727         struct arm_smmu_device *smmu = smmu_domain->smmu;
728         void __iomem *cb_base, *gr0_base, *gr1_base;
729
730         gr0_base = ARM_SMMU_GR0(smmu);
731         gr1_base = ARM_SMMU_GR1(smmu);
732         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
733         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
734
735         /* CBAR */
736         reg = cfg->cbar;
737         if (smmu->version == 1)
738                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
739
740         /*
741          * Use the weakest shareability/memory types, so they are
742          * overridden by the ttbcr/pte.
743          */
744         if (stage1) {
745                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
746                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
747         } else {
748                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
749         }
750         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
751
752         if (smmu->version > 1) {
753                 /* CBA2R */
754 #ifdef CONFIG_64BIT
755                 reg = CBA2R_RW64_64BIT;
756 #else
757                 reg = CBA2R_RW64_32BIT;
758 #endif
759                 writel_relaxed(reg,
760                                gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
761
762                 /* TTBCR2 */
763                 switch (smmu->input_size) {
764                 case 32:
765                         reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
766                         break;
767                 case 36:
768                         reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
769                         break;
770                 case 39:
771                 case 40:
772                         reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
773                         break;
774                 case 42:
775                         reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
776                         break;
777                 case 44:
778                         reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
779                         break;
780                 case 48:
781                         reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
782                         break;
783                 }
784
785                 switch (smmu->s1_output_size) {
786                 case 32:
787                         reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
788                         break;
789                 case 36:
790                         reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
791                         break;
792                 case 39:
793                 case 40:
794                         reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
795                         break;
796                 case 42:
797                         reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
798                         break;
799                 case 44:
800                         reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
801                         break;
802                 case 48:
803                         reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
804                         break;
805                 }
806
807                 if (stage1)
808                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
809         }
810
811         /* TTBR0 */
812         arm_smmu_flush_pgtable(smmu, cfg->pgd,
813                                PTRS_PER_PGD * sizeof(pgd_t));
814         reg = __pa(cfg->pgd);
815         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
816         reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
817         if (stage1)
818                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
819         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
820
821         /*
822          * TTBCR
823          * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
824          */
825         if (smmu->version > 1) {
826                 if (PAGE_SIZE == SZ_4K)
827                         reg = TTBCR_TG0_4K;
828                 else
829                         reg = TTBCR_TG0_64K;
830
831                 if (!stage1) {
832                         reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
833
834                         switch (smmu->s2_output_size) {
835                         case 32:
836                                 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
837                                 break;
838                         case 36:
839                                 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
840                                 break;
841                         case 40:
842                                 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
843                                 break;
844                         case 42:
845                                 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
846                                 break;
847                         case 44:
848                                 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
849                                 break;
850                         case 48:
851                                 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
852                                 break;
853                         }
854                 } else {
855                         reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
856                 }
857         } else {
858                 reg = 0;
859         }
860
861         reg |= TTBCR_EAE |
862               (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
863               (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
864               (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
865
866         if (!stage1)
867                 reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
868
869         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
870
871         /* MAIR0 (stage-1 only) */
872         if (stage1) {
873                 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
874                       (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
875                       (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
876                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
877         }
878
879         /* SCTLR */
880         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
881         if (stage1)
882                 reg |= SCTLR_S1_ASIDPNE;
883 #ifdef __BIG_ENDIAN
884         reg |= SCTLR_E;
885 #endif
886         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
887 }
888
889 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
890                                         struct arm_smmu_device *smmu)
891 {
892         int irq, start, ret = 0;
893         unsigned long flags;
894         struct arm_smmu_domain *smmu_domain = domain->priv;
895         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
896
897         spin_lock_irqsave(&smmu_domain->lock, flags);
898         if (smmu_domain->smmu)
899                 goto out_unlock;
900
901         if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
902                 /*
903                  * We will likely want to change this if/when KVM gets
904                  * involved.
905                  */
906                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
907                 start = smmu->num_s2_context_banks;
908         } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
909                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
910                 start = smmu->num_s2_context_banks;
911         } else {
912                 cfg->cbar = CBAR_TYPE_S2_TRANS;
913                 start = 0;
914         }
915
916         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
917                                       smmu->num_context_banks);
918         if (IS_ERR_VALUE(ret))
919                 goto out_unlock;
920
921         cfg->cbndx = ret;
922         if (smmu->version == 1) {
923                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
924                 cfg->irptndx %= smmu->num_context_irqs;
925         } else {
926                 cfg->irptndx = cfg->cbndx;
927         }
928
929         ACCESS_ONCE(smmu_domain->smmu) = smmu;
930         arm_smmu_init_context_bank(smmu_domain);
931         spin_unlock_irqrestore(&smmu_domain->lock, flags);
932
933         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
934         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
935                           "arm-smmu-context-fault", domain);
936         if (IS_ERR_VALUE(ret)) {
937                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
938                         cfg->irptndx, irq);
939                 cfg->irptndx = INVALID_IRPTNDX;
940         }
941
942         return 0;
943
944 out_unlock:
945         spin_unlock_irqrestore(&smmu_domain->lock, flags);
946         return ret;
947 }
948
949 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
950 {
951         struct arm_smmu_domain *smmu_domain = domain->priv;
952         struct arm_smmu_device *smmu = smmu_domain->smmu;
953         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
954         void __iomem *cb_base;
955         int irq;
956
957         if (!smmu)
958                 return;
959
960         /* Disable the context bank and nuke the TLB before freeing it. */
961         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
962         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
963         arm_smmu_tlb_inv_context(smmu_domain);
964
965         if (cfg->irptndx != INVALID_IRPTNDX) {
966                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
967                 free_irq(irq, domain);
968         }
969
970         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
971 }
972
973 static int arm_smmu_domain_init(struct iommu_domain *domain)
974 {
975         struct arm_smmu_domain *smmu_domain;
976         pgd_t *pgd;
977
978         /*
979          * Allocate the domain and initialise some of its data structures.
980          * We can't really do anything meaningful until we've added a
981          * master.
982          */
983         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
984         if (!smmu_domain)
985                 return -ENOMEM;
986
987         pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
988         if (!pgd)
989                 goto out_free_domain;
990         smmu_domain->cfg.pgd = pgd;
991
992         spin_lock_init(&smmu_domain->lock);
993         domain->priv = smmu_domain;
994         return 0;
995
996 out_free_domain:
997         kfree(smmu_domain);
998         return -ENOMEM;
999 }
1000
1001 static void arm_smmu_free_ptes(pmd_t *pmd)
1002 {
1003         pgtable_t table = pmd_pgtable(*pmd);
1004
1005         __free_page(table);
1006 }
1007
1008 static void arm_smmu_free_pmds(pud_t *pud)
1009 {
1010         int i;
1011         pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1012
1013         pmd = pmd_base;
1014         for (i = 0; i < PTRS_PER_PMD; ++i) {
1015                 if (pmd_none(*pmd))
1016                         continue;
1017
1018                 arm_smmu_free_ptes(pmd);
1019                 pmd++;
1020         }
1021
1022         pmd_free(NULL, pmd_base);
1023 }
1024
1025 static void arm_smmu_free_puds(pgd_t *pgd)
1026 {
1027         int i;
1028         pud_t *pud, *pud_base = pud_offset(pgd, 0);
1029
1030         pud = pud_base;
1031         for (i = 0; i < PTRS_PER_PUD; ++i) {
1032                 if (pud_none(*pud))
1033                         continue;
1034
1035                 arm_smmu_free_pmds(pud);
1036                 pud++;
1037         }
1038
1039         pud_free(NULL, pud_base);
1040 }
1041
1042 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1043 {
1044         int i;
1045         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1046         pgd_t *pgd, *pgd_base = cfg->pgd;
1047
1048         /*
1049          * Recursively free the page tables for this domain. We don't
1050          * care about speculative TLB filling because the tables should
1051          * not be active in any context bank at this point (SCTLR.M is 0).
1052          */
1053         pgd = pgd_base;
1054         for (i = 0; i < PTRS_PER_PGD; ++i) {
1055                 if (pgd_none(*pgd))
1056                         continue;
1057                 arm_smmu_free_puds(pgd);
1058                 pgd++;
1059         }
1060
1061         kfree(pgd_base);
1062 }
1063
1064 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1065 {
1066         struct arm_smmu_domain *smmu_domain = domain->priv;
1067
1068         /*
1069          * Free the domain resources. We assume that all devices have
1070          * already been detached.
1071          */
1072         arm_smmu_destroy_domain_context(domain);
1073         arm_smmu_free_pgtables(smmu_domain);
1074         kfree(smmu_domain);
1075 }
1076
1077 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1078                                           struct arm_smmu_master_cfg *cfg)
1079 {
1080         int i;
1081         struct arm_smmu_smr *smrs;
1082         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1083
1084         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1085                 return 0;
1086
1087         if (cfg->smrs)
1088                 return -EEXIST;
1089
1090         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1091         if (!smrs) {
1092                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1093                         cfg->num_streamids);
1094                 return -ENOMEM;
1095         }
1096
1097         /* Allocate the SMRs on the SMMU */
1098         for (i = 0; i < cfg->num_streamids; ++i) {
1099                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1100                                                   smmu->num_mapping_groups);
1101                 if (IS_ERR_VALUE(idx)) {
1102                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1103                         goto err_free_smrs;
1104                 }
1105
1106                 smrs[i] = (struct arm_smmu_smr) {
1107                         .idx    = idx,
1108                         .mask   = 0, /* We don't currently share SMRs */
1109                         .id     = cfg->streamids[i],
1110                 };
1111         }
1112
1113         /* It worked! Now, poke the actual hardware */
1114         for (i = 0; i < cfg->num_streamids; ++i) {
1115                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1116                           smrs[i].mask << SMR_MASK_SHIFT;
1117                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1118         }
1119
1120         cfg->smrs = smrs;
1121         return 0;
1122
1123 err_free_smrs:
1124         while (--i >= 0)
1125                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1126         kfree(smrs);
1127         return -ENOSPC;
1128 }
1129
1130 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1131                                       struct arm_smmu_master_cfg *cfg)
1132 {
1133         int i;
1134         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1135         struct arm_smmu_smr *smrs = cfg->smrs;
1136
1137         if (!smrs)
1138                 return;
1139
1140         /* Invalidate the SMRs before freeing back to the allocator */
1141         for (i = 0; i < cfg->num_streamids; ++i) {
1142                 u8 idx = smrs[i].idx;
1143
1144                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1145                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1146         }
1147
1148         cfg->smrs = NULL;
1149         kfree(smrs);
1150 }
1151
1152 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1153                                       struct arm_smmu_master_cfg *cfg)
1154 {
1155         int i, ret;
1156         struct arm_smmu_device *smmu = smmu_domain->smmu;
1157         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1158
1159         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1160         if (ret)
1161                 return ret;
1162
1163         for (i = 0; i < cfg->num_streamids; ++i) {
1164                 u32 idx, s2cr;
1165
1166                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1167                 s2cr = S2CR_TYPE_TRANS |
1168                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1169                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1170         }
1171
1172         return 0;
1173 }
1174
1175 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1176                                           struct arm_smmu_master_cfg *cfg)
1177 {
1178         int i;
1179         struct arm_smmu_device *smmu = smmu_domain->smmu;
1180         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1181
1182         /*
1183          * We *must* clear the S2CR first, because freeing the SMR means
1184          * that it can be re-allocated immediately.
1185          */
1186         for (i = 0; i < cfg->num_streamids; ++i) {
1187                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1188
1189                 writel_relaxed(S2CR_TYPE_BYPASS,
1190                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1191         }
1192
1193         arm_smmu_master_free_smrs(smmu, cfg);
1194 }
1195
1196 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1197 {
1198         int ret;
1199         struct arm_smmu_domain *smmu_domain = domain->priv;
1200         struct arm_smmu_device *smmu, *dom_smmu;
1201         struct arm_smmu_master_cfg *cfg;
1202
1203         smmu = dev_get_master_dev(dev)->archdata.iommu;
1204         if (!smmu) {
1205                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1206                 return -ENXIO;
1207         }
1208
1209         /*
1210          * Sanity check the domain. We don't support domains across
1211          * different SMMUs.
1212          */
1213         dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1214         if (!dom_smmu) {
1215                 /* Now that we have a master, we can finalise the domain */
1216                 ret = arm_smmu_init_domain_context(domain, smmu);
1217                 if (IS_ERR_VALUE(ret))
1218                         return ret;
1219
1220                 dom_smmu = smmu_domain->smmu;
1221         }
1222
1223         if (dom_smmu != smmu) {
1224                 dev_err(dev,
1225                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1226                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1227                 return -EINVAL;
1228         }
1229
1230         /* Looks ok, so add the device to the domain */
1231         cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1232         if (!cfg)
1233                 return -ENODEV;
1234
1235         return arm_smmu_domain_add_master(smmu_domain, cfg);
1236 }
1237
1238 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1239 {
1240         struct arm_smmu_domain *smmu_domain = domain->priv;
1241         struct arm_smmu_master_cfg *cfg;
1242
1243         cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1244         if (cfg)
1245                 arm_smmu_domain_remove_master(smmu_domain, cfg);
1246 }
1247
1248 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1249                                              unsigned long end)
1250 {
1251         return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1252                 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1253 }
1254
1255 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1256                                    unsigned long addr, unsigned long end,
1257                                    unsigned long pfn, int prot, int stage)
1258 {
1259         pte_t *pte, *start;
1260         pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1261
1262         if (pmd_none(*pmd)) {
1263                 /* Allocate a new set of tables */
1264                 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1265
1266                 if (!table)
1267                         return -ENOMEM;
1268
1269                 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1270                 pmd_populate(NULL, pmd, table);
1271                 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1272         }
1273
1274         if (stage == 1) {
1275                 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1276                 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1277                         pteval |= ARM_SMMU_PTE_AP_RDONLY;
1278
1279                 if (prot & IOMMU_CACHE)
1280                         pteval |= (MAIR_ATTR_IDX_CACHE <<
1281                                    ARM_SMMU_PTE_ATTRINDX_SHIFT);
1282         } else {
1283                 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1284                 if (prot & IOMMU_READ)
1285                         pteval |= ARM_SMMU_PTE_HAP_READ;
1286                 if (prot & IOMMU_WRITE)
1287                         pteval |= ARM_SMMU_PTE_HAP_WRITE;
1288                 if (prot & IOMMU_CACHE)
1289                         pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1290                 else
1291                         pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1292         }
1293
1294         /* If no access, create a faulting entry to avoid TLB fills */
1295         if (prot & IOMMU_EXEC)
1296                 pteval &= ~ARM_SMMU_PTE_XN;
1297         else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1298                 pteval &= ~ARM_SMMU_PTE_PAGE;
1299
1300         pteval |= ARM_SMMU_PTE_SH_IS;
1301         start = pmd_page_vaddr(*pmd) + pte_index(addr);
1302         pte = start;
1303
1304         /*
1305          * Install the page table entries. This is fairly complicated
1306          * since we attempt to make use of the contiguous hint in the
1307          * ptes where possible. The contiguous hint indicates a series
1308          * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1309          * contiguous region with the following constraints:
1310          *
1311          *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1312          *   - Each pte in the region has the contiguous hint bit set
1313          *
1314          * This complicates unmapping (also handled by this code, when
1315          * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1316          * possible, yet highly unlikely, that a client may unmap only
1317          * part of a contiguous range. This requires clearing of the
1318          * contiguous hint bits in the range before installing the new
1319          * faulting entries.
1320          *
1321          * Note that re-mapping an address range without first unmapping
1322          * it is not supported, so TLB invalidation is not required here
1323          * and is instead performed at unmap and domain-init time.
1324          */
1325         do {
1326                 int i = 1;
1327
1328                 pteval &= ~ARM_SMMU_PTE_CONT;
1329
1330                 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1331                         i = ARM_SMMU_PTE_CONT_ENTRIES;
1332                         pteval |= ARM_SMMU_PTE_CONT;
1333                 } else if (pte_val(*pte) &
1334                            (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1335                         int j;
1336                         pte_t *cont_start;
1337                         unsigned long idx = pte_index(addr);
1338
1339                         idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1340                         cont_start = pmd_page_vaddr(*pmd) + idx;
1341                         for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1342                                 pte_val(*(cont_start + j)) &=
1343                                         ~ARM_SMMU_PTE_CONT;
1344
1345                         arm_smmu_flush_pgtable(smmu, cont_start,
1346                                                sizeof(*pte) *
1347                                                ARM_SMMU_PTE_CONT_ENTRIES);
1348                 }
1349
1350                 do {
1351                         *pte = pfn_pte(pfn, __pgprot(pteval));
1352                 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1353         } while (addr != end);
1354
1355         arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1356         return 0;
1357 }
1358
1359 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1360                                    unsigned long addr, unsigned long end,
1361                                    phys_addr_t phys, int prot, int stage)
1362 {
1363         int ret;
1364         pmd_t *pmd;
1365         unsigned long next, pfn = __phys_to_pfn(phys);
1366
1367 #ifndef __PAGETABLE_PMD_FOLDED
1368         if (pud_none(*pud)) {
1369                 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1370                 if (!pmd)
1371                         return -ENOMEM;
1372
1373                 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1374                 pud_populate(NULL, pud, pmd);
1375                 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1376
1377                 pmd += pmd_index(addr);
1378         } else
1379 #endif
1380                 pmd = pmd_offset(pud, addr);
1381
1382         do {
1383                 next = pmd_addr_end(addr, end);
1384                 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1385                                               prot, stage);
1386                 phys += next - addr;
1387         } while (pmd++, addr = next, addr < end);
1388
1389         return ret;
1390 }
1391
1392 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1393                                    unsigned long addr, unsigned long end,
1394                                    phys_addr_t phys, int prot, int stage)
1395 {
1396         int ret = 0;
1397         pud_t *pud;
1398         unsigned long next;
1399
1400 #ifndef __PAGETABLE_PUD_FOLDED
1401         if (pgd_none(*pgd)) {
1402                 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1403                 if (!pud)
1404                         return -ENOMEM;
1405
1406                 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1407                 pgd_populate(NULL, pgd, pud);
1408                 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1409
1410                 pud += pud_index(addr);
1411         } else
1412 #endif
1413                 pud = pud_offset(pgd, addr);
1414
1415         do {
1416                 next = pud_addr_end(addr, end);
1417                 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1418                                               prot, stage);
1419                 phys += next - addr;
1420         } while (pud++, addr = next, addr < end);
1421
1422         return ret;
1423 }
1424
1425 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1426                                    unsigned long iova, phys_addr_t paddr,
1427                                    size_t size, int prot)
1428 {
1429         int ret, stage;
1430         unsigned long end;
1431         phys_addr_t input_mask, output_mask;
1432         struct arm_smmu_device *smmu = smmu_domain->smmu;
1433         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1434         pgd_t *pgd = cfg->pgd;
1435         unsigned long flags;
1436
1437         if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1438                 stage = 2;
1439                 output_mask = (1ULL << smmu->s2_output_size) - 1;
1440         } else {
1441                 stage = 1;
1442                 output_mask = (1ULL << smmu->s1_output_size) - 1;
1443         }
1444
1445         if (!pgd)
1446                 return -EINVAL;
1447
1448         if (size & ~PAGE_MASK)
1449                 return -EINVAL;
1450
1451         input_mask = (1ULL << smmu->input_size) - 1;
1452         if ((phys_addr_t)iova & ~input_mask)
1453                 return -ERANGE;
1454
1455         if (paddr & ~output_mask)
1456                 return -ERANGE;
1457
1458         spin_lock_irqsave(&smmu_domain->lock, flags);
1459         pgd += pgd_index(iova);
1460         end = iova + size;
1461         do {
1462                 unsigned long next = pgd_addr_end(iova, end);
1463
1464                 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1465                                               prot, stage);
1466                 if (ret)
1467                         goto out_unlock;
1468
1469                 paddr += next - iova;
1470                 iova = next;
1471         } while (pgd++, iova != end);
1472
1473 out_unlock:
1474         spin_unlock_irqrestore(&smmu_domain->lock, flags);
1475
1476         return ret;
1477 }
1478
1479 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1480                         phys_addr_t paddr, size_t size, int prot)
1481 {
1482         struct arm_smmu_domain *smmu_domain = domain->priv;
1483
1484         if (!smmu_domain)
1485                 return -ENODEV;
1486
1487         return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1488 }
1489
1490 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1491                              size_t size)
1492 {
1493         int ret;
1494         struct arm_smmu_domain *smmu_domain = domain->priv;
1495
1496         ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1497         arm_smmu_tlb_inv_context(smmu_domain);
1498         return ret ? 0 : size;
1499 }
1500
1501 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1502                                          dma_addr_t iova)
1503 {
1504         pgd_t *pgdp, pgd;
1505         pud_t pud;
1506         pmd_t pmd;
1507         pte_t pte;
1508         struct arm_smmu_domain *smmu_domain = domain->priv;
1509         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1510
1511         pgdp = cfg->pgd;
1512         if (!pgdp)
1513                 return 0;
1514
1515         pgd = *(pgdp + pgd_index(iova));
1516         if (pgd_none(pgd))
1517                 return 0;
1518
1519         pud = *pud_offset(&pgd, iova);
1520         if (pud_none(pud))
1521                 return 0;
1522
1523         pmd = *pmd_offset(&pud, iova);
1524         if (pmd_none(pmd))
1525                 return 0;
1526
1527         pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1528         if (pte_none(pte))
1529                 return 0;
1530
1531         return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1532 }
1533
1534 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1535                                    unsigned long cap)
1536 {
1537         struct arm_smmu_domain *smmu_domain = domain->priv;
1538         struct arm_smmu_device *smmu = smmu_domain->smmu;
1539         u32 features = smmu ? smmu->features : 0;
1540
1541         switch (cap) {
1542         case IOMMU_CAP_CACHE_COHERENCY:
1543                 return features & ARM_SMMU_FEAT_COHERENT_WALK;
1544         case IOMMU_CAP_INTR_REMAP:
1545                 return 1; /* MSIs are just memory writes */
1546         default:
1547                 return 0;
1548         }
1549 }
1550
1551 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1552 {
1553         *((u16 *)data) = alias;
1554         return 0; /* Continue walking */
1555 }
1556
1557 static int arm_smmu_add_device(struct device *dev)
1558 {
1559         struct arm_smmu_device *smmu;
1560         struct iommu_group *group;
1561         int ret;
1562
1563         if (dev->archdata.iommu) {
1564                 dev_warn(dev, "IOMMU driver already assigned to device\n");
1565                 return -EINVAL;
1566         }
1567
1568         smmu = find_smmu_for_device(dev);
1569         if (!smmu)
1570                 return -ENODEV;
1571
1572         group = iommu_group_alloc();
1573         if (IS_ERR(group)) {
1574                 dev_err(dev, "Failed to allocate IOMMU group\n");
1575                 return PTR_ERR(group);
1576         }
1577
1578         if (dev_is_pci(dev)) {
1579                 struct arm_smmu_master_cfg *cfg;
1580                 struct pci_dev *pdev = to_pci_dev(dev);
1581
1582                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1583                 if (!cfg) {
1584                         ret = -ENOMEM;
1585                         goto out_put_group;
1586                 }
1587
1588                 cfg->num_streamids = 1;
1589                 /*
1590                  * Assume Stream ID == Requester ID for now.
1591                  * We need a way to describe the ID mappings in FDT.
1592                  */
1593                 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1594                                        &cfg->streamids[0]);
1595                 dev->archdata.iommu = cfg;
1596         } else {
1597                 dev->archdata.iommu = smmu;
1598         }
1599
1600         ret = iommu_group_add_device(group, dev);
1601
1602 out_put_group:
1603         iommu_group_put(group);
1604         return ret;
1605 }
1606
1607 static void arm_smmu_remove_device(struct device *dev)
1608 {
1609         if (dev_is_pci(dev))
1610                 kfree(dev->archdata.iommu);
1611
1612         dev->archdata.iommu = NULL;
1613         iommu_group_remove_device(dev);
1614 }
1615
1616 static const struct iommu_ops arm_smmu_ops = {
1617         .domain_init    = arm_smmu_domain_init,
1618         .domain_destroy = arm_smmu_domain_destroy,
1619         .attach_dev     = arm_smmu_attach_dev,
1620         .detach_dev     = arm_smmu_detach_dev,
1621         .map            = arm_smmu_map,
1622         .unmap          = arm_smmu_unmap,
1623         .iova_to_phys   = arm_smmu_iova_to_phys,
1624         .domain_has_cap = arm_smmu_domain_has_cap,
1625         .add_device     = arm_smmu_add_device,
1626         .remove_device  = arm_smmu_remove_device,
1627         .pgsize_bitmap  = (SECTION_SIZE |
1628                            ARM_SMMU_PTE_CONT_SIZE |
1629                            PAGE_SIZE),
1630 };
1631
1632 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1633 {
1634         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1635         void __iomem *cb_base;
1636         int i = 0;
1637         u32 reg;
1638
1639         /* clear global FSR */
1640         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1641         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1642
1643         /* Mark all SMRn as invalid and all S2CRn as bypass */
1644         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1645                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1646                 writel_relaxed(S2CR_TYPE_BYPASS,
1647                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1648         }
1649
1650         /* Make sure all context banks are disabled and clear CB_FSR  */
1651         for (i = 0; i < smmu->num_context_banks; ++i) {
1652                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1653                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1654                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1655         }
1656
1657         /* Invalidate the TLB, just in case */
1658         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1659         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1660         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1661
1662         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1663
1664         /* Enable fault reporting */
1665         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1666
1667         /* Disable TLB broadcasting. */
1668         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1669
1670         /* Enable client access, but bypass when no mapping is found */
1671         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1672
1673         /* Disable forced broadcasting */
1674         reg &= ~sCR0_FB;
1675
1676         /* Don't upgrade barriers */
1677         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1678
1679         /* Push the button */
1680         arm_smmu_tlb_sync(smmu);
1681         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1682 }
1683
1684 static int arm_smmu_id_size_to_bits(int size)
1685 {
1686         switch (size) {
1687         case 0:
1688                 return 32;
1689         case 1:
1690                 return 36;
1691         case 2:
1692                 return 40;
1693         case 3:
1694                 return 42;
1695         case 4:
1696                 return 44;
1697         case 5:
1698         default:
1699                 return 48;
1700         }
1701 }
1702
1703 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1704 {
1705         unsigned long size;
1706         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1707         u32 id;
1708
1709         dev_notice(smmu->dev, "probing hardware configuration...\n");
1710
1711         /* Primecell ID */
1712         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1713         smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1714         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1715
1716         /* ID0 */
1717         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1718 #ifndef CONFIG_64BIT
1719         if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1720                 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1721                 return -ENODEV;
1722         }
1723 #endif
1724
1725         /* Restrict available stages based on module parameter */
1726         if (force_stage == 1)
1727                 id &= ~(ID0_S2TS | ID0_NTS);
1728         else if (force_stage == 2)
1729                 id &= ~(ID0_S1TS | ID0_NTS);
1730
1731         if (id & ID0_S1TS) {
1732                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1733                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1734         }
1735
1736         if (id & ID0_S2TS) {
1737                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1738                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1739         }
1740
1741         if (id & ID0_NTS) {
1742                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1743                 dev_notice(smmu->dev, "\tnested translation\n");
1744         }
1745
1746         if (!(smmu->features &
1747                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1748                 dev_err(smmu->dev, "\tno translation support!\n");
1749                 return -ENODEV;
1750         }
1751
1752         if (id & ID0_CTTW) {
1753                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1754                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1755         }
1756
1757         if (id & ID0_SMS) {
1758                 u32 smr, sid, mask;
1759
1760                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1761                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1762                                            ID0_NUMSMRG_MASK;
1763                 if (smmu->num_mapping_groups == 0) {
1764                         dev_err(smmu->dev,
1765                                 "stream-matching supported, but no SMRs present!\n");
1766                         return -ENODEV;
1767                 }
1768
1769                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1770                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1771                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1772                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1773
1774                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1775                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1776                 if ((mask & sid) != sid) {
1777                         dev_err(smmu->dev,
1778                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1779                                 mask, sid);
1780                         return -ENODEV;
1781                 }
1782
1783                 dev_notice(smmu->dev,
1784                            "\tstream matching with %u register groups, mask 0x%x",
1785                            smmu->num_mapping_groups, mask);
1786         } else {
1787                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1788                                            ID0_NUMSIDB_MASK;
1789         }
1790
1791         /* ID1 */
1792         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1793         smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1794
1795         /* Check for size mismatch of SMMU address space from mapped region */
1796         size = 1 <<
1797                 (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1798         size *= (smmu->pagesize << 1);
1799         if (smmu->size != size)
1800                 dev_warn(smmu->dev,
1801                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1802                         size, smmu->size);
1803
1804         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1805                                       ID1_NUMS2CB_MASK;
1806         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1807         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1808                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1809                 return -ENODEV;
1810         }
1811         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1812                    smmu->num_context_banks, smmu->num_s2_context_banks);
1813
1814         /* ID2 */
1815         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1816         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1817
1818         /*
1819          * Stage-1 output limited by stage-2 input size due to pgd
1820          * allocation (PTRS_PER_PGD).
1821          */
1822         if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
1823 #ifdef CONFIG_64BIT
1824                 smmu->s1_output_size = min_t(unsigned long, VA_BITS, size);
1825 #else
1826                 smmu->s1_output_size = min(32UL, size);
1827 #endif
1828         } else {
1829                 smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT,
1830                                              size);
1831         }
1832
1833         /* The stage-2 output mask is also applied for bypass */
1834         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1835         smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1836
1837         if (smmu->version == 1) {
1838                 smmu->input_size = 32;
1839         } else {
1840 #ifdef CONFIG_64BIT
1841                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1842                 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1843 #else
1844                 size = 32;
1845 #endif
1846                 smmu->input_size = size;
1847
1848                 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1849                     (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1850                     (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1851                         dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1852                                 PAGE_SIZE);
1853                         return -ENODEV;
1854                 }
1855         }
1856
1857         dev_notice(smmu->dev,
1858                    "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1859                    smmu->input_size, smmu->s1_output_size,
1860                    smmu->s2_output_size);
1861         return 0;
1862 }
1863
1864 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1865 {
1866         struct resource *res;
1867         struct arm_smmu_device *smmu;
1868         struct device *dev = &pdev->dev;
1869         struct rb_node *node;
1870         struct of_phandle_args masterspec;
1871         int num_irqs, i, err;
1872
1873         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1874         if (!smmu) {
1875                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1876                 return -ENOMEM;
1877         }
1878         smmu->dev = dev;
1879
1880         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1881         smmu->base = devm_ioremap_resource(dev, res);
1882         if (IS_ERR(smmu->base))
1883                 return PTR_ERR(smmu->base);
1884         smmu->size = resource_size(res);
1885
1886         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1887                                  &smmu->num_global_irqs)) {
1888                 dev_err(dev, "missing #global-interrupts property\n");
1889                 return -ENODEV;
1890         }
1891
1892         num_irqs = 0;
1893         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1894                 num_irqs++;
1895                 if (num_irqs > smmu->num_global_irqs)
1896                         smmu->num_context_irqs++;
1897         }
1898
1899         if (!smmu->num_context_irqs) {
1900                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1901                         num_irqs, smmu->num_global_irqs + 1);
1902                 return -ENODEV;
1903         }
1904
1905         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1906                                   GFP_KERNEL);
1907         if (!smmu->irqs) {
1908                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1909                 return -ENOMEM;
1910         }
1911
1912         for (i = 0; i < num_irqs; ++i) {
1913                 int irq = platform_get_irq(pdev, i);
1914
1915                 if (irq < 0) {
1916                         dev_err(dev, "failed to get irq index %d\n", i);
1917                         return -ENODEV;
1918                 }
1919                 smmu->irqs[i] = irq;
1920         }
1921
1922         err = arm_smmu_device_cfg_probe(smmu);
1923         if (err)
1924                 return err;
1925
1926         i = 0;
1927         smmu->masters = RB_ROOT;
1928         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1929                                            "#stream-id-cells", i,
1930                                            &masterspec)) {
1931                 err = register_smmu_master(smmu, dev, &masterspec);
1932                 if (err) {
1933                         dev_err(dev, "failed to add master %s\n",
1934                                 masterspec.np->name);
1935                         goto out_put_masters;
1936                 }
1937
1938                 i++;
1939         }
1940         dev_notice(dev, "registered %d master devices\n", i);
1941
1942         parse_driver_options(smmu);
1943
1944         if (smmu->version > 1 &&
1945             smmu->num_context_banks != smmu->num_context_irqs) {
1946                 dev_err(dev,
1947                         "found only %d context interrupt(s) but %d required\n",
1948                         smmu->num_context_irqs, smmu->num_context_banks);
1949                 err = -ENODEV;
1950                 goto out_put_masters;
1951         }
1952
1953         for (i = 0; i < smmu->num_global_irqs; ++i) {
1954                 err = request_irq(smmu->irqs[i],
1955                                   arm_smmu_global_fault,
1956                                   IRQF_SHARED,
1957                                   "arm-smmu global fault",
1958                                   smmu);
1959                 if (err) {
1960                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1961                                 i, smmu->irqs[i]);
1962                         goto out_free_irqs;
1963                 }
1964         }
1965
1966         INIT_LIST_HEAD(&smmu->list);
1967         spin_lock(&arm_smmu_devices_lock);
1968         list_add(&smmu->list, &arm_smmu_devices);
1969         spin_unlock(&arm_smmu_devices_lock);
1970
1971         arm_smmu_device_reset(smmu);
1972         return 0;
1973
1974 out_free_irqs:
1975         while (i--)
1976                 free_irq(smmu->irqs[i], smmu);
1977
1978 out_put_masters:
1979         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1980                 struct arm_smmu_master *master
1981                         = container_of(node, struct arm_smmu_master, node);
1982                 of_node_put(master->of_node);
1983         }
1984
1985         return err;
1986 }
1987
1988 static int arm_smmu_device_remove(struct platform_device *pdev)
1989 {
1990         int i;
1991         struct device *dev = &pdev->dev;
1992         struct arm_smmu_device *curr, *smmu = NULL;
1993         struct rb_node *node;
1994
1995         spin_lock(&arm_smmu_devices_lock);
1996         list_for_each_entry(curr, &arm_smmu_devices, list) {
1997                 if (curr->dev == dev) {
1998                         smmu = curr;
1999                         list_del(&smmu->list);
2000                         break;
2001                 }
2002         }
2003         spin_unlock(&arm_smmu_devices_lock);
2004
2005         if (!smmu)
2006                 return -ENODEV;
2007
2008         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2009                 struct arm_smmu_master *master
2010                         = container_of(node, struct arm_smmu_master, node);
2011                 of_node_put(master->of_node);
2012         }
2013
2014         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2015                 dev_err(dev, "removing device with active domains!\n");
2016
2017         for (i = 0; i < smmu->num_global_irqs; ++i)
2018                 free_irq(smmu->irqs[i], smmu);
2019
2020         /* Turn the thing off */
2021         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2022         return 0;
2023 }
2024
2025 #ifdef CONFIG_OF
2026 static struct of_device_id arm_smmu_of_match[] = {
2027         { .compatible = "arm,smmu-v1", },
2028         { .compatible = "arm,smmu-v2", },
2029         { .compatible = "arm,mmu-400", },
2030         { .compatible = "arm,mmu-500", },
2031         { },
2032 };
2033 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2034 #endif
2035
2036 static struct platform_driver arm_smmu_driver = {
2037         .driver = {
2038                 .owner          = THIS_MODULE,
2039                 .name           = "arm-smmu",
2040                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2041         },
2042         .probe  = arm_smmu_device_dt_probe,
2043         .remove = arm_smmu_device_remove,
2044 };
2045
2046 static int __init arm_smmu_init(void)
2047 {
2048         int ret;
2049
2050         ret = platform_driver_register(&arm_smmu_driver);
2051         if (ret)
2052                 return ret;
2053
2054         /* Oh, for a proper bus abstraction */
2055         if (!iommu_present(&platform_bus_type))
2056                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2057
2058 #ifdef CONFIG_ARM_AMBA
2059         if (!iommu_present(&amba_bustype))
2060                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2061 #endif
2062
2063 #ifdef CONFIG_PCI
2064         if (!iommu_present(&pci_bus_type))
2065                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2066 #endif
2067
2068         return 0;
2069 }
2070
2071 static void __exit arm_smmu_exit(void)
2072 {
2073         return platform_driver_unregister(&arm_smmu_driver);
2074 }
2075
2076 subsys_initcall(arm_smmu_init);
2077 module_exit(arm_smmu_exit);
2078
2079 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2080 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2081 MODULE_LICENSE("GPL v2");