2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
82 * This bitmap is used to advertise the page sizes our hardware support
83 * to the IOMMU core, which will then use this information to split
84 * physically contiguous memory regions it is mapping into page sizes
87 * Traditionally the IOMMU core just handed us the mappings directly,
88 * after making sure the size is an order of a 4KiB page and that the
89 * mapping has natural alignment.
91 * To retain this behavior, we currently advertise that we support
92 * all page sizes that are an order of 4KiB.
94 * If at some point we'd like to utilize the IOMMU core's new behavior,
95 * we could change this to advertise the real page sizes we support.
97 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99 static inline int agaw_to_level(int agaw)
104 static inline int agaw_to_width(int agaw)
106 return 30 + agaw * LEVEL_STRIDE;
109 static inline int width_to_agaw(int width)
111 return (width - 30) / LEVEL_STRIDE;
114 static inline unsigned int level_to_offset_bits(int level)
116 return (level - 1) * LEVEL_STRIDE;
119 static inline int pfn_level_offset(unsigned long pfn, int level)
121 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
124 static inline unsigned long level_mask(int level)
126 return -1UL << level_to_offset_bits(level);
129 static inline unsigned long level_size(int level)
131 return 1UL << level_to_offset_bits(level);
134 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 return (pfn + level_size(level) - 1) & level_mask(level);
139 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 return 1 << ((lvl - 1) * LEVEL_STRIDE);
144 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
145 are never going to work. */
146 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
151 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 return mm_to_dma_pfn(page_to_pfn(pg));
159 static inline unsigned long virt_to_dma_pfn(void *p)
161 return page_to_dma_pfn(virt_to_page(p));
164 /* global iommu list, set NULL for ignored DMAR units */
165 static struct intel_iommu **g_iommus;
167 static void __init check_tylersburg_isoch(void);
168 static int rwbf_quirk;
171 * set to 1 to panic kernel if can't successfully enable VT-d
172 * (used when kernel is launched w/ TXT)
174 static int force_on = 0;
179 * 12-63: Context Ptr (12 - (haw-1))
186 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
187 static inline bool root_present(struct root_entry *root)
189 return (root->val & 1);
191 static inline void set_root_present(struct root_entry *root)
195 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 root->val |= value & VTD_PAGE_MASK;
200 static inline struct context_entry *
201 get_context_addr_from_root(struct root_entry *root)
203 return (struct context_entry *)
204 (root_present(root)?phys_to_virt(
205 root->val & VTD_PAGE_MASK) :
212 * 1: fault processing disable
213 * 2-3: translation type
214 * 12-63: address space root
220 struct context_entry {
225 static inline bool context_present(struct context_entry *context)
227 return (context->lo & 1);
229 static inline void context_set_present(struct context_entry *context)
234 static inline void context_set_fault_enable(struct context_entry *context)
236 context->lo &= (((u64)-1) << 2) | 1;
239 static inline void context_set_translation_type(struct context_entry *context,
242 context->lo &= (((u64)-1) << 4) | 3;
243 context->lo |= (value & 3) << 2;
246 static inline void context_set_address_root(struct context_entry *context,
249 context->lo |= value & VTD_PAGE_MASK;
252 static inline void context_set_address_width(struct context_entry *context,
255 context->hi |= value & 7;
258 static inline void context_set_domain_id(struct context_entry *context,
261 context->hi |= (value & ((1 << 16) - 1)) << 8;
264 static inline void context_clear_entry(struct context_entry *context)
277 * 12-63: Host physcial address
283 static inline void dma_clear_pte(struct dma_pte *pte)
288 static inline void dma_set_pte_readable(struct dma_pte *pte)
290 pte->val |= DMA_PTE_READ;
293 static inline void dma_set_pte_writable(struct dma_pte *pte)
295 pte->val |= DMA_PTE_WRITE;
298 static inline void dma_set_pte_snp(struct dma_pte *pte)
300 pte->val |= DMA_PTE_SNP;
303 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
305 pte->val = (pte->val & ~3) | (prot & 3);
308 static inline u64 dma_pte_addr(struct dma_pte *pte)
311 return pte->val & VTD_PAGE_MASK;
313 /* Must have a full atomic 64-bit read */
314 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
318 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
320 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
323 static inline bool dma_pte_present(struct dma_pte *pte)
325 return (pte->val & 3) != 0;
328 static inline bool dma_pte_superpage(struct dma_pte *pte)
330 return (pte->val & (1 << 7));
333 static inline int first_pte_in_page(struct dma_pte *pte)
335 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 * This domain is a statically identity mapping domain.
340 * 1. This domain creats a static 1:1 mapping to all usable memory.
341 * 2. It maps to each iommu if successful.
342 * 3. Each iommu mapps to this domain if successful.
344 static struct dmar_domain *si_domain;
345 static int hw_pass_through = 1;
347 /* devices under the same p2p bridge are owned in one domain */
348 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
350 /* domain represents a virtual machine, more than one devices
351 * across iommus may be owned in one domain, e.g. kvm guest.
353 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
355 /* si_domain contains mulitple devices */
356 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
358 /* define the limit of IOMMUs supported in each domain */
360 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
362 # define IOMMU_UNITS_SUPPORTED 64
366 int id; /* domain id */
367 int nid; /* node id */
368 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
369 /* bitmap of iommus this domain uses*/
371 struct list_head devices; /* all devices' list */
372 struct iova_domain iovad; /* iova's that belong to this domain */
374 struct dma_pte *pgd; /* virtual address */
375 int gaw; /* max guest address width */
377 /* adjusted guest address width, 0 is level 2 30-bit */
380 int flags; /* flags to find out type of domain */
382 int iommu_coherency;/* indicate coherency of iommu access */
383 int iommu_snooping; /* indicate snooping control feature*/
384 int iommu_count; /* reference count of iommu */
385 int iommu_superpage;/* Level of superpages supported:
386 0 == 4KiB (no superpages), 1 == 2MiB,
387 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
388 spinlock_t iommu_lock; /* protect iommu set in domain */
389 u64 max_addr; /* maximum mapped address */
392 /* PCI domain-device relationship */
393 struct device_domain_info {
394 struct list_head link; /* link to domain siblings */
395 struct list_head global; /* link to global list */
396 int segment; /* PCI domain */
397 u8 bus; /* PCI bus number */
398 u8 devfn; /* PCI devfn number */
399 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
400 struct intel_iommu *iommu; /* IOMMU used by this device */
401 struct dmar_domain *domain; /* pointer to domain */
404 static void flush_unmaps_timeout(unsigned long data);
406 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
408 #define HIGH_WATER_MARK 250
409 struct deferred_flush_tables {
411 struct iova *iova[HIGH_WATER_MARK];
412 struct dmar_domain *domain[HIGH_WATER_MARK];
415 static struct deferred_flush_tables *deferred_flush;
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
424 static long list_size;
426 static void domain_remove_dev_info(struct dmar_domain *domain);
428 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
429 int dmar_disabled = 0;
431 int dmar_disabled = 1;
432 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
434 int intel_iommu_enabled = 0;
435 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
437 static int dmar_map_gfx = 1;
438 static int dmar_forcedac;
439 static int intel_iommu_strict;
440 static int intel_iommu_superpage = 1;
442 int intel_iommu_gfx_mapped;
443 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
445 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
446 static DEFINE_SPINLOCK(device_domain_lock);
447 static LIST_HEAD(device_domain_list);
449 static struct iommu_ops intel_iommu_ops;
451 static int __init intel_iommu_setup(char *str)
456 if (!strncmp(str, "on", 2)) {
458 printk(KERN_INFO "Intel-IOMMU: enabled\n");
459 } else if (!strncmp(str, "off", 3)) {
461 printk(KERN_INFO "Intel-IOMMU: disabled\n");
462 } else if (!strncmp(str, "igfx_off", 8)) {
465 "Intel-IOMMU: disable GFX device mapping\n");
466 } else if (!strncmp(str, "forcedac", 8)) {
468 "Intel-IOMMU: Forcing DAC for PCI devices\n");
470 } else if (!strncmp(str, "strict", 6)) {
472 "Intel-IOMMU: disable batched IOTLB flush\n");
473 intel_iommu_strict = 1;
474 } else if (!strncmp(str, "sp_off", 6)) {
476 "Intel-IOMMU: disable supported super page\n");
477 intel_iommu_superpage = 0;
480 str += strcspn(str, ",");
486 __setup("intel_iommu=", intel_iommu_setup);
488 static struct kmem_cache *iommu_domain_cache;
489 static struct kmem_cache *iommu_devinfo_cache;
490 static struct kmem_cache *iommu_iova_cache;
492 static inline void *alloc_pgtable_page(int node)
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
499 vaddr = page_address(page);
503 static inline void free_pgtable_page(void *vaddr)
505 free_page((unsigned long)vaddr);
508 static inline void *alloc_domain_mem(void)
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
513 static void free_domain_mem(void *vaddr)
515 kmem_cache_free(iommu_domain_cache, vaddr);
518 static inline void * alloc_devinfo_mem(void)
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
523 static inline void free_devinfo_mem(void *vaddr)
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
528 struct iova *alloc_iova_mem(void)
530 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
533 void free_iova_mem(struct iova *iova)
535 kmem_cache_free(iommu_iova_cache, iova);
539 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
544 sagaw = cap_sagaw(iommu->cap);
545 for (agaw = width_to_agaw(max_gaw);
547 if (test_bit(agaw, &sagaw))
555 * Calculate max SAGAW for each iommu.
557 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
559 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 * calculate agaw for each iommu.
564 * "SAGAW" may be different across iommus, use a default agaw, and
565 * get a supported less agaw for iommus that don't support the default agaw.
567 int iommu_calculate_agaw(struct intel_iommu *iommu)
569 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
572 /* This functionin only returns single iommu in a domain */
573 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
577 /* si_domain and vm domain should not get here. */
578 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
579 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
581 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
582 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
585 return g_iommus[iommu_id];
588 static void domain_update_iommu_coherency(struct dmar_domain *domain)
592 domain->iommu_coherency = 1;
594 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
595 if (!ecap_coherent(g_iommus[i]->ecap)) {
596 domain->iommu_coherency = 0;
602 static void domain_update_iommu_snooping(struct dmar_domain *domain)
606 domain->iommu_snooping = 1;
608 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
609 if (!ecap_sc_support(g_iommus[i]->ecap)) {
610 domain->iommu_snooping = 0;
616 static void domain_update_iommu_superpage(struct dmar_domain *domain)
618 struct dmar_drhd_unit *drhd;
619 struct intel_iommu *iommu = NULL;
622 if (!intel_iommu_superpage) {
623 domain->iommu_superpage = 0;
627 /* set iommu_superpage to the smallest common denominator */
628 for_each_active_iommu(iommu, drhd) {
629 mask &= cap_super_page_val(iommu->cap);
634 domain->iommu_superpage = fls(mask);
637 /* Some capabilities may be different across iommus */
638 static void domain_update_iommu_cap(struct dmar_domain *domain)
640 domain_update_iommu_coherency(domain);
641 domain_update_iommu_snooping(domain);
642 domain_update_iommu_superpage(domain);
645 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
647 struct dmar_drhd_unit *drhd = NULL;
650 for_each_drhd_unit(drhd) {
653 if (segment != drhd->segment)
656 for (i = 0; i < drhd->devices_cnt; i++) {
657 if (drhd->devices[i] &&
658 drhd->devices[i]->bus->number == bus &&
659 drhd->devices[i]->devfn == devfn)
661 if (drhd->devices[i] &&
662 drhd->devices[i]->subordinate &&
663 drhd->devices[i]->subordinate->number <= bus &&
664 drhd->devices[i]->subordinate->subordinate >= bus)
668 if (drhd->include_all)
675 static void domain_flush_cache(struct dmar_domain *domain,
676 void *addr, int size)
678 if (!domain->iommu_coherency)
679 clflush_cache_range(addr, size);
682 /* Gets context entry for a given bus and devfn */
683 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
686 struct root_entry *root;
687 struct context_entry *context;
688 unsigned long phy_addr;
691 spin_lock_irqsave(&iommu->lock, flags);
692 root = &iommu->root_entry[bus];
693 context = get_context_addr_from_root(root);
695 context = (struct context_entry *)
696 alloc_pgtable_page(iommu->node);
698 spin_unlock_irqrestore(&iommu->lock, flags);
701 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
702 phy_addr = virt_to_phys((void *)context);
703 set_root_value(root, phy_addr);
704 set_root_present(root);
705 __iommu_flush_cache(iommu, root, sizeof(*root));
707 spin_unlock_irqrestore(&iommu->lock, flags);
708 return &context[devfn];
711 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
713 struct root_entry *root;
714 struct context_entry *context;
718 spin_lock_irqsave(&iommu->lock, flags);
719 root = &iommu->root_entry[bus];
720 context = get_context_addr_from_root(root);
725 ret = context_present(&context[devfn]);
727 spin_unlock_irqrestore(&iommu->lock, flags);
731 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
733 struct root_entry *root;
734 struct context_entry *context;
737 spin_lock_irqsave(&iommu->lock, flags);
738 root = &iommu->root_entry[bus];
739 context = get_context_addr_from_root(root);
741 context_clear_entry(&context[devfn]);
742 __iommu_flush_cache(iommu, &context[devfn], \
745 spin_unlock_irqrestore(&iommu->lock, flags);
748 static void free_context_table(struct intel_iommu *iommu)
750 struct root_entry *root;
753 struct context_entry *context;
755 spin_lock_irqsave(&iommu->lock, flags);
756 if (!iommu->root_entry) {
759 for (i = 0; i < ROOT_ENTRY_NR; i++) {
760 root = &iommu->root_entry[i];
761 context = get_context_addr_from_root(root);
763 free_pgtable_page(context);
765 free_pgtable_page(iommu->root_entry);
766 iommu->root_entry = NULL;
768 spin_unlock_irqrestore(&iommu->lock, flags);
771 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
772 unsigned long pfn, int target_level)
774 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
775 struct dma_pte *parent, *pte = NULL;
776 int level = agaw_to_level(domain->agaw);
779 BUG_ON(!domain->pgd);
780 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
781 parent = domain->pgd;
786 offset = pfn_level_offset(pfn, level);
787 pte = &parent[offset];
788 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
790 if (level == target_level)
793 if (!dma_pte_present(pte)) {
796 tmp_page = alloc_pgtable_page(domain->nid);
801 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
802 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
803 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
804 /* Someone else set it while we were thinking; use theirs. */
805 free_pgtable_page(tmp_page);
808 domain_flush_cache(domain, pte, sizeof(*pte));
811 parent = phys_to_virt(dma_pte_addr(pte));
819 /* return address's pte at specific level */
820 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
822 int level, int *large_page)
824 struct dma_pte *parent, *pte = NULL;
825 int total = agaw_to_level(domain->agaw);
828 parent = domain->pgd;
829 while (level <= total) {
830 offset = pfn_level_offset(pfn, total);
831 pte = &parent[offset];
835 if (!dma_pte_present(pte)) {
840 if (pte->val & DMA_PTE_LARGE_PAGE) {
845 parent = phys_to_virt(dma_pte_addr(pte));
851 /* clear last level pte, a tlb flush should be followed */
852 static int dma_pte_clear_range(struct dmar_domain *domain,
853 unsigned long start_pfn,
854 unsigned long last_pfn)
856 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
857 unsigned int large_page = 1;
858 struct dma_pte *first_pte, *pte;
861 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
862 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
863 BUG_ON(start_pfn > last_pfn);
865 /* we don't need lock here; nobody else touches the iova range */
868 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
870 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
875 start_pfn += lvl_to_nr_pages(large_page);
877 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
879 domain_flush_cache(domain, first_pte,
880 (void *)pte - (void *)first_pte);
882 } while (start_pfn && start_pfn <= last_pfn);
884 order = (large_page - 1) * 9;
888 /* free page table pages. last level pte should already be cleared */
889 static void dma_pte_free_pagetable(struct dmar_domain *domain,
890 unsigned long start_pfn,
891 unsigned long last_pfn)
893 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
894 struct dma_pte *first_pte, *pte;
895 int total = agaw_to_level(domain->agaw);
900 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
901 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
902 BUG_ON(start_pfn > last_pfn);
904 /* We don't need lock here; nobody else touches the iova range */
906 while (level <= total) {
907 tmp = align_to_level(start_pfn, level);
909 /* If we can't even clear one PTE at this level, we're done */
910 if (tmp + level_size(level) - 1 > last_pfn)
915 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
916 if (large_page > level)
917 level = large_page + 1;
919 tmp = align_to_level(tmp + 1, level + 1);
923 if (dma_pte_present(pte)) {
924 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
928 tmp += level_size(level);
929 } while (!first_pte_in_page(pte) &&
930 tmp + level_size(level) - 1 <= last_pfn);
932 domain_flush_cache(domain, first_pte,
933 (void *)pte - (void *)first_pte);
935 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
939 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
940 free_pgtable_page(domain->pgd);
946 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
948 struct root_entry *root;
951 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
955 __iommu_flush_cache(iommu, root, ROOT_SIZE);
957 spin_lock_irqsave(&iommu->lock, flags);
958 iommu->root_entry = root;
959 spin_unlock_irqrestore(&iommu->lock, flags);
964 static void iommu_set_root_entry(struct intel_iommu *iommu)
970 addr = iommu->root_entry;
972 raw_spin_lock_irqsave(&iommu->register_lock, flag);
973 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
975 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
977 /* Make sure hardware complete it */
978 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
979 readl, (sts & DMA_GSTS_RTPS), sts);
981 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
984 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
989 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
992 raw_spin_lock_irqsave(&iommu->register_lock, flag);
993 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
995 /* Make sure hardware complete it */
996 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
997 readl, (!(val & DMA_GSTS_WBFS)), val);
999 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1002 /* return value determine if we need a write buffer flush */
1003 static void __iommu_flush_context(struct intel_iommu *iommu,
1004 u16 did, u16 source_id, u8 function_mask,
1011 case DMA_CCMD_GLOBAL_INVL:
1012 val = DMA_CCMD_GLOBAL_INVL;
1014 case DMA_CCMD_DOMAIN_INVL:
1015 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1017 case DMA_CCMD_DEVICE_INVL:
1018 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1019 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1024 val |= DMA_CCMD_ICC;
1026 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1027 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1029 /* Make sure hardware complete it */
1030 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1031 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1033 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1036 /* return value determine if we need a write buffer flush */
1037 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1038 u64 addr, unsigned int size_order, u64 type)
1040 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1041 u64 val = 0, val_iva = 0;
1045 case DMA_TLB_GLOBAL_FLUSH:
1046 /* global flush doesn't need set IVA_REG */
1047 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1049 case DMA_TLB_DSI_FLUSH:
1050 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1052 case DMA_TLB_PSI_FLUSH:
1053 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1054 /* Note: always flush non-leaf currently */
1055 val_iva = size_order | addr;
1060 /* Note: set drain read/write */
1063 * This is probably to be super secure.. Looks like we can
1064 * ignore it without any impact.
1066 if (cap_read_drain(iommu->cap))
1067 val |= DMA_TLB_READ_DRAIN;
1069 if (cap_write_drain(iommu->cap))
1070 val |= DMA_TLB_WRITE_DRAIN;
1072 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1073 /* Note: Only uses first TLB reg currently */
1075 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1076 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1078 /* Make sure hardware complete it */
1079 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1080 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1082 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1084 /* check IOTLB invalidation granularity */
1085 if (DMA_TLB_IAIG(val) == 0)
1086 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1087 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1088 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1089 (unsigned long long)DMA_TLB_IIRG(type),
1090 (unsigned long long)DMA_TLB_IAIG(val));
1093 static struct device_domain_info *iommu_support_dev_iotlb(
1094 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1097 unsigned long flags;
1098 struct device_domain_info *info;
1099 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1101 if (!ecap_dev_iotlb_support(iommu->ecap))
1107 spin_lock_irqsave(&device_domain_lock, flags);
1108 list_for_each_entry(info, &domain->devices, link)
1109 if (info->bus == bus && info->devfn == devfn) {
1113 spin_unlock_irqrestore(&device_domain_lock, flags);
1115 if (!found || !info->dev)
1118 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1121 if (!dmar_find_matched_atsr_unit(info->dev))
1124 info->iommu = iommu;
1129 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1134 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1137 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1139 if (!info->dev || !pci_ats_enabled(info->dev))
1142 pci_disable_ats(info->dev);
1145 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1146 u64 addr, unsigned mask)
1149 unsigned long flags;
1150 struct device_domain_info *info;
1152 spin_lock_irqsave(&device_domain_lock, flags);
1153 list_for_each_entry(info, &domain->devices, link) {
1154 if (!info->dev || !pci_ats_enabled(info->dev))
1157 sid = info->bus << 8 | info->devfn;
1158 qdep = pci_ats_queue_depth(info->dev);
1159 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1161 spin_unlock_irqrestore(&device_domain_lock, flags);
1164 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1165 unsigned long pfn, unsigned int pages, int map)
1167 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1168 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1173 * Fallback to domain selective flush if no PSI support or the size is
1175 * PSI requires page size to be 2 ^ x, and the base address is naturally
1176 * aligned to the size
1178 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1179 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1182 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1186 * In caching mode, changes of pages from non-present to present require
1187 * flush. However, device IOTLB doesn't need to be flushed in this case.
1189 if (!cap_caching_mode(iommu->cap) || !map)
1190 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1193 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1196 unsigned long flags;
1198 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1199 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1200 pmen &= ~DMA_PMEN_EPM;
1201 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1203 /* wait for the protected region status bit to clear */
1204 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1205 readl, !(pmen & DMA_PMEN_PRS), pmen);
1207 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1210 static int iommu_enable_translation(struct intel_iommu *iommu)
1213 unsigned long flags;
1215 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1216 iommu->gcmd |= DMA_GCMD_TE;
1217 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1219 /* Make sure hardware complete it */
1220 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1221 readl, (sts & DMA_GSTS_TES), sts);
1223 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1227 static int iommu_disable_translation(struct intel_iommu *iommu)
1232 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1233 iommu->gcmd &= ~DMA_GCMD_TE;
1234 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1236 /* Make sure hardware complete it */
1237 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1238 readl, (!(sts & DMA_GSTS_TES)), sts);
1240 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1245 static int iommu_init_domains(struct intel_iommu *iommu)
1247 unsigned long ndomains;
1248 unsigned long nlongs;
1250 ndomains = cap_ndoms(iommu->cap);
1251 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1253 nlongs = BITS_TO_LONGS(ndomains);
1255 spin_lock_init(&iommu->lock);
1257 /* TBD: there might be 64K domains,
1258 * consider other allocation for future chip
1260 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1261 if (!iommu->domain_ids) {
1262 printk(KERN_ERR "Allocating domain id array failed\n");
1265 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1267 if (!iommu->domains) {
1268 printk(KERN_ERR "Allocating domain array failed\n");
1273 * if Caching mode is set, then invalid translations are tagged
1274 * with domainid 0. Hence we need to pre-allocate it.
1276 if (cap_caching_mode(iommu->cap))
1277 set_bit(0, iommu->domain_ids);
1282 static void domain_exit(struct dmar_domain *domain);
1283 static void vm_domain_exit(struct dmar_domain *domain);
1285 void free_dmar_iommu(struct intel_iommu *iommu)
1287 struct dmar_domain *domain;
1289 unsigned long flags;
1291 if ((iommu->domains) && (iommu->domain_ids)) {
1292 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1293 domain = iommu->domains[i];
1294 clear_bit(i, iommu->domain_ids);
1296 spin_lock_irqsave(&domain->iommu_lock, flags);
1297 if (--domain->iommu_count == 0) {
1298 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1299 vm_domain_exit(domain);
1301 domain_exit(domain);
1303 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1307 if (iommu->gcmd & DMA_GCMD_TE)
1308 iommu_disable_translation(iommu);
1311 irq_set_handler_data(iommu->irq, NULL);
1312 /* This will mask the irq */
1313 free_irq(iommu->irq, iommu);
1314 destroy_irq(iommu->irq);
1317 kfree(iommu->domains);
1318 kfree(iommu->domain_ids);
1320 g_iommus[iommu->seq_id] = NULL;
1322 /* if all iommus are freed, free g_iommus */
1323 for (i = 0; i < g_num_of_iommus; i++) {
1328 if (i == g_num_of_iommus)
1331 /* free context mapping */
1332 free_context_table(iommu);
1335 static struct dmar_domain *alloc_domain(void)
1337 struct dmar_domain *domain;
1339 domain = alloc_domain_mem();
1344 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1350 static int iommu_attach_domain(struct dmar_domain *domain,
1351 struct intel_iommu *iommu)
1354 unsigned long ndomains;
1355 unsigned long flags;
1357 ndomains = cap_ndoms(iommu->cap);
1359 spin_lock_irqsave(&iommu->lock, flags);
1361 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1362 if (num >= ndomains) {
1363 spin_unlock_irqrestore(&iommu->lock, flags);
1364 printk(KERN_ERR "IOMMU: no free domain ids\n");
1369 set_bit(num, iommu->domain_ids);
1370 set_bit(iommu->seq_id, domain->iommu_bmp);
1371 iommu->domains[num] = domain;
1372 spin_unlock_irqrestore(&iommu->lock, flags);
1377 static void iommu_detach_domain(struct dmar_domain *domain,
1378 struct intel_iommu *iommu)
1380 unsigned long flags;
1384 spin_lock_irqsave(&iommu->lock, flags);
1385 ndomains = cap_ndoms(iommu->cap);
1386 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1387 if (iommu->domains[num] == domain) {
1394 clear_bit(num, iommu->domain_ids);
1395 clear_bit(iommu->seq_id, domain->iommu_bmp);
1396 iommu->domains[num] = NULL;
1398 spin_unlock_irqrestore(&iommu->lock, flags);
1401 static struct iova_domain reserved_iova_list;
1402 static struct lock_class_key reserved_rbtree_key;
1404 static int dmar_init_reserved_ranges(void)
1406 struct pci_dev *pdev = NULL;
1410 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1412 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1413 &reserved_rbtree_key);
1415 /* IOAPIC ranges shouldn't be accessed by DMA */
1416 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1417 IOVA_PFN(IOAPIC_RANGE_END));
1419 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1423 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1424 for_each_pci_dev(pdev) {
1427 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1428 r = &pdev->resource[i];
1429 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1431 iova = reserve_iova(&reserved_iova_list,
1435 printk(KERN_ERR "Reserve iova failed\n");
1443 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1445 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1448 static inline int guestwidth_to_adjustwidth(int gaw)
1451 int r = (gaw - 12) % 9;
1462 static int domain_init(struct dmar_domain *domain, int guest_width)
1464 struct intel_iommu *iommu;
1465 int adjust_width, agaw;
1466 unsigned long sagaw;
1468 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1469 spin_lock_init(&domain->iommu_lock);
1471 domain_reserve_special_ranges(domain);
1473 /* calculate AGAW */
1474 iommu = domain_get_iommu(domain);
1475 if (guest_width > cap_mgaw(iommu->cap))
1476 guest_width = cap_mgaw(iommu->cap);
1477 domain->gaw = guest_width;
1478 adjust_width = guestwidth_to_adjustwidth(guest_width);
1479 agaw = width_to_agaw(adjust_width);
1480 sagaw = cap_sagaw(iommu->cap);
1481 if (!test_bit(agaw, &sagaw)) {
1482 /* hardware doesn't support it, choose a bigger one */
1483 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1484 agaw = find_next_bit(&sagaw, 5, agaw);
1488 domain->agaw = agaw;
1489 INIT_LIST_HEAD(&domain->devices);
1491 if (ecap_coherent(iommu->ecap))
1492 domain->iommu_coherency = 1;
1494 domain->iommu_coherency = 0;
1496 if (ecap_sc_support(iommu->ecap))
1497 domain->iommu_snooping = 1;
1499 domain->iommu_snooping = 0;
1501 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1502 domain->iommu_count = 1;
1503 domain->nid = iommu->node;
1505 /* always allocate the top pgd */
1506 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1509 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1513 static void domain_exit(struct dmar_domain *domain)
1515 struct dmar_drhd_unit *drhd;
1516 struct intel_iommu *iommu;
1518 /* Domain 0 is reserved, so dont process it */
1522 /* Flush any lazy unmaps that may reference this domain */
1523 if (!intel_iommu_strict)
1524 flush_unmaps_timeout(0);
1526 domain_remove_dev_info(domain);
1528 put_iova_domain(&domain->iovad);
1531 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1533 /* free page tables */
1534 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1536 for_each_active_iommu(iommu, drhd)
1537 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1538 iommu_detach_domain(domain, iommu);
1540 free_domain_mem(domain);
1543 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1544 u8 bus, u8 devfn, int translation)
1546 struct context_entry *context;
1547 unsigned long flags;
1548 struct intel_iommu *iommu;
1549 struct dma_pte *pgd;
1551 unsigned long ndomains;
1554 struct device_domain_info *info = NULL;
1556 pr_debug("Set context mapping for %02x:%02x.%d\n",
1557 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1559 BUG_ON(!domain->pgd);
1560 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1561 translation != CONTEXT_TT_MULTI_LEVEL);
1563 iommu = device_to_iommu(segment, bus, devfn);
1567 context = device_to_context_entry(iommu, bus, devfn);
1570 spin_lock_irqsave(&iommu->lock, flags);
1571 if (context_present(context)) {
1572 spin_unlock_irqrestore(&iommu->lock, flags);
1579 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1580 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1583 /* find an available domain id for this device in iommu */
1584 ndomains = cap_ndoms(iommu->cap);
1585 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1586 if (iommu->domains[num] == domain) {
1594 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1595 if (num >= ndomains) {
1596 spin_unlock_irqrestore(&iommu->lock, flags);
1597 printk(KERN_ERR "IOMMU: no free domain ids\n");
1601 set_bit(num, iommu->domain_ids);
1602 iommu->domains[num] = domain;
1606 /* Skip top levels of page tables for
1607 * iommu which has less agaw than default.
1608 * Unnecessary for PT mode.
1610 if (translation != CONTEXT_TT_PASS_THROUGH) {
1611 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1612 pgd = phys_to_virt(dma_pte_addr(pgd));
1613 if (!dma_pte_present(pgd)) {
1614 spin_unlock_irqrestore(&iommu->lock, flags);
1621 context_set_domain_id(context, id);
1623 if (translation != CONTEXT_TT_PASS_THROUGH) {
1624 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1625 translation = info ? CONTEXT_TT_DEV_IOTLB :
1626 CONTEXT_TT_MULTI_LEVEL;
1629 * In pass through mode, AW must be programmed to indicate the largest
1630 * AGAW value supported by hardware. And ASR is ignored by hardware.
1632 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1633 context_set_address_width(context, iommu->msagaw);
1635 context_set_address_root(context, virt_to_phys(pgd));
1636 context_set_address_width(context, iommu->agaw);
1639 context_set_translation_type(context, translation);
1640 context_set_fault_enable(context);
1641 context_set_present(context);
1642 domain_flush_cache(domain, context, sizeof(*context));
1645 * It's a non-present to present mapping. If hardware doesn't cache
1646 * non-present entry we only need to flush the write-buffer. If the
1647 * _does_ cache non-present entries, then it does so in the special
1648 * domain #0, which we have to flush:
1650 if (cap_caching_mode(iommu->cap)) {
1651 iommu->flush.flush_context(iommu, 0,
1652 (((u16)bus) << 8) | devfn,
1653 DMA_CCMD_MASK_NOBIT,
1654 DMA_CCMD_DEVICE_INVL);
1655 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1657 iommu_flush_write_buffer(iommu);
1659 iommu_enable_dev_iotlb(info);
1660 spin_unlock_irqrestore(&iommu->lock, flags);
1662 spin_lock_irqsave(&domain->iommu_lock, flags);
1663 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1664 domain->iommu_count++;
1665 if (domain->iommu_count == 1)
1666 domain->nid = iommu->node;
1667 domain_update_iommu_cap(domain);
1669 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1674 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1678 struct pci_dev *tmp, *parent;
1680 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1681 pdev->bus->number, pdev->devfn,
1686 /* dependent device mapping */
1687 tmp = pci_find_upstream_pcie_bridge(pdev);
1690 /* Secondary interface's bus number and devfn 0 */
1691 parent = pdev->bus->self;
1692 while (parent != tmp) {
1693 ret = domain_context_mapping_one(domain,
1694 pci_domain_nr(parent->bus),
1695 parent->bus->number,
1696 parent->devfn, translation);
1699 parent = parent->bus->self;
1701 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1702 return domain_context_mapping_one(domain,
1703 pci_domain_nr(tmp->subordinate),
1704 tmp->subordinate->number, 0,
1706 else /* this is a legacy PCI bridge */
1707 return domain_context_mapping_one(domain,
1708 pci_domain_nr(tmp->bus),
1714 static int domain_context_mapped(struct pci_dev *pdev)
1717 struct pci_dev *tmp, *parent;
1718 struct intel_iommu *iommu;
1720 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1725 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1728 /* dependent device mapping */
1729 tmp = pci_find_upstream_pcie_bridge(pdev);
1732 /* Secondary interface's bus number and devfn 0 */
1733 parent = pdev->bus->self;
1734 while (parent != tmp) {
1735 ret = device_context_mapped(iommu, parent->bus->number,
1739 parent = parent->bus->self;
1741 if (pci_is_pcie(tmp))
1742 return device_context_mapped(iommu, tmp->subordinate->number,
1745 return device_context_mapped(iommu, tmp->bus->number,
1749 /* Returns a number of VTD pages, but aligned to MM page size */
1750 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1753 host_addr &= ~PAGE_MASK;
1754 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1757 /* Return largest possible superpage level for a given mapping */
1758 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1759 unsigned long iov_pfn,
1760 unsigned long phy_pfn,
1761 unsigned long pages)
1763 int support, level = 1;
1764 unsigned long pfnmerge;
1766 support = domain->iommu_superpage;
1768 /* To use a large page, the virtual *and* physical addresses
1769 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1770 of them will mean we have to use smaller pages. So just
1771 merge them and check both at once. */
1772 pfnmerge = iov_pfn | phy_pfn;
1774 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1775 pages >>= VTD_STRIDE_SHIFT;
1778 pfnmerge >>= VTD_STRIDE_SHIFT;
1785 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1786 struct scatterlist *sg, unsigned long phys_pfn,
1787 unsigned long nr_pages, int prot)
1789 struct dma_pte *first_pte = NULL, *pte = NULL;
1790 phys_addr_t uninitialized_var(pteval);
1791 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1792 unsigned long sg_res;
1793 unsigned int largepage_lvl = 0;
1794 unsigned long lvl_pages = 0;
1796 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1798 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1801 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1806 sg_res = nr_pages + 1;
1807 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1810 while (nr_pages > 0) {
1814 sg_res = aligned_nrpages(sg->offset, sg->length);
1815 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1816 sg->dma_length = sg->length;
1817 pteval = page_to_phys(sg_page(sg)) | prot;
1818 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1822 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1824 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1827 /* It is large page*/
1828 if (largepage_lvl > 1)
1829 pteval |= DMA_PTE_LARGE_PAGE;
1831 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1834 /* We don't need lock here, nobody else
1835 * touches the iova range
1837 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1839 static int dumps = 5;
1840 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1841 iov_pfn, tmp, (unsigned long long)pteval);
1844 debug_dma_dump_mappings(NULL);
1849 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1851 BUG_ON(nr_pages < lvl_pages);
1852 BUG_ON(sg_res < lvl_pages);
1854 nr_pages -= lvl_pages;
1855 iov_pfn += lvl_pages;
1856 phys_pfn += lvl_pages;
1857 pteval += lvl_pages * VTD_PAGE_SIZE;
1858 sg_res -= lvl_pages;
1860 /* If the next PTE would be the first in a new page, then we
1861 need to flush the cache on the entries we've just written.
1862 And then we'll need to recalculate 'pte', so clear it and
1863 let it get set again in the if (!pte) block above.
1865 If we're done (!nr_pages) we need to flush the cache too.
1867 Also if we've been setting superpages, we may need to
1868 recalculate 'pte' and switch back to smaller pages for the
1869 end of the mapping, if the trailing size is not enough to
1870 use another superpage (i.e. sg_res < lvl_pages). */
1872 if (!nr_pages || first_pte_in_page(pte) ||
1873 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1874 domain_flush_cache(domain, first_pte,
1875 (void *)pte - (void *)first_pte);
1879 if (!sg_res && nr_pages)
1885 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1886 struct scatterlist *sg, unsigned long nr_pages,
1889 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1892 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1893 unsigned long phys_pfn, unsigned long nr_pages,
1896 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1899 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1904 clear_context_table(iommu, bus, devfn);
1905 iommu->flush.flush_context(iommu, 0, 0, 0,
1906 DMA_CCMD_GLOBAL_INVL);
1907 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1910 static inline void unlink_domain_info(struct device_domain_info *info)
1912 assert_spin_locked(&device_domain_lock);
1913 list_del(&info->link);
1914 list_del(&info->global);
1916 info->dev->dev.archdata.iommu = NULL;
1919 static void domain_remove_dev_info(struct dmar_domain *domain)
1921 struct device_domain_info *info;
1922 unsigned long flags;
1923 struct intel_iommu *iommu;
1925 spin_lock_irqsave(&device_domain_lock, flags);
1926 while (!list_empty(&domain->devices)) {
1927 info = list_entry(domain->devices.next,
1928 struct device_domain_info, link);
1929 unlink_domain_info(info);
1930 spin_unlock_irqrestore(&device_domain_lock, flags);
1932 iommu_disable_dev_iotlb(info);
1933 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1934 iommu_detach_dev(iommu, info->bus, info->devfn);
1935 free_devinfo_mem(info);
1937 spin_lock_irqsave(&device_domain_lock, flags);
1939 spin_unlock_irqrestore(&device_domain_lock, flags);
1944 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1946 static struct dmar_domain *
1947 find_domain(struct pci_dev *pdev)
1949 struct device_domain_info *info;
1951 /* No lock here, assumes no domain exit in normal case */
1952 info = pdev->dev.archdata.iommu;
1954 return info->domain;
1958 /* domain is initialized */
1959 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1961 struct dmar_domain *domain, *found = NULL;
1962 struct intel_iommu *iommu;
1963 struct dmar_drhd_unit *drhd;
1964 struct device_domain_info *info, *tmp;
1965 struct pci_dev *dev_tmp;
1966 unsigned long flags;
1967 int bus = 0, devfn = 0;
1971 domain = find_domain(pdev);
1975 segment = pci_domain_nr(pdev->bus);
1977 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1979 if (pci_is_pcie(dev_tmp)) {
1980 bus = dev_tmp->subordinate->number;
1983 bus = dev_tmp->bus->number;
1984 devfn = dev_tmp->devfn;
1986 spin_lock_irqsave(&device_domain_lock, flags);
1987 list_for_each_entry(info, &device_domain_list, global) {
1988 if (info->segment == segment &&
1989 info->bus == bus && info->devfn == devfn) {
1990 found = info->domain;
1994 spin_unlock_irqrestore(&device_domain_lock, flags);
1995 /* pcie-pci bridge already has a domain, uses it */
2002 domain = alloc_domain();
2006 /* Allocate new domain for the device */
2007 drhd = dmar_find_matched_drhd_unit(pdev);
2009 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2013 iommu = drhd->iommu;
2015 ret = iommu_attach_domain(domain, iommu);
2017 free_domain_mem(domain);
2021 if (domain_init(domain, gaw)) {
2022 domain_exit(domain);
2026 /* register pcie-to-pci device */
2028 info = alloc_devinfo_mem();
2030 domain_exit(domain);
2033 info->segment = segment;
2035 info->devfn = devfn;
2037 info->domain = domain;
2038 /* This domain is shared by devices under p2p bridge */
2039 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2041 /* pcie-to-pci bridge already has a domain, uses it */
2043 spin_lock_irqsave(&device_domain_lock, flags);
2044 list_for_each_entry(tmp, &device_domain_list, global) {
2045 if (tmp->segment == segment &&
2046 tmp->bus == bus && tmp->devfn == devfn) {
2047 found = tmp->domain;
2052 spin_unlock_irqrestore(&device_domain_lock, flags);
2053 free_devinfo_mem(info);
2054 domain_exit(domain);
2057 list_add(&info->link, &domain->devices);
2058 list_add(&info->global, &device_domain_list);
2059 spin_unlock_irqrestore(&device_domain_lock, flags);
2064 info = alloc_devinfo_mem();
2067 info->segment = segment;
2068 info->bus = pdev->bus->number;
2069 info->devfn = pdev->devfn;
2071 info->domain = domain;
2072 spin_lock_irqsave(&device_domain_lock, flags);
2073 /* somebody is fast */
2074 found = find_domain(pdev);
2075 if (found != NULL) {
2076 spin_unlock_irqrestore(&device_domain_lock, flags);
2077 if (found != domain) {
2078 domain_exit(domain);
2081 free_devinfo_mem(info);
2084 list_add(&info->link, &domain->devices);
2085 list_add(&info->global, &device_domain_list);
2086 pdev->dev.archdata.iommu = info;
2087 spin_unlock_irqrestore(&device_domain_lock, flags);
2090 /* recheck it here, maybe others set it */
2091 return find_domain(pdev);
2094 static int iommu_identity_mapping;
2095 #define IDENTMAP_ALL 1
2096 #define IDENTMAP_GFX 2
2097 #define IDENTMAP_AZALIA 4
2099 static int iommu_domain_identity_map(struct dmar_domain *domain,
2100 unsigned long long start,
2101 unsigned long long end)
2103 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2104 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2106 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2107 dma_to_mm_pfn(last_vpfn))) {
2108 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2112 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2113 start, end, domain->id);
2115 * RMRR range might have overlap with physical memory range,
2118 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2120 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2121 last_vpfn - first_vpfn + 1,
2122 DMA_PTE_READ|DMA_PTE_WRITE);
2125 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2126 unsigned long long start,
2127 unsigned long long end)
2129 struct dmar_domain *domain;
2132 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2136 /* For _hardware_ passthrough, don't bother. But for software
2137 passthrough, we do it anyway -- it may indicate a memory
2138 range which is reserved in E820, so which didn't get set
2139 up to start with in si_domain */
2140 if (domain == si_domain && hw_pass_through) {
2141 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2142 pci_name(pdev), start, end);
2147 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2148 pci_name(pdev), start, end);
2151 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2152 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2153 dmi_get_system_info(DMI_BIOS_VENDOR),
2154 dmi_get_system_info(DMI_BIOS_VERSION),
2155 dmi_get_system_info(DMI_PRODUCT_VERSION));
2160 if (end >> agaw_to_width(domain->agaw)) {
2161 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2162 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2163 agaw_to_width(domain->agaw),
2164 dmi_get_system_info(DMI_BIOS_VENDOR),
2165 dmi_get_system_info(DMI_BIOS_VERSION),
2166 dmi_get_system_info(DMI_PRODUCT_VERSION));
2171 ret = iommu_domain_identity_map(domain, start, end);
2175 /* context entry init */
2176 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2183 domain_exit(domain);
2187 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2188 struct pci_dev *pdev)
2190 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2192 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2196 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2197 static inline void iommu_prepare_isa(void)
2199 struct pci_dev *pdev;
2202 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2206 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2207 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2210 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2211 "floppy might not work\n");
2215 static inline void iommu_prepare_isa(void)
2219 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2221 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2223 static int __init si_domain_init(int hw)
2225 struct dmar_drhd_unit *drhd;
2226 struct intel_iommu *iommu;
2229 si_domain = alloc_domain();
2233 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2235 for_each_active_iommu(iommu, drhd) {
2236 ret = iommu_attach_domain(si_domain, iommu);
2238 domain_exit(si_domain);
2243 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2244 domain_exit(si_domain);
2248 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2253 for_each_online_node(nid) {
2254 unsigned long start_pfn, end_pfn;
2257 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2258 ret = iommu_domain_identity_map(si_domain,
2259 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2268 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2269 struct pci_dev *pdev);
2270 static int identity_mapping(struct pci_dev *pdev)
2272 struct device_domain_info *info;
2274 if (likely(!iommu_identity_mapping))
2277 info = pdev->dev.archdata.iommu;
2278 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2279 return (info->domain == si_domain);
2284 static int domain_add_dev_info(struct dmar_domain *domain,
2285 struct pci_dev *pdev,
2288 struct device_domain_info *info;
2289 unsigned long flags;
2292 info = alloc_devinfo_mem();
2296 info->segment = pci_domain_nr(pdev->bus);
2297 info->bus = pdev->bus->number;
2298 info->devfn = pdev->devfn;
2300 info->domain = domain;
2302 spin_lock_irqsave(&device_domain_lock, flags);
2303 list_add(&info->link, &domain->devices);
2304 list_add(&info->global, &device_domain_list);
2305 pdev->dev.archdata.iommu = info;
2306 spin_unlock_irqrestore(&device_domain_lock, flags);
2308 ret = domain_context_mapping(domain, pdev, translation);
2310 spin_lock_irqsave(&device_domain_lock, flags);
2311 unlink_domain_info(info);
2312 spin_unlock_irqrestore(&device_domain_lock, flags);
2313 free_devinfo_mem(info);
2320 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2322 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2325 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2328 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2332 * We want to start off with all devices in the 1:1 domain, and
2333 * take them out later if we find they can't access all of memory.
2335 * However, we can't do this for PCI devices behind bridges,
2336 * because all PCI devices behind the same bridge will end up
2337 * with the same source-id on their transactions.
2339 * Practically speaking, we can't change things around for these
2340 * devices at run-time, because we can't be sure there'll be no
2341 * DMA transactions in flight for any of their siblings.
2343 * So PCI devices (unless they're on the root bus) as well as
2344 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2345 * the 1:1 domain, just in _case_ one of their siblings turns out
2346 * not to be able to map all of memory.
2348 if (!pci_is_pcie(pdev)) {
2349 if (!pci_is_root_bus(pdev->bus))
2351 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2353 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2357 * At boot time, we don't yet know if devices will be 64-bit capable.
2358 * Assume that they will -- if they turn out not to be, then we can
2359 * take them out of the 1:1 domain later.
2363 * If the device's dma_mask is less than the system's memory
2364 * size then this is not a candidate for identity mapping.
2366 u64 dma_mask = pdev->dma_mask;
2368 if (pdev->dev.coherent_dma_mask &&
2369 pdev->dev.coherent_dma_mask < dma_mask)
2370 dma_mask = pdev->dev.coherent_dma_mask;
2372 return dma_mask >= dma_get_required_mask(&pdev->dev);
2378 static int __init iommu_prepare_static_identity_mapping(int hw)
2380 struct pci_dev *pdev = NULL;
2383 ret = si_domain_init(hw);
2387 for_each_pci_dev(pdev) {
2388 if (iommu_should_identity_map(pdev, 1)) {
2389 ret = domain_add_dev_info(si_domain, pdev,
2390 hw ? CONTEXT_TT_PASS_THROUGH :
2391 CONTEXT_TT_MULTI_LEVEL);
2393 /* device not associated with an iommu */
2398 pr_info("IOMMU: %s identity mapping for device %s\n",
2399 hw ? "hardware" : "software", pci_name(pdev));
2406 static int __init init_dmars(void)
2408 struct dmar_drhd_unit *drhd;
2409 struct dmar_rmrr_unit *rmrr;
2410 struct pci_dev *pdev;
2411 struct intel_iommu *iommu;
2417 * initialize and program root entry to not present
2420 for_each_drhd_unit(drhd) {
2422 * lock not needed as this is only incremented in the single
2423 * threaded kernel __init code path all other access are read
2426 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2430 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2431 IOMMU_UNITS_SUPPORTED);
2434 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2437 printk(KERN_ERR "Allocating global iommu array failed\n");
2442 deferred_flush = kzalloc(g_num_of_iommus *
2443 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2444 if (!deferred_flush) {
2449 for_each_drhd_unit(drhd) {
2453 iommu = drhd->iommu;
2454 g_iommus[iommu->seq_id] = iommu;
2456 ret = iommu_init_domains(iommu);
2462 * we could share the same root & context tables
2463 * among all IOMMU's. Need to Split it later.
2465 ret = iommu_alloc_root_entry(iommu);
2467 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2470 if (!ecap_pass_through(iommu->ecap))
2471 hw_pass_through = 0;
2475 * Start from the sane iommu hardware state.
2477 for_each_drhd_unit(drhd) {
2481 iommu = drhd->iommu;
2484 * If the queued invalidation is already initialized by us
2485 * (for example, while enabling interrupt-remapping) then
2486 * we got the things already rolling from a sane state.
2492 * Clear any previous faults.
2494 dmar_fault(-1, iommu);
2496 * Disable queued invalidation if supported and already enabled
2497 * before OS handover.
2499 dmar_disable_qi(iommu);
2502 for_each_drhd_unit(drhd) {
2506 iommu = drhd->iommu;
2508 if (dmar_enable_qi(iommu)) {
2510 * Queued Invalidate not enabled, use Register Based
2513 iommu->flush.flush_context = __iommu_flush_context;
2514 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2515 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2518 (unsigned long long)drhd->reg_base_addr);
2520 iommu->flush.flush_context = qi_flush_context;
2521 iommu->flush.flush_iotlb = qi_flush_iotlb;
2522 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2525 (unsigned long long)drhd->reg_base_addr);
2529 if (iommu_pass_through)
2530 iommu_identity_mapping |= IDENTMAP_ALL;
2532 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2533 iommu_identity_mapping |= IDENTMAP_GFX;
2536 check_tylersburg_isoch();
2539 * If pass through is not set or not enabled, setup context entries for
2540 * identity mappings for rmrr, gfx, and isa and may fall back to static
2541 * identity mapping if iommu_identity_mapping is set.
2543 if (iommu_identity_mapping) {
2544 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2546 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2552 * for each dev attached to rmrr
2554 * locate drhd for dev, alloc domain for dev
2555 * allocate free domain
2556 * allocate page table entries for rmrr
2557 * if context not allocated for bus
2558 * allocate and init context
2559 * set present in root table for this bus
2560 * init context with domain, translation etc
2564 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2565 for_each_rmrr_units(rmrr) {
2566 for (i = 0; i < rmrr->devices_cnt; i++) {
2567 pdev = rmrr->devices[i];
2569 * some BIOS lists non-exist devices in DMAR
2574 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2577 "IOMMU: mapping reserved region failed\n");
2581 iommu_prepare_isa();
2586 * global invalidate context cache
2587 * global invalidate iotlb
2588 * enable translation
2590 for_each_drhd_unit(drhd) {
2591 if (drhd->ignored) {
2593 * we always have to disable PMRs or DMA may fail on
2597 iommu_disable_protect_mem_regions(drhd->iommu);
2600 iommu = drhd->iommu;
2602 iommu_flush_write_buffer(iommu);
2604 ret = dmar_set_interrupt(iommu);
2608 iommu_set_root_entry(iommu);
2610 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2611 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2613 ret = iommu_enable_translation(iommu);
2617 iommu_disable_protect_mem_regions(iommu);
2622 for_each_drhd_unit(drhd) {
2625 iommu = drhd->iommu;
2632 /* This takes a number of _MM_ pages, not VTD pages */
2633 static struct iova *intel_alloc_iova(struct device *dev,
2634 struct dmar_domain *domain,
2635 unsigned long nrpages, uint64_t dma_mask)
2637 struct pci_dev *pdev = to_pci_dev(dev);
2638 struct iova *iova = NULL;
2640 /* Restrict dma_mask to the width that the iommu can handle */
2641 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2643 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2645 * First try to allocate an io virtual address in
2646 * DMA_BIT_MASK(32) and if that fails then try allocating
2649 iova = alloc_iova(&domain->iovad, nrpages,
2650 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2654 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2655 if (unlikely(!iova)) {
2656 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2657 nrpages, pci_name(pdev));
2664 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2666 struct dmar_domain *domain;
2669 domain = get_domain_for_dev(pdev,
2670 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2673 "Allocating domain for %s failed", pci_name(pdev));
2677 /* make sure context mapping is ok */
2678 if (unlikely(!domain_context_mapped(pdev))) {
2679 ret = domain_context_mapping(domain, pdev,
2680 CONTEXT_TT_MULTI_LEVEL);
2683 "Domain context map for %s failed",
2692 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2694 struct device_domain_info *info;
2696 /* No lock here, assumes no domain exit in normal case */
2697 info = dev->dev.archdata.iommu;
2699 return info->domain;
2701 return __get_valid_domain_for_dev(dev);
2704 static int iommu_dummy(struct pci_dev *pdev)
2706 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2709 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2710 static int iommu_no_mapping(struct device *dev)
2712 struct pci_dev *pdev;
2715 if (unlikely(dev->bus != &pci_bus_type))
2718 pdev = to_pci_dev(dev);
2719 if (iommu_dummy(pdev))
2722 if (!iommu_identity_mapping)
2725 found = identity_mapping(pdev);
2727 if (iommu_should_identity_map(pdev, 0))
2731 * 32 bit DMA is removed from si_domain and fall back
2732 * to non-identity mapping.
2734 domain_remove_one_dev_info(si_domain, pdev);
2735 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2741 * In case of a detached 64 bit DMA device from vm, the device
2742 * is put into si_domain for identity mapping.
2744 if (iommu_should_identity_map(pdev, 0)) {
2746 ret = domain_add_dev_info(si_domain, pdev,
2748 CONTEXT_TT_PASS_THROUGH :
2749 CONTEXT_TT_MULTI_LEVEL);
2751 printk(KERN_INFO "64bit %s uses identity mapping\n",
2761 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2762 size_t size, int dir, u64 dma_mask)
2764 struct pci_dev *pdev = to_pci_dev(hwdev);
2765 struct dmar_domain *domain;
2766 phys_addr_t start_paddr;
2770 struct intel_iommu *iommu;
2771 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2773 BUG_ON(dir == DMA_NONE);
2775 if (iommu_no_mapping(hwdev))
2778 domain = get_valid_domain_for_dev(pdev);
2782 iommu = domain_get_iommu(domain);
2783 size = aligned_nrpages(paddr, size);
2785 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2790 * Check if DMAR supports zero-length reads on write only
2793 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2794 !cap_zlr(iommu->cap))
2795 prot |= DMA_PTE_READ;
2796 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2797 prot |= DMA_PTE_WRITE;
2799 * paddr - (paddr + size) might be partial page, we should map the whole
2800 * page. Note: if two part of one page are separately mapped, we
2801 * might have two guest_addr mapping to the same host paddr, but this
2802 * is not a big problem
2804 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2805 mm_to_dma_pfn(paddr_pfn), size, prot);
2809 /* it's a non-present to present mapping. Only flush if caching mode */
2810 if (cap_caching_mode(iommu->cap))
2811 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2813 iommu_flush_write_buffer(iommu);
2815 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2816 start_paddr += paddr & ~PAGE_MASK;
2821 __free_iova(&domain->iovad, iova);
2822 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2823 pci_name(pdev), size, (unsigned long long)paddr, dir);
2827 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2828 unsigned long offset, size_t size,
2829 enum dma_data_direction dir,
2830 struct dma_attrs *attrs)
2832 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2833 dir, to_pci_dev(dev)->dma_mask);
2836 static void flush_unmaps(void)
2842 /* just flush them all */
2843 for (i = 0; i < g_num_of_iommus; i++) {
2844 struct intel_iommu *iommu = g_iommus[i];
2848 if (!deferred_flush[i].next)
2851 /* In caching mode, global flushes turn emulation expensive */
2852 if (!cap_caching_mode(iommu->cap))
2853 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2854 DMA_TLB_GLOBAL_FLUSH);
2855 for (j = 0; j < deferred_flush[i].next; j++) {
2857 struct iova *iova = deferred_flush[i].iova[j];
2858 struct dmar_domain *domain = deferred_flush[i].domain[j];
2860 /* On real hardware multiple invalidations are expensive */
2861 if (cap_caching_mode(iommu->cap))
2862 iommu_flush_iotlb_psi(iommu, domain->id,
2863 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2865 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2866 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2867 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2869 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2871 deferred_flush[i].next = 0;
2877 static void flush_unmaps_timeout(unsigned long data)
2879 unsigned long flags;
2881 spin_lock_irqsave(&async_umap_flush_lock, flags);
2883 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2886 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2888 unsigned long flags;
2890 struct intel_iommu *iommu;
2892 spin_lock_irqsave(&async_umap_flush_lock, flags);
2893 if (list_size == HIGH_WATER_MARK)
2896 iommu = domain_get_iommu(dom);
2897 iommu_id = iommu->seq_id;
2899 next = deferred_flush[iommu_id].next;
2900 deferred_flush[iommu_id].domain[next] = dom;
2901 deferred_flush[iommu_id].iova[next] = iova;
2902 deferred_flush[iommu_id].next++;
2905 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2909 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2912 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2913 size_t size, enum dma_data_direction dir,
2914 struct dma_attrs *attrs)
2916 struct pci_dev *pdev = to_pci_dev(dev);
2917 struct dmar_domain *domain;
2918 unsigned long start_pfn, last_pfn;
2920 struct intel_iommu *iommu;
2922 if (iommu_no_mapping(dev))
2925 domain = find_domain(pdev);
2928 iommu = domain_get_iommu(domain);
2930 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2931 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2932 (unsigned long long)dev_addr))
2935 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2936 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2938 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2939 pci_name(pdev), start_pfn, last_pfn);
2941 /* clear the whole page */
2942 dma_pte_clear_range(domain, start_pfn, last_pfn);
2944 /* free page tables */
2945 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2947 if (intel_iommu_strict) {
2948 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2949 last_pfn - start_pfn + 1, 0);
2951 __free_iova(&domain->iovad, iova);
2953 add_unmap(domain, iova);
2955 * queue up the release of the unmap to save the 1/6th of the
2956 * cpu used up by the iotlb flush operation...
2961 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2962 dma_addr_t *dma_handle, gfp_t flags,
2963 struct dma_attrs *attrs)
2968 size = PAGE_ALIGN(size);
2969 order = get_order(size);
2971 if (!iommu_no_mapping(hwdev))
2972 flags &= ~(GFP_DMA | GFP_DMA32);
2973 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2974 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2980 vaddr = (void *)__get_free_pages(flags, order);
2983 memset(vaddr, 0, size);
2985 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2987 hwdev->coherent_dma_mask);
2990 free_pages((unsigned long)vaddr, order);
2994 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2995 dma_addr_t dma_handle, struct dma_attrs *attrs)
2999 size = PAGE_ALIGN(size);
3000 order = get_order(size);
3002 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3003 free_pages((unsigned long)vaddr, order);
3006 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3007 int nelems, enum dma_data_direction dir,
3008 struct dma_attrs *attrs)
3010 struct pci_dev *pdev = to_pci_dev(hwdev);
3011 struct dmar_domain *domain;
3012 unsigned long start_pfn, last_pfn;
3014 struct intel_iommu *iommu;
3016 if (iommu_no_mapping(hwdev))
3019 domain = find_domain(pdev);
3022 iommu = domain_get_iommu(domain);
3024 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3025 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3026 (unsigned long long)sglist[0].dma_address))
3029 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3030 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3032 /* clear the whole page */
3033 dma_pte_clear_range(domain, start_pfn, last_pfn);
3035 /* free page tables */
3036 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3038 if (intel_iommu_strict) {
3039 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3040 last_pfn - start_pfn + 1, 0);
3042 __free_iova(&domain->iovad, iova);
3044 add_unmap(domain, iova);
3046 * queue up the release of the unmap to save the 1/6th of the
3047 * cpu used up by the iotlb flush operation...
3052 static int intel_nontranslate_map_sg(struct device *hddev,
3053 struct scatterlist *sglist, int nelems, int dir)
3056 struct scatterlist *sg;
3058 for_each_sg(sglist, sg, nelems, i) {
3059 BUG_ON(!sg_page(sg));
3060 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3061 sg->dma_length = sg->length;
3066 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3067 enum dma_data_direction dir, struct dma_attrs *attrs)
3070 struct pci_dev *pdev = to_pci_dev(hwdev);
3071 struct dmar_domain *domain;
3074 struct iova *iova = NULL;
3076 struct scatterlist *sg;
3077 unsigned long start_vpfn;
3078 struct intel_iommu *iommu;
3080 BUG_ON(dir == DMA_NONE);
3081 if (iommu_no_mapping(hwdev))
3082 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3084 domain = get_valid_domain_for_dev(pdev);
3088 iommu = domain_get_iommu(domain);
3090 for_each_sg(sglist, sg, nelems, i)
3091 size += aligned_nrpages(sg->offset, sg->length);
3093 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3096 sglist->dma_length = 0;
3101 * Check if DMAR supports zero-length reads on write only
3104 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3105 !cap_zlr(iommu->cap))
3106 prot |= DMA_PTE_READ;
3107 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3108 prot |= DMA_PTE_WRITE;
3110 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3112 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3113 if (unlikely(ret)) {
3114 /* clear the page */
3115 dma_pte_clear_range(domain, start_vpfn,
3116 start_vpfn + size - 1);
3117 /* free page tables */
3118 dma_pte_free_pagetable(domain, start_vpfn,
3119 start_vpfn + size - 1);
3121 __free_iova(&domain->iovad, iova);
3125 /* it's a non-present to present mapping. Only flush if caching mode */
3126 if (cap_caching_mode(iommu->cap))
3127 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3129 iommu_flush_write_buffer(iommu);
3134 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3139 struct dma_map_ops intel_dma_ops = {
3140 .alloc = intel_alloc_coherent,
3141 .free = intel_free_coherent,
3142 .map_sg = intel_map_sg,
3143 .unmap_sg = intel_unmap_sg,
3144 .map_page = intel_map_page,
3145 .unmap_page = intel_unmap_page,
3146 .mapping_error = intel_mapping_error,
3149 static inline int iommu_domain_cache_init(void)
3153 iommu_domain_cache = kmem_cache_create("iommu_domain",
3154 sizeof(struct dmar_domain),
3159 if (!iommu_domain_cache) {
3160 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3167 static inline int iommu_devinfo_cache_init(void)
3171 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3172 sizeof(struct device_domain_info),
3176 if (!iommu_devinfo_cache) {
3177 printk(KERN_ERR "Couldn't create devinfo cache\n");
3184 static inline int iommu_iova_cache_init(void)
3188 iommu_iova_cache = kmem_cache_create("iommu_iova",
3189 sizeof(struct iova),
3193 if (!iommu_iova_cache) {
3194 printk(KERN_ERR "Couldn't create iova cache\n");
3201 static int __init iommu_init_mempool(void)
3204 ret = iommu_iova_cache_init();
3208 ret = iommu_domain_cache_init();
3212 ret = iommu_devinfo_cache_init();
3216 kmem_cache_destroy(iommu_domain_cache);
3218 kmem_cache_destroy(iommu_iova_cache);
3223 static void __init iommu_exit_mempool(void)
3225 kmem_cache_destroy(iommu_devinfo_cache);
3226 kmem_cache_destroy(iommu_domain_cache);
3227 kmem_cache_destroy(iommu_iova_cache);
3231 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3233 struct dmar_drhd_unit *drhd;
3237 /* We know that this device on this chipset has its own IOMMU.
3238 * If we find it under a different IOMMU, then the BIOS is lying
3239 * to us. Hope that the IOMMU for this device is actually
3240 * disabled, and it needs no translation...
3242 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3244 /* "can't" happen */
3245 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3248 vtbar &= 0xffff0000;
3250 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3251 drhd = dmar_find_matched_drhd_unit(pdev);
3252 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3253 TAINT_FIRMWARE_WORKAROUND,
3254 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3255 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3257 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3259 static void __init init_no_remapping_devices(void)
3261 struct dmar_drhd_unit *drhd;
3263 for_each_drhd_unit(drhd) {
3264 if (!drhd->include_all) {
3266 for (i = 0; i < drhd->devices_cnt; i++)
3267 if (drhd->devices[i] != NULL)
3269 /* ignore DMAR unit if no pci devices exist */
3270 if (i == drhd->devices_cnt)
3275 for_each_drhd_unit(drhd) {
3277 if (drhd->ignored || drhd->include_all)
3280 for (i = 0; i < drhd->devices_cnt; i++)
3281 if (drhd->devices[i] &&
3282 !IS_GFX_DEVICE(drhd->devices[i]))
3285 if (i < drhd->devices_cnt)
3288 /* This IOMMU has *only* gfx devices. Either bypass it or
3289 set the gfx_mapped flag, as appropriate */
3291 intel_iommu_gfx_mapped = 1;
3294 for (i = 0; i < drhd->devices_cnt; i++) {
3295 if (!drhd->devices[i])
3297 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3303 #ifdef CONFIG_SUSPEND
3304 static int init_iommu_hw(void)
3306 struct dmar_drhd_unit *drhd;
3307 struct intel_iommu *iommu = NULL;
3309 for_each_active_iommu(iommu, drhd)
3311 dmar_reenable_qi(iommu);
3313 for_each_iommu(iommu, drhd) {
3314 if (drhd->ignored) {
3316 * we always have to disable PMRs or DMA may fail on
3320 iommu_disable_protect_mem_regions(iommu);
3324 iommu_flush_write_buffer(iommu);
3326 iommu_set_root_entry(iommu);
3328 iommu->flush.flush_context(iommu, 0, 0, 0,
3329 DMA_CCMD_GLOBAL_INVL);
3330 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3331 DMA_TLB_GLOBAL_FLUSH);
3332 if (iommu_enable_translation(iommu))
3334 iommu_disable_protect_mem_regions(iommu);
3340 static void iommu_flush_all(void)
3342 struct dmar_drhd_unit *drhd;
3343 struct intel_iommu *iommu;
3345 for_each_active_iommu(iommu, drhd) {
3346 iommu->flush.flush_context(iommu, 0, 0, 0,
3347 DMA_CCMD_GLOBAL_INVL);
3348 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3349 DMA_TLB_GLOBAL_FLUSH);
3353 static int iommu_suspend(void)
3355 struct dmar_drhd_unit *drhd;
3356 struct intel_iommu *iommu = NULL;
3359 for_each_active_iommu(iommu, drhd) {
3360 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3362 if (!iommu->iommu_state)
3368 for_each_active_iommu(iommu, drhd) {
3369 iommu_disable_translation(iommu);
3371 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3373 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3374 readl(iommu->reg + DMAR_FECTL_REG);
3375 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3376 readl(iommu->reg + DMAR_FEDATA_REG);
3377 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3378 readl(iommu->reg + DMAR_FEADDR_REG);
3379 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3380 readl(iommu->reg + DMAR_FEUADDR_REG);
3382 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3387 for_each_active_iommu(iommu, drhd)
3388 kfree(iommu->iommu_state);
3393 static void iommu_resume(void)
3395 struct dmar_drhd_unit *drhd;
3396 struct intel_iommu *iommu = NULL;
3399 if (init_iommu_hw()) {
3401 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3403 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3407 for_each_active_iommu(iommu, drhd) {
3409 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3411 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3412 iommu->reg + DMAR_FECTL_REG);
3413 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3414 iommu->reg + DMAR_FEDATA_REG);
3415 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3416 iommu->reg + DMAR_FEADDR_REG);
3417 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3418 iommu->reg + DMAR_FEUADDR_REG);
3420 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3423 for_each_active_iommu(iommu, drhd)
3424 kfree(iommu->iommu_state);
3427 static struct syscore_ops iommu_syscore_ops = {
3428 .resume = iommu_resume,
3429 .suspend = iommu_suspend,
3432 static void __init init_iommu_pm_ops(void)
3434 register_syscore_ops(&iommu_syscore_ops);
3438 static inline void init_iommu_pm_ops(void) {}
3439 #endif /* CONFIG_PM */
3441 LIST_HEAD(dmar_rmrr_units);
3443 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3445 list_add(&rmrr->list, &dmar_rmrr_units);
3449 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3451 struct acpi_dmar_reserved_memory *rmrr;
3452 struct dmar_rmrr_unit *rmrru;
3454 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3458 rmrru->hdr = header;
3459 rmrr = (struct acpi_dmar_reserved_memory *)header;
3460 rmrru->base_address = rmrr->base_address;
3461 rmrru->end_address = rmrr->end_address;
3463 dmar_register_rmrr_unit(rmrru);
3468 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3470 struct acpi_dmar_reserved_memory *rmrr;
3473 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3474 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3475 ((void *)rmrr) + rmrr->header.length,
3476 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3478 if (ret || (rmrru->devices_cnt == 0)) {
3479 list_del(&rmrru->list);
3485 static LIST_HEAD(dmar_atsr_units);
3487 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3489 struct acpi_dmar_atsr *atsr;
3490 struct dmar_atsr_unit *atsru;
3492 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3493 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3498 atsru->include_all = atsr->flags & 0x1;
3500 list_add(&atsru->list, &dmar_atsr_units);
3505 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3508 struct acpi_dmar_atsr *atsr;
3510 if (atsru->include_all)
3513 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3514 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3515 (void *)atsr + atsr->header.length,
3516 &atsru->devices_cnt, &atsru->devices,
3518 if (rc || !atsru->devices_cnt) {
3519 list_del(&atsru->list);
3526 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3529 struct pci_bus *bus;
3530 struct acpi_dmar_atsr *atsr;
3531 struct dmar_atsr_unit *atsru;
3533 dev = pci_physfn(dev);
3535 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3536 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3537 if (atsr->segment == pci_domain_nr(dev->bus))
3544 for (bus = dev->bus; bus; bus = bus->parent) {
3545 struct pci_dev *bridge = bus->self;
3547 if (!bridge || !pci_is_pcie(bridge) ||
3548 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3551 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3552 for (i = 0; i < atsru->devices_cnt; i++)
3553 if (atsru->devices[i] == bridge)
3559 if (atsru->include_all)
3565 int __init dmar_parse_rmrr_atsr_dev(void)
3567 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3568 struct dmar_atsr_unit *atsr, *atsr_n;
3571 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3572 ret = rmrr_parse_dev(rmrr);
3577 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3578 ret = atsr_parse_dev(atsr);
3587 * Here we only respond to action of unbound device from driver.
3589 * Added device is not attached to its DMAR domain here yet. That will happen
3590 * when mapping the device to iova.
3592 static int device_notifier(struct notifier_block *nb,
3593 unsigned long action, void *data)
3595 struct device *dev = data;
3596 struct pci_dev *pdev = to_pci_dev(dev);
3597 struct dmar_domain *domain;
3599 if (iommu_no_mapping(dev))
3602 domain = find_domain(pdev);
3606 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3607 domain_remove_one_dev_info(domain, pdev);
3609 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3610 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3611 list_empty(&domain->devices))
3612 domain_exit(domain);
3618 static struct notifier_block device_nb = {
3619 .notifier_call = device_notifier,
3622 int __init intel_iommu_init(void)
3626 /* VT-d is required for a TXT/tboot launch, so enforce that */
3627 force_on = tboot_force_iommu();
3629 if (dmar_table_init()) {
3631 panic("tboot: Failed to initialize DMAR table\n");
3635 if (dmar_dev_scope_init() < 0) {
3637 panic("tboot: Failed to initialize DMAR device scope\n");
3641 if (no_iommu || dmar_disabled)
3644 if (iommu_init_mempool()) {
3646 panic("tboot: Failed to initialize iommu memory\n");
3650 if (list_empty(&dmar_rmrr_units))
3651 printk(KERN_INFO "DMAR: No RMRR found\n");
3653 if (list_empty(&dmar_atsr_units))
3654 printk(KERN_INFO "DMAR: No ATSR found\n");
3656 if (dmar_init_reserved_ranges()) {
3658 panic("tboot: Failed to reserve iommu ranges\n");
3662 init_no_remapping_devices();
3667 panic("tboot: Failed to initialize DMARs\n");
3668 printk(KERN_ERR "IOMMU: dmar init failed\n");
3669 put_iova_domain(&reserved_iova_list);
3670 iommu_exit_mempool();
3674 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3676 init_timer(&unmap_timer);
3677 #ifdef CONFIG_SWIOTLB
3680 dma_ops = &intel_dma_ops;
3682 init_iommu_pm_ops();
3684 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3686 bus_register_notifier(&pci_bus_type, &device_nb);
3688 intel_iommu_enabled = 1;
3693 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3694 struct pci_dev *pdev)
3696 struct pci_dev *tmp, *parent;
3698 if (!iommu || !pdev)
3701 /* dependent device detach */
3702 tmp = pci_find_upstream_pcie_bridge(pdev);
3703 /* Secondary interface's bus number and devfn 0 */
3705 parent = pdev->bus->self;
3706 while (parent != tmp) {
3707 iommu_detach_dev(iommu, parent->bus->number,
3709 parent = parent->bus->self;
3711 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3712 iommu_detach_dev(iommu,
3713 tmp->subordinate->number, 0);
3714 else /* this is a legacy PCI bridge */
3715 iommu_detach_dev(iommu, tmp->bus->number,
3720 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3721 struct pci_dev *pdev)
3723 struct device_domain_info *info;
3724 struct intel_iommu *iommu;
3725 unsigned long flags;
3727 struct list_head *entry, *tmp;
3729 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3734 spin_lock_irqsave(&device_domain_lock, flags);
3735 list_for_each_safe(entry, tmp, &domain->devices) {
3736 info = list_entry(entry, struct device_domain_info, link);
3737 if (info->segment == pci_domain_nr(pdev->bus) &&
3738 info->bus == pdev->bus->number &&
3739 info->devfn == pdev->devfn) {
3740 unlink_domain_info(info);
3741 spin_unlock_irqrestore(&device_domain_lock, flags);
3743 iommu_disable_dev_iotlb(info);
3744 iommu_detach_dev(iommu, info->bus, info->devfn);
3745 iommu_detach_dependent_devices(iommu, pdev);
3746 free_devinfo_mem(info);
3748 spin_lock_irqsave(&device_domain_lock, flags);
3756 /* if there is no other devices under the same iommu
3757 * owned by this domain, clear this iommu in iommu_bmp
3758 * update iommu count and coherency
3760 if (iommu == device_to_iommu(info->segment, info->bus,
3765 spin_unlock_irqrestore(&device_domain_lock, flags);
3768 unsigned long tmp_flags;
3769 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3770 clear_bit(iommu->seq_id, domain->iommu_bmp);
3771 domain->iommu_count--;
3772 domain_update_iommu_cap(domain);
3773 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3775 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3776 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3777 spin_lock_irqsave(&iommu->lock, tmp_flags);
3778 clear_bit(domain->id, iommu->domain_ids);
3779 iommu->domains[domain->id] = NULL;
3780 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3785 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3787 struct device_domain_info *info;
3788 struct intel_iommu *iommu;
3789 unsigned long flags1, flags2;
3791 spin_lock_irqsave(&device_domain_lock, flags1);
3792 while (!list_empty(&domain->devices)) {
3793 info = list_entry(domain->devices.next,
3794 struct device_domain_info, link);
3795 unlink_domain_info(info);
3796 spin_unlock_irqrestore(&device_domain_lock, flags1);
3798 iommu_disable_dev_iotlb(info);
3799 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3800 iommu_detach_dev(iommu, info->bus, info->devfn);
3801 iommu_detach_dependent_devices(iommu, info->dev);
3803 /* clear this iommu in iommu_bmp, update iommu count
3806 spin_lock_irqsave(&domain->iommu_lock, flags2);
3807 if (test_and_clear_bit(iommu->seq_id,
3808 domain->iommu_bmp)) {
3809 domain->iommu_count--;
3810 domain_update_iommu_cap(domain);
3812 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3814 free_devinfo_mem(info);
3815 spin_lock_irqsave(&device_domain_lock, flags1);
3817 spin_unlock_irqrestore(&device_domain_lock, flags1);
3820 /* domain id for virtual machine, it won't be set in context */
3821 static unsigned long vm_domid;
3823 static struct dmar_domain *iommu_alloc_vm_domain(void)
3825 struct dmar_domain *domain;
3827 domain = alloc_domain_mem();
3831 domain->id = vm_domid++;
3833 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3834 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3839 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3843 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3844 spin_lock_init(&domain->iommu_lock);
3846 domain_reserve_special_ranges(domain);
3848 /* calculate AGAW */
3849 domain->gaw = guest_width;
3850 adjust_width = guestwidth_to_adjustwidth(guest_width);
3851 domain->agaw = width_to_agaw(adjust_width);
3853 INIT_LIST_HEAD(&domain->devices);
3855 domain->iommu_count = 0;
3856 domain->iommu_coherency = 0;
3857 domain->iommu_snooping = 0;
3858 domain->iommu_superpage = 0;
3859 domain->max_addr = 0;
3862 /* always allocate the top pgd */
3863 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3866 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3870 static void iommu_free_vm_domain(struct dmar_domain *domain)
3872 unsigned long flags;
3873 struct dmar_drhd_unit *drhd;
3874 struct intel_iommu *iommu;
3876 unsigned long ndomains;
3878 for_each_drhd_unit(drhd) {
3881 iommu = drhd->iommu;
3883 ndomains = cap_ndoms(iommu->cap);
3884 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3885 if (iommu->domains[i] == domain) {
3886 spin_lock_irqsave(&iommu->lock, flags);
3887 clear_bit(i, iommu->domain_ids);
3888 iommu->domains[i] = NULL;
3889 spin_unlock_irqrestore(&iommu->lock, flags);
3896 static void vm_domain_exit(struct dmar_domain *domain)
3898 /* Domain 0 is reserved, so dont process it */
3902 vm_domain_remove_all_dev_info(domain);
3904 put_iova_domain(&domain->iovad);
3907 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3909 /* free page tables */
3910 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3912 iommu_free_vm_domain(domain);
3913 free_domain_mem(domain);
3916 static int intel_iommu_domain_init(struct iommu_domain *domain)
3918 struct dmar_domain *dmar_domain;
3920 dmar_domain = iommu_alloc_vm_domain();
3923 "intel_iommu_domain_init: dmar_domain == NULL\n");
3926 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3928 "intel_iommu_domain_init() failed\n");
3929 vm_domain_exit(dmar_domain);
3932 domain_update_iommu_cap(dmar_domain);
3933 domain->priv = dmar_domain;
3938 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3940 struct dmar_domain *dmar_domain = domain->priv;
3942 domain->priv = NULL;
3943 vm_domain_exit(dmar_domain);
3946 static int intel_iommu_attach_device(struct iommu_domain *domain,
3949 struct dmar_domain *dmar_domain = domain->priv;
3950 struct pci_dev *pdev = to_pci_dev(dev);
3951 struct intel_iommu *iommu;
3954 /* normally pdev is not mapped */
3955 if (unlikely(domain_context_mapped(pdev))) {
3956 struct dmar_domain *old_domain;
3958 old_domain = find_domain(pdev);
3960 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3961 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3962 domain_remove_one_dev_info(old_domain, pdev);
3964 domain_remove_dev_info(old_domain);
3968 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3973 /* check if this iommu agaw is sufficient for max mapped address */
3974 addr_width = agaw_to_width(iommu->agaw);
3975 if (addr_width > cap_mgaw(iommu->cap))
3976 addr_width = cap_mgaw(iommu->cap);
3978 if (dmar_domain->max_addr > (1LL << addr_width)) {
3979 printk(KERN_ERR "%s: iommu width (%d) is not "
3980 "sufficient for the mapped address (%llx)\n",
3981 __func__, addr_width, dmar_domain->max_addr);
3984 dmar_domain->gaw = addr_width;
3987 * Knock out extra levels of page tables if necessary
3989 while (iommu->agaw < dmar_domain->agaw) {
3990 struct dma_pte *pte;
3992 pte = dmar_domain->pgd;
3993 if (dma_pte_present(pte)) {
3994 dmar_domain->pgd = (struct dma_pte *)
3995 phys_to_virt(dma_pte_addr(pte));
3996 free_pgtable_page(pte);
3998 dmar_domain->agaw--;
4001 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4004 static void intel_iommu_detach_device(struct iommu_domain *domain,
4007 struct dmar_domain *dmar_domain = domain->priv;
4008 struct pci_dev *pdev = to_pci_dev(dev);
4010 domain_remove_one_dev_info(dmar_domain, pdev);
4013 static int intel_iommu_map(struct iommu_domain *domain,
4014 unsigned long iova, phys_addr_t hpa,
4015 size_t size, int iommu_prot)
4017 struct dmar_domain *dmar_domain = domain->priv;
4022 if (iommu_prot & IOMMU_READ)
4023 prot |= DMA_PTE_READ;
4024 if (iommu_prot & IOMMU_WRITE)
4025 prot |= DMA_PTE_WRITE;
4026 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4027 prot |= DMA_PTE_SNP;
4029 max_addr = iova + size;
4030 if (dmar_domain->max_addr < max_addr) {
4033 /* check if minimum agaw is sufficient for mapped address */
4034 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4035 if (end < max_addr) {
4036 printk(KERN_ERR "%s: iommu width (%d) is not "
4037 "sufficient for the mapped address (%llx)\n",
4038 __func__, dmar_domain->gaw, max_addr);
4041 dmar_domain->max_addr = max_addr;
4043 /* Round up size to next multiple of PAGE_SIZE, if it and
4044 the low bits of hpa would take us onto the next page */
4045 size = aligned_nrpages(hpa, size);
4046 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4047 hpa >> VTD_PAGE_SHIFT, size, prot);
4051 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4052 unsigned long iova, size_t size)
4054 struct dmar_domain *dmar_domain = domain->priv;
4057 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4058 (iova + size - 1) >> VTD_PAGE_SHIFT);
4060 if (dmar_domain->max_addr == iova + size)
4061 dmar_domain->max_addr = iova;
4063 return PAGE_SIZE << order;
4066 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4069 struct dmar_domain *dmar_domain = domain->priv;
4070 struct dma_pte *pte;
4073 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4075 phys = dma_pte_addr(pte);
4080 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4083 struct dmar_domain *dmar_domain = domain->priv;
4085 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4086 return dmar_domain->iommu_snooping;
4087 if (cap == IOMMU_CAP_INTR_REMAP)
4088 return irq_remapping_enabled;
4094 * Group numbers are arbitrary. Device with the same group number
4095 * indicate the iommu cannot differentiate between them. To avoid
4096 * tracking used groups we just use the seg|bus|devfn of the lowest
4097 * level we're able to differentiate devices
4099 static int intel_iommu_device_group(struct device *dev, unsigned int *groupid)
4101 struct pci_dev *pdev = to_pci_dev(dev);
4102 struct pci_dev *bridge;
4112 if (iommu_no_mapping(dev))
4115 id.pci.segment = pci_domain_nr(pdev->bus);
4116 id.pci.bus = pdev->bus->number;
4117 id.pci.devfn = pdev->devfn;
4119 if (!device_to_iommu(id.pci.segment, id.pci.bus, id.pci.devfn))
4122 bridge = pci_find_upstream_pcie_bridge(pdev);
4124 if (pci_is_pcie(bridge)) {
4125 id.pci.bus = bridge->subordinate->number;
4128 id.pci.bus = bridge->bus->number;
4129 id.pci.devfn = bridge->devfn;
4133 if (!pdev->is_virtfn && iommu_group_mf)
4134 id.pci.devfn = PCI_DEVFN(PCI_SLOT(id.pci.devfn), 0);
4136 *groupid = id.group;
4141 static struct iommu_ops intel_iommu_ops = {
4142 .domain_init = intel_iommu_domain_init,
4143 .domain_destroy = intel_iommu_domain_destroy,
4144 .attach_dev = intel_iommu_attach_device,
4145 .detach_dev = intel_iommu_detach_device,
4146 .map = intel_iommu_map,
4147 .unmap = intel_iommu_unmap,
4148 .iova_to_phys = intel_iommu_iova_to_phys,
4149 .domain_has_cap = intel_iommu_domain_has_cap,
4150 .device_group = intel_iommu_device_group,
4151 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4154 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4157 * Mobile 4 Series Chipset neglects to set RWBF capability,
4160 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4163 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4164 if (dev->revision == 0x07) {
4165 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4170 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4173 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4174 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4175 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4176 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4177 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4178 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4179 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4180 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4182 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4186 if (pci_read_config_word(dev, GGC, &ggc))
4189 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4190 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4192 } else if (dmar_map_gfx) {
4193 /* we have to ensure the gfx device is idle before we flush */
4194 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4195 intel_iommu_strict = 1;
4198 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4199 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4200 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4201 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4203 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4204 ISOCH DMAR unit for the Azalia sound device, but not give it any
4205 TLB entries, which causes it to deadlock. Check for that. We do
4206 this in a function called from init_dmars(), instead of in a PCI
4207 quirk, because we don't want to print the obnoxious "BIOS broken"
4208 message if VT-d is actually disabled.
4210 static void __init check_tylersburg_isoch(void)
4212 struct pci_dev *pdev;
4213 uint32_t vtisochctrl;
4215 /* If there's no Azalia in the system anyway, forget it. */
4216 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4221 /* System Management Registers. Might be hidden, in which case
4222 we can't do the sanity check. But that's OK, because the
4223 known-broken BIOSes _don't_ actually hide it, so far. */
4224 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4228 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4235 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4236 if (vtisochctrl & 1)
4239 /* Drop all bits other than the number of TLB entries */
4240 vtisochctrl &= 0x1c;
4242 /* If we have the recommended number of TLB entries (16), fine. */
4243 if (vtisochctrl == 0x10)
4246 /* Zero TLB entries? You get to ride the short bus to school. */
4248 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4249 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4250 dmi_get_system_info(DMI_BIOS_VENDOR),
4251 dmi_get_system_info(DMI_BIOS_VERSION),
4252 dmi_get_system_info(DMI_PRODUCT_VERSION));
4253 iommu_identity_mapping |= IDENTMAP_AZALIA;
4257 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",