iommu/vt-d: Simplify domain_remove_dev_info()
[firefly-linux-kernel-4.4.55.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE               VTD_PAGE_SIZE
54 #define CONTEXT_SIZE            VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START      (0xfee00000)
62 #define IOAPIC_RANGE_END        (0xfeefffff)
63 #define IOVA_START_ADDR         (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
76                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN          (1)
81
82 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE            (9)
88 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91  * This bitmap is used to advertise the page sizes our hardware support
92  * to the IOMMU core, which will then use this information to split
93  * physically contiguous memory regions it is mapping into page sizes
94  * that we support.
95  *
96  * Traditionally the IOMMU core just handed us the mappings directly,
97  * after making sure the size is an order of a 4KiB page and that the
98  * mapping has natural alignment.
99  *
100  * To retain this behavior, we currently advertise that we support
101  * all page sizes that are an order of 4KiB.
102  *
103  * If at some point we'd like to utilize the IOMMU core's new behavior,
104  * we could change this to advertise the real page sizes we support.
105  */
106 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110         return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125         return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135         return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140         return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145         return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154    are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166         return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170         return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180  * set to 1 to panic kernel if can't successfully enable VT-d
181  * (used when kernel is launched w/ TXT)
182  */
183 static int force_on = 0;
184
185 /*
186  * 0: Present
187  * 1-11: Reserved
188  * 12-63: Context Ptr (12 - (haw-1))
189  * 64-127: Reserved
190  */
191 struct root_entry {
192         u64     lo;
193         u64     hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199  * if marked present.
200  */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203         if (!(re->lo & 1))
204                 return 0;
205
206         return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211  * if marked present.
212  */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215         if (!(re->hi & 1))
216                 return 0;
217
218         return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221  * low 64 bits:
222  * 0: present
223  * 1: fault processing disable
224  * 2-3: translation type
225  * 12-63: address space root
226  * high 64 bits:
227  * 0-2: address width
228  * 3-6: aval
229  * 8-23: domain id
230  */
231 struct context_entry {
232         u64 lo;
233         u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238         context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243         return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248         context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253         return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258         return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263         return context_pasid_enabled(context) ?
264              __context_present(context) :
265              __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270         context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275         context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279                                                 unsigned long value)
280 {
281         context->lo &= (((u64)-1) << 4) | 3;
282         context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286                                             unsigned long value)
287 {
288         context->lo &= ~VTD_PAGE_MASK;
289         context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293                                              unsigned long value)
294 {
295         context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299                                          unsigned long value)
300 {
301         context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306         return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311         context->lo = 0;
312         context->hi = 0;
313 }
314
315 /*
316  * 0: readable
317  * 1: writable
318  * 2-6: reserved
319  * 7: super page
320  * 8-10: available
321  * 11: snoop behavior
322  * 12-63: Host physcial address
323  */
324 struct dma_pte {
325         u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330         pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336         return pte->val & VTD_PAGE_MASK;
337 #else
338         /* Must have a full atomic 64-bit read */
339         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345         return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350         return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355         return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359  * This domain is a statically identity mapping domain.
360  *      1. This domain creats a static 1:1 mapping to all usable memory.
361  *      2. It maps to each iommu if successful.
362  *      3. Each iommu mapps to this domain if successful.
363  */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /*
368  * Domain represents a virtual machine, more than one devices
369  * across iommus may be owned in one domain, e.g. kvm guest.
370  */
371 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
372
373 /* si_domain contains mulitple devices */
374 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
375
376 #define for_each_domain_iommu(idx, domain)                      \
377         for (idx = 0; idx < g_num_of_iommus; idx++)             \
378                 if (domain->iommu_refcnt[idx])
379
380 struct dmar_domain {
381         int     nid;                    /* node id */
382
383         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
384                                         /* Refcount of devices per iommu */
385
386
387         u16             iommu_did[DMAR_UNITS_SUPPORTED];
388                                         /* Domain ids per IOMMU. Use u16 since
389                                          * domain ids are 16 bit wide according
390                                          * to VT-d spec, section 9.3 */
391
392         struct list_head devices;       /* all devices' list */
393         struct iova_domain iovad;       /* iova's that belong to this domain */
394
395         struct dma_pte  *pgd;           /* virtual address */
396         int             gaw;            /* max guest address width */
397
398         /* adjusted guest address width, 0 is level 2 30-bit */
399         int             agaw;
400
401         int             flags;          /* flags to find out type of domain */
402
403         int             iommu_coherency;/* indicate coherency of iommu access */
404         int             iommu_snooping; /* indicate snooping control feature*/
405         int             iommu_count;    /* reference count of iommu */
406         int             iommu_superpage;/* Level of superpages supported:
407                                            0 == 4KiB (no superpages), 1 == 2MiB,
408                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
409         spinlock_t      iommu_lock;     /* protect iommu set in domain */
410         u64             max_addr;       /* maximum mapped address */
411
412         struct iommu_domain domain;     /* generic domain data structure for
413                                            iommu core */
414 };
415
416 /* PCI domain-device relationship */
417 struct device_domain_info {
418         struct list_head link;  /* link to domain siblings */
419         struct list_head global; /* link to global list */
420         u8 bus;                 /* PCI bus number */
421         u8 devfn;               /* PCI devfn number */
422         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
423         struct intel_iommu *iommu; /* IOMMU used by this device */
424         struct dmar_domain *domain; /* pointer to domain */
425 };
426
427 struct dmar_rmrr_unit {
428         struct list_head list;          /* list of rmrr units   */
429         struct acpi_dmar_header *hdr;   /* ACPI header          */
430         u64     base_address;           /* reserved base address*/
431         u64     end_address;            /* reserved end address */
432         struct dmar_dev_scope *devices; /* target devices */
433         int     devices_cnt;            /* target device count */
434 };
435
436 struct dmar_atsr_unit {
437         struct list_head list;          /* list of ATSR units */
438         struct acpi_dmar_header *hdr;   /* ACPI header */
439         struct dmar_dev_scope *devices; /* target devices */
440         int devices_cnt;                /* target device count */
441         u8 include_all:1;               /* include all ports */
442 };
443
444 static LIST_HEAD(dmar_atsr_units);
445 static LIST_HEAD(dmar_rmrr_units);
446
447 #define for_each_rmrr_units(rmrr) \
448         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
449
450 static void flush_unmaps_timeout(unsigned long data);
451
452 static DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
453
454 #define HIGH_WATER_MARK 250
455 struct deferred_flush_tables {
456         int next;
457         struct iova *iova[HIGH_WATER_MARK];
458         struct dmar_domain *domain[HIGH_WATER_MARK];
459         struct page *freelist[HIGH_WATER_MARK];
460 };
461
462 static struct deferred_flush_tables *deferred_flush;
463
464 /* bitmap for indexing intel_iommus */
465 static int g_num_of_iommus;
466
467 static DEFINE_SPINLOCK(async_umap_flush_lock);
468 static LIST_HEAD(unmaps_to_do);
469
470 static int timer_on;
471 static long list_size;
472
473 static void domain_exit(struct dmar_domain *domain);
474 static void domain_remove_dev_info(struct dmar_domain *domain);
475 static void domain_remove_one_dev_info(struct dmar_domain *domain,
476                                        struct device *dev);
477 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
478                                            struct device *dev);
479 static int domain_detach_iommu(struct dmar_domain *domain,
480                                struct intel_iommu *iommu);
481
482 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
483 int dmar_disabled = 0;
484 #else
485 int dmar_disabled = 1;
486 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
487
488 int intel_iommu_enabled = 0;
489 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
490
491 static int dmar_map_gfx = 1;
492 static int dmar_forcedac;
493 static int intel_iommu_strict;
494 static int intel_iommu_superpage = 1;
495 static int intel_iommu_ecs = 1;
496
497 /* We only actually use ECS when PASID support (on the new bit 40)
498  * is also advertised. Some early implementations — the ones with
499  * PASID support on bit 28 — have issues even when we *only* use
500  * extended root/context tables. */
501 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
502                             ecap_pasid(iommu->ecap))
503
504 int intel_iommu_gfx_mapped;
505 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
506
507 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
508 static DEFINE_SPINLOCK(device_domain_lock);
509 static LIST_HEAD(device_domain_list);
510
511 static const struct iommu_ops intel_iommu_ops;
512
513 static bool translation_pre_enabled(struct intel_iommu *iommu)
514 {
515         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
516 }
517
518 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
519 {
520         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
521 }
522
523 static void init_translation_status(struct intel_iommu *iommu)
524 {
525         u32 gsts;
526
527         gsts = readl(iommu->reg + DMAR_GSTS_REG);
528         if (gsts & DMA_GSTS_TES)
529                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
530 }
531
532 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
533 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
534 {
535         return container_of(dom, struct dmar_domain, domain);
536 }
537
538 static int __init intel_iommu_setup(char *str)
539 {
540         if (!str)
541                 return -EINVAL;
542         while (*str) {
543                 if (!strncmp(str, "on", 2)) {
544                         dmar_disabled = 0;
545                         pr_info("IOMMU enabled\n");
546                 } else if (!strncmp(str, "off", 3)) {
547                         dmar_disabled = 1;
548                         pr_info("IOMMU disabled\n");
549                 } else if (!strncmp(str, "igfx_off", 8)) {
550                         dmar_map_gfx = 0;
551                         pr_info("Disable GFX device mapping\n");
552                 } else if (!strncmp(str, "forcedac", 8)) {
553                         pr_info("Forcing DAC for PCI devices\n");
554                         dmar_forcedac = 1;
555                 } else if (!strncmp(str, "strict", 6)) {
556                         pr_info("Disable batched IOTLB flush\n");
557                         intel_iommu_strict = 1;
558                 } else if (!strncmp(str, "sp_off", 6)) {
559                         pr_info("Disable supported super page\n");
560                         intel_iommu_superpage = 0;
561                 } else if (!strncmp(str, "ecs_off", 7)) {
562                         printk(KERN_INFO
563                                 "Intel-IOMMU: disable extended context table support\n");
564                         intel_iommu_ecs = 0;
565                 }
566
567                 str += strcspn(str, ",");
568                 while (*str == ',')
569                         str++;
570         }
571         return 0;
572 }
573 __setup("intel_iommu=", intel_iommu_setup);
574
575 static struct kmem_cache *iommu_domain_cache;
576 static struct kmem_cache *iommu_devinfo_cache;
577
578 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
579 {
580         struct dmar_domain **domains;
581         int idx = did >> 8;
582
583         domains = iommu->domains[idx];
584         if (!domains)
585                 return NULL;
586
587         return domains[did & 0xff];
588 }
589
590 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
591                              struct dmar_domain *domain)
592 {
593         struct dmar_domain **domains;
594         int idx = did >> 8;
595
596         if (!iommu->domains[idx]) {
597                 size_t size = 256 * sizeof(struct dmar_domain *);
598                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
599         }
600
601         domains = iommu->domains[idx];
602         if (WARN_ON(!domains))
603                 return;
604         else
605                 domains[did & 0xff] = domain;
606 }
607
608 static inline void *alloc_pgtable_page(int node)
609 {
610         struct page *page;
611         void *vaddr = NULL;
612
613         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
614         if (page)
615                 vaddr = page_address(page);
616         return vaddr;
617 }
618
619 static inline void free_pgtable_page(void *vaddr)
620 {
621         free_page((unsigned long)vaddr);
622 }
623
624 static inline void *alloc_domain_mem(void)
625 {
626         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
627 }
628
629 static void free_domain_mem(void *vaddr)
630 {
631         kmem_cache_free(iommu_domain_cache, vaddr);
632 }
633
634 static inline void * alloc_devinfo_mem(void)
635 {
636         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
637 }
638
639 static inline void free_devinfo_mem(void *vaddr)
640 {
641         kmem_cache_free(iommu_devinfo_cache, vaddr);
642 }
643
644 static inline int domain_type_is_vm(struct dmar_domain *domain)
645 {
646         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
647 }
648
649 static inline int domain_type_is_si(struct dmar_domain *domain)
650 {
651         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
652 }
653
654 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
655 {
656         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
657                                 DOMAIN_FLAG_STATIC_IDENTITY);
658 }
659
660 static inline int domain_pfn_supported(struct dmar_domain *domain,
661                                        unsigned long pfn)
662 {
663         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
664
665         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
666 }
667
668 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
669 {
670         unsigned long sagaw;
671         int agaw = -1;
672
673         sagaw = cap_sagaw(iommu->cap);
674         for (agaw = width_to_agaw(max_gaw);
675              agaw >= 0; agaw--) {
676                 if (test_bit(agaw, &sagaw))
677                         break;
678         }
679
680         return agaw;
681 }
682
683 /*
684  * Calculate max SAGAW for each iommu.
685  */
686 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
687 {
688         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
689 }
690
691 /*
692  * calculate agaw for each iommu.
693  * "SAGAW" may be different across iommus, use a default agaw, and
694  * get a supported less agaw for iommus that don't support the default agaw.
695  */
696 int iommu_calculate_agaw(struct intel_iommu *iommu)
697 {
698         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
699 }
700
701 /* This functionin only returns single iommu in a domain */
702 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
703 {
704         int iommu_id;
705
706         /* si_domain and vm domain should not get here. */
707         BUG_ON(domain_type_is_vm_or_si(domain));
708         for_each_domain_iommu(iommu_id, domain)
709                 break;
710
711         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
712                 return NULL;
713
714         return g_iommus[iommu_id];
715 }
716
717 static void domain_update_iommu_coherency(struct dmar_domain *domain)
718 {
719         struct dmar_drhd_unit *drhd;
720         struct intel_iommu *iommu;
721         bool found = false;
722         int i;
723
724         domain->iommu_coherency = 1;
725
726         for_each_domain_iommu(i, domain) {
727                 found = true;
728                 if (!ecap_coherent(g_iommus[i]->ecap)) {
729                         domain->iommu_coherency = 0;
730                         break;
731                 }
732         }
733         if (found)
734                 return;
735
736         /* No hardware attached; use lowest common denominator */
737         rcu_read_lock();
738         for_each_active_iommu(iommu, drhd) {
739                 if (!ecap_coherent(iommu->ecap)) {
740                         domain->iommu_coherency = 0;
741                         break;
742                 }
743         }
744         rcu_read_unlock();
745 }
746
747 static int domain_update_iommu_snooping(struct intel_iommu *skip)
748 {
749         struct dmar_drhd_unit *drhd;
750         struct intel_iommu *iommu;
751         int ret = 1;
752
753         rcu_read_lock();
754         for_each_active_iommu(iommu, drhd) {
755                 if (iommu != skip) {
756                         if (!ecap_sc_support(iommu->ecap)) {
757                                 ret = 0;
758                                 break;
759                         }
760                 }
761         }
762         rcu_read_unlock();
763
764         return ret;
765 }
766
767 static int domain_update_iommu_superpage(struct intel_iommu *skip)
768 {
769         struct dmar_drhd_unit *drhd;
770         struct intel_iommu *iommu;
771         int mask = 0xf;
772
773         if (!intel_iommu_superpage) {
774                 return 0;
775         }
776
777         /* set iommu_superpage to the smallest common denominator */
778         rcu_read_lock();
779         for_each_active_iommu(iommu, drhd) {
780                 if (iommu != skip) {
781                         mask &= cap_super_page_val(iommu->cap);
782                         if (!mask)
783                                 break;
784                 }
785         }
786         rcu_read_unlock();
787
788         return fls(mask);
789 }
790
791 /* Some capabilities may be different across iommus */
792 static void domain_update_iommu_cap(struct dmar_domain *domain)
793 {
794         domain_update_iommu_coherency(domain);
795         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
796         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
797 }
798
799 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
800                                                        u8 bus, u8 devfn, int alloc)
801 {
802         struct root_entry *root = &iommu->root_entry[bus];
803         struct context_entry *context;
804         u64 *entry;
805
806         if (ecs_enabled(iommu)) {
807                 if (devfn >= 0x80) {
808                         devfn -= 0x80;
809                         entry = &root->hi;
810                 }
811                 devfn *= 2;
812         }
813         entry = &root->lo;
814         if (*entry & 1)
815                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
816         else {
817                 unsigned long phy_addr;
818                 if (!alloc)
819                         return NULL;
820
821                 context = alloc_pgtable_page(iommu->node);
822                 if (!context)
823                         return NULL;
824
825                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
826                 phy_addr = virt_to_phys((void *)context);
827                 *entry = phy_addr | 1;
828                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
829         }
830         return &context[devfn];
831 }
832
833 static int iommu_dummy(struct device *dev)
834 {
835         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
836 }
837
838 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
839 {
840         struct dmar_drhd_unit *drhd = NULL;
841         struct intel_iommu *iommu;
842         struct device *tmp;
843         struct pci_dev *ptmp, *pdev = NULL;
844         u16 segment = 0;
845         int i;
846
847         if (iommu_dummy(dev))
848                 return NULL;
849
850         if (dev_is_pci(dev)) {
851                 pdev = to_pci_dev(dev);
852                 segment = pci_domain_nr(pdev->bus);
853         } else if (has_acpi_companion(dev))
854                 dev = &ACPI_COMPANION(dev)->dev;
855
856         rcu_read_lock();
857         for_each_active_iommu(iommu, drhd) {
858                 if (pdev && segment != drhd->segment)
859                         continue;
860
861                 for_each_active_dev_scope(drhd->devices,
862                                           drhd->devices_cnt, i, tmp) {
863                         if (tmp == dev) {
864                                 *bus = drhd->devices[i].bus;
865                                 *devfn = drhd->devices[i].devfn;
866                                 goto out;
867                         }
868
869                         if (!pdev || !dev_is_pci(tmp))
870                                 continue;
871
872                         ptmp = to_pci_dev(tmp);
873                         if (ptmp->subordinate &&
874                             ptmp->subordinate->number <= pdev->bus->number &&
875                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
876                                 goto got_pdev;
877                 }
878
879                 if (pdev && drhd->include_all) {
880                 got_pdev:
881                         *bus = pdev->bus->number;
882                         *devfn = pdev->devfn;
883                         goto out;
884                 }
885         }
886         iommu = NULL;
887  out:
888         rcu_read_unlock();
889
890         return iommu;
891 }
892
893 static void domain_flush_cache(struct dmar_domain *domain,
894                                void *addr, int size)
895 {
896         if (!domain->iommu_coherency)
897                 clflush_cache_range(addr, size);
898 }
899
900 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
901 {
902         struct context_entry *context;
903         int ret = 0;
904         unsigned long flags;
905
906         spin_lock_irqsave(&iommu->lock, flags);
907         context = iommu_context_addr(iommu, bus, devfn, 0);
908         if (context)
909                 ret = context_present(context);
910         spin_unlock_irqrestore(&iommu->lock, flags);
911         return ret;
912 }
913
914 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
915 {
916         struct context_entry *context;
917         unsigned long flags;
918
919         spin_lock_irqsave(&iommu->lock, flags);
920         context = iommu_context_addr(iommu, bus, devfn, 0);
921         if (context) {
922                 context_clear_entry(context);
923                 __iommu_flush_cache(iommu, context, sizeof(*context));
924         }
925         spin_unlock_irqrestore(&iommu->lock, flags);
926 }
927
928 static void free_context_table(struct intel_iommu *iommu)
929 {
930         int i;
931         unsigned long flags;
932         struct context_entry *context;
933
934         spin_lock_irqsave(&iommu->lock, flags);
935         if (!iommu->root_entry) {
936                 goto out;
937         }
938         for (i = 0; i < ROOT_ENTRY_NR; i++) {
939                 context = iommu_context_addr(iommu, i, 0, 0);
940                 if (context)
941                         free_pgtable_page(context);
942
943                 if (!ecs_enabled(iommu))
944                         continue;
945
946                 context = iommu_context_addr(iommu, i, 0x80, 0);
947                 if (context)
948                         free_pgtable_page(context);
949
950         }
951         free_pgtable_page(iommu->root_entry);
952         iommu->root_entry = NULL;
953 out:
954         spin_unlock_irqrestore(&iommu->lock, flags);
955 }
956
957 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
958                                       unsigned long pfn, int *target_level)
959 {
960         struct dma_pte *parent, *pte = NULL;
961         int level = agaw_to_level(domain->agaw);
962         int offset;
963
964         BUG_ON(!domain->pgd);
965
966         if (!domain_pfn_supported(domain, pfn))
967                 /* Address beyond IOMMU's addressing capabilities. */
968                 return NULL;
969
970         parent = domain->pgd;
971
972         while (1) {
973                 void *tmp_page;
974
975                 offset = pfn_level_offset(pfn, level);
976                 pte = &parent[offset];
977                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
978                         break;
979                 if (level == *target_level)
980                         break;
981
982                 if (!dma_pte_present(pte)) {
983                         uint64_t pteval;
984
985                         tmp_page = alloc_pgtable_page(domain->nid);
986
987                         if (!tmp_page)
988                                 return NULL;
989
990                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
991                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
992                         if (cmpxchg64(&pte->val, 0ULL, pteval))
993                                 /* Someone else set it while we were thinking; use theirs. */
994                                 free_pgtable_page(tmp_page);
995                         else
996                                 domain_flush_cache(domain, pte, sizeof(*pte));
997                 }
998                 if (level == 1)
999                         break;
1000
1001                 parent = phys_to_virt(dma_pte_addr(pte));
1002                 level--;
1003         }
1004
1005         if (!*target_level)
1006                 *target_level = level;
1007
1008         return pte;
1009 }
1010
1011
1012 /* return address's pte at specific level */
1013 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1014                                          unsigned long pfn,
1015                                          int level, int *large_page)
1016 {
1017         struct dma_pte *parent, *pte = NULL;
1018         int total = agaw_to_level(domain->agaw);
1019         int offset;
1020
1021         parent = domain->pgd;
1022         while (level <= total) {
1023                 offset = pfn_level_offset(pfn, total);
1024                 pte = &parent[offset];
1025                 if (level == total)
1026                         return pte;
1027
1028                 if (!dma_pte_present(pte)) {
1029                         *large_page = total;
1030                         break;
1031                 }
1032
1033                 if (dma_pte_superpage(pte)) {
1034                         *large_page = total;
1035                         return pte;
1036                 }
1037
1038                 parent = phys_to_virt(dma_pte_addr(pte));
1039                 total--;
1040         }
1041         return NULL;
1042 }
1043
1044 /* clear last level pte, a tlb flush should be followed */
1045 static void dma_pte_clear_range(struct dmar_domain *domain,
1046                                 unsigned long start_pfn,
1047                                 unsigned long last_pfn)
1048 {
1049         unsigned int large_page = 1;
1050         struct dma_pte *first_pte, *pte;
1051
1052         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1053         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1054         BUG_ON(start_pfn > last_pfn);
1055
1056         /* we don't need lock here; nobody else touches the iova range */
1057         do {
1058                 large_page = 1;
1059                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1060                 if (!pte) {
1061                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1062                         continue;
1063                 }
1064                 do {
1065                         dma_clear_pte(pte);
1066                         start_pfn += lvl_to_nr_pages(large_page);
1067                         pte++;
1068                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1069
1070                 domain_flush_cache(domain, first_pte,
1071                                    (void *)pte - (void *)first_pte);
1072
1073         } while (start_pfn && start_pfn <= last_pfn);
1074 }
1075
1076 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1077                                struct dma_pte *pte, unsigned long pfn,
1078                                unsigned long start_pfn, unsigned long last_pfn)
1079 {
1080         pfn = max(start_pfn, pfn);
1081         pte = &pte[pfn_level_offset(pfn, level)];
1082
1083         do {
1084                 unsigned long level_pfn;
1085                 struct dma_pte *level_pte;
1086
1087                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1088                         goto next;
1089
1090                 level_pfn = pfn & level_mask(level - 1);
1091                 level_pte = phys_to_virt(dma_pte_addr(pte));
1092
1093                 if (level > 2)
1094                         dma_pte_free_level(domain, level - 1, level_pte,
1095                                            level_pfn, start_pfn, last_pfn);
1096
1097                 /* If range covers entire pagetable, free it */
1098                 if (!(start_pfn > level_pfn ||
1099                       last_pfn < level_pfn + level_size(level) - 1)) {
1100                         dma_clear_pte(pte);
1101                         domain_flush_cache(domain, pte, sizeof(*pte));
1102                         free_pgtable_page(level_pte);
1103                 }
1104 next:
1105                 pfn += level_size(level);
1106         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1107 }
1108
1109 /* free page table pages. last level pte should already be cleared */
1110 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1111                                    unsigned long start_pfn,
1112                                    unsigned long last_pfn)
1113 {
1114         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1115         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1116         BUG_ON(start_pfn > last_pfn);
1117
1118         dma_pte_clear_range(domain, start_pfn, last_pfn);
1119
1120         /* We don't need lock here; nobody else touches the iova range */
1121         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1122                            domain->pgd, 0, start_pfn, last_pfn);
1123
1124         /* free pgd */
1125         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1126                 free_pgtable_page(domain->pgd);
1127                 domain->pgd = NULL;
1128         }
1129 }
1130
1131 /* When a page at a given level is being unlinked from its parent, we don't
1132    need to *modify* it at all. All we need to do is make a list of all the
1133    pages which can be freed just as soon as we've flushed the IOTLB and we
1134    know the hardware page-walk will no longer touch them.
1135    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1136    be freed. */
1137 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1138                                             int level, struct dma_pte *pte,
1139                                             struct page *freelist)
1140 {
1141         struct page *pg;
1142
1143         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1144         pg->freelist = freelist;
1145         freelist = pg;
1146
1147         if (level == 1)
1148                 return freelist;
1149
1150         pte = page_address(pg);
1151         do {
1152                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1153                         freelist = dma_pte_list_pagetables(domain, level - 1,
1154                                                            pte, freelist);
1155                 pte++;
1156         } while (!first_pte_in_page(pte));
1157
1158         return freelist;
1159 }
1160
1161 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1162                                         struct dma_pte *pte, unsigned long pfn,
1163                                         unsigned long start_pfn,
1164                                         unsigned long last_pfn,
1165                                         struct page *freelist)
1166 {
1167         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1168
1169         pfn = max(start_pfn, pfn);
1170         pte = &pte[pfn_level_offset(pfn, level)];
1171
1172         do {
1173                 unsigned long level_pfn;
1174
1175                 if (!dma_pte_present(pte))
1176                         goto next;
1177
1178                 level_pfn = pfn & level_mask(level);
1179
1180                 /* If range covers entire pagetable, free it */
1181                 if (start_pfn <= level_pfn &&
1182                     last_pfn >= level_pfn + level_size(level) - 1) {
1183                         /* These suborbinate page tables are going away entirely. Don't
1184                            bother to clear them; we're just going to *free* them. */
1185                         if (level > 1 && !dma_pte_superpage(pte))
1186                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1187
1188                         dma_clear_pte(pte);
1189                         if (!first_pte)
1190                                 first_pte = pte;
1191                         last_pte = pte;
1192                 } else if (level > 1) {
1193                         /* Recurse down into a level that isn't *entirely* obsolete */
1194                         freelist = dma_pte_clear_level(domain, level - 1,
1195                                                        phys_to_virt(dma_pte_addr(pte)),
1196                                                        level_pfn, start_pfn, last_pfn,
1197                                                        freelist);
1198                 }
1199 next:
1200                 pfn += level_size(level);
1201         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1202
1203         if (first_pte)
1204                 domain_flush_cache(domain, first_pte,
1205                                    (void *)++last_pte - (void *)first_pte);
1206
1207         return freelist;
1208 }
1209
1210 /* We can't just free the pages because the IOMMU may still be walking
1211    the page tables, and may have cached the intermediate levels. The
1212    pages can only be freed after the IOTLB flush has been done. */
1213 struct page *domain_unmap(struct dmar_domain *domain,
1214                           unsigned long start_pfn,
1215                           unsigned long last_pfn)
1216 {
1217         struct page *freelist = NULL;
1218
1219         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1220         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1221         BUG_ON(start_pfn > last_pfn);
1222
1223         /* we don't need lock here; nobody else touches the iova range */
1224         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1225                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1226
1227         /* free pgd */
1228         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1229                 struct page *pgd_page = virt_to_page(domain->pgd);
1230                 pgd_page->freelist = freelist;
1231                 freelist = pgd_page;
1232
1233                 domain->pgd = NULL;
1234         }
1235
1236         return freelist;
1237 }
1238
1239 void dma_free_pagelist(struct page *freelist)
1240 {
1241         struct page *pg;
1242
1243         while ((pg = freelist)) {
1244                 freelist = pg->freelist;
1245                 free_pgtable_page(page_address(pg));
1246         }
1247 }
1248
1249 /* iommu handling */
1250 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1251 {
1252         struct root_entry *root;
1253         unsigned long flags;
1254
1255         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1256         if (!root) {
1257                 pr_err("Allocating root entry for %s failed\n",
1258                         iommu->name);
1259                 return -ENOMEM;
1260         }
1261
1262         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1263
1264         spin_lock_irqsave(&iommu->lock, flags);
1265         iommu->root_entry = root;
1266         spin_unlock_irqrestore(&iommu->lock, flags);
1267
1268         return 0;
1269 }
1270
1271 static void iommu_set_root_entry(struct intel_iommu *iommu)
1272 {
1273         u64 addr;
1274         u32 sts;
1275         unsigned long flag;
1276
1277         addr = virt_to_phys(iommu->root_entry);
1278         if (ecs_enabled(iommu))
1279                 addr |= DMA_RTADDR_RTT;
1280
1281         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1282         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1283
1284         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1285
1286         /* Make sure hardware complete it */
1287         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1288                       readl, (sts & DMA_GSTS_RTPS), sts);
1289
1290         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1291 }
1292
1293 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1294 {
1295         u32 val;
1296         unsigned long flag;
1297
1298         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1299                 return;
1300
1301         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1302         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1303
1304         /* Make sure hardware complete it */
1305         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1306                       readl, (!(val & DMA_GSTS_WBFS)), val);
1307
1308         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1309 }
1310
1311 /* return value determine if we need a write buffer flush */
1312 static void __iommu_flush_context(struct intel_iommu *iommu,
1313                                   u16 did, u16 source_id, u8 function_mask,
1314                                   u64 type)
1315 {
1316         u64 val = 0;
1317         unsigned long flag;
1318
1319         switch (type) {
1320         case DMA_CCMD_GLOBAL_INVL:
1321                 val = DMA_CCMD_GLOBAL_INVL;
1322                 break;
1323         case DMA_CCMD_DOMAIN_INVL:
1324                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1325                 break;
1326         case DMA_CCMD_DEVICE_INVL:
1327                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1328                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1329                 break;
1330         default:
1331                 BUG();
1332         }
1333         val |= DMA_CCMD_ICC;
1334
1335         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1336         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1337
1338         /* Make sure hardware complete it */
1339         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1340                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1341
1342         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1343 }
1344
1345 /* return value determine if we need a write buffer flush */
1346 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1347                                 u64 addr, unsigned int size_order, u64 type)
1348 {
1349         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1350         u64 val = 0, val_iva = 0;
1351         unsigned long flag;
1352
1353         switch (type) {
1354         case DMA_TLB_GLOBAL_FLUSH:
1355                 /* global flush doesn't need set IVA_REG */
1356                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1357                 break;
1358         case DMA_TLB_DSI_FLUSH:
1359                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1360                 break;
1361         case DMA_TLB_PSI_FLUSH:
1362                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1363                 /* IH bit is passed in as part of address */
1364                 val_iva = size_order | addr;
1365                 break;
1366         default:
1367                 BUG();
1368         }
1369         /* Note: set drain read/write */
1370 #if 0
1371         /*
1372          * This is probably to be super secure.. Looks like we can
1373          * ignore it without any impact.
1374          */
1375         if (cap_read_drain(iommu->cap))
1376                 val |= DMA_TLB_READ_DRAIN;
1377 #endif
1378         if (cap_write_drain(iommu->cap))
1379                 val |= DMA_TLB_WRITE_DRAIN;
1380
1381         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1382         /* Note: Only uses first TLB reg currently */
1383         if (val_iva)
1384                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1385         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1386
1387         /* Make sure hardware complete it */
1388         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1389                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1390
1391         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1392
1393         /* check IOTLB invalidation granularity */
1394         if (DMA_TLB_IAIG(val) == 0)
1395                 pr_err("Flush IOTLB failed\n");
1396         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1397                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1398                         (unsigned long long)DMA_TLB_IIRG(type),
1399                         (unsigned long long)DMA_TLB_IAIG(val));
1400 }
1401
1402 static struct device_domain_info *
1403 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1404                          u8 bus, u8 devfn)
1405 {
1406         bool found = false;
1407         unsigned long flags;
1408         struct device_domain_info *info;
1409         struct pci_dev *pdev;
1410
1411         if (!ecap_dev_iotlb_support(iommu->ecap))
1412                 return NULL;
1413
1414         if (!iommu->qi)
1415                 return NULL;
1416
1417         spin_lock_irqsave(&device_domain_lock, flags);
1418         list_for_each_entry(info, &domain->devices, link)
1419                 if (info->iommu == iommu && info->bus == bus &&
1420                     info->devfn == devfn) {
1421                         found = true;
1422                         break;
1423                 }
1424         spin_unlock_irqrestore(&device_domain_lock, flags);
1425
1426         if (!found || !info->dev || !dev_is_pci(info->dev))
1427                 return NULL;
1428
1429         pdev = to_pci_dev(info->dev);
1430
1431         if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1432                 return NULL;
1433
1434         if (!dmar_find_matched_atsr_unit(pdev))
1435                 return NULL;
1436
1437         return info;
1438 }
1439
1440 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1441 {
1442         if (!info || !dev_is_pci(info->dev))
1443                 return;
1444
1445         pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1446 }
1447
1448 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1449 {
1450         if (!info->dev || !dev_is_pci(info->dev) ||
1451             !pci_ats_enabled(to_pci_dev(info->dev)))
1452                 return;
1453
1454         pci_disable_ats(to_pci_dev(info->dev));
1455 }
1456
1457 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1458                                   u64 addr, unsigned mask)
1459 {
1460         u16 sid, qdep;
1461         unsigned long flags;
1462         struct device_domain_info *info;
1463
1464         spin_lock_irqsave(&device_domain_lock, flags);
1465         list_for_each_entry(info, &domain->devices, link) {
1466                 struct pci_dev *pdev;
1467                 if (!info->dev || !dev_is_pci(info->dev))
1468                         continue;
1469
1470                 pdev = to_pci_dev(info->dev);
1471                 if (!pci_ats_enabled(pdev))
1472                         continue;
1473
1474                 sid = info->bus << 8 | info->devfn;
1475                 qdep = pci_ats_queue_depth(pdev);
1476                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1477         }
1478         spin_unlock_irqrestore(&device_domain_lock, flags);
1479 }
1480
1481 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1482                                   struct dmar_domain *domain,
1483                                   unsigned long pfn, unsigned int pages,
1484                                   int ih, int map)
1485 {
1486         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1487         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1488         u16 did = domain->iommu_did[iommu->seq_id];
1489
1490         BUG_ON(pages == 0);
1491
1492         if (ih)
1493                 ih = 1 << 6;
1494         /*
1495          * Fallback to domain selective flush if no PSI support or the size is
1496          * too big.
1497          * PSI requires page size to be 2 ^ x, and the base address is naturally
1498          * aligned to the size
1499          */
1500         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1501                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1502                                                 DMA_TLB_DSI_FLUSH);
1503         else
1504                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1505                                                 DMA_TLB_PSI_FLUSH);
1506
1507         /*
1508          * In caching mode, changes of pages from non-present to present require
1509          * flush. However, device IOTLB doesn't need to be flushed in this case.
1510          */
1511         if (!cap_caching_mode(iommu->cap) || !map)
1512                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1513                                       addr, mask);
1514 }
1515
1516 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1517 {
1518         u32 pmen;
1519         unsigned long flags;
1520
1521         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1522         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1523         pmen &= ~DMA_PMEN_EPM;
1524         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1525
1526         /* wait for the protected region status bit to clear */
1527         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1528                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1529
1530         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1531 }
1532
1533 static void iommu_enable_translation(struct intel_iommu *iommu)
1534 {
1535         u32 sts;
1536         unsigned long flags;
1537
1538         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1539         iommu->gcmd |= DMA_GCMD_TE;
1540         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1541
1542         /* Make sure hardware complete it */
1543         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1544                       readl, (sts & DMA_GSTS_TES), sts);
1545
1546         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1547 }
1548
1549 static void iommu_disable_translation(struct intel_iommu *iommu)
1550 {
1551         u32 sts;
1552         unsigned long flag;
1553
1554         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1555         iommu->gcmd &= ~DMA_GCMD_TE;
1556         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1557
1558         /* Make sure hardware complete it */
1559         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1560                       readl, (!(sts & DMA_GSTS_TES)), sts);
1561
1562         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1563 }
1564
1565
1566 static int iommu_init_domains(struct intel_iommu *iommu)
1567 {
1568         u32 ndomains, nlongs;
1569         size_t size;
1570
1571         ndomains = cap_ndoms(iommu->cap);
1572         pr_debug("%s: Number of Domains supported <%d>\n",
1573                  iommu->name, ndomains);
1574         nlongs = BITS_TO_LONGS(ndomains);
1575
1576         spin_lock_init(&iommu->lock);
1577
1578         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1579         if (!iommu->domain_ids) {
1580                 pr_err("%s: Allocating domain id array failed\n",
1581                        iommu->name);
1582                 return -ENOMEM;
1583         }
1584
1585         size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1586         iommu->domains = kzalloc(size, GFP_KERNEL);
1587
1588         if (iommu->domains) {
1589                 size = 256 * sizeof(struct dmar_domain *);
1590                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1591         }
1592
1593         if (!iommu->domains || !iommu->domains[0]) {
1594                 pr_err("%s: Allocating domain array failed\n",
1595                        iommu->name);
1596                 kfree(iommu->domain_ids);
1597                 kfree(iommu->domains);
1598                 iommu->domain_ids = NULL;
1599                 iommu->domains    = NULL;
1600                 return -ENOMEM;
1601         }
1602
1603
1604
1605         /*
1606          * If Caching mode is set, then invalid translations are tagged
1607          * with domain-id 0, hence we need to pre-allocate it. We also
1608          * use domain-id 0 as a marker for non-allocated domain-id, so
1609          * make sure it is not used for a real domain.
1610          */
1611         set_bit(0, iommu->domain_ids);
1612
1613         return 0;
1614 }
1615
1616 static void disable_dmar_iommu(struct intel_iommu *iommu)
1617 {
1618         struct device_domain_info *info, *tmp;
1619
1620         if (!iommu->domains || !iommu->domain_ids)
1621                 return;
1622
1623         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1624                 struct dmar_domain *domain;
1625
1626                 if (info->iommu != iommu)
1627                         continue;
1628
1629                 if (!info->dev || !info->domain)
1630                         continue;
1631
1632                 domain = info->domain;
1633
1634                 domain_remove_one_dev_info(domain, info->dev);
1635
1636                 if (!domain_type_is_vm_or_si(domain))
1637                         domain_exit(domain);
1638         }
1639
1640         if (iommu->gcmd & DMA_GCMD_TE)
1641                 iommu_disable_translation(iommu);
1642 }
1643
1644 static void free_dmar_iommu(struct intel_iommu *iommu)
1645 {
1646         if ((iommu->domains) && (iommu->domain_ids)) {
1647                 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1648                 int i;
1649
1650                 for (i = 0; i < elems; i++)
1651                         kfree(iommu->domains[i]);
1652                 kfree(iommu->domains);
1653                 kfree(iommu->domain_ids);
1654                 iommu->domains = NULL;
1655                 iommu->domain_ids = NULL;
1656         }
1657
1658         g_iommus[iommu->seq_id] = NULL;
1659
1660         /* free context mapping */
1661         free_context_table(iommu);
1662 }
1663
1664 static struct dmar_domain *alloc_domain(int flags)
1665 {
1666         struct dmar_domain *domain;
1667
1668         domain = alloc_domain_mem();
1669         if (!domain)
1670                 return NULL;
1671
1672         memset(domain, 0, sizeof(*domain));
1673         domain->nid = -1;
1674         domain->flags = flags;
1675         spin_lock_init(&domain->iommu_lock);
1676         INIT_LIST_HEAD(&domain->devices);
1677
1678         return domain;
1679 }
1680
1681 static int __iommu_attach_domain(struct dmar_domain *domain,
1682                                  struct intel_iommu *iommu)
1683 {
1684         int num;
1685         unsigned long ndomains;
1686
1687         num = domain->iommu_did[iommu->seq_id];
1688         if (num)
1689                 return num;
1690
1691         ndomains = cap_ndoms(iommu->cap);
1692         num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1693
1694         if (num < ndomains) {
1695                 set_bit(num, iommu->domain_ids);
1696                 set_iommu_domain(iommu, num, domain);
1697                 domain->iommu_did[iommu->seq_id] = num;
1698         } else {
1699                 num = -ENOSPC;
1700         }
1701
1702         if (num < 0)
1703                 pr_err("%s: No free domain ids\n", iommu->name);
1704
1705         return num;
1706 }
1707
1708 static int iommu_attach_domain(struct dmar_domain *domain,
1709                                struct intel_iommu *iommu)
1710 {
1711         int num;
1712         unsigned long flags;
1713
1714         spin_lock_irqsave(&iommu->lock, flags);
1715         num = __iommu_attach_domain(domain, iommu);
1716         spin_unlock_irqrestore(&iommu->lock, flags);
1717
1718         return num;
1719 }
1720
1721 static void iommu_detach_domain(struct dmar_domain *domain,
1722                                 struct intel_iommu *iommu)
1723 {
1724         unsigned long flags;
1725         int num;
1726
1727         spin_lock_irqsave(&iommu->lock, flags);
1728
1729         num = domain->iommu_did[iommu->seq_id];
1730
1731         if (num == 0)
1732                 return;
1733
1734         clear_bit(num, iommu->domain_ids);
1735         set_iommu_domain(iommu, num, NULL);
1736
1737         spin_unlock_irqrestore(&iommu->lock, flags);
1738 }
1739
1740 static void domain_attach_iommu(struct dmar_domain *domain,
1741                                struct intel_iommu *iommu)
1742 {
1743         unsigned long flags;
1744
1745         spin_lock_irqsave(&domain->iommu_lock, flags);
1746         domain->iommu_refcnt[iommu->seq_id] += 1;
1747         domain->iommu_count += 1;
1748         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1749                 domain->nid = iommu->node;
1750                 domain_update_iommu_cap(domain);
1751         }
1752         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1753 }
1754
1755 static int domain_detach_iommu(struct dmar_domain *domain,
1756                                struct intel_iommu *iommu)
1757 {
1758         unsigned long flags;
1759         int count = INT_MAX;
1760
1761         spin_lock_irqsave(&domain->iommu_lock, flags);
1762         domain->iommu_refcnt[iommu->seq_id] -= 1;
1763         count = --domain->iommu_count;
1764         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1765                 domain_update_iommu_cap(domain);
1766                 domain->iommu_did[iommu->seq_id] = 0;
1767         }
1768         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1769
1770         return count;
1771 }
1772
1773 static struct iova_domain reserved_iova_list;
1774 static struct lock_class_key reserved_rbtree_key;
1775
1776 static int dmar_init_reserved_ranges(void)
1777 {
1778         struct pci_dev *pdev = NULL;
1779         struct iova *iova;
1780         int i;
1781
1782         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1783                         DMA_32BIT_PFN);
1784
1785         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1786                 &reserved_rbtree_key);
1787
1788         /* IOAPIC ranges shouldn't be accessed by DMA */
1789         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1790                 IOVA_PFN(IOAPIC_RANGE_END));
1791         if (!iova) {
1792                 pr_err("Reserve IOAPIC range failed\n");
1793                 return -ENODEV;
1794         }
1795
1796         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1797         for_each_pci_dev(pdev) {
1798                 struct resource *r;
1799
1800                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1801                         r = &pdev->resource[i];
1802                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1803                                 continue;
1804                         iova = reserve_iova(&reserved_iova_list,
1805                                             IOVA_PFN(r->start),
1806                                             IOVA_PFN(r->end));
1807                         if (!iova) {
1808                                 pr_err("Reserve iova failed\n");
1809                                 return -ENODEV;
1810                         }
1811                 }
1812         }
1813         return 0;
1814 }
1815
1816 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1817 {
1818         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1819 }
1820
1821 static inline int guestwidth_to_adjustwidth(int gaw)
1822 {
1823         int agaw;
1824         int r = (gaw - 12) % 9;
1825
1826         if (r == 0)
1827                 agaw = gaw;
1828         else
1829                 agaw = gaw + 9 - r;
1830         if (agaw > 64)
1831                 agaw = 64;
1832         return agaw;
1833 }
1834
1835 static int domain_init(struct dmar_domain *domain, int guest_width)
1836 {
1837         struct intel_iommu *iommu;
1838         int adjust_width, agaw;
1839         unsigned long sagaw;
1840
1841         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1842                         DMA_32BIT_PFN);
1843         domain_reserve_special_ranges(domain);
1844
1845         /* calculate AGAW */
1846         iommu = domain_get_iommu(domain);
1847         if (guest_width > cap_mgaw(iommu->cap))
1848                 guest_width = cap_mgaw(iommu->cap);
1849         domain->gaw = guest_width;
1850         adjust_width = guestwidth_to_adjustwidth(guest_width);
1851         agaw = width_to_agaw(adjust_width);
1852         sagaw = cap_sagaw(iommu->cap);
1853         if (!test_bit(agaw, &sagaw)) {
1854                 /* hardware doesn't support it, choose a bigger one */
1855                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1856                 agaw = find_next_bit(&sagaw, 5, agaw);
1857                 if (agaw >= 5)
1858                         return -ENODEV;
1859         }
1860         domain->agaw = agaw;
1861
1862         if (ecap_coherent(iommu->ecap))
1863                 domain->iommu_coherency = 1;
1864         else
1865                 domain->iommu_coherency = 0;
1866
1867         if (ecap_sc_support(iommu->ecap))
1868                 domain->iommu_snooping = 1;
1869         else
1870                 domain->iommu_snooping = 0;
1871
1872         if (intel_iommu_superpage)
1873                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1874         else
1875                 domain->iommu_superpage = 0;
1876
1877         domain->nid = iommu->node;
1878
1879         /* always allocate the top pgd */
1880         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1881         if (!domain->pgd)
1882                 return -ENOMEM;
1883         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1884         return 0;
1885 }
1886
1887 static void domain_exit(struct dmar_domain *domain)
1888 {
1889         struct page *freelist = NULL;
1890         int i;
1891
1892         /* Domain 0 is reserved, so dont process it */
1893         if (!domain)
1894                 return;
1895
1896         /* Flush any lazy unmaps that may reference this domain */
1897         if (!intel_iommu_strict)
1898                 flush_unmaps_timeout(0);
1899
1900         /* remove associated devices */
1901         domain_remove_dev_info(domain);
1902
1903         /* destroy iovas */
1904         put_iova_domain(&domain->iovad);
1905
1906         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1907
1908         /* clear attached or cached domains */
1909         rcu_read_lock();
1910         for_each_domain_iommu(i, domain)
1911                 iommu_detach_domain(domain, g_iommus[i]);
1912         rcu_read_unlock();
1913
1914         dma_free_pagelist(freelist);
1915
1916         free_domain_mem(domain);
1917 }
1918
1919 static int domain_context_mapping_one(struct dmar_domain *domain,
1920                                       struct intel_iommu *iommu,
1921                                       u8 bus, u8 devfn)
1922 {
1923         int translation = CONTEXT_TT_MULTI_LEVEL;
1924         struct device_domain_info *info = NULL;
1925         struct context_entry *context;
1926         unsigned long flags;
1927         struct dma_pte *pgd;
1928         int id;
1929         int agaw;
1930
1931         if (hw_pass_through && domain_type_is_si(domain))
1932                 translation = CONTEXT_TT_PASS_THROUGH;
1933
1934         pr_debug("Set context mapping for %02x:%02x.%d\n",
1935                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1936
1937         BUG_ON(!domain->pgd);
1938
1939         spin_lock_irqsave(&iommu->lock, flags);
1940         context = iommu_context_addr(iommu, bus, devfn, 1);
1941         spin_unlock_irqrestore(&iommu->lock, flags);
1942         if (!context)
1943                 return -ENOMEM;
1944         spin_lock_irqsave(&iommu->lock, flags);
1945         if (context_present(context)) {
1946                 spin_unlock_irqrestore(&iommu->lock, flags);
1947                 return 0;
1948         }
1949
1950         pgd = domain->pgd;
1951
1952         id = __iommu_attach_domain(domain, iommu);
1953         if (id < 0) {
1954                 spin_unlock_irqrestore(&iommu->lock, flags);
1955                 pr_err("%s: No free domain ids\n", iommu->name);
1956                 return -EFAULT;
1957         }
1958
1959         context_clear_entry(context);
1960         context_set_domain_id(context, id);
1961
1962         /*
1963          * Skip top levels of page tables for iommu which has less agaw
1964          * than default.  Unnecessary for PT mode.
1965          */
1966         if (translation != CONTEXT_TT_PASS_THROUGH) {
1967                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1968                         pgd = phys_to_virt(dma_pte_addr(pgd));
1969                         if (!dma_pte_present(pgd)) {
1970                                 spin_unlock_irqrestore(&iommu->lock, flags);
1971                                 return -ENOMEM;
1972                         }
1973                 }
1974
1975                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1976                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1977                                      CONTEXT_TT_MULTI_LEVEL;
1978
1979                 context_set_address_root(context, virt_to_phys(pgd));
1980                 context_set_address_width(context, iommu->agaw);
1981         } else {
1982                 /*
1983                  * In pass through mode, AW must be programmed to
1984                  * indicate the largest AGAW value supported by
1985                  * hardware. And ASR is ignored by hardware.
1986                  */
1987                 context_set_address_width(context, iommu->msagaw);
1988         }
1989
1990         context_set_translation_type(context, translation);
1991         context_set_fault_enable(context);
1992         context_set_present(context);
1993         domain_flush_cache(domain, context, sizeof(*context));
1994
1995         /*
1996          * It's a non-present to present mapping. If hardware doesn't cache
1997          * non-present entry we only need to flush the write-buffer. If the
1998          * _does_ cache non-present entries, then it does so in the special
1999          * domain #0, which we have to flush:
2000          */
2001         if (cap_caching_mode(iommu->cap)) {
2002                 iommu->flush.flush_context(iommu, 0,
2003                                            (((u16)bus) << 8) | devfn,
2004                                            DMA_CCMD_MASK_NOBIT,
2005                                            DMA_CCMD_DEVICE_INVL);
2006                 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
2007         } else {
2008                 iommu_flush_write_buffer(iommu);
2009         }
2010         iommu_enable_dev_iotlb(info);
2011         spin_unlock_irqrestore(&iommu->lock, flags);
2012
2013         domain_attach_iommu(domain, iommu);
2014
2015         return 0;
2016 }
2017
2018 struct domain_context_mapping_data {
2019         struct dmar_domain *domain;
2020         struct intel_iommu *iommu;
2021 };
2022
2023 static int domain_context_mapping_cb(struct pci_dev *pdev,
2024                                      u16 alias, void *opaque)
2025 {
2026         struct domain_context_mapping_data *data = opaque;
2027
2028         return domain_context_mapping_one(data->domain, data->iommu,
2029                                           PCI_BUS_NUM(alias), alias & 0xff);
2030 }
2031
2032 static int
2033 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2034 {
2035         struct intel_iommu *iommu;
2036         u8 bus, devfn;
2037         struct domain_context_mapping_data data;
2038
2039         iommu = device_to_iommu(dev, &bus, &devfn);
2040         if (!iommu)
2041                 return -ENODEV;
2042
2043         if (!dev_is_pci(dev))
2044                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2045
2046         data.domain = domain;
2047         data.iommu = iommu;
2048
2049         return pci_for_each_dma_alias(to_pci_dev(dev),
2050                                       &domain_context_mapping_cb, &data);
2051 }
2052
2053 static int domain_context_mapped_cb(struct pci_dev *pdev,
2054                                     u16 alias, void *opaque)
2055 {
2056         struct intel_iommu *iommu = opaque;
2057
2058         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2059 }
2060
2061 static int domain_context_mapped(struct device *dev)
2062 {
2063         struct intel_iommu *iommu;
2064         u8 bus, devfn;
2065
2066         iommu = device_to_iommu(dev, &bus, &devfn);
2067         if (!iommu)
2068                 return -ENODEV;
2069
2070         if (!dev_is_pci(dev))
2071                 return device_context_mapped(iommu, bus, devfn);
2072
2073         return !pci_for_each_dma_alias(to_pci_dev(dev),
2074                                        domain_context_mapped_cb, iommu);
2075 }
2076
2077 /* Returns a number of VTD pages, but aligned to MM page size */
2078 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2079                                             size_t size)
2080 {
2081         host_addr &= ~PAGE_MASK;
2082         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2083 }
2084
2085 /* Return largest possible superpage level for a given mapping */
2086 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2087                                           unsigned long iov_pfn,
2088                                           unsigned long phy_pfn,
2089                                           unsigned long pages)
2090 {
2091         int support, level = 1;
2092         unsigned long pfnmerge;
2093
2094         support = domain->iommu_superpage;
2095
2096         /* To use a large page, the virtual *and* physical addresses
2097            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2098            of them will mean we have to use smaller pages. So just
2099            merge them and check both at once. */
2100         pfnmerge = iov_pfn | phy_pfn;
2101
2102         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2103                 pages >>= VTD_STRIDE_SHIFT;
2104                 if (!pages)
2105                         break;
2106                 pfnmerge >>= VTD_STRIDE_SHIFT;
2107                 level++;
2108                 support--;
2109         }
2110         return level;
2111 }
2112
2113 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2114                             struct scatterlist *sg, unsigned long phys_pfn,
2115                             unsigned long nr_pages, int prot)
2116 {
2117         struct dma_pte *first_pte = NULL, *pte = NULL;
2118         phys_addr_t uninitialized_var(pteval);
2119         unsigned long sg_res = 0;
2120         unsigned int largepage_lvl = 0;
2121         unsigned long lvl_pages = 0;
2122
2123         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2124
2125         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2126                 return -EINVAL;
2127
2128         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2129
2130         if (!sg) {
2131                 sg_res = nr_pages;
2132                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2133         }
2134
2135         while (nr_pages > 0) {
2136                 uint64_t tmp;
2137
2138                 if (!sg_res) {
2139                         sg_res = aligned_nrpages(sg->offset, sg->length);
2140                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2141                         sg->dma_length = sg->length;
2142                         pteval = page_to_phys(sg_page(sg)) | prot;
2143                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2144                 }
2145
2146                 if (!pte) {
2147                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2148
2149                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2150                         if (!pte)
2151                                 return -ENOMEM;
2152                         /* It is large page*/
2153                         if (largepage_lvl > 1) {
2154                                 pteval |= DMA_PTE_LARGE_PAGE;
2155                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2156                                 /*
2157                                  * Ensure that old small page tables are
2158                                  * removed to make room for superpage,
2159                                  * if they exist.
2160                                  */
2161                                 dma_pte_free_pagetable(domain, iov_pfn,
2162                                                        iov_pfn + lvl_pages - 1);
2163                         } else {
2164                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2165                         }
2166
2167                 }
2168                 /* We don't need lock here, nobody else
2169                  * touches the iova range
2170                  */
2171                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2172                 if (tmp) {
2173                         static int dumps = 5;
2174                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2175                                 iov_pfn, tmp, (unsigned long long)pteval);
2176                         if (dumps) {
2177                                 dumps--;
2178                                 debug_dma_dump_mappings(NULL);
2179                         }
2180                         WARN_ON(1);
2181                 }
2182
2183                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2184
2185                 BUG_ON(nr_pages < lvl_pages);
2186                 BUG_ON(sg_res < lvl_pages);
2187
2188                 nr_pages -= lvl_pages;
2189                 iov_pfn += lvl_pages;
2190                 phys_pfn += lvl_pages;
2191                 pteval += lvl_pages * VTD_PAGE_SIZE;
2192                 sg_res -= lvl_pages;
2193
2194                 /* If the next PTE would be the first in a new page, then we
2195                    need to flush the cache on the entries we've just written.
2196                    And then we'll need to recalculate 'pte', so clear it and
2197                    let it get set again in the if (!pte) block above.
2198
2199                    If we're done (!nr_pages) we need to flush the cache too.
2200
2201                    Also if we've been setting superpages, we may need to
2202                    recalculate 'pte' and switch back to smaller pages for the
2203                    end of the mapping, if the trailing size is not enough to
2204                    use another superpage (i.e. sg_res < lvl_pages). */
2205                 pte++;
2206                 if (!nr_pages || first_pte_in_page(pte) ||
2207                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2208                         domain_flush_cache(domain, first_pte,
2209                                            (void *)pte - (void *)first_pte);
2210                         pte = NULL;
2211                 }
2212
2213                 if (!sg_res && nr_pages)
2214                         sg = sg_next(sg);
2215         }
2216         return 0;
2217 }
2218
2219 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2220                                     struct scatterlist *sg, unsigned long nr_pages,
2221                                     int prot)
2222 {
2223         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2224 }
2225
2226 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2227                                      unsigned long phys_pfn, unsigned long nr_pages,
2228                                      int prot)
2229 {
2230         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2231 }
2232
2233 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2234 {
2235         if (!iommu)
2236                 return;
2237
2238         clear_context_table(iommu, bus, devfn);
2239         iommu->flush.flush_context(iommu, 0, 0, 0,
2240                                            DMA_CCMD_GLOBAL_INVL);
2241         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2242 }
2243
2244 static inline void unlink_domain_info(struct device_domain_info *info)
2245 {
2246         assert_spin_locked(&device_domain_lock);
2247         list_del(&info->link);
2248         list_del(&info->global);
2249         if (info->dev)
2250                 info->dev->archdata.iommu = NULL;
2251 }
2252
2253 static void domain_remove_dev_info(struct dmar_domain *domain)
2254 {
2255         struct device_domain_info *info, *tmp;
2256
2257         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2258                 domain_remove_one_dev_info(domain, info->dev);
2259 }
2260
2261 /*
2262  * find_domain
2263  * Note: we use struct device->archdata.iommu stores the info
2264  */
2265 static struct dmar_domain *find_domain(struct device *dev)
2266 {
2267         struct device_domain_info *info;
2268
2269         /* No lock here, assumes no domain exit in normal case */
2270         info = dev->archdata.iommu;
2271         if (info)
2272                 return info->domain;
2273         return NULL;
2274 }
2275
2276 static inline struct device_domain_info *
2277 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2278 {
2279         struct device_domain_info *info;
2280
2281         list_for_each_entry(info, &device_domain_list, global)
2282                 if (info->iommu->segment == segment && info->bus == bus &&
2283                     info->devfn == devfn)
2284                         return info;
2285
2286         return NULL;
2287 }
2288
2289 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2290                                                 int bus, int devfn,
2291                                                 struct device *dev,
2292                                                 struct dmar_domain *domain)
2293 {
2294         struct dmar_domain *found = NULL;
2295         struct device_domain_info *info;
2296         unsigned long flags;
2297
2298         info = alloc_devinfo_mem();
2299         if (!info)
2300                 return NULL;
2301
2302         info->bus = bus;
2303         info->devfn = devfn;
2304         info->dev = dev;
2305         info->domain = domain;
2306         info->iommu = iommu;
2307
2308         spin_lock_irqsave(&device_domain_lock, flags);
2309         if (dev)
2310                 found = find_domain(dev);
2311         else {
2312                 struct device_domain_info *info2;
2313                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2314                 if (info2)
2315                         found = info2->domain;
2316         }
2317         if (found) {
2318                 spin_unlock_irqrestore(&device_domain_lock, flags);
2319                 free_devinfo_mem(info);
2320                 /* Caller must free the original domain */
2321                 return found;
2322         }
2323
2324         list_add(&info->link, &domain->devices);
2325         list_add(&info->global, &device_domain_list);
2326         if (dev)
2327                 dev->archdata.iommu = info;
2328         spin_unlock_irqrestore(&device_domain_lock, flags);
2329
2330         return domain;
2331 }
2332
2333 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2334 {
2335         *(u16 *)opaque = alias;
2336         return 0;
2337 }
2338
2339 /* domain is initialized */
2340 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2341 {
2342         struct dmar_domain *domain, *tmp;
2343         struct intel_iommu *iommu;
2344         struct device_domain_info *info;
2345         u16 dma_alias;
2346         unsigned long flags;
2347         u8 bus, devfn;
2348
2349         domain = find_domain(dev);
2350         if (domain)
2351                 return domain;
2352
2353         iommu = device_to_iommu(dev, &bus, &devfn);
2354         if (!iommu)
2355                 return NULL;
2356
2357         if (dev_is_pci(dev)) {
2358                 struct pci_dev *pdev = to_pci_dev(dev);
2359
2360                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2361
2362                 spin_lock_irqsave(&device_domain_lock, flags);
2363                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2364                                                       PCI_BUS_NUM(dma_alias),
2365                                                       dma_alias & 0xff);
2366                 if (info) {
2367                         iommu = info->iommu;
2368                         domain = info->domain;
2369                 }
2370                 spin_unlock_irqrestore(&device_domain_lock, flags);
2371
2372                 /* DMA alias already has a domain, uses it */
2373                 if (info)
2374                         goto found_domain;
2375         }
2376
2377         /* Allocate and initialize new domain for the device */
2378         domain = alloc_domain(0);
2379         if (!domain)
2380                 return NULL;
2381         if (iommu_attach_domain(domain, iommu) < 0) {
2382                 free_domain_mem(domain);
2383                 return NULL;
2384         }
2385         domain_attach_iommu(domain, iommu);
2386         if (domain_init(domain, gaw)) {
2387                 domain_exit(domain);
2388                 return NULL;
2389         }
2390
2391         /* register PCI DMA alias device */
2392         if (dev_is_pci(dev)) {
2393                 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2394                                            dma_alias & 0xff, NULL, domain);
2395
2396                 if (!tmp || tmp != domain) {
2397                         domain_exit(domain);
2398                         domain = tmp;
2399                 }
2400
2401                 if (!domain)
2402                         return NULL;
2403         }
2404
2405 found_domain:
2406         tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2407
2408         if (!tmp || tmp != domain) {
2409                 domain_exit(domain);
2410                 domain = tmp;
2411         }
2412
2413         return domain;
2414 }
2415
2416 static int iommu_identity_mapping;
2417 #define IDENTMAP_ALL            1
2418 #define IDENTMAP_GFX            2
2419 #define IDENTMAP_AZALIA         4
2420
2421 static int iommu_domain_identity_map(struct dmar_domain *domain,
2422                                      unsigned long long start,
2423                                      unsigned long long end)
2424 {
2425         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2426         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2427
2428         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2429                           dma_to_mm_pfn(last_vpfn))) {
2430                 pr_err("Reserving iova failed\n");
2431                 return -ENOMEM;
2432         }
2433
2434         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2435         /*
2436          * RMRR range might have overlap with physical memory range,
2437          * clear it first
2438          */
2439         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2440
2441         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2442                                   last_vpfn - first_vpfn + 1,
2443                                   DMA_PTE_READ|DMA_PTE_WRITE);
2444 }
2445
2446 static int iommu_prepare_identity_map(struct device *dev,
2447                                       unsigned long long start,
2448                                       unsigned long long end)
2449 {
2450         struct dmar_domain *domain;
2451         int ret;
2452
2453         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2454         if (!domain)
2455                 return -ENOMEM;
2456
2457         /* For _hardware_ passthrough, don't bother. But for software
2458            passthrough, we do it anyway -- it may indicate a memory
2459            range which is reserved in E820, so which didn't get set
2460            up to start with in si_domain */
2461         if (domain == si_domain && hw_pass_through) {
2462                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2463                         dev_name(dev), start, end);
2464                 return 0;
2465         }
2466
2467         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2468                 dev_name(dev), start, end);
2469
2470         if (end < start) {
2471                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2472                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2473                         dmi_get_system_info(DMI_BIOS_VENDOR),
2474                         dmi_get_system_info(DMI_BIOS_VERSION),
2475                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2476                 ret = -EIO;
2477                 goto error;
2478         }
2479
2480         if (end >> agaw_to_width(domain->agaw)) {
2481                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2482                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2483                      agaw_to_width(domain->agaw),
2484                      dmi_get_system_info(DMI_BIOS_VENDOR),
2485                      dmi_get_system_info(DMI_BIOS_VERSION),
2486                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2487                 ret = -EIO;
2488                 goto error;
2489         }
2490
2491         ret = iommu_domain_identity_map(domain, start, end);
2492         if (ret)
2493                 goto error;
2494
2495         /* context entry init */
2496         ret = domain_context_mapping(domain, dev);
2497         if (ret)
2498                 goto error;
2499
2500         return 0;
2501
2502  error:
2503         domain_exit(domain);
2504         return ret;
2505 }
2506
2507 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2508                                          struct device *dev)
2509 {
2510         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2511                 return 0;
2512         return iommu_prepare_identity_map(dev, rmrr->base_address,
2513                                           rmrr->end_address);
2514 }
2515
2516 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2517 static inline void iommu_prepare_isa(void)
2518 {
2519         struct pci_dev *pdev;
2520         int ret;
2521
2522         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2523         if (!pdev)
2524                 return;
2525
2526         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2527         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2528
2529         if (ret)
2530                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2531
2532         pci_dev_put(pdev);
2533 }
2534 #else
2535 static inline void iommu_prepare_isa(void)
2536 {
2537         return;
2538 }
2539 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2540
2541 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2542
2543 static int __init si_domain_init(int hw)
2544 {
2545         int nid, ret = 0;
2546
2547         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2548         if (!si_domain)
2549                 return -EFAULT;
2550
2551         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2552                 domain_exit(si_domain);
2553                 return -EFAULT;
2554         }
2555
2556         pr_debug("Identity mapping domain allocated\n");
2557
2558         if (hw)
2559                 return 0;
2560
2561         for_each_online_node(nid) {
2562                 unsigned long start_pfn, end_pfn;
2563                 int i;
2564
2565                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2566                         ret = iommu_domain_identity_map(si_domain,
2567                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2568                         if (ret)
2569                                 return ret;
2570                 }
2571         }
2572
2573         return 0;
2574 }
2575
2576 static int identity_mapping(struct device *dev)
2577 {
2578         struct device_domain_info *info;
2579
2580         if (likely(!iommu_identity_mapping))
2581                 return 0;
2582
2583         info = dev->archdata.iommu;
2584         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2585                 return (info->domain == si_domain);
2586
2587         return 0;
2588 }
2589
2590 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2591 {
2592         struct dmar_domain *ndomain;
2593         struct intel_iommu *iommu;
2594         u8 bus, devfn;
2595         int ret;
2596
2597         iommu = device_to_iommu(dev, &bus, &devfn);
2598         if (!iommu)
2599                 return -ENODEV;
2600
2601         ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2602         if (ndomain != domain)
2603                 return -EBUSY;
2604
2605         ret = domain_context_mapping(domain, dev);
2606         if (ret) {
2607                 domain_remove_one_dev_info(domain, dev);
2608                 return ret;
2609         }
2610
2611         return 0;
2612 }
2613
2614 static bool device_has_rmrr(struct device *dev)
2615 {
2616         struct dmar_rmrr_unit *rmrr;
2617         struct device *tmp;
2618         int i;
2619
2620         rcu_read_lock();
2621         for_each_rmrr_units(rmrr) {
2622                 /*
2623                  * Return TRUE if this RMRR contains the device that
2624                  * is passed in.
2625                  */
2626                 for_each_active_dev_scope(rmrr->devices,
2627                                           rmrr->devices_cnt, i, tmp)
2628                         if (tmp == dev) {
2629                                 rcu_read_unlock();
2630                                 return true;
2631                         }
2632         }
2633         rcu_read_unlock();
2634         return false;
2635 }
2636
2637 /*
2638  * There are a couple cases where we need to restrict the functionality of
2639  * devices associated with RMRRs.  The first is when evaluating a device for
2640  * identity mapping because problems exist when devices are moved in and out
2641  * of domains and their respective RMRR information is lost.  This means that
2642  * a device with associated RMRRs will never be in a "passthrough" domain.
2643  * The second is use of the device through the IOMMU API.  This interface
2644  * expects to have full control of the IOVA space for the device.  We cannot
2645  * satisfy both the requirement that RMRR access is maintained and have an
2646  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2647  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2648  * We therefore prevent devices associated with an RMRR from participating in
2649  * the IOMMU API, which eliminates them from device assignment.
2650  *
2651  * In both cases we assume that PCI USB devices with RMRRs have them largely
2652  * for historical reasons and that the RMRR space is not actively used post
2653  * boot.  This exclusion may change if vendors begin to abuse it.
2654  *
2655  * The same exception is made for graphics devices, with the requirement that
2656  * any use of the RMRR regions will be torn down before assigning the device
2657  * to a guest.
2658  */
2659 static bool device_is_rmrr_locked(struct device *dev)
2660 {
2661         if (!device_has_rmrr(dev))
2662                 return false;
2663
2664         if (dev_is_pci(dev)) {
2665                 struct pci_dev *pdev = to_pci_dev(dev);
2666
2667                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2668                         return false;
2669         }
2670
2671         return true;
2672 }
2673
2674 static int iommu_should_identity_map(struct device *dev, int startup)
2675 {
2676
2677         if (dev_is_pci(dev)) {
2678                 struct pci_dev *pdev = to_pci_dev(dev);
2679
2680                 if (device_is_rmrr_locked(dev))
2681                         return 0;
2682
2683                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2684                         return 1;
2685
2686                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2687                         return 1;
2688
2689                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2690                         return 0;
2691
2692                 /*
2693                  * We want to start off with all devices in the 1:1 domain, and
2694                  * take them out later if we find they can't access all of memory.
2695                  *
2696                  * However, we can't do this for PCI devices behind bridges,
2697                  * because all PCI devices behind the same bridge will end up
2698                  * with the same source-id on their transactions.
2699                  *
2700                  * Practically speaking, we can't change things around for these
2701                  * devices at run-time, because we can't be sure there'll be no
2702                  * DMA transactions in flight for any of their siblings.
2703                  *
2704                  * So PCI devices (unless they're on the root bus) as well as
2705                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2706                  * the 1:1 domain, just in _case_ one of their siblings turns out
2707                  * not to be able to map all of memory.
2708                  */
2709                 if (!pci_is_pcie(pdev)) {
2710                         if (!pci_is_root_bus(pdev->bus))
2711                                 return 0;
2712                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2713                                 return 0;
2714                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2715                         return 0;
2716         } else {
2717                 if (device_has_rmrr(dev))
2718                         return 0;
2719         }
2720
2721         /*
2722          * At boot time, we don't yet know if devices will be 64-bit capable.
2723          * Assume that they will — if they turn out not to be, then we can
2724          * take them out of the 1:1 domain later.
2725          */
2726         if (!startup) {
2727                 /*
2728                  * If the device's dma_mask is less than the system's memory
2729                  * size then this is not a candidate for identity mapping.
2730                  */
2731                 u64 dma_mask = *dev->dma_mask;
2732
2733                 if (dev->coherent_dma_mask &&
2734                     dev->coherent_dma_mask < dma_mask)
2735                         dma_mask = dev->coherent_dma_mask;
2736
2737                 return dma_mask >= dma_get_required_mask(dev);
2738         }
2739
2740         return 1;
2741 }
2742
2743 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2744 {
2745         int ret;
2746
2747         if (!iommu_should_identity_map(dev, 1))
2748                 return 0;
2749
2750         ret = domain_add_dev_info(si_domain, dev);
2751         if (!ret)
2752                 pr_info("%s identity mapping for device %s\n",
2753                         hw ? "Hardware" : "Software", dev_name(dev));
2754         else if (ret == -ENODEV)
2755                 /* device not associated with an iommu */
2756                 ret = 0;
2757
2758         return ret;
2759 }
2760
2761
2762 static int __init iommu_prepare_static_identity_mapping(int hw)
2763 {
2764         struct pci_dev *pdev = NULL;
2765         struct dmar_drhd_unit *drhd;
2766         struct intel_iommu *iommu;
2767         struct device *dev;
2768         int i;
2769         int ret = 0;
2770
2771         for_each_pci_dev(pdev) {
2772                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2773                 if (ret)
2774                         return ret;
2775         }
2776
2777         for_each_active_iommu(iommu, drhd)
2778                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2779                         struct acpi_device_physical_node *pn;
2780                         struct acpi_device *adev;
2781
2782                         if (dev->bus != &acpi_bus_type)
2783                                 continue;
2784
2785                         adev= to_acpi_device(dev);
2786                         mutex_lock(&adev->physical_node_lock);
2787                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2788                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2789                                 if (ret)
2790                                         break;
2791                         }
2792                         mutex_unlock(&adev->physical_node_lock);
2793                         if (ret)
2794                                 return ret;
2795                 }
2796
2797         return 0;
2798 }
2799
2800 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2801 {
2802         /*
2803          * Start from the sane iommu hardware state.
2804          * If the queued invalidation is already initialized by us
2805          * (for example, while enabling interrupt-remapping) then
2806          * we got the things already rolling from a sane state.
2807          */
2808         if (!iommu->qi) {
2809                 /*
2810                  * Clear any previous faults.
2811                  */
2812                 dmar_fault(-1, iommu);
2813                 /*
2814                  * Disable queued invalidation if supported and already enabled
2815                  * before OS handover.
2816                  */
2817                 dmar_disable_qi(iommu);
2818         }
2819
2820         if (dmar_enable_qi(iommu)) {
2821                 /*
2822                  * Queued Invalidate not enabled, use Register Based Invalidate
2823                  */
2824                 iommu->flush.flush_context = __iommu_flush_context;
2825                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2826                 pr_info("%s: Using Register based invalidation\n",
2827                         iommu->name);
2828         } else {
2829                 iommu->flush.flush_context = qi_flush_context;
2830                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2831                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2832         }
2833 }
2834
2835 static int copy_context_table(struct intel_iommu *iommu,
2836                               struct root_entry *old_re,
2837                               struct context_entry **tbl,
2838                               int bus, bool ext)
2839 {
2840         struct context_entry *old_ce = NULL, *new_ce = NULL, ce;
2841         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2842         phys_addr_t old_ce_phys;
2843
2844         tbl_idx = ext ? bus * 2 : bus;
2845
2846         for (devfn = 0; devfn < 256; devfn++) {
2847                 /* First calculate the correct index */
2848                 idx = (ext ? devfn * 2 : devfn) % 256;
2849
2850                 if (idx == 0) {
2851                         /* First save what we may have and clean up */
2852                         if (new_ce) {
2853                                 tbl[tbl_idx] = new_ce;
2854                                 __iommu_flush_cache(iommu, new_ce,
2855                                                     VTD_PAGE_SIZE);
2856                                 pos = 1;
2857                         }
2858
2859                         if (old_ce)
2860                                 iounmap(old_ce);
2861
2862                         ret = 0;
2863                         if (devfn < 0x80)
2864                                 old_ce_phys = root_entry_lctp(old_re);
2865                         else
2866                                 old_ce_phys = root_entry_uctp(old_re);
2867
2868                         if (!old_ce_phys) {
2869                                 if (ext && devfn == 0) {
2870                                         /* No LCTP, try UCTP */
2871                                         devfn = 0x7f;
2872                                         continue;
2873                                 } else {
2874                                         goto out;
2875                                 }
2876                         }
2877
2878                         ret = -ENOMEM;
2879                         old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2880                         if (!old_ce)
2881                                 goto out;
2882
2883                         new_ce = alloc_pgtable_page(iommu->node);
2884                         if (!new_ce)
2885                                 goto out_unmap;
2886
2887                         ret = 0;
2888                 }
2889
2890                 /* Now copy the context entry */
2891                 ce = old_ce[idx];
2892
2893                 if (!__context_present(&ce))
2894                         continue;
2895
2896                 did = context_domain_id(&ce);
2897                 if (did >= 0 && did < cap_ndoms(iommu->cap))
2898                         set_bit(did, iommu->domain_ids);
2899
2900                 /*
2901                  * We need a marker for copied context entries. This
2902                  * marker needs to work for the old format as well as
2903                  * for extended context entries.
2904                  *
2905                  * Bit 67 of the context entry is used. In the old
2906                  * format this bit is available to software, in the
2907                  * extended format it is the PGE bit, but PGE is ignored
2908                  * by HW if PASIDs are disabled (and thus still
2909                  * available).
2910                  *
2911                  * So disable PASIDs first and then mark the entry
2912                  * copied. This means that we don't copy PASID
2913                  * translations from the old kernel, but this is fine as
2914                  * faults there are not fatal.
2915                  */
2916                 context_clear_pasid_enable(&ce);
2917                 context_set_copied(&ce);
2918
2919                 new_ce[idx] = ce;
2920         }
2921
2922         tbl[tbl_idx + pos] = new_ce;
2923
2924         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2925
2926 out_unmap:
2927         iounmap(old_ce);
2928
2929 out:
2930         return ret;
2931 }
2932
2933 static int copy_translation_tables(struct intel_iommu *iommu)
2934 {
2935         struct context_entry **ctxt_tbls;
2936         struct root_entry *old_rt;
2937         phys_addr_t old_rt_phys;
2938         int ctxt_table_entries;
2939         unsigned long flags;
2940         u64 rtaddr_reg;
2941         int bus, ret;
2942         bool new_ext, ext;
2943
2944         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2945         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
2946         new_ext    = !!ecap_ecs(iommu->ecap);
2947
2948         /*
2949          * The RTT bit can only be changed when translation is disabled,
2950          * but disabling translation means to open a window for data
2951          * corruption. So bail out and don't copy anything if we would
2952          * have to change the bit.
2953          */
2954         if (new_ext != ext)
2955                 return -EINVAL;
2956
2957         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2958         if (!old_rt_phys)
2959                 return -EINVAL;
2960
2961         old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2962         if (!old_rt)
2963                 return -ENOMEM;
2964
2965         /* This is too big for the stack - allocate it from slab */
2966         ctxt_table_entries = ext ? 512 : 256;
2967         ret = -ENOMEM;
2968         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2969         if (!ctxt_tbls)
2970                 goto out_unmap;
2971
2972         for (bus = 0; bus < 256; bus++) {
2973                 ret = copy_context_table(iommu, &old_rt[bus],
2974                                          ctxt_tbls, bus, ext);
2975                 if (ret) {
2976                         pr_err("%s: Failed to copy context table for bus %d\n",
2977                                 iommu->name, bus);
2978                         continue;
2979                 }
2980         }
2981
2982         spin_lock_irqsave(&iommu->lock, flags);
2983
2984         /* Context tables are copied, now write them to the root_entry table */
2985         for (bus = 0; bus < 256; bus++) {
2986                 int idx = ext ? bus * 2 : bus;
2987                 u64 val;
2988
2989                 if (ctxt_tbls[idx]) {
2990                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
2991                         iommu->root_entry[bus].lo = val;
2992                 }
2993
2994                 if (!ext || !ctxt_tbls[idx + 1])
2995                         continue;
2996
2997                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2998                 iommu->root_entry[bus].hi = val;
2999         }
3000
3001         spin_unlock_irqrestore(&iommu->lock, flags);
3002
3003         kfree(ctxt_tbls);
3004
3005         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3006
3007         ret = 0;
3008
3009 out_unmap:
3010         iounmap(old_rt);
3011
3012         return ret;
3013 }
3014
3015 static int __init init_dmars(void)
3016 {
3017         struct dmar_drhd_unit *drhd;
3018         struct dmar_rmrr_unit *rmrr;
3019         bool copied_tables = false;
3020         struct device *dev;
3021         struct intel_iommu *iommu;
3022         int i, ret;
3023
3024         /*
3025          * for each drhd
3026          *    allocate root
3027          *    initialize and program root entry to not present
3028          * endfor
3029          */
3030         for_each_drhd_unit(drhd) {
3031                 /*
3032                  * lock not needed as this is only incremented in the single
3033                  * threaded kernel __init code path all other access are read
3034                  * only
3035                  */
3036                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3037                         g_num_of_iommus++;
3038                         continue;
3039                 }
3040                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3041         }
3042
3043         /* Preallocate enough resources for IOMMU hot-addition */
3044         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3045                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3046
3047         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3048                         GFP_KERNEL);
3049         if (!g_iommus) {
3050                 pr_err("Allocating global iommu array failed\n");
3051                 ret = -ENOMEM;
3052                 goto error;
3053         }
3054
3055         deferred_flush = kzalloc(g_num_of_iommus *
3056                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3057         if (!deferred_flush) {
3058                 ret = -ENOMEM;
3059                 goto free_g_iommus;
3060         }
3061
3062         for_each_active_iommu(iommu, drhd) {
3063                 g_iommus[iommu->seq_id] = iommu;
3064
3065                 intel_iommu_init_qi(iommu);
3066
3067                 ret = iommu_init_domains(iommu);
3068                 if (ret)
3069                         goto free_iommu;
3070
3071                 init_translation_status(iommu);
3072
3073                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3074                         iommu_disable_translation(iommu);
3075                         clear_translation_pre_enabled(iommu);
3076                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3077                                 iommu->name);
3078                 }
3079
3080                 /*
3081                  * TBD:
3082                  * we could share the same root & context tables
3083                  * among all IOMMU's. Need to Split it later.
3084                  */
3085                 ret = iommu_alloc_root_entry(iommu);
3086                 if (ret)
3087                         goto free_iommu;
3088
3089                 if (translation_pre_enabled(iommu)) {
3090                         pr_info("Translation already enabled - trying to copy translation structures\n");
3091
3092                         ret = copy_translation_tables(iommu);
3093                         if (ret) {
3094                                 /*
3095                                  * We found the IOMMU with translation
3096                                  * enabled - but failed to copy over the
3097                                  * old root-entry table. Try to proceed
3098                                  * by disabling translation now and
3099                                  * allocating a clean root-entry table.
3100                                  * This might cause DMAR faults, but
3101                                  * probably the dump will still succeed.
3102                                  */
3103                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3104                                        iommu->name);
3105                                 iommu_disable_translation(iommu);
3106                                 clear_translation_pre_enabled(iommu);
3107                         } else {
3108                                 pr_info("Copied translation tables from previous kernel for %s\n",
3109                                         iommu->name);
3110                                 copied_tables = true;
3111                         }
3112                 }
3113
3114                 iommu_flush_write_buffer(iommu);
3115                 iommu_set_root_entry(iommu);
3116                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3117                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3118
3119                 if (!ecap_pass_through(iommu->ecap))
3120                         hw_pass_through = 0;
3121         }
3122
3123         if (iommu_pass_through)
3124                 iommu_identity_mapping |= IDENTMAP_ALL;
3125
3126 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3127         iommu_identity_mapping |= IDENTMAP_GFX;
3128 #endif
3129
3130         if (iommu_identity_mapping) {
3131                 ret = si_domain_init(hw_pass_through);
3132                 if (ret)
3133                         goto free_iommu;
3134         }
3135
3136         check_tylersburg_isoch();
3137
3138         /*
3139          * If we copied translations from a previous kernel in the kdump
3140          * case, we can not assign the devices to domains now, as that
3141          * would eliminate the old mappings. So skip this part and defer
3142          * the assignment to device driver initialization time.
3143          */
3144         if (copied_tables)
3145                 goto domains_done;
3146
3147         /*
3148          * If pass through is not set or not enabled, setup context entries for
3149          * identity mappings for rmrr, gfx, and isa and may fall back to static
3150          * identity mapping if iommu_identity_mapping is set.
3151          */
3152         if (iommu_identity_mapping) {
3153                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3154                 if (ret) {
3155                         pr_crit("Failed to setup IOMMU pass-through\n");
3156                         goto free_iommu;
3157                 }
3158         }
3159         /*
3160          * For each rmrr
3161          *   for each dev attached to rmrr
3162          *   do
3163          *     locate drhd for dev, alloc domain for dev
3164          *     allocate free domain
3165          *     allocate page table entries for rmrr
3166          *     if context not allocated for bus
3167          *           allocate and init context
3168          *           set present in root table for this bus
3169          *     init context with domain, translation etc
3170          *    endfor
3171          * endfor
3172          */
3173         pr_info("Setting RMRR:\n");
3174         for_each_rmrr_units(rmrr) {
3175                 /* some BIOS lists non-exist devices in DMAR table. */
3176                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3177                                           i, dev) {
3178                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3179                         if (ret)
3180                                 pr_err("Mapping reserved region failed\n");
3181                 }
3182         }
3183
3184         iommu_prepare_isa();
3185
3186 domains_done:
3187
3188         /*
3189          * for each drhd
3190          *   enable fault log
3191          *   global invalidate context cache
3192          *   global invalidate iotlb
3193          *   enable translation
3194          */
3195         for_each_iommu(iommu, drhd) {
3196                 if (drhd->ignored) {
3197                         /*
3198                          * we always have to disable PMRs or DMA may fail on
3199                          * this device
3200                          */
3201                         if (force_on)
3202                                 iommu_disable_protect_mem_regions(iommu);
3203                         continue;
3204                 }
3205
3206                 iommu_flush_write_buffer(iommu);
3207
3208                 ret = dmar_set_interrupt(iommu);
3209                 if (ret)
3210                         goto free_iommu;
3211
3212                 if (!translation_pre_enabled(iommu))
3213                         iommu_enable_translation(iommu);
3214
3215                 iommu_disable_protect_mem_regions(iommu);
3216         }
3217
3218         return 0;
3219
3220 free_iommu:
3221         for_each_active_iommu(iommu, drhd) {
3222                 disable_dmar_iommu(iommu);
3223                 free_dmar_iommu(iommu);
3224         }
3225         kfree(deferred_flush);
3226 free_g_iommus:
3227         kfree(g_iommus);
3228 error:
3229         return ret;
3230 }
3231
3232 /* This takes a number of _MM_ pages, not VTD pages */
3233 static struct iova *intel_alloc_iova(struct device *dev,
3234                                      struct dmar_domain *domain,
3235                                      unsigned long nrpages, uint64_t dma_mask)
3236 {
3237         struct iova *iova = NULL;
3238
3239         /* Restrict dma_mask to the width that the iommu can handle */
3240         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3241
3242         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3243                 /*
3244                  * First try to allocate an io virtual address in
3245                  * DMA_BIT_MASK(32) and if that fails then try allocating
3246                  * from higher range
3247                  */
3248                 iova = alloc_iova(&domain->iovad, nrpages,
3249                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
3250                 if (iova)
3251                         return iova;
3252         }
3253         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3254         if (unlikely(!iova)) {
3255                 pr_err("Allocating %ld-page iova for %s failed",
3256                        nrpages, dev_name(dev));
3257                 return NULL;
3258         }
3259
3260         return iova;
3261 }
3262
3263 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3264 {
3265         struct dmar_domain *domain;
3266         int ret;
3267
3268         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3269         if (!domain) {
3270                 pr_err("Allocating domain for %s failed\n",
3271                        dev_name(dev));
3272                 return NULL;
3273         }
3274
3275         /* make sure context mapping is ok */
3276         if (unlikely(!domain_context_mapped(dev))) {
3277                 ret = domain_context_mapping(domain, dev);
3278                 if (ret) {
3279                         pr_err("Domain context map for %s failed\n",
3280                                dev_name(dev));
3281                         return NULL;
3282                 }
3283         }
3284
3285         return domain;
3286 }
3287
3288 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3289 {
3290         struct device_domain_info *info;
3291
3292         /* No lock here, assumes no domain exit in normal case */
3293         info = dev->archdata.iommu;
3294         if (likely(info))
3295                 return info->domain;
3296
3297         return __get_valid_domain_for_dev(dev);
3298 }
3299
3300 /* Check if the dev needs to go through non-identity map and unmap process.*/
3301 static int iommu_no_mapping(struct device *dev)
3302 {
3303         int found;
3304
3305         if (iommu_dummy(dev))
3306                 return 1;
3307
3308         if (!iommu_identity_mapping)
3309                 return 0;
3310
3311         found = identity_mapping(dev);
3312         if (found) {
3313                 if (iommu_should_identity_map(dev, 0))
3314                         return 1;
3315                 else {
3316                         /*
3317                          * 32 bit DMA is removed from si_domain and fall back
3318                          * to non-identity mapping.
3319                          */
3320                         domain_remove_one_dev_info(si_domain, dev);
3321                         pr_info("32bit %s uses non-identity mapping\n",
3322                                 dev_name(dev));
3323                         return 0;
3324                 }
3325         } else {
3326                 /*
3327                  * In case of a detached 64 bit DMA device from vm, the device
3328                  * is put into si_domain for identity mapping.
3329                  */
3330                 if (iommu_should_identity_map(dev, 0)) {
3331                         int ret;
3332                         ret = domain_add_dev_info(si_domain, dev);
3333                         if (!ret) {
3334                                 pr_info("64bit %s uses identity mapping\n",
3335                                         dev_name(dev));
3336                                 return 1;
3337                         }
3338                 }
3339         }
3340
3341         return 0;
3342 }
3343
3344 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3345                                      size_t size, int dir, u64 dma_mask)
3346 {
3347         struct dmar_domain *domain;
3348         phys_addr_t start_paddr;
3349         struct iova *iova;
3350         int prot = 0;
3351         int ret;
3352         struct intel_iommu *iommu;
3353         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3354
3355         BUG_ON(dir == DMA_NONE);
3356
3357         if (iommu_no_mapping(dev))
3358                 return paddr;
3359
3360         domain = get_valid_domain_for_dev(dev);
3361         if (!domain)
3362                 return 0;
3363
3364         iommu = domain_get_iommu(domain);
3365         size = aligned_nrpages(paddr, size);
3366
3367         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3368         if (!iova)
3369                 goto error;
3370
3371         /*
3372          * Check if DMAR supports zero-length reads on write only
3373          * mappings..
3374          */
3375         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3376                         !cap_zlr(iommu->cap))
3377                 prot |= DMA_PTE_READ;
3378         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3379                 prot |= DMA_PTE_WRITE;
3380         /*
3381          * paddr - (paddr + size) might be partial page, we should map the whole
3382          * page.  Note: if two part of one page are separately mapped, we
3383          * might have two guest_addr mapping to the same host paddr, but this
3384          * is not a big problem
3385          */
3386         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3387                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3388         if (ret)
3389                 goto error;
3390
3391         /* it's a non-present to present mapping. Only flush if caching mode */
3392         if (cap_caching_mode(iommu->cap))
3393                 iommu_flush_iotlb_psi(iommu, domain,
3394                                       mm_to_dma_pfn(iova->pfn_lo),
3395                                       size, 0, 1);
3396         else
3397                 iommu_flush_write_buffer(iommu);
3398
3399         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3400         start_paddr += paddr & ~PAGE_MASK;
3401         return start_paddr;
3402
3403 error:
3404         if (iova)
3405                 __free_iova(&domain->iovad, iova);
3406         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3407                 dev_name(dev), size, (unsigned long long)paddr, dir);
3408         return 0;
3409 }
3410
3411 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3412                                  unsigned long offset, size_t size,
3413                                  enum dma_data_direction dir,
3414                                  struct dma_attrs *attrs)
3415 {
3416         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3417                                   dir, *dev->dma_mask);
3418 }
3419
3420 static void flush_unmaps(void)
3421 {
3422         int i, j;
3423
3424         timer_on = 0;
3425
3426         /* just flush them all */
3427         for (i = 0; i < g_num_of_iommus; i++) {
3428                 struct intel_iommu *iommu = g_iommus[i];
3429                 if (!iommu)
3430                         continue;
3431
3432                 if (!deferred_flush[i].next)
3433                         continue;
3434
3435                 /* In caching mode, global flushes turn emulation expensive */
3436                 if (!cap_caching_mode(iommu->cap))
3437                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3438                                          DMA_TLB_GLOBAL_FLUSH);
3439                 for (j = 0; j < deferred_flush[i].next; j++) {
3440                         unsigned long mask;
3441                         struct iova *iova = deferred_flush[i].iova[j];
3442                         struct dmar_domain *domain = deferred_flush[i].domain[j];
3443
3444                         /* On real hardware multiple invalidations are expensive */
3445                         if (cap_caching_mode(iommu->cap))
3446                                 iommu_flush_iotlb_psi(iommu, domain,
3447                                         iova->pfn_lo, iova_size(iova),
3448                                         !deferred_flush[i].freelist[j], 0);
3449                         else {
3450                                 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3451                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3452                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3453                         }
3454                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3455                         if (deferred_flush[i].freelist[j])
3456                                 dma_free_pagelist(deferred_flush[i].freelist[j]);
3457                 }
3458                 deferred_flush[i].next = 0;
3459         }
3460
3461         list_size = 0;
3462 }
3463
3464 static void flush_unmaps_timeout(unsigned long data)
3465 {
3466         unsigned long flags;
3467
3468         spin_lock_irqsave(&async_umap_flush_lock, flags);
3469         flush_unmaps();
3470         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3471 }
3472
3473 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3474 {
3475         unsigned long flags;
3476         int next, iommu_id;
3477         struct intel_iommu *iommu;
3478
3479         spin_lock_irqsave(&async_umap_flush_lock, flags);
3480         if (list_size == HIGH_WATER_MARK)
3481                 flush_unmaps();
3482
3483         iommu = domain_get_iommu(dom);
3484         iommu_id = iommu->seq_id;
3485
3486         next = deferred_flush[iommu_id].next;
3487         deferred_flush[iommu_id].domain[next] = dom;
3488         deferred_flush[iommu_id].iova[next] = iova;
3489         deferred_flush[iommu_id].freelist[next] = freelist;
3490         deferred_flush[iommu_id].next++;
3491
3492         if (!timer_on) {
3493                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3494                 timer_on = 1;
3495         }
3496         list_size++;
3497         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3498 }
3499
3500 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3501 {
3502         struct dmar_domain *domain;
3503         unsigned long start_pfn, last_pfn;
3504         struct iova *iova;
3505         struct intel_iommu *iommu;
3506         struct page *freelist;
3507
3508         if (iommu_no_mapping(dev))
3509                 return;
3510
3511         domain = find_domain(dev);
3512         BUG_ON(!domain);
3513
3514         iommu = domain_get_iommu(domain);
3515
3516         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3517         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3518                       (unsigned long long)dev_addr))
3519                 return;
3520
3521         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3522         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3523
3524         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3525                  dev_name(dev), start_pfn, last_pfn);
3526
3527         freelist = domain_unmap(domain, start_pfn, last_pfn);
3528
3529         if (intel_iommu_strict) {
3530                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3531                                       last_pfn - start_pfn + 1, !freelist, 0);
3532                 /* free iova */
3533                 __free_iova(&domain->iovad, iova);
3534                 dma_free_pagelist(freelist);
3535         } else {
3536                 add_unmap(domain, iova, freelist);
3537                 /*
3538                  * queue up the release of the unmap to save the 1/6th of the
3539                  * cpu used up by the iotlb flush operation...
3540                  */
3541         }
3542 }
3543
3544 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3545                              size_t size, enum dma_data_direction dir,
3546                              struct dma_attrs *attrs)
3547 {
3548         intel_unmap(dev, dev_addr);
3549 }
3550
3551 static void *intel_alloc_coherent(struct device *dev, size_t size,
3552                                   dma_addr_t *dma_handle, gfp_t flags,
3553                                   struct dma_attrs *attrs)
3554 {
3555         struct page *page = NULL;
3556         int order;
3557
3558         size = PAGE_ALIGN(size);
3559         order = get_order(size);
3560
3561         if (!iommu_no_mapping(dev))
3562                 flags &= ~(GFP_DMA | GFP_DMA32);
3563         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3564                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3565                         flags |= GFP_DMA;
3566                 else
3567                         flags |= GFP_DMA32;
3568         }
3569
3570         if (flags & __GFP_WAIT) {
3571                 unsigned int count = size >> PAGE_SHIFT;
3572
3573                 page = dma_alloc_from_contiguous(dev, count, order);
3574                 if (page && iommu_no_mapping(dev) &&
3575                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3576                         dma_release_from_contiguous(dev, page, count);
3577                         page = NULL;
3578                 }
3579         }
3580
3581         if (!page)
3582                 page = alloc_pages(flags, order);
3583         if (!page)
3584                 return NULL;
3585         memset(page_address(page), 0, size);
3586
3587         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3588                                          DMA_BIDIRECTIONAL,
3589                                          dev->coherent_dma_mask);
3590         if (*dma_handle)
3591                 return page_address(page);
3592         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3593                 __free_pages(page, order);
3594
3595         return NULL;
3596 }
3597
3598 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3599                                 dma_addr_t dma_handle, struct dma_attrs *attrs)
3600 {
3601         int order;
3602         struct page *page = virt_to_page(vaddr);
3603
3604         size = PAGE_ALIGN(size);
3605         order = get_order(size);
3606
3607         intel_unmap(dev, dma_handle);
3608         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3609                 __free_pages(page, order);
3610 }
3611
3612 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3613                            int nelems, enum dma_data_direction dir,
3614                            struct dma_attrs *attrs)
3615 {
3616         intel_unmap(dev, sglist[0].dma_address);
3617 }
3618
3619 static int intel_nontranslate_map_sg(struct device *hddev,
3620         struct scatterlist *sglist, int nelems, int dir)
3621 {
3622         int i;
3623         struct scatterlist *sg;
3624
3625         for_each_sg(sglist, sg, nelems, i) {
3626                 BUG_ON(!sg_page(sg));
3627                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3628                 sg->dma_length = sg->length;
3629         }
3630         return nelems;
3631 }
3632
3633 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3634                         enum dma_data_direction dir, struct dma_attrs *attrs)
3635 {
3636         int i;
3637         struct dmar_domain *domain;
3638         size_t size = 0;
3639         int prot = 0;
3640         struct iova *iova = NULL;
3641         int ret;
3642         struct scatterlist *sg;
3643         unsigned long start_vpfn;
3644         struct intel_iommu *iommu;
3645
3646         BUG_ON(dir == DMA_NONE);
3647         if (iommu_no_mapping(dev))
3648                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3649
3650         domain = get_valid_domain_for_dev(dev);
3651         if (!domain)
3652                 return 0;
3653
3654         iommu = domain_get_iommu(domain);
3655
3656         for_each_sg(sglist, sg, nelems, i)
3657                 size += aligned_nrpages(sg->offset, sg->length);
3658
3659         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3660                                 *dev->dma_mask);
3661         if (!iova) {
3662                 sglist->dma_length = 0;
3663                 return 0;
3664         }
3665
3666         /*
3667          * Check if DMAR supports zero-length reads on write only
3668          * mappings..
3669          */
3670         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3671                         !cap_zlr(iommu->cap))
3672                 prot |= DMA_PTE_READ;
3673         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3674                 prot |= DMA_PTE_WRITE;
3675
3676         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3677
3678         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3679         if (unlikely(ret)) {
3680                 dma_pte_free_pagetable(domain, start_vpfn,
3681                                        start_vpfn + size - 1);
3682                 __free_iova(&domain->iovad, iova);
3683                 return 0;
3684         }
3685
3686         /* it's a non-present to present mapping. Only flush if caching mode */
3687         if (cap_caching_mode(iommu->cap))
3688                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3689         else
3690                 iommu_flush_write_buffer(iommu);
3691
3692         return nelems;
3693 }
3694
3695 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3696 {
3697         return !dma_addr;
3698 }
3699
3700 struct dma_map_ops intel_dma_ops = {
3701         .alloc = intel_alloc_coherent,
3702         .free = intel_free_coherent,
3703         .map_sg = intel_map_sg,
3704         .unmap_sg = intel_unmap_sg,
3705         .map_page = intel_map_page,
3706         .unmap_page = intel_unmap_page,
3707         .mapping_error = intel_mapping_error,
3708 };
3709
3710 static inline int iommu_domain_cache_init(void)
3711 {
3712         int ret = 0;
3713
3714         iommu_domain_cache = kmem_cache_create("iommu_domain",
3715                                          sizeof(struct dmar_domain),
3716                                          0,
3717                                          SLAB_HWCACHE_ALIGN,
3718
3719                                          NULL);
3720         if (!iommu_domain_cache) {
3721                 pr_err("Couldn't create iommu_domain cache\n");
3722                 ret = -ENOMEM;
3723         }
3724
3725         return ret;
3726 }
3727
3728 static inline int iommu_devinfo_cache_init(void)
3729 {
3730         int ret = 0;
3731
3732         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3733                                          sizeof(struct device_domain_info),
3734                                          0,
3735                                          SLAB_HWCACHE_ALIGN,
3736                                          NULL);
3737         if (!iommu_devinfo_cache) {
3738                 pr_err("Couldn't create devinfo cache\n");
3739                 ret = -ENOMEM;
3740         }
3741
3742         return ret;
3743 }
3744
3745 static int __init iommu_init_mempool(void)
3746 {
3747         int ret;
3748         ret = iommu_iova_cache_init();
3749         if (ret)
3750                 return ret;
3751
3752         ret = iommu_domain_cache_init();
3753         if (ret)
3754                 goto domain_error;
3755
3756         ret = iommu_devinfo_cache_init();
3757         if (!ret)
3758                 return ret;
3759
3760         kmem_cache_destroy(iommu_domain_cache);
3761 domain_error:
3762         iommu_iova_cache_destroy();
3763
3764         return -ENOMEM;
3765 }
3766
3767 static void __init iommu_exit_mempool(void)
3768 {
3769         kmem_cache_destroy(iommu_devinfo_cache);
3770         kmem_cache_destroy(iommu_domain_cache);
3771         iommu_iova_cache_destroy();
3772 }
3773
3774 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3775 {
3776         struct dmar_drhd_unit *drhd;
3777         u32 vtbar;
3778         int rc;
3779
3780         /* We know that this device on this chipset has its own IOMMU.
3781          * If we find it under a different IOMMU, then the BIOS is lying
3782          * to us. Hope that the IOMMU for this device is actually
3783          * disabled, and it needs no translation...
3784          */
3785         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3786         if (rc) {
3787                 /* "can't" happen */
3788                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3789                 return;
3790         }
3791         vtbar &= 0xffff0000;
3792
3793         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3794         drhd = dmar_find_matched_drhd_unit(pdev);
3795         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3796                             TAINT_FIRMWARE_WORKAROUND,
3797                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3798                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3799 }
3800 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3801
3802 static void __init init_no_remapping_devices(void)
3803 {
3804         struct dmar_drhd_unit *drhd;
3805         struct device *dev;
3806         int i;
3807
3808         for_each_drhd_unit(drhd) {
3809                 if (!drhd->include_all) {
3810                         for_each_active_dev_scope(drhd->devices,
3811                                                   drhd->devices_cnt, i, dev)
3812                                 break;
3813                         /* ignore DMAR unit if no devices exist */
3814                         if (i == drhd->devices_cnt)
3815                                 drhd->ignored = 1;
3816                 }
3817         }
3818
3819         for_each_active_drhd_unit(drhd) {
3820                 if (drhd->include_all)
3821                         continue;
3822
3823                 for_each_active_dev_scope(drhd->devices,
3824                                           drhd->devices_cnt, i, dev)
3825                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3826                                 break;
3827                 if (i < drhd->devices_cnt)
3828                         continue;
3829
3830                 /* This IOMMU has *only* gfx devices. Either bypass it or
3831                    set the gfx_mapped flag, as appropriate */
3832                 if (dmar_map_gfx) {
3833                         intel_iommu_gfx_mapped = 1;
3834                 } else {
3835                         drhd->ignored = 1;
3836                         for_each_active_dev_scope(drhd->devices,
3837                                                   drhd->devices_cnt, i, dev)
3838                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3839                 }
3840         }
3841 }
3842
3843 #ifdef CONFIG_SUSPEND
3844 static int init_iommu_hw(void)
3845 {
3846         struct dmar_drhd_unit *drhd;
3847         struct intel_iommu *iommu = NULL;
3848
3849         for_each_active_iommu(iommu, drhd)
3850                 if (iommu->qi)
3851                         dmar_reenable_qi(iommu);
3852
3853         for_each_iommu(iommu, drhd) {
3854                 if (drhd->ignored) {
3855                         /*
3856                          * we always have to disable PMRs or DMA may fail on
3857                          * this device
3858                          */
3859                         if (force_on)
3860                                 iommu_disable_protect_mem_regions(iommu);
3861                         continue;
3862                 }
3863         
3864                 iommu_flush_write_buffer(iommu);
3865
3866                 iommu_set_root_entry(iommu);
3867
3868                 iommu->flush.flush_context(iommu, 0, 0, 0,
3869                                            DMA_CCMD_GLOBAL_INVL);
3870                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3871                 iommu_enable_translation(iommu);
3872                 iommu_disable_protect_mem_regions(iommu);
3873         }
3874
3875         return 0;
3876 }
3877
3878 static void iommu_flush_all(void)
3879 {
3880         struct dmar_drhd_unit *drhd;
3881         struct intel_iommu *iommu;
3882
3883         for_each_active_iommu(iommu, drhd) {
3884                 iommu->flush.flush_context(iommu, 0, 0, 0,
3885                                            DMA_CCMD_GLOBAL_INVL);
3886                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3887                                          DMA_TLB_GLOBAL_FLUSH);
3888         }
3889 }
3890
3891 static int iommu_suspend(void)
3892 {
3893         struct dmar_drhd_unit *drhd;
3894         struct intel_iommu *iommu = NULL;
3895         unsigned long flag;
3896
3897         for_each_active_iommu(iommu, drhd) {
3898                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3899                                                  GFP_ATOMIC);
3900                 if (!iommu->iommu_state)
3901                         goto nomem;
3902         }
3903
3904         iommu_flush_all();
3905
3906         for_each_active_iommu(iommu, drhd) {
3907                 iommu_disable_translation(iommu);
3908
3909                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3910
3911                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3912                         readl(iommu->reg + DMAR_FECTL_REG);
3913                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3914                         readl(iommu->reg + DMAR_FEDATA_REG);
3915                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3916                         readl(iommu->reg + DMAR_FEADDR_REG);
3917                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3918                         readl(iommu->reg + DMAR_FEUADDR_REG);
3919
3920                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3921         }
3922         return 0;
3923
3924 nomem:
3925         for_each_active_iommu(iommu, drhd)
3926                 kfree(iommu->iommu_state);
3927
3928         return -ENOMEM;
3929 }
3930
3931 static void iommu_resume(void)
3932 {
3933         struct dmar_drhd_unit *drhd;
3934         struct intel_iommu *iommu = NULL;
3935         unsigned long flag;
3936
3937         if (init_iommu_hw()) {
3938                 if (force_on)
3939                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3940                 else
3941                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3942                 return;
3943         }
3944
3945         for_each_active_iommu(iommu, drhd) {
3946
3947                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3948
3949                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3950                         iommu->reg + DMAR_FECTL_REG);
3951                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3952                         iommu->reg + DMAR_FEDATA_REG);
3953                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3954                         iommu->reg + DMAR_FEADDR_REG);
3955                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3956                         iommu->reg + DMAR_FEUADDR_REG);
3957
3958                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3959         }
3960
3961         for_each_active_iommu(iommu, drhd)
3962                 kfree(iommu->iommu_state);
3963 }
3964
3965 static struct syscore_ops iommu_syscore_ops = {
3966         .resume         = iommu_resume,
3967         .suspend        = iommu_suspend,
3968 };
3969
3970 static void __init init_iommu_pm_ops(void)
3971 {
3972         register_syscore_ops(&iommu_syscore_ops);
3973 }
3974
3975 #else
3976 static inline void init_iommu_pm_ops(void) {}
3977 #endif  /* CONFIG_PM */
3978
3979
3980 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3981 {
3982         struct acpi_dmar_reserved_memory *rmrr;
3983         struct dmar_rmrr_unit *rmrru;
3984
3985         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3986         if (!rmrru)
3987                 return -ENOMEM;
3988
3989         rmrru->hdr = header;
3990         rmrr = (struct acpi_dmar_reserved_memory *)header;
3991         rmrru->base_address = rmrr->base_address;
3992         rmrru->end_address = rmrr->end_address;
3993         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3994                                 ((void *)rmrr) + rmrr->header.length,
3995                                 &rmrru->devices_cnt);
3996         if (rmrru->devices_cnt && rmrru->devices == NULL) {
3997                 kfree(rmrru);
3998                 return -ENOMEM;
3999         }
4000
4001         list_add(&rmrru->list, &dmar_rmrr_units);
4002
4003         return 0;
4004 }
4005
4006 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4007 {
4008         struct dmar_atsr_unit *atsru;
4009         struct acpi_dmar_atsr *tmp;
4010
4011         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4012                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4013                 if (atsr->segment != tmp->segment)
4014                         continue;
4015                 if (atsr->header.length != tmp->header.length)
4016                         continue;
4017                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4018                         return atsru;
4019         }
4020
4021         return NULL;
4022 }
4023
4024 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4025 {
4026         struct acpi_dmar_atsr *atsr;
4027         struct dmar_atsr_unit *atsru;
4028
4029         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4030                 return 0;
4031
4032         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4033         atsru = dmar_find_atsr(atsr);
4034         if (atsru)
4035                 return 0;
4036
4037         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4038         if (!atsru)
4039                 return -ENOMEM;
4040
4041         /*
4042          * If memory is allocated from slab by ACPI _DSM method, we need to
4043          * copy the memory content because the memory buffer will be freed
4044          * on return.
4045          */
4046         atsru->hdr = (void *)(atsru + 1);
4047         memcpy(atsru->hdr, hdr, hdr->length);
4048         atsru->include_all = atsr->flags & 0x1;
4049         if (!atsru->include_all) {
4050                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4051                                 (void *)atsr + atsr->header.length,
4052                                 &atsru->devices_cnt);
4053                 if (atsru->devices_cnt && atsru->devices == NULL) {
4054                         kfree(atsru);
4055                         return -ENOMEM;
4056                 }
4057         }
4058
4059         list_add_rcu(&atsru->list, &dmar_atsr_units);
4060
4061         return 0;
4062 }
4063
4064 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4065 {
4066         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4067         kfree(atsru);
4068 }
4069
4070 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4071 {
4072         struct acpi_dmar_atsr *atsr;
4073         struct dmar_atsr_unit *atsru;
4074
4075         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4076         atsru = dmar_find_atsr(atsr);
4077         if (atsru) {
4078                 list_del_rcu(&atsru->list);
4079                 synchronize_rcu();
4080                 intel_iommu_free_atsr(atsru);
4081         }
4082
4083         return 0;
4084 }
4085
4086 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4087 {
4088         int i;
4089         struct device *dev;
4090         struct acpi_dmar_atsr *atsr;
4091         struct dmar_atsr_unit *atsru;
4092
4093         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4094         atsru = dmar_find_atsr(atsr);
4095         if (!atsru)
4096                 return 0;
4097
4098         if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4099                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4100                                           i, dev)
4101                         return -EBUSY;
4102
4103         return 0;
4104 }
4105
4106 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4107 {
4108         int sp, ret = 0;
4109         struct intel_iommu *iommu = dmaru->iommu;
4110
4111         if (g_iommus[iommu->seq_id])
4112                 return 0;
4113
4114         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4115                 pr_warn("%s: Doesn't support hardware pass through.\n",
4116                         iommu->name);
4117                 return -ENXIO;
4118         }
4119         if (!ecap_sc_support(iommu->ecap) &&
4120             domain_update_iommu_snooping(iommu)) {
4121                 pr_warn("%s: Doesn't support snooping.\n",
4122                         iommu->name);
4123                 return -ENXIO;
4124         }
4125         sp = domain_update_iommu_superpage(iommu) - 1;
4126         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4127                 pr_warn("%s: Doesn't support large page.\n",
4128                         iommu->name);
4129                 return -ENXIO;
4130         }
4131
4132         /*
4133          * Disable translation if already enabled prior to OS handover.
4134          */
4135         if (iommu->gcmd & DMA_GCMD_TE)
4136                 iommu_disable_translation(iommu);
4137
4138         g_iommus[iommu->seq_id] = iommu;
4139         ret = iommu_init_domains(iommu);
4140         if (ret == 0)
4141                 ret = iommu_alloc_root_entry(iommu);
4142         if (ret)
4143                 goto out;
4144
4145         if (dmaru->ignored) {
4146                 /*
4147                  * we always have to disable PMRs or DMA may fail on this device
4148                  */
4149                 if (force_on)
4150                         iommu_disable_protect_mem_regions(iommu);
4151                 return 0;
4152         }
4153
4154         intel_iommu_init_qi(iommu);
4155         iommu_flush_write_buffer(iommu);
4156         ret = dmar_set_interrupt(iommu);
4157         if (ret)
4158                 goto disable_iommu;
4159
4160         iommu_set_root_entry(iommu);
4161         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4162         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4163         iommu_enable_translation(iommu);
4164
4165         iommu_disable_protect_mem_regions(iommu);
4166         return 0;
4167
4168 disable_iommu:
4169         disable_dmar_iommu(iommu);
4170 out:
4171         free_dmar_iommu(iommu);
4172         return ret;
4173 }
4174
4175 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4176 {
4177         int ret = 0;
4178         struct intel_iommu *iommu = dmaru->iommu;
4179
4180         if (!intel_iommu_enabled)
4181                 return 0;
4182         if (iommu == NULL)
4183                 return -EINVAL;
4184
4185         if (insert) {
4186                 ret = intel_iommu_add(dmaru);
4187         } else {
4188                 disable_dmar_iommu(iommu);
4189                 free_dmar_iommu(iommu);
4190         }
4191
4192         return ret;
4193 }
4194
4195 static void intel_iommu_free_dmars(void)
4196 {
4197         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4198         struct dmar_atsr_unit *atsru, *atsr_n;
4199
4200         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4201                 list_del(&rmrru->list);
4202                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4203                 kfree(rmrru);
4204         }
4205
4206         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4207                 list_del(&atsru->list);
4208                 intel_iommu_free_atsr(atsru);
4209         }
4210 }
4211
4212 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4213 {
4214         int i, ret = 1;
4215         struct pci_bus *bus;
4216         struct pci_dev *bridge = NULL;
4217         struct device *tmp;
4218         struct acpi_dmar_atsr *atsr;
4219         struct dmar_atsr_unit *atsru;
4220
4221         dev = pci_physfn(dev);
4222         for (bus = dev->bus; bus; bus = bus->parent) {
4223                 bridge = bus->self;
4224                 if (!bridge || !pci_is_pcie(bridge) ||
4225                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4226                         return 0;
4227                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4228                         break;
4229         }
4230         if (!bridge)
4231                 return 0;
4232
4233         rcu_read_lock();
4234         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4235                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4236                 if (atsr->segment != pci_domain_nr(dev->bus))
4237                         continue;
4238
4239                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4240                         if (tmp == &bridge->dev)
4241                                 goto out;
4242
4243                 if (atsru->include_all)
4244                         goto out;
4245         }
4246         ret = 0;
4247 out:
4248         rcu_read_unlock();
4249
4250         return ret;
4251 }
4252
4253 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4254 {
4255         int ret = 0;
4256         struct dmar_rmrr_unit *rmrru;
4257         struct dmar_atsr_unit *atsru;
4258         struct acpi_dmar_atsr *atsr;
4259         struct acpi_dmar_reserved_memory *rmrr;
4260
4261         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4262                 return 0;
4263
4264         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4265                 rmrr = container_of(rmrru->hdr,
4266                                     struct acpi_dmar_reserved_memory, header);
4267                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4268                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4269                                 ((void *)rmrr) + rmrr->header.length,
4270                                 rmrr->segment, rmrru->devices,
4271                                 rmrru->devices_cnt);
4272                         if(ret < 0)
4273                                 return ret;
4274                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4275                         dmar_remove_dev_scope(info, rmrr->segment,
4276                                 rmrru->devices, rmrru->devices_cnt);
4277                 }
4278         }
4279
4280         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4281                 if (atsru->include_all)
4282                         continue;
4283
4284                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4285                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4286                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4287                                         (void *)atsr + atsr->header.length,
4288                                         atsr->segment, atsru->devices,
4289                                         atsru->devices_cnt);
4290                         if (ret > 0)
4291                                 break;
4292                         else if(ret < 0)
4293                                 return ret;
4294                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4295                         if (dmar_remove_dev_scope(info, atsr->segment,
4296                                         atsru->devices, atsru->devices_cnt))
4297                                 break;
4298                 }
4299         }
4300
4301         return 0;
4302 }
4303
4304 /*
4305  * Here we only respond to action of unbound device from driver.
4306  *
4307  * Added device is not attached to its DMAR domain here yet. That will happen
4308  * when mapping the device to iova.
4309  */
4310 static int device_notifier(struct notifier_block *nb,
4311                                   unsigned long action, void *data)
4312 {
4313         struct device *dev = data;
4314         struct dmar_domain *domain;
4315
4316         if (iommu_dummy(dev))
4317                 return 0;
4318
4319         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4320                 return 0;
4321
4322         domain = find_domain(dev);
4323         if (!domain)
4324                 return 0;
4325
4326         down_read(&dmar_global_lock);
4327         domain_remove_one_dev_info(domain, dev);
4328         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4329                 domain_exit(domain);
4330         up_read(&dmar_global_lock);
4331
4332         return 0;
4333 }
4334
4335 static struct notifier_block device_nb = {
4336         .notifier_call = device_notifier,
4337 };
4338
4339 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4340                                        unsigned long val, void *v)
4341 {
4342         struct memory_notify *mhp = v;
4343         unsigned long long start, end;
4344         unsigned long start_vpfn, last_vpfn;
4345
4346         switch (val) {
4347         case MEM_GOING_ONLINE:
4348                 start = mhp->start_pfn << PAGE_SHIFT;
4349                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4350                 if (iommu_domain_identity_map(si_domain, start, end)) {
4351                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4352                                 start, end);
4353                         return NOTIFY_BAD;
4354                 }
4355                 break;
4356
4357         case MEM_OFFLINE:
4358         case MEM_CANCEL_ONLINE:
4359                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4360                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4361                 while (start_vpfn <= last_vpfn) {
4362                         struct iova *iova;
4363                         struct dmar_drhd_unit *drhd;
4364                         struct intel_iommu *iommu;
4365                         struct page *freelist;
4366
4367                         iova = find_iova(&si_domain->iovad, start_vpfn);
4368                         if (iova == NULL) {
4369                                 pr_debug("Failed get IOVA for PFN %lx\n",
4370                                          start_vpfn);
4371                                 break;
4372                         }
4373
4374                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4375                                                      start_vpfn, last_vpfn);
4376                         if (iova == NULL) {
4377                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4378                                         start_vpfn, last_vpfn);
4379                                 return NOTIFY_BAD;
4380                         }
4381
4382                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4383                                                iova->pfn_hi);
4384
4385                         rcu_read_lock();
4386                         for_each_active_iommu(iommu, drhd)
4387                                 iommu_flush_iotlb_psi(iommu, si_domain,
4388                                         iova->pfn_lo, iova_size(iova),
4389                                         !freelist, 0);
4390                         rcu_read_unlock();
4391                         dma_free_pagelist(freelist);
4392
4393                         start_vpfn = iova->pfn_hi + 1;
4394                         free_iova_mem(iova);
4395                 }
4396                 break;
4397         }
4398
4399         return NOTIFY_OK;
4400 }
4401
4402 static struct notifier_block intel_iommu_memory_nb = {
4403         .notifier_call = intel_iommu_memory_notifier,
4404         .priority = 0
4405 };
4406
4407
4408 static ssize_t intel_iommu_show_version(struct device *dev,
4409                                         struct device_attribute *attr,
4410                                         char *buf)
4411 {
4412         struct intel_iommu *iommu = dev_get_drvdata(dev);
4413         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4414         return sprintf(buf, "%d:%d\n",
4415                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4416 }
4417 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4418
4419 static ssize_t intel_iommu_show_address(struct device *dev,
4420                                         struct device_attribute *attr,
4421                                         char *buf)
4422 {
4423         struct intel_iommu *iommu = dev_get_drvdata(dev);
4424         return sprintf(buf, "%llx\n", iommu->reg_phys);
4425 }
4426 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4427
4428 static ssize_t intel_iommu_show_cap(struct device *dev,
4429                                     struct device_attribute *attr,
4430                                     char *buf)
4431 {
4432         struct intel_iommu *iommu = dev_get_drvdata(dev);
4433         return sprintf(buf, "%llx\n", iommu->cap);
4434 }
4435 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4436
4437 static ssize_t intel_iommu_show_ecap(struct device *dev,
4438                                     struct device_attribute *attr,
4439                                     char *buf)
4440 {
4441         struct intel_iommu *iommu = dev_get_drvdata(dev);
4442         return sprintf(buf, "%llx\n", iommu->ecap);
4443 }
4444 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4445
4446 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4447                                       struct device_attribute *attr,
4448                                       char *buf)
4449 {
4450         struct intel_iommu *iommu = dev_get_drvdata(dev);
4451         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4452 }
4453 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4454
4455 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4456                                            struct device_attribute *attr,
4457                                            char *buf)
4458 {
4459         struct intel_iommu *iommu = dev_get_drvdata(dev);
4460         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4461                                                   cap_ndoms(iommu->cap)));
4462 }
4463 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4464
4465 static struct attribute *intel_iommu_attrs[] = {
4466         &dev_attr_version.attr,
4467         &dev_attr_address.attr,
4468         &dev_attr_cap.attr,
4469         &dev_attr_ecap.attr,
4470         &dev_attr_domains_supported.attr,
4471         &dev_attr_domains_used.attr,
4472         NULL,
4473 };
4474
4475 static struct attribute_group intel_iommu_group = {
4476         .name = "intel-iommu",
4477         .attrs = intel_iommu_attrs,
4478 };
4479
4480 const struct attribute_group *intel_iommu_groups[] = {
4481         &intel_iommu_group,
4482         NULL,
4483 };
4484
4485 int __init intel_iommu_init(void)
4486 {
4487         int ret = -ENODEV;
4488         struct dmar_drhd_unit *drhd;
4489         struct intel_iommu *iommu;
4490
4491         /* VT-d is required for a TXT/tboot launch, so enforce that */
4492         force_on = tboot_force_iommu();
4493
4494         if (iommu_init_mempool()) {
4495                 if (force_on)
4496                         panic("tboot: Failed to initialize iommu memory\n");
4497                 return -ENOMEM;
4498         }
4499
4500         down_write(&dmar_global_lock);
4501         if (dmar_table_init()) {
4502                 if (force_on)
4503                         panic("tboot: Failed to initialize DMAR table\n");
4504                 goto out_free_dmar;
4505         }
4506
4507         if (dmar_dev_scope_init() < 0) {
4508                 if (force_on)
4509                         panic("tboot: Failed to initialize DMAR device scope\n");
4510                 goto out_free_dmar;
4511         }
4512
4513         if (no_iommu || dmar_disabled)
4514                 goto out_free_dmar;
4515
4516         if (list_empty(&dmar_rmrr_units))
4517                 pr_info("No RMRR found\n");
4518
4519         if (list_empty(&dmar_atsr_units))
4520                 pr_info("No ATSR found\n");
4521
4522         if (dmar_init_reserved_ranges()) {
4523                 if (force_on)
4524                         panic("tboot: Failed to reserve iommu ranges\n");
4525                 goto out_free_reserved_range;
4526         }
4527
4528         init_no_remapping_devices();
4529
4530         ret = init_dmars();
4531         if (ret) {
4532                 if (force_on)
4533                         panic("tboot: Failed to initialize DMARs\n");
4534                 pr_err("Initialization failed\n");
4535                 goto out_free_reserved_range;
4536         }
4537         up_write(&dmar_global_lock);
4538         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4539
4540         init_timer(&unmap_timer);
4541 #ifdef CONFIG_SWIOTLB
4542         swiotlb = 0;
4543 #endif
4544         dma_ops = &intel_dma_ops;
4545
4546         init_iommu_pm_ops();
4547
4548         for_each_active_iommu(iommu, drhd)
4549                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4550                                                        intel_iommu_groups,
4551                                                        "%s", iommu->name);
4552
4553         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4554         bus_register_notifier(&pci_bus_type, &device_nb);
4555         if (si_domain && !hw_pass_through)
4556                 register_memory_notifier(&intel_iommu_memory_nb);
4557
4558         intel_iommu_enabled = 1;
4559
4560         return 0;
4561
4562 out_free_reserved_range:
4563         put_iova_domain(&reserved_iova_list);
4564 out_free_dmar:
4565         intel_iommu_free_dmars();
4566         up_write(&dmar_global_lock);
4567         iommu_exit_mempool();
4568         return ret;
4569 }
4570
4571 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4572 {
4573         struct intel_iommu *iommu = opaque;
4574
4575         iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4576         return 0;
4577 }
4578
4579 /*
4580  * NB - intel-iommu lacks any sort of reference counting for the users of
4581  * dependent devices.  If multiple endpoints have intersecting dependent
4582  * devices, unbinding the driver from any one of them will possibly leave
4583  * the others unable to operate.
4584  */
4585 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4586                                            struct device *dev)
4587 {
4588         if (!iommu || !dev || !dev_is_pci(dev))
4589                 return;
4590
4591         pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4592 }
4593
4594 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4595                                        struct device *dev)
4596 {
4597         struct device_domain_info *info;
4598         struct intel_iommu *iommu;
4599         unsigned long flags;
4600         u8 bus, devfn;
4601
4602         iommu = device_to_iommu(dev, &bus, &devfn);
4603         if (!iommu)
4604                 return;
4605
4606         info = dev->archdata.iommu;
4607
4608         if (WARN_ON(!info))
4609                 return;
4610
4611         spin_lock_irqsave(&device_domain_lock, flags);
4612         unlink_domain_info(info);
4613         spin_unlock_irqrestore(&device_domain_lock, flags);
4614
4615         iommu_disable_dev_iotlb(info);
4616         iommu_detach_dev(iommu, info->bus, info->devfn);
4617         iommu_detach_dependent_devices(iommu, dev);
4618         free_devinfo_mem(info);
4619         domain_detach_iommu(domain, iommu);
4620
4621         spin_lock_irqsave(&domain->iommu_lock, flags);
4622         if (!domain->iommu_refcnt[iommu->seq_id])
4623                 iommu_detach_domain(domain, iommu);
4624         spin_unlock_irqrestore(&domain->iommu_lock, flags);
4625 }
4626
4627 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4628 {
4629         int adjust_width;
4630
4631         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4632                         DMA_32BIT_PFN);
4633         domain_reserve_special_ranges(domain);
4634
4635         /* calculate AGAW */
4636         domain->gaw = guest_width;
4637         adjust_width = guestwidth_to_adjustwidth(guest_width);
4638         domain->agaw = width_to_agaw(adjust_width);
4639
4640         domain->iommu_coherency = 0;
4641         domain->iommu_snooping = 0;
4642         domain->iommu_superpage = 0;
4643         domain->max_addr = 0;
4644
4645         /* always allocate the top pgd */
4646         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4647         if (!domain->pgd)
4648                 return -ENOMEM;
4649         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4650         return 0;
4651 }
4652
4653 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4654 {
4655         struct dmar_domain *dmar_domain;
4656         struct iommu_domain *domain;
4657
4658         if (type != IOMMU_DOMAIN_UNMANAGED)
4659                 return NULL;
4660
4661         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4662         if (!dmar_domain) {
4663                 pr_err("Can't allocate dmar_domain\n");
4664                 return NULL;
4665         }
4666         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4667                 pr_err("Domain initialization failed\n");
4668                 domain_exit(dmar_domain);
4669                 return NULL;
4670         }
4671         domain_update_iommu_cap(dmar_domain);
4672
4673         domain = &dmar_domain->domain;
4674         domain->geometry.aperture_start = 0;
4675         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4676         domain->geometry.force_aperture = true;
4677
4678         return domain;
4679 }
4680
4681 static void intel_iommu_domain_free(struct iommu_domain *domain)
4682 {
4683         domain_exit(to_dmar_domain(domain));
4684 }
4685
4686 static int intel_iommu_attach_device(struct iommu_domain *domain,
4687                                      struct device *dev)
4688 {
4689         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4690         struct intel_iommu *iommu;
4691         int addr_width;
4692         u8 bus, devfn;
4693
4694         if (device_is_rmrr_locked(dev)) {
4695                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4696                 return -EPERM;
4697         }
4698
4699         /* normally dev is not mapped */
4700         if (unlikely(domain_context_mapped(dev))) {
4701                 struct dmar_domain *old_domain;
4702
4703                 old_domain = find_domain(dev);
4704                 if (old_domain) {
4705                         if (domain_type_is_vm_or_si(dmar_domain))
4706                                 domain_remove_one_dev_info(old_domain, dev);
4707                         else
4708                                 domain_remove_dev_info(old_domain);
4709
4710                         if (!domain_type_is_vm_or_si(old_domain) &&
4711                              list_empty(&old_domain->devices))
4712                                 domain_exit(old_domain);
4713                 }
4714         }
4715
4716         iommu = device_to_iommu(dev, &bus, &devfn);
4717         if (!iommu)
4718                 return -ENODEV;
4719
4720         /* check if this iommu agaw is sufficient for max mapped address */
4721         addr_width = agaw_to_width(iommu->agaw);
4722         if (addr_width > cap_mgaw(iommu->cap))
4723                 addr_width = cap_mgaw(iommu->cap);
4724
4725         if (dmar_domain->max_addr > (1LL << addr_width)) {
4726                 pr_err("%s: iommu width (%d) is not "
4727                        "sufficient for the mapped address (%llx)\n",
4728                        __func__, addr_width, dmar_domain->max_addr);
4729                 return -EFAULT;
4730         }
4731         dmar_domain->gaw = addr_width;
4732
4733         /*
4734          * Knock out extra levels of page tables if necessary
4735          */
4736         while (iommu->agaw < dmar_domain->agaw) {
4737                 struct dma_pte *pte;
4738
4739                 pte = dmar_domain->pgd;
4740                 if (dma_pte_present(pte)) {
4741                         dmar_domain->pgd = (struct dma_pte *)
4742                                 phys_to_virt(dma_pte_addr(pte));
4743                         free_pgtable_page(pte);
4744                 }
4745                 dmar_domain->agaw--;
4746         }
4747
4748         return domain_add_dev_info(dmar_domain, dev);
4749 }
4750
4751 static void intel_iommu_detach_device(struct iommu_domain *domain,
4752                                       struct device *dev)
4753 {
4754         domain_remove_one_dev_info(to_dmar_domain(domain), dev);
4755 }
4756
4757 static int intel_iommu_map(struct iommu_domain *domain,
4758                            unsigned long iova, phys_addr_t hpa,
4759                            size_t size, int iommu_prot)
4760 {
4761         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4762         u64 max_addr;
4763         int prot = 0;
4764         int ret;
4765
4766         if (iommu_prot & IOMMU_READ)
4767                 prot |= DMA_PTE_READ;
4768         if (iommu_prot & IOMMU_WRITE)
4769                 prot |= DMA_PTE_WRITE;
4770         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4771                 prot |= DMA_PTE_SNP;
4772
4773         max_addr = iova + size;
4774         if (dmar_domain->max_addr < max_addr) {
4775                 u64 end;
4776
4777                 /* check if minimum agaw is sufficient for mapped address */
4778                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4779                 if (end < max_addr) {
4780                         pr_err("%s: iommu width (%d) is not "
4781                                "sufficient for the mapped address (%llx)\n",
4782                                __func__, dmar_domain->gaw, max_addr);
4783                         return -EFAULT;
4784                 }
4785                 dmar_domain->max_addr = max_addr;
4786         }
4787         /* Round up size to next multiple of PAGE_SIZE, if it and
4788            the low bits of hpa would take us onto the next page */
4789         size = aligned_nrpages(hpa, size);
4790         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4791                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4792         return ret;
4793 }
4794
4795 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4796                                 unsigned long iova, size_t size)
4797 {
4798         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4799         struct page *freelist = NULL;
4800         struct intel_iommu *iommu;
4801         unsigned long start_pfn, last_pfn;
4802         unsigned int npages;
4803         int iommu_id, level = 0;
4804
4805         /* Cope with horrid API which requires us to unmap more than the
4806            size argument if it happens to be a large-page mapping. */
4807         if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4808                 BUG();
4809
4810         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4811                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4812
4813         start_pfn = iova >> VTD_PAGE_SHIFT;
4814         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4815
4816         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4817
4818         npages = last_pfn - start_pfn + 1;
4819
4820         for_each_domain_iommu(iommu_id, dmar_domain) {
4821                 iommu = g_iommus[iommu_id];
4822
4823                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4824                                       start_pfn, npages, !freelist, 0);
4825         }
4826
4827         dma_free_pagelist(freelist);
4828
4829         if (dmar_domain->max_addr == iova + size)
4830                 dmar_domain->max_addr = iova;
4831
4832         return size;
4833 }
4834
4835 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4836                                             dma_addr_t iova)
4837 {
4838         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4839         struct dma_pte *pte;
4840         int level = 0;
4841         u64 phys = 0;
4842
4843         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4844         if (pte)
4845                 phys = dma_pte_addr(pte);
4846
4847         return phys;
4848 }
4849
4850 static bool intel_iommu_capable(enum iommu_cap cap)
4851 {
4852         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4853                 return domain_update_iommu_snooping(NULL) == 1;
4854         if (cap == IOMMU_CAP_INTR_REMAP)
4855                 return irq_remapping_enabled == 1;
4856
4857         return false;
4858 }
4859
4860 static int intel_iommu_add_device(struct device *dev)
4861 {
4862         struct intel_iommu *iommu;
4863         struct iommu_group *group;
4864         u8 bus, devfn;
4865
4866         iommu = device_to_iommu(dev, &bus, &devfn);
4867         if (!iommu)
4868                 return -ENODEV;
4869
4870         iommu_device_link(iommu->iommu_dev, dev);
4871
4872         group = iommu_group_get_for_dev(dev);
4873
4874         if (IS_ERR(group))
4875                 return PTR_ERR(group);
4876
4877         iommu_group_put(group);
4878         return 0;
4879 }
4880
4881 static void intel_iommu_remove_device(struct device *dev)
4882 {
4883         struct intel_iommu *iommu;
4884         u8 bus, devfn;
4885
4886         iommu = device_to_iommu(dev, &bus, &devfn);
4887         if (!iommu)
4888                 return;
4889
4890         iommu_group_remove_device(dev);
4891
4892         iommu_device_unlink(iommu->iommu_dev, dev);
4893 }
4894
4895 static const struct iommu_ops intel_iommu_ops = {
4896         .capable        = intel_iommu_capable,
4897         .domain_alloc   = intel_iommu_domain_alloc,
4898         .domain_free    = intel_iommu_domain_free,
4899         .attach_dev     = intel_iommu_attach_device,
4900         .detach_dev     = intel_iommu_detach_device,
4901         .map            = intel_iommu_map,
4902         .unmap          = intel_iommu_unmap,
4903         .map_sg         = default_iommu_map_sg,
4904         .iova_to_phys   = intel_iommu_iova_to_phys,
4905         .add_device     = intel_iommu_add_device,
4906         .remove_device  = intel_iommu_remove_device,
4907         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
4908 };
4909
4910 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4911 {
4912         /* G4x/GM45 integrated gfx dmar support is totally busted. */
4913         pr_info("Disabling IOMMU for graphics on this chipset\n");
4914         dmar_map_gfx = 0;
4915 }
4916
4917 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4918 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4919 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4920 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4921 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4922 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4923 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4924
4925 static void quirk_iommu_rwbf(struct pci_dev *dev)
4926 {
4927         /*
4928          * Mobile 4 Series Chipset neglects to set RWBF capability,
4929          * but needs it. Same seems to hold for the desktop versions.
4930          */
4931         pr_info("Forcing write-buffer flush capability\n");
4932         rwbf_quirk = 1;
4933 }
4934
4935 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4936 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4937 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4938 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4939 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4940 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4941 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4942
4943 #define GGC 0x52
4944 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4945 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4946 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4947 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4948 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4949 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4950 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4951 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4952
4953 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4954 {
4955         unsigned short ggc;
4956
4957         if (pci_read_config_word(dev, GGC, &ggc))
4958                 return;
4959
4960         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4961                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4962                 dmar_map_gfx = 0;
4963         } else if (dmar_map_gfx) {
4964                 /* we have to ensure the gfx device is idle before we flush */
4965                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4966                 intel_iommu_strict = 1;
4967        }
4968 }
4969 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4970 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4971 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4972 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4973
4974 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4975    ISOCH DMAR unit for the Azalia sound device, but not give it any
4976    TLB entries, which causes it to deadlock. Check for that.  We do
4977    this in a function called from init_dmars(), instead of in a PCI
4978    quirk, because we don't want to print the obnoxious "BIOS broken"
4979    message if VT-d is actually disabled.
4980 */
4981 static void __init check_tylersburg_isoch(void)
4982 {
4983         struct pci_dev *pdev;
4984         uint32_t vtisochctrl;
4985
4986         /* If there's no Azalia in the system anyway, forget it. */
4987         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4988         if (!pdev)
4989                 return;
4990         pci_dev_put(pdev);
4991
4992         /* System Management Registers. Might be hidden, in which case
4993            we can't do the sanity check. But that's OK, because the
4994            known-broken BIOSes _don't_ actually hide it, so far. */
4995         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4996         if (!pdev)
4997                 return;
4998
4999         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5000                 pci_dev_put(pdev);
5001                 return;
5002         }
5003
5004         pci_dev_put(pdev);
5005
5006         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5007         if (vtisochctrl & 1)
5008                 return;
5009
5010         /* Drop all bits other than the number of TLB entries */
5011         vtisochctrl &= 0x1c;
5012
5013         /* If we have the recommended number of TLB entries (16), fine. */
5014         if (vtisochctrl == 0x10)
5015                 return;
5016
5017         /* Zero TLB entries? You get to ride the short bus to school. */
5018         if (!vtisochctrl) {
5019                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5020                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5021                      dmi_get_system_info(DMI_BIOS_VENDOR),
5022                      dmi_get_system_info(DMI_BIOS_VERSION),
5023                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5024                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5025                 return;
5026         }
5027
5028         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5029                vtisochctrl);
5030 }