1dcbbd5116609c4da672f2acfd04ac63567f2abb
[firefly-linux-kernel-4.4.55.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #define pgprintk(x...) do { } while (0)
30 #define rmap_printk(x...) do { } while (0)
31
32 #define ASSERT(x)                                                       \
33         if (!(x)) {                                                     \
34                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
35                        __FILE__, __LINE__, #x);                         \
36         }
37
38 #define PT64_ENT_PER_PAGE 512
39 #define PT32_ENT_PER_PAGE 1024
40
41 #define PT_WRITABLE_SHIFT 1
42
43 #define PT_PRESENT_MASK (1ULL << 0)
44 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
45 #define PT_USER_MASK (1ULL << 2)
46 #define PT_PWT_MASK (1ULL << 3)
47 #define PT_PCD_MASK (1ULL << 4)
48 #define PT_ACCESSED_MASK (1ULL << 5)
49 #define PT_DIRTY_MASK (1ULL << 6)
50 #define PT_PAGE_SIZE_MASK (1ULL << 7)
51 #define PT_PAT_MASK (1ULL << 7)
52 #define PT_GLOBAL_MASK (1ULL << 8)
53 #define PT64_NX_MASK (1ULL << 63)
54
55 #define PT_PAT_SHIFT 7
56 #define PT_DIR_PAT_SHIFT 12
57 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
58
59 #define PT32_DIR_PSE36_SIZE 4
60 #define PT32_DIR_PSE36_SHIFT 13
61 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
62
63
64 #define PT32_PTE_COPY_MASK \
65         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
66
67 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
68
69 #define PT_FIRST_AVAIL_BITS_SHIFT 9
70 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
71
72 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
73 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
74
75 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
76 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
77
78 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
79 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
80
81 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
82
83 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
84
85 #define PT64_LEVEL_BITS 9
86
87 #define PT64_LEVEL_SHIFT(level) \
88                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
89
90 #define PT64_LEVEL_MASK(level) \
91                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
92
93 #define PT64_INDEX(address, level)\
94         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
101
102 #define PT32_LEVEL_MASK(level) \
103                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
104
105 #define PT32_INDEX(address, level)\
106         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
107
108
109 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
110 #define PT64_DIR_BASE_ADDR_MASK \
111         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
112
113 #define PT32_BASE_ADDR_MASK PAGE_MASK
114 #define PT32_DIR_BASE_ADDR_MASK \
115         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
116
117
118 #define PFERR_PRESENT_MASK (1U << 0)
119 #define PFERR_WRITE_MASK (1U << 1)
120 #define PFERR_USER_MASK (1U << 2)
121
122 #define PT64_ROOT_LEVEL 4
123 #define PT32_ROOT_LEVEL 2
124 #define PT32E_ROOT_LEVEL 3
125
126 #define PT_DIRECTORY_LEVEL 2
127 #define PT_PAGE_TABLE_LEVEL 1
128
129 #define RMAP_EXT 4
130
131 struct kvm_rmap_desc {
132         u64 *shadow_ptes[RMAP_EXT];
133         struct kvm_rmap_desc *more;
134 };
135
136 static int is_write_protection(struct kvm_vcpu *vcpu)
137 {
138         return vcpu->cr0 & CR0_WP_MASK;
139 }
140
141 static int is_cpuid_PSE36(void)
142 {
143         return 1;
144 }
145
146 static int is_present_pte(unsigned long pte)
147 {
148         return pte & PT_PRESENT_MASK;
149 }
150
151 static int is_writeble_pte(unsigned long pte)
152 {
153         return pte & PT_WRITABLE_MASK;
154 }
155
156 static int is_io_pte(unsigned long pte)
157 {
158         return pte & PT_SHADOW_IO_MARK;
159 }
160
161 static int is_rmap_pte(u64 pte)
162 {
163         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
164                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
165 }
166
167 /*
168  * Reverse mapping data structures:
169  *
170  * If page->private bit zero is zero, then page->private points to the
171  * shadow page table entry that points to page_address(page).
172  *
173  * If page->private bit zero is one, (then page->private & ~1) points
174  * to a struct kvm_rmap_desc containing more mappings.
175  */
176 static void rmap_add(struct kvm *kvm, u64 *spte)
177 {
178         struct page *page;
179         struct kvm_rmap_desc *desc;
180         int i;
181
182         if (!is_rmap_pte(*spte))
183                 return;
184         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
185         if (!page->private) {
186                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
187                 page->private = (unsigned long)spte;
188         } else if (!(page->private & 1)) {
189                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
190                 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
191                 if (!desc)
192                         BUG(); /* FIXME: return error */
193                 desc->shadow_ptes[0] = (u64 *)page->private;
194                 desc->shadow_ptes[1] = spte;
195                 page->private = (unsigned long)desc | 1;
196         } else {
197                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
198                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
199                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
200                         desc = desc->more;
201                 if (desc->shadow_ptes[RMAP_EXT-1]) {
202                         desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
203                         if (!desc->more)
204                                 BUG(); /* FIXME: return error */
205                         desc = desc->more;
206                 }
207                 for (i = 0; desc->shadow_ptes[i]; ++i)
208                         ;
209                 desc->shadow_ptes[i] = spte;
210         }
211 }
212
213 static void rmap_desc_remove_entry(struct page *page,
214                                    struct kvm_rmap_desc *desc,
215                                    int i,
216                                    struct kvm_rmap_desc *prev_desc)
217 {
218         int j;
219
220         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
221                 ;
222         desc->shadow_ptes[i] = desc->shadow_ptes[j];
223         desc->shadow_ptes[j] = 0;
224         if (j != 0)
225                 return;
226         if (!prev_desc && !desc->more)
227                 page->private = (unsigned long)desc->shadow_ptes[0];
228         else
229                 if (prev_desc)
230                         prev_desc->more = desc->more;
231                 else
232                         page->private = (unsigned long)desc->more | 1;
233         kfree(desc);
234 }
235
236 static void rmap_remove(struct kvm *kvm, u64 *spte)
237 {
238         struct page *page;
239         struct kvm_rmap_desc *desc;
240         struct kvm_rmap_desc *prev_desc;
241         int i;
242
243         if (!is_rmap_pte(*spte))
244                 return;
245         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
246         if (!page->private) {
247                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
248                 BUG();
249         } else if (!(page->private & 1)) {
250                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
251                 if ((u64 *)page->private != spte) {
252                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
253                                spte, *spte);
254                         BUG();
255                 }
256                 page->private = 0;
257         } else {
258                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
259                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
260                 prev_desc = NULL;
261                 while (desc) {
262                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
263                                 if (desc->shadow_ptes[i] == spte) {
264                                         rmap_desc_remove_entry(page, desc, i,
265                                                                prev_desc);
266                                         return;
267                                 }
268                         prev_desc = desc;
269                         desc = desc->more;
270                 }
271                 BUG();
272         }
273 }
274
275 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
276 {
277         struct kvm_mmu_page *page_head = page_header(page_hpa);
278
279         list_del(&page_head->link);
280         page_head->page_hpa = page_hpa;
281         list_add(&page_head->link, &vcpu->free_pages);
282 }
283
284 static int is_empty_shadow_page(hpa_t page_hpa)
285 {
286         u32 *pos;
287         u32 *end;
288         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
289                       pos != end; pos++)
290                 if (*pos != 0)
291                         return 0;
292         return 1;
293 }
294
295 static hpa_t kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, u64 *parent_pte)
296 {
297         struct kvm_mmu_page *page;
298
299         if (list_empty(&vcpu->free_pages))
300                 return INVALID_PAGE;
301
302         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
303         list_del(&page->link);
304         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
305         ASSERT(is_empty_shadow_page(page->page_hpa));
306         page->slot_bitmap = 0;
307         page->global = 1;
308         page->parent_pte = parent_pte;
309         return page->page_hpa;
310 }
311
312 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
313 {
314         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
315         struct kvm_mmu_page *page_head = page_header(__pa(pte));
316
317         __set_bit(slot, &page_head->slot_bitmap);
318 }
319
320 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
321 {
322         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
323
324         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
325 }
326
327 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
328 {
329         struct kvm_memory_slot *slot;
330         struct page *page;
331
332         ASSERT((gpa & HPA_ERR_MASK) == 0);
333         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
334         if (!slot)
335                 return gpa | HPA_ERR_MASK;
336         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
337         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
338                 | (gpa & (PAGE_SIZE-1));
339 }
340
341 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
342 {
343         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
344
345         if (gpa == UNMAPPED_GVA)
346                 return UNMAPPED_GVA;
347         return gpa_to_hpa(vcpu, gpa);
348 }
349
350
351 static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
352                                int level)
353 {
354         u64 *pos;
355         u64 *end;
356
357         ASSERT(vcpu);
358         ASSERT(VALID_PAGE(page_hpa));
359         ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
360
361         for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
362              pos != end; pos++) {
363                 u64 current_ent = *pos;
364
365                 if (is_present_pte(current_ent)) {
366                         if (level != 1)
367                                 release_pt_page_64(vcpu,
368                                                   current_ent &
369                                                   PT64_BASE_ADDR_MASK,
370                                                   level - 1);
371                         else
372                                 rmap_remove(vcpu->kvm, pos);
373                 }
374                 *pos = 0;
375         }
376         kvm_mmu_free_page(vcpu, page_hpa);
377 }
378
379 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
380 {
381 }
382
383 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
384 {
385         int level = PT32E_ROOT_LEVEL;
386         hpa_t table_addr = vcpu->mmu.root_hpa;
387
388         for (; ; level--) {
389                 u32 index = PT64_INDEX(v, level);
390                 u64 *table;
391
392                 ASSERT(VALID_PAGE(table_addr));
393                 table = __va(table_addr);
394
395                 if (level == 1) {
396                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
397                         page_header_update_slot(vcpu->kvm, table, v);
398                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
399                                                                 PT_USER_MASK;
400                         rmap_add(vcpu->kvm, &table[index]);
401                         return 0;
402                 }
403
404                 if (table[index] == 0) {
405                         hpa_t new_table = kvm_mmu_alloc_page(vcpu,
406                                                              &table[index]);
407
408                         if (!VALID_PAGE(new_table)) {
409                                 pgprintk("nonpaging_map: ENOMEM\n");
410                                 return -ENOMEM;
411                         }
412
413                         if (level == PT32E_ROOT_LEVEL)
414                                 table[index] = new_table | PT_PRESENT_MASK;
415                         else
416                                 table[index] = new_table | PT_PRESENT_MASK |
417                                                 PT_WRITABLE_MASK | PT_USER_MASK;
418                 }
419                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
420         }
421 }
422
423 static void mmu_free_roots(struct kvm_vcpu *vcpu)
424 {
425         int i;
426
427 #ifdef CONFIG_X86_64
428         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
429                 hpa_t root = vcpu->mmu.root_hpa;
430
431                 ASSERT(VALID_PAGE(root));
432                 release_pt_page_64(vcpu, root, PT64_ROOT_LEVEL);
433                 vcpu->mmu.root_hpa = INVALID_PAGE;
434                 return;
435         }
436 #endif
437         for (i = 0; i < 4; ++i) {
438                 hpa_t root = vcpu->mmu.pae_root[i];
439
440                 ASSERT(VALID_PAGE(root));
441                 root &= PT64_BASE_ADDR_MASK;
442                 release_pt_page_64(vcpu, root, PT32E_ROOT_LEVEL - 1);
443                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
444         }
445         vcpu->mmu.root_hpa = INVALID_PAGE;
446 }
447
448 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
449 {
450         int i;
451
452 #ifdef CONFIG_X86_64
453         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
454                 hpa_t root = vcpu->mmu.root_hpa;
455
456                 ASSERT(!VALID_PAGE(root));
457                 root = kvm_mmu_alloc_page(vcpu, NULL);
458                 vcpu->mmu.root_hpa = root;
459                 return;
460         }
461 #endif
462         for (i = 0; i < 4; ++i) {
463                 hpa_t root = vcpu->mmu.pae_root[i];
464
465                 ASSERT(!VALID_PAGE(root));
466                 root = kvm_mmu_alloc_page(vcpu, NULL);
467                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
468         }
469         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
470 }
471
472 static void nonpaging_flush(struct kvm_vcpu *vcpu)
473 {
474         hpa_t root = vcpu->mmu.root_hpa;
475
476         ++kvm_stat.tlb_flush;
477         pgprintk("nonpaging_flush\n");
478         mmu_free_roots(vcpu);
479         mmu_alloc_roots(vcpu);
480         kvm_arch_ops->set_cr3(vcpu, root);
481         kvm_arch_ops->tlb_flush(vcpu);
482 }
483
484 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
485 {
486         return vaddr;
487 }
488
489 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
490                                u32 error_code)
491 {
492         int ret;
493         gpa_t addr = gva;
494
495         ASSERT(vcpu);
496         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
497
498         for (;;) {
499              hpa_t paddr;
500
501              paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
502
503              if (is_error_hpa(paddr))
504                      return 1;
505
506              ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
507              if (ret) {
508                      nonpaging_flush(vcpu);
509                      continue;
510              }
511              break;
512         }
513         return ret;
514 }
515
516 static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
517 {
518 }
519
520 static void nonpaging_free(struct kvm_vcpu *vcpu)
521 {
522         mmu_free_roots(vcpu);
523 }
524
525 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
526 {
527         struct kvm_mmu *context = &vcpu->mmu;
528
529         context->new_cr3 = nonpaging_new_cr3;
530         context->page_fault = nonpaging_page_fault;
531         context->inval_page = nonpaging_inval_page;
532         context->gva_to_gpa = nonpaging_gva_to_gpa;
533         context->free = nonpaging_free;
534         context->root_level = PT32E_ROOT_LEVEL;
535         context->shadow_root_level = PT32E_ROOT_LEVEL;
536         mmu_alloc_roots(vcpu);
537         ASSERT(VALID_PAGE(context->root_hpa));
538         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
539         return 0;
540 }
541
542
543 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
544 {
545         struct kvm_mmu_page *page, *npage;
546
547         list_for_each_entry_safe(page, npage, &vcpu->kvm->active_mmu_pages,
548                                  link) {
549                 if (page->global)
550                         continue;
551
552                 if (!page->parent_pte)
553                         continue;
554
555                 *page->parent_pte = 0;
556                 release_pt_page_64(vcpu, page->page_hpa, 1);
557         }
558         ++kvm_stat.tlb_flush;
559         kvm_arch_ops->tlb_flush(vcpu);
560 }
561
562 static void paging_new_cr3(struct kvm_vcpu *vcpu)
563 {
564         kvm_mmu_flush_tlb(vcpu);
565 }
566
567 static void mark_pagetable_nonglobal(void *shadow_pte)
568 {
569         page_header(__pa(shadow_pte))->global = 0;
570 }
571
572 static inline void set_pte_common(struct kvm_vcpu *vcpu,
573                              u64 *shadow_pte,
574                              gpa_t gaddr,
575                              int dirty,
576                              u64 access_bits)
577 {
578         hpa_t paddr;
579
580         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
581         if (!dirty)
582                 access_bits &= ~PT_WRITABLE_MASK;
583
584         if (access_bits & PT_WRITABLE_MASK)
585                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
586
587         *shadow_pte |= access_bits;
588
589         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
590
591         if (!(*shadow_pte & PT_GLOBAL_MASK))
592                 mark_pagetable_nonglobal(shadow_pte);
593
594         if (is_error_hpa(paddr)) {
595                 *shadow_pte |= gaddr;
596                 *shadow_pte |= PT_SHADOW_IO_MARK;
597                 *shadow_pte &= ~PT_PRESENT_MASK;
598         } else {
599                 *shadow_pte |= paddr;
600                 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
601                 rmap_add(vcpu->kvm, shadow_pte);
602         }
603 }
604
605 static void inject_page_fault(struct kvm_vcpu *vcpu,
606                               u64 addr,
607                               u32 err_code)
608 {
609         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
610 }
611
612 static inline int fix_read_pf(u64 *shadow_ent)
613 {
614         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
615             !(*shadow_ent & PT_USER_MASK)) {
616                 /*
617                  * If supervisor write protect is disabled, we shadow kernel
618                  * pages as user pages so we can trap the write access.
619                  */
620                 *shadow_ent |= PT_USER_MASK;
621                 *shadow_ent &= ~PT_WRITABLE_MASK;
622
623                 return 1;
624
625         }
626         return 0;
627 }
628
629 static int may_access(u64 pte, int write, int user)
630 {
631
632         if (user && !(pte & PT_USER_MASK))
633                 return 0;
634         if (write && !(pte & PT_WRITABLE_MASK))
635                 return 0;
636         return 1;
637 }
638
639 /*
640  * Remove a shadow pte.
641  */
642 static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
643 {
644         hpa_t page_addr = vcpu->mmu.root_hpa;
645         int level = vcpu->mmu.shadow_root_level;
646
647         ++kvm_stat.invlpg;
648
649         for (; ; level--) {
650                 u32 index = PT64_INDEX(addr, level);
651                 u64 *table = __va(page_addr);
652
653                 if (level == PT_PAGE_TABLE_LEVEL ) {
654                         rmap_remove(vcpu->kvm, &table[index]);
655                         table[index] = 0;
656                         return;
657                 }
658
659                 if (!is_present_pte(table[index]))
660                         return;
661
662                 page_addr = table[index] & PT64_BASE_ADDR_MASK;
663
664                 if (level == PT_DIRECTORY_LEVEL &&
665                           (table[index] & PT_SHADOW_PS_MARK)) {
666                         table[index] = 0;
667                         release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
668
669                         kvm_arch_ops->tlb_flush(vcpu);
670                         return;
671                 }
672         }
673 }
674
675 static void paging_free(struct kvm_vcpu *vcpu)
676 {
677         nonpaging_free(vcpu);
678 }
679
680 #define PTTYPE 64
681 #include "paging_tmpl.h"
682 #undef PTTYPE
683
684 #define PTTYPE 32
685 #include "paging_tmpl.h"
686 #undef PTTYPE
687
688 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
689 {
690         struct kvm_mmu *context = &vcpu->mmu;
691
692         ASSERT(is_pae(vcpu));
693         context->new_cr3 = paging_new_cr3;
694         context->page_fault = paging64_page_fault;
695         context->inval_page = paging_inval_page;
696         context->gva_to_gpa = paging64_gva_to_gpa;
697         context->free = paging_free;
698         context->root_level = level;
699         context->shadow_root_level = level;
700         mmu_alloc_roots(vcpu);
701         ASSERT(VALID_PAGE(context->root_hpa));
702         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
703                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
704         return 0;
705 }
706
707 static int paging64_init_context(struct kvm_vcpu *vcpu)
708 {
709         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
710 }
711
712 static int paging32_init_context(struct kvm_vcpu *vcpu)
713 {
714         struct kvm_mmu *context = &vcpu->mmu;
715
716         context->new_cr3 = paging_new_cr3;
717         context->page_fault = paging32_page_fault;
718         context->inval_page = paging_inval_page;
719         context->gva_to_gpa = paging32_gva_to_gpa;
720         context->free = paging_free;
721         context->root_level = PT32_ROOT_LEVEL;
722         context->shadow_root_level = PT32E_ROOT_LEVEL;
723         mmu_alloc_roots(vcpu);
724         ASSERT(VALID_PAGE(context->root_hpa));
725         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
726                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
727         return 0;
728 }
729
730 static int paging32E_init_context(struct kvm_vcpu *vcpu)
731 {
732         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
733 }
734
735 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
736 {
737         ASSERT(vcpu);
738         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
739
740         if (!is_paging(vcpu))
741                 return nonpaging_init_context(vcpu);
742         else if (is_long_mode(vcpu))
743                 return paging64_init_context(vcpu);
744         else if (is_pae(vcpu))
745                 return paging32E_init_context(vcpu);
746         else
747                 return paging32_init_context(vcpu);
748 }
749
750 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
751 {
752         ASSERT(vcpu);
753         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
754                 vcpu->mmu.free(vcpu);
755                 vcpu->mmu.root_hpa = INVALID_PAGE;
756         }
757 }
758
759 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
760 {
761         destroy_kvm_mmu(vcpu);
762         return init_kvm_mmu(vcpu);
763 }
764
765 static void free_mmu_pages(struct kvm_vcpu *vcpu)
766 {
767         while (!list_empty(&vcpu->free_pages)) {
768                 struct kvm_mmu_page *page;
769
770                 page = list_entry(vcpu->free_pages.next,
771                                   struct kvm_mmu_page, link);
772                 list_del(&page->link);
773                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
774                 page->page_hpa = INVALID_PAGE;
775         }
776         free_page((unsigned long)vcpu->mmu.pae_root);
777 }
778
779 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
780 {
781         struct page *page;
782         int i;
783
784         ASSERT(vcpu);
785
786         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
787                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
788
789                 INIT_LIST_HEAD(&page_header->link);
790                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
791                         goto error_1;
792                 page->private = (unsigned long)page_header;
793                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
794                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
795                 list_add(&page_header->link, &vcpu->free_pages);
796         }
797
798         /*
799          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
800          * Therefore we need to allocate shadow page tables in the first
801          * 4GB of memory, which happens to fit the DMA32 zone.
802          */
803         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
804         if (!page)
805                 goto error_1;
806         vcpu->mmu.pae_root = page_address(page);
807         for (i = 0; i < 4; ++i)
808                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
809
810         return 0;
811
812 error_1:
813         free_mmu_pages(vcpu);
814         return -ENOMEM;
815 }
816
817 int kvm_mmu_create(struct kvm_vcpu *vcpu)
818 {
819         ASSERT(vcpu);
820         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
821         ASSERT(list_empty(&vcpu->free_pages));
822
823         return alloc_mmu_pages(vcpu);
824 }
825
826 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
827 {
828         ASSERT(vcpu);
829         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
830         ASSERT(!list_empty(&vcpu->free_pages));
831
832         return init_kvm_mmu(vcpu);
833 }
834
835 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
836 {
837         ASSERT(vcpu);
838
839         destroy_kvm_mmu(vcpu);
840         free_mmu_pages(vcpu);
841 }
842
843 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
844 {
845         struct kvm_mmu_page *page;
846
847         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
848                 int i;
849                 u64 *pt;
850
851                 if (!test_bit(slot, &page->slot_bitmap))
852                         continue;
853
854                 pt = __va(page->page_hpa);
855                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
856                         /* avoid RMW */
857                         if (pt[i] & PT_WRITABLE_MASK) {
858                                 rmap_remove(kvm, &pt[i]);
859                                 pt[i] &= ~PT_WRITABLE_MASK;
860                         }
861         }
862 }