Merge git://www.linux-watchdog.org/linux-watchdog
[firefly-linux-kernel-4.4.55.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->pgs_per_blk);
117 }
118
119 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120 {
121         struct nvm_block *blk = rblk->parent;
122
123         return blk->id * rrpc->dev->pgs_per_blk;
124 }
125
126 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127                                                         struct ppa_addr r)
128 {
129         struct ppa_addr l;
130         int secs, pgs, blks, luns;
131         sector_t ppa = r.ppa;
132
133         l.ppa = 0;
134
135         div_u64_rem(ppa, dev->sec_per_pg, &secs);
136         l.g.sec = secs;
137
138         sector_div(ppa, dev->sec_per_pg);
139         div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140         l.g.pg = pgs;
141
142         sector_div(ppa, dev->pgs_per_blk);
143         div_u64_rem(ppa, dev->blks_per_lun, &blks);
144         l.g.blk = blks;
145
146         sector_div(ppa, dev->blks_per_lun);
147         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148         l.g.lun = luns;
149
150         sector_div(ppa, dev->luns_per_chnl);
151         l.g.ch = ppa;
152
153         return l;
154 }
155
156 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
157 {
158         struct ppa_addr paddr;
159
160         paddr.ppa = addr;
161         return linear_to_generic_addr(dev, paddr);
162 }
163
164 /* requires lun->lock taken */
165 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166 {
167         struct rrpc *rrpc = rlun->rrpc;
168
169         BUG_ON(!rblk);
170
171         if (rlun->cur) {
172                 spin_lock(&rlun->cur->lock);
173                 WARN_ON(!block_is_full(rrpc, rlun->cur));
174                 spin_unlock(&rlun->cur->lock);
175         }
176         rlun->cur = rblk;
177 }
178
179 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180                                                         unsigned long flags)
181 {
182         struct nvm_block *blk;
183         struct rrpc_block *rblk;
184
185         blk = nvm_get_blk(rrpc->dev, rlun->parent, 0);
186         if (!blk)
187                 return NULL;
188
189         rblk = &rlun->blocks[blk->id];
190         blk->priv = rblk;
191
192         bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193         rblk->next_page = 0;
194         rblk->nr_invalid_pages = 0;
195         atomic_set(&rblk->data_cmnt_size, 0);
196
197         return rblk;
198 }
199
200 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201 {
202         nvm_put_blk(rrpc->dev, rblk->parent);
203 }
204
205 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
206 {
207         int next = atomic_inc_return(&rrpc->next_lun);
208
209         return &rrpc->luns[next % rrpc->nr_luns];
210 }
211
212 static void rrpc_gc_kick(struct rrpc *rrpc)
213 {
214         struct rrpc_lun *rlun;
215         unsigned int i;
216
217         for (i = 0; i < rrpc->nr_luns; i++) {
218                 rlun = &rrpc->luns[i];
219                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
220         }
221 }
222
223 /*
224  * timed GC every interval.
225  */
226 static void rrpc_gc_timer(unsigned long data)
227 {
228         struct rrpc *rrpc = (struct rrpc *)data;
229
230         rrpc_gc_kick(rrpc);
231         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
232 }
233
234 static void rrpc_end_sync_bio(struct bio *bio)
235 {
236         struct completion *waiting = bio->bi_private;
237
238         if (bio->bi_error)
239                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
240
241         complete(waiting);
242 }
243
244 /*
245  * rrpc_move_valid_pages -- migrate live data off the block
246  * @rrpc: the 'rrpc' structure
247  * @block: the block from which to migrate live pages
248  *
249  * Description:
250  *   GC algorithms may call this function to migrate remaining live
251  *   pages off the block prior to erasing it. This function blocks
252  *   further execution until the operation is complete.
253  */
254 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
255 {
256         struct request_queue *q = rrpc->dev->q;
257         struct rrpc_rev_addr *rev;
258         struct nvm_rq *rqd;
259         struct bio *bio;
260         struct page *page;
261         int slot;
262         int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
263         u64 phys_addr;
264         DECLARE_COMPLETION_ONSTACK(wait);
265
266         if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
267                 return 0;
268
269         bio = bio_alloc(GFP_NOIO, 1);
270         if (!bio) {
271                 pr_err("nvm: could not alloc bio to gc\n");
272                 return -ENOMEM;
273         }
274
275         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
276
277         while ((slot = find_first_zero_bit(rblk->invalid_pages,
278                                             nr_pgs_per_blk)) < nr_pgs_per_blk) {
279
280                 /* Lock laddr */
281                 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
282
283 try:
284                 spin_lock(&rrpc->rev_lock);
285                 /* Get logical address from physical to logical table */
286                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
287                 /* already updated by previous regular write */
288                 if (rev->addr == ADDR_EMPTY) {
289                         spin_unlock(&rrpc->rev_lock);
290                         continue;
291                 }
292
293                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
294                 if (IS_ERR_OR_NULL(rqd)) {
295                         spin_unlock(&rrpc->rev_lock);
296                         schedule();
297                         goto try;
298                 }
299
300                 spin_unlock(&rrpc->rev_lock);
301
302                 /* Perform read to do GC */
303                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
304                 bio->bi_rw = READ;
305                 bio->bi_private = &wait;
306                 bio->bi_end_io = rrpc_end_sync_bio;
307
308                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
309                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
310
311                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
312                         pr_err("rrpc: gc read failed.\n");
313                         rrpc_inflight_laddr_release(rrpc, rqd);
314                         goto finished;
315                 }
316                 wait_for_completion_io(&wait);
317
318                 bio_reset(bio);
319                 reinit_completion(&wait);
320
321                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
322                 bio->bi_rw = WRITE;
323                 bio->bi_private = &wait;
324                 bio->bi_end_io = rrpc_end_sync_bio;
325
326                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
327
328                 /* turn the command around and write the data back to a new
329                  * address
330                  */
331                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
332                         pr_err("rrpc: gc write failed.\n");
333                         rrpc_inflight_laddr_release(rrpc, rqd);
334                         goto finished;
335                 }
336                 wait_for_completion_io(&wait);
337
338                 rrpc_inflight_laddr_release(rrpc, rqd);
339
340                 bio_reset(bio);
341         }
342
343 finished:
344         mempool_free(page, rrpc->page_pool);
345         bio_put(bio);
346
347         if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
348                 pr_err("nvm: failed to garbage collect block\n");
349                 return -EIO;
350         }
351
352         return 0;
353 }
354
355 static void rrpc_block_gc(struct work_struct *work)
356 {
357         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
358                                                                         ws_gc);
359         struct rrpc *rrpc = gcb->rrpc;
360         struct rrpc_block *rblk = gcb->rblk;
361         struct nvm_dev *dev = rrpc->dev;
362
363         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
364
365         if (rrpc_move_valid_pages(rrpc, rblk))
366                 goto done;
367
368         nvm_erase_blk(dev, rblk->parent);
369         rrpc_put_blk(rrpc, rblk);
370 done:
371         mempool_free(gcb, rrpc->gcb_pool);
372 }
373
374 /* the block with highest number of invalid pages, will be in the beginning
375  * of the list
376  */
377 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
378                                                         struct rrpc_block *rb)
379 {
380         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
381                 return ra;
382
383         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
384 }
385
386 /* linearly find the block with highest number of invalid pages
387  * requires lun->lock
388  */
389 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
390 {
391         struct list_head *prio_list = &rlun->prio_list;
392         struct rrpc_block *rblock, *max;
393
394         BUG_ON(list_empty(prio_list));
395
396         max = list_first_entry(prio_list, struct rrpc_block, prio);
397         list_for_each_entry(rblock, prio_list, prio)
398                 max = rblock_max_invalid(max, rblock);
399
400         return max;
401 }
402
403 static void rrpc_lun_gc(struct work_struct *work)
404 {
405         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
406         struct rrpc *rrpc = rlun->rrpc;
407         struct nvm_lun *lun = rlun->parent;
408         struct rrpc_block_gc *gcb;
409         unsigned int nr_blocks_need;
410
411         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
412
413         if (nr_blocks_need < rrpc->nr_luns)
414                 nr_blocks_need = rrpc->nr_luns;
415
416         spin_lock(&lun->lock);
417         while (nr_blocks_need > lun->nr_free_blocks &&
418                                         !list_empty(&rlun->prio_list)) {
419                 struct rrpc_block *rblock = block_prio_find_max(rlun);
420                 struct nvm_block *block = rblock->parent;
421
422                 if (!rblock->nr_invalid_pages)
423                         break;
424
425                 list_del_init(&rblock->prio);
426
427                 BUG_ON(!block_is_full(rrpc, rblock));
428
429                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
430
431                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
432                 if (!gcb)
433                         break;
434
435                 gcb->rrpc = rrpc;
436                 gcb->rblk = rblock;
437                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
438
439                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
440
441                 nr_blocks_need--;
442         }
443         spin_unlock(&lun->lock);
444
445         /* TODO: Hint that request queue can be started again */
446 }
447
448 static void rrpc_gc_queue(struct work_struct *work)
449 {
450         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
451                                                                         ws_gc);
452         struct rrpc *rrpc = gcb->rrpc;
453         struct rrpc_block *rblk = gcb->rblk;
454         struct nvm_lun *lun = rblk->parent->lun;
455         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
456
457         spin_lock(&rlun->lock);
458         list_add_tail(&rblk->prio, &rlun->prio_list);
459         spin_unlock(&rlun->lock);
460
461         mempool_free(gcb, rrpc->gcb_pool);
462         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
463                                                         rblk->parent->id);
464 }
465
466 static const struct block_device_operations rrpc_fops = {
467         .owner          = THIS_MODULE,
468 };
469
470 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
471 {
472         unsigned int i;
473         struct rrpc_lun *rlun, *max_free;
474
475         if (!is_gc)
476                 return get_next_lun(rrpc);
477
478         /* during GC, we don't care about RR, instead we want to make
479          * sure that we maintain evenness between the block luns.
480          */
481         max_free = &rrpc->luns[0];
482         /* prevent GC-ing lun from devouring pages of a lun with
483          * little free blocks. We don't take the lock as we only need an
484          * estimate.
485          */
486         rrpc_for_each_lun(rrpc, rlun, i) {
487                 if (rlun->parent->nr_free_blocks >
488                                         max_free->parent->nr_free_blocks)
489                         max_free = rlun;
490         }
491
492         return max_free;
493 }
494
495 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
496                                         struct rrpc_block *rblk, u64 paddr)
497 {
498         struct rrpc_addr *gp;
499         struct rrpc_rev_addr *rev;
500
501         BUG_ON(laddr >= rrpc->nr_pages);
502
503         gp = &rrpc->trans_map[laddr];
504         spin_lock(&rrpc->rev_lock);
505         if (gp->rblk)
506                 rrpc_page_invalidate(rrpc, gp);
507
508         gp->addr = paddr;
509         gp->rblk = rblk;
510
511         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
512         rev->addr = laddr;
513         spin_unlock(&rrpc->rev_lock);
514
515         return gp;
516 }
517
518 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
519 {
520         u64 addr = ADDR_EMPTY;
521
522         spin_lock(&rblk->lock);
523         if (block_is_full(rrpc, rblk))
524                 goto out;
525
526         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
527
528         rblk->next_page++;
529 out:
530         spin_unlock(&rblk->lock);
531         return addr;
532 }
533
534 /* Simple round-robin Logical to physical address translation.
535  *
536  * Retrieve the mapping using the active append point. Then update the ap for
537  * the next write to the disk.
538  *
539  * Returns rrpc_addr with the physical address and block. Remember to return to
540  * rrpc->addr_cache when request is finished.
541  */
542 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
543                                                                 int is_gc)
544 {
545         struct rrpc_lun *rlun;
546         struct rrpc_block *rblk;
547         struct nvm_lun *lun;
548         u64 paddr;
549
550         rlun = rrpc_get_lun_rr(rrpc, is_gc);
551         lun = rlun->parent;
552
553         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
554                 return NULL;
555
556         spin_lock(&rlun->lock);
557
558         rblk = rlun->cur;
559 retry:
560         paddr = rrpc_alloc_addr(rrpc, rblk);
561
562         if (paddr == ADDR_EMPTY) {
563                 rblk = rrpc_get_blk(rrpc, rlun, 0);
564                 if (rblk) {
565                         rrpc_set_lun_cur(rlun, rblk);
566                         goto retry;
567                 }
568
569                 if (is_gc) {
570                         /* retry from emergency gc block */
571                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
572                         if (paddr == ADDR_EMPTY) {
573                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
574                                 if (!rblk) {
575                                         pr_err("rrpc: no more blocks");
576                                         goto err;
577                                 }
578
579                                 rlun->gc_cur = rblk;
580                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
581                         }
582                         rblk = rlun->gc_cur;
583                 }
584         }
585
586         spin_unlock(&rlun->lock);
587         return rrpc_update_map(rrpc, laddr, rblk, paddr);
588 err:
589         spin_unlock(&rlun->lock);
590         return NULL;
591 }
592
593 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
594 {
595         struct rrpc_block_gc *gcb;
596
597         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
598         if (!gcb) {
599                 pr_err("rrpc: unable to queue block for gc.");
600                 return;
601         }
602
603         gcb->rrpc = rrpc;
604         gcb->rblk = rblk;
605
606         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
607         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
608 }
609
610 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
611                                                 sector_t laddr, uint8_t npages)
612 {
613         struct rrpc_addr *p;
614         struct rrpc_block *rblk;
615         struct nvm_lun *lun;
616         int cmnt_size, i;
617
618         for (i = 0; i < npages; i++) {
619                 p = &rrpc->trans_map[laddr + i];
620                 rblk = p->rblk;
621                 lun = rblk->parent->lun;
622
623                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
624                 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
625                         rrpc_run_gc(rrpc, rblk);
626         }
627 }
628
629 static int rrpc_end_io(struct nvm_rq *rqd, int error)
630 {
631         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
632         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
633         uint8_t npages = rqd->nr_pages;
634         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
635
636         if (bio_data_dir(rqd->bio) == WRITE)
637                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
638
639         if (rrqd->flags & NVM_IOTYPE_GC)
640                 return 0;
641
642         rrpc_unlock_rq(rrpc, rqd);
643         bio_put(rqd->bio);
644
645         if (npages > 1)
646                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
647         if (rqd->metadata)
648                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
649
650         mempool_free(rqd, rrpc->rq_pool);
651
652         return 0;
653 }
654
655 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
656                         struct nvm_rq *rqd, unsigned long flags, int npages)
657 {
658         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
659         struct rrpc_addr *gp;
660         sector_t laddr = rrpc_get_laddr(bio);
661         int is_gc = flags & NVM_IOTYPE_GC;
662         int i;
663
664         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
665                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
666                 return NVM_IO_REQUEUE;
667         }
668
669         for (i = 0; i < npages; i++) {
670                 /* We assume that mapping occurs at 4KB granularity */
671                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
672                 gp = &rrpc->trans_map[laddr + i];
673
674                 if (gp->rblk) {
675                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
676                                                                 gp->addr);
677                 } else {
678                         BUG_ON(is_gc);
679                         rrpc_unlock_laddr(rrpc, r);
680                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
681                                                         rqd->dma_ppa_list);
682                         return NVM_IO_DONE;
683                 }
684         }
685
686         rqd->opcode = NVM_OP_HBREAD;
687
688         return NVM_IO_OK;
689 }
690
691 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
692                                                         unsigned long flags)
693 {
694         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
695         int is_gc = flags & NVM_IOTYPE_GC;
696         sector_t laddr = rrpc_get_laddr(bio);
697         struct rrpc_addr *gp;
698
699         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
700                 return NVM_IO_REQUEUE;
701
702         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
703         gp = &rrpc->trans_map[laddr];
704
705         if (gp->rblk) {
706                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
707         } else {
708                 BUG_ON(is_gc);
709                 rrpc_unlock_rq(rrpc, rqd);
710                 return NVM_IO_DONE;
711         }
712
713         rqd->opcode = NVM_OP_HBREAD;
714         rrqd->addr = gp;
715
716         return NVM_IO_OK;
717 }
718
719 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
720                         struct nvm_rq *rqd, unsigned long flags, int npages)
721 {
722         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
723         struct rrpc_addr *p;
724         sector_t laddr = rrpc_get_laddr(bio);
725         int is_gc = flags & NVM_IOTYPE_GC;
726         int i;
727
728         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
729                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
730                 return NVM_IO_REQUEUE;
731         }
732
733         for (i = 0; i < npages; i++) {
734                 /* We assume that mapping occurs at 4KB granularity */
735                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
736                 if (!p) {
737                         BUG_ON(is_gc);
738                         rrpc_unlock_laddr(rrpc, r);
739                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
740                                                         rqd->dma_ppa_list);
741                         rrpc_gc_kick(rrpc);
742                         return NVM_IO_REQUEUE;
743                 }
744
745                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
746                                                                 p->addr);
747         }
748
749         rqd->opcode = NVM_OP_HBWRITE;
750
751         return NVM_IO_OK;
752 }
753
754 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
755                                 struct nvm_rq *rqd, unsigned long flags)
756 {
757         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
758         struct rrpc_addr *p;
759         int is_gc = flags & NVM_IOTYPE_GC;
760         sector_t laddr = rrpc_get_laddr(bio);
761
762         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
763                 return NVM_IO_REQUEUE;
764
765         p = rrpc_map_page(rrpc, laddr, is_gc);
766         if (!p) {
767                 BUG_ON(is_gc);
768                 rrpc_unlock_rq(rrpc, rqd);
769                 rrpc_gc_kick(rrpc);
770                 return NVM_IO_REQUEUE;
771         }
772
773         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
774         rqd->opcode = NVM_OP_HBWRITE;
775         rrqd->addr = p;
776
777         return NVM_IO_OK;
778 }
779
780 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
781                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
782 {
783         if (npages > 1) {
784                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
785                                                         &rqd->dma_ppa_list);
786                 if (!rqd->ppa_list) {
787                         pr_err("rrpc: not able to allocate ppa list\n");
788                         return NVM_IO_ERR;
789                 }
790
791                 if (bio_rw(bio) == WRITE)
792                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
793                                                                         npages);
794
795                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
796         }
797
798         if (bio_rw(bio) == WRITE)
799                 return rrpc_write_rq(rrpc, bio, rqd, flags);
800
801         return rrpc_read_rq(rrpc, bio, rqd, flags);
802 }
803
804 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
805                                 struct nvm_rq *rqd, unsigned long flags)
806 {
807         int err;
808         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
809         uint8_t nr_pages = rrpc_get_pages(bio);
810         int bio_size = bio_sectors(bio) << 9;
811
812         if (bio_size < rrpc->dev->sec_size)
813                 return NVM_IO_ERR;
814         else if (bio_size > rrpc->dev->max_rq_size)
815                 return NVM_IO_ERR;
816
817         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
818         if (err)
819                 return err;
820
821         bio_get(bio);
822         rqd->bio = bio;
823         rqd->ins = &rrpc->instance;
824         rqd->nr_pages = nr_pages;
825         rrq->flags = flags;
826
827         err = nvm_submit_io(rrpc->dev, rqd);
828         if (err) {
829                 pr_err("rrpc: I/O submission failed: %d\n", err);
830                 return NVM_IO_ERR;
831         }
832
833         return NVM_IO_OK;
834 }
835
836 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
837 {
838         struct rrpc *rrpc = q->queuedata;
839         struct nvm_rq *rqd;
840         int err;
841
842         if (bio->bi_rw & REQ_DISCARD) {
843                 rrpc_discard(rrpc, bio);
844                 return BLK_QC_T_NONE;
845         }
846
847         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
848         if (!rqd) {
849                 pr_err_ratelimited("rrpc: not able to queue bio.");
850                 bio_io_error(bio);
851                 return BLK_QC_T_NONE;
852         }
853         memset(rqd, 0, sizeof(struct nvm_rq));
854
855         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
856         switch (err) {
857         case NVM_IO_OK:
858                 return BLK_QC_T_NONE;
859         case NVM_IO_ERR:
860                 bio_io_error(bio);
861                 break;
862         case NVM_IO_DONE:
863                 bio_endio(bio);
864                 break;
865         case NVM_IO_REQUEUE:
866                 spin_lock(&rrpc->bio_lock);
867                 bio_list_add(&rrpc->requeue_bios, bio);
868                 spin_unlock(&rrpc->bio_lock);
869                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
870                 break;
871         }
872
873         mempool_free(rqd, rrpc->rq_pool);
874         return BLK_QC_T_NONE;
875 }
876
877 static void rrpc_requeue(struct work_struct *work)
878 {
879         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
880         struct bio_list bios;
881         struct bio *bio;
882
883         bio_list_init(&bios);
884
885         spin_lock(&rrpc->bio_lock);
886         bio_list_merge(&bios, &rrpc->requeue_bios);
887         bio_list_init(&rrpc->requeue_bios);
888         spin_unlock(&rrpc->bio_lock);
889
890         while ((bio = bio_list_pop(&bios)))
891                 rrpc_make_rq(rrpc->disk->queue, bio);
892 }
893
894 static void rrpc_gc_free(struct rrpc *rrpc)
895 {
896         struct rrpc_lun *rlun;
897         int i;
898
899         if (rrpc->krqd_wq)
900                 destroy_workqueue(rrpc->krqd_wq);
901
902         if (rrpc->kgc_wq)
903                 destroy_workqueue(rrpc->kgc_wq);
904
905         if (!rrpc->luns)
906                 return;
907
908         for (i = 0; i < rrpc->nr_luns; i++) {
909                 rlun = &rrpc->luns[i];
910
911                 if (!rlun->blocks)
912                         break;
913                 vfree(rlun->blocks);
914         }
915 }
916
917 static int rrpc_gc_init(struct rrpc *rrpc)
918 {
919         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
920                                                                 rrpc->nr_luns);
921         if (!rrpc->krqd_wq)
922                 return -ENOMEM;
923
924         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
925         if (!rrpc->kgc_wq)
926                 return -ENOMEM;
927
928         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
929
930         return 0;
931 }
932
933 static void rrpc_map_free(struct rrpc *rrpc)
934 {
935         vfree(rrpc->rev_trans_map);
936         vfree(rrpc->trans_map);
937 }
938
939 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
940 {
941         struct rrpc *rrpc = (struct rrpc *)private;
942         struct nvm_dev *dev = rrpc->dev;
943         struct rrpc_addr *addr = rrpc->trans_map + slba;
944         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
945         sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
946         u64 elba = slba + nlb;
947         u64 i;
948
949         if (unlikely(elba > dev->total_pages)) {
950                 pr_err("nvm: L2P data from device is out of bounds!\n");
951                 return -EINVAL;
952         }
953
954         for (i = 0; i < nlb; i++) {
955                 u64 pba = le64_to_cpu(entries[i]);
956                 /* LNVM treats address-spaces as silos, LBA and PBA are
957                  * equally large and zero-indexed.
958                  */
959                 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
960                         pr_err("nvm: L2P data entry is out of bounds!\n");
961                         return -EINVAL;
962                 }
963
964                 /* Address zero is a special one. The first page on a disk is
965                  * protected. As it often holds internal device boot
966                  * information.
967                  */
968                 if (!pba)
969                         continue;
970
971                 addr[i].addr = pba;
972                 raddr[pba].addr = slba + i;
973         }
974
975         return 0;
976 }
977
978 static int rrpc_map_init(struct rrpc *rrpc)
979 {
980         struct nvm_dev *dev = rrpc->dev;
981         sector_t i;
982         int ret;
983
984         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
985         if (!rrpc->trans_map)
986                 return -ENOMEM;
987
988         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
989                                                         * rrpc->nr_pages);
990         if (!rrpc->rev_trans_map)
991                 return -ENOMEM;
992
993         for (i = 0; i < rrpc->nr_pages; i++) {
994                 struct rrpc_addr *p = &rrpc->trans_map[i];
995                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
996
997                 p->addr = ADDR_EMPTY;
998                 r->addr = ADDR_EMPTY;
999         }
1000
1001         if (!dev->ops->get_l2p_tbl)
1002                 return 0;
1003
1004         /* Bring up the mapping table from device */
1005         ret = dev->ops->get_l2p_tbl(dev->q, 0, dev->total_pages,
1006                                                         rrpc_l2p_update, rrpc);
1007         if (ret) {
1008                 pr_err("nvm: rrpc: could not read L2P table.\n");
1009                 return -EINVAL;
1010         }
1011
1012         return 0;
1013 }
1014
1015
1016 /* Minimum pages needed within a lun */
1017 #define PAGE_POOL_SIZE 16
1018 #define ADDR_POOL_SIZE 64
1019
1020 static int rrpc_core_init(struct rrpc *rrpc)
1021 {
1022         down_write(&rrpc_lock);
1023         if (!rrpc_gcb_cache) {
1024                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1025                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1026                 if (!rrpc_gcb_cache) {
1027                         up_write(&rrpc_lock);
1028                         return -ENOMEM;
1029                 }
1030
1031                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1032                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1033                                 0, 0, NULL);
1034                 if (!rrpc_rq_cache) {
1035                         kmem_cache_destroy(rrpc_gcb_cache);
1036                         up_write(&rrpc_lock);
1037                         return -ENOMEM;
1038                 }
1039         }
1040         up_write(&rrpc_lock);
1041
1042         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1043         if (!rrpc->page_pool)
1044                 return -ENOMEM;
1045
1046         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1047                                                                 rrpc_gcb_cache);
1048         if (!rrpc->gcb_pool)
1049                 return -ENOMEM;
1050
1051         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1052         if (!rrpc->rq_pool)
1053                 return -ENOMEM;
1054
1055         spin_lock_init(&rrpc->inflights.lock);
1056         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1057
1058         return 0;
1059 }
1060
1061 static void rrpc_core_free(struct rrpc *rrpc)
1062 {
1063         mempool_destroy(rrpc->page_pool);
1064         mempool_destroy(rrpc->gcb_pool);
1065         mempool_destroy(rrpc->rq_pool);
1066 }
1067
1068 static void rrpc_luns_free(struct rrpc *rrpc)
1069 {
1070         kfree(rrpc->luns);
1071 }
1072
1073 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1074 {
1075         struct nvm_dev *dev = rrpc->dev;
1076         struct rrpc_lun *rlun;
1077         int i, j;
1078
1079         spin_lock_init(&rrpc->rev_lock);
1080
1081         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1082                                                                 GFP_KERNEL);
1083         if (!rrpc->luns)
1084                 return -ENOMEM;
1085
1086         /* 1:1 mapping */
1087         for (i = 0; i < rrpc->nr_luns; i++) {
1088                 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1089
1090                 if (dev->pgs_per_blk >
1091                                 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1092                         pr_err("rrpc: number of pages per block too high.");
1093                         goto err;
1094                 }
1095
1096                 rlun = &rrpc->luns[i];
1097                 rlun->rrpc = rrpc;
1098                 rlun->parent = lun;
1099                 INIT_LIST_HEAD(&rlun->prio_list);
1100                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1101                 spin_lock_init(&rlun->lock);
1102
1103                 rrpc->total_blocks += dev->blks_per_lun;
1104                 rrpc->nr_pages += dev->sec_per_lun;
1105
1106                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1107                                                 rrpc->dev->blks_per_lun);
1108                 if (!rlun->blocks)
1109                         goto err;
1110
1111                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1112                         struct rrpc_block *rblk = &rlun->blocks[j];
1113                         struct nvm_block *blk = &lun->blocks[j];
1114
1115                         rblk->parent = blk;
1116                         INIT_LIST_HEAD(&rblk->prio);
1117                         spin_lock_init(&rblk->lock);
1118                 }
1119         }
1120
1121         return 0;
1122 err:
1123         return -ENOMEM;
1124 }
1125
1126 static void rrpc_free(struct rrpc *rrpc)
1127 {
1128         rrpc_gc_free(rrpc);
1129         rrpc_map_free(rrpc);
1130         rrpc_core_free(rrpc);
1131         rrpc_luns_free(rrpc);
1132
1133         kfree(rrpc);
1134 }
1135
1136 static void rrpc_exit(void *private)
1137 {
1138         struct rrpc *rrpc = private;
1139
1140         del_timer(&rrpc->gc_timer);
1141
1142         flush_workqueue(rrpc->krqd_wq);
1143         flush_workqueue(rrpc->kgc_wq);
1144
1145         rrpc_free(rrpc);
1146 }
1147
1148 static sector_t rrpc_capacity(void *private)
1149 {
1150         struct rrpc *rrpc = private;
1151         struct nvm_dev *dev = rrpc->dev;
1152         sector_t reserved, provisioned;
1153
1154         /* cur, gc, and two emergency blocks for each lun */
1155         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1156         provisioned = rrpc->nr_pages - reserved;
1157
1158         if (reserved > rrpc->nr_pages) {
1159                 pr_err("rrpc: not enough space available to expose storage.\n");
1160                 return 0;
1161         }
1162
1163         sector_div(provisioned, 10);
1164         return provisioned * 9 * NR_PHY_IN_LOG;
1165 }
1166
1167 /*
1168  * Looks up the logical address from reverse trans map and check if its valid by
1169  * comparing the logical to physical address with the physical address.
1170  * Returns 0 on free, otherwise 1 if in use
1171  */
1172 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1173 {
1174         struct nvm_dev *dev = rrpc->dev;
1175         int offset;
1176         struct rrpc_addr *laddr;
1177         u64 paddr, pladdr;
1178
1179         for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1180                 paddr = block_to_addr(rrpc, rblk) + offset;
1181
1182                 pladdr = rrpc->rev_trans_map[paddr].addr;
1183                 if (pladdr == ADDR_EMPTY)
1184                         continue;
1185
1186                 laddr = &rrpc->trans_map[pladdr];
1187
1188                 if (paddr == laddr->addr) {
1189                         laddr->rblk = rblk;
1190                 } else {
1191                         set_bit(offset, rblk->invalid_pages);
1192                         rblk->nr_invalid_pages++;
1193                 }
1194         }
1195 }
1196
1197 static int rrpc_blocks_init(struct rrpc *rrpc)
1198 {
1199         struct rrpc_lun *rlun;
1200         struct rrpc_block *rblk;
1201         int lun_iter, blk_iter;
1202
1203         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1204                 rlun = &rrpc->luns[lun_iter];
1205
1206                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1207                                                                 blk_iter++) {
1208                         rblk = &rlun->blocks[blk_iter];
1209                         rrpc_block_map_update(rrpc, rblk);
1210                 }
1211         }
1212
1213         return 0;
1214 }
1215
1216 static int rrpc_luns_configure(struct rrpc *rrpc)
1217 {
1218         struct rrpc_lun *rlun;
1219         struct rrpc_block *rblk;
1220         int i;
1221
1222         for (i = 0; i < rrpc->nr_luns; i++) {
1223                 rlun = &rrpc->luns[i];
1224
1225                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1226                 if (!rblk)
1227                         return -EINVAL;
1228
1229                 rrpc_set_lun_cur(rlun, rblk);
1230
1231                 /* Emergency gc block */
1232                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1233                 if (!rblk)
1234                         return -EINVAL;
1235                 rlun->gc_cur = rblk;
1236         }
1237
1238         return 0;
1239 }
1240
1241 static struct nvm_tgt_type tt_rrpc;
1242
1243 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1244                                                 int lun_begin, int lun_end)
1245 {
1246         struct request_queue *bqueue = dev->q;
1247         struct request_queue *tqueue = tdisk->queue;
1248         struct rrpc *rrpc;
1249         int ret;
1250
1251         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1252                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1253                                                         dev->identity.dom);
1254                 return ERR_PTR(-EINVAL);
1255         }
1256
1257         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1258         if (!rrpc)
1259                 return ERR_PTR(-ENOMEM);
1260
1261         rrpc->instance.tt = &tt_rrpc;
1262         rrpc->dev = dev;
1263         rrpc->disk = tdisk;
1264
1265         bio_list_init(&rrpc->requeue_bios);
1266         spin_lock_init(&rrpc->bio_lock);
1267         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1268
1269         rrpc->nr_luns = lun_end - lun_begin + 1;
1270
1271         /* simple round-robin strategy */
1272         atomic_set(&rrpc->next_lun, -1);
1273
1274         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1275         if (ret) {
1276                 pr_err("nvm: rrpc: could not initialize luns\n");
1277                 goto err;
1278         }
1279
1280         rrpc->poffset = dev->sec_per_lun * lun_begin;
1281         rrpc->lun_offset = lun_begin;
1282
1283         ret = rrpc_core_init(rrpc);
1284         if (ret) {
1285                 pr_err("nvm: rrpc: could not initialize core\n");
1286                 goto err;
1287         }
1288
1289         ret = rrpc_map_init(rrpc);
1290         if (ret) {
1291                 pr_err("nvm: rrpc: could not initialize maps\n");
1292                 goto err;
1293         }
1294
1295         ret = rrpc_blocks_init(rrpc);
1296         if (ret) {
1297                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1298                 goto err;
1299         }
1300
1301         ret = rrpc_luns_configure(rrpc);
1302         if (ret) {
1303                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1304                 goto err;
1305         }
1306
1307         ret = rrpc_gc_init(rrpc);
1308         if (ret) {
1309                 pr_err("nvm: rrpc: could not initialize gc\n");
1310                 goto err;
1311         }
1312
1313         /* inherit the size from the underlying device */
1314         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1315         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1316
1317         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1318                         rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1319
1320         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1321
1322         return rrpc;
1323 err:
1324         rrpc_free(rrpc);
1325         return ERR_PTR(ret);
1326 }
1327
1328 /* round robin, page-based FTL, and cost-based GC */
1329 static struct nvm_tgt_type tt_rrpc = {
1330         .name           = "rrpc",
1331         .version        = {1, 0, 0},
1332
1333         .make_rq        = rrpc_make_rq,
1334         .capacity       = rrpc_capacity,
1335         .end_io         = rrpc_end_io,
1336
1337         .init           = rrpc_init,
1338         .exit           = rrpc_exit,
1339 };
1340
1341 static int __init rrpc_module_init(void)
1342 {
1343         return nvm_register_target(&tt_rrpc);
1344 }
1345
1346 static void rrpc_module_exit(void)
1347 {
1348         nvm_unregister_target(&tt_rrpc);
1349 }
1350
1351 module_init(rrpc_module_init);
1352 module_exit(rrpc_module_exit);
1353 MODULE_LICENSE("GPL v2");
1354 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");