2 * Primary bucket allocation code
4 * Copyright 2012 Google, Inc.
6 * Allocation in bcache is done in terms of buckets:
8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9 * btree pointers - they must match for the pointer to be considered valid.
11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12 * bucket simply by incrementing its gen.
14 * The gens (along with the priorities; it's really the gens are important but
15 * the code is named as if it's the priorities) are written in an arbitrary list
16 * of buckets on disk, with a pointer to them in the journal header.
18 * When we invalidate a bucket, we have to write its new gen to disk and wait
19 * for that write to complete before we use it - otherwise after a crash we
20 * could have pointers that appeared to be good but pointed to data that had
23 * Since the gens and priorities are all stored contiguously on disk, we can
24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25 * call prio_write(), and when prio_write() finishes we pull buckets off the
26 * free_inc list and optionally discard them.
28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
29 * priorities and gens were being written before we could allocate. c->free is a
30 * smaller freelist, and buckets on that list are always ready to be used.
32 * If we've got discards enabled, that happens when a bucket moves from the
33 * free_inc list to the free list.
35 * There is another freelist, because sometimes we have buckets that we know
36 * have nothing pointing into them - these we can reuse without waiting for
37 * priorities to be rewritten. These come from freed btree nodes and buckets
38 * that garbage collection discovered no longer had valid keys pointing into
39 * them (because they were overwritten). That's the unused list - buckets on the
40 * unused list move to the free list, optionally being discarded in the process.
42 * It's also important to ensure that gens don't wrap around - with respect to
43 * either the oldest gen in the btree or the gen on disk. This is quite
44 * difficult to do in practice, but we explicitly guard against it anyways - if
45 * a bucket is in danger of wrapping around we simply skip invalidating it that
46 * time around, and we garbage collect or rewrite the priorities sooner than we
47 * would have otherwise.
49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
54 * free_some_buckets() drives all the processes described above. It's called
55 * from bch_bucket_alloc() and a few other places that need to make sure free
58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59 * invalidated, and then invalidate them and stick them on the free_inc list -
60 * in either lru or fifo order.
66 #include <linux/freezer.h>
67 #include <linux/kthread.h>
68 #include <linux/random.h>
69 #include <trace/events/bcache.h>
71 #define MAX_IN_FLIGHT_DISCARDS 8U
73 /* Bucket heap / gen */
75 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
77 uint8_t ret = ++b->gen;
79 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
80 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
82 if (CACHE_SYNC(&ca->set->sb)) {
83 ca->need_save_prio = max(ca->need_save_prio,
85 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
91 void bch_rescale_priorities(struct cache_set *c, int sectors)
95 unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
99 atomic_sub(sectors, &c->rescale);
102 r = atomic_read(&c->rescale);
106 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
108 mutex_lock(&c->bucket_lock);
110 c->min_prio = USHRT_MAX;
112 for_each_cache(ca, c, i)
113 for_each_bucket(b, ca)
115 b->prio != BTREE_PRIO &&
116 !atomic_read(&b->pin)) {
118 c->min_prio = min(c->min_prio, b->prio);
121 mutex_unlock(&c->bucket_lock);
127 struct list_head list;
128 struct work_struct work;
136 static void discard_finish(struct work_struct *w)
138 struct discard *d = container_of(w, struct discard, work);
139 struct cache *ca = d->ca;
140 char buf[BDEVNAME_SIZE];
142 if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
143 pr_notice("discard error on %s, disabling",
144 bdevname(ca->bdev, buf));
148 mutex_lock(&ca->set->bucket_lock);
150 fifo_push(&ca->free, d->bucket);
151 list_add(&d->list, &ca->discards);
152 atomic_dec(&ca->discards_in_flight);
154 mutex_unlock(&ca->set->bucket_lock);
156 closure_wake_up(&ca->set->bucket_wait);
157 wake_up_process(ca->alloc_thread);
159 closure_put(&ca->set->cl);
162 static void discard_endio(struct bio *bio, int error)
164 struct discard *d = container_of(bio, struct discard, bio);
165 schedule_work(&d->work);
168 static void do_discard(struct cache *ca, long bucket)
170 struct discard *d = list_first_entry(&ca->discards,
171 struct discard, list);
176 atomic_inc(&ca->discards_in_flight);
177 closure_get(&ca->set->cl);
181 d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket);
182 d->bio.bi_bdev = ca->bdev;
183 d->bio.bi_rw = REQ_WRITE|REQ_DISCARD;
184 d->bio.bi_max_vecs = 1;
185 d->bio.bi_io_vec = d->bio.bi_inline_vecs;
186 d->bio.bi_size = bucket_bytes(ca);
187 d->bio.bi_end_io = discard_endio;
188 bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
190 submit_bio(0, &d->bio);
195 static inline bool can_inc_bucket_gen(struct bucket *b)
197 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
198 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
201 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
203 BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
205 if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
206 CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
211 if (can_inc_bucket_gen(b) &&
212 fifo_push(&ca->unused, b - ca->buckets)) {
220 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
222 return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
223 !atomic_read(&b->pin) &&
224 can_inc_bucket_gen(b);
227 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
230 b->prio = INITIAL_PRIO;
232 fifo_push(&ca->free_inc, b - ca->buckets);
235 #define bucket_prio(b) \
236 (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
238 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
239 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
241 static void invalidate_buckets_lru(struct cache *ca)
248 for_each_bucket(b, ca) {
250 * If we fill up the unused list, if we then return before
251 * adding anything to the free_inc list we'll skip writing
252 * prios/gens and just go back to allocating from the unused
255 if (fifo_full(&ca->unused))
258 if (!can_invalidate_bucket(ca, b))
261 if (!GC_SECTORS_USED(b) &&
262 bch_bucket_add_unused(ca, b))
265 if (!heap_full(&ca->heap))
266 heap_add(&ca->heap, b, bucket_max_cmp);
267 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
268 ca->heap.data[0] = b;
269 heap_sift(&ca->heap, 0, bucket_max_cmp);
273 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
274 heap_sift(&ca->heap, i, bucket_min_cmp);
276 while (!fifo_full(&ca->free_inc)) {
277 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
279 * We don't want to be calling invalidate_buckets()
280 * multiple times when it can't do anything
282 ca->invalidate_needs_gc = 1;
283 bch_queue_gc(ca->set);
287 invalidate_one_bucket(ca, b);
291 static void invalidate_buckets_fifo(struct cache *ca)
296 while (!fifo_full(&ca->free_inc)) {
297 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
298 ca->fifo_last_bucket >= ca->sb.nbuckets)
299 ca->fifo_last_bucket = ca->sb.first_bucket;
301 b = ca->buckets + ca->fifo_last_bucket++;
303 if (can_invalidate_bucket(ca, b))
304 invalidate_one_bucket(ca, b);
306 if (++checked >= ca->sb.nbuckets) {
307 ca->invalidate_needs_gc = 1;
308 bch_queue_gc(ca->set);
314 static void invalidate_buckets_random(struct cache *ca)
319 while (!fifo_full(&ca->free_inc)) {
321 get_random_bytes(&n, sizeof(n));
323 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
324 n += ca->sb.first_bucket;
328 if (can_invalidate_bucket(ca, b))
329 invalidate_one_bucket(ca, b);
331 if (++checked >= ca->sb.nbuckets / 2) {
332 ca->invalidate_needs_gc = 1;
333 bch_queue_gc(ca->set);
339 static void invalidate_buckets(struct cache *ca)
341 if (ca->invalidate_needs_gc)
344 switch (CACHE_REPLACEMENT(&ca->sb)) {
345 case CACHE_REPLACEMENT_LRU:
346 invalidate_buckets_lru(ca);
348 case CACHE_REPLACEMENT_FIFO:
349 invalidate_buckets_fifo(ca);
351 case CACHE_REPLACEMENT_RANDOM:
352 invalidate_buckets_random(ca);
356 trace_bcache_alloc_invalidate(ca);
359 #define allocator_wait(ca, cond) \
362 set_current_state(TASK_INTERRUPTIBLE); \
366 mutex_unlock(&(ca)->set->bucket_lock); \
367 if (kthread_should_stop()) \
372 mutex_lock(&(ca)->set->bucket_lock); \
374 __set_current_state(TASK_RUNNING); \
377 static int bch_allocator_thread(void *arg)
379 struct cache *ca = arg;
381 mutex_lock(&ca->set->bucket_lock);
385 * First, we pull buckets off of the unused and free_inc lists,
386 * possibly issue discards to them, then we add the bucket to
392 if ((!atomic_read(&ca->set->prio_blocked) ||
393 !CACHE_SYNC(&ca->set->sb)) &&
394 !fifo_empty(&ca->unused))
395 fifo_pop(&ca->unused, bucket);
396 else if (!fifo_empty(&ca->free_inc))
397 fifo_pop(&ca->free_inc, bucket);
401 allocator_wait(ca, (int) fifo_free(&ca->free) >
402 atomic_read(&ca->discards_in_flight));
405 allocator_wait(ca, !list_empty(&ca->discards));
406 do_discard(ca, bucket);
408 fifo_push(&ca->free, bucket);
409 closure_wake_up(&ca->set->bucket_wait);
414 * We've run out of free buckets, we need to find some buckets
415 * we can invalidate. First, invalidate them in memory and add
416 * them to the free_inc list:
419 allocator_wait(ca, ca->set->gc_mark_valid &&
420 (ca->need_save_prio > 64 ||
421 !ca->invalidate_needs_gc));
422 invalidate_buckets(ca);
425 * Now, we write their new gens to disk so we can start writing
428 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
429 if (CACHE_SYNC(&ca->set->sb) &&
430 (!fifo_empty(&ca->free_inc) ||
431 ca->need_save_prio > 64))
436 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
440 wake_up_process(ca->alloc_thread);
442 if (fifo_used(&ca->free) > ca->watermark[watermark] &&
443 fifo_pop(&ca->free, r)) {
444 struct bucket *b = ca->buckets + r;
445 #ifdef CONFIG_BCACHE_EDEBUG
449 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
450 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
452 fifo_for_each(i, &ca->free, iter)
454 fifo_for_each(i, &ca->free_inc, iter)
456 fifo_for_each(i, &ca->unused, iter)
459 BUG_ON(atomic_read(&b->pin) != 1);
461 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
463 if (watermark <= WATERMARK_METADATA) {
464 SET_GC_MARK(b, GC_MARK_METADATA);
465 b->prio = BTREE_PRIO;
467 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
468 b->prio = INITIAL_PRIO;
474 trace_bcache_alloc_fail(ca);
477 closure_wait(&ca->set->bucket_wait, cl);
479 if (closure_blocking(cl)) {
480 mutex_unlock(&ca->set->bucket_lock);
482 mutex_lock(&ca->set->bucket_lock);
490 void bch_bucket_free(struct cache_set *c, struct bkey *k)
494 for (i = 0; i < KEY_PTRS(k); i++) {
495 struct bucket *b = PTR_BUCKET(c, k, i);
497 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
498 SET_GC_SECTORS_USED(b, 0);
499 bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
503 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
504 struct bkey *k, int n, struct closure *cl)
508 lockdep_assert_held(&c->bucket_lock);
509 BUG_ON(!n || n > c->caches_loaded || n > 8);
513 /* sort by free space/prio of oldest data in caches */
515 for (i = 0; i < n; i++) {
516 struct cache *ca = c->cache_by_alloc[i];
517 long b = bch_bucket_alloc(ca, watermark, cl);
522 k->ptr[i] = PTR(ca->buckets[b].gen,
523 bucket_to_sector(c, b),
526 SET_KEY_PTRS(k, i + 1);
531 bch_bucket_free(c, k);
536 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
537 struct bkey *k, int n, struct closure *cl)
540 mutex_lock(&c->bucket_lock);
541 ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
542 mutex_unlock(&c->bucket_lock);
548 int bch_cache_allocator_start(struct cache *ca)
550 struct task_struct *k = kthread_run(bch_allocator_thread,
551 ca, "bcache_allocator");
555 ca->alloc_thread = k;
559 void bch_cache_allocator_exit(struct cache *ca)
563 while (!list_empty(&ca->discards)) {
564 d = list_first_entry(&ca->discards, struct discard, list);
565 cancel_work_sync(&d->work);
571 int bch_cache_allocator_init(struct cache *ca)
577 * Prio/gen writes first
578 * Then 8 for btree allocations
579 * Then half for the moving garbage collector
582 ca->watermark[WATERMARK_PRIO] = 0;
584 ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
586 ca->watermark[WATERMARK_MOVINGGC] = 8 +
587 ca->watermark[WATERMARK_METADATA];
589 ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
590 ca->watermark[WATERMARK_MOVINGGC];
592 for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
593 struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
598 INIT_WORK(&d->work, discard_finish);
599 list_add(&d->list, &ca->discards);