2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/prefetch.h>
32 #include <linux/random.h>
33 #include <linux/rcupdate.h>
34 #include <trace/events/bcache.h>
38 * register_bcache: Return errors out to userspace correctly
40 * Writeback: don't undirty key until after a cache flush
42 * Create an iterator for key pointers
44 * On btree write error, mark bucket such that it won't be freed from the cache
47 * Check for bad keys in replay
49 * Refcount journal entries in journal_replay
52 * Finish incremental gc
53 * Gc should free old UUIDs, data for invalid UUIDs
55 * Provide a way to list backing device UUIDs we have data cached for, and
56 * probably how long it's been since we've seen them, and a way to invalidate
57 * dirty data for devices that will never be attached again
59 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
60 * that based on that and how much dirty data we have we can keep writeback
63 * Add a tracepoint or somesuch to watch for writeback starvation
65 * When btree depth > 1 and splitting an interior node, we have to make sure
66 * alloc_bucket() cannot fail. This should be true but is not completely
69 * Make sure all allocations get charged to the root cgroup
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
76 * Also lookup by cgroup in get_open_bucket()
78 * Superblock needs to be fleshed out for multiple cache devices
80 * Add a sysfs tunable for the number of writeback IOs in flight
82 * Add a sysfs tunable for the number of open data buckets
84 * IO tracking: Can we track when one process is doing io on behalf of another?
85 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 * Test module load/unload
90 static const char * const op_types[] = {
94 static const char *op_type(struct btree_op *op)
96 return op_types[op->type];
99 #define MAX_NEED_GC 64
100 #define MAX_SAVE_PRIO 72
102 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
104 #define PTR_HASH(c, k) \
105 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
107 struct workqueue_struct *bch_gc_wq;
108 static struct workqueue_struct *btree_io_wq;
110 void bch_btree_op_init_stack(struct btree_op *op)
112 memset(op, 0, sizeof(struct btree_op));
113 closure_init_stack(&op->cl);
115 bch_keylist_init(&op->keys);
118 /* Btree key manipulation */
120 static void bkey_put(struct cache_set *c, struct bkey *k, int level)
122 if ((level && KEY_OFFSET(k)) || !level)
128 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
130 uint64_t crc = b->key.ptr[0];
131 void *data = (void *) i + 8, *end = end(i);
133 crc = bch_crc64_update(crc, data, end - data);
134 return crc ^ 0xffffffffffffffffULL;
137 static void btree_bio_endio(struct bio *bio, int error)
139 struct closure *cl = bio->bi_private;
140 struct btree *b = container_of(cl, struct btree, io.cl);
143 set_btree_node_io_error(b);
145 bch_bbio_count_io_errors(b->c, bio, error, (bio->bi_rw & WRITE)
146 ? "writing btree" : "reading btree");
150 static void btree_bio_init(struct btree *b)
153 b->bio = bch_bbio_alloc(b->c);
155 b->bio->bi_end_io = btree_bio_endio;
156 b->bio->bi_private = &b->io.cl;
159 void bch_btree_read_done(struct closure *cl)
161 struct btree *b = container_of(cl, struct btree, io.cl);
162 struct bset *i = b->sets[0].data;
163 struct btree_iter *iter = b->c->fill_iter;
164 const char *err = "bad btree header";
165 BUG_ON(b->nsets || b->written);
167 bch_bbio_free(b->bio, b->c);
170 mutex_lock(&b->c->fill_lock);
173 if (btree_node_io_error(b) ||
178 b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
179 i = write_block(b)) {
180 err = "unsupported bset version";
181 if (i->version > BCACHE_BSET_VERSION)
184 err = "bad btree header";
185 if (b->written + set_blocks(i, b->c) > btree_blocks(b))
189 if (i->magic != bset_magic(b->c))
192 err = "bad checksum";
193 switch (i->version) {
195 if (i->csum != csum_set(i))
198 case BCACHE_BSET_VERSION:
199 if (i->csum != btree_csum_set(b, i))
205 if (i != b->sets[0].data && !i->keys)
208 bch_btree_iter_push(iter, i->start, end(i));
210 b->written += set_blocks(i, b->c);
213 err = "corrupted btree";
214 for (i = write_block(b);
215 index(i, b) < btree_blocks(b);
216 i = ((void *) i) + block_bytes(b->c))
217 if (i->seq == b->sets[0].data->seq)
220 bch_btree_sort_and_fix_extents(b, iter);
223 err = "short btree key";
224 if (b->sets[0].size &&
225 bkey_cmp(&b->key, &b->sets[0].end) < 0)
228 if (b->written < btree_blocks(b))
229 bch_bset_init_next(b);
232 mutex_unlock(&b->c->fill_lock);
234 spin_lock(&b->c->btree_read_time_lock);
235 bch_time_stats_update(&b->c->btree_read_time, b->io_start_time);
236 spin_unlock(&b->c->btree_read_time_lock);
238 smp_wmb(); /* read_done is our write lock */
239 set_btree_node_read_done(b);
243 set_btree_node_io_error(b);
244 bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
245 err, PTR_BUCKET_NR(b->c, &b->key, 0),
246 index(i, b), i->keys);
250 void bch_btree_read(struct btree *b)
252 BUG_ON(b->nsets || b->written);
254 if (!closure_trylock(&b->io.cl, &b->c->cl))
257 b->io_start_time = local_clock();
260 b->bio->bi_rw = REQ_META|READ_SYNC;
261 b->bio->bi_size = KEY_SIZE(&b->key) << 9;
263 bch_bio_map(b->bio, b->sets[0].data);
265 pr_debug("%s", pbtree(b));
266 trace_bcache_btree_read(b->bio);
267 bch_submit_bbio(b->bio, b->c, &b->key, 0);
269 continue_at(&b->io.cl, bch_btree_read_done, system_wq);
272 static void btree_complete_write(struct btree *b, struct btree_write *w)
274 if (w->prio_blocked &&
275 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
276 wake_up(&b->c->alloc_wait);
279 atomic_dec_bug(w->journal);
280 __closure_wake_up(&b->c->journal.wait);
284 closure_put(w->owner);
291 static void __btree_write_done(struct closure *cl)
293 struct btree *b = container_of(cl, struct btree, io.cl);
294 struct btree_write *w = btree_prev_write(b);
296 bch_bbio_free(b->bio, b->c);
298 btree_complete_write(b, w);
300 if (btree_node_dirty(b))
301 queue_delayed_work(btree_io_wq, &b->work,
302 msecs_to_jiffies(30000));
307 static void btree_write_done(struct closure *cl)
309 struct btree *b = container_of(cl, struct btree, io.cl);
313 __bio_for_each_segment(bv, b->bio, n, 0)
314 __free_page(bv->bv_page);
316 __btree_write_done(cl);
319 static void do_btree_write(struct btree *b)
321 struct closure *cl = &b->io.cl;
322 struct bset *i = b->sets[b->nsets].data;
325 i->version = BCACHE_BSET_VERSION;
326 i->csum = btree_csum_set(b, i);
329 b->bio->bi_rw = REQ_META|WRITE_SYNC;
330 b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
331 bch_bio_map(b->bio, i);
333 bkey_copy(&k.key, &b->key);
334 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
336 if (!bch_bio_alloc_pages(b->bio, GFP_NOIO)) {
339 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
341 bio_for_each_segment(bv, b->bio, j)
342 memcpy(page_address(bv->bv_page),
343 base + j * PAGE_SIZE, PAGE_SIZE);
345 trace_bcache_btree_write(b->bio);
346 bch_submit_bbio(b->bio, b->c, &k.key, 0);
348 continue_at(cl, btree_write_done, NULL);
351 bch_bio_map(b->bio, i);
353 trace_bcache_btree_write(b->bio);
354 bch_submit_bbio(b->bio, b->c, &k.key, 0);
357 __btree_write_done(cl);
361 static void __btree_write(struct btree *b)
363 struct bset *i = b->sets[b->nsets].data;
365 BUG_ON(current->bio_list);
367 closure_lock(&b->io, &b->c->cl);
368 cancel_delayed_work(&b->work);
370 clear_bit(BTREE_NODE_dirty, &b->flags);
371 change_bit(BTREE_NODE_write_idx, &b->flags);
373 bch_check_key_order(b, i);
374 BUG_ON(b->written && !i->keys);
378 pr_debug("%s block %i keys %i", pbtree(b), b->written, i->keys);
380 b->written += set_blocks(i, b->c);
381 atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
382 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
384 bch_btree_sort_lazy(b);
386 if (b->written < btree_blocks(b))
387 bch_bset_init_next(b);
390 static void btree_write_work(struct work_struct *w)
392 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
394 down_write(&b->lock);
396 if (btree_node_dirty(b))
401 void bch_btree_write(struct btree *b, bool now, struct btree_op *op)
403 struct bset *i = b->sets[b->nsets].data;
404 struct btree_write *w = btree_current_write(b);
407 (b->written >= btree_blocks(b) ||
408 i->seq != b->sets[0].data->seq ||
411 if (!btree_node_dirty(b)) {
412 set_btree_node_dirty(b);
413 queue_delayed_work(btree_io_wq, &b->work,
414 msecs_to_jiffies(30000));
417 w->prio_blocked += b->prio_blocked;
420 if (op && op->journal && !b->level) {
422 journal_pin_cmp(b->c, w, op)) {
423 atomic_dec_bug(w->journal);
428 w->journal = op->journal;
429 atomic_inc(w->journal);
433 if (current->bio_list)
436 /* Force write if set is too big */
439 set_bytes(i) > PAGE_SIZE - 48) {
441 /* Must wait on multiple writes */
444 closure_get(&op->cl);
453 * Btree in memory cache - allocation/freeing
454 * mca -> memory cache
457 static void mca_reinit(struct btree *b)
465 for (i = 0; i < MAX_BSETS; i++)
468 * Second loop starts at 1 because b->sets[0]->data is the memory we
471 for (i = 1; i < MAX_BSETS; i++)
472 b->sets[i].data = NULL;
475 #define mca_reserve(c) (((c->root && c->root->level) \
476 ? c->root->level : 1) * 8 + 16)
477 #define mca_can_free(c) \
478 max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
480 static void mca_data_free(struct btree *b)
482 struct bset_tree *t = b->sets;
483 BUG_ON(!closure_is_unlocked(&b->io.cl));
485 if (bset_prev_bytes(b) < PAGE_SIZE)
488 free_pages((unsigned long) t->prev,
489 get_order(bset_prev_bytes(b)));
491 if (bset_tree_bytes(b) < PAGE_SIZE)
494 free_pages((unsigned long) t->tree,
495 get_order(bset_tree_bytes(b)));
497 free_pages((unsigned long) t->data, b->page_order);
502 list_move(&b->list, &b->c->btree_cache_freed);
503 b->c->bucket_cache_used--;
506 static void mca_bucket_free(struct btree *b)
508 BUG_ON(btree_node_dirty(b));
511 hlist_del_init_rcu(&b->hash);
512 list_move(&b->list, &b->c->btree_cache_freeable);
515 static unsigned btree_order(struct bkey *k)
517 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
520 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
522 struct bset_tree *t = b->sets;
525 b->page_order = max_t(unsigned,
526 ilog2(b->c->btree_pages),
529 t->data = (void *) __get_free_pages(gfp, b->page_order);
533 t->tree = bset_tree_bytes(b) < PAGE_SIZE
534 ? kmalloc(bset_tree_bytes(b), gfp)
535 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
539 t->prev = bset_prev_bytes(b) < PAGE_SIZE
540 ? kmalloc(bset_prev_bytes(b), gfp)
541 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
545 list_move(&b->list, &b->c->btree_cache);
546 b->c->bucket_cache_used++;
552 static struct btree *mca_bucket_alloc(struct cache_set *c,
553 struct bkey *k, gfp_t gfp)
555 struct btree *b = kzalloc(sizeof(struct btree), gfp);
559 init_rwsem(&b->lock);
560 lockdep_set_novalidate_class(&b->lock);
561 INIT_LIST_HEAD(&b->list);
562 INIT_DELAYED_WORK(&b->work, btree_write_work);
564 closure_init_unlocked(&b->io);
566 mca_data_alloc(b, k, gfp);
570 static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
572 lockdep_assert_held(&b->c->bucket_lock);
574 if (!down_write_trylock(&b->lock))
577 if (b->page_order < min_order) {
582 BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
584 if (cl && btree_node_dirty(b))
585 bch_btree_write(b, true, NULL);
588 closure_wait_event_async(&b->io.wait, cl,
589 atomic_read(&b->io.cl.remaining) == -1);
591 if (btree_node_dirty(b) ||
592 !closure_is_unlocked(&b->io.cl) ||
593 work_pending(&b->work.work)) {
601 static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
603 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
605 unsigned long i, nr = sc->nr_to_scan;
607 if (c->shrinker_disabled)
614 * If nr == 0, we're supposed to return the number of items we have
615 * cached. Not allowed to return -1.
618 return mca_can_free(c) * c->btree_pages;
620 /* Return -1 if we can't do anything right now */
621 if (sc->gfp_mask & __GFP_WAIT)
622 mutex_lock(&c->bucket_lock);
623 else if (!mutex_trylock(&c->bucket_lock))
626 nr /= c->btree_pages;
627 nr = min_t(unsigned long, nr, mca_can_free(c));
630 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
635 !mca_reap(b, NULL, 0)) {
643 * Can happen right when we first start up, before we've read in any
646 if (list_empty(&c->btree_cache))
649 for (i = 0; nr && i < c->bucket_cache_used; i++) {
650 b = list_first_entry(&c->btree_cache, struct btree, list);
651 list_rotate_left(&c->btree_cache);
654 !mca_reap(b, NULL, 0)) {
663 nr = mca_can_free(c) * c->btree_pages;
664 mutex_unlock(&c->bucket_lock);
668 void bch_btree_cache_free(struct cache_set *c)
672 closure_init_stack(&cl);
674 if (c->shrink.list.next)
675 unregister_shrinker(&c->shrink);
677 mutex_lock(&c->bucket_lock);
679 #ifdef CONFIG_BCACHE_DEBUG
681 list_move(&c->verify_data->list, &c->btree_cache);
684 list_splice(&c->btree_cache_freeable,
687 while (!list_empty(&c->btree_cache)) {
688 b = list_first_entry(&c->btree_cache, struct btree, list);
690 if (btree_node_dirty(b))
691 btree_complete_write(b, btree_current_write(b));
692 clear_bit(BTREE_NODE_dirty, &b->flags);
697 while (!list_empty(&c->btree_cache_freed)) {
698 b = list_first_entry(&c->btree_cache_freed,
701 cancel_delayed_work_sync(&b->work);
705 mutex_unlock(&c->bucket_lock);
708 int bch_btree_cache_alloc(struct cache_set *c)
712 /* XXX: doesn't check for errors */
714 closure_init_unlocked(&c->gc);
716 for (i = 0; i < mca_reserve(c); i++)
717 mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
719 list_splice_init(&c->btree_cache,
720 &c->btree_cache_freeable);
722 #ifdef CONFIG_BCACHE_DEBUG
723 mutex_init(&c->verify_lock);
725 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
727 if (c->verify_data &&
728 c->verify_data->sets[0].data)
729 list_del_init(&c->verify_data->list);
731 c->verify_data = NULL;
734 c->shrink.shrink = bch_mca_shrink;
736 c->shrink.batch = c->btree_pages * 2;
737 register_shrinker(&c->shrink);
742 /* Btree in memory cache - hash table */
744 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
746 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
749 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
754 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
755 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
763 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
764 int level, struct closure *cl)
770 return ERR_PTR(-ENOMEM);
773 * Trying to free up some memory - i.e. reuse some btree nodes - may
774 * require initiating IO to flush the dirty part of the node. If we're
775 * running under generic_make_request(), that IO will never finish and
776 * we would deadlock. Returning -EAGAIN causes the cache lookup code to
777 * punt to workqueue and retry.
779 if (current->bio_list)
780 return ERR_PTR(-EAGAIN);
782 if (c->try_harder && c->try_harder != cl) {
783 closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
784 return ERR_PTR(-EAGAIN);
787 /* XXX: tracepoint */
789 c->try_harder_start = local_clock();
791 list_for_each_entry_reverse(i, &c->btree_cache, list) {
792 int r = mca_reap(i, cl, btree_order(k));
799 if (ret == -EAGAIN &&
800 closure_blocking(cl)) {
801 mutex_unlock(&c->bucket_lock);
803 mutex_lock(&c->bucket_lock);
811 * We can only have one thread cannibalizing other cached btree nodes at a time,
812 * or we'll deadlock. We use an open coded mutex to ensure that, which a
813 * cannibalize_bucket() will take. This means every time we unlock the root of
814 * the btree, we need to release this lock if we have it held.
816 void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
818 if (c->try_harder == cl) {
819 bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
820 c->try_harder = NULL;
821 __closure_wake_up(&c->try_wait);
825 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
826 int level, struct closure *cl)
830 lockdep_assert_held(&c->bucket_lock);
835 /* btree_free() doesn't free memory; it sticks the node on the end of
836 * the list. Check if there's any freed nodes there:
838 list_for_each_entry(b, &c->btree_cache_freeable, list)
839 if (!mca_reap(b, NULL, btree_order(k)))
842 /* We never free struct btree itself, just the memory that holds the on
843 * disk node. Check the freed list before allocating a new one:
845 list_for_each_entry(b, &c->btree_cache_freed, list)
846 if (!mca_reap(b, NULL, 0)) {
847 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
848 if (!b->sets[0].data)
854 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
858 BUG_ON(!down_write_trylock(&b->lock));
862 BUG_ON(!closure_is_unlocked(&b->io.cl));
864 bkey_copy(&b->key, k);
865 list_move(&b->list, &c->btree_cache);
866 hlist_del_init_rcu(&b->hash);
867 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
869 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
879 b = mca_cannibalize(c, k, level, cl);
887 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
888 * in from disk if necessary.
890 * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
891 * if that closure is in non blocking mode, will return -EAGAIN.
893 * The btree node will have either a read or a write lock held, depending on
894 * level and op->lock.
896 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
897 int level, struct btree_op *op)
900 bool write = level <= op->lock;
908 mutex_lock(&c->bucket_lock);
909 b = mca_alloc(c, k, level, &op->cl);
910 mutex_unlock(&c->bucket_lock);
920 downgrade_write(&b->lock);
922 rw_lock(write, b, level);
923 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
927 BUG_ON(b->level != level);
932 for (; i <= b->nsets && b->sets[i].size; i++) {
933 prefetch(b->sets[i].tree);
934 prefetch(b->sets[i].data);
937 for (; i <= b->nsets; i++)
938 prefetch(b->sets[i].data);
940 if (!closure_wait_event(&b->io.wait, &op->cl,
941 btree_node_read_done(b))) {
943 b = ERR_PTR(-EAGAIN);
944 } else if (btree_node_io_error(b)) {
953 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
957 mutex_lock(&c->bucket_lock);
958 b = mca_alloc(c, k, level, NULL);
959 mutex_unlock(&c->bucket_lock);
961 if (!IS_ERR_OR_NULL(b)) {
969 static void btree_node_free(struct btree *b, struct btree_op *op)
974 * The BUG_ON() in btree_node_get() implies that we must have a write
975 * lock on parent to free or even invalidate a node
977 BUG_ON(op->lock <= b->level);
978 BUG_ON(b == b->c->root);
979 pr_debug("bucket %s", pbtree(b));
981 if (btree_node_dirty(b))
982 btree_complete_write(b, btree_current_write(b));
983 clear_bit(BTREE_NODE_dirty, &b->flags);
985 if (b->prio_blocked &&
986 !atomic_sub_return(b->prio_blocked, &b->c->prio_blocked))
987 wake_up(&b->c->alloc_wait);
991 cancel_delayed_work(&b->work);
993 mutex_lock(&b->c->bucket_lock);
995 for (i = 0; i < KEY_PTRS(&b->key); i++) {
996 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
998 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
999 PTR_BUCKET(b->c, &b->key, i));
1002 bch_bucket_free(b->c, &b->key);
1004 mutex_unlock(&b->c->bucket_lock);
1007 struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
1011 struct btree *b = ERR_PTR(-EAGAIN);
1013 mutex_lock(&c->bucket_lock);
1015 if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
1018 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1020 b = mca_alloc(c, &k.key, level, cl);
1026 "Tried to allocate bucket that was in btree cache");
1027 __bkey_put(c, &k.key);
1031 set_btree_node_read_done(b);
1033 bch_bset_init_next(b);
1035 mutex_unlock(&c->bucket_lock);
1038 bch_bucket_free(c, &k.key);
1039 __bkey_put(c, &k.key);
1041 mutex_unlock(&c->bucket_lock);
1045 static struct btree *btree_node_alloc_replacement(struct btree *b,
1048 struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
1049 if (!IS_ERR_OR_NULL(n))
1050 bch_btree_sort_into(b, n);
1055 /* Garbage collection */
1057 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1064 * ptr_invalid() can't return true for the keys that mark btree nodes as
1065 * freed, but since ptr_bad() returns true we'll never actually use them
1066 * for anything and thus we don't want mark their pointers here
1068 if (!bkey_cmp(k, &ZERO_KEY))
1071 for (i = 0; i < KEY_PTRS(k); i++) {
1072 if (!ptr_available(c, k, i))
1075 g = PTR_BUCKET(c, k, i);
1077 if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1078 g->gc_gen = PTR_GEN(k, i);
1080 if (ptr_stale(c, k, i)) {
1081 stale = max(stale, ptr_stale(c, k, i));
1085 cache_bug_on(GC_MARK(g) &&
1086 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1087 c, "inconsistent ptrs: mark = %llu, level = %i",
1091 SET_GC_MARK(g, GC_MARK_METADATA);
1092 else if (KEY_DIRTY(k))
1093 SET_GC_MARK(g, GC_MARK_DIRTY);
1095 /* guard against overflow */
1096 SET_GC_SECTORS_USED(g, min_t(unsigned,
1097 GC_SECTORS_USED(g) + KEY_SIZE(k),
1100 BUG_ON(!GC_SECTORS_USED(g));
1106 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1108 static int btree_gc_mark_node(struct btree *b, unsigned *keys,
1112 unsigned last_dev = -1;
1113 struct bcache_device *d = NULL;
1115 struct btree_iter iter;
1116 struct bset_tree *t;
1120 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1121 if (last_dev != KEY_INODE(k)) {
1122 last_dev = KEY_INODE(k);
1124 d = KEY_INODE(k) < b->c->nr_uuids
1125 ? b->c->devices[last_dev]
1129 stale = max(stale, btree_mark_key(b, k));
1131 if (bch_ptr_bad(b, k))
1134 *keys += bkey_u64s(k);
1136 gc->key_bytes += bkey_u64s(k);
1139 gc->data += KEY_SIZE(k);
1141 gc->dirty += KEY_SIZE(k);
1143 d->sectors_dirty_gc += KEY_SIZE(k);
1147 for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1148 btree_bug_on(t->size &&
1149 bset_written(b, t) &&
1150 bkey_cmp(&b->key, &t->end) < 0,
1151 b, "found short btree key in gc");
1156 static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
1157 struct btree_op *op)
1160 * We block priorities from being written for the duration of garbage
1161 * collection, so we can't sleep in btree_alloc() ->
1162 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
1165 struct btree *n = btree_node_alloc_replacement(b, NULL);
1167 if (!IS_ERR_OR_NULL(n)) {
1170 memcpy(k->ptr, b->key.ptr,
1171 sizeof(uint64_t) * KEY_PTRS(&b->key));
1173 __bkey_put(b->c, &b->key);
1174 atomic_inc(&b->c->prio_blocked);
1177 btree_node_free(n, op);
1185 * Leaving this at 2 until we've got incremental garbage collection done; it
1186 * could be higher (and has been tested with 4) except that garbage collection
1187 * could take much longer, adversely affecting latency.
1189 #define GC_MERGE_NODES 2U
1191 struct gc_merge_info {
1197 static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
1198 struct gc_stat *gc, struct gc_merge_info *r)
1200 unsigned nodes = 0, keys = 0, blocks;
1203 while (nodes < GC_MERGE_NODES && r[nodes].b)
1204 keys += r[nodes++].keys;
1206 blocks = btree_default_blocks(b->c) * 2 / 3;
1209 __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1212 for (i = nodes - 1; i >= 0; --i) {
1213 if (r[i].b->written)
1214 r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
1216 if (r[i].b->written)
1220 for (i = nodes - 1; i > 0; --i) {
1221 struct bset *n1 = r[i].b->sets->data;
1222 struct bset *n2 = r[i - 1].b->sets->data;
1223 struct bkey *k, *last = NULL;
1229 * Last node we're not getting rid of - we're getting
1230 * rid of the node at r[0]. Have to try and fit all of
1231 * the remaining keys into this node; we can't ensure
1232 * they will always fit due to rounding and variable
1233 * length keys (shouldn't be possible in practice,
1236 if (__set_blocks(n1, n1->keys + r->keys,
1237 b->c) > btree_blocks(r[i].b))
1246 if (__set_blocks(n1, n1->keys + keys +
1247 bkey_u64s(k), b->c) > blocks)
1251 keys += bkey_u64s(k);
1254 BUG_ON(__set_blocks(n1, n1->keys + keys,
1255 b->c) > btree_blocks(r[i].b));
1258 bkey_copy_key(&r[i].b->key, last);
1259 bkey_copy_key(r[i].k, last);
1264 (void *) node(n2, keys) - (void *) n2->start);
1270 (void *) end(n2) - (void *) node(n2, keys));
1274 r[i].keys = n1->keys;
1275 r[i - 1].keys = n2->keys;
1278 btree_node_free(r->b, op);
1279 up_write(&r->b->lock);
1281 pr_debug("coalesced %u nodes", nodes);
1286 memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
1287 memset(&r[nodes], 0, sizeof(struct gc_merge_info));
1290 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1291 struct closure *writes, struct gc_stat *gc)
1293 void write(struct btree *r)
1296 bch_btree_write(r, true, op);
1297 else if (btree_node_dirty(r)) {
1298 BUG_ON(btree_current_write(r)->owner);
1299 btree_current_write(r)->owner = writes;
1300 closure_get(writes);
1302 bch_btree_write(r, true, NULL);
1310 struct gc_merge_info r[GC_MERGE_NODES];
1312 memset(r, 0, sizeof(r));
1314 while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
1315 r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
1318 ret = PTR_ERR(r->b);
1323 stale = btree_gc_mark_node(r->b, &r->keys, gc);
1326 (r->b->level || stale > 10 ||
1327 b->c->gc_always_rewrite))
1328 r->b = btree_gc_alloc(r->b, r->k, op);
1331 ret = btree_gc_recurse(r->b, op, writes, gc);
1338 bkey_copy_key(&b->c->gc_done, r->k);
1341 btree_gc_coalesce(b, op, gc, r);
1343 if (r[GC_MERGE_NODES - 1].b)
1344 write(r[GC_MERGE_NODES - 1].b);
1346 memmove(&r[1], &r[0],
1347 sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
1349 /* When we've got incremental GC working, we'll want to do
1350 * if (should_resched())
1355 if (need_resched()) {
1362 for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
1365 /* Might have freed some children, must remove their keys */
1372 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1373 struct closure *writes, struct gc_stat *gc)
1375 struct btree *n = NULL;
1377 int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
1379 if (b->level || stale > 10)
1380 n = btree_node_alloc_replacement(b, NULL);
1382 if (!IS_ERR_OR_NULL(n))
1386 ret = btree_gc_recurse(b, op, writes, gc);
1388 if (!b->written || btree_node_dirty(b)) {
1389 atomic_inc(&b->c->prio_blocked);
1391 bch_btree_write(b, true, n ? op : NULL);
1394 if (!IS_ERR_OR_NULL(n)) {
1395 closure_sync(&op->cl);
1396 bch_btree_set_root(b);
1397 btree_node_free(n, op);
1404 static void btree_gc_start(struct cache_set *c)
1408 struct bcache_device **d;
1411 if (!c->gc_mark_valid)
1414 mutex_lock(&c->bucket_lock);
1416 c->gc_mark_valid = 0;
1417 c->gc_done = ZERO_KEY;
1419 for_each_cache(ca, c, i)
1420 for_each_bucket(b, ca) {
1422 if (!atomic_read(&b->pin))
1423 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1426 for (d = c->devices;
1427 d < c->devices + c->nr_uuids;
1430 (*d)->sectors_dirty_gc = 0;
1432 mutex_unlock(&c->bucket_lock);
1435 size_t bch_btree_gc_finish(struct cache_set *c)
1437 size_t available = 0;
1440 struct bcache_device **d;
1443 mutex_lock(&c->bucket_lock);
1446 c->gc_mark_valid = 1;
1450 for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1451 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1454 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1455 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1458 for_each_cache(ca, c, i) {
1461 ca->invalidate_needs_gc = 0;
1463 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1464 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1466 for (i = ca->prio_buckets;
1467 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1468 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1470 for_each_bucket(b, ca) {
1471 b->last_gc = b->gc_gen;
1472 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1474 if (!atomic_read(&b->pin) &&
1475 GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1477 if (!GC_SECTORS_USED(b))
1478 bch_bucket_add_unused(ca, b);
1483 for (d = c->devices;
1484 d < c->devices + c->nr_uuids;
1487 unsigned long last =
1488 atomic_long_read(&((*d)->sectors_dirty));
1489 long difference = (*d)->sectors_dirty_gc - last;
1491 pr_debug("sectors dirty off by %li", difference);
1493 (*d)->sectors_dirty_last += difference;
1495 atomic_long_set(&((*d)->sectors_dirty),
1496 (*d)->sectors_dirty_gc);
1499 mutex_unlock(&c->bucket_lock);
1503 static void bch_btree_gc(struct closure *cl)
1505 struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
1507 unsigned long available;
1508 struct gc_stat stats;
1509 struct closure writes;
1512 uint64_t start_time = local_clock();
1513 trace_bcache_gc_start(c->sb.set_uuid);
1514 blktrace_msg_all(c, "Starting gc");
1516 memset(&stats, 0, sizeof(struct gc_stat));
1517 closure_init_stack(&writes);
1518 bch_btree_op_init_stack(&op);
1523 ret = btree_root(gc_root, c, &op, &writes, &stats);
1524 closure_sync(&op.cl);
1525 closure_sync(&writes);
1528 blktrace_msg_all(c, "Stopped gc");
1529 pr_warn("gc failed!");
1531 continue_at(cl, bch_btree_gc, bch_gc_wq);
1534 /* Possibly wait for new UUIDs or whatever to hit disk */
1535 bch_journal_meta(c, &op.cl);
1536 closure_sync(&op.cl);
1538 available = bch_btree_gc_finish(c);
1540 bch_time_stats_update(&c->btree_gc_time, start_time);
1542 stats.key_bytes *= sizeof(uint64_t);
1545 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1546 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1547 blktrace_msg_all(c, "Finished gc");
1549 trace_bcache_gc_end(c->sb.set_uuid);
1550 wake_up(&c->alloc_wait);
1552 continue_at(cl, bch_moving_gc, bch_gc_wq);
1555 void bch_queue_gc(struct cache_set *c)
1557 closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
1560 /* Initial partial gc */
1562 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1563 unsigned long **seen)
1569 struct btree_iter iter;
1571 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1572 for (i = 0; i < KEY_PTRS(k); i++) {
1573 if (!ptr_available(b->c, k, i))
1576 g = PTR_BUCKET(b->c, k, i);
1578 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1579 seen[PTR_DEV(k, i)]) ||
1580 !ptr_stale(b->c, k, i)) {
1581 g->gen = PTR_GEN(k, i);
1584 g->prio = BTREE_PRIO;
1585 else if (g->prio == BTREE_PRIO)
1586 g->prio = INITIAL_PRIO;
1590 btree_mark_key(b, k);
1594 k = bch_next_recurse_key(b, &ZERO_KEY);
1597 struct bkey *p = bch_next_recurse_key(b, k);
1599 btree_node_prefetch(b->c, p, b->level - 1);
1601 ret = btree(check_recurse, k, b, op, seen);
1612 int bch_btree_check(struct cache_set *c, struct btree_op *op)
1616 unsigned long *seen[MAX_CACHES_PER_SET];
1618 memset(seen, 0, sizeof(seen));
1620 for (i = 0; c->cache[i]; i++) {
1621 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1622 seen[i] = kmalloc(n, GFP_KERNEL);
1626 /* Disables the seen array until prio_read() uses it too */
1627 memset(seen[i], 0xFF, n);
1630 ret = btree_root(check_recurse, c, op, seen);
1632 for (i = 0; i < MAX_CACHES_PER_SET; i++)
1637 /* Btree insertion */
1639 static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1641 struct bset *i = b->sets[b->nsets].data;
1643 memmove((uint64_t *) where + bkey_u64s(insert),
1645 (void *) end(i) - (void *) where);
1647 i->keys += bkey_u64s(insert);
1648 bkey_copy(where, insert);
1649 bch_bset_fix_lookup_table(b, where);
1652 static bool fix_overlapping_extents(struct btree *b,
1653 struct bkey *insert,
1654 struct btree_iter *iter,
1655 struct btree_op *op)
1657 void subtract_dirty(struct bkey *k, int sectors)
1659 struct bcache_device *d = b->c->devices[KEY_INODE(k)];
1661 if (KEY_DIRTY(k) && d)
1662 atomic_long_sub(sectors, &d->sectors_dirty);
1665 unsigned old_size, sectors_found = 0;
1668 struct bkey *k = bch_btree_iter_next(iter);
1670 bkey_cmp(&START_KEY(k), insert) >= 0)
1673 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1676 old_size = KEY_SIZE(k);
1679 * We might overlap with 0 size extents; we can't skip these
1680 * because if they're in the set we're inserting to we have to
1681 * adjust them so they don't overlap with the key we're
1682 * inserting. But we don't want to check them for BTREE_REPLACE
1686 if (op->type == BTREE_REPLACE &&
1689 * k might have been split since we inserted/found the
1690 * key we're replacing
1693 uint64_t offset = KEY_START(k) -
1694 KEY_START(&op->replace);
1696 /* But it must be a subset of the replace key */
1697 if (KEY_START(k) < KEY_START(&op->replace) ||
1698 KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
1701 /* We didn't find a key that we were supposed to */
1702 if (KEY_START(k) > KEY_START(insert) + sectors_found)
1705 if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
1711 BUG_ON(!KEY_PTRS(&op->replace));
1713 for (i = 0; i < KEY_PTRS(&op->replace); i++)
1714 if (k->ptr[i] != op->replace.ptr[i] + offset)
1717 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1720 if (bkey_cmp(insert, k) < 0 &&
1721 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1723 * We overlapped in the middle of an existing key: that
1724 * means we have to split the old key. But we have to do
1725 * slightly different things depending on whether the
1726 * old key has been written out yet.
1731 subtract_dirty(k, KEY_SIZE(insert));
1733 if (bkey_written(b, k)) {
1735 * We insert a new key to cover the top of the
1736 * old key, and the old key is modified in place
1737 * to represent the bottom split.
1739 * It's completely arbitrary whether the new key
1740 * is the top or the bottom, but it has to match
1741 * up with what btree_sort_fixup() does - it
1742 * doesn't check for this kind of overlap, it
1743 * depends on us inserting a new key for the top
1746 top = bch_bset_search(b, &b->sets[b->nsets],
1748 shift_keys(b, top, k);
1750 BKEY_PADDED(key) temp;
1751 bkey_copy(&temp.key, k);
1752 shift_keys(b, k, &temp.key);
1756 bch_cut_front(insert, top);
1757 bch_cut_back(&START_KEY(insert), k);
1758 bch_bset_fix_invalidated_key(b, k);
1762 if (bkey_cmp(insert, k) < 0) {
1763 bch_cut_front(insert, k);
1765 if (bkey_written(b, k) &&
1766 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1768 * Completely overwrote, so we don't have to
1769 * invalidate the binary search tree
1771 bch_cut_front(k, k);
1773 __bch_cut_back(&START_KEY(insert), k);
1774 bch_bset_fix_invalidated_key(b, k);
1778 subtract_dirty(k, old_size - KEY_SIZE(k));
1782 if (op->type == BTREE_REPLACE) {
1783 if (!sectors_found) {
1784 op->insert_collision = true;
1786 } else if (sectors_found < KEY_SIZE(insert)) {
1787 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1788 (KEY_SIZE(insert) - sectors_found));
1789 SET_KEY_SIZE(insert, sectors_found);
1796 static bool btree_insert_key(struct btree *b, struct btree_op *op,
1799 struct bset *i = b->sets[b->nsets].data;
1800 struct bkey *m, *prev;
1801 const char *status = "insert";
1803 BUG_ON(bkey_cmp(k, &b->key) > 0);
1804 BUG_ON(b->level && !KEY_PTRS(k));
1805 BUG_ON(!b->level && !KEY_OFFSET(k));
1808 struct btree_iter iter;
1809 struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
1812 * bset_search() returns the first key that is strictly greater
1813 * than the search key - but for back merging, we want to find
1814 * the first key that is greater than or equal to KEY_START(k) -
1815 * unless KEY_START(k) is 0.
1817 if (KEY_OFFSET(&search))
1818 SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
1821 m = bch_btree_iter_init(b, &iter, &search);
1823 if (fix_overlapping_extents(b, k, &iter, op))
1826 while (m != end(i) &&
1827 bkey_cmp(k, &START_KEY(m)) > 0)
1828 prev = m, m = bkey_next(m);
1830 if (key_merging_disabled(b->c))
1833 /* prev is in the tree, if we merge we're done */
1834 status = "back merging";
1836 bch_bkey_try_merge(b, prev, k))
1839 status = "overwrote front";
1841 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1844 status = "front merge";
1846 bch_bkey_try_merge(b, k, m))
1849 m = bch_bset_search(b, &b->sets[b->nsets], k);
1851 insert: shift_keys(b, m, k);
1852 copy: bkey_copy(m, k);
1854 bch_check_keys(b, "%s for %s at %s: %s", status,
1855 op_type(op), pbtree(b), pkey(k));
1856 bch_check_key_order_msg(b, i, "%s for %s at %s: %s", status,
1857 op_type(op), pbtree(b), pkey(k));
1859 if (b->level && !KEY_OFFSET(k))
1862 pr_debug("%s for %s at %s: %s", status,
1863 op_type(op), pbtree(b), pkey(k));
1868 bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
1872 unsigned oldsize = bch_count_data(b);
1874 while ((k = bch_keylist_pop(&op->keys))) {
1875 bkey_put(b->c, k, b->level);
1876 ret |= btree_insert_key(b, op, k);
1879 BUG_ON(bch_count_data(b) < oldsize);
1883 bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
1887 uint64_t btree_ptr = b->key.ptr[0];
1888 unsigned long seq = b->seq;
1891 rw_unlock(false, b);
1892 rw_lock(true, b, b->level);
1894 if (b->key.ptr[0] != btree_ptr ||
1895 b->seq != seq + 1 ||
1899 op->replace = KEY(op->inode, bio_end(bio), bio_sectors(bio));
1901 SET_KEY_PTRS(&op->replace, 1);
1902 get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
1904 SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
1906 bkey_copy(&tmp.k, &op->replace);
1908 BUG_ON(op->type != BTREE_INSERT);
1909 BUG_ON(!btree_insert_key(b, op, &tmp.k));
1910 bch_btree_write(b, false, NULL);
1913 downgrade_write(&b->lock);
1917 static int btree_split(struct btree *b, struct btree_op *op)
1919 bool split, root = b == b->c->root;
1920 struct btree *n1, *n2 = NULL, *n3 = NULL;
1921 uint64_t start_time = local_clock();
1924 set_closure_blocking(&op->cl);
1926 n1 = btree_node_alloc_replacement(b, &op->cl);
1930 split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
1932 pr_debug("%ssplitting at %s keys %i", split ? "" : "not ",
1933 pbtree(b), n1->sets[0].data->keys);
1938 n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
1943 n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
1948 bch_btree_insert_keys(n1, op);
1950 /* Has to be a linear search because we don't have an auxiliary
1954 while (keys < (n1->sets[0].data->keys * 3) / 5)
1955 keys += bkey_u64s(node(n1->sets[0].data, keys));
1957 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
1958 keys += bkey_u64s(node(n1->sets[0].data, keys));
1960 n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
1961 n1->sets[0].data->keys = keys;
1963 memcpy(n2->sets[0].data->start,
1964 end(n1->sets[0].data),
1965 n2->sets[0].data->keys * sizeof(uint64_t));
1967 bkey_copy_key(&n2->key, &b->key);
1969 bch_keylist_add(&op->keys, &n2->key);
1970 bch_btree_write(n2, true, op);
1971 rw_unlock(true, n2);
1973 bch_btree_insert_keys(n1, op);
1975 bch_keylist_add(&op->keys, &n1->key);
1976 bch_btree_write(n1, true, op);
1979 bkey_copy_key(&n3->key, &MAX_KEY);
1980 bch_btree_insert_keys(n3, op);
1981 bch_btree_write(n3, true, op);
1983 closure_sync(&op->cl);
1984 bch_btree_set_root(n3);
1985 rw_unlock(true, n3);
1987 op->keys.top = op->keys.bottom;
1988 closure_sync(&op->cl);
1989 bch_btree_set_root(n1);
1993 bkey_copy(op->keys.top, &b->key);
1994 bkey_copy_key(op->keys.top, &ZERO_KEY);
1996 for (i = 0; i < KEY_PTRS(&b->key); i++) {
1997 uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
1999 SET_PTR_GEN(op->keys.top, i, g);
2002 bch_keylist_push(&op->keys);
2003 closure_sync(&op->cl);
2004 atomic_inc(&b->c->prio_blocked);
2007 rw_unlock(true, n1);
2008 btree_node_free(b, op);
2010 bch_time_stats_update(&b->c->btree_split_time, start_time);
2014 __bkey_put(n2->c, &n2->key);
2015 btree_node_free(n2, op);
2016 rw_unlock(true, n2);
2018 __bkey_put(n1->c, &n1->key);
2019 btree_node_free(n1, op);
2020 rw_unlock(true, n1);
2022 if (n3 == ERR_PTR(-EAGAIN) ||
2023 n2 == ERR_PTR(-EAGAIN) ||
2024 n1 == ERR_PTR(-EAGAIN))
2027 pr_warn("couldn't split");
2031 static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
2032 struct keylist *stack_keys)
2036 struct bkey *insert = op->keys.bottom;
2037 struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
2040 btree_bug(b, "no key to recurse on at level %i/%i",
2041 b->level, b->c->root->level);
2043 op->keys.top = op->keys.bottom;
2047 if (bkey_cmp(insert, k) > 0) {
2050 if (op->type == BTREE_REPLACE) {
2051 __bkey_put(b->c, insert);
2052 op->keys.top = op->keys.bottom;
2053 op->insert_collision = true;
2057 for (i = 0; i < KEY_PTRS(insert); i++)
2058 atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
2060 bkey_copy(stack_keys->top, insert);
2062 bch_cut_back(k, insert);
2063 bch_cut_front(k, stack_keys->top);
2065 bch_keylist_push(stack_keys);
2068 ret = btree(insert_recurse, k, b, op, stack_keys);
2073 if (!bch_keylist_empty(&op->keys)) {
2074 if (should_split(b)) {
2075 if (op->lock <= b->c->root->level) {
2077 op->lock = b->c->root->level + 1;
2080 return btree_split(b, op);
2083 BUG_ON(write_block(b) != b->sets[b->nsets].data);
2085 if (bch_btree_insert_keys(b, op))
2086 bch_btree_write(b, false, op);
2092 int bch_btree_insert(struct btree_op *op, struct cache_set *c)
2095 struct keylist stack_keys;
2098 * Don't want to block with the btree locked unless we have to,
2099 * otherwise we get deadlocks with try_harder and between split/gc
2101 clear_closure_blocking(&op->cl);
2103 BUG_ON(bch_keylist_empty(&op->keys));
2104 bch_keylist_copy(&stack_keys, &op->keys);
2105 bch_keylist_init(&op->keys);
2107 while (!bch_keylist_empty(&stack_keys) ||
2108 !bch_keylist_empty(&op->keys)) {
2109 if (bch_keylist_empty(&op->keys)) {
2110 bch_keylist_add(&op->keys,
2111 bch_keylist_pop(&stack_keys));
2115 ret = btree_root(insert_recurse, c, op, &stack_keys);
2117 if (ret == -EAGAIN) {
2119 closure_sync(&op->cl);
2123 pr_err("error %i trying to insert key for %s",
2126 while ((k = bch_keylist_pop(&stack_keys) ?:
2127 bch_keylist_pop(&op->keys)))
2132 bch_keylist_free(&stack_keys);
2135 atomic_dec_bug(op->journal);
2140 void bch_btree_set_root(struct btree *b)
2144 BUG_ON(!b->written);
2146 for (i = 0; i < KEY_PTRS(&b->key); i++)
2147 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2149 mutex_lock(&b->c->bucket_lock);
2150 list_del_init(&b->list);
2151 mutex_unlock(&b->c->bucket_lock);
2154 __bkey_put(b->c, &b->key);
2156 bch_journal_meta(b->c, NULL);
2157 pr_debug("%s for %pf", pbtree(b), __builtin_return_address(0));
2162 static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
2165 struct search *s = container_of(op, struct search, op);
2166 struct bio *bio = &s->bio.bio;
2171 unsigned sectors = INT_MAX;
2173 if (KEY_INODE(k) == op->inode) {
2174 if (KEY_START(k) <= bio->bi_sector)
2177 sectors = min_t(uint64_t, sectors,
2178 KEY_START(k) - bio->bi_sector);
2181 ret = s->d->cache_miss(b, s, bio, sectors);
2188 * Read from a single key, handling the initial cache miss if the key starts in
2189 * the middle of the bio
2191 static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
2194 struct search *s = container_of(op, struct search, op);
2195 struct bio *bio = &s->bio.bio;
2199 int ret = submit_partial_cache_miss(b, op, k);
2200 if (ret || op->lookup_done)
2203 /* XXX: figure out best pointer - for multiple cache devices */
2206 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
2208 while (!op->lookup_done &&
2209 KEY_INODE(k) == op->inode &&
2210 bio->bi_sector < KEY_OFFSET(k)) {
2211 struct bkey *bio_key;
2212 sector_t sector = PTR_OFFSET(k, ptr) +
2213 (bio->bi_sector - KEY_START(k));
2214 unsigned sectors = min_t(uint64_t, INT_MAX,
2215 KEY_OFFSET(k) - bio->bi_sector);
2217 n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2222 op->lookup_done = true;
2224 bio_key = &container_of(n, struct bbio, bio)->key;
2227 * The bucket we're reading from might be reused while our bio
2228 * is in flight, and we could then end up reading the wrong
2231 * We guard against this by checking (in cache_read_endio()) if
2232 * the pointer is stale again; if so, we treat it as an error
2233 * and reread from the backing device (but we don't pass that
2234 * error up anywhere).
2237 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2238 SET_PTR_OFFSET(bio_key, 0, sector);
2240 n->bi_end_io = bch_cache_read_endio;
2241 n->bi_private = &s->cl;
2243 trace_bcache_cache_hit(n);
2244 __bch_submit_bbio(n, b->c);
2250 int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
2252 struct search *s = container_of(op, struct search, op);
2253 struct bio *bio = &s->bio.bio;
2257 struct btree_iter iter;
2258 bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
2260 pr_debug("at %s searching for %u:%llu", pbtree(b), op->inode,
2261 (uint64_t) bio->bi_sector);
2264 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
2267 * b->key would be exactly what we want, except that
2268 * pointers to btree nodes have nonzero size - we
2269 * wouldn't go far enough
2272 ret = submit_partial_cache_miss(b, op,
2273 &KEY(KEY_INODE(&b->key),
2274 KEY_OFFSET(&b->key), 0));
2279 ? btree(search_recurse, k, b, op)
2280 : submit_partial_cache_hit(b, op, k);
2289 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2291 /* Overlapping keys compare equal */
2292 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2294 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2299 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2300 struct keybuf_key *r)
2302 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2305 static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
2306 struct keybuf *buf, struct bkey *end)
2308 struct btree_iter iter;
2309 bch_btree_iter_init(b, &iter, &buf->last_scanned);
2311 while (!array_freelist_empty(&buf->freelist)) {
2312 struct bkey *k = bch_btree_iter_next_filter(&iter, b,
2317 buf->last_scanned = b->key;
2321 buf->last_scanned = *k;
2322 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2325 if (buf->key_predicate(buf, k)) {
2326 struct keybuf_key *w;
2328 pr_debug("%s", pkey(k));
2330 spin_lock(&buf->lock);
2332 w = array_alloc(&buf->freelist);
2335 bkey_copy(&w->key, k);
2337 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2338 array_free(&buf->freelist, w);
2340 spin_unlock(&buf->lock);
2346 btree(refill_keybuf, k, b, op, buf, end);
2348 * Might get an error here, but can't really do anything
2349 * and it'll get logged elsewhere. Just read what we
2353 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2363 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2366 struct bkey start = buf->last_scanned;
2368 bch_btree_op_init_stack(&op);
2372 btree_root(refill_keybuf, c, &op, buf, end);
2373 closure_sync(&op.cl);
2375 pr_debug("found %s keys from %llu:%llu to %llu:%llu",
2376 RB_EMPTY_ROOT(&buf->keys) ? "no" :
2377 array_freelist_empty(&buf->freelist) ? "some" : "a few",
2378 KEY_INODE(&start), KEY_OFFSET(&start),
2379 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
2381 spin_lock(&buf->lock);
2383 if (!RB_EMPTY_ROOT(&buf->keys)) {
2384 struct keybuf_key *w;
2385 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2386 buf->start = START_KEY(&w->key);
2388 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2391 buf->start = MAX_KEY;
2395 spin_unlock(&buf->lock);
2398 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2400 rb_erase(&w->node, &buf->keys);
2401 array_free(&buf->freelist, w);
2404 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2406 spin_lock(&buf->lock);
2407 __bch_keybuf_del(buf, w);
2408 spin_unlock(&buf->lock);
2411 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2415 struct keybuf_key *p, *w, s;
2418 if (bkey_cmp(end, &buf->start) <= 0 ||
2419 bkey_cmp(start, &buf->end) >= 0)
2422 spin_lock(&buf->lock);
2423 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2425 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2427 w = RB_NEXT(w, node);
2432 __bch_keybuf_del(buf, p);
2435 spin_unlock(&buf->lock);
2439 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2441 struct keybuf_key *w;
2442 spin_lock(&buf->lock);
2444 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2446 while (w && w->private)
2447 w = RB_NEXT(w, node);
2450 w->private = ERR_PTR(-EINTR);
2452 spin_unlock(&buf->lock);
2456 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2460 struct keybuf_key *ret;
2463 ret = bch_keybuf_next(buf);
2467 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2468 pr_debug("scan finished");
2472 bch_refill_keybuf(c, buf, end);
2478 void bch_keybuf_init(struct keybuf *buf, keybuf_pred_fn *fn)
2480 buf->key_predicate = fn;
2481 buf->last_scanned = MAX_KEY;
2482 buf->keys = RB_ROOT;
2484 spin_lock_init(&buf->lock);
2485 array_allocator_init(&buf->freelist);
2488 void bch_btree_exit(void)
2491 destroy_workqueue(btree_io_wq);
2493 destroy_workqueue(bch_gc_wq);
2496 int __init bch_btree_init(void)
2498 if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
2499 !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))