serial: core: Preserve termios c_cflag for console resume
[firefly-linux-kernel-4.4.55.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/buffer_head.h>
15 #include <linux/debugfs.h>
16 #include <linux/genhd.h>
17 #include <linux/module.h>
18 #include <linux/random.h>
19 #include <linux/reboot.h>
20 #include <linux/sysfs.h>
21
22 MODULE_LICENSE("GPL");
23 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
24
25 static const char bcache_magic[] = {
26         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
27         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
28 };
29
30 static const char invalid_uuid[] = {
31         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
32         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
33 };
34
35 /* Default is -1; we skip past it for struct cached_dev's cache mode */
36 const char * const bch_cache_modes[] = {
37         "default",
38         "writethrough",
39         "writeback",
40         "writearound",
41         "none",
42         NULL
43 };
44
45 struct uuid_entry_v0 {
46         uint8_t         uuid[16];
47         uint8_t         label[32];
48         uint32_t        first_reg;
49         uint32_t        last_reg;
50         uint32_t        invalidated;
51         uint32_t        pad;
52 };
53
54 static struct kobject *bcache_kobj;
55 struct mutex bch_register_lock;
56 LIST_HEAD(bch_cache_sets);
57 static LIST_HEAD(uncached_devices);
58
59 static int bcache_major, bcache_minor;
60 static wait_queue_head_t unregister_wait;
61 struct workqueue_struct *bcache_wq;
62
63 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
64
65 static void bio_split_pool_free(struct bio_split_pool *p)
66 {
67         if (p->bio_split_hook)
68                 mempool_destroy(p->bio_split_hook);
69
70         if (p->bio_split)
71                 bioset_free(p->bio_split);
72 }
73
74 static int bio_split_pool_init(struct bio_split_pool *p)
75 {
76         p->bio_split = bioset_create(4, 0);
77         if (!p->bio_split)
78                 return -ENOMEM;
79
80         p->bio_split_hook = mempool_create_kmalloc_pool(4,
81                                 sizeof(struct bio_split_hook));
82         if (!p->bio_split_hook)
83                 return -ENOMEM;
84
85         return 0;
86 }
87
88 /* Superblock */
89
90 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
91                               struct page **res)
92 {
93         const char *err;
94         struct cache_sb *s;
95         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
96         unsigned i;
97
98         if (!bh)
99                 return "IO error";
100
101         s = (struct cache_sb *) bh->b_data;
102
103         sb->offset              = le64_to_cpu(s->offset);
104         sb->version             = le64_to_cpu(s->version);
105
106         memcpy(sb->magic,       s->magic, 16);
107         memcpy(sb->uuid,        s->uuid, 16);
108         memcpy(sb->set_uuid,    s->set_uuid, 16);
109         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
110
111         sb->flags               = le64_to_cpu(s->flags);
112         sb->seq                 = le64_to_cpu(s->seq);
113         sb->last_mount          = le32_to_cpu(s->last_mount);
114         sb->first_bucket        = le16_to_cpu(s->first_bucket);
115         sb->keys                = le16_to_cpu(s->keys);
116
117         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
118                 sb->d[i] = le64_to_cpu(s->d[i]);
119
120         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
121                  sb->version, sb->flags, sb->seq, sb->keys);
122
123         err = "Not a bcache superblock";
124         if (sb->offset != SB_SECTOR)
125                 goto err;
126
127         if (memcmp(sb->magic, bcache_magic, 16))
128                 goto err;
129
130         err = "Too many journal buckets";
131         if (sb->keys > SB_JOURNAL_BUCKETS)
132                 goto err;
133
134         err = "Bad checksum";
135         if (s->csum != csum_set(s))
136                 goto err;
137
138         err = "Bad UUID";
139         if (bch_is_zero(sb->uuid, 16))
140                 goto err;
141
142         sb->block_size  = le16_to_cpu(s->block_size);
143
144         err = "Superblock block size smaller than device block size";
145         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
146                 goto err;
147
148         switch (sb->version) {
149         case BCACHE_SB_VERSION_BDEV:
150                 sb->data_offset = BDEV_DATA_START_DEFAULT;
151                 break;
152         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
153                 sb->data_offset = le64_to_cpu(s->data_offset);
154
155                 err = "Bad data offset";
156                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
157                         goto err;
158
159                 break;
160         case BCACHE_SB_VERSION_CDEV:
161         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
162                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
163                 sb->block_size  = le16_to_cpu(s->block_size);
164                 sb->bucket_size = le16_to_cpu(s->bucket_size);
165
166                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
167                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
168
169                 err = "Too many buckets";
170                 if (sb->nbuckets > LONG_MAX)
171                         goto err;
172
173                 err = "Not enough buckets";
174                 if (sb->nbuckets < 1 << 7)
175                         goto err;
176
177                 err = "Bad block/bucket size";
178                 if (!is_power_of_2(sb->block_size) ||
179                     sb->block_size > PAGE_SECTORS ||
180                     !is_power_of_2(sb->bucket_size) ||
181                     sb->bucket_size < PAGE_SECTORS)
182                         goto err;
183
184                 err = "Invalid superblock: device too small";
185                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
186                         goto err;
187
188                 err = "Bad UUID";
189                 if (bch_is_zero(sb->set_uuid, 16))
190                         goto err;
191
192                 err = "Bad cache device number in set";
193                 if (!sb->nr_in_set ||
194                     sb->nr_in_set <= sb->nr_this_dev ||
195                     sb->nr_in_set > MAX_CACHES_PER_SET)
196                         goto err;
197
198                 err = "Journal buckets not sequential";
199                 for (i = 0; i < sb->keys; i++)
200                         if (sb->d[i] != sb->first_bucket + i)
201                                 goto err;
202
203                 err = "Too many journal buckets";
204                 if (sb->first_bucket + sb->keys > sb->nbuckets)
205                         goto err;
206
207                 err = "Invalid superblock: first bucket comes before end of super";
208                 if (sb->first_bucket * sb->bucket_size < 16)
209                         goto err;
210
211                 break;
212         default:
213                 err = "Unsupported superblock version";
214                 goto err;
215         }
216
217         sb->last_mount = get_seconds();
218         err = NULL;
219
220         get_page(bh->b_page);
221         *res = bh->b_page;
222 err:
223         put_bh(bh);
224         return err;
225 }
226
227 static void write_bdev_super_endio(struct bio *bio, int error)
228 {
229         struct cached_dev *dc = bio->bi_private;
230         /* XXX: error checking */
231
232         closure_put(&dc->sb_write.cl);
233 }
234
235 static void __write_super(struct cache_sb *sb, struct bio *bio)
236 {
237         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
238         unsigned i;
239
240         bio->bi_sector  = SB_SECTOR;
241         bio->bi_rw      = REQ_SYNC|REQ_META;
242         bio->bi_size    = SB_SIZE;
243         bch_bio_map(bio, NULL);
244
245         out->offset             = cpu_to_le64(sb->offset);
246         out->version            = cpu_to_le64(sb->version);
247
248         memcpy(out->uuid,       sb->uuid, 16);
249         memcpy(out->set_uuid,   sb->set_uuid, 16);
250         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
251
252         out->flags              = cpu_to_le64(sb->flags);
253         out->seq                = cpu_to_le64(sb->seq);
254
255         out->last_mount         = cpu_to_le32(sb->last_mount);
256         out->first_bucket       = cpu_to_le16(sb->first_bucket);
257         out->keys               = cpu_to_le16(sb->keys);
258
259         for (i = 0; i < sb->keys; i++)
260                 out->d[i] = cpu_to_le64(sb->d[i]);
261
262         out->csum = csum_set(out);
263
264         pr_debug("ver %llu, flags %llu, seq %llu",
265                  sb->version, sb->flags, sb->seq);
266
267         submit_bio(REQ_WRITE, bio);
268 }
269
270 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
271 {
272         struct closure *cl = &dc->sb_write.cl;
273         struct bio *bio = &dc->sb_bio;
274
275         closure_lock(&dc->sb_write, parent);
276
277         bio_reset(bio);
278         bio->bi_bdev    = dc->bdev;
279         bio->bi_end_io  = write_bdev_super_endio;
280         bio->bi_private = dc;
281
282         closure_get(cl);
283         __write_super(&dc->sb, bio);
284
285         closure_return(cl);
286 }
287
288 static void write_super_endio(struct bio *bio, int error)
289 {
290         struct cache *ca = bio->bi_private;
291
292         bch_count_io_errors(ca, error, "writing superblock");
293         closure_put(&ca->set->sb_write.cl);
294 }
295
296 void bcache_write_super(struct cache_set *c)
297 {
298         struct closure *cl = &c->sb_write.cl;
299         struct cache *ca;
300         unsigned i;
301
302         closure_lock(&c->sb_write, &c->cl);
303
304         c->sb.seq++;
305
306         for_each_cache(ca, c, i) {
307                 struct bio *bio = &ca->sb_bio;
308
309                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
310                 ca->sb.seq              = c->sb.seq;
311                 ca->sb.last_mount       = c->sb.last_mount;
312
313                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
314
315                 bio_reset(bio);
316                 bio->bi_bdev    = ca->bdev;
317                 bio->bi_end_io  = write_super_endio;
318                 bio->bi_private = ca;
319
320                 closure_get(cl);
321                 __write_super(&ca->sb, bio);
322         }
323
324         closure_return(cl);
325 }
326
327 /* UUID io */
328
329 static void uuid_endio(struct bio *bio, int error)
330 {
331         struct closure *cl = bio->bi_private;
332         struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
333
334         cache_set_err_on(error, c, "accessing uuids");
335         bch_bbio_free(bio, c);
336         closure_put(cl);
337 }
338
339 static void uuid_io(struct cache_set *c, unsigned long rw,
340                     struct bkey *k, struct closure *parent)
341 {
342         struct closure *cl = &c->uuid_write.cl;
343         struct uuid_entry *u;
344         unsigned i;
345
346         BUG_ON(!parent);
347         closure_lock(&c->uuid_write, parent);
348
349         for (i = 0; i < KEY_PTRS(k); i++) {
350                 struct bio *bio = bch_bbio_alloc(c);
351
352                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
353                 bio->bi_size    = KEY_SIZE(k) << 9;
354
355                 bio->bi_end_io  = uuid_endio;
356                 bio->bi_private = cl;
357                 bch_bio_map(bio, c->uuids);
358
359                 bch_submit_bbio(bio, c, k, i);
360
361                 if (!(rw & WRITE))
362                         break;
363         }
364
365         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read",
366                  pkey(&c->uuid_bucket));
367
368         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369                 if (!bch_is_zero(u->uuid, 16))
370                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371                                  u - c->uuids, u->uuid, u->label,
372                                  u->first_reg, u->last_reg, u->invalidated);
373
374         closure_return(cl);
375 }
376
377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379         struct bkey *k = &j->uuid_bucket;
380
381         if (__bch_ptr_invalid(c, 1, k))
382                 return "bad uuid pointer";
383
384         bkey_copy(&c->uuid_bucket, k);
385         uuid_io(c, READ_SYNC, k, cl);
386
387         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
389                 struct uuid_entry       *u1 = (void *) c->uuids;
390                 int i;
391
392                 closure_sync(cl);
393
394                 /*
395                  * Since the new uuid entry is bigger than the old, we have to
396                  * convert starting at the highest memory address and work down
397                  * in order to do it in place
398                  */
399
400                 for (i = c->nr_uuids - 1;
401                      i >= 0;
402                      --i) {
403                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
404                         memcpy(u1[i].label,     u0[i].label, 32);
405
406                         u1[i].first_reg         = u0[i].first_reg;
407                         u1[i].last_reg          = u0[i].last_reg;
408                         u1[i].invalidated       = u0[i].invalidated;
409
410                         u1[i].flags     = 0;
411                         u1[i].sectors   = 0;
412                 }
413         }
414
415         return NULL;
416 }
417
418 static int __uuid_write(struct cache_set *c)
419 {
420         BKEY_PADDED(key) k;
421         struct closure cl;
422         closure_init_stack(&cl);
423
424         lockdep_assert_held(&bch_register_lock);
425
426         if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
427                 return 1;
428
429         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430         uuid_io(c, REQ_WRITE, &k.key, &cl);
431         closure_sync(&cl);
432
433         bkey_copy(&c->uuid_bucket, &k.key);
434         __bkey_put(c, &k.key);
435         return 0;
436 }
437
438 int bch_uuid_write(struct cache_set *c)
439 {
440         int ret = __uuid_write(c);
441
442         if (!ret)
443                 bch_journal_meta(c, NULL);
444
445         return ret;
446 }
447
448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450         struct uuid_entry *u;
451
452         for (u = c->uuids;
453              u < c->uuids + c->nr_uuids; u++)
454                 if (!memcmp(u->uuid, uuid, 16))
455                         return u;
456
457         return NULL;
458 }
459
460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463         return uuid_find(c, zero_uuid);
464 }
465
466 /*
467  * Bucket priorities/gens:
468  *
469  * For each bucket, we store on disk its
470    * 8 bit gen
471    * 16 bit priority
472  *
473  * See alloc.c for an explanation of the gen. The priority is used to implement
474  * lru (and in the future other) cache replacement policies; for most purposes
475  * it's just an opaque integer.
476  *
477  * The gens and the priorities don't have a whole lot to do with each other, and
478  * it's actually the gens that must be written out at specific times - it's no
479  * big deal if the priorities don't get written, if we lose them we just reuse
480  * buckets in suboptimal order.
481  *
482  * On disk they're stored in a packed array, and in as many buckets are required
483  * to fit them all. The buckets we use to store them form a list; the journal
484  * header points to the first bucket, the first bucket points to the second
485  * bucket, et cetera.
486  *
487  * This code is used by the allocation code; periodically (whenever it runs out
488  * of buckets to allocate from) the allocation code will invalidate some
489  * buckets, but it can't use those buckets until their new gens are safely on
490  * disk.
491  */
492
493 static void prio_endio(struct bio *bio, int error)
494 {
495         struct cache *ca = bio->bi_private;
496
497         cache_set_err_on(error, ca->set, "accessing priorities");
498         bch_bbio_free(bio, ca->set);
499         closure_put(&ca->prio);
500 }
501
502 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
503 {
504         struct closure *cl = &ca->prio;
505         struct bio *bio = bch_bbio_alloc(ca->set);
506
507         closure_init_stack(cl);
508
509         bio->bi_sector  = bucket * ca->sb.bucket_size;
510         bio->bi_bdev    = ca->bdev;
511         bio->bi_rw      = REQ_SYNC|REQ_META|rw;
512         bio->bi_size    = bucket_bytes(ca);
513
514         bio->bi_end_io  = prio_endio;
515         bio->bi_private = ca;
516         bch_bio_map(bio, ca->disk_buckets);
517
518         closure_bio_submit(bio, &ca->prio, ca);
519         closure_sync(cl);
520 }
521
522 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
523         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
524
525 void bch_prio_write(struct cache *ca)
526 {
527         int i;
528         struct bucket *b;
529         struct closure cl;
530
531         closure_init_stack(&cl);
532
533         lockdep_assert_held(&ca->set->bucket_lock);
534
535         for (b = ca->buckets;
536              b < ca->buckets + ca->sb.nbuckets; b++)
537                 b->disk_gen = b->gen;
538
539         ca->disk_buckets->seq++;
540
541         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
542                         &ca->meta_sectors_written);
543
544         pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
545                  fifo_used(&ca->free_inc), fifo_used(&ca->unused));
546         blktrace_msg(ca, "Starting priorities: " buckets_free(ca));
547
548         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
549                 long bucket;
550                 struct prio_set *p = ca->disk_buckets;
551                 struct bucket_disk *d = p->data;
552                 struct bucket_disk *end = d + prios_per_bucket(ca);
553
554                 for (b = ca->buckets + i * prios_per_bucket(ca);
555                      b < ca->buckets + ca->sb.nbuckets && d < end;
556                      b++, d++) {
557                         d->prio = cpu_to_le16(b->prio);
558                         d->gen = b->gen;
559                 }
560
561                 p->next_bucket  = ca->prio_buckets[i + 1];
562                 p->magic        = pset_magic(ca);
563                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
564
565                 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
566                 BUG_ON(bucket == -1);
567
568                 mutex_unlock(&ca->set->bucket_lock);
569                 prio_io(ca, bucket, REQ_WRITE);
570                 mutex_lock(&ca->set->bucket_lock);
571
572                 ca->prio_buckets[i] = bucket;
573                 atomic_dec_bug(&ca->buckets[bucket].pin);
574         }
575
576         mutex_unlock(&ca->set->bucket_lock);
577
578         bch_journal_meta(ca->set, &cl);
579         closure_sync(&cl);
580
581         mutex_lock(&ca->set->bucket_lock);
582
583         ca->need_save_prio = 0;
584
585         /*
586          * Don't want the old priorities to get garbage collected until after we
587          * finish writing the new ones, and they're journalled
588          */
589         for (i = 0; i < prio_buckets(ca); i++)
590                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 }
592
593 static void prio_read(struct cache *ca, uint64_t bucket)
594 {
595         struct prio_set *p = ca->disk_buckets;
596         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
597         struct bucket *b;
598         unsigned bucket_nr = 0;
599
600         for (b = ca->buckets;
601              b < ca->buckets + ca->sb.nbuckets;
602              b++, d++) {
603                 if (d == end) {
604                         ca->prio_buckets[bucket_nr] = bucket;
605                         ca->prio_last_buckets[bucket_nr] = bucket;
606                         bucket_nr++;
607
608                         prio_io(ca, bucket, READ_SYNC);
609
610                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
611                                 pr_warn("bad csum reading priorities");
612
613                         if (p->magic != pset_magic(ca))
614                                 pr_warn("bad magic reading priorities");
615
616                         bucket = p->next_bucket;
617                         d = p->data;
618                 }
619
620                 b->prio = le16_to_cpu(d->prio);
621                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
622         }
623 }
624
625 /* Bcache device */
626
627 static int open_dev(struct block_device *b, fmode_t mode)
628 {
629         struct bcache_device *d = b->bd_disk->private_data;
630         if (atomic_read(&d->closing))
631                 return -ENXIO;
632
633         closure_get(&d->cl);
634         return 0;
635 }
636
637 static void release_dev(struct gendisk *b, fmode_t mode)
638 {
639         struct bcache_device *d = b->private_data;
640         closure_put(&d->cl);
641 }
642
643 static int ioctl_dev(struct block_device *b, fmode_t mode,
644                      unsigned int cmd, unsigned long arg)
645 {
646         struct bcache_device *d = b->bd_disk->private_data;
647         return d->ioctl(d, mode, cmd, arg);
648 }
649
650 static const struct block_device_operations bcache_ops = {
651         .open           = open_dev,
652         .release        = release_dev,
653         .ioctl          = ioctl_dev,
654         .owner          = THIS_MODULE,
655 };
656
657 void bcache_device_stop(struct bcache_device *d)
658 {
659         if (!atomic_xchg(&d->closing, 1))
660                 closure_queue(&d->cl);
661 }
662
663 static void bcache_device_unlink(struct bcache_device *d)
664 {
665         unsigned i;
666         struct cache *ca;
667
668         sysfs_remove_link(&d->c->kobj, d->name);
669         sysfs_remove_link(&d->kobj, "cache");
670
671         for_each_cache(ca, d->c, i)
672                 bd_unlink_disk_holder(ca->bdev, d->disk);
673 }
674
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676                                const char *name)
677 {
678         unsigned i;
679         struct cache *ca;
680
681         for_each_cache(ca, d->c, i)
682                 bd_link_disk_holder(ca->bdev, d->disk);
683
684         snprintf(d->name, BCACHEDEVNAME_SIZE,
685                  "%s%u", name, d->id);
686
687         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688              sysfs_create_link(&c->kobj, &d->kobj, d->name),
689              "Couldn't create device <-> cache set symlinks");
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694         lockdep_assert_held(&bch_register_lock);
695
696         if (atomic_read(&d->detaching)) {
697                 struct uuid_entry *u = d->c->uuids + d->id;
698
699                 SET_UUID_FLASH_ONLY(u, 0);
700                 memcpy(u->uuid, invalid_uuid, 16);
701                 u->invalidated = cpu_to_le32(get_seconds());
702                 bch_uuid_write(d->c);
703
704                 atomic_set(&d->detaching, 0);
705         }
706
707         if (!d->flush_done)
708                 bcache_device_unlink(d);
709
710         d->c->devices[d->id] = NULL;
711         closure_put(&d->c->caching);
712         d->c = NULL;
713 }
714
715 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
716                                  unsigned id)
717 {
718         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
719
720         d->id = id;
721         d->c = c;
722         c->devices[id] = d;
723
724         closure_get(&c->caching);
725 }
726
727 static void bcache_device_free(struct bcache_device *d)
728 {
729         lockdep_assert_held(&bch_register_lock);
730
731         pr_info("%s stopped", d->disk->disk_name);
732
733         if (d->c)
734                 bcache_device_detach(d);
735         if (d->disk && d->disk->flags & GENHD_FL_UP)
736                 del_gendisk(d->disk);
737         if (d->disk && d->disk->queue)
738                 blk_cleanup_queue(d->disk->queue);
739         if (d->disk)
740                 put_disk(d->disk);
741
742         bio_split_pool_free(&d->bio_split_hook);
743         if (d->unaligned_bvec)
744                 mempool_destroy(d->unaligned_bvec);
745         if (d->bio_split)
746                 bioset_free(d->bio_split);
747
748         closure_debug_destroy(&d->cl);
749 }
750
751 static int bcache_device_init(struct bcache_device *d, unsigned block_size)
752 {
753         struct request_queue *q;
754
755         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
756             !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
757                                 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
758             bio_split_pool_init(&d->bio_split_hook) ||
759             !(d->disk = alloc_disk(1)) ||
760             !(q = blk_alloc_queue(GFP_KERNEL)))
761                 return -ENOMEM;
762
763         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
764
765         d->disk->major          = bcache_major;
766         d->disk->first_minor    = bcache_minor++;
767         d->disk->fops           = &bcache_ops;
768         d->disk->private_data   = d;
769
770         blk_queue_make_request(q, NULL);
771         d->disk->queue                  = q;
772         q->queuedata                    = d;
773         q->backing_dev_info.congested_data = d;
774         q->limits.max_hw_sectors        = UINT_MAX;
775         q->limits.max_sectors           = UINT_MAX;
776         q->limits.max_segment_size      = UINT_MAX;
777         q->limits.max_segments          = BIO_MAX_PAGES;
778         q->limits.max_discard_sectors   = UINT_MAX;
779         q->limits.io_min                = block_size;
780         q->limits.logical_block_size    = block_size;
781         q->limits.physical_block_size   = block_size;
782         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
783         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
784
785         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
786
787         return 0;
788 }
789
790 /* Cached device */
791
792 static void calc_cached_dev_sectors(struct cache_set *c)
793 {
794         uint64_t sectors = 0;
795         struct cached_dev *dc;
796
797         list_for_each_entry(dc, &c->cached_devs, list)
798                 sectors += bdev_sectors(dc->bdev);
799
800         c->cached_dev_sectors = sectors;
801 }
802
803 void bch_cached_dev_run(struct cached_dev *dc)
804 {
805         struct bcache_device *d = &dc->disk;
806
807         if (atomic_xchg(&dc->running, 1))
808                 return;
809
810         if (!d->c &&
811             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
812                 struct closure cl;
813                 closure_init_stack(&cl);
814
815                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
816                 bch_write_bdev_super(dc, &cl);
817                 closure_sync(&cl);
818         }
819
820         add_disk(d->disk);
821         bd_link_disk_holder(dc->bdev, dc->disk.disk);
822 #if 0
823         char *env[] = { "SYMLINK=label" , NULL };
824         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
825 #endif
826         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
827             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
828                 pr_debug("error creating sysfs link");
829 }
830
831 static void cached_dev_detach_finish(struct work_struct *w)
832 {
833         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
834         char buf[BDEVNAME_SIZE];
835         struct closure cl;
836         closure_init_stack(&cl);
837
838         BUG_ON(!atomic_read(&dc->disk.detaching));
839         BUG_ON(atomic_read(&dc->count));
840
841         mutex_lock(&bch_register_lock);
842
843         memset(&dc->sb.set_uuid, 0, 16);
844         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
845
846         bch_write_bdev_super(dc, &cl);
847         closure_sync(&cl);
848
849         bcache_device_detach(&dc->disk);
850         list_move(&dc->list, &uncached_devices);
851
852         mutex_unlock(&bch_register_lock);
853
854         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
855
856         /* Drop ref we took in cached_dev_detach() */
857         closure_put(&dc->disk.cl);
858 }
859
860 void bch_cached_dev_detach(struct cached_dev *dc)
861 {
862         lockdep_assert_held(&bch_register_lock);
863
864         if (atomic_read(&dc->disk.closing))
865                 return;
866
867         if (atomic_xchg(&dc->disk.detaching, 1))
868                 return;
869
870         /*
871          * Block the device from being closed and freed until we're finished
872          * detaching
873          */
874         closure_get(&dc->disk.cl);
875
876         bch_writeback_queue(dc);
877         cached_dev_put(dc);
878 }
879
880 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
881 {
882         uint32_t rtime = cpu_to_le32(get_seconds());
883         struct uuid_entry *u;
884         char buf[BDEVNAME_SIZE];
885
886         bdevname(dc->bdev, buf);
887
888         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
889                 return -ENOENT;
890
891         if (dc->disk.c) {
892                 pr_err("Can't attach %s: already attached", buf);
893                 return -EINVAL;
894         }
895
896         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
897                 pr_err("Can't attach %s: shutting down", buf);
898                 return -EINVAL;
899         }
900
901         if (dc->sb.block_size < c->sb.block_size) {
902                 /* Will die */
903                 pr_err("Couldn't attach %s: block size less than set's block size",
904                        buf);
905                 return -EINVAL;
906         }
907
908         u = uuid_find(c, dc->sb.uuid);
909
910         if (u &&
911             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
912              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
913                 memcpy(u->uuid, invalid_uuid, 16);
914                 u->invalidated = cpu_to_le32(get_seconds());
915                 u = NULL;
916         }
917
918         if (!u) {
919                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
920                         pr_err("Couldn't find uuid for %s in set", buf);
921                         return -ENOENT;
922                 }
923
924                 u = uuid_find_empty(c);
925                 if (!u) {
926                         pr_err("Not caching %s, no room for UUID", buf);
927                         return -EINVAL;
928                 }
929         }
930
931         /* Deadlocks since we're called via sysfs...
932         sysfs_remove_file(&dc->kobj, &sysfs_attach);
933          */
934
935         if (bch_is_zero(u->uuid, 16)) {
936                 struct closure cl;
937                 closure_init_stack(&cl);
938
939                 memcpy(u->uuid, dc->sb.uuid, 16);
940                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
941                 u->first_reg = u->last_reg = rtime;
942                 bch_uuid_write(c);
943
944                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
945                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
946
947                 bch_write_bdev_super(dc, &cl);
948                 closure_sync(&cl);
949         } else {
950                 u->last_reg = rtime;
951                 bch_uuid_write(c);
952         }
953
954         bcache_device_attach(&dc->disk, c, u - c->uuids);
955         list_move(&dc->list, &c->cached_devs);
956         calc_cached_dev_sectors(c);
957
958         smp_wmb();
959         /*
960          * dc->c must be set before dc->count != 0 - paired with the mb in
961          * cached_dev_get()
962          */
963         atomic_set(&dc->count, 1);
964
965         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
966                 atomic_set(&dc->has_dirty, 1);
967                 atomic_inc(&dc->count);
968                 bch_writeback_queue(dc);
969         }
970
971         bch_cached_dev_run(dc);
972         bcache_device_link(&dc->disk, c, "bdev");
973
974         pr_info("Caching %s as %s on set %pU",
975                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
976                 dc->disk.c->sb.set_uuid);
977         return 0;
978 }
979
980 void bch_cached_dev_release(struct kobject *kobj)
981 {
982         struct cached_dev *dc = container_of(kobj, struct cached_dev,
983                                              disk.kobj);
984         kfree(dc);
985         module_put(THIS_MODULE);
986 }
987
988 static void cached_dev_free(struct closure *cl)
989 {
990         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
991
992         cancel_delayed_work_sync(&dc->writeback_rate_update);
993
994         mutex_lock(&bch_register_lock);
995
996         if (atomic_read(&dc->running))
997                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
998         bcache_device_free(&dc->disk);
999         list_del(&dc->list);
1000
1001         mutex_unlock(&bch_register_lock);
1002
1003         if (!IS_ERR_OR_NULL(dc->bdev)) {
1004                 if (dc->bdev->bd_disk)
1005                         blk_sync_queue(bdev_get_queue(dc->bdev));
1006
1007                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1008         }
1009
1010         wake_up(&unregister_wait);
1011
1012         kobject_put(&dc->disk.kobj);
1013 }
1014
1015 static void cached_dev_flush(struct closure *cl)
1016 {
1017         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1018         struct bcache_device *d = &dc->disk;
1019
1020         mutex_lock(&bch_register_lock);
1021         d->flush_done = 1;
1022
1023         if (d->c)
1024                 bcache_device_unlink(d);
1025
1026         mutex_unlock(&bch_register_lock);
1027
1028         bch_cache_accounting_destroy(&dc->accounting);
1029         kobject_del(&d->kobj);
1030
1031         continue_at(cl, cached_dev_free, system_wq);
1032 }
1033
1034 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1035 {
1036         int ret;
1037         struct io *io;
1038         struct request_queue *q = bdev_get_queue(dc->bdev);
1039
1040         __module_get(THIS_MODULE);
1041         INIT_LIST_HEAD(&dc->list);
1042         closure_init(&dc->disk.cl, NULL);
1043         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1044         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1045         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1046         closure_init_unlocked(&dc->sb_write);
1047         INIT_LIST_HEAD(&dc->io_lru);
1048         spin_lock_init(&dc->io_lock);
1049         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1050
1051         dc->sequential_merge            = true;
1052         dc->sequential_cutoff           = 4 << 20;
1053
1054         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1055                 list_add(&io->lru, &dc->io_lru);
1056                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1057         }
1058
1059         ret = bcache_device_init(&dc->disk, block_size);
1060         if (ret)
1061                 return ret;
1062
1063         set_capacity(dc->disk.disk,
1064                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1065
1066         dc->disk.disk->queue->backing_dev_info.ra_pages =
1067                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1068                     q->backing_dev_info.ra_pages);
1069
1070         bch_cached_dev_request_init(dc);
1071         bch_cached_dev_writeback_init(dc);
1072         return 0;
1073 }
1074
1075 /* Cached device - bcache superblock */
1076
1077 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1078                                  struct block_device *bdev,
1079                                  struct cached_dev *dc)
1080 {
1081         char name[BDEVNAME_SIZE];
1082         const char *err = "cannot allocate memory";
1083         struct cache_set *c;
1084
1085         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1086         dc->bdev = bdev;
1087         dc->bdev->bd_holder = dc;
1088
1089         bio_init(&dc->sb_bio);
1090         dc->sb_bio.bi_max_vecs  = 1;
1091         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1092         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1093         get_page(sb_page);
1094
1095         if (cached_dev_init(dc, sb->block_size << 9))
1096                 goto err;
1097
1098         err = "error creating kobject";
1099         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1100                         "bcache"))
1101                 goto err;
1102         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1103                 goto err;
1104
1105         pr_info("registered backing device %s", bdevname(bdev, name));
1106
1107         list_add(&dc->list, &uncached_devices);
1108         list_for_each_entry(c, &bch_cache_sets, list)
1109                 bch_cached_dev_attach(dc, c);
1110
1111         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1112             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1113                 bch_cached_dev_run(dc);
1114
1115         return;
1116 err:
1117         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1118         bcache_device_stop(&dc->disk);
1119 }
1120
1121 /* Flash only volumes */
1122
1123 void bch_flash_dev_release(struct kobject *kobj)
1124 {
1125         struct bcache_device *d = container_of(kobj, struct bcache_device,
1126                                                kobj);
1127         kfree(d);
1128 }
1129
1130 static void flash_dev_free(struct closure *cl)
1131 {
1132         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1133         bcache_device_free(d);
1134         kobject_put(&d->kobj);
1135 }
1136
1137 static void flash_dev_flush(struct closure *cl)
1138 {
1139         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1140
1141         bcache_device_unlink(d);
1142         kobject_del(&d->kobj);
1143         continue_at(cl, flash_dev_free, system_wq);
1144 }
1145
1146 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1147 {
1148         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1149                                           GFP_KERNEL);
1150         if (!d)
1151                 return -ENOMEM;
1152
1153         closure_init(&d->cl, NULL);
1154         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1155
1156         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1157
1158         if (bcache_device_init(d, block_bytes(c)))
1159                 goto err;
1160
1161         bcache_device_attach(d, c, u - c->uuids);
1162         set_capacity(d->disk, u->sectors);
1163         bch_flash_dev_request_init(d);
1164         add_disk(d->disk);
1165
1166         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1167                 goto err;
1168
1169         bcache_device_link(d, c, "volume");
1170
1171         return 0;
1172 err:
1173         kobject_put(&d->kobj);
1174         return -ENOMEM;
1175 }
1176
1177 static int flash_devs_run(struct cache_set *c)
1178 {
1179         int ret = 0;
1180         struct uuid_entry *u;
1181
1182         for (u = c->uuids;
1183              u < c->uuids + c->nr_uuids && !ret;
1184              u++)
1185                 if (UUID_FLASH_ONLY(u))
1186                         ret = flash_dev_run(c, u);
1187
1188         return ret;
1189 }
1190
1191 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1192 {
1193         struct uuid_entry *u;
1194
1195         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1196                 return -EINTR;
1197
1198         u = uuid_find_empty(c);
1199         if (!u) {
1200                 pr_err("Can't create volume, no room for UUID");
1201                 return -EINVAL;
1202         }
1203
1204         get_random_bytes(u->uuid, 16);
1205         memset(u->label, 0, 32);
1206         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1207
1208         SET_UUID_FLASH_ONLY(u, 1);
1209         u->sectors = size >> 9;
1210
1211         bch_uuid_write(c);
1212
1213         return flash_dev_run(c, u);
1214 }
1215
1216 /* Cache set */
1217
1218 __printf(2, 3)
1219 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1220 {
1221         va_list args;
1222
1223         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1224                 return false;
1225
1226         /* XXX: we can be called from atomic context
1227         acquire_console_sem();
1228         */
1229
1230         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1231
1232         va_start(args, fmt);
1233         vprintk(fmt, args);
1234         va_end(args);
1235
1236         printk(", disabling caching\n");
1237
1238         bch_cache_set_unregister(c);
1239         return true;
1240 }
1241
1242 void bch_cache_set_release(struct kobject *kobj)
1243 {
1244         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1245         kfree(c);
1246         module_put(THIS_MODULE);
1247 }
1248
1249 static void cache_set_free(struct closure *cl)
1250 {
1251         struct cache_set *c = container_of(cl, struct cache_set, cl);
1252         struct cache *ca;
1253         unsigned i;
1254
1255         if (!IS_ERR_OR_NULL(c->debug))
1256                 debugfs_remove(c->debug);
1257
1258         bch_open_buckets_free(c);
1259         bch_btree_cache_free(c);
1260         bch_journal_free(c);
1261
1262         for_each_cache(ca, c, i)
1263                 if (ca)
1264                         kobject_put(&ca->kobj);
1265
1266         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1267         free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1268
1269         kfree(c->fill_iter);
1270         if (c->bio_split)
1271                 bioset_free(c->bio_split);
1272         if (c->bio_meta)
1273                 mempool_destroy(c->bio_meta);
1274         if (c->search)
1275                 mempool_destroy(c->search);
1276         kfree(c->devices);
1277
1278         mutex_lock(&bch_register_lock);
1279         list_del(&c->list);
1280         mutex_unlock(&bch_register_lock);
1281
1282         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1283         wake_up(&unregister_wait);
1284
1285         closure_debug_destroy(&c->cl);
1286         kobject_put(&c->kobj);
1287 }
1288
1289 static void cache_set_flush(struct closure *cl)
1290 {
1291         struct cache_set *c = container_of(cl, struct cache_set, caching);
1292         struct btree *b;
1293
1294         /* Shut down allocator threads */
1295         set_bit(CACHE_SET_STOPPING_2, &c->flags);
1296         wake_up(&c->alloc_wait);
1297
1298         bch_cache_accounting_destroy(&c->accounting);
1299
1300         kobject_put(&c->internal);
1301         kobject_del(&c->kobj);
1302
1303         if (!IS_ERR_OR_NULL(c->root))
1304                 list_add(&c->root->list, &c->btree_cache);
1305
1306         /* Should skip this if we're unregistering because of an error */
1307         list_for_each_entry(b, &c->btree_cache, list)
1308                 if (btree_node_dirty(b))
1309                         bch_btree_write(b, true, NULL);
1310
1311         closure_return(cl);
1312 }
1313
1314 static void __cache_set_unregister(struct closure *cl)
1315 {
1316         struct cache_set *c = container_of(cl, struct cache_set, caching);
1317         struct cached_dev *dc;
1318         size_t i;
1319
1320         mutex_lock(&bch_register_lock);
1321
1322         for (i = 0; i < c->nr_uuids; i++)
1323                 if (c->devices[i]) {
1324                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1325                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1326                                 dc = container_of(c->devices[i],
1327                                                   struct cached_dev, disk);
1328                                 bch_cached_dev_detach(dc);
1329                         } else {
1330                                 bcache_device_stop(c->devices[i]);
1331                         }
1332                 }
1333
1334         mutex_unlock(&bch_register_lock);
1335
1336         continue_at(cl, cache_set_flush, system_wq);
1337 }
1338
1339 void bch_cache_set_stop(struct cache_set *c)
1340 {
1341         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1342                 closure_queue(&c->caching);
1343 }
1344
1345 void bch_cache_set_unregister(struct cache_set *c)
1346 {
1347         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1348         bch_cache_set_stop(c);
1349 }
1350
1351 #define alloc_bucket_pages(gfp, c)                      \
1352         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1353
1354 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1355 {
1356         int iter_size;
1357         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1358         if (!c)
1359                 return NULL;
1360
1361         __module_get(THIS_MODULE);
1362         closure_init(&c->cl, NULL);
1363         set_closure_fn(&c->cl, cache_set_free, system_wq);
1364
1365         closure_init(&c->caching, &c->cl);
1366         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1367
1368         /* Maybe create continue_at_noreturn() and use it here? */
1369         closure_set_stopped(&c->cl);
1370         closure_put(&c->cl);
1371
1372         kobject_init(&c->kobj, &bch_cache_set_ktype);
1373         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1374
1375         bch_cache_accounting_init(&c->accounting, &c->cl);
1376
1377         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1378         c->sb.block_size        = sb->block_size;
1379         c->sb.bucket_size       = sb->bucket_size;
1380         c->sb.nr_in_set         = sb->nr_in_set;
1381         c->sb.last_mount        = sb->last_mount;
1382         c->bucket_bits          = ilog2(sb->bucket_size);
1383         c->block_bits           = ilog2(sb->block_size);
1384         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1385
1386         c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1387         if (c->btree_pages > BTREE_MAX_PAGES)
1388                 c->btree_pages = max_t(int, c->btree_pages / 4,
1389                                        BTREE_MAX_PAGES);
1390
1391         init_waitqueue_head(&c->alloc_wait);
1392         mutex_init(&c->bucket_lock);
1393         mutex_init(&c->fill_lock);
1394         mutex_init(&c->sort_lock);
1395         spin_lock_init(&c->sort_time_lock);
1396         closure_init_unlocked(&c->sb_write);
1397         closure_init_unlocked(&c->uuid_write);
1398         spin_lock_init(&c->btree_read_time_lock);
1399         bch_moving_init_cache_set(c);
1400
1401         INIT_LIST_HEAD(&c->list);
1402         INIT_LIST_HEAD(&c->cached_devs);
1403         INIT_LIST_HEAD(&c->btree_cache);
1404         INIT_LIST_HEAD(&c->btree_cache_freeable);
1405         INIT_LIST_HEAD(&c->btree_cache_freed);
1406         INIT_LIST_HEAD(&c->data_buckets);
1407
1408         c->search = mempool_create_slab_pool(32, bch_search_cache);
1409         if (!c->search)
1410                 goto err;
1411
1412         iter_size = (sb->bucket_size / sb->block_size + 1) *
1413                 sizeof(struct btree_iter_set);
1414
1415         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1416             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1417                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1418                                 bucket_pages(c))) ||
1419             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1420             !(c->fill_iter = kmalloc(iter_size, GFP_KERNEL)) ||
1421             !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1422             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1423             bch_journal_alloc(c) ||
1424             bch_btree_cache_alloc(c) ||
1425             bch_open_buckets_alloc(c))
1426                 goto err;
1427
1428         c->fill_iter->size = sb->bucket_size / sb->block_size;
1429
1430         c->congested_read_threshold_us  = 2000;
1431         c->congested_write_threshold_us = 20000;
1432         c->error_limit  = 8 << IO_ERROR_SHIFT;
1433
1434         return c;
1435 err:
1436         bch_cache_set_unregister(c);
1437         return NULL;
1438 }
1439
1440 static void run_cache_set(struct cache_set *c)
1441 {
1442         const char *err = "cannot allocate memory";
1443         struct cached_dev *dc, *t;
1444         struct cache *ca;
1445         unsigned i;
1446
1447         struct btree_op op;
1448         bch_btree_op_init_stack(&op);
1449         op.lock = SHRT_MAX;
1450
1451         for_each_cache(ca, c, i)
1452                 c->nbuckets += ca->sb.nbuckets;
1453
1454         if (CACHE_SYNC(&c->sb)) {
1455                 LIST_HEAD(journal);
1456                 struct bkey *k;
1457                 struct jset *j;
1458
1459                 err = "cannot allocate memory for journal";
1460                 if (bch_journal_read(c, &journal, &op))
1461                         goto err;
1462
1463                 pr_debug("btree_journal_read() done");
1464
1465                 err = "no journal entries found";
1466                 if (list_empty(&journal))
1467                         goto err;
1468
1469                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1470
1471                 err = "IO error reading priorities";
1472                 for_each_cache(ca, c, i)
1473                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1474
1475                 /*
1476                  * If prio_read() fails it'll call cache_set_error and we'll
1477                  * tear everything down right away, but if we perhaps checked
1478                  * sooner we could avoid journal replay.
1479                  */
1480
1481                 k = &j->btree_root;
1482
1483                 err = "bad btree root";
1484                 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1485                         goto err;
1486
1487                 err = "error reading btree root";
1488                 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1489                 if (IS_ERR_OR_NULL(c->root))
1490                         goto err;
1491
1492                 list_del_init(&c->root->list);
1493                 rw_unlock(true, c->root);
1494
1495                 err = uuid_read(c, j, &op.cl);
1496                 if (err)
1497                         goto err;
1498
1499                 err = "error in recovery";
1500                 if (bch_btree_check(c, &op))
1501                         goto err;
1502
1503                 bch_journal_mark(c, &journal);
1504                 bch_btree_gc_finish(c);
1505                 pr_debug("btree_check() done");
1506
1507                 /*
1508                  * bcache_journal_next() can't happen sooner, or
1509                  * btree_gc_finish() will give spurious errors about last_gc >
1510                  * gc_gen - this is a hack but oh well.
1511                  */
1512                 bch_journal_next(&c->journal);
1513
1514                 for_each_cache(ca, c, i)
1515                         closure_call(&ca->alloc, bch_allocator_thread,
1516                                      system_wq, &c->cl);
1517
1518                 /*
1519                  * First place it's safe to allocate: btree_check() and
1520                  * btree_gc_finish() have to run before we have buckets to
1521                  * allocate, and bch_bucket_alloc_set() might cause a journal
1522                  * entry to be written so bcache_journal_next() has to be called
1523                  * first.
1524                  *
1525                  * If the uuids were in the old format we have to rewrite them
1526                  * before the next journal entry is written:
1527                  */
1528                 if (j->version < BCACHE_JSET_VERSION_UUID)
1529                         __uuid_write(c);
1530
1531                 bch_journal_replay(c, &journal, &op);
1532         } else {
1533                 pr_notice("invalidating existing data");
1534                 /* Don't want invalidate_buckets() to queue a gc yet */
1535                 closure_lock(&c->gc, NULL);
1536
1537                 for_each_cache(ca, c, i) {
1538                         unsigned j;
1539
1540                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1541                                               2, SB_JOURNAL_BUCKETS);
1542
1543                         for (j = 0; j < ca->sb.keys; j++)
1544                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1545                 }
1546
1547                 bch_btree_gc_finish(c);
1548
1549                 for_each_cache(ca, c, i)
1550                         closure_call(&ca->alloc, bch_allocator_thread,
1551                                      ca->alloc_workqueue, &c->cl);
1552
1553                 mutex_lock(&c->bucket_lock);
1554                 for_each_cache(ca, c, i)
1555                         bch_prio_write(ca);
1556                 mutex_unlock(&c->bucket_lock);
1557
1558                 wake_up(&c->alloc_wait);
1559
1560                 err = "cannot allocate new UUID bucket";
1561                 if (__uuid_write(c))
1562                         goto err_unlock_gc;
1563
1564                 err = "cannot allocate new btree root";
1565                 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1566                 if (IS_ERR_OR_NULL(c->root))
1567                         goto err_unlock_gc;
1568
1569                 bkey_copy_key(&c->root->key, &MAX_KEY);
1570                 bch_btree_write(c->root, true, &op);
1571
1572                 bch_btree_set_root(c->root);
1573                 rw_unlock(true, c->root);
1574
1575                 /*
1576                  * We don't want to write the first journal entry until
1577                  * everything is set up - fortunately journal entries won't be
1578                  * written until the SET_CACHE_SYNC() here:
1579                  */
1580                 SET_CACHE_SYNC(&c->sb, true);
1581
1582                 bch_journal_next(&c->journal);
1583                 bch_journal_meta(c, &op.cl);
1584
1585                 /* Unlock */
1586                 closure_set_stopped(&c->gc.cl);
1587                 closure_put(&c->gc.cl);
1588         }
1589
1590         closure_sync(&op.cl);
1591         c->sb.last_mount = get_seconds();
1592         bcache_write_super(c);
1593
1594         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1595                 bch_cached_dev_attach(dc, c);
1596
1597         flash_devs_run(c);
1598
1599         return;
1600 err_unlock_gc:
1601         closure_set_stopped(&c->gc.cl);
1602         closure_put(&c->gc.cl);
1603 err:
1604         closure_sync(&op.cl);
1605         /* XXX: test this, it's broken */
1606         bch_cache_set_error(c, err);
1607 }
1608
1609 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1610 {
1611         return ca->sb.block_size        == c->sb.block_size &&
1612                 ca->sb.bucket_size      == c->sb.block_size &&
1613                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1614 }
1615
1616 static const char *register_cache_set(struct cache *ca)
1617 {
1618         char buf[12];
1619         const char *err = "cannot allocate memory";
1620         struct cache_set *c;
1621
1622         list_for_each_entry(c, &bch_cache_sets, list)
1623                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1624                         if (c->cache[ca->sb.nr_this_dev])
1625                                 return "duplicate cache set member";
1626
1627                         if (!can_attach_cache(ca, c))
1628                                 return "cache sb does not match set";
1629
1630                         if (!CACHE_SYNC(&ca->sb))
1631                                 SET_CACHE_SYNC(&c->sb, false);
1632
1633                         goto found;
1634                 }
1635
1636         c = bch_cache_set_alloc(&ca->sb);
1637         if (!c)
1638                 return err;
1639
1640         err = "error creating kobject";
1641         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1642             kobject_add(&c->internal, &c->kobj, "internal"))
1643                 goto err;
1644
1645         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1646                 goto err;
1647
1648         bch_debug_init_cache_set(c);
1649
1650         list_add(&c->list, &bch_cache_sets);
1651 found:
1652         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1653         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1654             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1655                 goto err;
1656
1657         if (ca->sb.seq > c->sb.seq) {
1658                 c->sb.version           = ca->sb.version;
1659                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1660                 c->sb.flags             = ca->sb.flags;
1661                 c->sb.seq               = ca->sb.seq;
1662                 pr_debug("set version = %llu", c->sb.version);
1663         }
1664
1665         ca->set = c;
1666         ca->set->cache[ca->sb.nr_this_dev] = ca;
1667         c->cache_by_alloc[c->caches_loaded++] = ca;
1668
1669         if (c->caches_loaded == c->sb.nr_in_set)
1670                 run_cache_set(c);
1671
1672         return NULL;
1673 err:
1674         bch_cache_set_unregister(c);
1675         return err;
1676 }
1677
1678 /* Cache device */
1679
1680 void bch_cache_release(struct kobject *kobj)
1681 {
1682         struct cache *ca = container_of(kobj, struct cache, kobj);
1683
1684         if (ca->set)
1685                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1686
1687         bch_cache_allocator_exit(ca);
1688
1689         bio_split_pool_free(&ca->bio_split_hook);
1690
1691         if (ca->alloc_workqueue)
1692                 destroy_workqueue(ca->alloc_workqueue);
1693
1694         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1695         kfree(ca->prio_buckets);
1696         vfree(ca->buckets);
1697
1698         free_heap(&ca->heap);
1699         free_fifo(&ca->unused);
1700         free_fifo(&ca->free_inc);
1701         free_fifo(&ca->free);
1702
1703         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1704                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1705
1706         if (!IS_ERR_OR_NULL(ca->bdev)) {
1707                 blk_sync_queue(bdev_get_queue(ca->bdev));
1708                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1709         }
1710
1711         kfree(ca);
1712         module_put(THIS_MODULE);
1713 }
1714
1715 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1716 {
1717         size_t free;
1718         struct bucket *b;
1719
1720         __module_get(THIS_MODULE);
1721         kobject_init(&ca->kobj, &bch_cache_ktype);
1722
1723         INIT_LIST_HEAD(&ca->discards);
1724
1725         bio_init(&ca->journal.bio);
1726         ca->journal.bio.bi_max_vecs = 8;
1727         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1728
1729         free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1730         free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1731
1732         if (!init_fifo(&ca->free,       free, GFP_KERNEL) ||
1733             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1734             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1735             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1736             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1737                                           ca->sb.nbuckets)) ||
1738             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1739                                           2, GFP_KERNEL)) ||
1740             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1741             !(ca->alloc_workqueue = alloc_workqueue("bch_allocator", 0, 1)) ||
1742             bio_split_pool_init(&ca->bio_split_hook))
1743                 return -ENOMEM;
1744
1745         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1746
1747         for_each_bucket(b, ca)
1748                 atomic_set(&b->pin, 0);
1749
1750         if (bch_cache_allocator_init(ca))
1751                 goto err;
1752
1753         return 0;
1754 err:
1755         kobject_put(&ca->kobj);
1756         return -ENOMEM;
1757 }
1758
1759 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1760                                   struct block_device *bdev, struct cache *ca)
1761 {
1762         char name[BDEVNAME_SIZE];
1763         const char *err = "cannot allocate memory";
1764
1765         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1766         ca->bdev = bdev;
1767         ca->bdev->bd_holder = ca;
1768
1769         bio_init(&ca->sb_bio);
1770         ca->sb_bio.bi_max_vecs  = 1;
1771         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1772         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1773         get_page(sb_page);
1774
1775         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1776                 ca->discard = CACHE_DISCARD(&ca->sb);
1777
1778         if (cache_alloc(sb, ca) != 0)
1779                 goto err;
1780
1781         err = "error creating kobject";
1782         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1783                 goto err;
1784
1785         err = register_cache_set(ca);
1786         if (err)
1787                 goto err;
1788
1789         pr_info("registered cache device %s", bdevname(bdev, name));
1790         return;
1791 err:
1792         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1793         kobject_put(&ca->kobj);
1794 }
1795
1796 /* Global interfaces/init */
1797
1798 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1799                                const char *, size_t);
1800
1801 kobj_attribute_write(register,          register_bcache);
1802 kobj_attribute_write(register_quiet,    register_bcache);
1803
1804 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1805                                const char *buffer, size_t size)
1806 {
1807         ssize_t ret = size;
1808         const char *err = "cannot allocate memory";
1809         char *path = NULL;
1810         struct cache_sb *sb = NULL;
1811         struct block_device *bdev = NULL;
1812         struct page *sb_page = NULL;
1813
1814         if (!try_module_get(THIS_MODULE))
1815                 return -EBUSY;
1816
1817         mutex_lock(&bch_register_lock);
1818
1819         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1820             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1821                 goto err;
1822
1823         err = "failed to open device";
1824         bdev = blkdev_get_by_path(strim(path),
1825                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1826                                   sb);
1827         if (IS_ERR(bdev)) {
1828                 if (bdev == ERR_PTR(-EBUSY))
1829                         err = "device busy";
1830                 goto err;
1831         }
1832
1833         err = "failed to set blocksize";
1834         if (set_blocksize(bdev, 4096))
1835                 goto err_close;
1836
1837         err = read_super(sb, bdev, &sb_page);
1838         if (err)
1839                 goto err_close;
1840
1841         if (SB_IS_BDEV(sb)) {
1842                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1843                 if (!dc)
1844                         goto err_close;
1845
1846                 register_bdev(sb, sb_page, bdev, dc);
1847         } else {
1848                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1849                 if (!ca)
1850                         goto err_close;
1851
1852                 register_cache(sb, sb_page, bdev, ca);
1853         }
1854 out:
1855         if (sb_page)
1856                 put_page(sb_page);
1857         kfree(sb);
1858         kfree(path);
1859         mutex_unlock(&bch_register_lock);
1860         module_put(THIS_MODULE);
1861         return ret;
1862
1863 err_close:
1864         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1865 err:
1866         if (attr != &ksysfs_register_quiet)
1867                 pr_info("error opening %s: %s", path, err);
1868         ret = -EINVAL;
1869         goto out;
1870 }
1871
1872 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1873 {
1874         if (code == SYS_DOWN ||
1875             code == SYS_HALT ||
1876             code == SYS_POWER_OFF) {
1877                 DEFINE_WAIT(wait);
1878                 unsigned long start = jiffies;
1879                 bool stopped = false;
1880
1881                 struct cache_set *c, *tc;
1882                 struct cached_dev *dc, *tdc;
1883
1884                 mutex_lock(&bch_register_lock);
1885
1886                 if (list_empty(&bch_cache_sets) &&
1887                     list_empty(&uncached_devices))
1888                         goto out;
1889
1890                 pr_info("Stopping all devices:");
1891
1892                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1893                         bch_cache_set_stop(c);
1894
1895                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1896                         bcache_device_stop(&dc->disk);
1897
1898                 /* What's a condition variable? */
1899                 while (1) {
1900                         long timeout = start + 2 * HZ - jiffies;
1901
1902                         stopped = list_empty(&bch_cache_sets) &&
1903                                 list_empty(&uncached_devices);
1904
1905                         if (timeout < 0 || stopped)
1906                                 break;
1907
1908                         prepare_to_wait(&unregister_wait, &wait,
1909                                         TASK_UNINTERRUPTIBLE);
1910
1911                         mutex_unlock(&bch_register_lock);
1912                         schedule_timeout(timeout);
1913                         mutex_lock(&bch_register_lock);
1914                 }
1915
1916                 finish_wait(&unregister_wait, &wait);
1917
1918                 if (stopped)
1919                         pr_info("All devices stopped");
1920                 else
1921                         pr_notice("Timeout waiting for devices to be closed");
1922 out:
1923                 mutex_unlock(&bch_register_lock);
1924         }
1925
1926         return NOTIFY_DONE;
1927 }
1928
1929 static struct notifier_block reboot = {
1930         .notifier_call  = bcache_reboot,
1931         .priority       = INT_MAX, /* before any real devices */
1932 };
1933
1934 static void bcache_exit(void)
1935 {
1936         bch_debug_exit();
1937         bch_writeback_exit();
1938         bch_request_exit();
1939         bch_btree_exit();
1940         if (bcache_kobj)
1941                 kobject_put(bcache_kobj);
1942         if (bcache_wq)
1943                 destroy_workqueue(bcache_wq);
1944         unregister_blkdev(bcache_major, "bcache");
1945         unregister_reboot_notifier(&reboot);
1946 }
1947
1948 static int __init bcache_init(void)
1949 {
1950         static const struct attribute *files[] = {
1951                 &ksysfs_register.attr,
1952                 &ksysfs_register_quiet.attr,
1953                 NULL
1954         };
1955
1956         mutex_init(&bch_register_lock);
1957         init_waitqueue_head(&unregister_wait);
1958         register_reboot_notifier(&reboot);
1959         closure_debug_init();
1960
1961         bcache_major = register_blkdev(0, "bcache");
1962         if (bcache_major < 0)
1963                 return bcache_major;
1964
1965         if (!(bcache_wq = create_workqueue("bcache")) ||
1966             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
1967             sysfs_create_files(bcache_kobj, files) ||
1968             bch_btree_init() ||
1969             bch_request_init() ||
1970             bch_writeback_init() ||
1971             bch_debug_init(bcache_kobj))
1972                 goto err;
1973
1974         return 0;
1975 err:
1976         bcache_exit();
1977         return -ENOMEM;
1978 }
1979
1980 module_exit(bcache_exit);
1981 module_init(bcache_init);