5 #include <linux/errno.h>
6 #include <linux/kernel.h>
7 #include <linux/llist.h>
8 #include <linux/ratelimit.h>
9 #include <linux/vmalloc.h>
10 #include <linux/workqueue.h>
14 #define PAGE_SECTORS (PAGE_SIZE / 512)
18 #ifdef CONFIG_BCACHE_EDEBUG
20 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
21 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
25 #define atomic_dec_bug(v) atomic_dec(v)
26 #define atomic_inc_bug(v, i) atomic_inc(v)
30 #define BITMASK(name, type, field, offset, size) \
31 static inline uint64_t name(const type *k) \
32 { return (k->field >> offset) & ~(((uint64_t) ~0) << size); } \
34 static inline void SET_##name(type *k, uint64_t v) \
36 k->field &= ~(~((uint64_t) ~0 << size) << offset); \
37 k->field |= v << offset; \
40 #define DECLARE_HEAP(type, name) \
46 #define init_heap(heap, _size, gfp) \
50 (heap)->size = (_size); \
51 _bytes = (heap)->size * sizeof(*(heap)->data); \
52 (heap)->data = NULL; \
53 if (_bytes < KMALLOC_MAX_SIZE) \
54 (heap)->data = kmalloc(_bytes, (gfp)); \
55 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
56 (heap)->data = vmalloc(_bytes); \
60 #define free_heap(heap) \
62 if (is_vmalloc_addr((heap)->data)) \
63 vfree((heap)->data); \
65 kfree((heap)->data); \
66 (heap)->data = NULL; \
69 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
71 #define heap_sift(h, i, cmp) \
75 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
77 if (_r + 1 < (h)->used && \
78 cmp((h)->data[_r], (h)->data[_r + 1])) \
81 if (cmp((h)->data[_r], (h)->data[_j])) \
83 heap_swap(h, _r, _j); \
87 #define heap_sift_down(h, i, cmp) \
90 size_t p = (i - 1) / 2; \
91 if (cmp((h)->data[i], (h)->data[p])) \
98 #define heap_add(h, d, cmp) \
100 bool _r = !heap_full(h); \
102 size_t _i = (h)->used++; \
105 heap_sift_down(h, _i, cmp); \
106 heap_sift(h, _i, cmp); \
111 #define heap_pop(h, d, cmp) \
113 bool _r = (h)->used; \
115 (d) = (h)->data[0]; \
117 heap_swap(h, 0, (h)->used); \
118 heap_sift(h, 0, cmp); \
123 #define heap_peek(h) ((h)->size ? (h)->data[0] : NULL)
125 #define heap_full(h) ((h)->used == (h)->size)
127 #define DECLARE_FIFO(type, name) \
129 size_t front, back, size, mask; \
133 #define fifo_for_each(c, fifo, iter) \
134 for (iter = (fifo)->front; \
135 c = (fifo)->data[iter], iter != (fifo)->back; \
136 iter = (iter + 1) & (fifo)->mask)
138 #define __init_fifo(fifo, gfp) \
140 size_t _allocated_size, _bytes; \
141 BUG_ON(!(fifo)->size); \
143 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
144 _bytes = _allocated_size * sizeof(*(fifo)->data); \
146 (fifo)->mask = _allocated_size - 1; \
147 (fifo)->front = (fifo)->back = 0; \
148 (fifo)->data = NULL; \
150 if (_bytes < KMALLOC_MAX_SIZE) \
151 (fifo)->data = kmalloc(_bytes, (gfp)); \
152 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
153 (fifo)->data = vmalloc(_bytes); \
157 #define init_fifo_exact(fifo, _size, gfp) \
159 (fifo)->size = (_size); \
160 __init_fifo(fifo, gfp); \
163 #define init_fifo(fifo, _size, gfp) \
165 (fifo)->size = (_size); \
166 if ((fifo)->size > 4) \
167 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
168 __init_fifo(fifo, gfp); \
171 #define free_fifo(fifo) \
173 if (is_vmalloc_addr((fifo)->data)) \
174 vfree((fifo)->data); \
176 kfree((fifo)->data); \
177 (fifo)->data = NULL; \
180 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
181 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
183 #define fifo_empty(fifo) (!fifo_used(fifo))
184 #define fifo_full(fifo) (!fifo_free(fifo))
186 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
187 #define fifo_back(fifo) \
188 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
190 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
192 #define fifo_push_back(fifo, i) \
194 bool _r = !fifo_full((fifo)); \
196 (fifo)->data[(fifo)->back++] = (i); \
197 (fifo)->back &= (fifo)->mask; \
202 #define fifo_pop_front(fifo, i) \
204 bool _r = !fifo_empty((fifo)); \
206 (i) = (fifo)->data[(fifo)->front++]; \
207 (fifo)->front &= (fifo)->mask; \
212 #define fifo_push_front(fifo, i) \
214 bool _r = !fifo_full((fifo)); \
217 (fifo)->front &= (fifo)->mask; \
218 (fifo)->data[(fifo)->front] = (i); \
223 #define fifo_pop_back(fifo, i) \
225 bool _r = !fifo_empty((fifo)); \
228 (fifo)->back &= (fifo)->mask; \
229 (i) = (fifo)->data[(fifo)->back] \
234 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
235 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
237 #define fifo_swap(l, r) \
239 swap((l)->front, (r)->front); \
240 swap((l)->back, (r)->back); \
241 swap((l)->size, (r)->size); \
242 swap((l)->mask, (r)->mask); \
243 swap((l)->data, (r)->data); \
246 #define fifo_move(dest, src) \
248 typeof(*((dest)->data)) _t; \
249 while (!fifo_full(dest) && \
251 fifo_push(dest, _t); \
255 * Simple array based allocator - preallocates a number of elements and you can
256 * never allocate more than that, also has no locking.
258 * Handy because if you know you only need a fixed number of elements you don't
259 * have to worry about memory allocation failure, and sometimes a mempool isn't
262 * We treat the free elements as entries in a singly linked list, and the
263 * freelist as a stack - allocating and freeing push and pop off the freelist.
266 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
272 #define array_alloc(array) \
274 typeof((array)->freelist) _ret = (array)->freelist; \
277 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
282 #define array_free(array, ptr) \
284 typeof((array)->freelist) _ptr = ptr; \
286 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
287 (array)->freelist = _ptr; \
290 #define array_allocator_init(array) \
292 typeof((array)->freelist) _i; \
294 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
295 (array)->freelist = NULL; \
297 for (_i = (array)->data; \
298 _i < (array)->data + ARRAY_SIZE((array)->data); \
300 array_free(array, _i); \
303 #define array_freelist_empty(array) ((array)->freelist == NULL)
305 #define ANYSINT_MAX(t) \
306 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
308 int bch_strtoint_h(const char *, int *);
309 int bch_strtouint_h(const char *, unsigned int *);
310 int bch_strtoll_h(const char *, long long *);
311 int bch_strtoull_h(const char *, unsigned long long *);
313 static inline int bch_strtol_h(const char *cp, long *res)
315 #if BITS_PER_LONG == 32
316 return bch_strtoint_h(cp, (int *) res);
318 return bch_strtoll_h(cp, (long long *) res);
322 static inline int bch_strtoul_h(const char *cp, long *res)
324 #if BITS_PER_LONG == 32
325 return bch_strtouint_h(cp, (unsigned int *) res);
327 return bch_strtoull_h(cp, (unsigned long long *) res);
331 #define strtoi_h(cp, res) \
332 (__builtin_types_compatible_p(typeof(*res), int) \
333 ? bch_strtoint_h(cp, (void *) res) \
334 : __builtin_types_compatible_p(typeof(*res), long) \
335 ? bch_strtol_h(cp, (void *) res) \
336 : __builtin_types_compatible_p(typeof(*res), long long) \
337 ? bch_strtoll_h(cp, (void *) res) \
338 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
339 ? bch_strtouint_h(cp, (void *) res) \
340 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
341 ? bch_strtoul_h(cp, (void *) res) \
342 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
343 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
345 #define strtoul_safe(cp, var) \
348 int _r = kstrtoul(cp, 10, &_v); \
354 #define strtoul_safe_clamp(cp, var, min, max) \
357 int _r = kstrtoul(cp, 10, &_v); \
359 var = clamp_t(typeof(var), _v, min, max); \
363 #define snprint(buf, size, var) \
364 snprintf(buf, size, \
365 __builtin_types_compatible_p(typeof(var), int) \
367 __builtin_types_compatible_p(typeof(var), unsigned) \
369 __builtin_types_compatible_p(typeof(var), long) \
371 __builtin_types_compatible_p(typeof(var), unsigned long)\
373 __builtin_types_compatible_p(typeof(var), int64_t) \
375 __builtin_types_compatible_p(typeof(var), uint64_t) \
377 __builtin_types_compatible_p(typeof(var), const char *) \
378 ? "%s\n" : "%i\n", var)
380 ssize_t bch_hprint(char *buf, int64_t v);
382 bool bch_is_zero(const char *p, size_t n);
383 int bch_parse_uuid(const char *s, char *uuid);
385 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
388 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
392 * all fields are in nanoseconds, averages are ewmas stored left shifted
395 uint64_t max_duration;
396 uint64_t average_duration;
397 uint64_t average_frequency;
401 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
403 #define NSEC_PER_ns 1L
404 #define NSEC_PER_us NSEC_PER_USEC
405 #define NSEC_PER_ms NSEC_PER_MSEC
406 #define NSEC_PER_sec NSEC_PER_SEC
408 #define __print_time_stat(stats, name, stat, units) \
409 sysfs_print(name ## _ ## stat ## _ ## units, \
410 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
412 #define sysfs_print_time_stats(stats, name, \
416 __print_time_stat(stats, name, \
417 average_frequency, frequency_units); \
418 __print_time_stat(stats, name, \
419 average_duration, duration_units); \
420 __print_time_stat(stats, name, \
421 max_duration, duration_units); \
423 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
424 ? div_s64(local_clock() - (stats)->last, \
425 NSEC_PER_ ## frequency_units) \
429 #define sysfs_time_stats_attribute(name, \
432 read_attribute(name ## _average_frequency_ ## frequency_units); \
433 read_attribute(name ## _average_duration_ ## duration_units); \
434 read_attribute(name ## _max_duration_ ## duration_units); \
435 read_attribute(name ## _last_ ## frequency_units)
437 #define sysfs_time_stats_attribute_list(name, \
440 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
441 &sysfs_ ## name ## _average_duration_ ## duration_units, \
442 &sysfs_ ## name ## _max_duration_ ## duration_units, \
443 &sysfs_ ## name ## _last_ ## frequency_units,
445 #define ewma_add(ewma, val, weight, factor) \
447 (ewma) *= (weight) - 1; \
448 (ewma) += (val) << factor; \
449 (ewma) /= (weight); \
458 static inline void ratelimit_reset(struct ratelimit *d)
460 d->next = local_clock();
463 unsigned bch_next_delay(struct ratelimit *d, uint64_t done);
465 #define __DIV_SAFE(n, d, zero) \
467 typeof(n) _n = (n); \
468 typeof(d) _d = (d); \
469 _d ? _n / _d : zero; \
472 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
474 #define container_of_or_null(ptr, type, member) \
476 typeof(ptr) _ptr = ptr; \
477 _ptr ? container_of(_ptr, type, member) : NULL; \
480 #define RB_INSERT(root, new, member, cmp) \
483 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
489 this = container_of(*n, typeof(*(new)), member); \
490 res = cmp(new, this); \
498 rb_link_node(&(new)->member, parent, n); \
499 rb_insert_color(&(new)->member, root); \
505 #define RB_SEARCH(root, search, member, cmp) \
507 struct rb_node *n = (root)->rb_node; \
508 typeof(&(search)) this, ret = NULL; \
512 this = container_of(n, typeof(search), member); \
513 res = cmp(&(search), this); \
525 #define RB_GREATER(root, search, member, cmp) \
527 struct rb_node *n = (root)->rb_node; \
528 typeof(&(search)) this, ret = NULL; \
532 this = container_of(n, typeof(search), member); \
533 res = cmp(&(search), this); \
543 #define RB_FIRST(root, type, member) \
544 container_of_or_null(rb_first(root), type, member)
546 #define RB_LAST(root, type, member) \
547 container_of_or_null(rb_last(root), type, member)
549 #define RB_NEXT(ptr, member) \
550 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
552 #define RB_PREV(ptr, member) \
553 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
555 /* Does linear interpolation between powers of two */
556 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
558 unsigned fract = x & ~(~0 << fract_bits);
562 x += (x * fract) >> fract_bits;
567 void bch_bio_map(struct bio *bio, void *base);
569 static inline sector_t bdev_sectors(struct block_device *bdev)
571 return bdev->bd_inode->i_size >> 9;
574 #define closure_bio_submit(bio, cl, dev) \
577 bch_generic_make_request(bio, &(dev)->bio_split_hook); \
580 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
581 uint64_t bch_crc64(const void *, size_t);
583 #endif /* _BCACHE_UTIL_H */