53252d2af2496aec75e15a6c6bf4a83bc4572f3c
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         bool low_water_triggered:1;     /* A dm event has been sent */
167         bool no_free_space:1;           /* bios will be requeued if set */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239         queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245                       struct dm_bio_prison_cell **cell_result)
246 {
247         int r;
248         struct dm_bio_prison_cell *cell_prealloc;
249
250         /*
251          * Allocate a cell from the prison's mempool.
252          * This might block but it can't fail.
253          */
254         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257         if (r)
258                 /*
259                  * We reused an old cell; we can get rid of
260                  * the new one.
261                  */
262                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264         return r;
265 }
266
267 static void cell_release(struct pool *pool,
268                          struct dm_bio_prison_cell *cell,
269                          struct bio_list *bios)
270 {
271         dm_cell_release(pool->prison, cell, bios);
272         dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276                                    struct dm_bio_prison_cell *cell,
277                                    struct bio_list *bios)
278 {
279         dm_cell_release_no_holder(pool->prison, cell, bios);
280         dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284                                          struct dm_bio_prison_cell *cell)
285 {
286         struct pool *pool = tc->pool;
287         unsigned long flags;
288
289         spin_lock_irqsave(&pool->lock, flags);
290         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291         spin_unlock_irqrestore(&pool->lock, flags);
292
293         wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297                        struct dm_bio_prison_cell *cell)
298 {
299         dm_cell_error(pool->prison, cell);
300         dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309         struct mutex mutex;
310         struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315         mutex_init(&dm_thin_pool_table.mutex);
316         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322         list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328         list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333         struct pool *pool = NULL, *tmp;
334
335         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338                 if (tmp->pool_md == md) {
339                         pool = tmp;
340                         break;
341                 }
342         }
343
344         return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349         struct pool *pool = NULL, *tmp;
350
351         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354                 if (tmp->md_dev == md_dev) {
355                         pool = tmp;
356                         break;
357                 }
358         }
359
360         return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366         struct thin_c *tc;
367         struct dm_deferred_entry *shared_read_entry;
368         struct dm_deferred_entry *all_io_entry;
369         struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374         struct bio *bio;
375         struct bio_list bios;
376
377         bio_list_init(&bios);
378         bio_list_merge(&bios, master);
379         bio_list_init(master);
380
381         while ((bio = bio_list_pop(&bios))) {
382                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384                 if (h->tc == tc)
385                         bio_endio(bio, DM_ENDIO_REQUEUE);
386                 else
387                         bio_list_add(master, bio);
388         }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393         struct pool *pool = tc->pool;
394         unsigned long flags;
395
396         spin_lock_irqsave(&pool->lock, flags);
397         __requeue_bio_list(tc, &pool->deferred_bios);
398         __requeue_bio_list(tc, &pool->retry_on_resume_list);
399         spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411         return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416         struct pool *pool = tc->pool;
417         sector_t block_nr = bio->bi_sector;
418
419         if (block_size_is_power_of_two(pool))
420                 block_nr >>= pool->sectors_per_block_shift;
421         else
422                 (void) sector_div(block_nr, pool->sectors_per_block);
423
424         return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429         struct pool *pool = tc->pool;
430         sector_t bi_sector = bio->bi_sector;
431
432         bio->bi_bdev = tc->pool_dev->bdev;
433         if (block_size_is_power_of_two(pool))
434                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
435                                 (bi_sector & (pool->sectors_per_block - 1));
436         else
437                 bio->bi_sector = (block * pool->sectors_per_block) +
438                                  sector_div(bi_sector, pool->sectors_per_block);
439 }
440
441 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
442 {
443         bio->bi_bdev = tc->origin_dev->bdev;
444 }
445
446 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
447 {
448         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
449                 dm_thin_changed_this_transaction(tc->td);
450 }
451
452 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
453 {
454         struct dm_thin_endio_hook *h;
455
456         if (bio->bi_rw & REQ_DISCARD)
457                 return;
458
459         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
460         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
461 }
462
463 static void issue(struct thin_c *tc, struct bio *bio)
464 {
465         struct pool *pool = tc->pool;
466         unsigned long flags;
467
468         if (!bio_triggers_commit(tc, bio)) {
469                 generic_make_request(bio);
470                 return;
471         }
472
473         /*
474          * Complete bio with an error if earlier I/O caused changes to
475          * the metadata that can't be committed e.g, due to I/O errors
476          * on the metadata device.
477          */
478         if (dm_thin_aborted_changes(tc->td)) {
479                 bio_io_error(bio);
480                 return;
481         }
482
483         /*
484          * Batch together any bios that trigger commits and then issue a
485          * single commit for them in process_deferred_bios().
486          */
487         spin_lock_irqsave(&pool->lock, flags);
488         bio_list_add(&pool->deferred_flush_bios, bio);
489         spin_unlock_irqrestore(&pool->lock, flags);
490 }
491
492 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
493 {
494         remap_to_origin(tc, bio);
495         issue(tc, bio);
496 }
497
498 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
499                             dm_block_t block)
500 {
501         remap(tc, bio, block);
502         issue(tc, bio);
503 }
504
505 /*----------------------------------------------------------------*/
506
507 /*
508  * Bio endio functions.
509  */
510 struct dm_thin_new_mapping {
511         struct list_head list;
512
513         bool quiesced:1;
514         bool prepared:1;
515         bool pass_discard:1;
516         bool definitely_not_shared:1;
517
518         int err;
519         struct thin_c *tc;
520         dm_block_t virt_block;
521         dm_block_t data_block;
522         struct dm_bio_prison_cell *cell, *cell2;
523
524         /*
525          * If the bio covers the whole area of a block then we can avoid
526          * zeroing or copying.  Instead this bio is hooked.  The bio will
527          * still be in the cell, so care has to be taken to avoid issuing
528          * the bio twice.
529          */
530         struct bio *bio;
531         bio_end_io_t *saved_bi_end_io;
532 };
533
534 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
535 {
536         struct pool *pool = m->tc->pool;
537
538         if (m->quiesced && m->prepared) {
539                 list_add_tail(&m->list, &pool->prepared_mappings);
540                 wake_worker(pool);
541         }
542 }
543
544 static void copy_complete(int read_err, unsigned long write_err, void *context)
545 {
546         unsigned long flags;
547         struct dm_thin_new_mapping *m = context;
548         struct pool *pool = m->tc->pool;
549
550         m->err = read_err || write_err ? -EIO : 0;
551
552         spin_lock_irqsave(&pool->lock, flags);
553         m->prepared = true;
554         __maybe_add_mapping(m);
555         spin_unlock_irqrestore(&pool->lock, flags);
556 }
557
558 static void overwrite_endio(struct bio *bio, int err)
559 {
560         unsigned long flags;
561         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
562         struct dm_thin_new_mapping *m = h->overwrite_mapping;
563         struct pool *pool = m->tc->pool;
564
565         m->err = err;
566
567         spin_lock_irqsave(&pool->lock, flags);
568         m->prepared = true;
569         __maybe_add_mapping(m);
570         spin_unlock_irqrestore(&pool->lock, flags);
571 }
572
573 /*----------------------------------------------------------------*/
574
575 /*
576  * Workqueue.
577  */
578
579 /*
580  * Prepared mapping jobs.
581  */
582
583 /*
584  * This sends the bios in the cell back to the deferred_bios list.
585  */
586 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
587 {
588         struct pool *pool = tc->pool;
589         unsigned long flags;
590
591         spin_lock_irqsave(&pool->lock, flags);
592         cell_release(pool, cell, &pool->deferred_bios);
593         spin_unlock_irqrestore(&tc->pool->lock, flags);
594
595         wake_worker(pool);
596 }
597
598 /*
599  * Same as cell_defer above, except it omits the original holder of the cell.
600  */
601 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
602 {
603         struct pool *pool = tc->pool;
604         unsigned long flags;
605
606         spin_lock_irqsave(&pool->lock, flags);
607         cell_release_no_holder(pool, cell, &pool->deferred_bios);
608         spin_unlock_irqrestore(&pool->lock, flags);
609
610         wake_worker(pool);
611 }
612
613 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
614 {
615         if (m->bio)
616                 m->bio->bi_end_io = m->saved_bi_end_io;
617         cell_error(m->tc->pool, m->cell);
618         list_del(&m->list);
619         mempool_free(m, m->tc->pool->mapping_pool);
620 }
621
622 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
623 {
624         struct thin_c *tc = m->tc;
625         struct pool *pool = tc->pool;
626         struct bio *bio;
627         int r;
628
629         bio = m->bio;
630         if (bio)
631                 bio->bi_end_io = m->saved_bi_end_io;
632
633         if (m->err) {
634                 cell_error(pool, m->cell);
635                 goto out;
636         }
637
638         /*
639          * Commit the prepared block into the mapping btree.
640          * Any I/O for this block arriving after this point will get
641          * remapped to it directly.
642          */
643         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
644         if (r) {
645                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
646                 cell_error(pool, m->cell);
647                 goto out;
648         }
649
650         /*
651          * Release any bios held while the block was being provisioned.
652          * If we are processing a write bio that completely covers the block,
653          * we already processed it so can ignore it now when processing
654          * the bios in the cell.
655          */
656         if (bio) {
657                 cell_defer_no_holder(tc, m->cell);
658                 bio_endio(bio, 0);
659         } else
660                 cell_defer(tc, m->cell);
661
662 out:
663         list_del(&m->list);
664         mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669         struct thin_c *tc = m->tc;
670
671         bio_io_error(m->bio);
672         cell_defer_no_holder(tc, m->cell);
673         cell_defer_no_holder(tc, m->cell2);
674         mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679         struct thin_c *tc = m->tc;
680
681         inc_all_io_entry(tc->pool, m->bio);
682         cell_defer_no_holder(tc, m->cell);
683         cell_defer_no_holder(tc, m->cell2);
684
685         if (m->pass_discard)
686                 if (m->definitely_not_shared)
687                         remap_and_issue(tc, m->bio, m->data_block);
688                 else {
689                         bool used = false;
690                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
691                                 bio_endio(m->bio, 0);
692                         else
693                                 remap_and_issue(tc, m->bio, m->data_block);
694                 }
695         else
696                 bio_endio(m->bio, 0);
697
698         mempool_free(m, tc->pool->mapping_pool);
699 }
700
701 static void process_prepared_discard(struct dm_thin_new_mapping *m)
702 {
703         int r;
704         struct thin_c *tc = m->tc;
705
706         r = dm_thin_remove_block(tc->td, m->virt_block);
707         if (r)
708                 DMERR_LIMIT("dm_thin_remove_block() failed");
709
710         process_prepared_discard_passdown(m);
711 }
712
713 static void process_prepared(struct pool *pool, struct list_head *head,
714                              process_mapping_fn *fn)
715 {
716         unsigned long flags;
717         struct list_head maps;
718         struct dm_thin_new_mapping *m, *tmp;
719
720         INIT_LIST_HEAD(&maps);
721         spin_lock_irqsave(&pool->lock, flags);
722         list_splice_init(head, &maps);
723         spin_unlock_irqrestore(&pool->lock, flags);
724
725         list_for_each_entry_safe(m, tmp, &maps, list)
726                 (*fn)(m);
727 }
728
729 /*
730  * Deferred bio jobs.
731  */
732 static int io_overlaps_block(struct pool *pool, struct bio *bio)
733 {
734         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
735 }
736
737 static int io_overwrites_block(struct pool *pool, struct bio *bio)
738 {
739         return (bio_data_dir(bio) == WRITE) &&
740                 io_overlaps_block(pool, bio);
741 }
742
743 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
744                                bio_end_io_t *fn)
745 {
746         *save = bio->bi_end_io;
747         bio->bi_end_io = fn;
748 }
749
750 static int ensure_next_mapping(struct pool *pool)
751 {
752         if (pool->next_mapping)
753                 return 0;
754
755         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
756
757         return pool->next_mapping ? 0 : -ENOMEM;
758 }
759
760 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
761 {
762         struct dm_thin_new_mapping *m = pool->next_mapping;
763
764         BUG_ON(!pool->next_mapping);
765
766         memset(m, 0, sizeof(struct dm_thin_new_mapping));
767         INIT_LIST_HEAD(&m->list);
768         m->bio = NULL;
769
770         pool->next_mapping = NULL;
771
772         return m;
773 }
774
775 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
776                           struct dm_dev *origin, dm_block_t data_origin,
777                           dm_block_t data_dest,
778                           struct dm_bio_prison_cell *cell, struct bio *bio)
779 {
780         int r;
781         struct pool *pool = tc->pool;
782         struct dm_thin_new_mapping *m = get_next_mapping(pool);
783
784         m->tc = tc;
785         m->virt_block = virt_block;
786         m->data_block = data_dest;
787         m->cell = cell;
788
789         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
790                 m->quiesced = true;
791
792         /*
793          * IO to pool_dev remaps to the pool target's data_dev.
794          *
795          * If the whole block of data is being overwritten, we can issue the
796          * bio immediately. Otherwise we use kcopyd to clone the data first.
797          */
798         if (io_overwrites_block(pool, bio)) {
799                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
800
801                 h->overwrite_mapping = m;
802                 m->bio = bio;
803                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
804                 inc_all_io_entry(pool, bio);
805                 remap_and_issue(tc, bio, data_dest);
806         } else {
807                 struct dm_io_region from, to;
808
809                 from.bdev = origin->bdev;
810                 from.sector = data_origin * pool->sectors_per_block;
811                 from.count = pool->sectors_per_block;
812
813                 to.bdev = tc->pool_dev->bdev;
814                 to.sector = data_dest * pool->sectors_per_block;
815                 to.count = pool->sectors_per_block;
816
817                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
818                                    0, copy_complete, m);
819                 if (r < 0) {
820                         mempool_free(m, pool->mapping_pool);
821                         DMERR_LIMIT("dm_kcopyd_copy() failed");
822                         cell_error(pool, cell);
823                 }
824         }
825 }
826
827 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
828                                    dm_block_t data_origin, dm_block_t data_dest,
829                                    struct dm_bio_prison_cell *cell, struct bio *bio)
830 {
831         schedule_copy(tc, virt_block, tc->pool_dev,
832                       data_origin, data_dest, cell, bio);
833 }
834
835 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
836                                    dm_block_t data_dest,
837                                    struct dm_bio_prison_cell *cell, struct bio *bio)
838 {
839         schedule_copy(tc, virt_block, tc->origin_dev,
840                       virt_block, data_dest, cell, bio);
841 }
842
843 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
844                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
845                           struct bio *bio)
846 {
847         struct pool *pool = tc->pool;
848         struct dm_thin_new_mapping *m = get_next_mapping(pool);
849
850         m->quiesced = true;
851         m->prepared = false;
852         m->tc = tc;
853         m->virt_block = virt_block;
854         m->data_block = data_block;
855         m->cell = cell;
856
857         /*
858          * If the whole block of data is being overwritten or we are not
859          * zeroing pre-existing data, we can issue the bio immediately.
860          * Otherwise we use kcopyd to zero the data first.
861          */
862         if (!pool->pf.zero_new_blocks)
863                 process_prepared_mapping(m);
864
865         else if (io_overwrites_block(pool, bio)) {
866                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
867
868                 h->overwrite_mapping = m;
869                 m->bio = bio;
870                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
871                 inc_all_io_entry(pool, bio);
872                 remap_and_issue(tc, bio, data_block);
873         } else {
874                 int r;
875                 struct dm_io_region to;
876
877                 to.bdev = tc->pool_dev->bdev;
878                 to.sector = data_block * pool->sectors_per_block;
879                 to.count = pool->sectors_per_block;
880
881                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
882                 if (r < 0) {
883                         mempool_free(m, pool->mapping_pool);
884                         DMERR_LIMIT("dm_kcopyd_zero() failed");
885                         cell_error(pool, cell);
886                 }
887         }
888 }
889
890 /*
891  * A non-zero return indicates read_only or fail_io mode.
892  * Many callers don't care about the return value.
893  */
894 static int commit(struct pool *pool)
895 {
896         int r;
897
898         if (get_pool_mode(pool) != PM_WRITE)
899                 return -EINVAL;
900
901         r = dm_pool_commit_metadata(pool->pmd);
902         if (r)
903                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
904
905         return r;
906 }
907
908 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
909 {
910         unsigned long flags;
911
912         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
913                 DMWARN("%s: reached low water mark for data device: sending event.",
914                        dm_device_name(pool->pool_md));
915                 spin_lock_irqsave(&pool->lock, flags);
916                 pool->low_water_triggered = true;
917                 spin_unlock_irqrestore(&pool->lock, flags);
918                 dm_table_event(pool->ti->table);
919         }
920 }
921
922 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
923 {
924         int r;
925         dm_block_t free_blocks;
926         struct pool *pool = tc->pool;
927
928         if (get_pool_mode(pool) != PM_WRITE)
929                 return -EINVAL;
930
931         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
932         if (r) {
933                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
934                 return r;
935         }
936
937         check_low_water_mark(pool, free_blocks);
938
939         if (!free_blocks) {
940                 /*
941                  * Try to commit to see if that will free up some
942                  * more space.
943                  */
944                 r = commit(pool);
945                 if (r)
946                         return r;
947
948                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
949                 if (r) {
950                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
951                         return r;
952                 }
953
954                 if (!free_blocks) {
955                         out_of_data_space(pool);
956                         return -ENOSPC;
957                 }
958         }
959
960         r = dm_pool_alloc_data_block(pool->pmd, result);
961         if (r) {
962                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
963                 return r;
964         }
965
966         return 0;
967 }
968
969 /*
970  * If we have run out of space, queue bios until the device is
971  * resumed, presumably after having been reloaded with more space.
972  */
973 static void retry_on_resume(struct bio *bio)
974 {
975         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976         struct thin_c *tc = h->tc;
977         struct pool *pool = tc->pool;
978         unsigned long flags;
979
980         spin_lock_irqsave(&pool->lock, flags);
981         bio_list_add(&pool->retry_on_resume_list, bio);
982         spin_unlock_irqrestore(&pool->lock, flags);
983 }
984
985 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
986 {
987         /*
988          * When pool is read-only, no cell locking is needed because
989          * nothing is changing.
990          */
991         WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
992
993         if (pool->no_free_space)
994                 retry_on_resume(bio);
995         else
996                 bio_io_error(bio);
997 }
998
999 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1000 {
1001         struct bio *bio;
1002         struct bio_list bios;
1003
1004         bio_list_init(&bios);
1005         cell_release(pool, cell, &bios);
1006
1007         while ((bio = bio_list_pop(&bios)))
1008                 handle_unserviceable_bio(pool, bio);
1009 }
1010
1011 static void process_discard(struct thin_c *tc, struct bio *bio)
1012 {
1013         int r;
1014         unsigned long flags;
1015         struct pool *pool = tc->pool;
1016         struct dm_bio_prison_cell *cell, *cell2;
1017         struct dm_cell_key key, key2;
1018         dm_block_t block = get_bio_block(tc, bio);
1019         struct dm_thin_lookup_result lookup_result;
1020         struct dm_thin_new_mapping *m;
1021
1022         build_virtual_key(tc->td, block, &key);
1023         if (bio_detain(tc->pool, &key, bio, &cell))
1024                 return;
1025
1026         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1027         switch (r) {
1028         case 0:
1029                 /*
1030                  * Check nobody is fiddling with this pool block.  This can
1031                  * happen if someone's in the process of breaking sharing
1032                  * on this block.
1033                  */
1034                 build_data_key(tc->td, lookup_result.block, &key2);
1035                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1036                         cell_defer_no_holder(tc, cell);
1037                         break;
1038                 }
1039
1040                 if (io_overlaps_block(pool, bio)) {
1041                         /*
1042                          * IO may still be going to the destination block.  We must
1043                          * quiesce before we can do the removal.
1044                          */
1045                         m = get_next_mapping(pool);
1046                         m->tc = tc;
1047                         m->pass_discard = pool->pf.discard_passdown;
1048                         m->definitely_not_shared = !lookup_result.shared;
1049                         m->virt_block = block;
1050                         m->data_block = lookup_result.block;
1051                         m->cell = cell;
1052                         m->cell2 = cell2;
1053                         m->bio = bio;
1054
1055                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1056                                 spin_lock_irqsave(&pool->lock, flags);
1057                                 list_add_tail(&m->list, &pool->prepared_discards);
1058                                 spin_unlock_irqrestore(&pool->lock, flags);
1059                                 wake_worker(pool);
1060                         }
1061                 } else {
1062                         inc_all_io_entry(pool, bio);
1063                         cell_defer_no_holder(tc, cell);
1064                         cell_defer_no_holder(tc, cell2);
1065
1066                         /*
1067                          * The DM core makes sure that the discard doesn't span
1068                          * a block boundary.  So we submit the discard of a
1069                          * partial block appropriately.
1070                          */
1071                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1072                                 remap_and_issue(tc, bio, lookup_result.block);
1073                         else
1074                                 bio_endio(bio, 0);
1075                 }
1076                 break;
1077
1078         case -ENODATA:
1079                 /*
1080                  * It isn't provisioned, just forget it.
1081                  */
1082                 cell_defer_no_holder(tc, cell);
1083                 bio_endio(bio, 0);
1084                 break;
1085
1086         default:
1087                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1088                             __func__, r);
1089                 cell_defer_no_holder(tc, cell);
1090                 bio_io_error(bio);
1091                 break;
1092         }
1093 }
1094
1095 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1096                           struct dm_cell_key *key,
1097                           struct dm_thin_lookup_result *lookup_result,
1098                           struct dm_bio_prison_cell *cell)
1099 {
1100         int r;
1101         dm_block_t data_block;
1102         struct pool *pool = tc->pool;
1103
1104         r = alloc_data_block(tc, &data_block);
1105         switch (r) {
1106         case 0:
1107                 schedule_internal_copy(tc, block, lookup_result->block,
1108                                        data_block, cell, bio);
1109                 break;
1110
1111         case -ENOSPC:
1112                 retry_bios_on_resume(pool, cell);
1113                 break;
1114
1115         default:
1116                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1117                             __func__, r);
1118                 cell_error(pool, cell);
1119                 break;
1120         }
1121 }
1122
1123 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1124                                dm_block_t block,
1125                                struct dm_thin_lookup_result *lookup_result)
1126 {
1127         struct dm_bio_prison_cell *cell;
1128         struct pool *pool = tc->pool;
1129         struct dm_cell_key key;
1130
1131         /*
1132          * If cell is already occupied, then sharing is already in the process
1133          * of being broken so we have nothing further to do here.
1134          */
1135         build_data_key(tc->td, lookup_result->block, &key);
1136         if (bio_detain(pool, &key, bio, &cell))
1137                 return;
1138
1139         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1140                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1141         else {
1142                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1143
1144                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1145                 inc_all_io_entry(pool, bio);
1146                 cell_defer_no_holder(tc, cell);
1147
1148                 remap_and_issue(tc, bio, lookup_result->block);
1149         }
1150 }
1151
1152 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1153                             struct dm_bio_prison_cell *cell)
1154 {
1155         int r;
1156         dm_block_t data_block;
1157         struct pool *pool = tc->pool;
1158
1159         /*
1160          * Remap empty bios (flushes) immediately, without provisioning.
1161          */
1162         if (!bio->bi_size) {
1163                 inc_all_io_entry(pool, bio);
1164                 cell_defer_no_holder(tc, cell);
1165
1166                 remap_and_issue(tc, bio, 0);
1167                 return;
1168         }
1169
1170         /*
1171          * Fill read bios with zeroes and complete them immediately.
1172          */
1173         if (bio_data_dir(bio) == READ) {
1174                 zero_fill_bio(bio);
1175                 cell_defer_no_holder(tc, cell);
1176                 bio_endio(bio, 0);
1177                 return;
1178         }
1179
1180         r = alloc_data_block(tc, &data_block);
1181         switch (r) {
1182         case 0:
1183                 if (tc->origin_dev)
1184                         schedule_external_copy(tc, block, data_block, cell, bio);
1185                 else
1186                         schedule_zero(tc, block, data_block, cell, bio);
1187                 break;
1188
1189         case -ENOSPC:
1190                 retry_bios_on_resume(pool, cell);
1191                 break;
1192
1193         default:
1194                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1195                             __func__, r);
1196                 cell_error(pool, cell);
1197                 break;
1198         }
1199 }
1200
1201 static void process_bio(struct thin_c *tc, struct bio *bio)
1202 {
1203         int r;
1204         struct pool *pool = tc->pool;
1205         dm_block_t block = get_bio_block(tc, bio);
1206         struct dm_bio_prison_cell *cell;
1207         struct dm_cell_key key;
1208         struct dm_thin_lookup_result lookup_result;
1209
1210         /*
1211          * If cell is already occupied, then the block is already
1212          * being provisioned so we have nothing further to do here.
1213          */
1214         build_virtual_key(tc->td, block, &key);
1215         if (bio_detain(pool, &key, bio, &cell))
1216                 return;
1217
1218         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1219         switch (r) {
1220         case 0:
1221                 if (lookup_result.shared) {
1222                         process_shared_bio(tc, bio, block, &lookup_result);
1223                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1224                 } else {
1225                         inc_all_io_entry(pool, bio);
1226                         cell_defer_no_holder(tc, cell);
1227
1228                         remap_and_issue(tc, bio, lookup_result.block);
1229                 }
1230                 break;
1231
1232         case -ENODATA:
1233                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1234                         inc_all_io_entry(pool, bio);
1235                         cell_defer_no_holder(tc, cell);
1236
1237                         remap_to_origin_and_issue(tc, bio);
1238                 } else
1239                         provision_block(tc, bio, block, cell);
1240                 break;
1241
1242         default:
1243                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1244                             __func__, r);
1245                 cell_defer_no_holder(tc, cell);
1246                 bio_io_error(bio);
1247                 break;
1248         }
1249 }
1250
1251 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1252 {
1253         int r;
1254         int rw = bio_data_dir(bio);
1255         dm_block_t block = get_bio_block(tc, bio);
1256         struct dm_thin_lookup_result lookup_result;
1257
1258         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1259         switch (r) {
1260         case 0:
1261                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1262                         handle_unserviceable_bio(tc->pool, bio);
1263                 else {
1264                         inc_all_io_entry(tc->pool, bio);
1265                         remap_and_issue(tc, bio, lookup_result.block);
1266                 }
1267                 break;
1268
1269         case -ENODATA:
1270                 if (rw != READ) {
1271                         handle_unserviceable_bio(tc->pool, bio);
1272                         break;
1273                 }
1274
1275                 if (tc->origin_dev) {
1276                         inc_all_io_entry(tc->pool, bio);
1277                         remap_to_origin_and_issue(tc, bio);
1278                         break;
1279                 }
1280
1281                 zero_fill_bio(bio);
1282                 bio_endio(bio, 0);
1283                 break;
1284
1285         default:
1286                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1287                             __func__, r);
1288                 bio_io_error(bio);
1289                 break;
1290         }
1291 }
1292
1293 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1294 {
1295         bio_io_error(bio);
1296 }
1297
1298 /*
1299  * FIXME: should we also commit due to size of transaction, measured in
1300  * metadata blocks?
1301  */
1302 static int need_commit_due_to_time(struct pool *pool)
1303 {
1304         return jiffies < pool->last_commit_jiffies ||
1305                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1306 }
1307
1308 static void process_deferred_bios(struct pool *pool)
1309 {
1310         unsigned long flags;
1311         struct bio *bio;
1312         struct bio_list bios;
1313
1314         bio_list_init(&bios);
1315
1316         spin_lock_irqsave(&pool->lock, flags);
1317         bio_list_merge(&bios, &pool->deferred_bios);
1318         bio_list_init(&pool->deferred_bios);
1319         spin_unlock_irqrestore(&pool->lock, flags);
1320
1321         while ((bio = bio_list_pop(&bios))) {
1322                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1323                 struct thin_c *tc = h->tc;
1324
1325                 /*
1326                  * If we've got no free new_mapping structs, and processing
1327                  * this bio might require one, we pause until there are some
1328                  * prepared mappings to process.
1329                  */
1330                 if (ensure_next_mapping(pool)) {
1331                         spin_lock_irqsave(&pool->lock, flags);
1332                         bio_list_merge(&pool->deferred_bios, &bios);
1333                         spin_unlock_irqrestore(&pool->lock, flags);
1334
1335                         break;
1336                 }
1337
1338                 if (bio->bi_rw & REQ_DISCARD)
1339                         pool->process_discard(tc, bio);
1340                 else
1341                         pool->process_bio(tc, bio);
1342         }
1343
1344         /*
1345          * If there are any deferred flush bios, we must commit
1346          * the metadata before issuing them.
1347          */
1348         bio_list_init(&bios);
1349         spin_lock_irqsave(&pool->lock, flags);
1350         bio_list_merge(&bios, &pool->deferred_flush_bios);
1351         bio_list_init(&pool->deferred_flush_bios);
1352         spin_unlock_irqrestore(&pool->lock, flags);
1353
1354         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1355                 return;
1356
1357         if (commit(pool)) {
1358                 while ((bio = bio_list_pop(&bios)))
1359                         bio_io_error(bio);
1360                 return;
1361         }
1362         pool->last_commit_jiffies = jiffies;
1363
1364         while ((bio = bio_list_pop(&bios)))
1365                 generic_make_request(bio);
1366 }
1367
1368 static void do_worker(struct work_struct *ws)
1369 {
1370         struct pool *pool = container_of(ws, struct pool, worker);
1371
1372         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1373         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1374         process_deferred_bios(pool);
1375 }
1376
1377 /*
1378  * We want to commit periodically so that not too much
1379  * unwritten data builds up.
1380  */
1381 static void do_waker(struct work_struct *ws)
1382 {
1383         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1384         wake_worker(pool);
1385         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1386 }
1387
1388 /*----------------------------------------------------------------*/
1389
1390 static enum pool_mode get_pool_mode(struct pool *pool)
1391 {
1392         return pool->pf.mode;
1393 }
1394
1395 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1396 {
1397         int r;
1398
1399         pool->pf.mode = mode;
1400
1401         switch (mode) {
1402         case PM_FAIL:
1403                 DMERR("%s: switching pool to failure mode",
1404                       dm_device_name(pool->pool_md));
1405                 dm_pool_metadata_read_only(pool->pmd);
1406                 pool->process_bio = process_bio_fail;
1407                 pool->process_discard = process_bio_fail;
1408                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1409                 pool->process_prepared_discard = process_prepared_discard_fail;
1410                 break;
1411
1412         case PM_READ_ONLY:
1413                 DMERR("%s: switching pool to read-only mode",
1414                       dm_device_name(pool->pool_md));
1415                 r = dm_pool_abort_metadata(pool->pmd);
1416                 if (r) {
1417                         DMERR("%s: aborting transaction failed",
1418                               dm_device_name(pool->pool_md));
1419                         set_pool_mode(pool, PM_FAIL);
1420                 } else {
1421                         dm_pool_metadata_read_only(pool->pmd);
1422                         pool->process_bio = process_bio_read_only;
1423                         pool->process_discard = process_discard;
1424                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1425                         pool->process_prepared_discard = process_prepared_discard_passdown;
1426                 }
1427                 break;
1428
1429         case PM_WRITE:
1430                 dm_pool_metadata_read_write(pool->pmd);
1431                 pool->process_bio = process_bio;
1432                 pool->process_discard = process_discard;
1433                 pool->process_prepared_mapping = process_prepared_mapping;
1434                 pool->process_prepared_discard = process_prepared_discard;
1435                 break;
1436         }
1437 }
1438
1439 static void set_no_free_space(struct pool *pool)
1440 {
1441         unsigned long flags;
1442
1443         spin_lock_irqsave(&pool->lock, flags);
1444         pool->no_free_space = true;
1445         spin_unlock_irqrestore(&pool->lock, flags);
1446 }
1447
1448 /*
1449  * Rather than calling set_pool_mode directly, use these which describe the
1450  * reason for mode degradation.
1451  */
1452 static void out_of_data_space(struct pool *pool)
1453 {
1454         DMERR_LIMIT("%s: no free data space available.",
1455                     dm_device_name(pool->pool_md));
1456         set_no_free_space(pool);
1457         set_pool_mode(pool, PM_READ_ONLY);
1458 }
1459
1460 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1461 {
1462         dm_block_t free_blocks;
1463
1464         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1465                     dm_device_name(pool->pool_md), op, r);
1466
1467         if (r == -ENOSPC &&
1468             !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1469             !free_blocks) {
1470                 DMERR_LIMIT("%s: no free metadata space available.",
1471                             dm_device_name(pool->pool_md));
1472                 set_no_free_space(pool);
1473         }
1474
1475         set_pool_mode(pool, PM_READ_ONLY);
1476 }
1477
1478 /*----------------------------------------------------------------*/
1479
1480 /*
1481  * Mapping functions.
1482  */
1483
1484 /*
1485  * Called only while mapping a thin bio to hand it over to the workqueue.
1486  */
1487 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1488 {
1489         unsigned long flags;
1490         struct pool *pool = tc->pool;
1491
1492         spin_lock_irqsave(&pool->lock, flags);
1493         bio_list_add(&pool->deferred_bios, bio);
1494         spin_unlock_irqrestore(&pool->lock, flags);
1495
1496         wake_worker(pool);
1497 }
1498
1499 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1500 {
1501         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1502
1503         h->tc = tc;
1504         h->shared_read_entry = NULL;
1505         h->all_io_entry = NULL;
1506         h->overwrite_mapping = NULL;
1507 }
1508
1509 /*
1510  * Non-blocking function called from the thin target's map function.
1511  */
1512 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1513 {
1514         int r;
1515         struct thin_c *tc = ti->private;
1516         dm_block_t block = get_bio_block(tc, bio);
1517         struct dm_thin_device *td = tc->td;
1518         struct dm_thin_lookup_result result;
1519         struct dm_bio_prison_cell cell1, cell2;
1520         struct dm_bio_prison_cell *cell_result;
1521         struct dm_cell_key key;
1522
1523         thin_hook_bio(tc, bio);
1524
1525         if (get_pool_mode(tc->pool) == PM_FAIL) {
1526                 bio_io_error(bio);
1527                 return DM_MAPIO_SUBMITTED;
1528         }
1529
1530         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1531                 thin_defer_bio(tc, bio);
1532                 return DM_MAPIO_SUBMITTED;
1533         }
1534
1535         r = dm_thin_find_block(td, block, 0, &result);
1536
1537         /*
1538          * Note that we defer readahead too.
1539          */
1540         switch (r) {
1541         case 0:
1542                 if (unlikely(result.shared)) {
1543                         /*
1544                          * We have a race condition here between the
1545                          * result.shared value returned by the lookup and
1546                          * snapshot creation, which may cause new
1547                          * sharing.
1548                          *
1549                          * To avoid this always quiesce the origin before
1550                          * taking the snap.  You want to do this anyway to
1551                          * ensure a consistent application view
1552                          * (i.e. lockfs).
1553                          *
1554                          * More distant ancestors are irrelevant. The
1555                          * shared flag will be set in their case.
1556                          */
1557                         thin_defer_bio(tc, bio);
1558                         return DM_MAPIO_SUBMITTED;
1559                 }
1560
1561                 build_virtual_key(tc->td, block, &key);
1562                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1563                         return DM_MAPIO_SUBMITTED;
1564
1565                 build_data_key(tc->td, result.block, &key);
1566                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1567                         cell_defer_no_holder_no_free(tc, &cell1);
1568                         return DM_MAPIO_SUBMITTED;
1569                 }
1570
1571                 inc_all_io_entry(tc->pool, bio);
1572                 cell_defer_no_holder_no_free(tc, &cell2);
1573                 cell_defer_no_holder_no_free(tc, &cell1);
1574
1575                 remap(tc, bio, result.block);
1576                 return DM_MAPIO_REMAPPED;
1577
1578         case -ENODATA:
1579                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1580                         /*
1581                          * This block isn't provisioned, and we have no way
1582                          * of doing so.
1583                          */
1584                         handle_unserviceable_bio(tc->pool, bio);
1585                         return DM_MAPIO_SUBMITTED;
1586                 }
1587                 /* fall through */
1588
1589         case -EWOULDBLOCK:
1590                 /*
1591                  * In future, the failed dm_thin_find_block above could
1592                  * provide the hint to load the metadata into cache.
1593                  */
1594                 thin_defer_bio(tc, bio);
1595                 return DM_MAPIO_SUBMITTED;
1596
1597         default:
1598                 /*
1599                  * Must always call bio_io_error on failure.
1600                  * dm_thin_find_block can fail with -EINVAL if the
1601                  * pool is switched to fail-io mode.
1602                  */
1603                 bio_io_error(bio);
1604                 return DM_MAPIO_SUBMITTED;
1605         }
1606 }
1607
1608 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1609 {
1610         int r;
1611         unsigned long flags;
1612         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1613
1614         spin_lock_irqsave(&pt->pool->lock, flags);
1615         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1616         spin_unlock_irqrestore(&pt->pool->lock, flags);
1617
1618         if (!r) {
1619                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1620                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1621         }
1622
1623         return r;
1624 }
1625
1626 static void __requeue_bios(struct pool *pool)
1627 {
1628         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1629         bio_list_init(&pool->retry_on_resume_list);
1630 }
1631
1632 /*----------------------------------------------------------------
1633  * Binding of control targets to a pool object
1634  *--------------------------------------------------------------*/
1635 static bool data_dev_supports_discard(struct pool_c *pt)
1636 {
1637         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1638
1639         return q && blk_queue_discard(q);
1640 }
1641
1642 static bool is_factor(sector_t block_size, uint32_t n)
1643 {
1644         return !sector_div(block_size, n);
1645 }
1646
1647 /*
1648  * If discard_passdown was enabled verify that the data device
1649  * supports discards.  Disable discard_passdown if not.
1650  */
1651 static void disable_passdown_if_not_supported(struct pool_c *pt)
1652 {
1653         struct pool *pool = pt->pool;
1654         struct block_device *data_bdev = pt->data_dev->bdev;
1655         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1656         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1657         const char *reason = NULL;
1658         char buf[BDEVNAME_SIZE];
1659
1660         if (!pt->adjusted_pf.discard_passdown)
1661                 return;
1662
1663         if (!data_dev_supports_discard(pt))
1664                 reason = "discard unsupported";
1665
1666         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1667                 reason = "max discard sectors smaller than a block";
1668
1669         else if (data_limits->discard_granularity > block_size)
1670                 reason = "discard granularity larger than a block";
1671
1672         else if (!is_factor(block_size, data_limits->discard_granularity))
1673                 reason = "discard granularity not a factor of block size";
1674
1675         if (reason) {
1676                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1677                 pt->adjusted_pf.discard_passdown = false;
1678         }
1679 }
1680
1681 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1682 {
1683         struct pool_c *pt = ti->private;
1684
1685         /*
1686          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1687          */
1688         enum pool_mode old_mode = pool->pf.mode;
1689         enum pool_mode new_mode = pt->adjusted_pf.mode;
1690
1691         /*
1692          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1693          * not going to recover without a thin_repair.  So we never let the
1694          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1695          * may have been due to a lack of metadata or data space, and may
1696          * now work (ie. if the underlying devices have been resized).
1697          */
1698         if (old_mode == PM_FAIL)
1699                 new_mode = old_mode;
1700
1701         pool->ti = ti;
1702         pool->low_water_blocks = pt->low_water_blocks;
1703         pool->pf = pt->adjusted_pf;
1704
1705         set_pool_mode(pool, new_mode);
1706
1707         return 0;
1708 }
1709
1710 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1711 {
1712         if (pool->ti == ti)
1713                 pool->ti = NULL;
1714 }
1715
1716 /*----------------------------------------------------------------
1717  * Pool creation
1718  *--------------------------------------------------------------*/
1719 /* Initialize pool features. */
1720 static void pool_features_init(struct pool_features *pf)
1721 {
1722         pf->mode = PM_WRITE;
1723         pf->zero_new_blocks = true;
1724         pf->discard_enabled = true;
1725         pf->discard_passdown = true;
1726 }
1727
1728 static void __pool_destroy(struct pool *pool)
1729 {
1730         __pool_table_remove(pool);
1731
1732         if (dm_pool_metadata_close(pool->pmd) < 0)
1733                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1734
1735         dm_bio_prison_destroy(pool->prison);
1736         dm_kcopyd_client_destroy(pool->copier);
1737
1738         if (pool->wq)
1739                 destroy_workqueue(pool->wq);
1740
1741         if (pool->next_mapping)
1742                 mempool_free(pool->next_mapping, pool->mapping_pool);
1743         mempool_destroy(pool->mapping_pool);
1744         dm_deferred_set_destroy(pool->shared_read_ds);
1745         dm_deferred_set_destroy(pool->all_io_ds);
1746         kfree(pool);
1747 }
1748
1749 static struct kmem_cache *_new_mapping_cache;
1750
1751 static struct pool *pool_create(struct mapped_device *pool_md,
1752                                 struct block_device *metadata_dev,
1753                                 unsigned long block_size,
1754                                 int read_only, char **error)
1755 {
1756         int r;
1757         void *err_p;
1758         struct pool *pool;
1759         struct dm_pool_metadata *pmd;
1760         bool format_device = read_only ? false : true;
1761
1762         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1763         if (IS_ERR(pmd)) {
1764                 *error = "Error creating metadata object";
1765                 return (struct pool *)pmd;
1766         }
1767
1768         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1769         if (!pool) {
1770                 *error = "Error allocating memory for pool";
1771                 err_p = ERR_PTR(-ENOMEM);
1772                 goto bad_pool;
1773         }
1774
1775         pool->pmd = pmd;
1776         pool->sectors_per_block = block_size;
1777         if (block_size & (block_size - 1))
1778                 pool->sectors_per_block_shift = -1;
1779         else
1780                 pool->sectors_per_block_shift = __ffs(block_size);
1781         pool->low_water_blocks = 0;
1782         pool_features_init(&pool->pf);
1783         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1784         if (!pool->prison) {
1785                 *error = "Error creating pool's bio prison";
1786                 err_p = ERR_PTR(-ENOMEM);
1787                 goto bad_prison;
1788         }
1789
1790         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1791         if (IS_ERR(pool->copier)) {
1792                 r = PTR_ERR(pool->copier);
1793                 *error = "Error creating pool's kcopyd client";
1794                 err_p = ERR_PTR(r);
1795                 goto bad_kcopyd_client;
1796         }
1797
1798         /*
1799          * Create singlethreaded workqueue that will service all devices
1800          * that use this metadata.
1801          */
1802         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1803         if (!pool->wq) {
1804                 *error = "Error creating pool's workqueue";
1805                 err_p = ERR_PTR(-ENOMEM);
1806                 goto bad_wq;
1807         }
1808
1809         INIT_WORK(&pool->worker, do_worker);
1810         INIT_DELAYED_WORK(&pool->waker, do_waker);
1811         spin_lock_init(&pool->lock);
1812         bio_list_init(&pool->deferred_bios);
1813         bio_list_init(&pool->deferred_flush_bios);
1814         INIT_LIST_HEAD(&pool->prepared_mappings);
1815         INIT_LIST_HEAD(&pool->prepared_discards);
1816         pool->low_water_triggered = false;
1817         pool->no_free_space = false;
1818         bio_list_init(&pool->retry_on_resume_list);
1819
1820         pool->shared_read_ds = dm_deferred_set_create();
1821         if (!pool->shared_read_ds) {
1822                 *error = "Error creating pool's shared read deferred set";
1823                 err_p = ERR_PTR(-ENOMEM);
1824                 goto bad_shared_read_ds;
1825         }
1826
1827         pool->all_io_ds = dm_deferred_set_create();
1828         if (!pool->all_io_ds) {
1829                 *error = "Error creating pool's all io deferred set";
1830                 err_p = ERR_PTR(-ENOMEM);
1831                 goto bad_all_io_ds;
1832         }
1833
1834         pool->next_mapping = NULL;
1835         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1836                                                       _new_mapping_cache);
1837         if (!pool->mapping_pool) {
1838                 *error = "Error creating pool's mapping mempool";
1839                 err_p = ERR_PTR(-ENOMEM);
1840                 goto bad_mapping_pool;
1841         }
1842
1843         pool->ref_count = 1;
1844         pool->last_commit_jiffies = jiffies;
1845         pool->pool_md = pool_md;
1846         pool->md_dev = metadata_dev;
1847         __pool_table_insert(pool);
1848
1849         return pool;
1850
1851 bad_mapping_pool:
1852         dm_deferred_set_destroy(pool->all_io_ds);
1853 bad_all_io_ds:
1854         dm_deferred_set_destroy(pool->shared_read_ds);
1855 bad_shared_read_ds:
1856         destroy_workqueue(pool->wq);
1857 bad_wq:
1858         dm_kcopyd_client_destroy(pool->copier);
1859 bad_kcopyd_client:
1860         dm_bio_prison_destroy(pool->prison);
1861 bad_prison:
1862         kfree(pool);
1863 bad_pool:
1864         if (dm_pool_metadata_close(pmd))
1865                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1866
1867         return err_p;
1868 }
1869
1870 static void __pool_inc(struct pool *pool)
1871 {
1872         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1873         pool->ref_count++;
1874 }
1875
1876 static void __pool_dec(struct pool *pool)
1877 {
1878         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1879         BUG_ON(!pool->ref_count);
1880         if (!--pool->ref_count)
1881                 __pool_destroy(pool);
1882 }
1883
1884 static struct pool *__pool_find(struct mapped_device *pool_md,
1885                                 struct block_device *metadata_dev,
1886                                 unsigned long block_size, int read_only,
1887                                 char **error, int *created)
1888 {
1889         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1890
1891         if (pool) {
1892                 if (pool->pool_md != pool_md) {
1893                         *error = "metadata device already in use by a pool";
1894                         return ERR_PTR(-EBUSY);
1895                 }
1896                 __pool_inc(pool);
1897
1898         } else {
1899                 pool = __pool_table_lookup(pool_md);
1900                 if (pool) {
1901                         if (pool->md_dev != metadata_dev) {
1902                                 *error = "different pool cannot replace a pool";
1903                                 return ERR_PTR(-EINVAL);
1904                         }
1905                         __pool_inc(pool);
1906
1907                 } else {
1908                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1909                         *created = 1;
1910                 }
1911         }
1912
1913         return pool;
1914 }
1915
1916 /*----------------------------------------------------------------
1917  * Pool target methods
1918  *--------------------------------------------------------------*/
1919 static void pool_dtr(struct dm_target *ti)
1920 {
1921         struct pool_c *pt = ti->private;
1922
1923         mutex_lock(&dm_thin_pool_table.mutex);
1924
1925         unbind_control_target(pt->pool, ti);
1926         __pool_dec(pt->pool);
1927         dm_put_device(ti, pt->metadata_dev);
1928         dm_put_device(ti, pt->data_dev);
1929         kfree(pt);
1930
1931         mutex_unlock(&dm_thin_pool_table.mutex);
1932 }
1933
1934 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1935                                struct dm_target *ti)
1936 {
1937         int r;
1938         unsigned argc;
1939         const char *arg_name;
1940
1941         static struct dm_arg _args[] = {
1942                 {0, 3, "Invalid number of pool feature arguments"},
1943         };
1944
1945         /*
1946          * No feature arguments supplied.
1947          */
1948         if (!as->argc)
1949                 return 0;
1950
1951         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1952         if (r)
1953                 return -EINVAL;
1954
1955         while (argc && !r) {
1956                 arg_name = dm_shift_arg(as);
1957                 argc--;
1958
1959                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1960                         pf->zero_new_blocks = false;
1961
1962                 else if (!strcasecmp(arg_name, "ignore_discard"))
1963                         pf->discard_enabled = false;
1964
1965                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1966                         pf->discard_passdown = false;
1967
1968                 else if (!strcasecmp(arg_name, "read_only"))
1969                         pf->mode = PM_READ_ONLY;
1970
1971                 else {
1972                         ti->error = "Unrecognised pool feature requested";
1973                         r = -EINVAL;
1974                         break;
1975                 }
1976         }
1977
1978         return r;
1979 }
1980
1981 static void metadata_low_callback(void *context)
1982 {
1983         struct pool *pool = context;
1984
1985         DMWARN("%s: reached low water mark for metadata device: sending event.",
1986                dm_device_name(pool->pool_md));
1987
1988         dm_table_event(pool->ti->table);
1989 }
1990
1991 static sector_t get_metadata_dev_size(struct block_device *bdev)
1992 {
1993         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1994         char buffer[BDEVNAME_SIZE];
1995
1996         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1997                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1998                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1999                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2000         }
2001
2002         return metadata_dev_size;
2003 }
2004
2005 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2006 {
2007         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2008
2009         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2010
2011         return metadata_dev_size;
2012 }
2013
2014 /*
2015  * When a metadata threshold is crossed a dm event is triggered, and
2016  * userland should respond by growing the metadata device.  We could let
2017  * userland set the threshold, like we do with the data threshold, but I'm
2018  * not sure they know enough to do this well.
2019  */
2020 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2021 {
2022         /*
2023          * 4M is ample for all ops with the possible exception of thin
2024          * device deletion which is harmless if it fails (just retry the
2025          * delete after you've grown the device).
2026          */
2027         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2028         return min((dm_block_t)1024ULL /* 4M */, quarter);
2029 }
2030
2031 /*
2032  * thin-pool <metadata dev> <data dev>
2033  *           <data block size (sectors)>
2034  *           <low water mark (blocks)>
2035  *           [<#feature args> [<arg>]*]
2036  *
2037  * Optional feature arguments are:
2038  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2039  *           ignore_discard: disable discard
2040  *           no_discard_passdown: don't pass discards down to the data device
2041  */
2042 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2043 {
2044         int r, pool_created = 0;
2045         struct pool_c *pt;
2046         struct pool *pool;
2047         struct pool_features pf;
2048         struct dm_arg_set as;
2049         struct dm_dev *data_dev;
2050         unsigned long block_size;
2051         dm_block_t low_water_blocks;
2052         struct dm_dev *metadata_dev;
2053         fmode_t metadata_mode;
2054
2055         /*
2056          * FIXME Remove validation from scope of lock.
2057          */
2058         mutex_lock(&dm_thin_pool_table.mutex);
2059
2060         if (argc < 4) {
2061                 ti->error = "Invalid argument count";
2062                 r = -EINVAL;
2063                 goto out_unlock;
2064         }
2065
2066         as.argc = argc;
2067         as.argv = argv;
2068
2069         /*
2070          * Set default pool features.
2071          */
2072         pool_features_init(&pf);
2073
2074         dm_consume_args(&as, 4);
2075         r = parse_pool_features(&as, &pf, ti);
2076         if (r)
2077                 goto out_unlock;
2078
2079         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2080         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2081         if (r) {
2082                 ti->error = "Error opening metadata block device";
2083                 goto out_unlock;
2084         }
2085
2086         /*
2087          * Run for the side-effect of possibly issuing a warning if the
2088          * device is too big.
2089          */
2090         (void) get_metadata_dev_size(metadata_dev->bdev);
2091
2092         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2093         if (r) {
2094                 ti->error = "Error getting data device";
2095                 goto out_metadata;
2096         }
2097
2098         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2099             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2100             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2101             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2102                 ti->error = "Invalid block size";
2103                 r = -EINVAL;
2104                 goto out;
2105         }
2106
2107         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2108                 ti->error = "Invalid low water mark";
2109                 r = -EINVAL;
2110                 goto out;
2111         }
2112
2113         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2114         if (!pt) {
2115                 r = -ENOMEM;
2116                 goto out;
2117         }
2118
2119         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2120                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2121         if (IS_ERR(pool)) {
2122                 r = PTR_ERR(pool);
2123                 goto out_free_pt;
2124         }
2125
2126         /*
2127          * 'pool_created' reflects whether this is the first table load.
2128          * Top level discard support is not allowed to be changed after
2129          * initial load.  This would require a pool reload to trigger thin
2130          * device changes.
2131          */
2132         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2133                 ti->error = "Discard support cannot be disabled once enabled";
2134                 r = -EINVAL;
2135                 goto out_flags_changed;
2136         }
2137
2138         pt->pool = pool;
2139         pt->ti = ti;
2140         pt->metadata_dev = metadata_dev;
2141         pt->data_dev = data_dev;
2142         pt->low_water_blocks = low_water_blocks;
2143         pt->adjusted_pf = pt->requested_pf = pf;
2144         ti->num_flush_bios = 1;
2145
2146         /*
2147          * Only need to enable discards if the pool should pass
2148          * them down to the data device.  The thin device's discard
2149          * processing will cause mappings to be removed from the btree.
2150          */
2151         ti->discard_zeroes_data_unsupported = true;
2152         if (pf.discard_enabled && pf.discard_passdown) {
2153                 ti->num_discard_bios = 1;
2154
2155                 /*
2156                  * Setting 'discards_supported' circumvents the normal
2157                  * stacking of discard limits (this keeps the pool and
2158                  * thin devices' discard limits consistent).
2159                  */
2160                 ti->discards_supported = true;
2161         }
2162         ti->private = pt;
2163
2164         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2165                                                 calc_metadata_threshold(pt),
2166                                                 metadata_low_callback,
2167                                                 pool);
2168         if (r)
2169                 goto out_free_pt;
2170
2171         pt->callbacks.congested_fn = pool_is_congested;
2172         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2173
2174         mutex_unlock(&dm_thin_pool_table.mutex);
2175
2176         return 0;
2177
2178 out_flags_changed:
2179         __pool_dec(pool);
2180 out_free_pt:
2181         kfree(pt);
2182 out:
2183         dm_put_device(ti, data_dev);
2184 out_metadata:
2185         dm_put_device(ti, metadata_dev);
2186 out_unlock:
2187         mutex_unlock(&dm_thin_pool_table.mutex);
2188
2189         return r;
2190 }
2191
2192 static int pool_map(struct dm_target *ti, struct bio *bio)
2193 {
2194         int r;
2195         struct pool_c *pt = ti->private;
2196         struct pool *pool = pt->pool;
2197         unsigned long flags;
2198
2199         /*
2200          * As this is a singleton target, ti->begin is always zero.
2201          */
2202         spin_lock_irqsave(&pool->lock, flags);
2203         bio->bi_bdev = pt->data_dev->bdev;
2204         r = DM_MAPIO_REMAPPED;
2205         spin_unlock_irqrestore(&pool->lock, flags);
2206
2207         return r;
2208 }
2209
2210 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2211 {
2212         int r;
2213         struct pool_c *pt = ti->private;
2214         struct pool *pool = pt->pool;
2215         sector_t data_size = ti->len;
2216         dm_block_t sb_data_size;
2217
2218         *need_commit = false;
2219
2220         (void) sector_div(data_size, pool->sectors_per_block);
2221
2222         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2223         if (r) {
2224                 DMERR("%s: failed to retrieve data device size",
2225                       dm_device_name(pool->pool_md));
2226                 return r;
2227         }
2228
2229         if (data_size < sb_data_size) {
2230                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2231                       dm_device_name(pool->pool_md),
2232                       (unsigned long long)data_size, sb_data_size);
2233                 return -EINVAL;
2234
2235         } else if (data_size > sb_data_size) {
2236                 if (sb_data_size)
2237                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2238                                dm_device_name(pool->pool_md),
2239                                sb_data_size, (unsigned long long)data_size);
2240                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2241                 if (r) {
2242                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2243                         return r;
2244                 }
2245
2246                 *need_commit = true;
2247         }
2248
2249         return 0;
2250 }
2251
2252 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2253 {
2254         int r;
2255         struct pool_c *pt = ti->private;
2256         struct pool *pool = pt->pool;
2257         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2258
2259         *need_commit = false;
2260
2261         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2262
2263         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2264         if (r) {
2265                 DMERR("%s: failed to retrieve metadata device size",
2266                       dm_device_name(pool->pool_md));
2267                 return r;
2268         }
2269
2270         if (metadata_dev_size < sb_metadata_dev_size) {
2271                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2272                       dm_device_name(pool->pool_md),
2273                       metadata_dev_size, sb_metadata_dev_size);
2274                 return -EINVAL;
2275
2276         } else if (metadata_dev_size > sb_metadata_dev_size) {
2277                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2278                        dm_device_name(pool->pool_md),
2279                        sb_metadata_dev_size, metadata_dev_size);
2280                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2281                 if (r) {
2282                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2283                         return r;
2284                 }
2285
2286                 *need_commit = true;
2287         }
2288
2289         return 0;
2290 }
2291
2292 /*
2293  * Retrieves the number of blocks of the data device from
2294  * the superblock and compares it to the actual device size,
2295  * thus resizing the data device in case it has grown.
2296  *
2297  * This both copes with opening preallocated data devices in the ctr
2298  * being followed by a resume
2299  * -and-
2300  * calling the resume method individually after userspace has
2301  * grown the data device in reaction to a table event.
2302  */
2303 static int pool_preresume(struct dm_target *ti)
2304 {
2305         int r;
2306         bool need_commit1, need_commit2;
2307         struct pool_c *pt = ti->private;
2308         struct pool *pool = pt->pool;
2309
2310         /*
2311          * Take control of the pool object.
2312          */
2313         r = bind_control_target(pool, ti);
2314         if (r)
2315                 return r;
2316
2317         r = maybe_resize_data_dev(ti, &need_commit1);
2318         if (r)
2319                 return r;
2320
2321         r = maybe_resize_metadata_dev(ti, &need_commit2);
2322         if (r)
2323                 return r;
2324
2325         if (need_commit1 || need_commit2)
2326                 (void) commit(pool);
2327
2328         return 0;
2329 }
2330
2331 static void pool_resume(struct dm_target *ti)
2332 {
2333         struct pool_c *pt = ti->private;
2334         struct pool *pool = pt->pool;
2335         unsigned long flags;
2336
2337         spin_lock_irqsave(&pool->lock, flags);
2338         pool->low_water_triggered = false;
2339         pool->no_free_space = false;
2340         __requeue_bios(pool);
2341         spin_unlock_irqrestore(&pool->lock, flags);
2342
2343         do_waker(&pool->waker.work);
2344 }
2345
2346 static void pool_postsuspend(struct dm_target *ti)
2347 {
2348         struct pool_c *pt = ti->private;
2349         struct pool *pool = pt->pool;
2350
2351         cancel_delayed_work(&pool->waker);
2352         flush_workqueue(pool->wq);
2353         (void) commit(pool);
2354 }
2355
2356 static int check_arg_count(unsigned argc, unsigned args_required)
2357 {
2358         if (argc != args_required) {
2359                 DMWARN("Message received with %u arguments instead of %u.",
2360                        argc, args_required);
2361                 return -EINVAL;
2362         }
2363
2364         return 0;
2365 }
2366
2367 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2368 {
2369         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2370             *dev_id <= MAX_DEV_ID)
2371                 return 0;
2372
2373         if (warning)
2374                 DMWARN("Message received with invalid device id: %s", arg);
2375
2376         return -EINVAL;
2377 }
2378
2379 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2380 {
2381         dm_thin_id dev_id;
2382         int r;
2383
2384         r = check_arg_count(argc, 2);
2385         if (r)
2386                 return r;
2387
2388         r = read_dev_id(argv[1], &dev_id, 1);
2389         if (r)
2390                 return r;
2391
2392         r = dm_pool_create_thin(pool->pmd, dev_id);
2393         if (r) {
2394                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2395                        argv[1]);
2396                 return r;
2397         }
2398
2399         return 0;
2400 }
2401
2402 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2403 {
2404         dm_thin_id dev_id;
2405         dm_thin_id origin_dev_id;
2406         int r;
2407
2408         r = check_arg_count(argc, 3);
2409         if (r)
2410                 return r;
2411
2412         r = read_dev_id(argv[1], &dev_id, 1);
2413         if (r)
2414                 return r;
2415
2416         r = read_dev_id(argv[2], &origin_dev_id, 1);
2417         if (r)
2418                 return r;
2419
2420         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2421         if (r) {
2422                 DMWARN("Creation of new snapshot %s of device %s failed.",
2423                        argv[1], argv[2]);
2424                 return r;
2425         }
2426
2427         return 0;
2428 }
2429
2430 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2431 {
2432         dm_thin_id dev_id;
2433         int r;
2434
2435         r = check_arg_count(argc, 2);
2436         if (r)
2437                 return r;
2438
2439         r = read_dev_id(argv[1], &dev_id, 1);
2440         if (r)
2441                 return r;
2442
2443         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2444         if (r)
2445                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2446
2447         return r;
2448 }
2449
2450 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2451 {
2452         dm_thin_id old_id, new_id;
2453         int r;
2454
2455         r = check_arg_count(argc, 3);
2456         if (r)
2457                 return r;
2458
2459         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2460                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2461                 return -EINVAL;
2462         }
2463
2464         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2465                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2466                 return -EINVAL;
2467         }
2468
2469         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2470         if (r) {
2471                 DMWARN("Failed to change transaction id from %s to %s.",
2472                        argv[1], argv[2]);
2473                 return r;
2474         }
2475
2476         return 0;
2477 }
2478
2479 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2480 {
2481         int r;
2482
2483         r = check_arg_count(argc, 1);
2484         if (r)
2485                 return r;
2486
2487         (void) commit(pool);
2488
2489         r = dm_pool_reserve_metadata_snap(pool->pmd);
2490         if (r)
2491                 DMWARN("reserve_metadata_snap message failed.");
2492
2493         return r;
2494 }
2495
2496 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2497 {
2498         int r;
2499
2500         r = check_arg_count(argc, 1);
2501         if (r)
2502                 return r;
2503
2504         r = dm_pool_release_metadata_snap(pool->pmd);
2505         if (r)
2506                 DMWARN("release_metadata_snap message failed.");
2507
2508         return r;
2509 }
2510
2511 /*
2512  * Messages supported:
2513  *   create_thin        <dev_id>
2514  *   create_snap        <dev_id> <origin_id>
2515  *   delete             <dev_id>
2516  *   trim               <dev_id> <new_size_in_sectors>
2517  *   set_transaction_id <current_trans_id> <new_trans_id>
2518  *   reserve_metadata_snap
2519  *   release_metadata_snap
2520  */
2521 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2522 {
2523         int r = -EINVAL;
2524         struct pool_c *pt = ti->private;
2525         struct pool *pool = pt->pool;
2526
2527         if (!strcasecmp(argv[0], "create_thin"))
2528                 r = process_create_thin_mesg(argc, argv, pool);
2529
2530         else if (!strcasecmp(argv[0], "create_snap"))
2531                 r = process_create_snap_mesg(argc, argv, pool);
2532
2533         else if (!strcasecmp(argv[0], "delete"))
2534                 r = process_delete_mesg(argc, argv, pool);
2535
2536         else if (!strcasecmp(argv[0], "set_transaction_id"))
2537                 r = process_set_transaction_id_mesg(argc, argv, pool);
2538
2539         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2540                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2541
2542         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2543                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2544
2545         else
2546                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2547
2548         if (!r)
2549                 (void) commit(pool);
2550
2551         return r;
2552 }
2553
2554 static void emit_flags(struct pool_features *pf, char *result,
2555                        unsigned sz, unsigned maxlen)
2556 {
2557         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2558                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2559         DMEMIT("%u ", count);
2560
2561         if (!pf->zero_new_blocks)
2562                 DMEMIT("skip_block_zeroing ");
2563
2564         if (!pf->discard_enabled)
2565                 DMEMIT("ignore_discard ");
2566
2567         if (!pf->discard_passdown)
2568                 DMEMIT("no_discard_passdown ");
2569
2570         if (pf->mode == PM_READ_ONLY)
2571                 DMEMIT("read_only ");
2572 }
2573
2574 /*
2575  * Status line is:
2576  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2577  *    <used data sectors>/<total data sectors> <held metadata root>
2578  */
2579 static void pool_status(struct dm_target *ti, status_type_t type,
2580                         unsigned status_flags, char *result, unsigned maxlen)
2581 {
2582         int r;
2583         unsigned sz = 0;
2584         uint64_t transaction_id;
2585         dm_block_t nr_free_blocks_data;
2586         dm_block_t nr_free_blocks_metadata;
2587         dm_block_t nr_blocks_data;
2588         dm_block_t nr_blocks_metadata;
2589         dm_block_t held_root;
2590         char buf[BDEVNAME_SIZE];
2591         char buf2[BDEVNAME_SIZE];
2592         struct pool_c *pt = ti->private;
2593         struct pool *pool = pt->pool;
2594
2595         switch (type) {
2596         case STATUSTYPE_INFO:
2597                 if (get_pool_mode(pool) == PM_FAIL) {
2598                         DMEMIT("Fail");
2599                         break;
2600                 }
2601
2602                 /* Commit to ensure statistics aren't out-of-date */
2603                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2604                         (void) commit(pool);
2605
2606                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2607                 if (r) {
2608                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2609                               dm_device_name(pool->pool_md), r);
2610                         goto err;
2611                 }
2612
2613                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2614                 if (r) {
2615                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2616                               dm_device_name(pool->pool_md), r);
2617                         goto err;
2618                 }
2619
2620                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2621                 if (r) {
2622                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2623                               dm_device_name(pool->pool_md), r);
2624                         goto err;
2625                 }
2626
2627                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2628                 if (r) {
2629                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2630                               dm_device_name(pool->pool_md), r);
2631                         goto err;
2632                 }
2633
2634                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2635                 if (r) {
2636                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2637                               dm_device_name(pool->pool_md), r);
2638                         goto err;
2639                 }
2640
2641                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2642                 if (r) {
2643                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2644                               dm_device_name(pool->pool_md), r);
2645                         goto err;
2646                 }
2647
2648                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2649                        (unsigned long long)transaction_id,
2650                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2651                        (unsigned long long)nr_blocks_metadata,
2652                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2653                        (unsigned long long)nr_blocks_data);
2654
2655                 if (held_root)
2656                         DMEMIT("%llu ", held_root);
2657                 else
2658                         DMEMIT("- ");
2659
2660                 if (pool->pf.mode == PM_READ_ONLY)
2661                         DMEMIT("ro ");
2662                 else
2663                         DMEMIT("rw ");
2664
2665                 if (!pool->pf.discard_enabled)
2666                         DMEMIT("ignore_discard");
2667                 else if (pool->pf.discard_passdown)
2668                         DMEMIT("discard_passdown");
2669                 else
2670                         DMEMIT("no_discard_passdown");
2671
2672                 break;
2673
2674         case STATUSTYPE_TABLE:
2675                 DMEMIT("%s %s %lu %llu ",
2676                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2677                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2678                        (unsigned long)pool->sectors_per_block,
2679                        (unsigned long long)pt->low_water_blocks);
2680                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2681                 break;
2682         }
2683         return;
2684
2685 err:
2686         DMEMIT("Error");
2687 }
2688
2689 static int pool_iterate_devices(struct dm_target *ti,
2690                                 iterate_devices_callout_fn fn, void *data)
2691 {
2692         struct pool_c *pt = ti->private;
2693
2694         return fn(ti, pt->data_dev, 0, ti->len, data);
2695 }
2696
2697 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2698                       struct bio_vec *biovec, int max_size)
2699 {
2700         struct pool_c *pt = ti->private;
2701         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2702
2703         if (!q->merge_bvec_fn)
2704                 return max_size;
2705
2706         bvm->bi_bdev = pt->data_dev->bdev;
2707
2708         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2709 }
2710
2711 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2712 {
2713         struct pool *pool = pt->pool;
2714         struct queue_limits *data_limits;
2715
2716         limits->max_discard_sectors = pool->sectors_per_block;
2717
2718         /*
2719          * discard_granularity is just a hint, and not enforced.
2720          */
2721         if (pt->adjusted_pf.discard_passdown) {
2722                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2723                 limits->discard_granularity = data_limits->discard_granularity;
2724         } else
2725                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2726 }
2727
2728 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2729 {
2730         struct pool_c *pt = ti->private;
2731         struct pool *pool = pt->pool;
2732         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2733
2734         /*
2735          * If the system-determined stacked limits are compatible with the
2736          * pool's blocksize (io_opt is a factor) do not override them.
2737          */
2738         if (io_opt_sectors < pool->sectors_per_block ||
2739             do_div(io_opt_sectors, pool->sectors_per_block)) {
2740                 blk_limits_io_min(limits, 0);
2741                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2742         }
2743
2744         /*
2745          * pt->adjusted_pf is a staging area for the actual features to use.
2746          * They get transferred to the live pool in bind_control_target()
2747          * called from pool_preresume().
2748          */
2749         if (!pt->adjusted_pf.discard_enabled) {
2750                 /*
2751                  * Must explicitly disallow stacking discard limits otherwise the
2752                  * block layer will stack them if pool's data device has support.
2753                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2754                  * user to see that, so make sure to set all discard limits to 0.
2755                  */
2756                 limits->discard_granularity = 0;
2757                 return;
2758         }
2759
2760         disable_passdown_if_not_supported(pt);
2761
2762         set_discard_limits(pt, limits);
2763 }
2764
2765 static struct target_type pool_target = {
2766         .name = "thin-pool",
2767         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2768                     DM_TARGET_IMMUTABLE,
2769         .version = {1, 9, 0},
2770         .module = THIS_MODULE,
2771         .ctr = pool_ctr,
2772         .dtr = pool_dtr,
2773         .map = pool_map,
2774         .postsuspend = pool_postsuspend,
2775         .preresume = pool_preresume,
2776         .resume = pool_resume,
2777         .message = pool_message,
2778         .status = pool_status,
2779         .merge = pool_merge,
2780         .iterate_devices = pool_iterate_devices,
2781         .io_hints = pool_io_hints,
2782 };
2783
2784 /*----------------------------------------------------------------
2785  * Thin target methods
2786  *--------------------------------------------------------------*/
2787 static void thin_dtr(struct dm_target *ti)
2788 {
2789         struct thin_c *tc = ti->private;
2790
2791         mutex_lock(&dm_thin_pool_table.mutex);
2792
2793         __pool_dec(tc->pool);
2794         dm_pool_close_thin_device(tc->td);
2795         dm_put_device(ti, tc->pool_dev);
2796         if (tc->origin_dev)
2797                 dm_put_device(ti, tc->origin_dev);
2798         kfree(tc);
2799
2800         mutex_unlock(&dm_thin_pool_table.mutex);
2801 }
2802
2803 /*
2804  * Thin target parameters:
2805  *
2806  * <pool_dev> <dev_id> [origin_dev]
2807  *
2808  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2809  * dev_id: the internal device identifier
2810  * origin_dev: a device external to the pool that should act as the origin
2811  *
2812  * If the pool device has discards disabled, they get disabled for the thin
2813  * device as well.
2814  */
2815 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2816 {
2817         int r;
2818         struct thin_c *tc;
2819         struct dm_dev *pool_dev, *origin_dev;
2820         struct mapped_device *pool_md;
2821
2822         mutex_lock(&dm_thin_pool_table.mutex);
2823
2824         if (argc != 2 && argc != 3) {
2825                 ti->error = "Invalid argument count";
2826                 r = -EINVAL;
2827                 goto out_unlock;
2828         }
2829
2830         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2831         if (!tc) {
2832                 ti->error = "Out of memory";
2833                 r = -ENOMEM;
2834                 goto out_unlock;
2835         }
2836
2837         if (argc == 3) {
2838                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2839                 if (r) {
2840                         ti->error = "Error opening origin device";
2841                         goto bad_origin_dev;
2842                 }
2843                 tc->origin_dev = origin_dev;
2844         }
2845
2846         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2847         if (r) {
2848                 ti->error = "Error opening pool device";
2849                 goto bad_pool_dev;
2850         }
2851         tc->pool_dev = pool_dev;
2852
2853         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2854                 ti->error = "Invalid device id";
2855                 r = -EINVAL;
2856                 goto bad_common;
2857         }
2858
2859         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2860         if (!pool_md) {
2861                 ti->error = "Couldn't get pool mapped device";
2862                 r = -EINVAL;
2863                 goto bad_common;
2864         }
2865
2866         tc->pool = __pool_table_lookup(pool_md);
2867         if (!tc->pool) {
2868                 ti->error = "Couldn't find pool object";
2869                 r = -EINVAL;
2870                 goto bad_pool_lookup;
2871         }
2872         __pool_inc(tc->pool);
2873
2874         if (get_pool_mode(tc->pool) == PM_FAIL) {
2875                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2876                 goto bad_thin_open;
2877         }
2878
2879         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2880         if (r) {
2881                 ti->error = "Couldn't open thin internal device";
2882                 goto bad_thin_open;
2883         }
2884
2885         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2886         if (r)
2887                 goto bad_thin_open;
2888
2889         ti->num_flush_bios = 1;
2890         ti->flush_supported = true;
2891         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2892
2893         /* In case the pool supports discards, pass them on. */
2894         ti->discard_zeroes_data_unsupported = true;
2895         if (tc->pool->pf.discard_enabled) {
2896                 ti->discards_supported = true;
2897                 ti->num_discard_bios = 1;
2898                 /* Discard bios must be split on a block boundary */
2899                 ti->split_discard_bios = true;
2900         }
2901
2902         dm_put(pool_md);
2903
2904         mutex_unlock(&dm_thin_pool_table.mutex);
2905
2906         return 0;
2907
2908 bad_thin_open:
2909         __pool_dec(tc->pool);
2910 bad_pool_lookup:
2911         dm_put(pool_md);
2912 bad_common:
2913         dm_put_device(ti, tc->pool_dev);
2914 bad_pool_dev:
2915         if (tc->origin_dev)
2916                 dm_put_device(ti, tc->origin_dev);
2917 bad_origin_dev:
2918         kfree(tc);
2919 out_unlock:
2920         mutex_unlock(&dm_thin_pool_table.mutex);
2921
2922         return r;
2923 }
2924
2925 static int thin_map(struct dm_target *ti, struct bio *bio)
2926 {
2927         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2928
2929         return thin_bio_map(ti, bio);
2930 }
2931
2932 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2933 {
2934         unsigned long flags;
2935         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2936         struct list_head work;
2937         struct dm_thin_new_mapping *m, *tmp;
2938         struct pool *pool = h->tc->pool;
2939
2940         if (h->shared_read_entry) {
2941                 INIT_LIST_HEAD(&work);
2942                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2943
2944                 spin_lock_irqsave(&pool->lock, flags);
2945                 list_for_each_entry_safe(m, tmp, &work, list) {
2946                         list_del(&m->list);
2947                         m->quiesced = true;
2948                         __maybe_add_mapping(m);
2949                 }
2950                 spin_unlock_irqrestore(&pool->lock, flags);
2951         }
2952
2953         if (h->all_io_entry) {
2954                 INIT_LIST_HEAD(&work);
2955                 dm_deferred_entry_dec(h->all_io_entry, &work);
2956                 if (!list_empty(&work)) {
2957                         spin_lock_irqsave(&pool->lock, flags);
2958                         list_for_each_entry_safe(m, tmp, &work, list)
2959                                 list_add_tail(&m->list, &pool->prepared_discards);
2960                         spin_unlock_irqrestore(&pool->lock, flags);
2961                         wake_worker(pool);
2962                 }
2963         }
2964
2965         return 0;
2966 }
2967
2968 static void thin_postsuspend(struct dm_target *ti)
2969 {
2970         if (dm_noflush_suspending(ti))
2971                 requeue_io((struct thin_c *)ti->private);
2972 }
2973
2974 /*
2975  * <nr mapped sectors> <highest mapped sector>
2976  */
2977 static void thin_status(struct dm_target *ti, status_type_t type,
2978                         unsigned status_flags, char *result, unsigned maxlen)
2979 {
2980         int r;
2981         ssize_t sz = 0;
2982         dm_block_t mapped, highest;
2983         char buf[BDEVNAME_SIZE];
2984         struct thin_c *tc = ti->private;
2985
2986         if (get_pool_mode(tc->pool) == PM_FAIL) {
2987                 DMEMIT("Fail");
2988                 return;
2989         }
2990
2991         if (!tc->td)
2992                 DMEMIT("-");
2993         else {
2994                 switch (type) {
2995                 case STATUSTYPE_INFO:
2996                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2997                         if (r) {
2998                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2999                                 goto err;
3000                         }
3001
3002                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3003                         if (r < 0) {
3004                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3005                                 goto err;
3006                         }
3007
3008                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3009                         if (r)
3010                                 DMEMIT("%llu", ((highest + 1) *
3011                                                 tc->pool->sectors_per_block) - 1);
3012                         else
3013                                 DMEMIT("-");
3014                         break;
3015
3016                 case STATUSTYPE_TABLE:
3017                         DMEMIT("%s %lu",
3018                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3019                                (unsigned long) tc->dev_id);
3020                         if (tc->origin_dev)
3021                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3022                         break;
3023                 }
3024         }
3025
3026         return;
3027
3028 err:
3029         DMEMIT("Error");
3030 }
3031
3032 static int thin_iterate_devices(struct dm_target *ti,
3033                                 iterate_devices_callout_fn fn, void *data)
3034 {
3035         sector_t blocks;
3036         struct thin_c *tc = ti->private;
3037         struct pool *pool = tc->pool;
3038
3039         /*
3040          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3041          * we follow a more convoluted path through to the pool's target.
3042          */
3043         if (!pool->ti)
3044                 return 0;       /* nothing is bound */
3045
3046         blocks = pool->ti->len;
3047         (void) sector_div(blocks, pool->sectors_per_block);
3048         if (blocks)
3049                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3050
3051         return 0;
3052 }
3053
3054 static struct target_type thin_target = {
3055         .name = "thin",
3056         .version = {1, 9, 0},
3057         .module = THIS_MODULE,
3058         .ctr = thin_ctr,
3059         .dtr = thin_dtr,
3060         .map = thin_map,
3061         .end_io = thin_endio,
3062         .postsuspend = thin_postsuspend,
3063         .status = thin_status,
3064         .iterate_devices = thin_iterate_devices,
3065 };
3066
3067 /*----------------------------------------------------------------*/
3068
3069 static int __init dm_thin_init(void)
3070 {
3071         int r;
3072
3073         pool_table_init();
3074
3075         r = dm_register_target(&thin_target);
3076         if (r)
3077                 return r;
3078
3079         r = dm_register_target(&pool_target);
3080         if (r)
3081                 goto bad_pool_target;
3082
3083         r = -ENOMEM;
3084
3085         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3086         if (!_new_mapping_cache)
3087                 goto bad_new_mapping_cache;
3088
3089         return 0;
3090
3091 bad_new_mapping_cache:
3092         dm_unregister_target(&pool_target);
3093 bad_pool_target:
3094         dm_unregister_target(&thin_target);
3095
3096         return r;
3097 }
3098
3099 static void dm_thin_exit(void)
3100 {
3101         dm_unregister_target(&thin_target);
3102         dm_unregister_target(&pool_target);
3103
3104         kmem_cache_destroy(_new_mapping_cache);
3105 }
3106
3107 module_init(dm_thin_init);
3108 module_exit(dm_thin_exit);
3109
3110 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3111 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3112 MODULE_LICENSE("GPL");