dm thin: always fallback the pool mode if commit fails
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515
516         struct thin_c *tc;
517         dm_block_t virt_block;
518         dm_block_t data_block;
519         struct dm_bio_prison_cell *cell, *cell2;
520         int err;
521
522         /*
523          * If the bio covers the whole area of a block then we can avoid
524          * zeroing or copying.  Instead this bio is hooked.  The bio will
525          * still be in the cell, so care has to be taken to avoid issuing
526          * the bio twice.
527          */
528         struct bio *bio;
529         bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534         struct pool *pool = m->tc->pool;
535
536         if (m->quiesced && m->prepared) {
537                 list_add(&m->list, &pool->prepared_mappings);
538                 wake_worker(pool);
539         }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544         unsigned long flags;
545         struct dm_thin_new_mapping *m = context;
546         struct pool *pool = m->tc->pool;
547
548         m->err = read_err || write_err ? -EIO : 0;
549
550         spin_lock_irqsave(&pool->lock, flags);
551         m->prepared = 1;
552         __maybe_add_mapping(m);
553         spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558         unsigned long flags;
559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560         struct dm_thin_new_mapping *m = h->overwrite_mapping;
561         struct pool *pool = m->tc->pool;
562
563         m->err = err;
564
565         spin_lock_irqsave(&pool->lock, flags);
566         m->prepared = 1;
567         __maybe_add_mapping(m);
568         spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * Workqueue.
575  */
576
577 /*
578  * Prepared mapping jobs.
579  */
580
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586         struct pool *pool = tc->pool;
587         unsigned long flags;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         cell_release(pool, cell, &pool->deferred_bios);
591         spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593         wake_worker(pool);
594 }
595
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601         struct pool *pool = tc->pool;
602         unsigned long flags;
603
604         spin_lock_irqsave(&pool->lock, flags);
605         cell_release_no_holder(pool, cell, &pool->deferred_bios);
606         spin_unlock_irqrestore(&pool->lock, flags);
607
608         wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613         if (m->bio)
614                 m->bio->bi_end_io = m->saved_bi_end_io;
615         cell_error(m->tc->pool, m->cell);
616         list_del(&m->list);
617         mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622         struct thin_c *tc = m->tc;
623         struct pool *pool = tc->pool;
624         struct bio *bio;
625         int r;
626
627         bio = m->bio;
628         if (bio)
629                 bio->bi_end_io = m->saved_bi_end_io;
630
631         if (m->err) {
632                 cell_error(pool, m->cell);
633                 goto out;
634         }
635
636         /*
637          * Commit the prepared block into the mapping btree.
638          * Any I/O for this block arriving after this point will get
639          * remapped to it directly.
640          */
641         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642         if (r) {
643                 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
644                             dm_device_name(pool->pool_md), r);
645                 set_pool_mode(pool, PM_READ_ONLY);
646                 cell_error(pool, m->cell);
647                 goto out;
648         }
649
650         /*
651          * Release any bios held while the block was being provisioned.
652          * If we are processing a write bio that completely covers the block,
653          * we already processed it so can ignore it now when processing
654          * the bios in the cell.
655          */
656         if (bio) {
657                 cell_defer_no_holder(tc, m->cell);
658                 bio_endio(bio, 0);
659         } else
660                 cell_defer(tc, m->cell);
661
662 out:
663         list_del(&m->list);
664         mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669         struct thin_c *tc = m->tc;
670
671         bio_io_error(m->bio);
672         cell_defer_no_holder(tc, m->cell);
673         cell_defer_no_holder(tc, m->cell2);
674         mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679         struct thin_c *tc = m->tc;
680
681         inc_all_io_entry(tc->pool, m->bio);
682         cell_defer_no_holder(tc, m->cell);
683         cell_defer_no_holder(tc, m->cell2);
684
685         if (m->pass_discard)
686                 remap_and_issue(tc, m->bio, m->data_block);
687         else
688                 bio_endio(m->bio, 0);
689
690         mempool_free(m, tc->pool->mapping_pool);
691 }
692
693 static void process_prepared_discard(struct dm_thin_new_mapping *m)
694 {
695         int r;
696         struct thin_c *tc = m->tc;
697
698         r = dm_thin_remove_block(tc->td, m->virt_block);
699         if (r)
700                 DMERR_LIMIT("dm_thin_remove_block() failed");
701
702         process_prepared_discard_passdown(m);
703 }
704
705 static void process_prepared(struct pool *pool, struct list_head *head,
706                              process_mapping_fn *fn)
707 {
708         unsigned long flags;
709         struct list_head maps;
710         struct dm_thin_new_mapping *m, *tmp;
711
712         INIT_LIST_HEAD(&maps);
713         spin_lock_irqsave(&pool->lock, flags);
714         list_splice_init(head, &maps);
715         spin_unlock_irqrestore(&pool->lock, flags);
716
717         list_for_each_entry_safe(m, tmp, &maps, list)
718                 (*fn)(m);
719 }
720
721 /*
722  * Deferred bio jobs.
723  */
724 static int io_overlaps_block(struct pool *pool, struct bio *bio)
725 {
726         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
727 }
728
729 static int io_overwrites_block(struct pool *pool, struct bio *bio)
730 {
731         return (bio_data_dir(bio) == WRITE) &&
732                 io_overlaps_block(pool, bio);
733 }
734
735 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
736                                bio_end_io_t *fn)
737 {
738         *save = bio->bi_end_io;
739         bio->bi_end_io = fn;
740 }
741
742 static int ensure_next_mapping(struct pool *pool)
743 {
744         if (pool->next_mapping)
745                 return 0;
746
747         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
748
749         return pool->next_mapping ? 0 : -ENOMEM;
750 }
751
752 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
753 {
754         struct dm_thin_new_mapping *r = pool->next_mapping;
755
756         BUG_ON(!pool->next_mapping);
757
758         pool->next_mapping = NULL;
759
760         return r;
761 }
762
763 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
764                           struct dm_dev *origin, dm_block_t data_origin,
765                           dm_block_t data_dest,
766                           struct dm_bio_prison_cell *cell, struct bio *bio)
767 {
768         int r;
769         struct pool *pool = tc->pool;
770         struct dm_thin_new_mapping *m = get_next_mapping(pool);
771
772         INIT_LIST_HEAD(&m->list);
773         m->quiesced = 0;
774         m->prepared = 0;
775         m->tc = tc;
776         m->virt_block = virt_block;
777         m->data_block = data_dest;
778         m->cell = cell;
779         m->err = 0;
780         m->bio = NULL;
781
782         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
783                 m->quiesced = 1;
784
785         /*
786          * IO to pool_dev remaps to the pool target's data_dev.
787          *
788          * If the whole block of data is being overwritten, we can issue the
789          * bio immediately. Otherwise we use kcopyd to clone the data first.
790          */
791         if (io_overwrites_block(pool, bio)) {
792                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
793
794                 h->overwrite_mapping = m;
795                 m->bio = bio;
796                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
797                 inc_all_io_entry(pool, bio);
798                 remap_and_issue(tc, bio, data_dest);
799         } else {
800                 struct dm_io_region from, to;
801
802                 from.bdev = origin->bdev;
803                 from.sector = data_origin * pool->sectors_per_block;
804                 from.count = pool->sectors_per_block;
805
806                 to.bdev = tc->pool_dev->bdev;
807                 to.sector = data_dest * pool->sectors_per_block;
808                 to.count = pool->sectors_per_block;
809
810                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
811                                    0, copy_complete, m);
812                 if (r < 0) {
813                         mempool_free(m, pool->mapping_pool);
814                         DMERR_LIMIT("dm_kcopyd_copy() failed");
815                         cell_error(pool, cell);
816                 }
817         }
818 }
819
820 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
821                                    dm_block_t data_origin, dm_block_t data_dest,
822                                    struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824         schedule_copy(tc, virt_block, tc->pool_dev,
825                       data_origin, data_dest, cell, bio);
826 }
827
828 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
829                                    dm_block_t data_dest,
830                                    struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832         schedule_copy(tc, virt_block, tc->origin_dev,
833                       virt_block, data_dest, cell, bio);
834 }
835
836 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
837                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
838                           struct bio *bio)
839 {
840         struct pool *pool = tc->pool;
841         struct dm_thin_new_mapping *m = get_next_mapping(pool);
842
843         INIT_LIST_HEAD(&m->list);
844         m->quiesced = 1;
845         m->prepared = 0;
846         m->tc = tc;
847         m->virt_block = virt_block;
848         m->data_block = data_block;
849         m->cell = cell;
850         m->err = 0;
851         m->bio = NULL;
852
853         /*
854          * If the whole block of data is being overwritten or we are not
855          * zeroing pre-existing data, we can issue the bio immediately.
856          * Otherwise we use kcopyd to zero the data first.
857          */
858         if (!pool->pf.zero_new_blocks)
859                 process_prepared_mapping(m);
860
861         else if (io_overwrites_block(pool, bio)) {
862                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863
864                 h->overwrite_mapping = m;
865                 m->bio = bio;
866                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
867                 inc_all_io_entry(pool, bio);
868                 remap_and_issue(tc, bio, data_block);
869         } else {
870                 int r;
871                 struct dm_io_region to;
872
873                 to.bdev = tc->pool_dev->bdev;
874                 to.sector = data_block * pool->sectors_per_block;
875                 to.count = pool->sectors_per_block;
876
877                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
878                 if (r < 0) {
879                         mempool_free(m, pool->mapping_pool);
880                         DMERR_LIMIT("dm_kcopyd_zero() failed");
881                         cell_error(pool, cell);
882                 }
883         }
884 }
885
886 /*
887  * A non-zero return indicates read_only or fail_io mode.
888  * Many callers don't care about the return value.
889  */
890 static int commit(struct pool *pool)
891 {
892         int r;
893
894         if (get_pool_mode(pool) != PM_WRITE)
895                 return -EINVAL;
896
897         r = dm_pool_commit_metadata(pool->pmd);
898         if (r) {
899                 DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
900                             dm_device_name(pool->pool_md), r);
901                 set_pool_mode(pool, PM_READ_ONLY);
902         }
903
904         return r;
905 }
906
907 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
908 {
909         int r;
910         dm_block_t free_blocks;
911         unsigned long flags;
912         struct pool *pool = tc->pool;
913
914         /*
915          * Once no_free_space is set we must not allow allocation to succeed.
916          * Otherwise it is difficult to explain, debug, test and support.
917          */
918         if (pool->no_free_space)
919                 return -ENOSPC;
920
921         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
922         if (r)
923                 return r;
924
925         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
926                 DMWARN("%s: reached low water mark for data device: sending event.",
927                        dm_device_name(pool->pool_md));
928                 spin_lock_irqsave(&pool->lock, flags);
929                 pool->low_water_triggered = 1;
930                 spin_unlock_irqrestore(&pool->lock, flags);
931                 dm_table_event(pool->ti->table);
932         }
933
934         if (!free_blocks) {
935                 /*
936                  * Try to commit to see if that will free up some
937                  * more space.
938                  */
939                 r = commit(pool);
940                 if (r)
941                         return r;
942
943                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944                 if (r)
945                         return r;
946
947                 /*
948                  * If we still have no space we set a flag to avoid
949                  * doing all this checking and return -ENOSPC.  This
950                  * flag serves as a latch that disallows allocations from
951                  * this pool until the admin takes action (e.g. resize or
952                  * table reload).
953                  */
954                 if (!free_blocks) {
955                         DMWARN("%s: no free data space available.",
956                                dm_device_name(pool->pool_md));
957                         spin_lock_irqsave(&pool->lock, flags);
958                         pool->no_free_space = 1;
959                         spin_unlock_irqrestore(&pool->lock, flags);
960                         return -ENOSPC;
961                 }
962         }
963
964         r = dm_pool_alloc_data_block(pool->pmd, result);
965         if (r) {
966                 if (r == -ENOSPC &&
967                     !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
968                     !free_blocks) {
969                         DMWARN("%s: no free metadata space available.",
970                                dm_device_name(pool->pool_md));
971                         set_pool_mode(pool, PM_READ_ONLY);
972                 }
973                 return r;
974         }
975
976         return 0;
977 }
978
979 /*
980  * If we have run out of space, queue bios until the device is
981  * resumed, presumably after having been reloaded with more space.
982  */
983 static void retry_on_resume(struct bio *bio)
984 {
985         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986         struct thin_c *tc = h->tc;
987         struct pool *pool = tc->pool;
988         unsigned long flags;
989
990         spin_lock_irqsave(&pool->lock, flags);
991         bio_list_add(&pool->retry_on_resume_list, bio);
992         spin_unlock_irqrestore(&pool->lock, flags);
993 }
994
995 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
996 {
997         struct bio *bio;
998         struct bio_list bios;
999
1000         bio_list_init(&bios);
1001         cell_release(pool, cell, &bios);
1002
1003         while ((bio = bio_list_pop(&bios)))
1004                 retry_on_resume(bio);
1005 }
1006
1007 static void process_discard(struct thin_c *tc, struct bio *bio)
1008 {
1009         int r;
1010         unsigned long flags;
1011         struct pool *pool = tc->pool;
1012         struct dm_bio_prison_cell *cell, *cell2;
1013         struct dm_cell_key key, key2;
1014         dm_block_t block = get_bio_block(tc, bio);
1015         struct dm_thin_lookup_result lookup_result;
1016         struct dm_thin_new_mapping *m;
1017
1018         build_virtual_key(tc->td, block, &key);
1019         if (bio_detain(tc->pool, &key, bio, &cell))
1020                 return;
1021
1022         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1023         switch (r) {
1024         case 0:
1025                 /*
1026                  * Check nobody is fiddling with this pool block.  This can
1027                  * happen if someone's in the process of breaking sharing
1028                  * on this block.
1029                  */
1030                 build_data_key(tc->td, lookup_result.block, &key2);
1031                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1032                         cell_defer_no_holder(tc, cell);
1033                         break;
1034                 }
1035
1036                 if (io_overlaps_block(pool, bio)) {
1037                         /*
1038                          * IO may still be going to the destination block.  We must
1039                          * quiesce before we can do the removal.
1040                          */
1041                         m = get_next_mapping(pool);
1042                         m->tc = tc;
1043                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1044                         m->virt_block = block;
1045                         m->data_block = lookup_result.block;
1046                         m->cell = cell;
1047                         m->cell2 = cell2;
1048                         m->err = 0;
1049                         m->bio = bio;
1050
1051                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1052                                 spin_lock_irqsave(&pool->lock, flags);
1053                                 list_add(&m->list, &pool->prepared_discards);
1054                                 spin_unlock_irqrestore(&pool->lock, flags);
1055                                 wake_worker(pool);
1056                         }
1057                 } else {
1058                         inc_all_io_entry(pool, bio);
1059                         cell_defer_no_holder(tc, cell);
1060                         cell_defer_no_holder(tc, cell2);
1061
1062                         /*
1063                          * The DM core makes sure that the discard doesn't span
1064                          * a block boundary.  So we submit the discard of a
1065                          * partial block appropriately.
1066                          */
1067                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1068                                 remap_and_issue(tc, bio, lookup_result.block);
1069                         else
1070                                 bio_endio(bio, 0);
1071                 }
1072                 break;
1073
1074         case -ENODATA:
1075                 /*
1076                  * It isn't provisioned, just forget it.
1077                  */
1078                 cell_defer_no_holder(tc, cell);
1079                 bio_endio(bio, 0);
1080                 break;
1081
1082         default:
1083                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1084                             __func__, r);
1085                 cell_defer_no_holder(tc, cell);
1086                 bio_io_error(bio);
1087                 break;
1088         }
1089 }
1090
1091 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1092                           struct dm_cell_key *key,
1093                           struct dm_thin_lookup_result *lookup_result,
1094                           struct dm_bio_prison_cell *cell)
1095 {
1096         int r;
1097         dm_block_t data_block;
1098         struct pool *pool = tc->pool;
1099
1100         r = alloc_data_block(tc, &data_block);
1101         switch (r) {
1102         case 0:
1103                 schedule_internal_copy(tc, block, lookup_result->block,
1104                                        data_block, cell, bio);
1105                 break;
1106
1107         case -ENOSPC:
1108                 no_space(pool, cell);
1109                 break;
1110
1111         default:
1112                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1113                             __func__, r);
1114                 set_pool_mode(pool, PM_READ_ONLY);
1115                 cell_error(pool, cell);
1116                 break;
1117         }
1118 }
1119
1120 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1121                                dm_block_t block,
1122                                struct dm_thin_lookup_result *lookup_result)
1123 {
1124         struct dm_bio_prison_cell *cell;
1125         struct pool *pool = tc->pool;
1126         struct dm_cell_key key;
1127
1128         /*
1129          * If cell is already occupied, then sharing is already in the process
1130          * of being broken so we have nothing further to do here.
1131          */
1132         build_data_key(tc->td, lookup_result->block, &key);
1133         if (bio_detain(pool, &key, bio, &cell))
1134                 return;
1135
1136         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1137                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1138         else {
1139                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1140
1141                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1142                 inc_all_io_entry(pool, bio);
1143                 cell_defer_no_holder(tc, cell);
1144
1145                 remap_and_issue(tc, bio, lookup_result->block);
1146         }
1147 }
1148
1149 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1150                             struct dm_bio_prison_cell *cell)
1151 {
1152         int r;
1153         dm_block_t data_block;
1154         struct pool *pool = tc->pool;
1155
1156         /*
1157          * Remap empty bios (flushes) immediately, without provisioning.
1158          */
1159         if (!bio->bi_size) {
1160                 inc_all_io_entry(pool, bio);
1161                 cell_defer_no_holder(tc, cell);
1162
1163                 remap_and_issue(tc, bio, 0);
1164                 return;
1165         }
1166
1167         /*
1168          * Fill read bios with zeroes and complete them immediately.
1169          */
1170         if (bio_data_dir(bio) == READ) {
1171                 zero_fill_bio(bio);
1172                 cell_defer_no_holder(tc, cell);
1173                 bio_endio(bio, 0);
1174                 return;
1175         }
1176
1177         r = alloc_data_block(tc, &data_block);
1178         switch (r) {
1179         case 0:
1180                 if (tc->origin_dev)
1181                         schedule_external_copy(tc, block, data_block, cell, bio);
1182                 else
1183                         schedule_zero(tc, block, data_block, cell, bio);
1184                 break;
1185
1186         case -ENOSPC:
1187                 no_space(pool, cell);
1188                 break;
1189
1190         default:
1191                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1192                             __func__, r);
1193                 set_pool_mode(pool, PM_READ_ONLY);
1194                 cell_error(pool, cell);
1195                 break;
1196         }
1197 }
1198
1199 static void process_bio(struct thin_c *tc, struct bio *bio)
1200 {
1201         int r;
1202         struct pool *pool = tc->pool;
1203         dm_block_t block = get_bio_block(tc, bio);
1204         struct dm_bio_prison_cell *cell;
1205         struct dm_cell_key key;
1206         struct dm_thin_lookup_result lookup_result;
1207
1208         /*
1209          * If cell is already occupied, then the block is already
1210          * being provisioned so we have nothing further to do here.
1211          */
1212         build_virtual_key(tc->td, block, &key);
1213         if (bio_detain(pool, &key, bio, &cell))
1214                 return;
1215
1216         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1217         switch (r) {
1218         case 0:
1219                 if (lookup_result.shared) {
1220                         process_shared_bio(tc, bio, block, &lookup_result);
1221                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1222                 } else {
1223                         inc_all_io_entry(pool, bio);
1224                         cell_defer_no_holder(tc, cell);
1225
1226                         remap_and_issue(tc, bio, lookup_result.block);
1227                 }
1228                 break;
1229
1230         case -ENODATA:
1231                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1232                         inc_all_io_entry(pool, bio);
1233                         cell_defer_no_holder(tc, cell);
1234
1235                         remap_to_origin_and_issue(tc, bio);
1236                 } else
1237                         provision_block(tc, bio, block, cell);
1238                 break;
1239
1240         default:
1241                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1242                             __func__, r);
1243                 cell_defer_no_holder(tc, cell);
1244                 bio_io_error(bio);
1245                 break;
1246         }
1247 }
1248
1249 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1250 {
1251         int r;
1252         int rw = bio_data_dir(bio);
1253         dm_block_t block = get_bio_block(tc, bio);
1254         struct dm_thin_lookup_result lookup_result;
1255
1256         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1257         switch (r) {
1258         case 0:
1259                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1260                         bio_io_error(bio);
1261                 else {
1262                         inc_all_io_entry(tc->pool, bio);
1263                         remap_and_issue(tc, bio, lookup_result.block);
1264                 }
1265                 break;
1266
1267         case -ENODATA:
1268                 if (rw != READ) {
1269                         bio_io_error(bio);
1270                         break;
1271                 }
1272
1273                 if (tc->origin_dev) {
1274                         inc_all_io_entry(tc->pool, bio);
1275                         remap_to_origin_and_issue(tc, bio);
1276                         break;
1277                 }
1278
1279                 zero_fill_bio(bio);
1280                 bio_endio(bio, 0);
1281                 break;
1282
1283         default:
1284                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1285                             __func__, r);
1286                 bio_io_error(bio);
1287                 break;
1288         }
1289 }
1290
1291 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1292 {
1293         bio_io_error(bio);
1294 }
1295
1296 /*
1297  * FIXME: should we also commit due to size of transaction, measured in
1298  * metadata blocks?
1299  */
1300 static int need_commit_due_to_time(struct pool *pool)
1301 {
1302         return jiffies < pool->last_commit_jiffies ||
1303                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1304 }
1305
1306 static void process_deferred_bios(struct pool *pool)
1307 {
1308         unsigned long flags;
1309         struct bio *bio;
1310         struct bio_list bios;
1311
1312         bio_list_init(&bios);
1313
1314         spin_lock_irqsave(&pool->lock, flags);
1315         bio_list_merge(&bios, &pool->deferred_bios);
1316         bio_list_init(&pool->deferred_bios);
1317         spin_unlock_irqrestore(&pool->lock, flags);
1318
1319         while ((bio = bio_list_pop(&bios))) {
1320                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1321                 struct thin_c *tc = h->tc;
1322
1323                 /*
1324                  * If we've got no free new_mapping structs, and processing
1325                  * this bio might require one, we pause until there are some
1326                  * prepared mappings to process.
1327                  */
1328                 if (ensure_next_mapping(pool)) {
1329                         spin_lock_irqsave(&pool->lock, flags);
1330                         bio_list_merge(&pool->deferred_bios, &bios);
1331                         spin_unlock_irqrestore(&pool->lock, flags);
1332
1333                         break;
1334                 }
1335
1336                 if (bio->bi_rw & REQ_DISCARD)
1337                         pool->process_discard(tc, bio);
1338                 else
1339                         pool->process_bio(tc, bio);
1340         }
1341
1342         /*
1343          * If there are any deferred flush bios, we must commit
1344          * the metadata before issuing them.
1345          */
1346         bio_list_init(&bios);
1347         spin_lock_irqsave(&pool->lock, flags);
1348         bio_list_merge(&bios, &pool->deferred_flush_bios);
1349         bio_list_init(&pool->deferred_flush_bios);
1350         spin_unlock_irqrestore(&pool->lock, flags);
1351
1352         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1353                 return;
1354
1355         if (commit(pool)) {
1356                 while ((bio = bio_list_pop(&bios)))
1357                         bio_io_error(bio);
1358                 return;
1359         }
1360         pool->last_commit_jiffies = jiffies;
1361
1362         while ((bio = bio_list_pop(&bios)))
1363                 generic_make_request(bio);
1364 }
1365
1366 static void do_worker(struct work_struct *ws)
1367 {
1368         struct pool *pool = container_of(ws, struct pool, worker);
1369
1370         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1371         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1372         process_deferred_bios(pool);
1373 }
1374
1375 /*
1376  * We want to commit periodically so that not too much
1377  * unwritten data builds up.
1378  */
1379 static void do_waker(struct work_struct *ws)
1380 {
1381         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1382         wake_worker(pool);
1383         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1384 }
1385
1386 /*----------------------------------------------------------------*/
1387
1388 static enum pool_mode get_pool_mode(struct pool *pool)
1389 {
1390         return pool->pf.mode;
1391 }
1392
1393 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1394 {
1395         int r;
1396
1397         pool->pf.mode = mode;
1398
1399         switch (mode) {
1400         case PM_FAIL:
1401                 DMERR("%s: switching pool to failure mode",
1402                       dm_device_name(pool->pool_md));
1403                 pool->process_bio = process_bio_fail;
1404                 pool->process_discard = process_bio_fail;
1405                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1406                 pool->process_prepared_discard = process_prepared_discard_fail;
1407                 break;
1408
1409         case PM_READ_ONLY:
1410                 DMERR("%s: switching pool to read-only mode",
1411                       dm_device_name(pool->pool_md));
1412                 r = dm_pool_abort_metadata(pool->pmd);
1413                 if (r) {
1414                         DMERR("%s: aborting transaction failed",
1415                               dm_device_name(pool->pool_md));
1416                         set_pool_mode(pool, PM_FAIL);
1417                 } else {
1418                         dm_pool_metadata_read_only(pool->pmd);
1419                         pool->process_bio = process_bio_read_only;
1420                         pool->process_discard = process_discard;
1421                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1422                         pool->process_prepared_discard = process_prepared_discard_passdown;
1423                 }
1424                 break;
1425
1426         case PM_WRITE:
1427                 pool->process_bio = process_bio;
1428                 pool->process_discard = process_discard;
1429                 pool->process_prepared_mapping = process_prepared_mapping;
1430                 pool->process_prepared_discard = process_prepared_discard;
1431                 break;
1432         }
1433 }
1434
1435 /*----------------------------------------------------------------*/
1436
1437 /*
1438  * Mapping functions.
1439  */
1440
1441 /*
1442  * Called only while mapping a thin bio to hand it over to the workqueue.
1443  */
1444 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1445 {
1446         unsigned long flags;
1447         struct pool *pool = tc->pool;
1448
1449         spin_lock_irqsave(&pool->lock, flags);
1450         bio_list_add(&pool->deferred_bios, bio);
1451         spin_unlock_irqrestore(&pool->lock, flags);
1452
1453         wake_worker(pool);
1454 }
1455
1456 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1457 {
1458         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1459
1460         h->tc = tc;
1461         h->shared_read_entry = NULL;
1462         h->all_io_entry = NULL;
1463         h->overwrite_mapping = NULL;
1464 }
1465
1466 /*
1467  * Non-blocking function called from the thin target's map function.
1468  */
1469 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1470 {
1471         int r;
1472         struct thin_c *tc = ti->private;
1473         dm_block_t block = get_bio_block(tc, bio);
1474         struct dm_thin_device *td = tc->td;
1475         struct dm_thin_lookup_result result;
1476         struct dm_bio_prison_cell cell1, cell2;
1477         struct dm_bio_prison_cell *cell_result;
1478         struct dm_cell_key key;
1479
1480         thin_hook_bio(tc, bio);
1481
1482         if (get_pool_mode(tc->pool) == PM_FAIL) {
1483                 bio_io_error(bio);
1484                 return DM_MAPIO_SUBMITTED;
1485         }
1486
1487         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1488                 thin_defer_bio(tc, bio);
1489                 return DM_MAPIO_SUBMITTED;
1490         }
1491
1492         r = dm_thin_find_block(td, block, 0, &result);
1493
1494         /*
1495          * Note that we defer readahead too.
1496          */
1497         switch (r) {
1498         case 0:
1499                 if (unlikely(result.shared)) {
1500                         /*
1501                          * We have a race condition here between the
1502                          * result.shared value returned by the lookup and
1503                          * snapshot creation, which may cause new
1504                          * sharing.
1505                          *
1506                          * To avoid this always quiesce the origin before
1507                          * taking the snap.  You want to do this anyway to
1508                          * ensure a consistent application view
1509                          * (i.e. lockfs).
1510                          *
1511                          * More distant ancestors are irrelevant. The
1512                          * shared flag will be set in their case.
1513                          */
1514                         thin_defer_bio(tc, bio);
1515                         return DM_MAPIO_SUBMITTED;
1516                 }
1517
1518                 build_virtual_key(tc->td, block, &key);
1519                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1520                         return DM_MAPIO_SUBMITTED;
1521
1522                 build_data_key(tc->td, result.block, &key);
1523                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1524                         cell_defer_no_holder_no_free(tc, &cell1);
1525                         return DM_MAPIO_SUBMITTED;
1526                 }
1527
1528                 inc_all_io_entry(tc->pool, bio);
1529                 cell_defer_no_holder_no_free(tc, &cell2);
1530                 cell_defer_no_holder_no_free(tc, &cell1);
1531
1532                 remap(tc, bio, result.block);
1533                 return DM_MAPIO_REMAPPED;
1534
1535         case -ENODATA:
1536                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1537                         /*
1538                          * This block isn't provisioned, and we have no way
1539                          * of doing so.  Just error it.
1540                          */
1541                         bio_io_error(bio);
1542                         return DM_MAPIO_SUBMITTED;
1543                 }
1544                 /* fall through */
1545
1546         case -EWOULDBLOCK:
1547                 /*
1548                  * In future, the failed dm_thin_find_block above could
1549                  * provide the hint to load the metadata into cache.
1550                  */
1551                 thin_defer_bio(tc, bio);
1552                 return DM_MAPIO_SUBMITTED;
1553
1554         default:
1555                 /*
1556                  * Must always call bio_io_error on failure.
1557                  * dm_thin_find_block can fail with -EINVAL if the
1558                  * pool is switched to fail-io mode.
1559                  */
1560                 bio_io_error(bio);
1561                 return DM_MAPIO_SUBMITTED;
1562         }
1563 }
1564
1565 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1566 {
1567         int r;
1568         unsigned long flags;
1569         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1570
1571         spin_lock_irqsave(&pt->pool->lock, flags);
1572         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1573         spin_unlock_irqrestore(&pt->pool->lock, flags);
1574
1575         if (!r) {
1576                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1577                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1578         }
1579
1580         return r;
1581 }
1582
1583 static void __requeue_bios(struct pool *pool)
1584 {
1585         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1586         bio_list_init(&pool->retry_on_resume_list);
1587 }
1588
1589 /*----------------------------------------------------------------
1590  * Binding of control targets to a pool object
1591  *--------------------------------------------------------------*/
1592 static bool data_dev_supports_discard(struct pool_c *pt)
1593 {
1594         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1595
1596         return q && blk_queue_discard(q);
1597 }
1598
1599 static bool is_factor(sector_t block_size, uint32_t n)
1600 {
1601         return !sector_div(block_size, n);
1602 }
1603
1604 /*
1605  * If discard_passdown was enabled verify that the data device
1606  * supports discards.  Disable discard_passdown if not.
1607  */
1608 static void disable_passdown_if_not_supported(struct pool_c *pt)
1609 {
1610         struct pool *pool = pt->pool;
1611         struct block_device *data_bdev = pt->data_dev->bdev;
1612         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1613         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1614         const char *reason = NULL;
1615         char buf[BDEVNAME_SIZE];
1616
1617         if (!pt->adjusted_pf.discard_passdown)
1618                 return;
1619
1620         if (!data_dev_supports_discard(pt))
1621                 reason = "discard unsupported";
1622
1623         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1624                 reason = "max discard sectors smaller than a block";
1625
1626         else if (data_limits->discard_granularity > block_size)
1627                 reason = "discard granularity larger than a block";
1628
1629         else if (!is_factor(block_size, data_limits->discard_granularity))
1630                 reason = "discard granularity not a factor of block size";
1631
1632         if (reason) {
1633                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1634                 pt->adjusted_pf.discard_passdown = false;
1635         }
1636 }
1637
1638 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1639 {
1640         struct pool_c *pt = ti->private;
1641
1642         /*
1643          * We want to make sure that degraded pools are never upgraded.
1644          */
1645         enum pool_mode old_mode = pool->pf.mode;
1646         enum pool_mode new_mode = pt->adjusted_pf.mode;
1647
1648         if (old_mode > new_mode)
1649                 new_mode = old_mode;
1650
1651         pool->ti = ti;
1652         pool->low_water_blocks = pt->low_water_blocks;
1653         pool->pf = pt->adjusted_pf;
1654
1655         set_pool_mode(pool, new_mode);
1656
1657         return 0;
1658 }
1659
1660 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1661 {
1662         if (pool->ti == ti)
1663                 pool->ti = NULL;
1664 }
1665
1666 /*----------------------------------------------------------------
1667  * Pool creation
1668  *--------------------------------------------------------------*/
1669 /* Initialize pool features. */
1670 static void pool_features_init(struct pool_features *pf)
1671 {
1672         pf->mode = PM_WRITE;
1673         pf->zero_new_blocks = true;
1674         pf->discard_enabled = true;
1675         pf->discard_passdown = true;
1676 }
1677
1678 static void __pool_destroy(struct pool *pool)
1679 {
1680         __pool_table_remove(pool);
1681
1682         if (dm_pool_metadata_close(pool->pmd) < 0)
1683                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1684
1685         dm_bio_prison_destroy(pool->prison);
1686         dm_kcopyd_client_destroy(pool->copier);
1687
1688         if (pool->wq)
1689                 destroy_workqueue(pool->wq);
1690
1691         if (pool->next_mapping)
1692                 mempool_free(pool->next_mapping, pool->mapping_pool);
1693         mempool_destroy(pool->mapping_pool);
1694         dm_deferred_set_destroy(pool->shared_read_ds);
1695         dm_deferred_set_destroy(pool->all_io_ds);
1696         kfree(pool);
1697 }
1698
1699 static struct kmem_cache *_new_mapping_cache;
1700
1701 static struct pool *pool_create(struct mapped_device *pool_md,
1702                                 struct block_device *metadata_dev,
1703                                 unsigned long block_size,
1704                                 int read_only, char **error)
1705 {
1706         int r;
1707         void *err_p;
1708         struct pool *pool;
1709         struct dm_pool_metadata *pmd;
1710         bool format_device = read_only ? false : true;
1711
1712         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1713         if (IS_ERR(pmd)) {
1714                 *error = "Error creating metadata object";
1715                 return (struct pool *)pmd;
1716         }
1717
1718         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1719         if (!pool) {
1720                 *error = "Error allocating memory for pool";
1721                 err_p = ERR_PTR(-ENOMEM);
1722                 goto bad_pool;
1723         }
1724
1725         pool->pmd = pmd;
1726         pool->sectors_per_block = block_size;
1727         if (block_size & (block_size - 1))
1728                 pool->sectors_per_block_shift = -1;
1729         else
1730                 pool->sectors_per_block_shift = __ffs(block_size);
1731         pool->low_water_blocks = 0;
1732         pool_features_init(&pool->pf);
1733         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1734         if (!pool->prison) {
1735                 *error = "Error creating pool's bio prison";
1736                 err_p = ERR_PTR(-ENOMEM);
1737                 goto bad_prison;
1738         }
1739
1740         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1741         if (IS_ERR(pool->copier)) {
1742                 r = PTR_ERR(pool->copier);
1743                 *error = "Error creating pool's kcopyd client";
1744                 err_p = ERR_PTR(r);
1745                 goto bad_kcopyd_client;
1746         }
1747
1748         /*
1749          * Create singlethreaded workqueue that will service all devices
1750          * that use this metadata.
1751          */
1752         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1753         if (!pool->wq) {
1754                 *error = "Error creating pool's workqueue";
1755                 err_p = ERR_PTR(-ENOMEM);
1756                 goto bad_wq;
1757         }
1758
1759         INIT_WORK(&pool->worker, do_worker);
1760         INIT_DELAYED_WORK(&pool->waker, do_waker);
1761         spin_lock_init(&pool->lock);
1762         bio_list_init(&pool->deferred_bios);
1763         bio_list_init(&pool->deferred_flush_bios);
1764         INIT_LIST_HEAD(&pool->prepared_mappings);
1765         INIT_LIST_HEAD(&pool->prepared_discards);
1766         pool->low_water_triggered = 0;
1767         pool->no_free_space = 0;
1768         bio_list_init(&pool->retry_on_resume_list);
1769
1770         pool->shared_read_ds = dm_deferred_set_create();
1771         if (!pool->shared_read_ds) {
1772                 *error = "Error creating pool's shared read deferred set";
1773                 err_p = ERR_PTR(-ENOMEM);
1774                 goto bad_shared_read_ds;
1775         }
1776
1777         pool->all_io_ds = dm_deferred_set_create();
1778         if (!pool->all_io_ds) {
1779                 *error = "Error creating pool's all io deferred set";
1780                 err_p = ERR_PTR(-ENOMEM);
1781                 goto bad_all_io_ds;
1782         }
1783
1784         pool->next_mapping = NULL;
1785         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1786                                                       _new_mapping_cache);
1787         if (!pool->mapping_pool) {
1788                 *error = "Error creating pool's mapping mempool";
1789                 err_p = ERR_PTR(-ENOMEM);
1790                 goto bad_mapping_pool;
1791         }
1792
1793         pool->ref_count = 1;
1794         pool->last_commit_jiffies = jiffies;
1795         pool->pool_md = pool_md;
1796         pool->md_dev = metadata_dev;
1797         __pool_table_insert(pool);
1798
1799         return pool;
1800
1801 bad_mapping_pool:
1802         dm_deferred_set_destroy(pool->all_io_ds);
1803 bad_all_io_ds:
1804         dm_deferred_set_destroy(pool->shared_read_ds);
1805 bad_shared_read_ds:
1806         destroy_workqueue(pool->wq);
1807 bad_wq:
1808         dm_kcopyd_client_destroy(pool->copier);
1809 bad_kcopyd_client:
1810         dm_bio_prison_destroy(pool->prison);
1811 bad_prison:
1812         kfree(pool);
1813 bad_pool:
1814         if (dm_pool_metadata_close(pmd))
1815                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1816
1817         return err_p;
1818 }
1819
1820 static void __pool_inc(struct pool *pool)
1821 {
1822         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1823         pool->ref_count++;
1824 }
1825
1826 static void __pool_dec(struct pool *pool)
1827 {
1828         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1829         BUG_ON(!pool->ref_count);
1830         if (!--pool->ref_count)
1831                 __pool_destroy(pool);
1832 }
1833
1834 static struct pool *__pool_find(struct mapped_device *pool_md,
1835                                 struct block_device *metadata_dev,
1836                                 unsigned long block_size, int read_only,
1837                                 char **error, int *created)
1838 {
1839         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1840
1841         if (pool) {
1842                 if (pool->pool_md != pool_md) {
1843                         *error = "metadata device already in use by a pool";
1844                         return ERR_PTR(-EBUSY);
1845                 }
1846                 __pool_inc(pool);
1847
1848         } else {
1849                 pool = __pool_table_lookup(pool_md);
1850                 if (pool) {
1851                         if (pool->md_dev != metadata_dev) {
1852                                 *error = "different pool cannot replace a pool";
1853                                 return ERR_PTR(-EINVAL);
1854                         }
1855                         __pool_inc(pool);
1856
1857                 } else {
1858                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1859                         *created = 1;
1860                 }
1861         }
1862
1863         return pool;
1864 }
1865
1866 /*----------------------------------------------------------------
1867  * Pool target methods
1868  *--------------------------------------------------------------*/
1869 static void pool_dtr(struct dm_target *ti)
1870 {
1871         struct pool_c *pt = ti->private;
1872
1873         mutex_lock(&dm_thin_pool_table.mutex);
1874
1875         unbind_control_target(pt->pool, ti);
1876         __pool_dec(pt->pool);
1877         dm_put_device(ti, pt->metadata_dev);
1878         dm_put_device(ti, pt->data_dev);
1879         kfree(pt);
1880
1881         mutex_unlock(&dm_thin_pool_table.mutex);
1882 }
1883
1884 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1885                                struct dm_target *ti)
1886 {
1887         int r;
1888         unsigned argc;
1889         const char *arg_name;
1890
1891         static struct dm_arg _args[] = {
1892                 {0, 3, "Invalid number of pool feature arguments"},
1893         };
1894
1895         /*
1896          * No feature arguments supplied.
1897          */
1898         if (!as->argc)
1899                 return 0;
1900
1901         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1902         if (r)
1903                 return -EINVAL;
1904
1905         while (argc && !r) {
1906                 arg_name = dm_shift_arg(as);
1907                 argc--;
1908
1909                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1910                         pf->zero_new_blocks = false;
1911
1912                 else if (!strcasecmp(arg_name, "ignore_discard"))
1913                         pf->discard_enabled = false;
1914
1915                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1916                         pf->discard_passdown = false;
1917
1918                 else if (!strcasecmp(arg_name, "read_only"))
1919                         pf->mode = PM_READ_ONLY;
1920
1921                 else {
1922                         ti->error = "Unrecognised pool feature requested";
1923                         r = -EINVAL;
1924                         break;
1925                 }
1926         }
1927
1928         return r;
1929 }
1930
1931 static void metadata_low_callback(void *context)
1932 {
1933         struct pool *pool = context;
1934
1935         DMWARN("%s: reached low water mark for metadata device: sending event.",
1936                dm_device_name(pool->pool_md));
1937
1938         dm_table_event(pool->ti->table);
1939 }
1940
1941 static sector_t get_metadata_dev_size(struct block_device *bdev)
1942 {
1943         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1944         char buffer[BDEVNAME_SIZE];
1945
1946         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1947                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1948                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1949                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1950         }
1951
1952         return metadata_dev_size;
1953 }
1954
1955 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1956 {
1957         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1958
1959         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1960
1961         return metadata_dev_size;
1962 }
1963
1964 /*
1965  * When a metadata threshold is crossed a dm event is triggered, and
1966  * userland should respond by growing the metadata device.  We could let
1967  * userland set the threshold, like we do with the data threshold, but I'm
1968  * not sure they know enough to do this well.
1969  */
1970 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1971 {
1972         /*
1973          * 4M is ample for all ops with the possible exception of thin
1974          * device deletion which is harmless if it fails (just retry the
1975          * delete after you've grown the device).
1976          */
1977         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1978         return min((dm_block_t)1024ULL /* 4M */, quarter);
1979 }
1980
1981 /*
1982  * thin-pool <metadata dev> <data dev>
1983  *           <data block size (sectors)>
1984  *           <low water mark (blocks)>
1985  *           [<#feature args> [<arg>]*]
1986  *
1987  * Optional feature arguments are:
1988  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1989  *           ignore_discard: disable discard
1990  *           no_discard_passdown: don't pass discards down to the data device
1991  */
1992 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1993 {
1994         int r, pool_created = 0;
1995         struct pool_c *pt;
1996         struct pool *pool;
1997         struct pool_features pf;
1998         struct dm_arg_set as;
1999         struct dm_dev *data_dev;
2000         unsigned long block_size;
2001         dm_block_t low_water_blocks;
2002         struct dm_dev *metadata_dev;
2003         fmode_t metadata_mode;
2004
2005         /*
2006          * FIXME Remove validation from scope of lock.
2007          */
2008         mutex_lock(&dm_thin_pool_table.mutex);
2009
2010         if (argc < 4) {
2011                 ti->error = "Invalid argument count";
2012                 r = -EINVAL;
2013                 goto out_unlock;
2014         }
2015
2016         as.argc = argc;
2017         as.argv = argv;
2018
2019         /*
2020          * Set default pool features.
2021          */
2022         pool_features_init(&pf);
2023
2024         dm_consume_args(&as, 4);
2025         r = parse_pool_features(&as, &pf, ti);
2026         if (r)
2027                 goto out_unlock;
2028
2029         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2030         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2031         if (r) {
2032                 ti->error = "Error opening metadata block device";
2033                 goto out_unlock;
2034         }
2035
2036         /*
2037          * Run for the side-effect of possibly issuing a warning if the
2038          * device is too big.
2039          */
2040         (void) get_metadata_dev_size(metadata_dev->bdev);
2041
2042         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2043         if (r) {
2044                 ti->error = "Error getting data device";
2045                 goto out_metadata;
2046         }
2047
2048         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2049             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2050             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2051             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2052                 ti->error = "Invalid block size";
2053                 r = -EINVAL;
2054                 goto out;
2055         }
2056
2057         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2058                 ti->error = "Invalid low water mark";
2059                 r = -EINVAL;
2060                 goto out;
2061         }
2062
2063         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2064         if (!pt) {
2065                 r = -ENOMEM;
2066                 goto out;
2067         }
2068
2069         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2070                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2071         if (IS_ERR(pool)) {
2072                 r = PTR_ERR(pool);
2073                 goto out_free_pt;
2074         }
2075
2076         /*
2077          * 'pool_created' reflects whether this is the first table load.
2078          * Top level discard support is not allowed to be changed after
2079          * initial load.  This would require a pool reload to trigger thin
2080          * device changes.
2081          */
2082         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2083                 ti->error = "Discard support cannot be disabled once enabled";
2084                 r = -EINVAL;
2085                 goto out_flags_changed;
2086         }
2087
2088         pt->pool = pool;
2089         pt->ti = ti;
2090         pt->metadata_dev = metadata_dev;
2091         pt->data_dev = data_dev;
2092         pt->low_water_blocks = low_water_blocks;
2093         pt->adjusted_pf = pt->requested_pf = pf;
2094         ti->num_flush_bios = 1;
2095
2096         /*
2097          * Only need to enable discards if the pool should pass
2098          * them down to the data device.  The thin device's discard
2099          * processing will cause mappings to be removed from the btree.
2100          */
2101         ti->discard_zeroes_data_unsupported = true;
2102         if (pf.discard_enabled && pf.discard_passdown) {
2103                 ti->num_discard_bios = 1;
2104
2105                 /*
2106                  * Setting 'discards_supported' circumvents the normal
2107                  * stacking of discard limits (this keeps the pool and
2108                  * thin devices' discard limits consistent).
2109                  */
2110                 ti->discards_supported = true;
2111         }
2112         ti->private = pt;
2113
2114         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2115                                                 calc_metadata_threshold(pt),
2116                                                 metadata_low_callback,
2117                                                 pool);
2118         if (r)
2119                 goto out_free_pt;
2120
2121         pt->callbacks.congested_fn = pool_is_congested;
2122         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2123
2124         mutex_unlock(&dm_thin_pool_table.mutex);
2125
2126         return 0;
2127
2128 out_flags_changed:
2129         __pool_dec(pool);
2130 out_free_pt:
2131         kfree(pt);
2132 out:
2133         dm_put_device(ti, data_dev);
2134 out_metadata:
2135         dm_put_device(ti, metadata_dev);
2136 out_unlock:
2137         mutex_unlock(&dm_thin_pool_table.mutex);
2138
2139         return r;
2140 }
2141
2142 static int pool_map(struct dm_target *ti, struct bio *bio)
2143 {
2144         int r;
2145         struct pool_c *pt = ti->private;
2146         struct pool *pool = pt->pool;
2147         unsigned long flags;
2148
2149         /*
2150          * As this is a singleton target, ti->begin is always zero.
2151          */
2152         spin_lock_irqsave(&pool->lock, flags);
2153         bio->bi_bdev = pt->data_dev->bdev;
2154         r = DM_MAPIO_REMAPPED;
2155         spin_unlock_irqrestore(&pool->lock, flags);
2156
2157         return r;
2158 }
2159
2160 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2161 {
2162         int r;
2163         struct pool_c *pt = ti->private;
2164         struct pool *pool = pt->pool;
2165         sector_t data_size = ti->len;
2166         dm_block_t sb_data_size;
2167
2168         *need_commit = false;
2169
2170         (void) sector_div(data_size, pool->sectors_per_block);
2171
2172         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2173         if (r) {
2174                 DMERR("%s: failed to retrieve data device size",
2175                       dm_device_name(pool->pool_md));
2176                 return r;
2177         }
2178
2179         if (data_size < sb_data_size) {
2180                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2181                       dm_device_name(pool->pool_md),
2182                       (unsigned long long)data_size, sb_data_size);
2183                 return -EINVAL;
2184
2185         } else if (data_size > sb_data_size) {
2186                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2187                 if (r) {
2188                         DMERR("%s: failed to resize data device",
2189                               dm_device_name(pool->pool_md));
2190                         set_pool_mode(pool, PM_READ_ONLY);
2191                         return r;
2192                 }
2193
2194                 *need_commit = true;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2201 {
2202         int r;
2203         struct pool_c *pt = ti->private;
2204         struct pool *pool = pt->pool;
2205         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2206
2207         *need_commit = false;
2208
2209         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2210
2211         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2212         if (r) {
2213                 DMERR("%s: failed to retrieve metadata device size",
2214                       dm_device_name(pool->pool_md));
2215                 return r;
2216         }
2217
2218         if (metadata_dev_size < sb_metadata_dev_size) {
2219                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2220                       dm_device_name(pool->pool_md),
2221                       metadata_dev_size, sb_metadata_dev_size);
2222                 return -EINVAL;
2223
2224         } else if (metadata_dev_size > sb_metadata_dev_size) {
2225                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2226                 if (r) {
2227                         DMERR("%s: failed to resize metadata device",
2228                               dm_device_name(pool->pool_md));
2229                         return r;
2230                 }
2231
2232                 *need_commit = true;
2233         }
2234
2235         return 0;
2236 }
2237
2238 /*
2239  * Retrieves the number of blocks of the data device from
2240  * the superblock and compares it to the actual device size,
2241  * thus resizing the data device in case it has grown.
2242  *
2243  * This both copes with opening preallocated data devices in the ctr
2244  * being followed by a resume
2245  * -and-
2246  * calling the resume method individually after userspace has
2247  * grown the data device in reaction to a table event.
2248  */
2249 static int pool_preresume(struct dm_target *ti)
2250 {
2251         int r;
2252         bool need_commit1, need_commit2;
2253         struct pool_c *pt = ti->private;
2254         struct pool *pool = pt->pool;
2255
2256         /*
2257          * Take control of the pool object.
2258          */
2259         r = bind_control_target(pool, ti);
2260         if (r)
2261                 return r;
2262
2263         r = maybe_resize_data_dev(ti, &need_commit1);
2264         if (r)
2265                 return r;
2266
2267         r = maybe_resize_metadata_dev(ti, &need_commit2);
2268         if (r)
2269                 return r;
2270
2271         if (need_commit1 || need_commit2)
2272                 (void) commit(pool);
2273
2274         return 0;
2275 }
2276
2277 static void pool_resume(struct dm_target *ti)
2278 {
2279         struct pool_c *pt = ti->private;
2280         struct pool *pool = pt->pool;
2281         unsigned long flags;
2282
2283         spin_lock_irqsave(&pool->lock, flags);
2284         pool->low_water_triggered = 0;
2285         pool->no_free_space = 0;
2286         __requeue_bios(pool);
2287         spin_unlock_irqrestore(&pool->lock, flags);
2288
2289         do_waker(&pool->waker.work);
2290 }
2291
2292 static void pool_postsuspend(struct dm_target *ti)
2293 {
2294         struct pool_c *pt = ti->private;
2295         struct pool *pool = pt->pool;
2296
2297         cancel_delayed_work(&pool->waker);
2298         flush_workqueue(pool->wq);
2299         (void) commit(pool);
2300 }
2301
2302 static int check_arg_count(unsigned argc, unsigned args_required)
2303 {
2304         if (argc != args_required) {
2305                 DMWARN("Message received with %u arguments instead of %u.",
2306                        argc, args_required);
2307                 return -EINVAL;
2308         }
2309
2310         return 0;
2311 }
2312
2313 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2314 {
2315         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2316             *dev_id <= MAX_DEV_ID)
2317                 return 0;
2318
2319         if (warning)
2320                 DMWARN("Message received with invalid device id: %s", arg);
2321
2322         return -EINVAL;
2323 }
2324
2325 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2326 {
2327         dm_thin_id dev_id;
2328         int r;
2329
2330         r = check_arg_count(argc, 2);
2331         if (r)
2332                 return r;
2333
2334         r = read_dev_id(argv[1], &dev_id, 1);
2335         if (r)
2336                 return r;
2337
2338         r = dm_pool_create_thin(pool->pmd, dev_id);
2339         if (r) {
2340                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2341                        argv[1]);
2342                 return r;
2343         }
2344
2345         return 0;
2346 }
2347
2348 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2349 {
2350         dm_thin_id dev_id;
2351         dm_thin_id origin_dev_id;
2352         int r;
2353
2354         r = check_arg_count(argc, 3);
2355         if (r)
2356                 return r;
2357
2358         r = read_dev_id(argv[1], &dev_id, 1);
2359         if (r)
2360                 return r;
2361
2362         r = read_dev_id(argv[2], &origin_dev_id, 1);
2363         if (r)
2364                 return r;
2365
2366         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2367         if (r) {
2368                 DMWARN("Creation of new snapshot %s of device %s failed.",
2369                        argv[1], argv[2]);
2370                 return r;
2371         }
2372
2373         return 0;
2374 }
2375
2376 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2377 {
2378         dm_thin_id dev_id;
2379         int r;
2380
2381         r = check_arg_count(argc, 2);
2382         if (r)
2383                 return r;
2384
2385         r = read_dev_id(argv[1], &dev_id, 1);
2386         if (r)
2387                 return r;
2388
2389         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2390         if (r)
2391                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2392
2393         return r;
2394 }
2395
2396 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2397 {
2398         dm_thin_id old_id, new_id;
2399         int r;
2400
2401         r = check_arg_count(argc, 3);
2402         if (r)
2403                 return r;
2404
2405         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2406                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2407                 return -EINVAL;
2408         }
2409
2410         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2411                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2412                 return -EINVAL;
2413         }
2414
2415         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2416         if (r) {
2417                 DMWARN("Failed to change transaction id from %s to %s.",
2418                        argv[1], argv[2]);
2419                 return r;
2420         }
2421
2422         return 0;
2423 }
2424
2425 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2426 {
2427         int r;
2428
2429         r = check_arg_count(argc, 1);
2430         if (r)
2431                 return r;
2432
2433         (void) commit(pool);
2434
2435         r = dm_pool_reserve_metadata_snap(pool->pmd);
2436         if (r)
2437                 DMWARN("reserve_metadata_snap message failed.");
2438
2439         return r;
2440 }
2441
2442 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2443 {
2444         int r;
2445
2446         r = check_arg_count(argc, 1);
2447         if (r)
2448                 return r;
2449
2450         r = dm_pool_release_metadata_snap(pool->pmd);
2451         if (r)
2452                 DMWARN("release_metadata_snap message failed.");
2453
2454         return r;
2455 }
2456
2457 /*
2458  * Messages supported:
2459  *   create_thin        <dev_id>
2460  *   create_snap        <dev_id> <origin_id>
2461  *   delete             <dev_id>
2462  *   trim               <dev_id> <new_size_in_sectors>
2463  *   set_transaction_id <current_trans_id> <new_trans_id>
2464  *   reserve_metadata_snap
2465  *   release_metadata_snap
2466  */
2467 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2468 {
2469         int r = -EINVAL;
2470         struct pool_c *pt = ti->private;
2471         struct pool *pool = pt->pool;
2472
2473         if (!strcasecmp(argv[0], "create_thin"))
2474                 r = process_create_thin_mesg(argc, argv, pool);
2475
2476         else if (!strcasecmp(argv[0], "create_snap"))
2477                 r = process_create_snap_mesg(argc, argv, pool);
2478
2479         else if (!strcasecmp(argv[0], "delete"))
2480                 r = process_delete_mesg(argc, argv, pool);
2481
2482         else if (!strcasecmp(argv[0], "set_transaction_id"))
2483                 r = process_set_transaction_id_mesg(argc, argv, pool);
2484
2485         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2486                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2487
2488         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2489                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2490
2491         else
2492                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2493
2494         if (!r)
2495                 (void) commit(pool);
2496
2497         return r;
2498 }
2499
2500 static void emit_flags(struct pool_features *pf, char *result,
2501                        unsigned sz, unsigned maxlen)
2502 {
2503         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2504                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2505         DMEMIT("%u ", count);
2506
2507         if (!pf->zero_new_blocks)
2508                 DMEMIT("skip_block_zeroing ");
2509
2510         if (!pf->discard_enabled)
2511                 DMEMIT("ignore_discard ");
2512
2513         if (!pf->discard_passdown)
2514                 DMEMIT("no_discard_passdown ");
2515
2516         if (pf->mode == PM_READ_ONLY)
2517                 DMEMIT("read_only ");
2518 }
2519
2520 /*
2521  * Status line is:
2522  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2523  *    <used data sectors>/<total data sectors> <held metadata root>
2524  */
2525 static void pool_status(struct dm_target *ti, status_type_t type,
2526                         unsigned status_flags, char *result, unsigned maxlen)
2527 {
2528         int r;
2529         unsigned sz = 0;
2530         uint64_t transaction_id;
2531         dm_block_t nr_free_blocks_data;
2532         dm_block_t nr_free_blocks_metadata;
2533         dm_block_t nr_blocks_data;
2534         dm_block_t nr_blocks_metadata;
2535         dm_block_t held_root;
2536         char buf[BDEVNAME_SIZE];
2537         char buf2[BDEVNAME_SIZE];
2538         struct pool_c *pt = ti->private;
2539         struct pool *pool = pt->pool;
2540
2541         switch (type) {
2542         case STATUSTYPE_INFO:
2543                 if (get_pool_mode(pool) == PM_FAIL) {
2544                         DMEMIT("Fail");
2545                         break;
2546                 }
2547
2548                 /* Commit to ensure statistics aren't out-of-date */
2549                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2550                         (void) commit(pool);
2551
2552                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2553                 if (r) {
2554                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2555                               dm_device_name(pool->pool_md), r);
2556                         goto err;
2557                 }
2558
2559                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2560                 if (r) {
2561                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2562                               dm_device_name(pool->pool_md), r);
2563                         goto err;
2564                 }
2565
2566                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2567                 if (r) {
2568                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2569                               dm_device_name(pool->pool_md), r);
2570                         goto err;
2571                 }
2572
2573                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2574                 if (r) {
2575                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2576                               dm_device_name(pool->pool_md), r);
2577                         goto err;
2578                 }
2579
2580                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2581                 if (r) {
2582                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2583                               dm_device_name(pool->pool_md), r);
2584                         goto err;
2585                 }
2586
2587                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2588                 if (r) {
2589                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2590                               dm_device_name(pool->pool_md), r);
2591                         goto err;
2592                 }
2593
2594                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2595                        (unsigned long long)transaction_id,
2596                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2597                        (unsigned long long)nr_blocks_metadata,
2598                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2599                        (unsigned long long)nr_blocks_data);
2600
2601                 if (held_root)
2602                         DMEMIT("%llu ", held_root);
2603                 else
2604                         DMEMIT("- ");
2605
2606                 if (pool->pf.mode == PM_READ_ONLY)
2607                         DMEMIT("ro ");
2608                 else
2609                         DMEMIT("rw ");
2610
2611                 if (!pool->pf.discard_enabled)
2612                         DMEMIT("ignore_discard");
2613                 else if (pool->pf.discard_passdown)
2614                         DMEMIT("discard_passdown");
2615                 else
2616                         DMEMIT("no_discard_passdown");
2617
2618                 break;
2619
2620         case STATUSTYPE_TABLE:
2621                 DMEMIT("%s %s %lu %llu ",
2622                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2623                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2624                        (unsigned long)pool->sectors_per_block,
2625                        (unsigned long long)pt->low_water_blocks);
2626                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2627                 break;
2628         }
2629         return;
2630
2631 err:
2632         DMEMIT("Error");
2633 }
2634
2635 static int pool_iterate_devices(struct dm_target *ti,
2636                                 iterate_devices_callout_fn fn, void *data)
2637 {
2638         struct pool_c *pt = ti->private;
2639
2640         return fn(ti, pt->data_dev, 0, ti->len, data);
2641 }
2642
2643 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2644                       struct bio_vec *biovec, int max_size)
2645 {
2646         struct pool_c *pt = ti->private;
2647         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2648
2649         if (!q->merge_bvec_fn)
2650                 return max_size;
2651
2652         bvm->bi_bdev = pt->data_dev->bdev;
2653
2654         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2655 }
2656
2657 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2658 {
2659         struct pool *pool = pt->pool;
2660         struct queue_limits *data_limits;
2661
2662         limits->max_discard_sectors = pool->sectors_per_block;
2663
2664         /*
2665          * discard_granularity is just a hint, and not enforced.
2666          */
2667         if (pt->adjusted_pf.discard_passdown) {
2668                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2669                 limits->discard_granularity = data_limits->discard_granularity;
2670         } else
2671                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2672 }
2673
2674 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2675 {
2676         struct pool_c *pt = ti->private;
2677         struct pool *pool = pt->pool;
2678         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2679
2680         /*
2681          * If the system-determined stacked limits are compatible with the
2682          * pool's blocksize (io_opt is a factor) do not override them.
2683          */
2684         if (io_opt_sectors < pool->sectors_per_block ||
2685             do_div(io_opt_sectors, pool->sectors_per_block)) {
2686                 blk_limits_io_min(limits, 0);
2687                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2688         }
2689
2690         /*
2691          * pt->adjusted_pf is a staging area for the actual features to use.
2692          * They get transferred to the live pool in bind_control_target()
2693          * called from pool_preresume().
2694          */
2695         if (!pt->adjusted_pf.discard_enabled) {
2696                 /*
2697                  * Must explicitly disallow stacking discard limits otherwise the
2698                  * block layer will stack them if pool's data device has support.
2699                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2700                  * user to see that, so make sure to set all discard limits to 0.
2701                  */
2702                 limits->discard_granularity = 0;
2703                 return;
2704         }
2705
2706         disable_passdown_if_not_supported(pt);
2707
2708         set_discard_limits(pt, limits);
2709 }
2710
2711 static struct target_type pool_target = {
2712         .name = "thin-pool",
2713         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2714                     DM_TARGET_IMMUTABLE,
2715         .version = {1, 9, 0},
2716         .module = THIS_MODULE,
2717         .ctr = pool_ctr,
2718         .dtr = pool_dtr,
2719         .map = pool_map,
2720         .postsuspend = pool_postsuspend,
2721         .preresume = pool_preresume,
2722         .resume = pool_resume,
2723         .message = pool_message,
2724         .status = pool_status,
2725         .merge = pool_merge,
2726         .iterate_devices = pool_iterate_devices,
2727         .io_hints = pool_io_hints,
2728 };
2729
2730 /*----------------------------------------------------------------
2731  * Thin target methods
2732  *--------------------------------------------------------------*/
2733 static void thin_dtr(struct dm_target *ti)
2734 {
2735         struct thin_c *tc = ti->private;
2736
2737         mutex_lock(&dm_thin_pool_table.mutex);
2738
2739         __pool_dec(tc->pool);
2740         dm_pool_close_thin_device(tc->td);
2741         dm_put_device(ti, tc->pool_dev);
2742         if (tc->origin_dev)
2743                 dm_put_device(ti, tc->origin_dev);
2744         kfree(tc);
2745
2746         mutex_unlock(&dm_thin_pool_table.mutex);
2747 }
2748
2749 /*
2750  * Thin target parameters:
2751  *
2752  * <pool_dev> <dev_id> [origin_dev]
2753  *
2754  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2755  * dev_id: the internal device identifier
2756  * origin_dev: a device external to the pool that should act as the origin
2757  *
2758  * If the pool device has discards disabled, they get disabled for the thin
2759  * device as well.
2760  */
2761 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2762 {
2763         int r;
2764         struct thin_c *tc;
2765         struct dm_dev *pool_dev, *origin_dev;
2766         struct mapped_device *pool_md;
2767
2768         mutex_lock(&dm_thin_pool_table.mutex);
2769
2770         if (argc != 2 && argc != 3) {
2771                 ti->error = "Invalid argument count";
2772                 r = -EINVAL;
2773                 goto out_unlock;
2774         }
2775
2776         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2777         if (!tc) {
2778                 ti->error = "Out of memory";
2779                 r = -ENOMEM;
2780                 goto out_unlock;
2781         }
2782
2783         if (argc == 3) {
2784                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2785                 if (r) {
2786                         ti->error = "Error opening origin device";
2787                         goto bad_origin_dev;
2788                 }
2789                 tc->origin_dev = origin_dev;
2790         }
2791
2792         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2793         if (r) {
2794                 ti->error = "Error opening pool device";
2795                 goto bad_pool_dev;
2796         }
2797         tc->pool_dev = pool_dev;
2798
2799         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2800                 ti->error = "Invalid device id";
2801                 r = -EINVAL;
2802                 goto bad_common;
2803         }
2804
2805         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2806         if (!pool_md) {
2807                 ti->error = "Couldn't get pool mapped device";
2808                 r = -EINVAL;
2809                 goto bad_common;
2810         }
2811
2812         tc->pool = __pool_table_lookup(pool_md);
2813         if (!tc->pool) {
2814                 ti->error = "Couldn't find pool object";
2815                 r = -EINVAL;
2816                 goto bad_pool_lookup;
2817         }
2818         __pool_inc(tc->pool);
2819
2820         if (get_pool_mode(tc->pool) == PM_FAIL) {
2821                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2822                 goto bad_thin_open;
2823         }
2824
2825         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2826         if (r) {
2827                 ti->error = "Couldn't open thin internal device";
2828                 goto bad_thin_open;
2829         }
2830
2831         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2832         if (r)
2833                 goto bad_thin_open;
2834
2835         ti->num_flush_bios = 1;
2836         ti->flush_supported = true;
2837         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2838
2839         /* In case the pool supports discards, pass them on. */
2840         ti->discard_zeroes_data_unsupported = true;
2841         if (tc->pool->pf.discard_enabled) {
2842                 ti->discards_supported = true;
2843                 ti->num_discard_bios = 1;
2844                 /* Discard bios must be split on a block boundary */
2845                 ti->split_discard_bios = true;
2846         }
2847
2848         dm_put(pool_md);
2849
2850         mutex_unlock(&dm_thin_pool_table.mutex);
2851
2852         return 0;
2853
2854 bad_thin_open:
2855         __pool_dec(tc->pool);
2856 bad_pool_lookup:
2857         dm_put(pool_md);
2858 bad_common:
2859         dm_put_device(ti, tc->pool_dev);
2860 bad_pool_dev:
2861         if (tc->origin_dev)
2862                 dm_put_device(ti, tc->origin_dev);
2863 bad_origin_dev:
2864         kfree(tc);
2865 out_unlock:
2866         mutex_unlock(&dm_thin_pool_table.mutex);
2867
2868         return r;
2869 }
2870
2871 static int thin_map(struct dm_target *ti, struct bio *bio)
2872 {
2873         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2874
2875         return thin_bio_map(ti, bio);
2876 }
2877
2878 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2879 {
2880         unsigned long flags;
2881         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2882         struct list_head work;
2883         struct dm_thin_new_mapping *m, *tmp;
2884         struct pool *pool = h->tc->pool;
2885
2886         if (h->shared_read_entry) {
2887                 INIT_LIST_HEAD(&work);
2888                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2889
2890                 spin_lock_irqsave(&pool->lock, flags);
2891                 list_for_each_entry_safe(m, tmp, &work, list) {
2892                         list_del(&m->list);
2893                         m->quiesced = 1;
2894                         __maybe_add_mapping(m);
2895                 }
2896                 spin_unlock_irqrestore(&pool->lock, flags);
2897         }
2898
2899         if (h->all_io_entry) {
2900                 INIT_LIST_HEAD(&work);
2901                 dm_deferred_entry_dec(h->all_io_entry, &work);
2902                 if (!list_empty(&work)) {
2903                         spin_lock_irqsave(&pool->lock, flags);
2904                         list_for_each_entry_safe(m, tmp, &work, list)
2905                                 list_add(&m->list, &pool->prepared_discards);
2906                         spin_unlock_irqrestore(&pool->lock, flags);
2907                         wake_worker(pool);
2908                 }
2909         }
2910
2911         return 0;
2912 }
2913
2914 static void thin_postsuspend(struct dm_target *ti)
2915 {
2916         if (dm_noflush_suspending(ti))
2917                 requeue_io((struct thin_c *)ti->private);
2918 }
2919
2920 /*
2921  * <nr mapped sectors> <highest mapped sector>
2922  */
2923 static void thin_status(struct dm_target *ti, status_type_t type,
2924                         unsigned status_flags, char *result, unsigned maxlen)
2925 {
2926         int r;
2927         ssize_t sz = 0;
2928         dm_block_t mapped, highest;
2929         char buf[BDEVNAME_SIZE];
2930         struct thin_c *tc = ti->private;
2931
2932         if (get_pool_mode(tc->pool) == PM_FAIL) {
2933                 DMEMIT("Fail");
2934                 return;
2935         }
2936
2937         if (!tc->td)
2938                 DMEMIT("-");
2939         else {
2940                 switch (type) {
2941                 case STATUSTYPE_INFO:
2942                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2943                         if (r) {
2944                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2945                                 goto err;
2946                         }
2947
2948                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2949                         if (r < 0) {
2950                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2951                                 goto err;
2952                         }
2953
2954                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2955                         if (r)
2956                                 DMEMIT("%llu", ((highest + 1) *
2957                                                 tc->pool->sectors_per_block) - 1);
2958                         else
2959                                 DMEMIT("-");
2960                         break;
2961
2962                 case STATUSTYPE_TABLE:
2963                         DMEMIT("%s %lu",
2964                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2965                                (unsigned long) tc->dev_id);
2966                         if (tc->origin_dev)
2967                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2968                         break;
2969                 }
2970         }
2971
2972         return;
2973
2974 err:
2975         DMEMIT("Error");
2976 }
2977
2978 static int thin_iterate_devices(struct dm_target *ti,
2979                                 iterate_devices_callout_fn fn, void *data)
2980 {
2981         sector_t blocks;
2982         struct thin_c *tc = ti->private;
2983         struct pool *pool = tc->pool;
2984
2985         /*
2986          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2987          * we follow a more convoluted path through to the pool's target.
2988          */
2989         if (!pool->ti)
2990                 return 0;       /* nothing is bound */
2991
2992         blocks = pool->ti->len;
2993         (void) sector_div(blocks, pool->sectors_per_block);
2994         if (blocks)
2995                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2996
2997         return 0;
2998 }
2999
3000 static struct target_type thin_target = {
3001         .name = "thin",
3002         .version = {1, 9, 0},
3003         .module = THIS_MODULE,
3004         .ctr = thin_ctr,
3005         .dtr = thin_dtr,
3006         .map = thin_map,
3007         .end_io = thin_endio,
3008         .postsuspend = thin_postsuspend,
3009         .status = thin_status,
3010         .iterate_devices = thin_iterate_devices,
3011 };
3012
3013 /*----------------------------------------------------------------*/
3014
3015 static int __init dm_thin_init(void)
3016 {
3017         int r;
3018
3019         pool_table_init();
3020
3021         r = dm_register_target(&thin_target);
3022         if (r)
3023                 return r;
3024
3025         r = dm_register_target(&pool_target);
3026         if (r)
3027                 goto bad_pool_target;
3028
3029         r = -ENOMEM;
3030
3031         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3032         if (!_new_mapping_cache)
3033                 goto bad_new_mapping_cache;
3034
3035         return 0;
3036
3037 bad_new_mapping_cache:
3038         dm_unregister_target(&pool_target);
3039 bad_pool_target:
3040         dm_unregister_target(&thin_target);
3041
3042         return r;
3043 }
3044
3045 static void dm_thin_exit(void)
3046 {
3047         dm_unregister_target(&thin_target);
3048         dm_unregister_target(&pool_target);
3049
3050         kmem_cache_destroy(_new_mapping_cache);
3051 }
3052
3053 module_init(dm_thin_init);
3054 module_exit(dm_thin_exit);
3055
3056 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3057 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3058 MODULE_LICENSE("GPL");