Merge tag 'clk-for-linus' of git://git.linaro.org/people/mturquette/linux
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX   "thin"
18
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107
108 struct cell_key {
109         int virtual;
110         dm_thin_id dev;
111         dm_block_t block;
112 };
113
114 struct dm_bio_prison_cell {
115         struct hlist_node list;
116         struct bio_prison *prison;
117         struct cell_key key;
118         struct bio *holder;
119         struct bio_list bios;
120 };
121
122 struct bio_prison {
123         spinlock_t lock;
124         mempool_t *cell_pool;
125
126         unsigned nr_buckets;
127         unsigned hash_mask;
128         struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133         uint32_t n = 128;
134
135         nr_cells /= 4;
136         nr_cells = min(nr_cells, 8192u);
137
138         while (n < nr_cells)
139                 n <<= 1;
140
141         return n;
142 }
143
144 static struct kmem_cache *_cell_cache;
145
146 /*
147  * @nr_cells should be the number of cells you want in use _concurrently_.
148  * Don't confuse it with the number of distinct keys.
149  */
150 static struct bio_prison *prison_create(unsigned nr_cells)
151 {
152         unsigned i;
153         uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154         size_t len = sizeof(struct bio_prison) +
155                 (sizeof(struct hlist_head) * nr_buckets);
156         struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158         if (!prison)
159                 return NULL;
160
161         spin_lock_init(&prison->lock);
162         prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
163         if (!prison->cell_pool) {
164                 kfree(prison);
165                 return NULL;
166         }
167
168         prison->nr_buckets = nr_buckets;
169         prison->hash_mask = nr_buckets - 1;
170         prison->cells = (struct hlist_head *) (prison + 1);
171         for (i = 0; i < nr_buckets; i++)
172                 INIT_HLIST_HEAD(prison->cells + i);
173
174         return prison;
175 }
176
177 static void prison_destroy(struct bio_prison *prison)
178 {
179         mempool_destroy(prison->cell_pool);
180         kfree(prison);
181 }
182
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 {
185         const unsigned long BIG_PRIME = 4294967291UL;
186         uint64_t hash = key->block * BIG_PRIME;
187
188         return (uint32_t) (hash & prison->hash_mask);
189 }
190
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 {
193                return (lhs->virtual == rhs->virtual) &&
194                        (lhs->dev == rhs->dev) &&
195                        (lhs->block == rhs->block);
196 }
197
198 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199                                                   struct cell_key *key)
200 {
201         struct dm_bio_prison_cell *cell;
202         struct hlist_node *tmp;
203
204         hlist_for_each_entry(cell, tmp, bucket, list)
205                 if (keys_equal(&cell->key, key))
206                         return cell;
207
208         return NULL;
209 }
210
211 /*
212  * This may block if a new cell needs allocating.  You must ensure that
213  * cells will be unlocked even if the calling thread is blocked.
214  *
215  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216  */
217 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
218                       struct bio *inmate, struct dm_bio_prison_cell **ref)
219 {
220         int r = 1;
221         unsigned long flags;
222         uint32_t hash = hash_key(prison, key);
223         struct dm_bio_prison_cell *cell, *cell2;
224
225         BUG_ON(hash > prison->nr_buckets);
226
227         spin_lock_irqsave(&prison->lock, flags);
228
229         cell = __search_bucket(prison->cells + hash, key);
230         if (cell) {
231                 bio_list_add(&cell->bios, inmate);
232                 goto out;
233         }
234
235         /*
236          * Allocate a new cell
237          */
238         spin_unlock_irqrestore(&prison->lock, flags);
239         cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240         spin_lock_irqsave(&prison->lock, flags);
241
242         /*
243          * We've been unlocked, so we have to double check that
244          * nobody else has inserted this cell in the meantime.
245          */
246         cell = __search_bucket(prison->cells + hash, key);
247         if (cell) {
248                 mempool_free(cell2, prison->cell_pool);
249                 bio_list_add(&cell->bios, inmate);
250                 goto out;
251         }
252
253         /*
254          * Use new cell.
255          */
256         cell = cell2;
257
258         cell->prison = prison;
259         memcpy(&cell->key, key, sizeof(cell->key));
260         cell->holder = inmate;
261         bio_list_init(&cell->bios);
262         hlist_add_head(&cell->list, prison->cells + hash);
263
264         r = 0;
265
266 out:
267         spin_unlock_irqrestore(&prison->lock, flags);
268
269         *ref = cell;
270
271         return r;
272 }
273
274 /*
275  * @inmates must have been initialised prior to this call
276  */
277 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
278 {
279         struct bio_prison *prison = cell->prison;
280
281         hlist_del(&cell->list);
282
283         if (inmates) {
284                 bio_list_add(inmates, cell->holder);
285                 bio_list_merge(inmates, &cell->bios);
286         }
287
288         mempool_free(cell, prison->cell_pool);
289 }
290
291 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
292 {
293         unsigned long flags;
294         struct bio_prison *prison = cell->prison;
295
296         spin_lock_irqsave(&prison->lock, flags);
297         __cell_release(cell, bios);
298         spin_unlock_irqrestore(&prison->lock, flags);
299 }
300
301 /*
302  * There are a couple of places where we put a bio into a cell briefly
303  * before taking it out again.  In these situations we know that no other
304  * bio may be in the cell.  This function releases the cell, and also does
305  * a sanity check.
306  */
307 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
308 {
309         BUG_ON(cell->holder != bio);
310         BUG_ON(!bio_list_empty(&cell->bios));
311
312         __cell_release(cell, NULL);
313 }
314
315 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
316 {
317         unsigned long flags;
318         struct bio_prison *prison = cell->prison;
319
320         spin_lock_irqsave(&prison->lock, flags);
321         __cell_release_singleton(cell, bio);
322         spin_unlock_irqrestore(&prison->lock, flags);
323 }
324
325 /*
326  * Sometimes we don't want the holder, just the additional bios.
327  */
328 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329                                      struct bio_list *inmates)
330 {
331         struct bio_prison *prison = cell->prison;
332
333         hlist_del(&cell->list);
334         bio_list_merge(inmates, &cell->bios);
335
336         mempool_free(cell, prison->cell_pool);
337 }
338
339 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340                                    struct bio_list *inmates)
341 {
342         unsigned long flags;
343         struct bio_prison *prison = cell->prison;
344
345         spin_lock_irqsave(&prison->lock, flags);
346         __cell_release_no_holder(cell, inmates);
347         spin_unlock_irqrestore(&prison->lock, flags);
348 }
349
350 static void cell_error(struct dm_bio_prison_cell *cell)
351 {
352         struct bio_prison *prison = cell->prison;
353         struct bio_list bios;
354         struct bio *bio;
355         unsigned long flags;
356
357         bio_list_init(&bios);
358
359         spin_lock_irqsave(&prison->lock, flags);
360         __cell_release(cell, &bios);
361         spin_unlock_irqrestore(&prison->lock, flags);
362
363         while ((bio = bio_list_pop(&bios)))
364                 bio_io_error(bio);
365 }
366
367 /*----------------------------------------------------------------*/
368
369 /*
370  * We use the deferred set to keep track of pending reads to shared blocks.
371  * We do this to ensure the new mapping caused by a write isn't performed
372  * until these prior reads have completed.  Otherwise the insertion of the
373  * new mapping could free the old block that the read bios are mapped to.
374  */
375
376 struct deferred_set;
377 struct deferred_entry {
378         struct deferred_set *ds;
379         unsigned count;
380         struct list_head work_items;
381 };
382
383 struct deferred_set {
384         spinlock_t lock;
385         unsigned current_entry;
386         unsigned sweeper;
387         struct deferred_entry entries[DEFERRED_SET_SIZE];
388 };
389
390 static void ds_init(struct deferred_set *ds)
391 {
392         int i;
393
394         spin_lock_init(&ds->lock);
395         ds->current_entry = 0;
396         ds->sweeper = 0;
397         for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398                 ds->entries[i].ds = ds;
399                 ds->entries[i].count = 0;
400                 INIT_LIST_HEAD(&ds->entries[i].work_items);
401         }
402 }
403
404 static struct deferred_entry *ds_inc(struct deferred_set *ds)
405 {
406         unsigned long flags;
407         struct deferred_entry *entry;
408
409         spin_lock_irqsave(&ds->lock, flags);
410         entry = ds->entries + ds->current_entry;
411         entry->count++;
412         spin_unlock_irqrestore(&ds->lock, flags);
413
414         return entry;
415 }
416
417 static unsigned ds_next(unsigned index)
418 {
419         return (index + 1) % DEFERRED_SET_SIZE;
420 }
421
422 static void __sweep(struct deferred_set *ds, struct list_head *head)
423 {
424         while ((ds->sweeper != ds->current_entry) &&
425                !ds->entries[ds->sweeper].count) {
426                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427                 ds->sweeper = ds_next(ds->sweeper);
428         }
429
430         if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432 }
433
434 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435 {
436         unsigned long flags;
437
438         spin_lock_irqsave(&entry->ds->lock, flags);
439         BUG_ON(!entry->count);
440         --entry->count;
441         __sweep(entry->ds, head);
442         spin_unlock_irqrestore(&entry->ds->lock, flags);
443 }
444
445 /*
446  * Returns 1 if deferred or 0 if no pending items to delay job.
447  */
448 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449 {
450         int r = 1;
451         unsigned long flags;
452         unsigned next_entry;
453
454         spin_lock_irqsave(&ds->lock, flags);
455         if ((ds->sweeper == ds->current_entry) &&
456             !ds->entries[ds->current_entry].count)
457                 r = 0;
458         else {
459                 list_add(work, &ds->entries[ds->current_entry].work_items);
460                 next_entry = ds_next(ds->current_entry);
461                 if (!ds->entries[next_entry].count)
462                         ds->current_entry = next_entry;
463         }
464         spin_unlock_irqrestore(&ds->lock, flags);
465
466         return r;
467 }
468
469 /*----------------------------------------------------------------*/
470
471 /*
472  * Key building.
473  */
474 static void build_data_key(struct dm_thin_device *td,
475                            dm_block_t b, struct cell_key *key)
476 {
477         key->virtual = 0;
478         key->dev = dm_thin_dev_id(td);
479         key->block = b;
480 }
481
482 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483                               struct cell_key *key)
484 {
485         key->virtual = 1;
486         key->dev = dm_thin_dev_id(td);
487         key->block = b;
488 }
489
490 /*----------------------------------------------------------------*/
491
492 /*
493  * A pool device ties together a metadata device and a data device.  It
494  * also provides the interface for creating and destroying internal
495  * devices.
496  */
497 struct dm_thin_new_mapping;
498
499 struct pool_features {
500         unsigned zero_new_blocks:1;
501         unsigned discard_enabled:1;
502         unsigned discard_passdown:1;
503 };
504
505 struct pool {
506         struct list_head list;
507         struct dm_target *ti;   /* Only set if a pool target is bound */
508
509         struct mapped_device *pool_md;
510         struct block_device *md_dev;
511         struct dm_pool_metadata *pmd;
512
513         uint32_t sectors_per_block;
514         unsigned block_shift;
515         dm_block_t offset_mask;
516         dm_block_t low_water_blocks;
517
518         struct pool_features pf;
519         unsigned low_water_triggered:1; /* A dm event has been sent */
520         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
521
522         struct bio_prison *prison;
523         struct dm_kcopyd_client *copier;
524
525         struct workqueue_struct *wq;
526         struct work_struct worker;
527         struct delayed_work waker;
528
529         unsigned ref_count;
530         unsigned long last_commit_jiffies;
531
532         spinlock_t lock;
533         struct bio_list deferred_bios;
534         struct bio_list deferred_flush_bios;
535         struct list_head prepared_mappings;
536         struct list_head prepared_discards;
537
538         struct bio_list retry_on_resume_list;
539
540         struct deferred_set shared_read_ds;
541         struct deferred_set all_io_ds;
542
543         struct dm_thin_new_mapping *next_mapping;
544         mempool_t *mapping_pool;
545         mempool_t *endio_hook_pool;
546 };
547
548 /*
549  * Target context for a pool.
550  */
551 struct pool_c {
552         struct dm_target *ti;
553         struct pool *pool;
554         struct dm_dev *data_dev;
555         struct dm_dev *metadata_dev;
556         struct dm_target_callbacks callbacks;
557
558         dm_block_t low_water_blocks;
559         struct pool_features pf;
560 };
561
562 /*
563  * Target context for a thin.
564  */
565 struct thin_c {
566         struct dm_dev *pool_dev;
567         struct dm_dev *origin_dev;
568         dm_thin_id dev_id;
569
570         struct pool *pool;
571         struct dm_thin_device *td;
572 };
573
574 /*----------------------------------------------------------------*/
575
576 /*
577  * A global list of pools that uses a struct mapped_device as a key.
578  */
579 static struct dm_thin_pool_table {
580         struct mutex mutex;
581         struct list_head pools;
582 } dm_thin_pool_table;
583
584 static void pool_table_init(void)
585 {
586         mutex_init(&dm_thin_pool_table.mutex);
587         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
588 }
589
590 static void __pool_table_insert(struct pool *pool)
591 {
592         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593         list_add(&pool->list, &dm_thin_pool_table.pools);
594 }
595
596 static void __pool_table_remove(struct pool *pool)
597 {
598         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
599         list_del(&pool->list);
600 }
601
602 static struct pool *__pool_table_lookup(struct mapped_device *md)
603 {
604         struct pool *pool = NULL, *tmp;
605
606         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
607
608         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
609                 if (tmp->pool_md == md) {
610                         pool = tmp;
611                         break;
612                 }
613         }
614
615         return pool;
616 }
617
618 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
619 {
620         struct pool *pool = NULL, *tmp;
621
622         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623
624         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
625                 if (tmp->md_dev == md_dev) {
626                         pool = tmp;
627                         break;
628                 }
629         }
630
631         return pool;
632 }
633
634 /*----------------------------------------------------------------*/
635
636 struct dm_thin_endio_hook {
637         struct thin_c *tc;
638         struct deferred_entry *shared_read_entry;
639         struct deferred_entry *all_io_entry;
640         struct dm_thin_new_mapping *overwrite_mapping;
641 };
642
643 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
644 {
645         struct bio *bio;
646         struct bio_list bios;
647
648         bio_list_init(&bios);
649         bio_list_merge(&bios, master);
650         bio_list_init(master);
651
652         while ((bio = bio_list_pop(&bios))) {
653                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
654
655                 if (h->tc == tc)
656                         bio_endio(bio, DM_ENDIO_REQUEUE);
657                 else
658                         bio_list_add(master, bio);
659         }
660 }
661
662 static void requeue_io(struct thin_c *tc)
663 {
664         struct pool *pool = tc->pool;
665         unsigned long flags;
666
667         spin_lock_irqsave(&pool->lock, flags);
668         __requeue_bio_list(tc, &pool->deferred_bios);
669         __requeue_bio_list(tc, &pool->retry_on_resume_list);
670         spin_unlock_irqrestore(&pool->lock, flags);
671 }
672
673 /*
674  * This section of code contains the logic for processing a thin device's IO.
675  * Much of the code depends on pool object resources (lists, workqueues, etc)
676  * but most is exclusively called from the thin target rather than the thin-pool
677  * target.
678  */
679
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681 {
682         return bio->bi_sector >> tc->pool->block_shift;
683 }
684
685 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
686 {
687         struct pool *pool = tc->pool;
688
689         bio->bi_bdev = tc->pool_dev->bdev;
690         bio->bi_sector = (block << pool->block_shift) +
691                 (bio->bi_sector & pool->offset_mask);
692 }
693
694 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
695 {
696         bio->bi_bdev = tc->origin_dev->bdev;
697 }
698
699 static void issue(struct thin_c *tc, struct bio *bio)
700 {
701         struct pool *pool = tc->pool;
702         unsigned long flags;
703
704         /*
705          * Batch together any FUA/FLUSH bios we find and then issue
706          * a single commit for them in process_deferred_bios().
707          */
708         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
709                 spin_lock_irqsave(&pool->lock, flags);
710                 bio_list_add(&pool->deferred_flush_bios, bio);
711                 spin_unlock_irqrestore(&pool->lock, flags);
712         } else
713                 generic_make_request(bio);
714 }
715
716 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
717 {
718         remap_to_origin(tc, bio);
719         issue(tc, bio);
720 }
721
722 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
723                             dm_block_t block)
724 {
725         remap(tc, bio, block);
726         issue(tc, bio);
727 }
728
729 /*
730  * wake_worker() is used when new work is queued and when pool_resume is
731  * ready to continue deferred IO processing.
732  */
733 static void wake_worker(struct pool *pool)
734 {
735         queue_work(pool->wq, &pool->worker);
736 }
737
738 /*----------------------------------------------------------------*/
739
740 /*
741  * Bio endio functions.
742  */
743 struct dm_thin_new_mapping {
744         struct list_head list;
745
746         unsigned quiesced:1;
747         unsigned prepared:1;
748         unsigned pass_discard:1;
749
750         struct thin_c *tc;
751         dm_block_t virt_block;
752         dm_block_t data_block;
753         struct dm_bio_prison_cell *cell, *cell2;
754         int err;
755
756         /*
757          * If the bio covers the whole area of a block then we can avoid
758          * zeroing or copying.  Instead this bio is hooked.  The bio will
759          * still be in the cell, so care has to be taken to avoid issuing
760          * the bio twice.
761          */
762         struct bio *bio;
763         bio_end_io_t *saved_bi_end_io;
764 };
765
766 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
767 {
768         struct pool *pool = m->tc->pool;
769
770         if (m->quiesced && m->prepared) {
771                 list_add(&m->list, &pool->prepared_mappings);
772                 wake_worker(pool);
773         }
774 }
775
776 static void copy_complete(int read_err, unsigned long write_err, void *context)
777 {
778         unsigned long flags;
779         struct dm_thin_new_mapping *m = context;
780         struct pool *pool = m->tc->pool;
781
782         m->err = read_err || write_err ? -EIO : 0;
783
784         spin_lock_irqsave(&pool->lock, flags);
785         m->prepared = 1;
786         __maybe_add_mapping(m);
787         spin_unlock_irqrestore(&pool->lock, flags);
788 }
789
790 static void overwrite_endio(struct bio *bio, int err)
791 {
792         unsigned long flags;
793         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
794         struct dm_thin_new_mapping *m = h->overwrite_mapping;
795         struct pool *pool = m->tc->pool;
796
797         m->err = err;
798
799         spin_lock_irqsave(&pool->lock, flags);
800         m->prepared = 1;
801         __maybe_add_mapping(m);
802         spin_unlock_irqrestore(&pool->lock, flags);
803 }
804
805 /*----------------------------------------------------------------*/
806
807 /*
808  * Workqueue.
809  */
810
811 /*
812  * Prepared mapping jobs.
813  */
814
815 /*
816  * This sends the bios in the cell back to the deferred_bios list.
817  */
818 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
819                        dm_block_t data_block)
820 {
821         struct pool *pool = tc->pool;
822         unsigned long flags;
823
824         spin_lock_irqsave(&pool->lock, flags);
825         cell_release(cell, &pool->deferred_bios);
826         spin_unlock_irqrestore(&tc->pool->lock, flags);
827
828         wake_worker(pool);
829 }
830
831 /*
832  * Same as cell_defer above, except it omits one particular detainee,
833  * a write bio that covers the block and has already been processed.
834  */
835 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
836 {
837         struct bio_list bios;
838         struct pool *pool = tc->pool;
839         unsigned long flags;
840
841         bio_list_init(&bios);
842
843         spin_lock_irqsave(&pool->lock, flags);
844         cell_release_no_holder(cell, &pool->deferred_bios);
845         spin_unlock_irqrestore(&pool->lock, flags);
846
847         wake_worker(pool);
848 }
849
850 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
851 {
852         struct thin_c *tc = m->tc;
853         struct bio *bio;
854         int r;
855
856         bio = m->bio;
857         if (bio)
858                 bio->bi_end_io = m->saved_bi_end_io;
859
860         if (m->err) {
861                 cell_error(m->cell);
862                 return;
863         }
864
865         /*
866          * Commit the prepared block into the mapping btree.
867          * Any I/O for this block arriving after this point will get
868          * remapped to it directly.
869          */
870         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
871         if (r) {
872                 DMERR("dm_thin_insert_block() failed");
873                 cell_error(m->cell);
874                 return;
875         }
876
877         /*
878          * Release any bios held while the block was being provisioned.
879          * If we are processing a write bio that completely covers the block,
880          * we already processed it so can ignore it now when processing
881          * the bios in the cell.
882          */
883         if (bio) {
884                 cell_defer_except(tc, m->cell);
885                 bio_endio(bio, 0);
886         } else
887                 cell_defer(tc, m->cell, m->data_block);
888
889         list_del(&m->list);
890         mempool_free(m, tc->pool->mapping_pool);
891 }
892
893 static void process_prepared_discard(struct dm_thin_new_mapping *m)
894 {
895         int r;
896         struct thin_c *tc = m->tc;
897
898         r = dm_thin_remove_block(tc->td, m->virt_block);
899         if (r)
900                 DMERR("dm_thin_remove_block() failed");
901
902         /*
903          * Pass the discard down to the underlying device?
904          */
905         if (m->pass_discard)
906                 remap_and_issue(tc, m->bio, m->data_block);
907         else
908                 bio_endio(m->bio, 0);
909
910         cell_defer_except(tc, m->cell);
911         cell_defer_except(tc, m->cell2);
912         mempool_free(m, tc->pool->mapping_pool);
913 }
914
915 static void process_prepared(struct pool *pool, struct list_head *head,
916                              void (*fn)(struct dm_thin_new_mapping *))
917 {
918         unsigned long flags;
919         struct list_head maps;
920         struct dm_thin_new_mapping *m, *tmp;
921
922         INIT_LIST_HEAD(&maps);
923         spin_lock_irqsave(&pool->lock, flags);
924         list_splice_init(head, &maps);
925         spin_unlock_irqrestore(&pool->lock, flags);
926
927         list_for_each_entry_safe(m, tmp, &maps, list)
928                 fn(m);
929 }
930
931 /*
932  * Deferred bio jobs.
933  */
934 static int io_overlaps_block(struct pool *pool, struct bio *bio)
935 {
936         return !(bio->bi_sector & pool->offset_mask) &&
937                 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
938
939 }
940
941 static int io_overwrites_block(struct pool *pool, struct bio *bio)
942 {
943         return (bio_data_dir(bio) == WRITE) &&
944                 io_overlaps_block(pool, bio);
945 }
946
947 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
948                                bio_end_io_t *fn)
949 {
950         *save = bio->bi_end_io;
951         bio->bi_end_io = fn;
952 }
953
954 static int ensure_next_mapping(struct pool *pool)
955 {
956         if (pool->next_mapping)
957                 return 0;
958
959         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
960
961         return pool->next_mapping ? 0 : -ENOMEM;
962 }
963
964 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
965 {
966         struct dm_thin_new_mapping *r = pool->next_mapping;
967
968         BUG_ON(!pool->next_mapping);
969
970         pool->next_mapping = NULL;
971
972         return r;
973 }
974
975 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
976                           struct dm_dev *origin, dm_block_t data_origin,
977                           dm_block_t data_dest,
978                           struct dm_bio_prison_cell *cell, struct bio *bio)
979 {
980         int r;
981         struct pool *pool = tc->pool;
982         struct dm_thin_new_mapping *m = get_next_mapping(pool);
983
984         INIT_LIST_HEAD(&m->list);
985         m->quiesced = 0;
986         m->prepared = 0;
987         m->tc = tc;
988         m->virt_block = virt_block;
989         m->data_block = data_dest;
990         m->cell = cell;
991         m->err = 0;
992         m->bio = NULL;
993
994         if (!ds_add_work(&pool->shared_read_ds, &m->list))
995                 m->quiesced = 1;
996
997         /*
998          * IO to pool_dev remaps to the pool target's data_dev.
999          *
1000          * If the whole block of data is being overwritten, we can issue the
1001          * bio immediately. Otherwise we use kcopyd to clone the data first.
1002          */
1003         if (io_overwrites_block(pool, bio)) {
1004                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1005
1006                 h->overwrite_mapping = m;
1007                 m->bio = bio;
1008                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1009                 remap_and_issue(tc, bio, data_dest);
1010         } else {
1011                 struct dm_io_region from, to;
1012
1013                 from.bdev = origin->bdev;
1014                 from.sector = data_origin * pool->sectors_per_block;
1015                 from.count = pool->sectors_per_block;
1016
1017                 to.bdev = tc->pool_dev->bdev;
1018                 to.sector = data_dest * pool->sectors_per_block;
1019                 to.count = pool->sectors_per_block;
1020
1021                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1022                                    0, copy_complete, m);
1023                 if (r < 0) {
1024                         mempool_free(m, pool->mapping_pool);
1025                         DMERR("dm_kcopyd_copy() failed");
1026                         cell_error(cell);
1027                 }
1028         }
1029 }
1030
1031 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1032                                    dm_block_t data_origin, dm_block_t data_dest,
1033                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1034 {
1035         schedule_copy(tc, virt_block, tc->pool_dev,
1036                       data_origin, data_dest, cell, bio);
1037 }
1038
1039 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1040                                    dm_block_t data_dest,
1041                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1042 {
1043         schedule_copy(tc, virt_block, tc->origin_dev,
1044                       virt_block, data_dest, cell, bio);
1045 }
1046
1047 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1048                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1049                           struct bio *bio)
1050 {
1051         struct pool *pool = tc->pool;
1052         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1053
1054         INIT_LIST_HEAD(&m->list);
1055         m->quiesced = 1;
1056         m->prepared = 0;
1057         m->tc = tc;
1058         m->virt_block = virt_block;
1059         m->data_block = data_block;
1060         m->cell = cell;
1061         m->err = 0;
1062         m->bio = NULL;
1063
1064         /*
1065          * If the whole block of data is being overwritten or we are not
1066          * zeroing pre-existing data, we can issue the bio immediately.
1067          * Otherwise we use kcopyd to zero the data first.
1068          */
1069         if (!pool->pf.zero_new_blocks)
1070                 process_prepared_mapping(m);
1071
1072         else if (io_overwrites_block(pool, bio)) {
1073                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1074
1075                 h->overwrite_mapping = m;
1076                 m->bio = bio;
1077                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1078                 remap_and_issue(tc, bio, data_block);
1079         } else {
1080                 int r;
1081                 struct dm_io_region to;
1082
1083                 to.bdev = tc->pool_dev->bdev;
1084                 to.sector = data_block * pool->sectors_per_block;
1085                 to.count = pool->sectors_per_block;
1086
1087                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1088                 if (r < 0) {
1089                         mempool_free(m, pool->mapping_pool);
1090                         DMERR("dm_kcopyd_zero() failed");
1091                         cell_error(cell);
1092                 }
1093         }
1094 }
1095
1096 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1097 {
1098         int r;
1099         dm_block_t free_blocks;
1100         unsigned long flags;
1101         struct pool *pool = tc->pool;
1102
1103         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1104         if (r)
1105                 return r;
1106
1107         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1108                 DMWARN("%s: reached low water mark, sending event.",
1109                        dm_device_name(pool->pool_md));
1110                 spin_lock_irqsave(&pool->lock, flags);
1111                 pool->low_water_triggered = 1;
1112                 spin_unlock_irqrestore(&pool->lock, flags);
1113                 dm_table_event(pool->ti->table);
1114         }
1115
1116         if (!free_blocks) {
1117                 if (pool->no_free_space)
1118                         return -ENOSPC;
1119                 else {
1120                         /*
1121                          * Try to commit to see if that will free up some
1122                          * more space.
1123                          */
1124                         r = dm_pool_commit_metadata(pool->pmd);
1125                         if (r) {
1126                                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1127                                       __func__, r);
1128                                 return r;
1129                         }
1130
1131                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1132                         if (r)
1133                                 return r;
1134
1135                         /*
1136                          * If we still have no space we set a flag to avoid
1137                          * doing all this checking and return -ENOSPC.
1138                          */
1139                         if (!free_blocks) {
1140                                 DMWARN("%s: no free space available.",
1141                                        dm_device_name(pool->pool_md));
1142                                 spin_lock_irqsave(&pool->lock, flags);
1143                                 pool->no_free_space = 1;
1144                                 spin_unlock_irqrestore(&pool->lock, flags);
1145                                 return -ENOSPC;
1146                         }
1147                 }
1148         }
1149
1150         r = dm_pool_alloc_data_block(pool->pmd, result);
1151         if (r)
1152                 return r;
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * If we have run out of space, queue bios until the device is
1159  * resumed, presumably after having been reloaded with more space.
1160  */
1161 static void retry_on_resume(struct bio *bio)
1162 {
1163         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1164         struct thin_c *tc = h->tc;
1165         struct pool *pool = tc->pool;
1166         unsigned long flags;
1167
1168         spin_lock_irqsave(&pool->lock, flags);
1169         bio_list_add(&pool->retry_on_resume_list, bio);
1170         spin_unlock_irqrestore(&pool->lock, flags);
1171 }
1172
1173 static void no_space(struct dm_bio_prison_cell *cell)
1174 {
1175         struct bio *bio;
1176         struct bio_list bios;
1177
1178         bio_list_init(&bios);
1179         cell_release(cell, &bios);
1180
1181         while ((bio = bio_list_pop(&bios)))
1182                 retry_on_resume(bio);
1183 }
1184
1185 static void process_discard(struct thin_c *tc, struct bio *bio)
1186 {
1187         int r;
1188         unsigned long flags;
1189         struct pool *pool = tc->pool;
1190         struct dm_bio_prison_cell *cell, *cell2;
1191         struct cell_key key, key2;
1192         dm_block_t block = get_bio_block(tc, bio);
1193         struct dm_thin_lookup_result lookup_result;
1194         struct dm_thin_new_mapping *m;
1195
1196         build_virtual_key(tc->td, block, &key);
1197         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1198                 return;
1199
1200         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1201         switch (r) {
1202         case 0:
1203                 /*
1204                  * Check nobody is fiddling with this pool block.  This can
1205                  * happen if someone's in the process of breaking sharing
1206                  * on this block.
1207                  */
1208                 build_data_key(tc->td, lookup_result.block, &key2);
1209                 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1210                         cell_release_singleton(cell, bio);
1211                         break;
1212                 }
1213
1214                 if (io_overlaps_block(pool, bio)) {
1215                         /*
1216                          * IO may still be going to the destination block.  We must
1217                          * quiesce before we can do the removal.
1218                          */
1219                         m = get_next_mapping(pool);
1220                         m->tc = tc;
1221                         m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1222                         m->virt_block = block;
1223                         m->data_block = lookup_result.block;
1224                         m->cell = cell;
1225                         m->cell2 = cell2;
1226                         m->err = 0;
1227                         m->bio = bio;
1228
1229                         if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1230                                 spin_lock_irqsave(&pool->lock, flags);
1231                                 list_add(&m->list, &pool->prepared_discards);
1232                                 spin_unlock_irqrestore(&pool->lock, flags);
1233                                 wake_worker(pool);
1234                         }
1235                 } else {
1236                         /*
1237                          * This path is hit if people are ignoring
1238                          * limits->discard_granularity.  It ignores any
1239                          * part of the discard that is in a subsequent
1240                          * block.
1241                          */
1242                         sector_t offset = bio->bi_sector - (block << pool->block_shift);
1243                         unsigned remaining = (pool->sectors_per_block - offset) << 9;
1244                         bio->bi_size = min(bio->bi_size, remaining);
1245
1246                         cell_release_singleton(cell, bio);
1247                         cell_release_singleton(cell2, bio);
1248                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1249                                 remap_and_issue(tc, bio, lookup_result.block);
1250                         else
1251                                 bio_endio(bio, 0);
1252                 }
1253                 break;
1254
1255         case -ENODATA:
1256                 /*
1257                  * It isn't provisioned, just forget it.
1258                  */
1259                 cell_release_singleton(cell, bio);
1260                 bio_endio(bio, 0);
1261                 break;
1262
1263         default:
1264                 DMERR("discard: find block unexpectedly returned %d", r);
1265                 cell_release_singleton(cell, bio);
1266                 bio_io_error(bio);
1267                 break;
1268         }
1269 }
1270
1271 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1272                           struct cell_key *key,
1273                           struct dm_thin_lookup_result *lookup_result,
1274                           struct dm_bio_prison_cell *cell)
1275 {
1276         int r;
1277         dm_block_t data_block;
1278
1279         r = alloc_data_block(tc, &data_block);
1280         switch (r) {
1281         case 0:
1282                 schedule_internal_copy(tc, block, lookup_result->block,
1283                                        data_block, cell, bio);
1284                 break;
1285
1286         case -ENOSPC:
1287                 no_space(cell);
1288                 break;
1289
1290         default:
1291                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1292                 cell_error(cell);
1293                 break;
1294         }
1295 }
1296
1297 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1298                                dm_block_t block,
1299                                struct dm_thin_lookup_result *lookup_result)
1300 {
1301         struct dm_bio_prison_cell *cell;
1302         struct pool *pool = tc->pool;
1303         struct cell_key key;
1304
1305         /*
1306          * If cell is already occupied, then sharing is already in the process
1307          * of being broken so we have nothing further to do here.
1308          */
1309         build_data_key(tc->td, lookup_result->block, &key);
1310         if (bio_detain(pool->prison, &key, bio, &cell))
1311                 return;
1312
1313         if (bio_data_dir(bio) == WRITE)
1314                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1315         else {
1316                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1317
1318                 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1319
1320                 cell_release_singleton(cell, bio);
1321                 remap_and_issue(tc, bio, lookup_result->block);
1322         }
1323 }
1324
1325 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1326                             struct dm_bio_prison_cell *cell)
1327 {
1328         int r;
1329         dm_block_t data_block;
1330
1331         /*
1332          * Remap empty bios (flushes) immediately, without provisioning.
1333          */
1334         if (!bio->bi_size) {
1335                 cell_release_singleton(cell, bio);
1336                 remap_and_issue(tc, bio, 0);
1337                 return;
1338         }
1339
1340         /*
1341          * Fill read bios with zeroes and complete them immediately.
1342          */
1343         if (bio_data_dir(bio) == READ) {
1344                 zero_fill_bio(bio);
1345                 cell_release_singleton(cell, bio);
1346                 bio_endio(bio, 0);
1347                 return;
1348         }
1349
1350         r = alloc_data_block(tc, &data_block);
1351         switch (r) {
1352         case 0:
1353                 if (tc->origin_dev)
1354                         schedule_external_copy(tc, block, data_block, cell, bio);
1355                 else
1356                         schedule_zero(tc, block, data_block, cell, bio);
1357                 break;
1358
1359         case -ENOSPC:
1360                 no_space(cell);
1361                 break;
1362
1363         default:
1364                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1365                 cell_error(cell);
1366                 break;
1367         }
1368 }
1369
1370 static void process_bio(struct thin_c *tc, struct bio *bio)
1371 {
1372         int r;
1373         dm_block_t block = get_bio_block(tc, bio);
1374         struct dm_bio_prison_cell *cell;
1375         struct cell_key key;
1376         struct dm_thin_lookup_result lookup_result;
1377
1378         /*
1379          * If cell is already occupied, then the block is already
1380          * being provisioned so we have nothing further to do here.
1381          */
1382         build_virtual_key(tc->td, block, &key);
1383         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1384                 return;
1385
1386         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1387         switch (r) {
1388         case 0:
1389                 /*
1390                  * We can release this cell now.  This thread is the only
1391                  * one that puts bios into a cell, and we know there were
1392                  * no preceding bios.
1393                  */
1394                 /*
1395                  * TODO: this will probably have to change when discard goes
1396                  * back in.
1397                  */
1398                 cell_release_singleton(cell, bio);
1399
1400                 if (lookup_result.shared)
1401                         process_shared_bio(tc, bio, block, &lookup_result);
1402                 else
1403                         remap_and_issue(tc, bio, lookup_result.block);
1404                 break;
1405
1406         case -ENODATA:
1407                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1408                         cell_release_singleton(cell, bio);
1409                         remap_to_origin_and_issue(tc, bio);
1410                 } else
1411                         provision_block(tc, bio, block, cell);
1412                 break;
1413
1414         default:
1415                 DMERR("dm_thin_find_block() failed, error = %d", r);
1416                 cell_release_singleton(cell, bio);
1417                 bio_io_error(bio);
1418                 break;
1419         }
1420 }
1421
1422 static int need_commit_due_to_time(struct pool *pool)
1423 {
1424         return jiffies < pool->last_commit_jiffies ||
1425                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1426 }
1427
1428 static void process_deferred_bios(struct pool *pool)
1429 {
1430         unsigned long flags;
1431         struct bio *bio;
1432         struct bio_list bios;
1433         int r;
1434
1435         bio_list_init(&bios);
1436
1437         spin_lock_irqsave(&pool->lock, flags);
1438         bio_list_merge(&bios, &pool->deferred_bios);
1439         bio_list_init(&pool->deferred_bios);
1440         spin_unlock_irqrestore(&pool->lock, flags);
1441
1442         while ((bio = bio_list_pop(&bios))) {
1443                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1444                 struct thin_c *tc = h->tc;
1445
1446                 /*
1447                  * If we've got no free new_mapping structs, and processing
1448                  * this bio might require one, we pause until there are some
1449                  * prepared mappings to process.
1450                  */
1451                 if (ensure_next_mapping(pool)) {
1452                         spin_lock_irqsave(&pool->lock, flags);
1453                         bio_list_merge(&pool->deferred_bios, &bios);
1454                         spin_unlock_irqrestore(&pool->lock, flags);
1455
1456                         break;
1457                 }
1458
1459                 if (bio->bi_rw & REQ_DISCARD)
1460                         process_discard(tc, bio);
1461                 else
1462                         process_bio(tc, bio);
1463         }
1464
1465         /*
1466          * If there are any deferred flush bios, we must commit
1467          * the metadata before issuing them.
1468          */
1469         bio_list_init(&bios);
1470         spin_lock_irqsave(&pool->lock, flags);
1471         bio_list_merge(&bios, &pool->deferred_flush_bios);
1472         bio_list_init(&pool->deferred_flush_bios);
1473         spin_unlock_irqrestore(&pool->lock, flags);
1474
1475         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1476                 return;
1477
1478         r = dm_pool_commit_metadata(pool->pmd);
1479         if (r) {
1480                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1481                       __func__, r);
1482                 while ((bio = bio_list_pop(&bios)))
1483                         bio_io_error(bio);
1484                 return;
1485         }
1486         pool->last_commit_jiffies = jiffies;
1487
1488         while ((bio = bio_list_pop(&bios)))
1489                 generic_make_request(bio);
1490 }
1491
1492 static void do_worker(struct work_struct *ws)
1493 {
1494         struct pool *pool = container_of(ws, struct pool, worker);
1495
1496         process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1497         process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1498         process_deferred_bios(pool);
1499 }
1500
1501 /*
1502  * We want to commit periodically so that not too much
1503  * unwritten data builds up.
1504  */
1505 static void do_waker(struct work_struct *ws)
1506 {
1507         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1508         wake_worker(pool);
1509         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1510 }
1511
1512 /*----------------------------------------------------------------*/
1513
1514 /*
1515  * Mapping functions.
1516  */
1517
1518 /*
1519  * Called only while mapping a thin bio to hand it over to the workqueue.
1520  */
1521 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1522 {
1523         unsigned long flags;
1524         struct pool *pool = tc->pool;
1525
1526         spin_lock_irqsave(&pool->lock, flags);
1527         bio_list_add(&pool->deferred_bios, bio);
1528         spin_unlock_irqrestore(&pool->lock, flags);
1529
1530         wake_worker(pool);
1531 }
1532
1533 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1534 {
1535         struct pool *pool = tc->pool;
1536         struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1537
1538         h->tc = tc;
1539         h->shared_read_entry = NULL;
1540         h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1541         h->overwrite_mapping = NULL;
1542
1543         return h;
1544 }
1545
1546 /*
1547  * Non-blocking function called from the thin target's map function.
1548  */
1549 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1550                         union map_info *map_context)
1551 {
1552         int r;
1553         struct thin_c *tc = ti->private;
1554         dm_block_t block = get_bio_block(tc, bio);
1555         struct dm_thin_device *td = tc->td;
1556         struct dm_thin_lookup_result result;
1557
1558         map_context->ptr = thin_hook_bio(tc, bio);
1559         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1560                 thin_defer_bio(tc, bio);
1561                 return DM_MAPIO_SUBMITTED;
1562         }
1563
1564         r = dm_thin_find_block(td, block, 0, &result);
1565
1566         /*
1567          * Note that we defer readahead too.
1568          */
1569         switch (r) {
1570         case 0:
1571                 if (unlikely(result.shared)) {
1572                         /*
1573                          * We have a race condition here between the
1574                          * result.shared value returned by the lookup and
1575                          * snapshot creation, which may cause new
1576                          * sharing.
1577                          *
1578                          * To avoid this always quiesce the origin before
1579                          * taking the snap.  You want to do this anyway to
1580                          * ensure a consistent application view
1581                          * (i.e. lockfs).
1582                          *
1583                          * More distant ancestors are irrelevant. The
1584                          * shared flag will be set in their case.
1585                          */
1586                         thin_defer_bio(tc, bio);
1587                         r = DM_MAPIO_SUBMITTED;
1588                 } else {
1589                         remap(tc, bio, result.block);
1590                         r = DM_MAPIO_REMAPPED;
1591                 }
1592                 break;
1593
1594         case -ENODATA:
1595                 /*
1596                  * In future, the failed dm_thin_find_block above could
1597                  * provide the hint to load the metadata into cache.
1598                  */
1599         case -EWOULDBLOCK:
1600                 thin_defer_bio(tc, bio);
1601                 r = DM_MAPIO_SUBMITTED;
1602                 break;
1603         }
1604
1605         return r;
1606 }
1607
1608 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1609 {
1610         int r;
1611         unsigned long flags;
1612         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1613
1614         spin_lock_irqsave(&pt->pool->lock, flags);
1615         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1616         spin_unlock_irqrestore(&pt->pool->lock, flags);
1617
1618         if (!r) {
1619                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1620                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1621         }
1622
1623         return r;
1624 }
1625
1626 static void __requeue_bios(struct pool *pool)
1627 {
1628         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1629         bio_list_init(&pool->retry_on_resume_list);
1630 }
1631
1632 /*----------------------------------------------------------------
1633  * Binding of control targets to a pool object
1634  *--------------------------------------------------------------*/
1635 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1636 {
1637         struct pool_c *pt = ti->private;
1638
1639         pool->ti = ti;
1640         pool->low_water_blocks = pt->low_water_blocks;
1641         pool->pf = pt->pf;
1642
1643         /*
1644          * If discard_passdown was enabled verify that the data device
1645          * supports discards.  Disable discard_passdown if not; otherwise
1646          * -EOPNOTSUPP will be returned.
1647          */
1648         if (pt->pf.discard_passdown) {
1649                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1650                 if (!q || !blk_queue_discard(q)) {
1651                         char buf[BDEVNAME_SIZE];
1652                         DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1653                                bdevname(pt->data_dev->bdev, buf));
1654                         pool->pf.discard_passdown = 0;
1655                 }
1656         }
1657
1658         return 0;
1659 }
1660
1661 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1662 {
1663         if (pool->ti == ti)
1664                 pool->ti = NULL;
1665 }
1666
1667 /*----------------------------------------------------------------
1668  * Pool creation
1669  *--------------------------------------------------------------*/
1670 /* Initialize pool features. */
1671 static void pool_features_init(struct pool_features *pf)
1672 {
1673         pf->zero_new_blocks = 1;
1674         pf->discard_enabled = 1;
1675         pf->discard_passdown = 1;
1676 }
1677
1678 static void __pool_destroy(struct pool *pool)
1679 {
1680         __pool_table_remove(pool);
1681
1682         if (dm_pool_metadata_close(pool->pmd) < 0)
1683                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1684
1685         prison_destroy(pool->prison);
1686         dm_kcopyd_client_destroy(pool->copier);
1687
1688         if (pool->wq)
1689                 destroy_workqueue(pool->wq);
1690
1691         if (pool->next_mapping)
1692                 mempool_free(pool->next_mapping, pool->mapping_pool);
1693         mempool_destroy(pool->mapping_pool);
1694         mempool_destroy(pool->endio_hook_pool);
1695         kfree(pool);
1696 }
1697
1698 static struct kmem_cache *_new_mapping_cache;
1699 static struct kmem_cache *_endio_hook_cache;
1700
1701 static struct pool *pool_create(struct mapped_device *pool_md,
1702                                 struct block_device *metadata_dev,
1703                                 unsigned long block_size, char **error)
1704 {
1705         int r;
1706         void *err_p;
1707         struct pool *pool;
1708         struct dm_pool_metadata *pmd;
1709
1710         pmd = dm_pool_metadata_open(metadata_dev, block_size);
1711         if (IS_ERR(pmd)) {
1712                 *error = "Error creating metadata object";
1713                 return (struct pool *)pmd;
1714         }
1715
1716         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1717         if (!pool) {
1718                 *error = "Error allocating memory for pool";
1719                 err_p = ERR_PTR(-ENOMEM);
1720                 goto bad_pool;
1721         }
1722
1723         pool->pmd = pmd;
1724         pool->sectors_per_block = block_size;
1725         pool->block_shift = ffs(block_size) - 1;
1726         pool->offset_mask = block_size - 1;
1727         pool->low_water_blocks = 0;
1728         pool_features_init(&pool->pf);
1729         pool->prison = prison_create(PRISON_CELLS);
1730         if (!pool->prison) {
1731                 *error = "Error creating pool's bio prison";
1732                 err_p = ERR_PTR(-ENOMEM);
1733                 goto bad_prison;
1734         }
1735
1736         pool->copier = dm_kcopyd_client_create();
1737         if (IS_ERR(pool->copier)) {
1738                 r = PTR_ERR(pool->copier);
1739                 *error = "Error creating pool's kcopyd client";
1740                 err_p = ERR_PTR(r);
1741                 goto bad_kcopyd_client;
1742         }
1743
1744         /*
1745          * Create singlethreaded workqueue that will service all devices
1746          * that use this metadata.
1747          */
1748         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1749         if (!pool->wq) {
1750                 *error = "Error creating pool's workqueue";
1751                 err_p = ERR_PTR(-ENOMEM);
1752                 goto bad_wq;
1753         }
1754
1755         INIT_WORK(&pool->worker, do_worker);
1756         INIT_DELAYED_WORK(&pool->waker, do_waker);
1757         spin_lock_init(&pool->lock);
1758         bio_list_init(&pool->deferred_bios);
1759         bio_list_init(&pool->deferred_flush_bios);
1760         INIT_LIST_HEAD(&pool->prepared_mappings);
1761         INIT_LIST_HEAD(&pool->prepared_discards);
1762         pool->low_water_triggered = 0;
1763         pool->no_free_space = 0;
1764         bio_list_init(&pool->retry_on_resume_list);
1765         ds_init(&pool->shared_read_ds);
1766         ds_init(&pool->all_io_ds);
1767
1768         pool->next_mapping = NULL;
1769         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1770                                                       _new_mapping_cache);
1771         if (!pool->mapping_pool) {
1772                 *error = "Error creating pool's mapping mempool";
1773                 err_p = ERR_PTR(-ENOMEM);
1774                 goto bad_mapping_pool;
1775         }
1776
1777         pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1778                                                          _endio_hook_cache);
1779         if (!pool->endio_hook_pool) {
1780                 *error = "Error creating pool's endio_hook mempool";
1781                 err_p = ERR_PTR(-ENOMEM);
1782                 goto bad_endio_hook_pool;
1783         }
1784         pool->ref_count = 1;
1785         pool->last_commit_jiffies = jiffies;
1786         pool->pool_md = pool_md;
1787         pool->md_dev = metadata_dev;
1788         __pool_table_insert(pool);
1789
1790         return pool;
1791
1792 bad_endio_hook_pool:
1793         mempool_destroy(pool->mapping_pool);
1794 bad_mapping_pool:
1795         destroy_workqueue(pool->wq);
1796 bad_wq:
1797         dm_kcopyd_client_destroy(pool->copier);
1798 bad_kcopyd_client:
1799         prison_destroy(pool->prison);
1800 bad_prison:
1801         kfree(pool);
1802 bad_pool:
1803         if (dm_pool_metadata_close(pmd))
1804                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1805
1806         return err_p;
1807 }
1808
1809 static void __pool_inc(struct pool *pool)
1810 {
1811         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1812         pool->ref_count++;
1813 }
1814
1815 static void __pool_dec(struct pool *pool)
1816 {
1817         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1818         BUG_ON(!pool->ref_count);
1819         if (!--pool->ref_count)
1820                 __pool_destroy(pool);
1821 }
1822
1823 static struct pool *__pool_find(struct mapped_device *pool_md,
1824                                 struct block_device *metadata_dev,
1825                                 unsigned long block_size, char **error,
1826                                 int *created)
1827 {
1828         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1829
1830         if (pool) {
1831                 if (pool->pool_md != pool_md)
1832                         return ERR_PTR(-EBUSY);
1833                 __pool_inc(pool);
1834
1835         } else {
1836                 pool = __pool_table_lookup(pool_md);
1837                 if (pool) {
1838                         if (pool->md_dev != metadata_dev)
1839                                 return ERR_PTR(-EINVAL);
1840                         __pool_inc(pool);
1841
1842                 } else {
1843                         pool = pool_create(pool_md, metadata_dev, block_size, error);
1844                         *created = 1;
1845                 }
1846         }
1847
1848         return pool;
1849 }
1850
1851 /*----------------------------------------------------------------
1852  * Pool target methods
1853  *--------------------------------------------------------------*/
1854 static void pool_dtr(struct dm_target *ti)
1855 {
1856         struct pool_c *pt = ti->private;
1857
1858         mutex_lock(&dm_thin_pool_table.mutex);
1859
1860         unbind_control_target(pt->pool, ti);
1861         __pool_dec(pt->pool);
1862         dm_put_device(ti, pt->metadata_dev);
1863         dm_put_device(ti, pt->data_dev);
1864         kfree(pt);
1865
1866         mutex_unlock(&dm_thin_pool_table.mutex);
1867 }
1868
1869 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1870                                struct dm_target *ti)
1871 {
1872         int r;
1873         unsigned argc;
1874         const char *arg_name;
1875
1876         static struct dm_arg _args[] = {
1877                 {0, 3, "Invalid number of pool feature arguments"},
1878         };
1879
1880         /*
1881          * No feature arguments supplied.
1882          */
1883         if (!as->argc)
1884                 return 0;
1885
1886         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1887         if (r)
1888                 return -EINVAL;
1889
1890         while (argc && !r) {
1891                 arg_name = dm_shift_arg(as);
1892                 argc--;
1893
1894                 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1895                         pf->zero_new_blocks = 0;
1896                         continue;
1897                 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1898                         pf->discard_enabled = 0;
1899                         continue;
1900                 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1901                         pf->discard_passdown = 0;
1902                         continue;
1903                 }
1904
1905                 ti->error = "Unrecognised pool feature requested";
1906                 r = -EINVAL;
1907         }
1908
1909         return r;
1910 }
1911
1912 /*
1913  * thin-pool <metadata dev> <data dev>
1914  *           <data block size (sectors)>
1915  *           <low water mark (blocks)>
1916  *           [<#feature args> [<arg>]*]
1917  *
1918  * Optional feature arguments are:
1919  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1920  *           ignore_discard: disable discard
1921  *           no_discard_passdown: don't pass discards down to the data device
1922  */
1923 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1924 {
1925         int r, pool_created = 0;
1926         struct pool_c *pt;
1927         struct pool *pool;
1928         struct pool_features pf;
1929         struct dm_arg_set as;
1930         struct dm_dev *data_dev;
1931         unsigned long block_size;
1932         dm_block_t low_water_blocks;
1933         struct dm_dev *metadata_dev;
1934         sector_t metadata_dev_size;
1935         char b[BDEVNAME_SIZE];
1936
1937         /*
1938          * FIXME Remove validation from scope of lock.
1939          */
1940         mutex_lock(&dm_thin_pool_table.mutex);
1941
1942         if (argc < 4) {
1943                 ti->error = "Invalid argument count";
1944                 r = -EINVAL;
1945                 goto out_unlock;
1946         }
1947         as.argc = argc;
1948         as.argv = argv;
1949
1950         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1951         if (r) {
1952                 ti->error = "Error opening metadata block device";
1953                 goto out_unlock;
1954         }
1955
1956         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1957         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1958                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1959                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1960
1961         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1962         if (r) {
1963                 ti->error = "Error getting data device";
1964                 goto out_metadata;
1965         }
1966
1967         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1968             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1969             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1970             !is_power_of_2(block_size)) {
1971                 ti->error = "Invalid block size";
1972                 r = -EINVAL;
1973                 goto out;
1974         }
1975
1976         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1977                 ti->error = "Invalid low water mark";
1978                 r = -EINVAL;
1979                 goto out;
1980         }
1981
1982         /*
1983          * Set default pool features.
1984          */
1985         pool_features_init(&pf);
1986
1987         dm_consume_args(&as, 4);
1988         r = parse_pool_features(&as, &pf, ti);
1989         if (r)
1990                 goto out;
1991
1992         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1993         if (!pt) {
1994                 r = -ENOMEM;
1995                 goto out;
1996         }
1997
1998         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1999                            block_size, &ti->error, &pool_created);
2000         if (IS_ERR(pool)) {
2001                 r = PTR_ERR(pool);
2002                 goto out_free_pt;
2003         }
2004
2005         /*
2006          * 'pool_created' reflects whether this is the first table load.
2007          * Top level discard support is not allowed to be changed after
2008          * initial load.  This would require a pool reload to trigger thin
2009          * device changes.
2010          */
2011         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2012                 ti->error = "Discard support cannot be disabled once enabled";
2013                 r = -EINVAL;
2014                 goto out_flags_changed;
2015         }
2016
2017         pt->pool = pool;
2018         pt->ti = ti;
2019         pt->metadata_dev = metadata_dev;
2020         pt->data_dev = data_dev;
2021         pt->low_water_blocks = low_water_blocks;
2022         pt->pf = pf;
2023         ti->num_flush_requests = 1;
2024         /*
2025          * Only need to enable discards if the pool should pass
2026          * them down to the data device.  The thin device's discard
2027          * processing will cause mappings to be removed from the btree.
2028          */
2029         if (pf.discard_enabled && pf.discard_passdown) {
2030                 ti->num_discard_requests = 1;
2031                 /*
2032                  * Setting 'discards_supported' circumvents the normal
2033                  * stacking of discard limits (this keeps the pool and
2034                  * thin devices' discard limits consistent).
2035                  */
2036                 ti->discards_supported = 1;
2037         }
2038         ti->private = pt;
2039
2040         pt->callbacks.congested_fn = pool_is_congested;
2041         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2042
2043         mutex_unlock(&dm_thin_pool_table.mutex);
2044
2045         return 0;
2046
2047 out_flags_changed:
2048         __pool_dec(pool);
2049 out_free_pt:
2050         kfree(pt);
2051 out:
2052         dm_put_device(ti, data_dev);
2053 out_metadata:
2054         dm_put_device(ti, metadata_dev);
2055 out_unlock:
2056         mutex_unlock(&dm_thin_pool_table.mutex);
2057
2058         return r;
2059 }
2060
2061 static int pool_map(struct dm_target *ti, struct bio *bio,
2062                     union map_info *map_context)
2063 {
2064         int r;
2065         struct pool_c *pt = ti->private;
2066         struct pool *pool = pt->pool;
2067         unsigned long flags;
2068
2069         /*
2070          * As this is a singleton target, ti->begin is always zero.
2071          */
2072         spin_lock_irqsave(&pool->lock, flags);
2073         bio->bi_bdev = pt->data_dev->bdev;
2074         r = DM_MAPIO_REMAPPED;
2075         spin_unlock_irqrestore(&pool->lock, flags);
2076
2077         return r;
2078 }
2079
2080 /*
2081  * Retrieves the number of blocks of the data device from
2082  * the superblock and compares it to the actual device size,
2083  * thus resizing the data device in case it has grown.
2084  *
2085  * This both copes with opening preallocated data devices in the ctr
2086  * being followed by a resume
2087  * -and-
2088  * calling the resume method individually after userspace has
2089  * grown the data device in reaction to a table event.
2090  */
2091 static int pool_preresume(struct dm_target *ti)
2092 {
2093         int r;
2094         struct pool_c *pt = ti->private;
2095         struct pool *pool = pt->pool;
2096         dm_block_t data_size, sb_data_size;
2097
2098         /*
2099          * Take control of the pool object.
2100          */
2101         r = bind_control_target(pool, ti);
2102         if (r)
2103                 return r;
2104
2105         data_size = ti->len >> pool->block_shift;
2106         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2107         if (r) {
2108                 DMERR("failed to retrieve data device size");
2109                 return r;
2110         }
2111
2112         if (data_size < sb_data_size) {
2113                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2114                       data_size, sb_data_size);
2115                 return -EINVAL;
2116
2117         } else if (data_size > sb_data_size) {
2118                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2119                 if (r) {
2120                         DMERR("failed to resize data device");
2121                         return r;
2122                 }
2123
2124                 r = dm_pool_commit_metadata(pool->pmd);
2125                 if (r) {
2126                         DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2127                               __func__, r);
2128                         return r;
2129                 }
2130         }
2131
2132         return 0;
2133 }
2134
2135 static void pool_resume(struct dm_target *ti)
2136 {
2137         struct pool_c *pt = ti->private;
2138         struct pool *pool = pt->pool;
2139         unsigned long flags;
2140
2141         spin_lock_irqsave(&pool->lock, flags);
2142         pool->low_water_triggered = 0;
2143         pool->no_free_space = 0;
2144         __requeue_bios(pool);
2145         spin_unlock_irqrestore(&pool->lock, flags);
2146
2147         do_waker(&pool->waker.work);
2148 }
2149
2150 static void pool_postsuspend(struct dm_target *ti)
2151 {
2152         int r;
2153         struct pool_c *pt = ti->private;
2154         struct pool *pool = pt->pool;
2155
2156         cancel_delayed_work(&pool->waker);
2157         flush_workqueue(pool->wq);
2158
2159         r = dm_pool_commit_metadata(pool->pmd);
2160         if (r < 0) {
2161                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2162                       __func__, r);
2163                 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2164         }
2165 }
2166
2167 static int check_arg_count(unsigned argc, unsigned args_required)
2168 {
2169         if (argc != args_required) {
2170                 DMWARN("Message received with %u arguments instead of %u.",
2171                        argc, args_required);
2172                 return -EINVAL;
2173         }
2174
2175         return 0;
2176 }
2177
2178 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2179 {
2180         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2181             *dev_id <= MAX_DEV_ID)
2182                 return 0;
2183
2184         if (warning)
2185                 DMWARN("Message received with invalid device id: %s", arg);
2186
2187         return -EINVAL;
2188 }
2189
2190 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2191 {
2192         dm_thin_id dev_id;
2193         int r;
2194
2195         r = check_arg_count(argc, 2);
2196         if (r)
2197                 return r;
2198
2199         r = read_dev_id(argv[1], &dev_id, 1);
2200         if (r)
2201                 return r;
2202
2203         r = dm_pool_create_thin(pool->pmd, dev_id);
2204         if (r) {
2205                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2206                        argv[1]);
2207                 return r;
2208         }
2209
2210         return 0;
2211 }
2212
2213 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2214 {
2215         dm_thin_id dev_id;
2216         dm_thin_id origin_dev_id;
2217         int r;
2218
2219         r = check_arg_count(argc, 3);
2220         if (r)
2221                 return r;
2222
2223         r = read_dev_id(argv[1], &dev_id, 1);
2224         if (r)
2225                 return r;
2226
2227         r = read_dev_id(argv[2], &origin_dev_id, 1);
2228         if (r)
2229                 return r;
2230
2231         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2232         if (r) {
2233                 DMWARN("Creation of new snapshot %s of device %s failed.",
2234                        argv[1], argv[2]);
2235                 return r;
2236         }
2237
2238         return 0;
2239 }
2240
2241 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2242 {
2243         dm_thin_id dev_id;
2244         int r;
2245
2246         r = check_arg_count(argc, 2);
2247         if (r)
2248                 return r;
2249
2250         r = read_dev_id(argv[1], &dev_id, 1);
2251         if (r)
2252                 return r;
2253
2254         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2255         if (r)
2256                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2257
2258         return r;
2259 }
2260
2261 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2262 {
2263         dm_thin_id old_id, new_id;
2264         int r;
2265
2266         r = check_arg_count(argc, 3);
2267         if (r)
2268                 return r;
2269
2270         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2271                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2272                 return -EINVAL;
2273         }
2274
2275         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2276                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2277                 return -EINVAL;
2278         }
2279
2280         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2281         if (r) {
2282                 DMWARN("Failed to change transaction id from %s to %s.",
2283                        argv[1], argv[2]);
2284                 return r;
2285         }
2286
2287         return 0;
2288 }
2289
2290 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2291 {
2292         int r;
2293
2294         r = check_arg_count(argc, 1);
2295         if (r)
2296                 return r;
2297
2298         r = dm_pool_commit_metadata(pool->pmd);
2299         if (r) {
2300                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2301                       __func__, r);
2302                 return r;
2303         }
2304
2305         r = dm_pool_reserve_metadata_snap(pool->pmd);
2306         if (r)
2307                 DMWARN("reserve_metadata_snap message failed.");
2308
2309         return r;
2310 }
2311
2312 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2313 {
2314         int r;
2315
2316         r = check_arg_count(argc, 1);
2317         if (r)
2318                 return r;
2319
2320         r = dm_pool_release_metadata_snap(pool->pmd);
2321         if (r)
2322                 DMWARN("release_metadata_snap message failed.");
2323
2324         return r;
2325 }
2326
2327 /*
2328  * Messages supported:
2329  *   create_thin        <dev_id>
2330  *   create_snap        <dev_id> <origin_id>
2331  *   delete             <dev_id>
2332  *   trim               <dev_id> <new_size_in_sectors>
2333  *   set_transaction_id <current_trans_id> <new_trans_id>
2334  *   reserve_metadata_snap
2335  *   release_metadata_snap
2336  */
2337 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2338 {
2339         int r = -EINVAL;
2340         struct pool_c *pt = ti->private;
2341         struct pool *pool = pt->pool;
2342
2343         if (!strcasecmp(argv[0], "create_thin"))
2344                 r = process_create_thin_mesg(argc, argv, pool);
2345
2346         else if (!strcasecmp(argv[0], "create_snap"))
2347                 r = process_create_snap_mesg(argc, argv, pool);
2348
2349         else if (!strcasecmp(argv[0], "delete"))
2350                 r = process_delete_mesg(argc, argv, pool);
2351
2352         else if (!strcasecmp(argv[0], "set_transaction_id"))
2353                 r = process_set_transaction_id_mesg(argc, argv, pool);
2354
2355         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2356                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2357
2358         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2359                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2360
2361         else
2362                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2363
2364         if (!r) {
2365                 r = dm_pool_commit_metadata(pool->pmd);
2366                 if (r)
2367                         DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2368                               argv[0], r);
2369         }
2370
2371         return r;
2372 }
2373
2374 /*
2375  * Status line is:
2376  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2377  *    <used data sectors>/<total data sectors> <held metadata root>
2378  */
2379 static int pool_status(struct dm_target *ti, status_type_t type,
2380                        char *result, unsigned maxlen)
2381 {
2382         int r, count;
2383         unsigned sz = 0;
2384         uint64_t transaction_id;
2385         dm_block_t nr_free_blocks_data;
2386         dm_block_t nr_free_blocks_metadata;
2387         dm_block_t nr_blocks_data;
2388         dm_block_t nr_blocks_metadata;
2389         dm_block_t held_root;
2390         char buf[BDEVNAME_SIZE];
2391         char buf2[BDEVNAME_SIZE];
2392         struct pool_c *pt = ti->private;
2393         struct pool *pool = pt->pool;
2394
2395         switch (type) {
2396         case STATUSTYPE_INFO:
2397                 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2398                                                         &transaction_id);
2399                 if (r)
2400                         return r;
2401
2402                 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2403                                                           &nr_free_blocks_metadata);
2404                 if (r)
2405                         return r;
2406
2407                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2408                 if (r)
2409                         return r;
2410
2411                 r = dm_pool_get_free_block_count(pool->pmd,
2412                                                  &nr_free_blocks_data);
2413                 if (r)
2414                         return r;
2415
2416                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2417                 if (r)
2418                         return r;
2419
2420                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2421                 if (r)
2422                         return r;
2423
2424                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2425                        (unsigned long long)transaction_id,
2426                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2427                        (unsigned long long)nr_blocks_metadata,
2428                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2429                        (unsigned long long)nr_blocks_data);
2430
2431                 if (held_root)
2432                         DMEMIT("%llu", held_root);
2433                 else
2434                         DMEMIT("-");
2435
2436                 break;
2437
2438         case STATUSTYPE_TABLE:
2439                 DMEMIT("%s %s %lu %llu ",
2440                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2441                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2442                        (unsigned long)pool->sectors_per_block,
2443                        (unsigned long long)pt->low_water_blocks);
2444
2445                 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2446                         !pt->pf.discard_passdown;
2447                 DMEMIT("%u ", count);
2448
2449                 if (!pool->pf.zero_new_blocks)
2450                         DMEMIT("skip_block_zeroing ");
2451
2452                 if (!pool->pf.discard_enabled)
2453                         DMEMIT("ignore_discard ");
2454
2455                 if (!pt->pf.discard_passdown)
2456                         DMEMIT("no_discard_passdown ");
2457
2458                 break;
2459         }
2460
2461         return 0;
2462 }
2463
2464 static int pool_iterate_devices(struct dm_target *ti,
2465                                 iterate_devices_callout_fn fn, void *data)
2466 {
2467         struct pool_c *pt = ti->private;
2468
2469         return fn(ti, pt->data_dev, 0, ti->len, data);
2470 }
2471
2472 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2473                       struct bio_vec *biovec, int max_size)
2474 {
2475         struct pool_c *pt = ti->private;
2476         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2477
2478         if (!q->merge_bvec_fn)
2479                 return max_size;
2480
2481         bvm->bi_bdev = pt->data_dev->bdev;
2482
2483         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2484 }
2485
2486 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2487 {
2488         /*
2489          * FIXME: these limits may be incompatible with the pool's data device
2490          */
2491         limits->max_discard_sectors = pool->sectors_per_block;
2492
2493         /*
2494          * This is just a hint, and not enforced.  We have to cope with
2495          * bios that overlap 2 blocks.
2496          */
2497         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2498         limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2499 }
2500
2501 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2502 {
2503         struct pool_c *pt = ti->private;
2504         struct pool *pool = pt->pool;
2505
2506         blk_limits_io_min(limits, 0);
2507         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2508         if (pool->pf.discard_enabled)
2509                 set_discard_limits(pool, limits);
2510 }
2511
2512 static struct target_type pool_target = {
2513         .name = "thin-pool",
2514         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2515                     DM_TARGET_IMMUTABLE,
2516         .version = {1, 2, 0},
2517         .module = THIS_MODULE,
2518         .ctr = pool_ctr,
2519         .dtr = pool_dtr,
2520         .map = pool_map,
2521         .postsuspend = pool_postsuspend,
2522         .preresume = pool_preresume,
2523         .resume = pool_resume,
2524         .message = pool_message,
2525         .status = pool_status,
2526         .merge = pool_merge,
2527         .iterate_devices = pool_iterate_devices,
2528         .io_hints = pool_io_hints,
2529 };
2530
2531 /*----------------------------------------------------------------
2532  * Thin target methods
2533  *--------------------------------------------------------------*/
2534 static void thin_dtr(struct dm_target *ti)
2535 {
2536         struct thin_c *tc = ti->private;
2537
2538         mutex_lock(&dm_thin_pool_table.mutex);
2539
2540         __pool_dec(tc->pool);
2541         dm_pool_close_thin_device(tc->td);
2542         dm_put_device(ti, tc->pool_dev);
2543         if (tc->origin_dev)
2544                 dm_put_device(ti, tc->origin_dev);
2545         kfree(tc);
2546
2547         mutex_unlock(&dm_thin_pool_table.mutex);
2548 }
2549
2550 /*
2551  * Thin target parameters:
2552  *
2553  * <pool_dev> <dev_id> [origin_dev]
2554  *
2555  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2556  * dev_id: the internal device identifier
2557  * origin_dev: a device external to the pool that should act as the origin
2558  *
2559  * If the pool device has discards disabled, they get disabled for the thin
2560  * device as well.
2561  */
2562 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2563 {
2564         int r;
2565         struct thin_c *tc;
2566         struct dm_dev *pool_dev, *origin_dev;
2567         struct mapped_device *pool_md;
2568
2569         mutex_lock(&dm_thin_pool_table.mutex);
2570
2571         if (argc != 2 && argc != 3) {
2572                 ti->error = "Invalid argument count";
2573                 r = -EINVAL;
2574                 goto out_unlock;
2575         }
2576
2577         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2578         if (!tc) {
2579                 ti->error = "Out of memory";
2580                 r = -ENOMEM;
2581                 goto out_unlock;
2582         }
2583
2584         if (argc == 3) {
2585                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2586                 if (r) {
2587                         ti->error = "Error opening origin device";
2588                         goto bad_origin_dev;
2589                 }
2590                 tc->origin_dev = origin_dev;
2591         }
2592
2593         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2594         if (r) {
2595                 ti->error = "Error opening pool device";
2596                 goto bad_pool_dev;
2597         }
2598         tc->pool_dev = pool_dev;
2599
2600         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2601                 ti->error = "Invalid device id";
2602                 r = -EINVAL;
2603                 goto bad_common;
2604         }
2605
2606         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2607         if (!pool_md) {
2608                 ti->error = "Couldn't get pool mapped device";
2609                 r = -EINVAL;
2610                 goto bad_common;
2611         }
2612
2613         tc->pool = __pool_table_lookup(pool_md);
2614         if (!tc->pool) {
2615                 ti->error = "Couldn't find pool object";
2616                 r = -EINVAL;
2617                 goto bad_pool_lookup;
2618         }
2619         __pool_inc(tc->pool);
2620
2621         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2622         if (r) {
2623                 ti->error = "Couldn't open thin internal device";
2624                 goto bad_thin_open;
2625         }
2626
2627         ti->split_io = tc->pool->sectors_per_block;
2628         ti->num_flush_requests = 1;
2629
2630         /* In case the pool supports discards, pass them on. */
2631         if (tc->pool->pf.discard_enabled) {
2632                 ti->discards_supported = 1;
2633                 ti->num_discard_requests = 1;
2634                 ti->discard_zeroes_data_unsupported = 1;
2635         }
2636
2637         dm_put(pool_md);
2638
2639         mutex_unlock(&dm_thin_pool_table.mutex);
2640
2641         return 0;
2642
2643 bad_thin_open:
2644         __pool_dec(tc->pool);
2645 bad_pool_lookup:
2646         dm_put(pool_md);
2647 bad_common:
2648         dm_put_device(ti, tc->pool_dev);
2649 bad_pool_dev:
2650         if (tc->origin_dev)
2651                 dm_put_device(ti, tc->origin_dev);
2652 bad_origin_dev:
2653         kfree(tc);
2654 out_unlock:
2655         mutex_unlock(&dm_thin_pool_table.mutex);
2656
2657         return r;
2658 }
2659
2660 static int thin_map(struct dm_target *ti, struct bio *bio,
2661                     union map_info *map_context)
2662 {
2663         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2664
2665         return thin_bio_map(ti, bio, map_context);
2666 }
2667
2668 static int thin_endio(struct dm_target *ti,
2669                       struct bio *bio, int err,
2670                       union map_info *map_context)
2671 {
2672         unsigned long flags;
2673         struct dm_thin_endio_hook *h = map_context->ptr;
2674         struct list_head work;
2675         struct dm_thin_new_mapping *m, *tmp;
2676         struct pool *pool = h->tc->pool;
2677
2678         if (h->shared_read_entry) {
2679                 INIT_LIST_HEAD(&work);
2680                 ds_dec(h->shared_read_entry, &work);
2681
2682                 spin_lock_irqsave(&pool->lock, flags);
2683                 list_for_each_entry_safe(m, tmp, &work, list) {
2684                         list_del(&m->list);
2685                         m->quiesced = 1;
2686                         __maybe_add_mapping(m);
2687                 }
2688                 spin_unlock_irqrestore(&pool->lock, flags);
2689         }
2690
2691         if (h->all_io_entry) {
2692                 INIT_LIST_HEAD(&work);
2693                 ds_dec(h->all_io_entry, &work);
2694                 spin_lock_irqsave(&pool->lock, flags);
2695                 list_for_each_entry_safe(m, tmp, &work, list)
2696                         list_add(&m->list, &pool->prepared_discards);
2697                 spin_unlock_irqrestore(&pool->lock, flags);
2698         }
2699
2700         mempool_free(h, pool->endio_hook_pool);
2701
2702         return 0;
2703 }
2704
2705 static void thin_postsuspend(struct dm_target *ti)
2706 {
2707         if (dm_noflush_suspending(ti))
2708                 requeue_io((struct thin_c *)ti->private);
2709 }
2710
2711 /*
2712  * <nr mapped sectors> <highest mapped sector>
2713  */
2714 static int thin_status(struct dm_target *ti, status_type_t type,
2715                        char *result, unsigned maxlen)
2716 {
2717         int r;
2718         ssize_t sz = 0;
2719         dm_block_t mapped, highest;
2720         char buf[BDEVNAME_SIZE];
2721         struct thin_c *tc = ti->private;
2722
2723         if (!tc->td)
2724                 DMEMIT("-");
2725         else {
2726                 switch (type) {
2727                 case STATUSTYPE_INFO:
2728                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2729                         if (r)
2730                                 return r;
2731
2732                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2733                         if (r < 0)
2734                                 return r;
2735
2736                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2737                         if (r)
2738                                 DMEMIT("%llu", ((highest + 1) *
2739                                                 tc->pool->sectors_per_block) - 1);
2740                         else
2741                                 DMEMIT("-");
2742                         break;
2743
2744                 case STATUSTYPE_TABLE:
2745                         DMEMIT("%s %lu",
2746                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2747                                (unsigned long) tc->dev_id);
2748                         if (tc->origin_dev)
2749                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2750                         break;
2751                 }
2752         }
2753
2754         return 0;
2755 }
2756
2757 static int thin_iterate_devices(struct dm_target *ti,
2758                                 iterate_devices_callout_fn fn, void *data)
2759 {
2760         dm_block_t blocks;
2761         struct thin_c *tc = ti->private;
2762
2763         /*
2764          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2765          * we follow a more convoluted path through to the pool's target.
2766          */
2767         if (!tc->pool->ti)
2768                 return 0;       /* nothing is bound */
2769
2770         blocks = tc->pool->ti->len >> tc->pool->block_shift;
2771         if (blocks)
2772                 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2773
2774         return 0;
2775 }
2776
2777 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2778 {
2779         struct thin_c *tc = ti->private;
2780         struct pool *pool = tc->pool;
2781
2782         blk_limits_io_min(limits, 0);
2783         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2784         set_discard_limits(pool, limits);
2785 }
2786
2787 static struct target_type thin_target = {
2788         .name = "thin",
2789         .version = {1, 1, 0},
2790         .module = THIS_MODULE,
2791         .ctr = thin_ctr,
2792         .dtr = thin_dtr,
2793         .map = thin_map,
2794         .end_io = thin_endio,
2795         .postsuspend = thin_postsuspend,
2796         .status = thin_status,
2797         .iterate_devices = thin_iterate_devices,
2798         .io_hints = thin_io_hints,
2799 };
2800
2801 /*----------------------------------------------------------------*/
2802
2803 static int __init dm_thin_init(void)
2804 {
2805         int r;
2806
2807         pool_table_init();
2808
2809         r = dm_register_target(&thin_target);
2810         if (r)
2811                 return r;
2812
2813         r = dm_register_target(&pool_target);
2814         if (r)
2815                 goto bad_pool_target;
2816
2817         r = -ENOMEM;
2818
2819         _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2820         if (!_cell_cache)
2821                 goto bad_cell_cache;
2822
2823         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2824         if (!_new_mapping_cache)
2825                 goto bad_new_mapping_cache;
2826
2827         _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2828         if (!_endio_hook_cache)
2829                 goto bad_endio_hook_cache;
2830
2831         return 0;
2832
2833 bad_endio_hook_cache:
2834         kmem_cache_destroy(_new_mapping_cache);
2835 bad_new_mapping_cache:
2836         kmem_cache_destroy(_cell_cache);
2837 bad_cell_cache:
2838         dm_unregister_target(&pool_target);
2839 bad_pool_target:
2840         dm_unregister_target(&thin_target);
2841
2842         return r;
2843 }
2844
2845 static void dm_thin_exit(void)
2846 {
2847         dm_unregister_target(&thin_target);
2848         dm_unregister_target(&pool_target);
2849
2850         kmem_cache_destroy(_cell_cache);
2851         kmem_cache_destroy(_new_mapping_cache);
2852         kmem_cache_destroy(_endio_hook_cache);
2853 }
2854
2855 module_init(dm_thin_init);
2856 module_exit(dm_thin_exit);
2857
2858 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2859 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2860 MODULE_LICENSE("GPL");