dm thin: switch to read only mode if a mapping insert fails
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515
516         struct thin_c *tc;
517         dm_block_t virt_block;
518         dm_block_t data_block;
519         struct dm_bio_prison_cell *cell, *cell2;
520         int err;
521
522         /*
523          * If the bio covers the whole area of a block then we can avoid
524          * zeroing or copying.  Instead this bio is hooked.  The bio will
525          * still be in the cell, so care has to be taken to avoid issuing
526          * the bio twice.
527          */
528         struct bio *bio;
529         bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534         struct pool *pool = m->tc->pool;
535
536         if (m->quiesced && m->prepared) {
537                 list_add(&m->list, &pool->prepared_mappings);
538                 wake_worker(pool);
539         }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544         unsigned long flags;
545         struct dm_thin_new_mapping *m = context;
546         struct pool *pool = m->tc->pool;
547
548         m->err = read_err || write_err ? -EIO : 0;
549
550         spin_lock_irqsave(&pool->lock, flags);
551         m->prepared = 1;
552         __maybe_add_mapping(m);
553         spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558         unsigned long flags;
559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560         struct dm_thin_new_mapping *m = h->overwrite_mapping;
561         struct pool *pool = m->tc->pool;
562
563         m->err = err;
564
565         spin_lock_irqsave(&pool->lock, flags);
566         m->prepared = 1;
567         __maybe_add_mapping(m);
568         spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * Workqueue.
575  */
576
577 /*
578  * Prepared mapping jobs.
579  */
580
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586         struct pool *pool = tc->pool;
587         unsigned long flags;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         cell_release(pool, cell, &pool->deferred_bios);
591         spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593         wake_worker(pool);
594 }
595
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601         struct pool *pool = tc->pool;
602         unsigned long flags;
603
604         spin_lock_irqsave(&pool->lock, flags);
605         cell_release_no_holder(pool, cell, &pool->deferred_bios);
606         spin_unlock_irqrestore(&pool->lock, flags);
607
608         wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613         if (m->bio)
614                 m->bio->bi_end_io = m->saved_bi_end_io;
615         cell_error(m->tc->pool, m->cell);
616         list_del(&m->list);
617         mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622         struct thin_c *tc = m->tc;
623         struct pool *pool = tc->pool;
624         struct bio *bio;
625         int r;
626
627         bio = m->bio;
628         if (bio)
629                 bio->bi_end_io = m->saved_bi_end_io;
630
631         if (m->err) {
632                 cell_error(pool, m->cell);
633                 goto out;
634         }
635
636         /*
637          * Commit the prepared block into the mapping btree.
638          * Any I/O for this block arriving after this point will get
639          * remapped to it directly.
640          */
641         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642         if (r) {
643                 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
644                             dm_device_name(pool->pool_md), r);
645                 set_pool_mode(pool, PM_READ_ONLY);
646                 cell_error(pool, m->cell);
647                 goto out;
648         }
649
650         /*
651          * Release any bios held while the block was being provisioned.
652          * If we are processing a write bio that completely covers the block,
653          * we already processed it so can ignore it now when processing
654          * the bios in the cell.
655          */
656         if (bio) {
657                 cell_defer_no_holder(tc, m->cell);
658                 bio_endio(bio, 0);
659         } else
660                 cell_defer(tc, m->cell);
661
662 out:
663         list_del(&m->list);
664         mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669         struct thin_c *tc = m->tc;
670
671         bio_io_error(m->bio);
672         cell_defer_no_holder(tc, m->cell);
673         cell_defer_no_holder(tc, m->cell2);
674         mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679         struct thin_c *tc = m->tc;
680
681         inc_all_io_entry(tc->pool, m->bio);
682         cell_defer_no_holder(tc, m->cell);
683         cell_defer_no_holder(tc, m->cell2);
684
685         if (m->pass_discard)
686                 remap_and_issue(tc, m->bio, m->data_block);
687         else
688                 bio_endio(m->bio, 0);
689
690         mempool_free(m, tc->pool->mapping_pool);
691 }
692
693 static void process_prepared_discard(struct dm_thin_new_mapping *m)
694 {
695         int r;
696         struct thin_c *tc = m->tc;
697
698         r = dm_thin_remove_block(tc->td, m->virt_block);
699         if (r)
700                 DMERR_LIMIT("dm_thin_remove_block() failed");
701
702         process_prepared_discard_passdown(m);
703 }
704
705 static void process_prepared(struct pool *pool, struct list_head *head,
706                              process_mapping_fn *fn)
707 {
708         unsigned long flags;
709         struct list_head maps;
710         struct dm_thin_new_mapping *m, *tmp;
711
712         INIT_LIST_HEAD(&maps);
713         spin_lock_irqsave(&pool->lock, flags);
714         list_splice_init(head, &maps);
715         spin_unlock_irqrestore(&pool->lock, flags);
716
717         list_for_each_entry_safe(m, tmp, &maps, list)
718                 (*fn)(m);
719 }
720
721 /*
722  * Deferred bio jobs.
723  */
724 static int io_overlaps_block(struct pool *pool, struct bio *bio)
725 {
726         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
727 }
728
729 static int io_overwrites_block(struct pool *pool, struct bio *bio)
730 {
731         return (bio_data_dir(bio) == WRITE) &&
732                 io_overlaps_block(pool, bio);
733 }
734
735 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
736                                bio_end_io_t *fn)
737 {
738         *save = bio->bi_end_io;
739         bio->bi_end_io = fn;
740 }
741
742 static int ensure_next_mapping(struct pool *pool)
743 {
744         if (pool->next_mapping)
745                 return 0;
746
747         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
748
749         return pool->next_mapping ? 0 : -ENOMEM;
750 }
751
752 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
753 {
754         struct dm_thin_new_mapping *r = pool->next_mapping;
755
756         BUG_ON(!pool->next_mapping);
757
758         pool->next_mapping = NULL;
759
760         return r;
761 }
762
763 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
764                           struct dm_dev *origin, dm_block_t data_origin,
765                           dm_block_t data_dest,
766                           struct dm_bio_prison_cell *cell, struct bio *bio)
767 {
768         int r;
769         struct pool *pool = tc->pool;
770         struct dm_thin_new_mapping *m = get_next_mapping(pool);
771
772         INIT_LIST_HEAD(&m->list);
773         m->quiesced = 0;
774         m->prepared = 0;
775         m->tc = tc;
776         m->virt_block = virt_block;
777         m->data_block = data_dest;
778         m->cell = cell;
779         m->err = 0;
780         m->bio = NULL;
781
782         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
783                 m->quiesced = 1;
784
785         /*
786          * IO to pool_dev remaps to the pool target's data_dev.
787          *
788          * If the whole block of data is being overwritten, we can issue the
789          * bio immediately. Otherwise we use kcopyd to clone the data first.
790          */
791         if (io_overwrites_block(pool, bio)) {
792                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
793
794                 h->overwrite_mapping = m;
795                 m->bio = bio;
796                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
797                 inc_all_io_entry(pool, bio);
798                 remap_and_issue(tc, bio, data_dest);
799         } else {
800                 struct dm_io_region from, to;
801
802                 from.bdev = origin->bdev;
803                 from.sector = data_origin * pool->sectors_per_block;
804                 from.count = pool->sectors_per_block;
805
806                 to.bdev = tc->pool_dev->bdev;
807                 to.sector = data_dest * pool->sectors_per_block;
808                 to.count = pool->sectors_per_block;
809
810                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
811                                    0, copy_complete, m);
812                 if (r < 0) {
813                         mempool_free(m, pool->mapping_pool);
814                         DMERR_LIMIT("dm_kcopyd_copy() failed");
815                         cell_error(pool, cell);
816                 }
817         }
818 }
819
820 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
821                                    dm_block_t data_origin, dm_block_t data_dest,
822                                    struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824         schedule_copy(tc, virt_block, tc->pool_dev,
825                       data_origin, data_dest, cell, bio);
826 }
827
828 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
829                                    dm_block_t data_dest,
830                                    struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832         schedule_copy(tc, virt_block, tc->origin_dev,
833                       virt_block, data_dest, cell, bio);
834 }
835
836 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
837                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
838                           struct bio *bio)
839 {
840         struct pool *pool = tc->pool;
841         struct dm_thin_new_mapping *m = get_next_mapping(pool);
842
843         INIT_LIST_HEAD(&m->list);
844         m->quiesced = 1;
845         m->prepared = 0;
846         m->tc = tc;
847         m->virt_block = virt_block;
848         m->data_block = data_block;
849         m->cell = cell;
850         m->err = 0;
851         m->bio = NULL;
852
853         /*
854          * If the whole block of data is being overwritten or we are not
855          * zeroing pre-existing data, we can issue the bio immediately.
856          * Otherwise we use kcopyd to zero the data first.
857          */
858         if (!pool->pf.zero_new_blocks)
859                 process_prepared_mapping(m);
860
861         else if (io_overwrites_block(pool, bio)) {
862                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863
864                 h->overwrite_mapping = m;
865                 m->bio = bio;
866                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
867                 inc_all_io_entry(pool, bio);
868                 remap_and_issue(tc, bio, data_block);
869         } else {
870                 int r;
871                 struct dm_io_region to;
872
873                 to.bdev = tc->pool_dev->bdev;
874                 to.sector = data_block * pool->sectors_per_block;
875                 to.count = pool->sectors_per_block;
876
877                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
878                 if (r < 0) {
879                         mempool_free(m, pool->mapping_pool);
880                         DMERR_LIMIT("dm_kcopyd_zero() failed");
881                         cell_error(pool, cell);
882                 }
883         }
884 }
885
886 static int commit(struct pool *pool)
887 {
888         int r;
889
890         r = dm_pool_commit_metadata(pool->pmd);
891         if (r)
892                 DMERR_LIMIT("%s: commit failed: error = %d",
893                             dm_device_name(pool->pool_md), r);
894
895         return r;
896 }
897
898 /*
899  * A non-zero return indicates read_only or fail_io mode.
900  * Many callers don't care about the return value.
901  */
902 static int commit_or_fallback(struct pool *pool)
903 {
904         int r;
905
906         if (get_pool_mode(pool) != PM_WRITE)
907                 return -EINVAL;
908
909         r = commit(pool);
910         if (r)
911                 set_pool_mode(pool, PM_READ_ONLY);
912
913         return r;
914 }
915
916 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
917 {
918         int r;
919         dm_block_t free_blocks;
920         unsigned long flags;
921         struct pool *pool = tc->pool;
922
923         /*
924          * Once no_free_space is set we must not allow allocation to succeed.
925          * Otherwise it is difficult to explain, debug, test and support.
926          */
927         if (pool->no_free_space)
928                 return -ENOSPC;
929
930         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
931         if (r)
932                 return r;
933
934         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
935                 DMWARN("%s: reached low water mark for data device: sending event.",
936                        dm_device_name(pool->pool_md));
937                 spin_lock_irqsave(&pool->lock, flags);
938                 pool->low_water_triggered = 1;
939                 spin_unlock_irqrestore(&pool->lock, flags);
940                 dm_table_event(pool->ti->table);
941         }
942
943         if (!free_blocks) {
944                 /*
945                  * Try to commit to see if that will free up some
946                  * more space.
947                  */
948                 (void) commit_or_fallback(pool);
949
950                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
951                 if (r)
952                         return r;
953
954                 /*
955                  * If we still have no space we set a flag to avoid
956                  * doing all this checking and return -ENOSPC.  This
957                  * flag serves as a latch that disallows allocations from
958                  * this pool until the admin takes action (e.g. resize or
959                  * table reload).
960                  */
961                 if (!free_blocks) {
962                         DMWARN("%s: no free space available.",
963                                dm_device_name(pool->pool_md));
964                         spin_lock_irqsave(&pool->lock, flags);
965                         pool->no_free_space = 1;
966                         spin_unlock_irqrestore(&pool->lock, flags);
967                         return -ENOSPC;
968                 }
969         }
970
971         r = dm_pool_alloc_data_block(pool->pmd, result);
972         if (r)
973                 return r;
974
975         return 0;
976 }
977
978 /*
979  * If we have run out of space, queue bios until the device is
980  * resumed, presumably after having been reloaded with more space.
981  */
982 static void retry_on_resume(struct bio *bio)
983 {
984         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
985         struct thin_c *tc = h->tc;
986         struct pool *pool = tc->pool;
987         unsigned long flags;
988
989         spin_lock_irqsave(&pool->lock, flags);
990         bio_list_add(&pool->retry_on_resume_list, bio);
991         spin_unlock_irqrestore(&pool->lock, flags);
992 }
993
994 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
995 {
996         struct bio *bio;
997         struct bio_list bios;
998
999         bio_list_init(&bios);
1000         cell_release(pool, cell, &bios);
1001
1002         while ((bio = bio_list_pop(&bios)))
1003                 retry_on_resume(bio);
1004 }
1005
1006 static void process_discard(struct thin_c *tc, struct bio *bio)
1007 {
1008         int r;
1009         unsigned long flags;
1010         struct pool *pool = tc->pool;
1011         struct dm_bio_prison_cell *cell, *cell2;
1012         struct dm_cell_key key, key2;
1013         dm_block_t block = get_bio_block(tc, bio);
1014         struct dm_thin_lookup_result lookup_result;
1015         struct dm_thin_new_mapping *m;
1016
1017         build_virtual_key(tc->td, block, &key);
1018         if (bio_detain(tc->pool, &key, bio, &cell))
1019                 return;
1020
1021         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1022         switch (r) {
1023         case 0:
1024                 /*
1025                  * Check nobody is fiddling with this pool block.  This can
1026                  * happen if someone's in the process of breaking sharing
1027                  * on this block.
1028                  */
1029                 build_data_key(tc->td, lookup_result.block, &key2);
1030                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1031                         cell_defer_no_holder(tc, cell);
1032                         break;
1033                 }
1034
1035                 if (io_overlaps_block(pool, bio)) {
1036                         /*
1037                          * IO may still be going to the destination block.  We must
1038                          * quiesce before we can do the removal.
1039                          */
1040                         m = get_next_mapping(pool);
1041                         m->tc = tc;
1042                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1043                         m->virt_block = block;
1044                         m->data_block = lookup_result.block;
1045                         m->cell = cell;
1046                         m->cell2 = cell2;
1047                         m->err = 0;
1048                         m->bio = bio;
1049
1050                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1051                                 spin_lock_irqsave(&pool->lock, flags);
1052                                 list_add(&m->list, &pool->prepared_discards);
1053                                 spin_unlock_irqrestore(&pool->lock, flags);
1054                                 wake_worker(pool);
1055                         }
1056                 } else {
1057                         inc_all_io_entry(pool, bio);
1058                         cell_defer_no_holder(tc, cell);
1059                         cell_defer_no_holder(tc, cell2);
1060
1061                         /*
1062                          * The DM core makes sure that the discard doesn't span
1063                          * a block boundary.  So we submit the discard of a
1064                          * partial block appropriately.
1065                          */
1066                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1067                                 remap_and_issue(tc, bio, lookup_result.block);
1068                         else
1069                                 bio_endio(bio, 0);
1070                 }
1071                 break;
1072
1073         case -ENODATA:
1074                 /*
1075                  * It isn't provisioned, just forget it.
1076                  */
1077                 cell_defer_no_holder(tc, cell);
1078                 bio_endio(bio, 0);
1079                 break;
1080
1081         default:
1082                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1083                             __func__, r);
1084                 cell_defer_no_holder(tc, cell);
1085                 bio_io_error(bio);
1086                 break;
1087         }
1088 }
1089
1090 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1091                           struct dm_cell_key *key,
1092                           struct dm_thin_lookup_result *lookup_result,
1093                           struct dm_bio_prison_cell *cell)
1094 {
1095         int r;
1096         dm_block_t data_block;
1097         struct pool *pool = tc->pool;
1098
1099         r = alloc_data_block(tc, &data_block);
1100         switch (r) {
1101         case 0:
1102                 schedule_internal_copy(tc, block, lookup_result->block,
1103                                        data_block, cell, bio);
1104                 break;
1105
1106         case -ENOSPC:
1107                 no_space(pool, cell);
1108                 break;
1109
1110         default:
1111                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1112                             __func__, r);
1113                 set_pool_mode(pool, PM_READ_ONLY);
1114                 cell_error(pool, cell);
1115                 break;
1116         }
1117 }
1118
1119 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1120                                dm_block_t block,
1121                                struct dm_thin_lookup_result *lookup_result)
1122 {
1123         struct dm_bio_prison_cell *cell;
1124         struct pool *pool = tc->pool;
1125         struct dm_cell_key key;
1126
1127         /*
1128          * If cell is already occupied, then sharing is already in the process
1129          * of being broken so we have nothing further to do here.
1130          */
1131         build_data_key(tc->td, lookup_result->block, &key);
1132         if (bio_detain(pool, &key, bio, &cell))
1133                 return;
1134
1135         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1136                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1137         else {
1138                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1139
1140                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1141                 inc_all_io_entry(pool, bio);
1142                 cell_defer_no_holder(tc, cell);
1143
1144                 remap_and_issue(tc, bio, lookup_result->block);
1145         }
1146 }
1147
1148 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1149                             struct dm_bio_prison_cell *cell)
1150 {
1151         int r;
1152         dm_block_t data_block;
1153         struct pool *pool = tc->pool;
1154
1155         /*
1156          * Remap empty bios (flushes) immediately, without provisioning.
1157          */
1158         if (!bio->bi_size) {
1159                 inc_all_io_entry(pool, bio);
1160                 cell_defer_no_holder(tc, cell);
1161
1162                 remap_and_issue(tc, bio, 0);
1163                 return;
1164         }
1165
1166         /*
1167          * Fill read bios with zeroes and complete them immediately.
1168          */
1169         if (bio_data_dir(bio) == READ) {
1170                 zero_fill_bio(bio);
1171                 cell_defer_no_holder(tc, cell);
1172                 bio_endio(bio, 0);
1173                 return;
1174         }
1175
1176         r = alloc_data_block(tc, &data_block);
1177         switch (r) {
1178         case 0:
1179                 if (tc->origin_dev)
1180                         schedule_external_copy(tc, block, data_block, cell, bio);
1181                 else
1182                         schedule_zero(tc, block, data_block, cell, bio);
1183                 break;
1184
1185         case -ENOSPC:
1186                 no_space(pool, cell);
1187                 break;
1188
1189         default:
1190                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1191                             __func__, r);
1192                 set_pool_mode(pool, PM_READ_ONLY);
1193                 cell_error(pool, cell);
1194                 break;
1195         }
1196 }
1197
1198 static void process_bio(struct thin_c *tc, struct bio *bio)
1199 {
1200         int r;
1201         struct pool *pool = tc->pool;
1202         dm_block_t block = get_bio_block(tc, bio);
1203         struct dm_bio_prison_cell *cell;
1204         struct dm_cell_key key;
1205         struct dm_thin_lookup_result lookup_result;
1206
1207         /*
1208          * If cell is already occupied, then the block is already
1209          * being provisioned so we have nothing further to do here.
1210          */
1211         build_virtual_key(tc->td, block, &key);
1212         if (bio_detain(pool, &key, bio, &cell))
1213                 return;
1214
1215         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1216         switch (r) {
1217         case 0:
1218                 if (lookup_result.shared) {
1219                         process_shared_bio(tc, bio, block, &lookup_result);
1220                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1221                 } else {
1222                         inc_all_io_entry(pool, bio);
1223                         cell_defer_no_holder(tc, cell);
1224
1225                         remap_and_issue(tc, bio, lookup_result.block);
1226                 }
1227                 break;
1228
1229         case -ENODATA:
1230                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1231                         inc_all_io_entry(pool, bio);
1232                         cell_defer_no_holder(tc, cell);
1233
1234                         remap_to_origin_and_issue(tc, bio);
1235                 } else
1236                         provision_block(tc, bio, block, cell);
1237                 break;
1238
1239         default:
1240                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1241                             __func__, r);
1242                 cell_defer_no_holder(tc, cell);
1243                 bio_io_error(bio);
1244                 break;
1245         }
1246 }
1247
1248 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1249 {
1250         int r;
1251         int rw = bio_data_dir(bio);
1252         dm_block_t block = get_bio_block(tc, bio);
1253         struct dm_thin_lookup_result lookup_result;
1254
1255         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1256         switch (r) {
1257         case 0:
1258                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1259                         bio_io_error(bio);
1260                 else {
1261                         inc_all_io_entry(tc->pool, bio);
1262                         remap_and_issue(tc, bio, lookup_result.block);
1263                 }
1264                 break;
1265
1266         case -ENODATA:
1267                 if (rw != READ) {
1268                         bio_io_error(bio);
1269                         break;
1270                 }
1271
1272                 if (tc->origin_dev) {
1273                         inc_all_io_entry(tc->pool, bio);
1274                         remap_to_origin_and_issue(tc, bio);
1275                         break;
1276                 }
1277
1278                 zero_fill_bio(bio);
1279                 bio_endio(bio, 0);
1280                 break;
1281
1282         default:
1283                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1284                             __func__, r);
1285                 bio_io_error(bio);
1286                 break;
1287         }
1288 }
1289
1290 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1291 {
1292         bio_io_error(bio);
1293 }
1294
1295 /*
1296  * FIXME: should we also commit due to size of transaction, measured in
1297  * metadata blocks?
1298  */
1299 static int need_commit_due_to_time(struct pool *pool)
1300 {
1301         return jiffies < pool->last_commit_jiffies ||
1302                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1303 }
1304
1305 static void process_deferred_bios(struct pool *pool)
1306 {
1307         unsigned long flags;
1308         struct bio *bio;
1309         struct bio_list bios;
1310
1311         bio_list_init(&bios);
1312
1313         spin_lock_irqsave(&pool->lock, flags);
1314         bio_list_merge(&bios, &pool->deferred_bios);
1315         bio_list_init(&pool->deferred_bios);
1316         spin_unlock_irqrestore(&pool->lock, flags);
1317
1318         while ((bio = bio_list_pop(&bios))) {
1319                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1320                 struct thin_c *tc = h->tc;
1321
1322                 /*
1323                  * If we've got no free new_mapping structs, and processing
1324                  * this bio might require one, we pause until there are some
1325                  * prepared mappings to process.
1326                  */
1327                 if (ensure_next_mapping(pool)) {
1328                         spin_lock_irqsave(&pool->lock, flags);
1329                         bio_list_merge(&pool->deferred_bios, &bios);
1330                         spin_unlock_irqrestore(&pool->lock, flags);
1331
1332                         break;
1333                 }
1334
1335                 if (bio->bi_rw & REQ_DISCARD)
1336                         pool->process_discard(tc, bio);
1337                 else
1338                         pool->process_bio(tc, bio);
1339         }
1340
1341         /*
1342          * If there are any deferred flush bios, we must commit
1343          * the metadata before issuing them.
1344          */
1345         bio_list_init(&bios);
1346         spin_lock_irqsave(&pool->lock, flags);
1347         bio_list_merge(&bios, &pool->deferred_flush_bios);
1348         bio_list_init(&pool->deferred_flush_bios);
1349         spin_unlock_irqrestore(&pool->lock, flags);
1350
1351         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1352                 return;
1353
1354         if (commit_or_fallback(pool)) {
1355                 while ((bio = bio_list_pop(&bios)))
1356                         bio_io_error(bio);
1357                 return;
1358         }
1359         pool->last_commit_jiffies = jiffies;
1360
1361         while ((bio = bio_list_pop(&bios)))
1362                 generic_make_request(bio);
1363 }
1364
1365 static void do_worker(struct work_struct *ws)
1366 {
1367         struct pool *pool = container_of(ws, struct pool, worker);
1368
1369         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1370         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1371         process_deferred_bios(pool);
1372 }
1373
1374 /*
1375  * We want to commit periodically so that not too much
1376  * unwritten data builds up.
1377  */
1378 static void do_waker(struct work_struct *ws)
1379 {
1380         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1381         wake_worker(pool);
1382         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1383 }
1384
1385 /*----------------------------------------------------------------*/
1386
1387 static enum pool_mode get_pool_mode(struct pool *pool)
1388 {
1389         return pool->pf.mode;
1390 }
1391
1392 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1393 {
1394         int r;
1395
1396         pool->pf.mode = mode;
1397
1398         switch (mode) {
1399         case PM_FAIL:
1400                 DMERR("%s: switching pool to failure mode",
1401                       dm_device_name(pool->pool_md));
1402                 pool->process_bio = process_bio_fail;
1403                 pool->process_discard = process_bio_fail;
1404                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1405                 pool->process_prepared_discard = process_prepared_discard_fail;
1406                 break;
1407
1408         case PM_READ_ONLY:
1409                 DMERR("%s: switching pool to read-only mode",
1410                       dm_device_name(pool->pool_md));
1411                 r = dm_pool_abort_metadata(pool->pmd);
1412                 if (r) {
1413                         DMERR("%s: aborting transaction failed",
1414                               dm_device_name(pool->pool_md));
1415                         set_pool_mode(pool, PM_FAIL);
1416                 } else {
1417                         dm_pool_metadata_read_only(pool->pmd);
1418                         pool->process_bio = process_bio_read_only;
1419                         pool->process_discard = process_discard;
1420                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1421                         pool->process_prepared_discard = process_prepared_discard_passdown;
1422                 }
1423                 break;
1424
1425         case PM_WRITE:
1426                 pool->process_bio = process_bio;
1427                 pool->process_discard = process_discard;
1428                 pool->process_prepared_mapping = process_prepared_mapping;
1429                 pool->process_prepared_discard = process_prepared_discard;
1430                 break;
1431         }
1432 }
1433
1434 /*----------------------------------------------------------------*/
1435
1436 /*
1437  * Mapping functions.
1438  */
1439
1440 /*
1441  * Called only while mapping a thin bio to hand it over to the workqueue.
1442  */
1443 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1444 {
1445         unsigned long flags;
1446         struct pool *pool = tc->pool;
1447
1448         spin_lock_irqsave(&pool->lock, flags);
1449         bio_list_add(&pool->deferred_bios, bio);
1450         spin_unlock_irqrestore(&pool->lock, flags);
1451
1452         wake_worker(pool);
1453 }
1454
1455 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1456 {
1457         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1458
1459         h->tc = tc;
1460         h->shared_read_entry = NULL;
1461         h->all_io_entry = NULL;
1462         h->overwrite_mapping = NULL;
1463 }
1464
1465 /*
1466  * Non-blocking function called from the thin target's map function.
1467  */
1468 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1469 {
1470         int r;
1471         struct thin_c *tc = ti->private;
1472         dm_block_t block = get_bio_block(tc, bio);
1473         struct dm_thin_device *td = tc->td;
1474         struct dm_thin_lookup_result result;
1475         struct dm_bio_prison_cell cell1, cell2;
1476         struct dm_bio_prison_cell *cell_result;
1477         struct dm_cell_key key;
1478
1479         thin_hook_bio(tc, bio);
1480
1481         if (get_pool_mode(tc->pool) == PM_FAIL) {
1482                 bio_io_error(bio);
1483                 return DM_MAPIO_SUBMITTED;
1484         }
1485
1486         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1487                 thin_defer_bio(tc, bio);
1488                 return DM_MAPIO_SUBMITTED;
1489         }
1490
1491         r = dm_thin_find_block(td, block, 0, &result);
1492
1493         /*
1494          * Note that we defer readahead too.
1495          */
1496         switch (r) {
1497         case 0:
1498                 if (unlikely(result.shared)) {
1499                         /*
1500                          * We have a race condition here between the
1501                          * result.shared value returned by the lookup and
1502                          * snapshot creation, which may cause new
1503                          * sharing.
1504                          *
1505                          * To avoid this always quiesce the origin before
1506                          * taking the snap.  You want to do this anyway to
1507                          * ensure a consistent application view
1508                          * (i.e. lockfs).
1509                          *
1510                          * More distant ancestors are irrelevant. The
1511                          * shared flag will be set in their case.
1512                          */
1513                         thin_defer_bio(tc, bio);
1514                         return DM_MAPIO_SUBMITTED;
1515                 }
1516
1517                 build_virtual_key(tc->td, block, &key);
1518                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1519                         return DM_MAPIO_SUBMITTED;
1520
1521                 build_data_key(tc->td, result.block, &key);
1522                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1523                         cell_defer_no_holder_no_free(tc, &cell1);
1524                         return DM_MAPIO_SUBMITTED;
1525                 }
1526
1527                 inc_all_io_entry(tc->pool, bio);
1528                 cell_defer_no_holder_no_free(tc, &cell2);
1529                 cell_defer_no_holder_no_free(tc, &cell1);
1530
1531                 remap(tc, bio, result.block);
1532                 return DM_MAPIO_REMAPPED;
1533
1534         case -ENODATA:
1535                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1536                         /*
1537                          * This block isn't provisioned, and we have no way
1538                          * of doing so.  Just error it.
1539                          */
1540                         bio_io_error(bio);
1541                         return DM_MAPIO_SUBMITTED;
1542                 }
1543                 /* fall through */
1544
1545         case -EWOULDBLOCK:
1546                 /*
1547                  * In future, the failed dm_thin_find_block above could
1548                  * provide the hint to load the metadata into cache.
1549                  */
1550                 thin_defer_bio(tc, bio);
1551                 return DM_MAPIO_SUBMITTED;
1552
1553         default:
1554                 /*
1555                  * Must always call bio_io_error on failure.
1556                  * dm_thin_find_block can fail with -EINVAL if the
1557                  * pool is switched to fail-io mode.
1558                  */
1559                 bio_io_error(bio);
1560                 return DM_MAPIO_SUBMITTED;
1561         }
1562 }
1563
1564 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1565 {
1566         int r;
1567         unsigned long flags;
1568         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1569
1570         spin_lock_irqsave(&pt->pool->lock, flags);
1571         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1572         spin_unlock_irqrestore(&pt->pool->lock, flags);
1573
1574         if (!r) {
1575                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1576                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1577         }
1578
1579         return r;
1580 }
1581
1582 static void __requeue_bios(struct pool *pool)
1583 {
1584         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1585         bio_list_init(&pool->retry_on_resume_list);
1586 }
1587
1588 /*----------------------------------------------------------------
1589  * Binding of control targets to a pool object
1590  *--------------------------------------------------------------*/
1591 static bool data_dev_supports_discard(struct pool_c *pt)
1592 {
1593         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1594
1595         return q && blk_queue_discard(q);
1596 }
1597
1598 static bool is_factor(sector_t block_size, uint32_t n)
1599 {
1600         return !sector_div(block_size, n);
1601 }
1602
1603 /*
1604  * If discard_passdown was enabled verify that the data device
1605  * supports discards.  Disable discard_passdown if not.
1606  */
1607 static void disable_passdown_if_not_supported(struct pool_c *pt)
1608 {
1609         struct pool *pool = pt->pool;
1610         struct block_device *data_bdev = pt->data_dev->bdev;
1611         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1612         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1613         const char *reason = NULL;
1614         char buf[BDEVNAME_SIZE];
1615
1616         if (!pt->adjusted_pf.discard_passdown)
1617                 return;
1618
1619         if (!data_dev_supports_discard(pt))
1620                 reason = "discard unsupported";
1621
1622         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1623                 reason = "max discard sectors smaller than a block";
1624
1625         else if (data_limits->discard_granularity > block_size)
1626                 reason = "discard granularity larger than a block";
1627
1628         else if (!is_factor(block_size, data_limits->discard_granularity))
1629                 reason = "discard granularity not a factor of block size";
1630
1631         if (reason) {
1632                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1633                 pt->adjusted_pf.discard_passdown = false;
1634         }
1635 }
1636
1637 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1638 {
1639         struct pool_c *pt = ti->private;
1640
1641         /*
1642          * We want to make sure that degraded pools are never upgraded.
1643          */
1644         enum pool_mode old_mode = pool->pf.mode;
1645         enum pool_mode new_mode = pt->adjusted_pf.mode;
1646
1647         if (old_mode > new_mode)
1648                 new_mode = old_mode;
1649
1650         pool->ti = ti;
1651         pool->low_water_blocks = pt->low_water_blocks;
1652         pool->pf = pt->adjusted_pf;
1653
1654         set_pool_mode(pool, new_mode);
1655
1656         return 0;
1657 }
1658
1659 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1660 {
1661         if (pool->ti == ti)
1662                 pool->ti = NULL;
1663 }
1664
1665 /*----------------------------------------------------------------
1666  * Pool creation
1667  *--------------------------------------------------------------*/
1668 /* Initialize pool features. */
1669 static void pool_features_init(struct pool_features *pf)
1670 {
1671         pf->mode = PM_WRITE;
1672         pf->zero_new_blocks = true;
1673         pf->discard_enabled = true;
1674         pf->discard_passdown = true;
1675 }
1676
1677 static void __pool_destroy(struct pool *pool)
1678 {
1679         __pool_table_remove(pool);
1680
1681         if (dm_pool_metadata_close(pool->pmd) < 0)
1682                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1683
1684         dm_bio_prison_destroy(pool->prison);
1685         dm_kcopyd_client_destroy(pool->copier);
1686
1687         if (pool->wq)
1688                 destroy_workqueue(pool->wq);
1689
1690         if (pool->next_mapping)
1691                 mempool_free(pool->next_mapping, pool->mapping_pool);
1692         mempool_destroy(pool->mapping_pool);
1693         dm_deferred_set_destroy(pool->shared_read_ds);
1694         dm_deferred_set_destroy(pool->all_io_ds);
1695         kfree(pool);
1696 }
1697
1698 static struct kmem_cache *_new_mapping_cache;
1699
1700 static struct pool *pool_create(struct mapped_device *pool_md,
1701                                 struct block_device *metadata_dev,
1702                                 unsigned long block_size,
1703                                 int read_only, char **error)
1704 {
1705         int r;
1706         void *err_p;
1707         struct pool *pool;
1708         struct dm_pool_metadata *pmd;
1709         bool format_device = read_only ? false : true;
1710
1711         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1712         if (IS_ERR(pmd)) {
1713                 *error = "Error creating metadata object";
1714                 return (struct pool *)pmd;
1715         }
1716
1717         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1718         if (!pool) {
1719                 *error = "Error allocating memory for pool";
1720                 err_p = ERR_PTR(-ENOMEM);
1721                 goto bad_pool;
1722         }
1723
1724         pool->pmd = pmd;
1725         pool->sectors_per_block = block_size;
1726         if (block_size & (block_size - 1))
1727                 pool->sectors_per_block_shift = -1;
1728         else
1729                 pool->sectors_per_block_shift = __ffs(block_size);
1730         pool->low_water_blocks = 0;
1731         pool_features_init(&pool->pf);
1732         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1733         if (!pool->prison) {
1734                 *error = "Error creating pool's bio prison";
1735                 err_p = ERR_PTR(-ENOMEM);
1736                 goto bad_prison;
1737         }
1738
1739         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1740         if (IS_ERR(pool->copier)) {
1741                 r = PTR_ERR(pool->copier);
1742                 *error = "Error creating pool's kcopyd client";
1743                 err_p = ERR_PTR(r);
1744                 goto bad_kcopyd_client;
1745         }
1746
1747         /*
1748          * Create singlethreaded workqueue that will service all devices
1749          * that use this metadata.
1750          */
1751         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1752         if (!pool->wq) {
1753                 *error = "Error creating pool's workqueue";
1754                 err_p = ERR_PTR(-ENOMEM);
1755                 goto bad_wq;
1756         }
1757
1758         INIT_WORK(&pool->worker, do_worker);
1759         INIT_DELAYED_WORK(&pool->waker, do_waker);
1760         spin_lock_init(&pool->lock);
1761         bio_list_init(&pool->deferred_bios);
1762         bio_list_init(&pool->deferred_flush_bios);
1763         INIT_LIST_HEAD(&pool->prepared_mappings);
1764         INIT_LIST_HEAD(&pool->prepared_discards);
1765         pool->low_water_triggered = 0;
1766         pool->no_free_space = 0;
1767         bio_list_init(&pool->retry_on_resume_list);
1768
1769         pool->shared_read_ds = dm_deferred_set_create();
1770         if (!pool->shared_read_ds) {
1771                 *error = "Error creating pool's shared read deferred set";
1772                 err_p = ERR_PTR(-ENOMEM);
1773                 goto bad_shared_read_ds;
1774         }
1775
1776         pool->all_io_ds = dm_deferred_set_create();
1777         if (!pool->all_io_ds) {
1778                 *error = "Error creating pool's all io deferred set";
1779                 err_p = ERR_PTR(-ENOMEM);
1780                 goto bad_all_io_ds;
1781         }
1782
1783         pool->next_mapping = NULL;
1784         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1785                                                       _new_mapping_cache);
1786         if (!pool->mapping_pool) {
1787                 *error = "Error creating pool's mapping mempool";
1788                 err_p = ERR_PTR(-ENOMEM);
1789                 goto bad_mapping_pool;
1790         }
1791
1792         pool->ref_count = 1;
1793         pool->last_commit_jiffies = jiffies;
1794         pool->pool_md = pool_md;
1795         pool->md_dev = metadata_dev;
1796         __pool_table_insert(pool);
1797
1798         return pool;
1799
1800 bad_mapping_pool:
1801         dm_deferred_set_destroy(pool->all_io_ds);
1802 bad_all_io_ds:
1803         dm_deferred_set_destroy(pool->shared_read_ds);
1804 bad_shared_read_ds:
1805         destroy_workqueue(pool->wq);
1806 bad_wq:
1807         dm_kcopyd_client_destroy(pool->copier);
1808 bad_kcopyd_client:
1809         dm_bio_prison_destroy(pool->prison);
1810 bad_prison:
1811         kfree(pool);
1812 bad_pool:
1813         if (dm_pool_metadata_close(pmd))
1814                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1815
1816         return err_p;
1817 }
1818
1819 static void __pool_inc(struct pool *pool)
1820 {
1821         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1822         pool->ref_count++;
1823 }
1824
1825 static void __pool_dec(struct pool *pool)
1826 {
1827         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1828         BUG_ON(!pool->ref_count);
1829         if (!--pool->ref_count)
1830                 __pool_destroy(pool);
1831 }
1832
1833 static struct pool *__pool_find(struct mapped_device *pool_md,
1834                                 struct block_device *metadata_dev,
1835                                 unsigned long block_size, int read_only,
1836                                 char **error, int *created)
1837 {
1838         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1839
1840         if (pool) {
1841                 if (pool->pool_md != pool_md) {
1842                         *error = "metadata device already in use by a pool";
1843                         return ERR_PTR(-EBUSY);
1844                 }
1845                 __pool_inc(pool);
1846
1847         } else {
1848                 pool = __pool_table_lookup(pool_md);
1849                 if (pool) {
1850                         if (pool->md_dev != metadata_dev) {
1851                                 *error = "different pool cannot replace a pool";
1852                                 return ERR_PTR(-EINVAL);
1853                         }
1854                         __pool_inc(pool);
1855
1856                 } else {
1857                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1858                         *created = 1;
1859                 }
1860         }
1861
1862         return pool;
1863 }
1864
1865 /*----------------------------------------------------------------
1866  * Pool target methods
1867  *--------------------------------------------------------------*/
1868 static void pool_dtr(struct dm_target *ti)
1869 {
1870         struct pool_c *pt = ti->private;
1871
1872         mutex_lock(&dm_thin_pool_table.mutex);
1873
1874         unbind_control_target(pt->pool, ti);
1875         __pool_dec(pt->pool);
1876         dm_put_device(ti, pt->metadata_dev);
1877         dm_put_device(ti, pt->data_dev);
1878         kfree(pt);
1879
1880         mutex_unlock(&dm_thin_pool_table.mutex);
1881 }
1882
1883 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1884                                struct dm_target *ti)
1885 {
1886         int r;
1887         unsigned argc;
1888         const char *arg_name;
1889
1890         static struct dm_arg _args[] = {
1891                 {0, 3, "Invalid number of pool feature arguments"},
1892         };
1893
1894         /*
1895          * No feature arguments supplied.
1896          */
1897         if (!as->argc)
1898                 return 0;
1899
1900         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1901         if (r)
1902                 return -EINVAL;
1903
1904         while (argc && !r) {
1905                 arg_name = dm_shift_arg(as);
1906                 argc--;
1907
1908                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1909                         pf->zero_new_blocks = false;
1910
1911                 else if (!strcasecmp(arg_name, "ignore_discard"))
1912                         pf->discard_enabled = false;
1913
1914                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1915                         pf->discard_passdown = false;
1916
1917                 else if (!strcasecmp(arg_name, "read_only"))
1918                         pf->mode = PM_READ_ONLY;
1919
1920                 else {
1921                         ti->error = "Unrecognised pool feature requested";
1922                         r = -EINVAL;
1923                         break;
1924                 }
1925         }
1926
1927         return r;
1928 }
1929
1930 static void metadata_low_callback(void *context)
1931 {
1932         struct pool *pool = context;
1933
1934         DMWARN("%s: reached low water mark for metadata device: sending event.",
1935                dm_device_name(pool->pool_md));
1936
1937         dm_table_event(pool->ti->table);
1938 }
1939
1940 static sector_t get_metadata_dev_size(struct block_device *bdev)
1941 {
1942         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1943         char buffer[BDEVNAME_SIZE];
1944
1945         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1946                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1947                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1948                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1949         }
1950
1951         return metadata_dev_size;
1952 }
1953
1954 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1955 {
1956         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1957
1958         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1959
1960         return metadata_dev_size;
1961 }
1962
1963 /*
1964  * When a metadata threshold is crossed a dm event is triggered, and
1965  * userland should respond by growing the metadata device.  We could let
1966  * userland set the threshold, like we do with the data threshold, but I'm
1967  * not sure they know enough to do this well.
1968  */
1969 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1970 {
1971         /*
1972          * 4M is ample for all ops with the possible exception of thin
1973          * device deletion which is harmless if it fails (just retry the
1974          * delete after you've grown the device).
1975          */
1976         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1977         return min((dm_block_t)1024ULL /* 4M */, quarter);
1978 }
1979
1980 /*
1981  * thin-pool <metadata dev> <data dev>
1982  *           <data block size (sectors)>
1983  *           <low water mark (blocks)>
1984  *           [<#feature args> [<arg>]*]
1985  *
1986  * Optional feature arguments are:
1987  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1988  *           ignore_discard: disable discard
1989  *           no_discard_passdown: don't pass discards down to the data device
1990  */
1991 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1992 {
1993         int r, pool_created = 0;
1994         struct pool_c *pt;
1995         struct pool *pool;
1996         struct pool_features pf;
1997         struct dm_arg_set as;
1998         struct dm_dev *data_dev;
1999         unsigned long block_size;
2000         dm_block_t low_water_blocks;
2001         struct dm_dev *metadata_dev;
2002         fmode_t metadata_mode;
2003
2004         /*
2005          * FIXME Remove validation from scope of lock.
2006          */
2007         mutex_lock(&dm_thin_pool_table.mutex);
2008
2009         if (argc < 4) {
2010                 ti->error = "Invalid argument count";
2011                 r = -EINVAL;
2012                 goto out_unlock;
2013         }
2014
2015         as.argc = argc;
2016         as.argv = argv;
2017
2018         /*
2019          * Set default pool features.
2020          */
2021         pool_features_init(&pf);
2022
2023         dm_consume_args(&as, 4);
2024         r = parse_pool_features(&as, &pf, ti);
2025         if (r)
2026                 goto out_unlock;
2027
2028         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2029         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2030         if (r) {
2031                 ti->error = "Error opening metadata block device";
2032                 goto out_unlock;
2033         }
2034
2035         /*
2036          * Run for the side-effect of possibly issuing a warning if the
2037          * device is too big.
2038          */
2039         (void) get_metadata_dev_size(metadata_dev->bdev);
2040
2041         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2042         if (r) {
2043                 ti->error = "Error getting data device";
2044                 goto out_metadata;
2045         }
2046
2047         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2048             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2049             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2050             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2051                 ti->error = "Invalid block size";
2052                 r = -EINVAL;
2053                 goto out;
2054         }
2055
2056         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2057                 ti->error = "Invalid low water mark";
2058                 r = -EINVAL;
2059                 goto out;
2060         }
2061
2062         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2063         if (!pt) {
2064                 r = -ENOMEM;
2065                 goto out;
2066         }
2067
2068         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2069                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2070         if (IS_ERR(pool)) {
2071                 r = PTR_ERR(pool);
2072                 goto out_free_pt;
2073         }
2074
2075         /*
2076          * 'pool_created' reflects whether this is the first table load.
2077          * Top level discard support is not allowed to be changed after
2078          * initial load.  This would require a pool reload to trigger thin
2079          * device changes.
2080          */
2081         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2082                 ti->error = "Discard support cannot be disabled once enabled";
2083                 r = -EINVAL;
2084                 goto out_flags_changed;
2085         }
2086
2087         pt->pool = pool;
2088         pt->ti = ti;
2089         pt->metadata_dev = metadata_dev;
2090         pt->data_dev = data_dev;
2091         pt->low_water_blocks = low_water_blocks;
2092         pt->adjusted_pf = pt->requested_pf = pf;
2093         ti->num_flush_bios = 1;
2094
2095         /*
2096          * Only need to enable discards if the pool should pass
2097          * them down to the data device.  The thin device's discard
2098          * processing will cause mappings to be removed from the btree.
2099          */
2100         ti->discard_zeroes_data_unsupported = true;
2101         if (pf.discard_enabled && pf.discard_passdown) {
2102                 ti->num_discard_bios = 1;
2103
2104                 /*
2105                  * Setting 'discards_supported' circumvents the normal
2106                  * stacking of discard limits (this keeps the pool and
2107                  * thin devices' discard limits consistent).
2108                  */
2109                 ti->discards_supported = true;
2110         }
2111         ti->private = pt;
2112
2113         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2114                                                 calc_metadata_threshold(pt),
2115                                                 metadata_low_callback,
2116                                                 pool);
2117         if (r)
2118                 goto out_free_pt;
2119
2120         pt->callbacks.congested_fn = pool_is_congested;
2121         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2122
2123         mutex_unlock(&dm_thin_pool_table.mutex);
2124
2125         return 0;
2126
2127 out_flags_changed:
2128         __pool_dec(pool);
2129 out_free_pt:
2130         kfree(pt);
2131 out:
2132         dm_put_device(ti, data_dev);
2133 out_metadata:
2134         dm_put_device(ti, metadata_dev);
2135 out_unlock:
2136         mutex_unlock(&dm_thin_pool_table.mutex);
2137
2138         return r;
2139 }
2140
2141 static int pool_map(struct dm_target *ti, struct bio *bio)
2142 {
2143         int r;
2144         struct pool_c *pt = ti->private;
2145         struct pool *pool = pt->pool;
2146         unsigned long flags;
2147
2148         /*
2149          * As this is a singleton target, ti->begin is always zero.
2150          */
2151         spin_lock_irqsave(&pool->lock, flags);
2152         bio->bi_bdev = pt->data_dev->bdev;
2153         r = DM_MAPIO_REMAPPED;
2154         spin_unlock_irqrestore(&pool->lock, flags);
2155
2156         return r;
2157 }
2158
2159 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2160 {
2161         int r;
2162         struct pool_c *pt = ti->private;
2163         struct pool *pool = pt->pool;
2164         sector_t data_size = ti->len;
2165         dm_block_t sb_data_size;
2166
2167         *need_commit = false;
2168
2169         (void) sector_div(data_size, pool->sectors_per_block);
2170
2171         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2172         if (r) {
2173                 DMERR("%s: failed to retrieve data device size",
2174                       dm_device_name(pool->pool_md));
2175                 return r;
2176         }
2177
2178         if (data_size < sb_data_size) {
2179                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2180                       dm_device_name(pool->pool_md),
2181                       (unsigned long long)data_size, sb_data_size);
2182                 return -EINVAL;
2183
2184         } else if (data_size > sb_data_size) {
2185                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2186                 if (r) {
2187                         DMERR("%s: failed to resize data device",
2188                               dm_device_name(pool->pool_md));
2189                         set_pool_mode(pool, PM_READ_ONLY);
2190                         return r;
2191                 }
2192
2193                 *need_commit = true;
2194         }
2195
2196         return 0;
2197 }
2198
2199 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2200 {
2201         int r;
2202         struct pool_c *pt = ti->private;
2203         struct pool *pool = pt->pool;
2204         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2205
2206         *need_commit = false;
2207
2208         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2209
2210         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2211         if (r) {
2212                 DMERR("%s: failed to retrieve metadata device size",
2213                       dm_device_name(pool->pool_md));
2214                 return r;
2215         }
2216
2217         if (metadata_dev_size < sb_metadata_dev_size) {
2218                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2219                       dm_device_name(pool->pool_md),
2220                       metadata_dev_size, sb_metadata_dev_size);
2221                 return -EINVAL;
2222
2223         } else if (metadata_dev_size > sb_metadata_dev_size) {
2224                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2225                 if (r) {
2226                         DMERR("%s: failed to resize metadata device",
2227                               dm_device_name(pool->pool_md));
2228                         return r;
2229                 }
2230
2231                 *need_commit = true;
2232         }
2233
2234         return 0;
2235 }
2236
2237 /*
2238  * Retrieves the number of blocks of the data device from
2239  * the superblock and compares it to the actual device size,
2240  * thus resizing the data device in case it has grown.
2241  *
2242  * This both copes with opening preallocated data devices in the ctr
2243  * being followed by a resume
2244  * -and-
2245  * calling the resume method individually after userspace has
2246  * grown the data device in reaction to a table event.
2247  */
2248 static int pool_preresume(struct dm_target *ti)
2249 {
2250         int r;
2251         bool need_commit1, need_commit2;
2252         struct pool_c *pt = ti->private;
2253         struct pool *pool = pt->pool;
2254
2255         /*
2256          * Take control of the pool object.
2257          */
2258         r = bind_control_target(pool, ti);
2259         if (r)
2260                 return r;
2261
2262         r = maybe_resize_data_dev(ti, &need_commit1);
2263         if (r)
2264                 return r;
2265
2266         r = maybe_resize_metadata_dev(ti, &need_commit2);
2267         if (r)
2268                 return r;
2269
2270         if (need_commit1 || need_commit2)
2271                 (void) commit_or_fallback(pool);
2272
2273         return 0;
2274 }
2275
2276 static void pool_resume(struct dm_target *ti)
2277 {
2278         struct pool_c *pt = ti->private;
2279         struct pool *pool = pt->pool;
2280         unsigned long flags;
2281
2282         spin_lock_irqsave(&pool->lock, flags);
2283         pool->low_water_triggered = 0;
2284         pool->no_free_space = 0;
2285         __requeue_bios(pool);
2286         spin_unlock_irqrestore(&pool->lock, flags);
2287
2288         do_waker(&pool->waker.work);
2289 }
2290
2291 static void pool_postsuspend(struct dm_target *ti)
2292 {
2293         struct pool_c *pt = ti->private;
2294         struct pool *pool = pt->pool;
2295
2296         cancel_delayed_work(&pool->waker);
2297         flush_workqueue(pool->wq);
2298         (void) commit_or_fallback(pool);
2299 }
2300
2301 static int check_arg_count(unsigned argc, unsigned args_required)
2302 {
2303         if (argc != args_required) {
2304                 DMWARN("Message received with %u arguments instead of %u.",
2305                        argc, args_required);
2306                 return -EINVAL;
2307         }
2308
2309         return 0;
2310 }
2311
2312 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2313 {
2314         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2315             *dev_id <= MAX_DEV_ID)
2316                 return 0;
2317
2318         if (warning)
2319                 DMWARN("Message received with invalid device id: %s", arg);
2320
2321         return -EINVAL;
2322 }
2323
2324 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2325 {
2326         dm_thin_id dev_id;
2327         int r;
2328
2329         r = check_arg_count(argc, 2);
2330         if (r)
2331                 return r;
2332
2333         r = read_dev_id(argv[1], &dev_id, 1);
2334         if (r)
2335                 return r;
2336
2337         r = dm_pool_create_thin(pool->pmd, dev_id);
2338         if (r) {
2339                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2340                        argv[1]);
2341                 return r;
2342         }
2343
2344         return 0;
2345 }
2346
2347 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2348 {
2349         dm_thin_id dev_id;
2350         dm_thin_id origin_dev_id;
2351         int r;
2352
2353         r = check_arg_count(argc, 3);
2354         if (r)
2355                 return r;
2356
2357         r = read_dev_id(argv[1], &dev_id, 1);
2358         if (r)
2359                 return r;
2360
2361         r = read_dev_id(argv[2], &origin_dev_id, 1);
2362         if (r)
2363                 return r;
2364
2365         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2366         if (r) {
2367                 DMWARN("Creation of new snapshot %s of device %s failed.",
2368                        argv[1], argv[2]);
2369                 return r;
2370         }
2371
2372         return 0;
2373 }
2374
2375 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2376 {
2377         dm_thin_id dev_id;
2378         int r;
2379
2380         r = check_arg_count(argc, 2);
2381         if (r)
2382                 return r;
2383
2384         r = read_dev_id(argv[1], &dev_id, 1);
2385         if (r)
2386                 return r;
2387
2388         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2389         if (r)
2390                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2391
2392         return r;
2393 }
2394
2395 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2396 {
2397         dm_thin_id old_id, new_id;
2398         int r;
2399
2400         r = check_arg_count(argc, 3);
2401         if (r)
2402                 return r;
2403
2404         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2405                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2406                 return -EINVAL;
2407         }
2408
2409         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2410                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2411                 return -EINVAL;
2412         }
2413
2414         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2415         if (r) {
2416                 DMWARN("Failed to change transaction id from %s to %s.",
2417                        argv[1], argv[2]);
2418                 return r;
2419         }
2420
2421         return 0;
2422 }
2423
2424 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2425 {
2426         int r;
2427
2428         r = check_arg_count(argc, 1);
2429         if (r)
2430                 return r;
2431
2432         (void) commit_or_fallback(pool);
2433
2434         r = dm_pool_reserve_metadata_snap(pool->pmd);
2435         if (r)
2436                 DMWARN("reserve_metadata_snap message failed.");
2437
2438         return r;
2439 }
2440
2441 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2442 {
2443         int r;
2444
2445         r = check_arg_count(argc, 1);
2446         if (r)
2447                 return r;
2448
2449         r = dm_pool_release_metadata_snap(pool->pmd);
2450         if (r)
2451                 DMWARN("release_metadata_snap message failed.");
2452
2453         return r;
2454 }
2455
2456 /*
2457  * Messages supported:
2458  *   create_thin        <dev_id>
2459  *   create_snap        <dev_id> <origin_id>
2460  *   delete             <dev_id>
2461  *   trim               <dev_id> <new_size_in_sectors>
2462  *   set_transaction_id <current_trans_id> <new_trans_id>
2463  *   reserve_metadata_snap
2464  *   release_metadata_snap
2465  */
2466 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2467 {
2468         int r = -EINVAL;
2469         struct pool_c *pt = ti->private;
2470         struct pool *pool = pt->pool;
2471
2472         if (!strcasecmp(argv[0], "create_thin"))
2473                 r = process_create_thin_mesg(argc, argv, pool);
2474
2475         else if (!strcasecmp(argv[0], "create_snap"))
2476                 r = process_create_snap_mesg(argc, argv, pool);
2477
2478         else if (!strcasecmp(argv[0], "delete"))
2479                 r = process_delete_mesg(argc, argv, pool);
2480
2481         else if (!strcasecmp(argv[0], "set_transaction_id"))
2482                 r = process_set_transaction_id_mesg(argc, argv, pool);
2483
2484         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2485                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2486
2487         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2488                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2489
2490         else
2491                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2492
2493         if (!r)
2494                 (void) commit_or_fallback(pool);
2495
2496         return r;
2497 }
2498
2499 static void emit_flags(struct pool_features *pf, char *result,
2500                        unsigned sz, unsigned maxlen)
2501 {
2502         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2503                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2504         DMEMIT("%u ", count);
2505
2506         if (!pf->zero_new_blocks)
2507                 DMEMIT("skip_block_zeroing ");
2508
2509         if (!pf->discard_enabled)
2510                 DMEMIT("ignore_discard ");
2511
2512         if (!pf->discard_passdown)
2513                 DMEMIT("no_discard_passdown ");
2514
2515         if (pf->mode == PM_READ_ONLY)
2516                 DMEMIT("read_only ");
2517 }
2518
2519 /*
2520  * Status line is:
2521  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2522  *    <used data sectors>/<total data sectors> <held metadata root>
2523  */
2524 static void pool_status(struct dm_target *ti, status_type_t type,
2525                         unsigned status_flags, char *result, unsigned maxlen)
2526 {
2527         int r;
2528         unsigned sz = 0;
2529         uint64_t transaction_id;
2530         dm_block_t nr_free_blocks_data;
2531         dm_block_t nr_free_blocks_metadata;
2532         dm_block_t nr_blocks_data;
2533         dm_block_t nr_blocks_metadata;
2534         dm_block_t held_root;
2535         char buf[BDEVNAME_SIZE];
2536         char buf2[BDEVNAME_SIZE];
2537         struct pool_c *pt = ti->private;
2538         struct pool *pool = pt->pool;
2539
2540         switch (type) {
2541         case STATUSTYPE_INFO:
2542                 if (get_pool_mode(pool) == PM_FAIL) {
2543                         DMEMIT("Fail");
2544                         break;
2545                 }
2546
2547                 /* Commit to ensure statistics aren't out-of-date */
2548                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2549                         (void) commit_or_fallback(pool);
2550
2551                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2552                 if (r) {
2553                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2554                               dm_device_name(pool->pool_md), r);
2555                         goto err;
2556                 }
2557
2558                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2559                 if (r) {
2560                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2561                               dm_device_name(pool->pool_md), r);
2562                         goto err;
2563                 }
2564
2565                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2566                 if (r) {
2567                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2568                               dm_device_name(pool->pool_md), r);
2569                         goto err;
2570                 }
2571
2572                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2573                 if (r) {
2574                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2575                               dm_device_name(pool->pool_md), r);
2576                         goto err;
2577                 }
2578
2579                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2580                 if (r) {
2581                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2582                               dm_device_name(pool->pool_md), r);
2583                         goto err;
2584                 }
2585
2586                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2587                 if (r) {
2588                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2589                               dm_device_name(pool->pool_md), r);
2590                         goto err;
2591                 }
2592
2593                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2594                        (unsigned long long)transaction_id,
2595                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2596                        (unsigned long long)nr_blocks_metadata,
2597                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2598                        (unsigned long long)nr_blocks_data);
2599
2600                 if (held_root)
2601                         DMEMIT("%llu ", held_root);
2602                 else
2603                         DMEMIT("- ");
2604
2605                 if (pool->pf.mode == PM_READ_ONLY)
2606                         DMEMIT("ro ");
2607                 else
2608                         DMEMIT("rw ");
2609
2610                 if (!pool->pf.discard_enabled)
2611                         DMEMIT("ignore_discard");
2612                 else if (pool->pf.discard_passdown)
2613                         DMEMIT("discard_passdown");
2614                 else
2615                         DMEMIT("no_discard_passdown");
2616
2617                 break;
2618
2619         case STATUSTYPE_TABLE:
2620                 DMEMIT("%s %s %lu %llu ",
2621                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2622                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2623                        (unsigned long)pool->sectors_per_block,
2624                        (unsigned long long)pt->low_water_blocks);
2625                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2626                 break;
2627         }
2628         return;
2629
2630 err:
2631         DMEMIT("Error");
2632 }
2633
2634 static int pool_iterate_devices(struct dm_target *ti,
2635                                 iterate_devices_callout_fn fn, void *data)
2636 {
2637         struct pool_c *pt = ti->private;
2638
2639         return fn(ti, pt->data_dev, 0, ti->len, data);
2640 }
2641
2642 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2643                       struct bio_vec *biovec, int max_size)
2644 {
2645         struct pool_c *pt = ti->private;
2646         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2647
2648         if (!q->merge_bvec_fn)
2649                 return max_size;
2650
2651         bvm->bi_bdev = pt->data_dev->bdev;
2652
2653         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2654 }
2655
2656 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2657 {
2658         struct pool *pool = pt->pool;
2659         struct queue_limits *data_limits;
2660
2661         limits->max_discard_sectors = pool->sectors_per_block;
2662
2663         /*
2664          * discard_granularity is just a hint, and not enforced.
2665          */
2666         if (pt->adjusted_pf.discard_passdown) {
2667                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2668                 limits->discard_granularity = data_limits->discard_granularity;
2669         } else
2670                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2671 }
2672
2673 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2674 {
2675         struct pool_c *pt = ti->private;
2676         struct pool *pool = pt->pool;
2677         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2678
2679         /*
2680          * If the system-determined stacked limits are compatible with the
2681          * pool's blocksize (io_opt is a factor) do not override them.
2682          */
2683         if (io_opt_sectors < pool->sectors_per_block ||
2684             do_div(io_opt_sectors, pool->sectors_per_block)) {
2685                 blk_limits_io_min(limits, 0);
2686                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2687         }
2688
2689         /*
2690          * pt->adjusted_pf is a staging area for the actual features to use.
2691          * They get transferred to the live pool in bind_control_target()
2692          * called from pool_preresume().
2693          */
2694         if (!pt->adjusted_pf.discard_enabled) {
2695                 /*
2696                  * Must explicitly disallow stacking discard limits otherwise the
2697                  * block layer will stack them if pool's data device has support.
2698                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2699                  * user to see that, so make sure to set all discard limits to 0.
2700                  */
2701                 limits->discard_granularity = 0;
2702                 return;
2703         }
2704
2705         disable_passdown_if_not_supported(pt);
2706
2707         set_discard_limits(pt, limits);
2708 }
2709
2710 static struct target_type pool_target = {
2711         .name = "thin-pool",
2712         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2713                     DM_TARGET_IMMUTABLE,
2714         .version = {1, 9, 0},
2715         .module = THIS_MODULE,
2716         .ctr = pool_ctr,
2717         .dtr = pool_dtr,
2718         .map = pool_map,
2719         .postsuspend = pool_postsuspend,
2720         .preresume = pool_preresume,
2721         .resume = pool_resume,
2722         .message = pool_message,
2723         .status = pool_status,
2724         .merge = pool_merge,
2725         .iterate_devices = pool_iterate_devices,
2726         .io_hints = pool_io_hints,
2727 };
2728
2729 /*----------------------------------------------------------------
2730  * Thin target methods
2731  *--------------------------------------------------------------*/
2732 static void thin_dtr(struct dm_target *ti)
2733 {
2734         struct thin_c *tc = ti->private;
2735
2736         mutex_lock(&dm_thin_pool_table.mutex);
2737
2738         __pool_dec(tc->pool);
2739         dm_pool_close_thin_device(tc->td);
2740         dm_put_device(ti, tc->pool_dev);
2741         if (tc->origin_dev)
2742                 dm_put_device(ti, tc->origin_dev);
2743         kfree(tc);
2744
2745         mutex_unlock(&dm_thin_pool_table.mutex);
2746 }
2747
2748 /*
2749  * Thin target parameters:
2750  *
2751  * <pool_dev> <dev_id> [origin_dev]
2752  *
2753  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2754  * dev_id: the internal device identifier
2755  * origin_dev: a device external to the pool that should act as the origin
2756  *
2757  * If the pool device has discards disabled, they get disabled for the thin
2758  * device as well.
2759  */
2760 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2761 {
2762         int r;
2763         struct thin_c *tc;
2764         struct dm_dev *pool_dev, *origin_dev;
2765         struct mapped_device *pool_md;
2766
2767         mutex_lock(&dm_thin_pool_table.mutex);
2768
2769         if (argc != 2 && argc != 3) {
2770                 ti->error = "Invalid argument count";
2771                 r = -EINVAL;
2772                 goto out_unlock;
2773         }
2774
2775         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2776         if (!tc) {
2777                 ti->error = "Out of memory";
2778                 r = -ENOMEM;
2779                 goto out_unlock;
2780         }
2781
2782         if (argc == 3) {
2783                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2784                 if (r) {
2785                         ti->error = "Error opening origin device";
2786                         goto bad_origin_dev;
2787                 }
2788                 tc->origin_dev = origin_dev;
2789         }
2790
2791         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2792         if (r) {
2793                 ti->error = "Error opening pool device";
2794                 goto bad_pool_dev;
2795         }
2796         tc->pool_dev = pool_dev;
2797
2798         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2799                 ti->error = "Invalid device id";
2800                 r = -EINVAL;
2801                 goto bad_common;
2802         }
2803
2804         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2805         if (!pool_md) {
2806                 ti->error = "Couldn't get pool mapped device";
2807                 r = -EINVAL;
2808                 goto bad_common;
2809         }
2810
2811         tc->pool = __pool_table_lookup(pool_md);
2812         if (!tc->pool) {
2813                 ti->error = "Couldn't find pool object";
2814                 r = -EINVAL;
2815                 goto bad_pool_lookup;
2816         }
2817         __pool_inc(tc->pool);
2818
2819         if (get_pool_mode(tc->pool) == PM_FAIL) {
2820                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2821                 goto bad_thin_open;
2822         }
2823
2824         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2825         if (r) {
2826                 ti->error = "Couldn't open thin internal device";
2827                 goto bad_thin_open;
2828         }
2829
2830         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2831         if (r)
2832                 goto bad_thin_open;
2833
2834         ti->num_flush_bios = 1;
2835         ti->flush_supported = true;
2836         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2837
2838         /* In case the pool supports discards, pass them on. */
2839         ti->discard_zeroes_data_unsupported = true;
2840         if (tc->pool->pf.discard_enabled) {
2841                 ti->discards_supported = true;
2842                 ti->num_discard_bios = 1;
2843                 /* Discard bios must be split on a block boundary */
2844                 ti->split_discard_bios = true;
2845         }
2846
2847         dm_put(pool_md);
2848
2849         mutex_unlock(&dm_thin_pool_table.mutex);
2850
2851         return 0;
2852
2853 bad_thin_open:
2854         __pool_dec(tc->pool);
2855 bad_pool_lookup:
2856         dm_put(pool_md);
2857 bad_common:
2858         dm_put_device(ti, tc->pool_dev);
2859 bad_pool_dev:
2860         if (tc->origin_dev)
2861                 dm_put_device(ti, tc->origin_dev);
2862 bad_origin_dev:
2863         kfree(tc);
2864 out_unlock:
2865         mutex_unlock(&dm_thin_pool_table.mutex);
2866
2867         return r;
2868 }
2869
2870 static int thin_map(struct dm_target *ti, struct bio *bio)
2871 {
2872         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2873
2874         return thin_bio_map(ti, bio);
2875 }
2876
2877 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2878 {
2879         unsigned long flags;
2880         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2881         struct list_head work;
2882         struct dm_thin_new_mapping *m, *tmp;
2883         struct pool *pool = h->tc->pool;
2884
2885         if (h->shared_read_entry) {
2886                 INIT_LIST_HEAD(&work);
2887                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2888
2889                 spin_lock_irqsave(&pool->lock, flags);
2890                 list_for_each_entry_safe(m, tmp, &work, list) {
2891                         list_del(&m->list);
2892                         m->quiesced = 1;
2893                         __maybe_add_mapping(m);
2894                 }
2895                 spin_unlock_irqrestore(&pool->lock, flags);
2896         }
2897
2898         if (h->all_io_entry) {
2899                 INIT_LIST_HEAD(&work);
2900                 dm_deferred_entry_dec(h->all_io_entry, &work);
2901                 if (!list_empty(&work)) {
2902                         spin_lock_irqsave(&pool->lock, flags);
2903                         list_for_each_entry_safe(m, tmp, &work, list)
2904                                 list_add(&m->list, &pool->prepared_discards);
2905                         spin_unlock_irqrestore(&pool->lock, flags);
2906                         wake_worker(pool);
2907                 }
2908         }
2909
2910         return 0;
2911 }
2912
2913 static void thin_postsuspend(struct dm_target *ti)
2914 {
2915         if (dm_noflush_suspending(ti))
2916                 requeue_io((struct thin_c *)ti->private);
2917 }
2918
2919 /*
2920  * <nr mapped sectors> <highest mapped sector>
2921  */
2922 static void thin_status(struct dm_target *ti, status_type_t type,
2923                         unsigned status_flags, char *result, unsigned maxlen)
2924 {
2925         int r;
2926         ssize_t sz = 0;
2927         dm_block_t mapped, highest;
2928         char buf[BDEVNAME_SIZE];
2929         struct thin_c *tc = ti->private;
2930
2931         if (get_pool_mode(tc->pool) == PM_FAIL) {
2932                 DMEMIT("Fail");
2933                 return;
2934         }
2935
2936         if (!tc->td)
2937                 DMEMIT("-");
2938         else {
2939                 switch (type) {
2940                 case STATUSTYPE_INFO:
2941                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2942                         if (r) {
2943                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2944                                 goto err;
2945                         }
2946
2947                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2948                         if (r < 0) {
2949                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2950                                 goto err;
2951                         }
2952
2953                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2954                         if (r)
2955                                 DMEMIT("%llu", ((highest + 1) *
2956                                                 tc->pool->sectors_per_block) - 1);
2957                         else
2958                                 DMEMIT("-");
2959                         break;
2960
2961                 case STATUSTYPE_TABLE:
2962                         DMEMIT("%s %lu",
2963                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2964                                (unsigned long) tc->dev_id);
2965                         if (tc->origin_dev)
2966                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2967                         break;
2968                 }
2969         }
2970
2971         return;
2972
2973 err:
2974         DMEMIT("Error");
2975 }
2976
2977 static int thin_iterate_devices(struct dm_target *ti,
2978                                 iterate_devices_callout_fn fn, void *data)
2979 {
2980         sector_t blocks;
2981         struct thin_c *tc = ti->private;
2982         struct pool *pool = tc->pool;
2983
2984         /*
2985          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2986          * we follow a more convoluted path through to the pool's target.
2987          */
2988         if (!pool->ti)
2989                 return 0;       /* nothing is bound */
2990
2991         blocks = pool->ti->len;
2992         (void) sector_div(blocks, pool->sectors_per_block);
2993         if (blocks)
2994                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2995
2996         return 0;
2997 }
2998
2999 static struct target_type thin_target = {
3000         .name = "thin",
3001         .version = {1, 9, 0},
3002         .module = THIS_MODULE,
3003         .ctr = thin_ctr,
3004         .dtr = thin_dtr,
3005         .map = thin_map,
3006         .end_io = thin_endio,
3007         .postsuspend = thin_postsuspend,
3008         .status = thin_status,
3009         .iterate_devices = thin_iterate_devices,
3010 };
3011
3012 /*----------------------------------------------------------------*/
3013
3014 static int __init dm_thin_init(void)
3015 {
3016         int r;
3017
3018         pool_table_init();
3019
3020         r = dm_register_target(&thin_target);
3021         if (r)
3022                 return r;
3023
3024         r = dm_register_target(&pool_target);
3025         if (r)
3026                 goto bad_pool_target;
3027
3028         r = -ENOMEM;
3029
3030         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3031         if (!_new_mapping_cache)
3032                 goto bad_new_mapping_cache;
3033
3034         return 0;
3035
3036 bad_new_mapping_cache:
3037         dm_unregister_target(&pool_target);
3038 bad_pool_target:
3039         dm_unregister_target(&thin_target);
3040
3041         return r;
3042 }
3043
3044 static void dm_thin_exit(void)
3045 {
3046         dm_unregister_target(&thin_target);
3047         dm_unregister_target(&pool_target);
3048
3049         kmem_cache_destroy(_new_mapping_cache);
3050 }
3051
3052 module_init(dm_thin_init);
3053 module_exit(dm_thin_exit);
3054
3055 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3056 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3057 MODULE_LICENSE("GPL");