2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
30 * ratelimit state to be used in DMXXX_LIMIT().
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
45 static const char *_name = DM_NAME;
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
50 static DEFINE_IDR(_minor_idr);
52 static DEFINE_SPINLOCK(_minor_lock);
54 static void do_deferred_remove(struct work_struct *w);
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 static struct workqueue_struct *deferred_remove_workqueue;
62 * One of these is allocated per bio.
65 struct mapped_device *md;
69 unsigned long start_time;
70 spinlock_t endio_lock;
71 struct dm_stats_aux stats_aux;
75 * For request-based dm.
76 * One of these is allocated per request.
78 struct dm_rq_target_io {
79 struct mapped_device *md;
81 struct request *orig, *clone;
87 * For request-based dm - the bio clones we allocate are embedded in these
90 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
91 * the bioset is created - this means the bio has to come at the end of the
94 struct dm_rq_clone_bio_info {
96 struct dm_rq_target_io *tio;
100 union map_info *dm_get_rq_mapinfo(struct request *rq)
102 if (rq && rq->end_io_data)
103 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
106 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
108 #define MINOR_ALLOCED ((void *)-1)
111 * Bits for the md->flags field.
113 #define DMF_BLOCK_IO_FOR_SUSPEND 0
114 #define DMF_SUSPENDED 1
116 #define DMF_FREEING 3
117 #define DMF_DELETING 4
118 #define DMF_NOFLUSH_SUSPENDING 5
119 #define DMF_MERGE_IS_OPTIONAL 6
120 #define DMF_DEFERRED_REMOVE 7
121 #define DMF_SUSPENDED_INTERNALLY 8
124 * A dummy definition to make RCU happy.
125 * struct dm_table should never be dereferenced in this file.
132 * Work processed by per-device workqueue.
134 struct mapped_device {
135 struct srcu_struct io_barrier;
136 struct mutex suspend_lock;
141 * The current mapping.
142 * Use dm_get_live_table{_fast} or take suspend_lock for
145 struct dm_table __rcu *map;
147 struct list_head table_devices;
148 struct mutex table_devices_lock;
152 struct request_queue *queue;
154 /* Protect queue and type against concurrent access. */
155 struct mutex type_lock;
157 struct target_type *immutable_target_type;
159 struct gendisk *disk;
165 * A list of ios that arrived while we were suspended.
168 wait_queue_head_t wait;
169 struct work_struct work;
170 struct bio_list deferred;
171 spinlock_t deferred_lock;
174 * Processing queue (flush)
176 struct workqueue_struct *wq;
179 * io objects are allocated from here.
190 wait_queue_head_t eventq;
192 struct list_head uevent_list;
193 spinlock_t uevent_lock; /* Protect access to uevent_list */
196 * freeze/thaw support require holding onto a super block
198 struct super_block *frozen_sb;
199 struct block_device *bdev;
201 /* forced geometry settings */
202 struct hd_geometry geometry;
204 /* kobject and completion */
205 struct dm_kobject_holder kobj_holder;
207 /* zero-length flush that will be cloned and submitted to targets */
208 struct bio flush_bio;
210 struct dm_stats stats;
214 * For mempools pre-allocation at the table loading time.
216 struct dm_md_mempools {
222 struct table_device {
223 struct list_head list;
225 struct dm_dev dm_dev;
228 #define RESERVED_BIO_BASED_IOS 16
229 #define RESERVED_REQUEST_BASED_IOS 256
230 #define RESERVED_MAX_IOS 1024
231 static struct kmem_cache *_io_cache;
232 static struct kmem_cache *_rq_tio_cache;
233 static struct kmem_cache *_rq_cache;
236 * Bio-based DM's mempools' reserved IOs set by the user.
238 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
241 * Request-based DM's mempools' reserved IOs set by the user.
243 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
245 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
246 unsigned def, unsigned max)
248 unsigned ios = ACCESS_ONCE(*reserved_ios);
249 unsigned modified_ios = 0;
257 (void)cmpxchg(reserved_ios, ios, modified_ios);
264 unsigned dm_get_reserved_bio_based_ios(void)
266 return __dm_get_reserved_ios(&reserved_bio_based_ios,
267 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
269 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
271 unsigned dm_get_reserved_rq_based_ios(void)
273 return __dm_get_reserved_ios(&reserved_rq_based_ios,
274 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
276 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
278 static int __init local_init(void)
282 /* allocate a slab for the dm_ios */
283 _io_cache = KMEM_CACHE(dm_io, 0);
287 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
289 goto out_free_io_cache;
291 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
292 __alignof__(struct request), 0, NULL);
294 goto out_free_rq_tio_cache;
296 r = dm_uevent_init();
298 goto out_free_rq_cache;
300 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
301 if (!deferred_remove_workqueue) {
303 goto out_uevent_exit;
307 r = register_blkdev(_major, _name);
309 goto out_free_workqueue;
317 destroy_workqueue(deferred_remove_workqueue);
321 kmem_cache_destroy(_rq_cache);
322 out_free_rq_tio_cache:
323 kmem_cache_destroy(_rq_tio_cache);
325 kmem_cache_destroy(_io_cache);
330 static void local_exit(void)
332 flush_scheduled_work();
333 destroy_workqueue(deferred_remove_workqueue);
335 kmem_cache_destroy(_rq_cache);
336 kmem_cache_destroy(_rq_tio_cache);
337 kmem_cache_destroy(_io_cache);
338 unregister_blkdev(_major, _name);
343 DMINFO("cleaned up");
346 static int (*_inits[])(void) __initdata = {
357 static void (*_exits[])(void) = {
368 static int __init dm_init(void)
370 const int count = ARRAY_SIZE(_inits);
374 for (i = 0; i < count; i++) {
389 static void __exit dm_exit(void)
391 int i = ARRAY_SIZE(_exits);
397 * Should be empty by this point.
399 idr_destroy(&_minor_idr);
403 * Block device functions
405 int dm_deleting_md(struct mapped_device *md)
407 return test_bit(DMF_DELETING, &md->flags);
410 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
412 struct mapped_device *md;
414 spin_lock(&_minor_lock);
416 md = bdev->bd_disk->private_data;
420 if (test_bit(DMF_FREEING, &md->flags) ||
421 dm_deleting_md(md)) {
427 atomic_inc(&md->open_count);
430 spin_unlock(&_minor_lock);
432 return md ? 0 : -ENXIO;
435 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
437 struct mapped_device *md = disk->private_data;
439 spin_lock(&_minor_lock);
441 if (atomic_dec_and_test(&md->open_count) &&
442 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
443 queue_work(deferred_remove_workqueue, &deferred_remove_work);
447 spin_unlock(&_minor_lock);
450 int dm_open_count(struct mapped_device *md)
452 return atomic_read(&md->open_count);
456 * Guarantees nothing is using the device before it's deleted.
458 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
462 spin_lock(&_minor_lock);
464 if (dm_open_count(md)) {
467 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
468 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
471 set_bit(DMF_DELETING, &md->flags);
473 spin_unlock(&_minor_lock);
478 int dm_cancel_deferred_remove(struct mapped_device *md)
482 spin_lock(&_minor_lock);
484 if (test_bit(DMF_DELETING, &md->flags))
487 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
489 spin_unlock(&_minor_lock);
494 static void do_deferred_remove(struct work_struct *w)
496 dm_deferred_remove();
499 sector_t dm_get_size(struct mapped_device *md)
501 return get_capacity(md->disk);
504 struct request_queue *dm_get_md_queue(struct mapped_device *md)
509 struct dm_stats *dm_get_stats(struct mapped_device *md)
514 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
516 struct mapped_device *md = bdev->bd_disk->private_data;
518 return dm_get_geometry(md, geo);
521 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
522 unsigned int cmd, unsigned long arg)
524 struct mapped_device *md = bdev->bd_disk->private_data;
526 struct dm_table *map;
527 struct dm_target *tgt;
531 map = dm_get_live_table(md, &srcu_idx);
533 if (!map || !dm_table_get_size(map))
536 /* We only support devices that have a single target */
537 if (dm_table_get_num_targets(map) != 1)
540 tgt = dm_table_get_target(map, 0);
541 if (!tgt->type->ioctl)
544 if (dm_suspended_md(md)) {
549 r = tgt->type->ioctl(tgt, cmd, arg);
552 dm_put_live_table(md, srcu_idx);
554 if (r == -ENOTCONN) {
562 static struct dm_io *alloc_io(struct mapped_device *md)
564 return mempool_alloc(md->io_pool, GFP_NOIO);
567 static void free_io(struct mapped_device *md, struct dm_io *io)
569 mempool_free(io, md->io_pool);
572 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
574 bio_put(&tio->clone);
577 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
580 return mempool_alloc(md->io_pool, gfp_mask);
583 static void free_rq_tio(struct dm_rq_target_io *tio)
585 mempool_free(tio, tio->md->io_pool);
588 static struct request *alloc_clone_request(struct mapped_device *md,
591 return mempool_alloc(md->rq_pool, gfp_mask);
594 static void free_clone_request(struct mapped_device *md, struct request *rq)
596 mempool_free(rq, md->rq_pool);
599 static int md_in_flight(struct mapped_device *md)
601 return atomic_read(&md->pending[READ]) +
602 atomic_read(&md->pending[WRITE]);
605 static void start_io_acct(struct dm_io *io)
607 struct mapped_device *md = io->md;
608 struct bio *bio = io->bio;
610 int rw = bio_data_dir(bio);
612 io->start_time = jiffies;
614 cpu = part_stat_lock();
615 part_round_stats(cpu, &dm_disk(md)->part0);
617 atomic_set(&dm_disk(md)->part0.in_flight[rw],
618 atomic_inc_return(&md->pending[rw]));
620 if (unlikely(dm_stats_used(&md->stats)))
621 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
622 bio_sectors(bio), false, 0, &io->stats_aux);
625 static void end_io_acct(struct dm_io *io)
627 struct mapped_device *md = io->md;
628 struct bio *bio = io->bio;
629 unsigned long duration = jiffies - io->start_time;
631 int rw = bio_data_dir(bio);
633 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
635 if (unlikely(dm_stats_used(&md->stats)))
636 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
637 bio_sectors(bio), true, duration, &io->stats_aux);
640 * After this is decremented the bio must not be touched if it is
643 pending = atomic_dec_return(&md->pending[rw]);
644 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
645 pending += atomic_read(&md->pending[rw^0x1]);
647 /* nudge anyone waiting on suspend queue */
653 * Add the bio to the list of deferred io.
655 static void queue_io(struct mapped_device *md, struct bio *bio)
659 spin_lock_irqsave(&md->deferred_lock, flags);
660 bio_list_add(&md->deferred, bio);
661 spin_unlock_irqrestore(&md->deferred_lock, flags);
662 queue_work(md->wq, &md->work);
666 * Everyone (including functions in this file), should use this
667 * function to access the md->map field, and make sure they call
668 * dm_put_live_table() when finished.
670 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
672 *srcu_idx = srcu_read_lock(&md->io_barrier);
674 return srcu_dereference(md->map, &md->io_barrier);
677 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
679 srcu_read_unlock(&md->io_barrier, srcu_idx);
682 void dm_sync_table(struct mapped_device *md)
684 synchronize_srcu(&md->io_barrier);
685 synchronize_rcu_expedited();
689 * A fast alternative to dm_get_live_table/dm_put_live_table.
690 * The caller must not block between these two functions.
692 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
695 return rcu_dereference(md->map);
698 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
704 * Open a table device so we can use it as a map destination.
706 static int open_table_device(struct table_device *td, dev_t dev,
707 struct mapped_device *md)
709 static char *_claim_ptr = "I belong to device-mapper";
710 struct block_device *bdev;
714 BUG_ON(td->dm_dev.bdev);
716 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
718 return PTR_ERR(bdev);
720 r = bd_link_disk_holder(bdev, dm_disk(md));
722 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
726 td->dm_dev.bdev = bdev;
731 * Close a table device that we've been using.
733 static void close_table_device(struct table_device *td, struct mapped_device *md)
735 if (!td->dm_dev.bdev)
738 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
739 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
740 td->dm_dev.bdev = NULL;
743 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
745 struct table_device *td;
747 list_for_each_entry(td, l, list)
748 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
755 struct dm_dev **result) {
757 struct table_device *td;
759 mutex_lock(&md->table_devices_lock);
760 td = find_table_device(&md->table_devices, dev, mode);
762 td = kmalloc(sizeof(*td), GFP_KERNEL);
764 mutex_unlock(&md->table_devices_lock);
768 td->dm_dev.mode = mode;
769 td->dm_dev.bdev = NULL;
771 if ((r = open_table_device(td, dev, md))) {
772 mutex_unlock(&md->table_devices_lock);
777 format_dev_t(td->dm_dev.name, dev);
779 atomic_set(&td->count, 0);
780 list_add(&td->list, &md->table_devices);
782 atomic_inc(&td->count);
783 mutex_unlock(&md->table_devices_lock);
785 *result = &td->dm_dev;
788 EXPORT_SYMBOL_GPL(dm_get_table_device);
790 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
792 struct table_device *td = container_of(d, struct table_device, dm_dev);
794 mutex_lock(&md->table_devices_lock);
795 if (atomic_dec_and_test(&td->count)) {
796 close_table_device(td, md);
800 mutex_unlock(&md->table_devices_lock);
802 EXPORT_SYMBOL(dm_put_table_device);
804 static void free_table_devices(struct list_head *devices)
806 struct list_head *tmp, *next;
808 list_for_each_safe(tmp, next, devices) {
809 struct table_device *td = list_entry(tmp, struct table_device, list);
811 DMWARN("dm_destroy: %s still exists with %d references",
812 td->dm_dev.name, atomic_read(&td->count));
818 * Get the geometry associated with a dm device
820 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
828 * Set the geometry of a device.
830 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
834 if (geo->start > sz) {
835 DMWARN("Start sector is beyond the geometry limits.");
844 /*-----------------------------------------------------------------
846 * A more elegant soln is in the works that uses the queue
847 * merge fn, unfortunately there are a couple of changes to
848 * the block layer that I want to make for this. So in the
849 * interests of getting something for people to use I give
850 * you this clearly demarcated crap.
851 *---------------------------------------------------------------*/
853 static int __noflush_suspending(struct mapped_device *md)
855 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
859 * Decrements the number of outstanding ios that a bio has been
860 * cloned into, completing the original io if necc.
862 static void dec_pending(struct dm_io *io, int error)
867 struct mapped_device *md = io->md;
869 /* Push-back supersedes any I/O errors */
870 if (unlikely(error)) {
871 spin_lock_irqsave(&io->endio_lock, flags);
872 if (!(io->error > 0 && __noflush_suspending(md)))
874 spin_unlock_irqrestore(&io->endio_lock, flags);
877 if (atomic_dec_and_test(&io->io_count)) {
878 if (io->error == DM_ENDIO_REQUEUE) {
880 * Target requested pushing back the I/O.
882 spin_lock_irqsave(&md->deferred_lock, flags);
883 if (__noflush_suspending(md))
884 bio_list_add_head(&md->deferred, io->bio);
886 /* noflush suspend was interrupted. */
888 spin_unlock_irqrestore(&md->deferred_lock, flags);
891 io_error = io->error;
896 if (io_error == DM_ENDIO_REQUEUE)
899 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
901 * Preflush done for flush with data, reissue
904 bio->bi_rw &= ~REQ_FLUSH;
907 /* done with normal IO or empty flush */
908 trace_block_bio_complete(md->queue, bio, io_error);
909 bio_endio(bio, io_error);
914 static void disable_write_same(struct mapped_device *md)
916 struct queue_limits *limits = dm_get_queue_limits(md);
918 /* device doesn't really support WRITE SAME, disable it */
919 limits->max_write_same_sectors = 0;
922 static void clone_endio(struct bio *bio, int error)
925 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
926 struct dm_io *io = tio->io;
927 struct mapped_device *md = tio->io->md;
928 dm_endio_fn endio = tio->ti->type->end_io;
930 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
934 r = endio(tio->ti, bio, error);
935 if (r < 0 || r == DM_ENDIO_REQUEUE)
937 * error and requeue request are handled
941 else if (r == DM_ENDIO_INCOMPLETE)
942 /* The target will handle the io */
945 DMWARN("unimplemented target endio return value: %d", r);
950 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
951 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
952 disable_write_same(md);
955 dec_pending(io, error);
959 * Partial completion handling for request-based dm
961 static void end_clone_bio(struct bio *clone, int error)
963 struct dm_rq_clone_bio_info *info =
964 container_of(clone, struct dm_rq_clone_bio_info, clone);
965 struct dm_rq_target_io *tio = info->tio;
966 struct bio *bio = info->orig;
967 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
973 * An error has already been detected on the request.
974 * Once error occurred, just let clone->end_io() handle
980 * Don't notice the error to the upper layer yet.
981 * The error handling decision is made by the target driver,
982 * when the request is completed.
989 * I/O for the bio successfully completed.
990 * Notice the data completion to the upper layer.
994 * bios are processed from the head of the list.
995 * So the completing bio should always be rq->bio.
996 * If it's not, something wrong is happening.
998 if (tio->orig->bio != bio)
999 DMERR("bio completion is going in the middle of the request");
1002 * Update the original request.
1003 * Do not use blk_end_request() here, because it may complete
1004 * the original request before the clone, and break the ordering.
1006 blk_update_request(tio->orig, 0, nr_bytes);
1010 * Don't touch any member of the md after calling this function because
1011 * the md may be freed in dm_put() at the end of this function.
1012 * Or do dm_get() before calling this function and dm_put() later.
1014 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
1016 atomic_dec(&md->pending[rw]);
1018 /* nudge anyone waiting on suspend queue */
1019 if (!md_in_flight(md))
1023 * Run this off this callpath, as drivers could invoke end_io while
1024 * inside their request_fn (and holding the queue lock). Calling
1025 * back into ->request_fn() could deadlock attempting to grab the
1029 blk_run_queue_async(md->queue);
1032 * dm_put() must be at the end of this function. See the comment above
1037 static void free_rq_clone(struct request *clone)
1039 struct dm_rq_target_io *tio = clone->end_io_data;
1041 blk_rq_unprep_clone(clone);
1042 free_clone_request(tio->md, clone);
1047 * Complete the clone and the original request.
1048 * Must be called without queue lock.
1050 static void dm_end_request(struct request *clone, int error)
1052 int rw = rq_data_dir(clone);
1053 struct dm_rq_target_io *tio = clone->end_io_data;
1054 struct mapped_device *md = tio->md;
1055 struct request *rq = tio->orig;
1057 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1058 rq->errors = clone->errors;
1059 rq->resid_len = clone->resid_len;
1063 * We are using the sense buffer of the original
1065 * So setting the length of the sense data is enough.
1067 rq->sense_len = clone->sense_len;
1070 free_rq_clone(clone);
1071 blk_end_request_all(rq, error);
1072 rq_completed(md, rw, true);
1075 static void dm_unprep_request(struct request *rq)
1077 struct request *clone = rq->special;
1080 rq->cmd_flags &= ~REQ_DONTPREP;
1082 free_rq_clone(clone);
1086 * Requeue the original request of a clone.
1088 static void dm_requeue_unmapped_request(struct request *clone)
1090 int rw = rq_data_dir(clone);
1091 struct dm_rq_target_io *tio = clone->end_io_data;
1092 struct mapped_device *md = tio->md;
1093 struct request *rq = tio->orig;
1094 struct request_queue *q = rq->q;
1095 unsigned long flags;
1097 dm_unprep_request(rq);
1099 spin_lock_irqsave(q->queue_lock, flags);
1100 blk_requeue_request(q, rq);
1101 spin_unlock_irqrestore(q->queue_lock, flags);
1103 rq_completed(md, rw, 0);
1106 static void __stop_queue(struct request_queue *q)
1111 static void stop_queue(struct request_queue *q)
1113 unsigned long flags;
1115 spin_lock_irqsave(q->queue_lock, flags);
1117 spin_unlock_irqrestore(q->queue_lock, flags);
1120 static void __start_queue(struct request_queue *q)
1122 if (blk_queue_stopped(q))
1126 static void start_queue(struct request_queue *q)
1128 unsigned long flags;
1130 spin_lock_irqsave(q->queue_lock, flags);
1132 spin_unlock_irqrestore(q->queue_lock, flags);
1135 static void dm_done(struct request *clone, int error, bool mapped)
1138 struct dm_rq_target_io *tio = clone->end_io_data;
1139 dm_request_endio_fn rq_end_io = NULL;
1142 rq_end_io = tio->ti->type->rq_end_io;
1144 if (mapped && rq_end_io)
1145 r = rq_end_io(tio->ti, clone, error, &tio->info);
1148 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1149 !clone->q->limits.max_write_same_sectors))
1150 disable_write_same(tio->md);
1153 /* The target wants to complete the I/O */
1154 dm_end_request(clone, r);
1155 else if (r == DM_ENDIO_INCOMPLETE)
1156 /* The target will handle the I/O */
1158 else if (r == DM_ENDIO_REQUEUE)
1159 /* The target wants to requeue the I/O */
1160 dm_requeue_unmapped_request(clone);
1162 DMWARN("unimplemented target endio return value: %d", r);
1168 * Request completion handler for request-based dm
1170 static void dm_softirq_done(struct request *rq)
1173 struct request *clone = rq->completion_data;
1174 struct dm_rq_target_io *tio = clone->end_io_data;
1176 if (rq->cmd_flags & REQ_FAILED)
1179 dm_done(clone, tio->error, mapped);
1183 * Complete the clone and the original request with the error status
1184 * through softirq context.
1186 static void dm_complete_request(struct request *clone, int error)
1188 struct dm_rq_target_io *tio = clone->end_io_data;
1189 struct request *rq = tio->orig;
1192 rq->completion_data = clone;
1193 blk_complete_request(rq);
1197 * Complete the not-mapped clone and the original request with the error status
1198 * through softirq context.
1199 * Target's rq_end_io() function isn't called.
1200 * This may be used when the target's map_rq() function fails.
1202 static void dm_kill_unmapped_request(struct request *clone, int error)
1204 struct dm_rq_target_io *tio = clone->end_io_data;
1205 struct request *rq = tio->orig;
1207 rq->cmd_flags |= REQ_FAILED;
1208 dm_complete_request(clone, error);
1212 * Called with the queue lock held
1214 static void end_clone_request(struct request *clone, int error)
1217 * For just cleaning up the information of the queue in which
1218 * the clone was dispatched.
1219 * The clone is *NOT* freed actually here because it is alloced from
1220 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1222 __blk_put_request(clone->q, clone);
1225 * Actual request completion is done in a softirq context which doesn't
1226 * hold the queue lock. Otherwise, deadlock could occur because:
1227 * - another request may be submitted by the upper level driver
1228 * of the stacking during the completion
1229 * - the submission which requires queue lock may be done
1230 * against this queue
1232 dm_complete_request(clone, error);
1236 * Return maximum size of I/O possible at the supplied sector up to the current
1239 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1241 sector_t target_offset = dm_target_offset(ti, sector);
1243 return ti->len - target_offset;
1246 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1248 sector_t len = max_io_len_target_boundary(sector, ti);
1249 sector_t offset, max_len;
1252 * Does the target need to split even further?
1254 if (ti->max_io_len) {
1255 offset = dm_target_offset(ti, sector);
1256 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1257 max_len = sector_div(offset, ti->max_io_len);
1259 max_len = offset & (ti->max_io_len - 1);
1260 max_len = ti->max_io_len - max_len;
1269 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1271 if (len > UINT_MAX) {
1272 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1273 (unsigned long long)len, UINT_MAX);
1274 ti->error = "Maximum size of target IO is too large";
1278 ti->max_io_len = (uint32_t) len;
1282 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1285 * A target may call dm_accept_partial_bio only from the map routine. It is
1286 * allowed for all bio types except REQ_FLUSH.
1288 * dm_accept_partial_bio informs the dm that the target only wants to process
1289 * additional n_sectors sectors of the bio and the rest of the data should be
1290 * sent in a next bio.
1292 * A diagram that explains the arithmetics:
1293 * +--------------------+---------------+-------+
1295 * +--------------------+---------------+-------+
1297 * <-------------- *tio->len_ptr --------------->
1298 * <------- bi_size ------->
1301 * Region 1 was already iterated over with bio_advance or similar function.
1302 * (it may be empty if the target doesn't use bio_advance)
1303 * Region 2 is the remaining bio size that the target wants to process.
1304 * (it may be empty if region 1 is non-empty, although there is no reason
1306 * The target requires that region 3 is to be sent in the next bio.
1308 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1309 * the partially processed part (the sum of regions 1+2) must be the same for all
1310 * copies of the bio.
1312 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1314 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1315 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1316 BUG_ON(bio->bi_rw & REQ_FLUSH);
1317 BUG_ON(bi_size > *tio->len_ptr);
1318 BUG_ON(n_sectors > bi_size);
1319 *tio->len_ptr -= bi_size - n_sectors;
1320 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1322 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1324 static void __map_bio(struct dm_target_io *tio)
1328 struct mapped_device *md;
1329 struct bio *clone = &tio->clone;
1330 struct dm_target *ti = tio->ti;
1332 clone->bi_end_io = clone_endio;
1335 * Map the clone. If r == 0 we don't need to do
1336 * anything, the target has assumed ownership of
1339 atomic_inc(&tio->io->io_count);
1340 sector = clone->bi_iter.bi_sector;
1341 r = ti->type->map(ti, clone);
1342 if (r == DM_MAPIO_REMAPPED) {
1343 /* the bio has been remapped so dispatch it */
1345 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1346 tio->io->bio->bi_bdev->bd_dev, sector);
1348 generic_make_request(clone);
1349 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1350 /* error the io and bail out, or requeue it if needed */
1352 dec_pending(tio->io, r);
1355 DMWARN("unimplemented target map return value: %d", r);
1361 struct mapped_device *md;
1362 struct dm_table *map;
1366 unsigned sector_count;
1369 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1371 bio->bi_iter.bi_sector = sector;
1372 bio->bi_iter.bi_size = to_bytes(len);
1376 * Creates a bio that consists of range of complete bvecs.
1378 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1379 sector_t sector, unsigned len)
1381 struct bio *clone = &tio->clone;
1383 __bio_clone_fast(clone, bio);
1385 if (bio_integrity(bio))
1386 bio_integrity_clone(clone, bio, GFP_NOIO);
1388 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1389 clone->bi_iter.bi_size = to_bytes(len);
1391 if (bio_integrity(bio))
1392 bio_integrity_trim(clone, 0, len);
1395 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1396 struct dm_target *ti,
1397 unsigned target_bio_nr)
1399 struct dm_target_io *tio;
1402 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1403 tio = container_of(clone, struct dm_target_io, clone);
1407 tio->target_bio_nr = target_bio_nr;
1412 static void __clone_and_map_simple_bio(struct clone_info *ci,
1413 struct dm_target *ti,
1414 unsigned target_bio_nr, unsigned *len)
1416 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1417 struct bio *clone = &tio->clone;
1421 __bio_clone_fast(clone, ci->bio);
1423 bio_setup_sector(clone, ci->sector, *len);
1428 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1429 unsigned num_bios, unsigned *len)
1431 unsigned target_bio_nr;
1433 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1434 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1437 static int __send_empty_flush(struct clone_info *ci)
1439 unsigned target_nr = 0;
1440 struct dm_target *ti;
1442 BUG_ON(bio_has_data(ci->bio));
1443 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1444 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1449 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450 sector_t sector, unsigned *len)
1452 struct bio *bio = ci->bio;
1453 struct dm_target_io *tio;
1454 unsigned target_bio_nr;
1455 unsigned num_target_bios = 1;
1458 * Does the target want to receive duplicate copies of the bio?
1460 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1461 num_target_bios = ti->num_write_bios(ti, bio);
1463 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1464 tio = alloc_tio(ci, ti, target_bio_nr);
1466 clone_bio(tio, bio, sector, *len);
1471 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1473 static unsigned get_num_discard_bios(struct dm_target *ti)
1475 return ti->num_discard_bios;
1478 static unsigned get_num_write_same_bios(struct dm_target *ti)
1480 return ti->num_write_same_bios;
1483 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1485 static bool is_split_required_for_discard(struct dm_target *ti)
1487 return ti->split_discard_bios;
1490 static int __send_changing_extent_only(struct clone_info *ci,
1491 get_num_bios_fn get_num_bios,
1492 is_split_required_fn is_split_required)
1494 struct dm_target *ti;
1499 ti = dm_table_find_target(ci->map, ci->sector);
1500 if (!dm_target_is_valid(ti))
1504 * Even though the device advertised support for this type of
1505 * request, that does not mean every target supports it, and
1506 * reconfiguration might also have changed that since the
1507 * check was performed.
1509 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1513 if (is_split_required && !is_split_required(ti))
1514 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1516 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1518 __send_duplicate_bios(ci, ti, num_bios, &len);
1521 } while (ci->sector_count -= len);
1526 static int __send_discard(struct clone_info *ci)
1528 return __send_changing_extent_only(ci, get_num_discard_bios,
1529 is_split_required_for_discard);
1532 static int __send_write_same(struct clone_info *ci)
1534 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1538 * Select the correct strategy for processing a non-flush bio.
1540 static int __split_and_process_non_flush(struct clone_info *ci)
1542 struct bio *bio = ci->bio;
1543 struct dm_target *ti;
1546 if (unlikely(bio->bi_rw & REQ_DISCARD))
1547 return __send_discard(ci);
1548 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1549 return __send_write_same(ci);
1551 ti = dm_table_find_target(ci->map, ci->sector);
1552 if (!dm_target_is_valid(ti))
1555 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1557 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1560 ci->sector_count -= len;
1566 * Entry point to split a bio into clones and submit them to the targets.
1568 static void __split_and_process_bio(struct mapped_device *md,
1569 struct dm_table *map, struct bio *bio)
1571 struct clone_info ci;
1574 if (unlikely(!map)) {
1581 ci.io = alloc_io(md);
1583 atomic_set(&ci.io->io_count, 1);
1586 spin_lock_init(&ci.io->endio_lock);
1587 ci.sector = bio->bi_iter.bi_sector;
1589 start_io_acct(ci.io);
1591 if (bio->bi_rw & REQ_FLUSH) {
1592 ci.bio = &ci.md->flush_bio;
1593 ci.sector_count = 0;
1594 error = __send_empty_flush(&ci);
1595 /* dec_pending submits any data associated with flush */
1598 ci.sector_count = bio_sectors(bio);
1599 while (ci.sector_count && !error)
1600 error = __split_and_process_non_flush(&ci);
1603 /* drop the extra reference count */
1604 dec_pending(ci.io, error);
1606 /*-----------------------------------------------------------------
1608 *---------------------------------------------------------------*/
1610 static int dm_merge_bvec(struct request_queue *q,
1611 struct bvec_merge_data *bvm,
1612 struct bio_vec *biovec)
1614 struct mapped_device *md = q->queuedata;
1615 struct dm_table *map = dm_get_live_table_fast(md);
1616 struct dm_target *ti;
1617 sector_t max_sectors;
1623 ti = dm_table_find_target(map, bvm->bi_sector);
1624 if (!dm_target_is_valid(ti))
1628 * Find maximum amount of I/O that won't need splitting
1630 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1631 (sector_t) queue_max_sectors(q));
1632 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1633 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1637 * merge_bvec_fn() returns number of bytes
1638 * it can accept at this offset
1639 * max is precomputed maximal io size
1641 if (max_size && ti->type->merge)
1642 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1644 * If the target doesn't support merge method and some of the devices
1645 * provided their merge_bvec method (we know this by looking for the
1646 * max_hw_sectors that dm_set_device_limits may set), then we can't
1647 * allow bios with multiple vector entries. So always set max_size
1648 * to 0, and the code below allows just one page.
1650 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1654 dm_put_live_table_fast(md);
1656 * Always allow an entire first page
1658 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1659 max_size = biovec->bv_len;
1665 * The request function that just remaps the bio built up by
1668 static void _dm_request(struct request_queue *q, struct bio *bio)
1670 int rw = bio_data_dir(bio);
1671 struct mapped_device *md = q->queuedata;
1673 struct dm_table *map;
1675 map = dm_get_live_table(md, &srcu_idx);
1677 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1679 /* if we're suspended, we have to queue this io for later */
1680 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1681 dm_put_live_table(md, srcu_idx);
1683 if (bio_rw(bio) != READA)
1690 __split_and_process_bio(md, map, bio);
1691 dm_put_live_table(md, srcu_idx);
1695 int dm_request_based(struct mapped_device *md)
1697 return blk_queue_stackable(md->queue);
1700 static void dm_request(struct request_queue *q, struct bio *bio)
1702 struct mapped_device *md = q->queuedata;
1704 if (dm_request_based(md))
1705 blk_queue_bio(q, bio);
1707 _dm_request(q, bio);
1710 static void dm_dispatch_request(struct request *rq)
1714 if (blk_queue_io_stat(rq->q))
1715 rq->cmd_flags |= REQ_IO_STAT;
1717 rq->start_time = jiffies;
1718 r = blk_insert_cloned_request(rq->q, rq);
1720 dm_complete_request(rq, r);
1723 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1726 struct dm_rq_target_io *tio = data;
1727 struct dm_rq_clone_bio_info *info =
1728 container_of(bio, struct dm_rq_clone_bio_info, clone);
1730 info->orig = bio_orig;
1732 bio->bi_end_io = end_clone_bio;
1737 static int setup_clone(struct request *clone, struct request *rq,
1738 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1742 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1743 dm_rq_bio_constructor, tio);
1747 clone->cmd = rq->cmd;
1748 clone->cmd_len = rq->cmd_len;
1749 clone->sense = rq->sense;
1750 clone->end_io = end_clone_request;
1751 clone->end_io_data = tio;
1758 static struct request *__clone_rq(struct request *rq, struct mapped_device *md,
1759 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1761 struct request *clone = alloc_clone_request(md, gfp_mask);
1766 blk_rq_init(NULL, clone);
1767 if (setup_clone(clone, rq, tio, gfp_mask)) {
1769 free_clone_request(md, clone);
1776 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1779 struct request *clone;
1780 struct dm_rq_target_io *tio;
1782 tio = alloc_rq_tio(md, gfp_mask);
1791 memset(&tio->info, 0, sizeof(tio->info));
1793 clone = __clone_rq(rq, md, tio, GFP_ATOMIC);
1803 * Called with the queue lock held.
1805 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1807 struct mapped_device *md = q->queuedata;
1808 struct request *clone;
1810 if (unlikely(rq->special)) {
1811 DMWARN("Already has something in rq->special.");
1812 return BLKPREP_KILL;
1815 clone = clone_rq(rq, md, GFP_ATOMIC);
1817 return BLKPREP_DEFER;
1819 rq->special = clone;
1820 rq->cmd_flags |= REQ_DONTPREP;
1827 * 0 : the request has been processed (not requeued)
1828 * !0 : the request has been requeued
1830 static int map_request(struct dm_target *ti, struct request *clone,
1831 struct mapped_device *md)
1833 int r, requeued = 0;
1834 struct dm_rq_target_io *tio = clone->end_io_data;
1837 r = ti->type->map_rq(ti, clone, &tio->info);
1839 case DM_MAPIO_SUBMITTED:
1840 /* The target has taken the I/O to submit by itself later */
1842 case DM_MAPIO_REMAPPED:
1843 /* The target has remapped the I/O so dispatch it */
1844 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1845 blk_rq_pos(tio->orig));
1846 dm_dispatch_request(clone);
1848 case DM_MAPIO_REQUEUE:
1849 /* The target wants to requeue the I/O */
1850 dm_requeue_unmapped_request(clone);
1855 DMWARN("unimplemented target map return value: %d", r);
1859 /* The target wants to complete the I/O */
1860 dm_kill_unmapped_request(clone, r);
1867 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1869 struct request *clone;
1871 blk_start_request(orig);
1872 clone = orig->special;
1873 atomic_inc(&md->pending[rq_data_dir(clone)]);
1876 * Hold the md reference here for the in-flight I/O.
1877 * We can't rely on the reference count by device opener,
1878 * because the device may be closed during the request completion
1879 * when all bios are completed.
1880 * See the comment in rq_completed() too.
1888 * q->request_fn for request-based dm.
1889 * Called with the queue lock held.
1891 static void dm_request_fn(struct request_queue *q)
1893 struct mapped_device *md = q->queuedata;
1895 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1896 struct dm_target *ti;
1897 struct request *rq, *clone;
1901 * For suspend, check blk_queue_stopped() and increment
1902 * ->pending within a single queue_lock not to increment the
1903 * number of in-flight I/Os after the queue is stopped in
1906 while (!blk_queue_stopped(q)) {
1907 rq = blk_peek_request(q);
1911 /* always use block 0 to find the target for flushes for now */
1913 if (!(rq->cmd_flags & REQ_FLUSH))
1914 pos = blk_rq_pos(rq);
1916 ti = dm_table_find_target(map, pos);
1917 if (!dm_target_is_valid(ti)) {
1919 * Must perform setup, that dm_done() requires,
1920 * before calling dm_kill_unmapped_request
1922 DMERR_LIMIT("request attempted access beyond the end of device");
1923 clone = dm_start_request(md, rq);
1924 dm_kill_unmapped_request(clone, -EIO);
1928 if (ti->type->busy && ti->type->busy(ti))
1931 clone = dm_start_request(md, rq);
1933 spin_unlock(q->queue_lock);
1934 if (map_request(ti, clone, md))
1937 BUG_ON(!irqs_disabled());
1938 spin_lock(q->queue_lock);
1944 BUG_ON(!irqs_disabled());
1945 spin_lock(q->queue_lock);
1948 blk_delay_queue(q, HZ / 10);
1950 dm_put_live_table(md, srcu_idx);
1953 int dm_underlying_device_busy(struct request_queue *q)
1955 return blk_lld_busy(q);
1957 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1959 static int dm_lld_busy(struct request_queue *q)
1962 struct mapped_device *md = q->queuedata;
1963 struct dm_table *map = dm_get_live_table_fast(md);
1965 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1968 r = dm_table_any_busy_target(map);
1970 dm_put_live_table_fast(md);
1975 static int dm_any_congested(void *congested_data, int bdi_bits)
1978 struct mapped_device *md = congested_data;
1979 struct dm_table *map;
1981 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1982 map = dm_get_live_table_fast(md);
1985 * Request-based dm cares about only own queue for
1986 * the query about congestion status of request_queue
1988 if (dm_request_based(md))
1989 r = md->queue->backing_dev_info.state &
1992 r = dm_table_any_congested(map, bdi_bits);
1994 dm_put_live_table_fast(md);
2000 /*-----------------------------------------------------------------
2001 * An IDR is used to keep track of allocated minor numbers.
2002 *---------------------------------------------------------------*/
2003 static void free_minor(int minor)
2005 spin_lock(&_minor_lock);
2006 idr_remove(&_minor_idr, minor);
2007 spin_unlock(&_minor_lock);
2011 * See if the device with a specific minor # is free.
2013 static int specific_minor(int minor)
2017 if (minor >= (1 << MINORBITS))
2020 idr_preload(GFP_KERNEL);
2021 spin_lock(&_minor_lock);
2023 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2025 spin_unlock(&_minor_lock);
2028 return r == -ENOSPC ? -EBUSY : r;
2032 static int next_free_minor(int *minor)
2036 idr_preload(GFP_KERNEL);
2037 spin_lock(&_minor_lock);
2039 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2041 spin_unlock(&_minor_lock);
2049 static const struct block_device_operations dm_blk_dops;
2051 static void dm_wq_work(struct work_struct *work);
2053 static void dm_init_md_queue(struct mapped_device *md)
2056 * Request-based dm devices cannot be stacked on top of bio-based dm
2057 * devices. The type of this dm device has not been decided yet.
2058 * The type is decided at the first table loading time.
2059 * To prevent problematic device stacking, clear the queue flag
2060 * for request stacking support until then.
2062 * This queue is new, so no concurrency on the queue_flags.
2064 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2066 md->queue->queuedata = md;
2067 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2068 md->queue->backing_dev_info.congested_data = md;
2069 blk_queue_make_request(md->queue, dm_request);
2070 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2071 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2075 * Allocate and initialise a blank device with a given minor.
2077 static struct mapped_device *alloc_dev(int minor)
2080 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2084 DMWARN("unable to allocate device, out of memory.");
2088 if (!try_module_get(THIS_MODULE))
2089 goto bad_module_get;
2091 /* get a minor number for the dev */
2092 if (minor == DM_ANY_MINOR)
2093 r = next_free_minor(&minor);
2095 r = specific_minor(minor);
2099 r = init_srcu_struct(&md->io_barrier);
2101 goto bad_io_barrier;
2103 md->type = DM_TYPE_NONE;
2104 mutex_init(&md->suspend_lock);
2105 mutex_init(&md->type_lock);
2106 mutex_init(&md->table_devices_lock);
2107 spin_lock_init(&md->deferred_lock);
2108 atomic_set(&md->holders, 1);
2109 atomic_set(&md->open_count, 0);
2110 atomic_set(&md->event_nr, 0);
2111 atomic_set(&md->uevent_seq, 0);
2112 INIT_LIST_HEAD(&md->uevent_list);
2113 INIT_LIST_HEAD(&md->table_devices);
2114 spin_lock_init(&md->uevent_lock);
2116 md->queue = blk_alloc_queue(GFP_KERNEL);
2120 dm_init_md_queue(md);
2122 md->disk = alloc_disk(1);
2126 atomic_set(&md->pending[0], 0);
2127 atomic_set(&md->pending[1], 0);
2128 init_waitqueue_head(&md->wait);
2129 INIT_WORK(&md->work, dm_wq_work);
2130 init_waitqueue_head(&md->eventq);
2131 init_completion(&md->kobj_holder.completion);
2133 md->disk->major = _major;
2134 md->disk->first_minor = minor;
2135 md->disk->fops = &dm_blk_dops;
2136 md->disk->queue = md->queue;
2137 md->disk->private_data = md;
2138 sprintf(md->disk->disk_name, "dm-%d", minor);
2140 format_dev_t(md->name, MKDEV(_major, minor));
2142 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2146 md->bdev = bdget_disk(md->disk, 0);
2150 bio_init(&md->flush_bio);
2151 md->flush_bio.bi_bdev = md->bdev;
2152 md->flush_bio.bi_rw = WRITE_FLUSH;
2154 dm_stats_init(&md->stats);
2156 /* Populate the mapping, nobody knows we exist yet */
2157 spin_lock(&_minor_lock);
2158 old_md = idr_replace(&_minor_idr, md, minor);
2159 spin_unlock(&_minor_lock);
2161 BUG_ON(old_md != MINOR_ALLOCED);
2166 destroy_workqueue(md->wq);
2168 del_gendisk(md->disk);
2171 blk_cleanup_queue(md->queue);
2173 cleanup_srcu_struct(&md->io_barrier);
2177 module_put(THIS_MODULE);
2183 static void unlock_fs(struct mapped_device *md);
2185 static void free_dev(struct mapped_device *md)
2187 int minor = MINOR(disk_devt(md->disk));
2191 destroy_workqueue(md->wq);
2193 mempool_destroy(md->io_pool);
2195 mempool_destroy(md->rq_pool);
2197 bioset_free(md->bs);
2198 blk_integrity_unregister(md->disk);
2199 del_gendisk(md->disk);
2200 cleanup_srcu_struct(&md->io_barrier);
2201 free_table_devices(&md->table_devices);
2204 spin_lock(&_minor_lock);
2205 md->disk->private_data = NULL;
2206 spin_unlock(&_minor_lock);
2209 blk_cleanup_queue(md->queue);
2210 dm_stats_cleanup(&md->stats);
2211 module_put(THIS_MODULE);
2215 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2217 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2219 if (md->io_pool && md->bs) {
2220 /* The md already has necessary mempools. */
2221 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2223 * Reload bioset because front_pad may have changed
2224 * because a different table was loaded.
2226 bioset_free(md->bs);
2229 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2231 * There's no need to reload with request-based dm
2232 * because the size of front_pad doesn't change.
2233 * Note for future: If you are to reload bioset,
2234 * prep-ed requests in the queue may refer
2235 * to bio from the old bioset, so you must walk
2236 * through the queue to unprep.
2242 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2244 md->io_pool = p->io_pool;
2246 md->rq_pool = p->rq_pool;
2252 /* mempool bind completed, now no need any mempools in the table */
2253 dm_table_free_md_mempools(t);
2257 * Bind a table to the device.
2259 static void event_callback(void *context)
2261 unsigned long flags;
2263 struct mapped_device *md = (struct mapped_device *) context;
2265 spin_lock_irqsave(&md->uevent_lock, flags);
2266 list_splice_init(&md->uevent_list, &uevents);
2267 spin_unlock_irqrestore(&md->uevent_lock, flags);
2269 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2271 atomic_inc(&md->event_nr);
2272 wake_up(&md->eventq);
2276 * Protected by md->suspend_lock obtained by dm_swap_table().
2278 static void __set_size(struct mapped_device *md, sector_t size)
2280 set_capacity(md->disk, size);
2282 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2286 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2288 * If this function returns 0, then the device is either a non-dm
2289 * device without a merge_bvec_fn, or it is a dm device that is
2290 * able to split any bios it receives that are too big.
2292 int dm_queue_merge_is_compulsory(struct request_queue *q)
2294 struct mapped_device *dev_md;
2296 if (!q->merge_bvec_fn)
2299 if (q->make_request_fn == dm_request) {
2300 dev_md = q->queuedata;
2301 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2308 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2309 struct dm_dev *dev, sector_t start,
2310 sector_t len, void *data)
2312 struct block_device *bdev = dev->bdev;
2313 struct request_queue *q = bdev_get_queue(bdev);
2315 return dm_queue_merge_is_compulsory(q);
2319 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2320 * on the properties of the underlying devices.
2322 static int dm_table_merge_is_optional(struct dm_table *table)
2325 struct dm_target *ti;
2327 while (i < dm_table_get_num_targets(table)) {
2328 ti = dm_table_get_target(table, i++);
2330 if (ti->type->iterate_devices &&
2331 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2339 * Returns old map, which caller must destroy.
2341 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2342 struct queue_limits *limits)
2344 struct dm_table *old_map;
2345 struct request_queue *q = md->queue;
2347 int merge_is_optional;
2349 size = dm_table_get_size(t);
2352 * Wipe any geometry if the size of the table changed.
2354 if (size != dm_get_size(md))
2355 memset(&md->geometry, 0, sizeof(md->geometry));
2357 __set_size(md, size);
2359 dm_table_event_callback(t, event_callback, md);
2362 * The queue hasn't been stopped yet, if the old table type wasn't
2363 * for request-based during suspension. So stop it to prevent
2364 * I/O mapping before resume.
2365 * This must be done before setting the queue restrictions,
2366 * because request-based dm may be run just after the setting.
2368 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2371 __bind_mempools(md, t);
2373 merge_is_optional = dm_table_merge_is_optional(t);
2375 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2376 rcu_assign_pointer(md->map, t);
2377 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2379 dm_table_set_restrictions(t, q, limits);
2380 if (merge_is_optional)
2381 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2383 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2391 * Returns unbound table for the caller to free.
2393 static struct dm_table *__unbind(struct mapped_device *md)
2395 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2400 dm_table_event_callback(map, NULL, NULL);
2401 RCU_INIT_POINTER(md->map, NULL);
2408 * Constructor for a new device.
2410 int dm_create(int minor, struct mapped_device **result)
2412 struct mapped_device *md;
2414 md = alloc_dev(minor);
2425 * Functions to manage md->type.
2426 * All are required to hold md->type_lock.
2428 void dm_lock_md_type(struct mapped_device *md)
2430 mutex_lock(&md->type_lock);
2433 void dm_unlock_md_type(struct mapped_device *md)
2435 mutex_unlock(&md->type_lock);
2438 void dm_set_md_type(struct mapped_device *md, unsigned type)
2440 BUG_ON(!mutex_is_locked(&md->type_lock));
2444 unsigned dm_get_md_type(struct mapped_device *md)
2446 BUG_ON(!mutex_is_locked(&md->type_lock));
2450 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2452 return md->immutable_target_type;
2456 * The queue_limits are only valid as long as you have a reference
2459 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2461 BUG_ON(!atomic_read(&md->holders));
2462 return &md->queue->limits;
2464 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2467 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2469 static int dm_init_request_based_queue(struct mapped_device *md)
2471 struct request_queue *q = NULL;
2473 if (md->queue->elevator)
2476 /* Fully initialize the queue */
2477 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2482 dm_init_md_queue(md);
2483 blk_queue_softirq_done(md->queue, dm_softirq_done);
2484 blk_queue_prep_rq(md->queue, dm_prep_fn);
2485 blk_queue_lld_busy(md->queue, dm_lld_busy);
2487 elv_register_queue(md->queue);
2493 * Setup the DM device's queue based on md's type
2495 int dm_setup_md_queue(struct mapped_device *md)
2497 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2498 !dm_init_request_based_queue(md)) {
2499 DMWARN("Cannot initialize queue for request-based mapped device");
2506 static struct mapped_device *dm_find_md(dev_t dev)
2508 struct mapped_device *md;
2509 unsigned minor = MINOR(dev);
2511 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2514 spin_lock(&_minor_lock);
2516 md = idr_find(&_minor_idr, minor);
2517 if (md && (md == MINOR_ALLOCED ||
2518 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2519 dm_deleting_md(md) ||
2520 test_bit(DMF_FREEING, &md->flags))) {
2526 spin_unlock(&_minor_lock);
2531 struct mapped_device *dm_get_md(dev_t dev)
2533 struct mapped_device *md = dm_find_md(dev);
2540 EXPORT_SYMBOL_GPL(dm_get_md);
2542 void *dm_get_mdptr(struct mapped_device *md)
2544 return md->interface_ptr;
2547 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2549 md->interface_ptr = ptr;
2552 void dm_get(struct mapped_device *md)
2554 atomic_inc(&md->holders);
2555 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2558 const char *dm_device_name(struct mapped_device *md)
2562 EXPORT_SYMBOL_GPL(dm_device_name);
2564 static void __dm_destroy(struct mapped_device *md, bool wait)
2566 struct dm_table *map;
2571 spin_lock(&_minor_lock);
2572 map = dm_get_live_table(md, &srcu_idx);
2573 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2574 set_bit(DMF_FREEING, &md->flags);
2575 spin_unlock(&_minor_lock);
2577 if (!dm_suspended_md(md)) {
2578 dm_table_presuspend_targets(map);
2579 dm_table_postsuspend_targets(map);
2582 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2583 dm_put_live_table(md, srcu_idx);
2586 * Rare, but there may be I/O requests still going to complete,
2587 * for example. Wait for all references to disappear.
2588 * No one should increment the reference count of the mapped_device,
2589 * after the mapped_device state becomes DMF_FREEING.
2592 while (atomic_read(&md->holders))
2594 else if (atomic_read(&md->holders))
2595 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2596 dm_device_name(md), atomic_read(&md->holders));
2599 dm_table_destroy(__unbind(md));
2603 void dm_destroy(struct mapped_device *md)
2605 __dm_destroy(md, true);
2608 void dm_destroy_immediate(struct mapped_device *md)
2610 __dm_destroy(md, false);
2613 void dm_put(struct mapped_device *md)
2615 atomic_dec(&md->holders);
2617 EXPORT_SYMBOL_GPL(dm_put);
2619 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2622 DECLARE_WAITQUEUE(wait, current);
2624 add_wait_queue(&md->wait, &wait);
2627 set_current_state(interruptible);
2629 if (!md_in_flight(md))
2632 if (interruptible == TASK_INTERRUPTIBLE &&
2633 signal_pending(current)) {
2640 set_current_state(TASK_RUNNING);
2642 remove_wait_queue(&md->wait, &wait);
2648 * Process the deferred bios
2650 static void dm_wq_work(struct work_struct *work)
2652 struct mapped_device *md = container_of(work, struct mapped_device,
2656 struct dm_table *map;
2658 map = dm_get_live_table(md, &srcu_idx);
2660 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2661 spin_lock_irq(&md->deferred_lock);
2662 c = bio_list_pop(&md->deferred);
2663 spin_unlock_irq(&md->deferred_lock);
2668 if (dm_request_based(md))
2669 generic_make_request(c);
2671 __split_and_process_bio(md, map, c);
2674 dm_put_live_table(md, srcu_idx);
2677 static void dm_queue_flush(struct mapped_device *md)
2679 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2680 smp_mb__after_atomic();
2681 queue_work(md->wq, &md->work);
2685 * Swap in a new table, returning the old one for the caller to destroy.
2687 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2689 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2690 struct queue_limits limits;
2693 mutex_lock(&md->suspend_lock);
2695 /* device must be suspended */
2696 if (!dm_suspended_md(md))
2700 * If the new table has no data devices, retain the existing limits.
2701 * This helps multipath with queue_if_no_path if all paths disappear,
2702 * then new I/O is queued based on these limits, and then some paths
2705 if (dm_table_has_no_data_devices(table)) {
2706 live_map = dm_get_live_table_fast(md);
2708 limits = md->queue->limits;
2709 dm_put_live_table_fast(md);
2713 r = dm_calculate_queue_limits(table, &limits);
2720 map = __bind(md, table, &limits);
2723 mutex_unlock(&md->suspend_lock);
2728 * Functions to lock and unlock any filesystem running on the
2731 static int lock_fs(struct mapped_device *md)
2735 WARN_ON(md->frozen_sb);
2737 md->frozen_sb = freeze_bdev(md->bdev);
2738 if (IS_ERR(md->frozen_sb)) {
2739 r = PTR_ERR(md->frozen_sb);
2740 md->frozen_sb = NULL;
2744 set_bit(DMF_FROZEN, &md->flags);
2749 static void unlock_fs(struct mapped_device *md)
2751 if (!test_bit(DMF_FROZEN, &md->flags))
2754 thaw_bdev(md->bdev, md->frozen_sb);
2755 md->frozen_sb = NULL;
2756 clear_bit(DMF_FROZEN, &md->flags);
2760 * If __dm_suspend returns 0, the device is completely quiescent
2761 * now. There is no request-processing activity. All new requests
2762 * are being added to md->deferred list.
2764 * Caller must hold md->suspend_lock
2766 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2767 unsigned suspend_flags, int interruptible)
2769 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2770 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2774 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2775 * This flag is cleared before dm_suspend returns.
2778 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2781 * This gets reverted if there's an error later and the targets
2782 * provide the .presuspend_undo hook.
2784 dm_table_presuspend_targets(map);
2787 * Flush I/O to the device.
2788 * Any I/O submitted after lock_fs() may not be flushed.
2789 * noflush takes precedence over do_lockfs.
2790 * (lock_fs() flushes I/Os and waits for them to complete.)
2792 if (!noflush && do_lockfs) {
2795 dm_table_presuspend_undo_targets(map);
2801 * Here we must make sure that no processes are submitting requests
2802 * to target drivers i.e. no one may be executing
2803 * __split_and_process_bio. This is called from dm_request and
2806 * To get all processes out of __split_and_process_bio in dm_request,
2807 * we take the write lock. To prevent any process from reentering
2808 * __split_and_process_bio from dm_request and quiesce the thread
2809 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2810 * flush_workqueue(md->wq).
2812 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2814 synchronize_srcu(&md->io_barrier);
2817 * Stop md->queue before flushing md->wq in case request-based
2818 * dm defers requests to md->wq from md->queue.
2820 if (dm_request_based(md))
2821 stop_queue(md->queue);
2823 flush_workqueue(md->wq);
2826 * At this point no more requests are entering target request routines.
2827 * We call dm_wait_for_completion to wait for all existing requests
2830 r = dm_wait_for_completion(md, interruptible);
2833 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2835 synchronize_srcu(&md->io_barrier);
2837 /* were we interrupted ? */
2841 if (dm_request_based(md))
2842 start_queue(md->queue);
2845 dm_table_presuspend_undo_targets(map);
2846 /* pushback list is already flushed, so skip flush */
2853 * We need to be able to change a mapping table under a mounted
2854 * filesystem. For example we might want to move some data in
2855 * the background. Before the table can be swapped with
2856 * dm_bind_table, dm_suspend must be called to flush any in
2857 * flight bios and ensure that any further io gets deferred.
2860 * Suspend mechanism in request-based dm.
2862 * 1. Flush all I/Os by lock_fs() if needed.
2863 * 2. Stop dispatching any I/O by stopping the request_queue.
2864 * 3. Wait for all in-flight I/Os to be completed or requeued.
2866 * To abort suspend, start the request_queue.
2868 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2870 struct dm_table *map = NULL;
2874 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2876 if (dm_suspended_md(md)) {
2881 if (dm_suspended_internally_md(md)) {
2882 /* already internally suspended, wait for internal resume */
2883 mutex_unlock(&md->suspend_lock);
2884 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2892 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2896 set_bit(DMF_SUSPENDED, &md->flags);
2898 dm_table_postsuspend_targets(map);
2901 mutex_unlock(&md->suspend_lock);
2905 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2908 int r = dm_table_resume_targets(map);
2916 * Flushing deferred I/Os must be done after targets are resumed
2917 * so that mapping of targets can work correctly.
2918 * Request-based dm is queueing the deferred I/Os in its request_queue.
2920 if (dm_request_based(md))
2921 start_queue(md->queue);
2928 int dm_resume(struct mapped_device *md)
2931 struct dm_table *map = NULL;
2934 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2936 if (!dm_suspended_md(md))
2939 if (dm_suspended_internally_md(md)) {
2940 /* already internally suspended, wait for internal resume */
2941 mutex_unlock(&md->suspend_lock);
2942 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2948 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2949 if (!map || !dm_table_get_size(map))
2952 r = __dm_resume(md, map);
2956 clear_bit(DMF_SUSPENDED, &md->flags);
2960 mutex_unlock(&md->suspend_lock);
2966 * Internal suspend/resume works like userspace-driven suspend. It waits
2967 * until all bios finish and prevents issuing new bios to the target drivers.
2968 * It may be used only from the kernel.
2971 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2973 struct dm_table *map = NULL;
2975 if (dm_suspended_internally_md(md))
2976 return; /* nested internal suspend */
2978 if (dm_suspended_md(md)) {
2979 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2980 return; /* nest suspend */
2983 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2986 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2987 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2988 * would require changing .presuspend to return an error -- avoid this
2989 * until there is a need for more elaborate variants of internal suspend.
2991 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
2993 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2995 dm_table_postsuspend_targets(map);
2998 static void __dm_internal_resume(struct mapped_device *md)
3000 if (!dm_suspended_internally_md(md))
3001 return; /* resume from nested internal suspend */
3003 if (dm_suspended_md(md))
3004 goto done; /* resume from nested suspend */
3007 * NOTE: existing callers don't need to call dm_table_resume_targets
3008 * (which may fail -- so best to avoid it for now by passing NULL map)
3010 (void) __dm_resume(md, NULL);
3013 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3014 smp_mb__after_atomic();
3015 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3018 void dm_internal_suspend_noflush(struct mapped_device *md)
3020 mutex_lock(&md->suspend_lock);
3021 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3022 mutex_unlock(&md->suspend_lock);
3024 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3026 void dm_internal_resume(struct mapped_device *md)
3028 mutex_lock(&md->suspend_lock);
3029 __dm_internal_resume(md);
3030 mutex_unlock(&md->suspend_lock);
3032 EXPORT_SYMBOL_GPL(dm_internal_resume);
3035 * Fast variants of internal suspend/resume hold md->suspend_lock,
3036 * which prevents interaction with userspace-driven suspend.
3039 void dm_internal_suspend_fast(struct mapped_device *md)
3041 mutex_lock(&md->suspend_lock);
3042 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3045 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046 synchronize_srcu(&md->io_barrier);
3047 flush_workqueue(md->wq);
3048 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3051 void dm_internal_resume_fast(struct mapped_device *md)
3053 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3059 mutex_unlock(&md->suspend_lock);
3062 /*-----------------------------------------------------------------
3063 * Event notification.
3064 *---------------------------------------------------------------*/
3065 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3068 char udev_cookie[DM_COOKIE_LENGTH];
3069 char *envp[] = { udev_cookie, NULL };
3072 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3074 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3075 DM_COOKIE_ENV_VAR_NAME, cookie);
3076 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3081 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3083 return atomic_add_return(1, &md->uevent_seq);
3086 uint32_t dm_get_event_nr(struct mapped_device *md)
3088 return atomic_read(&md->event_nr);
3091 int dm_wait_event(struct mapped_device *md, int event_nr)
3093 return wait_event_interruptible(md->eventq,
3094 (event_nr != atomic_read(&md->event_nr)));
3097 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3099 unsigned long flags;
3101 spin_lock_irqsave(&md->uevent_lock, flags);
3102 list_add(elist, &md->uevent_list);
3103 spin_unlock_irqrestore(&md->uevent_lock, flags);
3107 * The gendisk is only valid as long as you have a reference
3110 struct gendisk *dm_disk(struct mapped_device *md)
3115 struct kobject *dm_kobject(struct mapped_device *md)
3117 return &md->kobj_holder.kobj;
3120 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3122 struct mapped_device *md;
3124 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3126 if (test_bit(DMF_FREEING, &md->flags) ||
3134 int dm_suspended_md(struct mapped_device *md)
3136 return test_bit(DMF_SUSPENDED, &md->flags);
3139 int dm_suspended_internally_md(struct mapped_device *md)
3141 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3144 int dm_test_deferred_remove_flag(struct mapped_device *md)
3146 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3149 int dm_suspended(struct dm_target *ti)
3151 return dm_suspended_md(dm_table_get_md(ti->table));
3153 EXPORT_SYMBOL_GPL(dm_suspended);
3155 int dm_noflush_suspending(struct dm_target *ti)
3157 return __noflush_suspending(dm_table_get_md(ti->table));
3159 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3161 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3163 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3164 struct kmem_cache *cachep;
3165 unsigned int pool_size;
3166 unsigned int front_pad;
3171 if (type == DM_TYPE_BIO_BASED) {
3173 pool_size = dm_get_reserved_bio_based_ios();
3174 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3175 } else if (type == DM_TYPE_REQUEST_BASED) {
3176 cachep = _rq_tio_cache;
3177 pool_size = dm_get_reserved_rq_based_ios();
3178 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3179 if (!pools->rq_pool)
3181 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3182 /* per_bio_data_size is not used. See __bind_mempools(). */
3183 WARN_ON(per_bio_data_size != 0);
3187 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3188 if (!pools->io_pool)
3191 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3195 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3201 dm_free_md_mempools(pools);
3206 void dm_free_md_mempools(struct dm_md_mempools *pools)
3212 mempool_destroy(pools->io_pool);
3215 mempool_destroy(pools->rq_pool);
3218 bioset_free(pools->bs);
3223 static const struct block_device_operations dm_blk_dops = {
3224 .open = dm_blk_open,
3225 .release = dm_blk_close,
3226 .ioctl = dm_blk_ioctl,
3227 .getgeo = dm_blk_getgeo,
3228 .owner = THIS_MODULE
3234 module_init(dm_init);
3235 module_exit(dm_exit);
3237 module_param(major, uint, 0);
3238 MODULE_PARM_DESC(major, "The major number of the device mapper");
3240 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3241 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3243 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3244 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3246 MODULE_DESCRIPTION(DM_NAME " driver");
3247 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3248 MODULE_LICENSE("GPL");