Merge tag 'kvm-3.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         bio->bi_sector += offset;
198         bio->bi_size = size;
199         offset <<= 9;
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         while (bio->bi_idx < bio->bi_vcnt &&
203                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204                 /* remove this whole bio_vec */
205                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206                 bio->bi_idx++;
207         }
208         if (bio->bi_idx < bio->bi_vcnt) {
209                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211         }
212         /* avoid any complications with bi_idx being non-zero*/
213         if (bio->bi_idx) {
214                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216                 bio->bi_vcnt -= bio->bi_idx;
217                 bio->bi_idx = 0;
218         }
219         /* Make sure vcnt and last bv are not too big */
220         bio_for_each_segment(bvec, bio, i) {
221                 if (sofar + bvec->bv_len > size)
222                         bvec->bv_len = size - sofar;
223                 if (bvec->bv_len == 0) {
224                         bio->bi_vcnt = i;
225                         break;
226                 }
227                 sofar += bvec->bv_len;
228         }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246         atomic_inc(&md_event_count);
247         wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256         atomic_inc(&md_event_count);
257         wake_up(&md_event_waiters);
258 }
259
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)                                     \
276                                                                         \
277         for (({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = all_mddevs.next;                                 \
279                 _mddev = NULL;});                                       \
280              ({ if (_tmp != &all_mddevs)                                \
281                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282                 spin_unlock(&all_mddevs_lock);                          \
283                 if (_mddev) mddev_put(_mddev);                          \
284                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
285                 _tmp != &all_mddevs;});                                 \
286              ({ spin_lock(&all_mddevs_lock);                            \
287                 _tmp = _tmp->next;})                                    \
288                 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300         const int rw = bio_data_dir(bio);
301         struct mddev *mddev = q->queuedata;
302         int cpu;
303         unsigned int sectors;
304
305         if (mddev == NULL || mddev->pers == NULL
306             || !mddev->ready) {
307                 bio_io_error(bio);
308                 return;
309         }
310         smp_rmb(); /* Ensure implications of  'active' are visible */
311         rcu_read_lock();
312         if (mddev->suspended) {
313                 DEFINE_WAIT(__wait);
314                 for (;;) {
315                         prepare_to_wait(&mddev->sb_wait, &__wait,
316                                         TASK_UNINTERRUPTIBLE);
317                         if (!mddev->suspended)
318                                 break;
319                         rcu_read_unlock();
320                         schedule();
321                         rcu_read_lock();
322                 }
323                 finish_wait(&mddev->sb_wait, &__wait);
324         }
325         atomic_inc(&mddev->active_io);
326         rcu_read_unlock();
327
328         /*
329          * save the sectors now since our bio can
330          * go away inside make_request
331          */
332         sectors = bio_sectors(bio);
333         mddev->pers->make_request(mddev, bio);
334
335         cpu = part_stat_lock();
336         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338         part_stat_unlock();
339
340         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341                 wake_up(&mddev->sb_wait);
342 }
343
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352         BUG_ON(mddev->suspended);
353         mddev->suspended = 1;
354         synchronize_rcu();
355         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356         mddev->pers->quiesce(mddev, 1);
357
358         del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361
362 void mddev_resume(struct mddev *mddev)
363 {
364         mddev->suspended = 0;
365         wake_up(&mddev->sb_wait);
366         mddev->pers->quiesce(mddev, 0);
367
368         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369         md_wakeup_thread(mddev->thread);
370         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376         return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379
380 /*
381  * Generic flush handling for md
382  */
383
384 static void md_end_flush(struct bio *bio, int err)
385 {
386         struct md_rdev *rdev = bio->bi_private;
387         struct mddev *mddev = rdev->mddev;
388
389         rdev_dec_pending(rdev, mddev);
390
391         if (atomic_dec_and_test(&mddev->flush_pending)) {
392                 /* The pre-request flush has finished */
393                 queue_work(md_wq, &mddev->flush_work);
394         }
395         bio_put(bio);
396 }
397
398 static void md_submit_flush_data(struct work_struct *ws);
399
400 static void submit_flushes(struct work_struct *ws)
401 {
402         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403         struct md_rdev *rdev;
404
405         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406         atomic_set(&mddev->flush_pending, 1);
407         rcu_read_lock();
408         rdev_for_each_rcu(rdev, mddev)
409                 if (rdev->raid_disk >= 0 &&
410                     !test_bit(Faulty, &rdev->flags)) {
411                         /* Take two references, one is dropped
412                          * when request finishes, one after
413                          * we reclaim rcu_read_lock
414                          */
415                         struct bio *bi;
416                         atomic_inc(&rdev->nr_pending);
417                         atomic_inc(&rdev->nr_pending);
418                         rcu_read_unlock();
419                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420                         bi->bi_end_io = md_end_flush;
421                         bi->bi_private = rdev;
422                         bi->bi_bdev = rdev->bdev;
423                         atomic_inc(&mddev->flush_pending);
424                         submit_bio(WRITE_FLUSH, bi);
425                         rcu_read_lock();
426                         rdev_dec_pending(rdev, mddev);
427                 }
428         rcu_read_unlock();
429         if (atomic_dec_and_test(&mddev->flush_pending))
430                 queue_work(md_wq, &mddev->flush_work);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436         struct bio *bio = mddev->flush_bio;
437
438         if (bio->bi_size == 0)
439                 /* an empty barrier - all done */
440                 bio_endio(bio, 0);
441         else {
442                 bio->bi_rw &= ~REQ_FLUSH;
443                 mddev->pers->make_request(mddev, bio);
444         }
445
446         mddev->flush_bio = NULL;
447         wake_up(&mddev->sb_wait);
448 }
449
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452         spin_lock_irq(&mddev->write_lock);
453         wait_event_lock_irq(mddev->sb_wait,
454                             !mddev->flush_bio,
455                             mddev->write_lock);
456         mddev->flush_bio = bio;
457         spin_unlock_irq(&mddev->write_lock);
458
459         INIT_WORK(&mddev->flush_work, submit_flushes);
460         queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466         struct mddev *mddev = cb->data;
467         md_wakeup_thread(mddev->thread);
468         kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474         atomic_inc(&mddev->active);
475         return mddev;
476 }
477
478 static void mddev_delayed_delete(struct work_struct *ws);
479
480 static void mddev_put(struct mddev *mddev)
481 {
482         struct bio_set *bs = NULL;
483
484         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485                 return;
486         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487             mddev->ctime == 0 && !mddev->hold_active) {
488                 /* Array is not configured at all, and not held active,
489                  * so destroy it */
490                 list_del_init(&mddev->all_mddevs);
491                 bs = mddev->bio_set;
492                 mddev->bio_set = NULL;
493                 if (mddev->gendisk) {
494                         /* We did a probe so need to clean up.  Call
495                          * queue_work inside the spinlock so that
496                          * flush_workqueue() after mddev_find will
497                          * succeed in waiting for the work to be done.
498                          */
499                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500                         queue_work(md_misc_wq, &mddev->del_work);
501                 } else
502                         kfree(mddev);
503         }
504         spin_unlock(&all_mddevs_lock);
505         if (bs)
506                 bioset_free(bs);
507 }
508
509 void mddev_init(struct mddev *mddev)
510 {
511         mutex_init(&mddev->open_mutex);
512         mutex_init(&mddev->reconfig_mutex);
513         mutex_init(&mddev->bitmap_info.mutex);
514         INIT_LIST_HEAD(&mddev->disks);
515         INIT_LIST_HEAD(&mddev->all_mddevs);
516         init_timer(&mddev->safemode_timer);
517         atomic_set(&mddev->active, 1);
518         atomic_set(&mddev->openers, 0);
519         atomic_set(&mddev->active_io, 0);
520         spin_lock_init(&mddev->write_lock);
521         atomic_set(&mddev->flush_pending, 0);
522         init_waitqueue_head(&mddev->sb_wait);
523         init_waitqueue_head(&mddev->recovery_wait);
524         mddev->reshape_position = MaxSector;
525         mddev->reshape_backwards = 0;
526         mddev->resync_min = 0;
527         mddev->resync_max = MaxSector;
528         mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531
532 static struct mddev * mddev_find(dev_t unit)
533 {
534         struct mddev *mddev, *new = NULL;
535
536         if (unit && MAJOR(unit) != MD_MAJOR)
537                 unit &= ~((1<<MdpMinorShift)-1);
538
539  retry:
540         spin_lock(&all_mddevs_lock);
541
542         if (unit) {
543                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544                         if (mddev->unit == unit) {
545                                 mddev_get(mddev);
546                                 spin_unlock(&all_mddevs_lock);
547                                 kfree(new);
548                                 return mddev;
549                         }
550
551                 if (new) {
552                         list_add(&new->all_mddevs, &all_mddevs);
553                         spin_unlock(&all_mddevs_lock);
554                         new->hold_active = UNTIL_IOCTL;
555                         return new;
556                 }
557         } else if (new) {
558                 /* find an unused unit number */
559                 static int next_minor = 512;
560                 int start = next_minor;
561                 int is_free = 0;
562                 int dev = 0;
563                 while (!is_free) {
564                         dev = MKDEV(MD_MAJOR, next_minor);
565                         next_minor++;
566                         if (next_minor > MINORMASK)
567                                 next_minor = 0;
568                         if (next_minor == start) {
569                                 /* Oh dear, all in use. */
570                                 spin_unlock(&all_mddevs_lock);
571                                 kfree(new);
572                                 return NULL;
573                         }
574                                 
575                         is_free = 1;
576                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577                                 if (mddev->unit == dev) {
578                                         is_free = 0;
579                                         break;
580                                 }
581                 }
582                 new->unit = dev;
583                 new->md_minor = MINOR(dev);
584                 new->hold_active = UNTIL_STOP;
585                 list_add(&new->all_mddevs, &all_mddevs);
586                 spin_unlock(&all_mddevs_lock);
587                 return new;
588         }
589         spin_unlock(&all_mddevs_lock);
590
591         new = kzalloc(sizeof(*new), GFP_KERNEL);
592         if (!new)
593                 return NULL;
594
595         new->unit = unit;
596         if (MAJOR(unit) == MD_MAJOR)
597                 new->md_minor = MINOR(unit);
598         else
599                 new->md_minor = MINOR(unit) >> MdpMinorShift;
600
601         mddev_init(new);
602
603         goto retry;
604 }
605
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608         return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613         return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618         return mutex_trylock(&mddev->reconfig_mutex);
619 }
620
621 static struct attribute_group md_redundancy_group;
622
623 static void mddev_unlock(struct mddev * mddev)
624 {
625         if (mddev->to_remove) {
626                 /* These cannot be removed under reconfig_mutex as
627                  * an access to the files will try to take reconfig_mutex
628                  * while holding the file unremovable, which leads to
629                  * a deadlock.
630                  * So hold set sysfs_active while the remove in happeing,
631                  * and anything else which might set ->to_remove or my
632                  * otherwise change the sysfs namespace will fail with
633                  * -EBUSY if sysfs_active is still set.
634                  * We set sysfs_active under reconfig_mutex and elsewhere
635                  * test it under the same mutex to ensure its correct value
636                  * is seen.
637                  */
638                 struct attribute_group *to_remove = mddev->to_remove;
639                 mddev->to_remove = NULL;
640                 mddev->sysfs_active = 1;
641                 mutex_unlock(&mddev->reconfig_mutex);
642
643                 if (mddev->kobj.sd) {
644                         if (to_remove != &md_redundancy_group)
645                                 sysfs_remove_group(&mddev->kobj, to_remove);
646                         if (mddev->pers == NULL ||
647                             mddev->pers->sync_request == NULL) {
648                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649                                 if (mddev->sysfs_action)
650                                         sysfs_put(mddev->sysfs_action);
651                                 mddev->sysfs_action = NULL;
652                         }
653                 }
654                 mddev->sysfs_active = 0;
655         } else
656                 mutex_unlock(&mddev->reconfig_mutex);
657
658         /* As we've dropped the mutex we need a spinlock to
659          * make sure the thread doesn't disappear
660          */
661         spin_lock(&pers_lock);
662         md_wakeup_thread(mddev->thread);
663         spin_unlock(&pers_lock);
664 }
665
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each(rdev, mddev)
671                 if (rdev->desc_nr == nr)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679         struct md_rdev *rdev;
680
681         rdev_for_each_rcu(rdev, mddev)
682                 if (rdev->desc_nr == nr)
683                         return rdev;
684
685         return NULL;
686 }
687
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690         struct md_rdev *rdev;
691
692         rdev_for_each(rdev, mddev)
693                 if (rdev->bdev->bd_dev == dev)
694                         return rdev;
695
696         return NULL;
697 }
698
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701         struct md_rdev *rdev;
702
703         rdev_for_each_rcu(rdev, mddev)
704                 if (rdev->bdev->bd_dev == dev)
705                         return rdev;
706
707         return NULL;
708 }
709
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712         struct md_personality *pers;
713         list_for_each_entry(pers, &pers_list, list) {
714                 if (level != LEVEL_NONE && pers->level == level)
715                         return pers;
716                 if (strcmp(pers->name, clevel)==0)
717                         return pers;
718         }
719         return NULL;
720 }
721
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726         return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731         if (rdev->sb_page)
732                 MD_BUG();
733
734         rdev->sb_page = alloc_page(GFP_KERNEL);
735         if (!rdev->sb_page) {
736                 printk(KERN_ALERT "md: out of memory.\n");
737                 return -ENOMEM;
738         }
739
740         return 0;
741 }
742
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745         if (rdev->sb_page) {
746                 put_page(rdev->sb_page);
747                 rdev->sb_loaded = 0;
748                 rdev->sb_page = NULL;
749                 rdev->sb_start = 0;
750                 rdev->sectors = 0;
751         }
752         if (rdev->bb_page) {
753                 put_page(rdev->bb_page);
754                 rdev->bb_page = NULL;
755         }
756         kfree(rdev->badblocks.page);
757         rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760
761 static void super_written(struct bio *bio, int error)
762 {
763         struct md_rdev *rdev = bio->bi_private;
764         struct mddev *mddev = rdev->mddev;
765
766         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767                 printk("md: super_written gets error=%d, uptodate=%d\n",
768                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770                 md_error(mddev, rdev);
771         }
772
773         if (atomic_dec_and_test(&mddev->pending_writes))
774                 wake_up(&mddev->sb_wait);
775         bio_put(bio);
776 }
777
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779                    sector_t sector, int size, struct page *page)
780 {
781         /* write first size bytes of page to sector of rdev
782          * Increment mddev->pending_writes before returning
783          * and decrement it on completion, waking up sb_wait
784          * if zero is reached.
785          * If an error occurred, call md_error
786          */
787         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788
789         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790         bio->bi_sector = sector;
791         bio_add_page(bio, page, size, 0);
792         bio->bi_private = rdev;
793         bio->bi_end_io = super_written;
794
795         atomic_inc(&mddev->pending_writes);
796         submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798
799 void md_super_wait(struct mddev *mddev)
800 {
801         /* wait for all superblock writes that were scheduled to complete */
802         DEFINE_WAIT(wq);
803         for(;;) {
804                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805                 if (atomic_read(&mddev->pending_writes)==0)
806                         break;
807                 schedule();
808         }
809         finish_wait(&mddev->sb_wait, &wq);
810 }
811
812 static void bi_complete(struct bio *bio, int error)
813 {
814         complete((struct completion*)bio->bi_private);
815 }
816
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818                  struct page *page, int rw, bool metadata_op)
819 {
820         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821         struct completion event;
822         int ret;
823
824         rw |= REQ_SYNC;
825
826         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827                 rdev->meta_bdev : rdev->bdev;
828         if (metadata_op)
829                 bio->bi_sector = sector + rdev->sb_start;
830         else if (rdev->mddev->reshape_position != MaxSector &&
831                  (rdev->mddev->reshape_backwards ==
832                   (sector >= rdev->mddev->reshape_position)))
833                 bio->bi_sector = sector + rdev->new_data_offset;
834         else
835                 bio->bi_sector = sector + rdev->data_offset;
836         bio_add_page(bio, page, size, 0);
837         init_completion(&event);
838         bio->bi_private = &event;
839         bio->bi_end_io = bi_complete;
840         submit_bio(rw, bio);
841         wait_for_completion(&event);
842
843         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844         bio_put(bio);
845         return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851         char b[BDEVNAME_SIZE];
852         if (!rdev->sb_page) {
853                 MD_BUG();
854                 return -EINVAL;
855         }
856         if (rdev->sb_loaded)
857                 return 0;
858
859
860         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861                 goto fail;
862         rdev->sb_loaded = 1;
863         return 0;
864
865 fail:
866         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867                 bdevname(rdev->bdev,b));
868         return -EINVAL;
869 }
870
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873         return  sb1->set_uuid0 == sb2->set_uuid0 &&
874                 sb1->set_uuid1 == sb2->set_uuid1 &&
875                 sb1->set_uuid2 == sb2->set_uuid2 &&
876                 sb1->set_uuid3 == sb2->set_uuid3;
877 }
878
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881         int ret;
882         mdp_super_t *tmp1, *tmp2;
883
884         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886
887         if (!tmp1 || !tmp2) {
888                 ret = 0;
889                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890                 goto abort;
891         }
892
893         *tmp1 = *sb1;
894         *tmp2 = *sb2;
895
896         /*
897          * nr_disks is not constant
898          */
899         tmp1->nr_disks = 0;
900         tmp2->nr_disks = 0;
901
902         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904         kfree(tmp1);
905         kfree(tmp2);
906         return ret;
907 }
908
909
910 static u32 md_csum_fold(u32 csum)
911 {
912         csum = (csum & 0xffff) + (csum >> 16);
913         return (csum & 0xffff) + (csum >> 16);
914 }
915
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918         u64 newcsum = 0;
919         u32 *sb32 = (u32*)sb;
920         int i;
921         unsigned int disk_csum, csum;
922
923         disk_csum = sb->sb_csum;
924         sb->sb_csum = 0;
925
926         for (i = 0; i < MD_SB_BYTES/4 ; i++)
927                 newcsum += sb32[i];
928         csum = (newcsum & 0xffffffff) + (newcsum>>32);
929
930
931 #ifdef CONFIG_ALPHA
932         /* This used to use csum_partial, which was wrong for several
933          * reasons including that different results are returned on
934          * different architectures.  It isn't critical that we get exactly
935          * the same return value as before (we always csum_fold before
936          * testing, and that removes any differences).  However as we
937          * know that csum_partial always returned a 16bit value on
938          * alphas, do a fold to maximise conformity to previous behaviour.
939          */
940         sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942         sb->sb_csum = disk_csum;
943 #endif
944         return csum;
945 }
946
947
948 /*
949  * Handle superblock details.
950  * We want to be able to handle multiple superblock formats
951  * so we have a common interface to them all, and an array of
952  * different handlers.
953  * We rely on user-space to write the initial superblock, and support
954  * reading and updating of superblocks.
955  * Interface methods are:
956  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957  *      loads and validates a superblock on dev.
958  *      if refdev != NULL, compare superblocks on both devices
959  *    Return:
960  *      0 - dev has a superblock that is compatible with refdev
961  *      1 - dev has a superblock that is compatible and newer than refdev
962  *          so dev should be used as the refdev in future
963  *     -EINVAL superblock incompatible or invalid
964  *     -othererror e.g. -EIO
965  *
966  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
967  *      Verify that dev is acceptable into mddev.
968  *       The first time, mddev->raid_disks will be 0, and data from
969  *       dev should be merged in.  Subsequent calls check that dev
970  *       is new enough.  Return 0 or -EINVAL
971  *
972  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
973  *     Update the superblock for rdev with data in mddev
974  *     This does not write to disc.
975  *
976  */
977
978 struct super_type  {
979         char                *name;
980         struct module       *owner;
981         int                 (*load_super)(struct md_rdev *rdev,
982                                           struct md_rdev *refdev,
983                                           int minor_version);
984         int                 (*validate_super)(struct mddev *mddev,
985                                               struct md_rdev *rdev);
986         void                (*sync_super)(struct mddev *mddev,
987                                           struct md_rdev *rdev);
988         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
989                                                 sector_t num_sectors);
990         int                 (*allow_new_offset)(struct md_rdev *rdev,
991                                                 unsigned long long new_offset);
992 };
993
994 /*
995  * Check that the given mddev has no bitmap.
996  *
997  * This function is called from the run method of all personalities that do not
998  * support bitmaps. It prints an error message and returns non-zero if mddev
999  * has a bitmap. Otherwise, it returns 0.
1000  *
1001  */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005                 return 0;
1006         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007                 mdname(mddev), mddev->pers->name);
1008         return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011
1012 /*
1013  * load_super for 0.90.0 
1014  */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018         mdp_super_t *sb;
1019         int ret;
1020
1021         /*
1022          * Calculate the position of the superblock (512byte sectors),
1023          * it's at the end of the disk.
1024          *
1025          * It also happens to be a multiple of 4Kb.
1026          */
1027         rdev->sb_start = calc_dev_sboffset(rdev);
1028
1029         ret = read_disk_sb(rdev, MD_SB_BYTES);
1030         if (ret) return ret;
1031
1032         ret = -EINVAL;
1033
1034         bdevname(rdev->bdev, b);
1035         sb = page_address(rdev->sb_page);
1036
1037         if (sb->md_magic != MD_SB_MAGIC) {
1038                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039                        b);
1040                 goto abort;
1041         }
1042
1043         if (sb->major_version != 0 ||
1044             sb->minor_version < 90 ||
1045             sb->minor_version > 91) {
1046                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047                         sb->major_version, sb->minor_version,
1048                         b);
1049                 goto abort;
1050         }
1051
1052         if (sb->raid_disks <= 0)
1053                 goto abort;
1054
1055         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057                         b);
1058                 goto abort;
1059         }
1060
1061         rdev->preferred_minor = sb->md_minor;
1062         rdev->data_offset = 0;
1063         rdev->new_data_offset = 0;
1064         rdev->sb_size = MD_SB_BYTES;
1065         rdev->badblocks.shift = -1;
1066
1067         if (sb->level == LEVEL_MULTIPATH)
1068                 rdev->desc_nr = -1;
1069         else
1070                 rdev->desc_nr = sb->this_disk.number;
1071
1072         if (!refdev) {
1073                 ret = 1;
1074         } else {
1075                 __u64 ev1, ev2;
1076                 mdp_super_t *refsb = page_address(refdev->sb_page);
1077                 if (!uuid_equal(refsb, sb)) {
1078                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079                                 b, bdevname(refdev->bdev,b2));
1080                         goto abort;
1081                 }
1082                 if (!sb_equal(refsb, sb)) {
1083                         printk(KERN_WARNING "md: %s has same UUID"
1084                                " but different superblock to %s\n",
1085                                b, bdevname(refdev->bdev, b2));
1086                         goto abort;
1087                 }
1088                 ev1 = md_event(sb);
1089                 ev2 = md_event(refsb);
1090                 if (ev1 > ev2)
1091                         ret = 1;
1092                 else 
1093                         ret = 0;
1094         }
1095         rdev->sectors = rdev->sb_start;
1096         /* Limit to 4TB as metadata cannot record more than that.
1097          * (not needed for Linear and RAID0 as metadata doesn't
1098          * record this size)
1099          */
1100         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101                 rdev->sectors = (2ULL << 32) - 2;
1102
1103         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104                 /* "this cannot possibly happen" ... */
1105                 ret = -EINVAL;
1106
1107  abort:
1108         return ret;
1109 }
1110
1111 /*
1112  * validate_super for 0.90.0
1113  */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116         mdp_disk_t *desc;
1117         mdp_super_t *sb = page_address(rdev->sb_page);
1118         __u64 ev1 = md_event(sb);
1119
1120         rdev->raid_disk = -1;
1121         clear_bit(Faulty, &rdev->flags);
1122         clear_bit(In_sync, &rdev->flags);
1123         clear_bit(WriteMostly, &rdev->flags);
1124
1125         if (mddev->raid_disks == 0) {
1126                 mddev->major_version = 0;
1127                 mddev->minor_version = sb->minor_version;
1128                 mddev->patch_version = sb->patch_version;
1129                 mddev->external = 0;
1130                 mddev->chunk_sectors = sb->chunk_size >> 9;
1131                 mddev->ctime = sb->ctime;
1132                 mddev->utime = sb->utime;
1133                 mddev->level = sb->level;
1134                 mddev->clevel[0] = 0;
1135                 mddev->layout = sb->layout;
1136                 mddev->raid_disks = sb->raid_disks;
1137                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138                 mddev->events = ev1;
1139                 mddev->bitmap_info.offset = 0;
1140                 mddev->bitmap_info.space = 0;
1141                 /* bitmap can use 60 K after the 4K superblocks */
1142                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144                 mddev->reshape_backwards = 0;
1145
1146                 if (mddev->minor_version >= 91) {
1147                         mddev->reshape_position = sb->reshape_position;
1148                         mddev->delta_disks = sb->delta_disks;
1149                         mddev->new_level = sb->new_level;
1150                         mddev->new_layout = sb->new_layout;
1151                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152                         if (mddev->delta_disks < 0)
1153                                 mddev->reshape_backwards = 1;
1154                 } else {
1155                         mddev->reshape_position = MaxSector;
1156                         mddev->delta_disks = 0;
1157                         mddev->new_level = mddev->level;
1158                         mddev->new_layout = mddev->layout;
1159                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1160                 }
1161
1162                 if (sb->state & (1<<MD_SB_CLEAN))
1163                         mddev->recovery_cp = MaxSector;
1164                 else {
1165                         if (sb->events_hi == sb->cp_events_hi && 
1166                                 sb->events_lo == sb->cp_events_lo) {
1167                                 mddev->recovery_cp = sb->recovery_cp;
1168                         } else
1169                                 mddev->recovery_cp = 0;
1170                 }
1171
1172                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177                 mddev->max_disks = MD_SB_DISKS;
1178
1179                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180                     mddev->bitmap_info.file == NULL) {
1181                         mddev->bitmap_info.offset =
1182                                 mddev->bitmap_info.default_offset;
1183                         mddev->bitmap_info.space =
1184                                 mddev->bitmap_info.space;
1185                 }
1186
1187         } else if (mddev->pers == NULL) {
1188                 /* Insist on good event counter while assembling, except
1189                  * for spares (which don't need an event count) */
1190                 ++ev1;
1191                 if (sb->disks[rdev->desc_nr].state & (
1192                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193                         if (ev1 < mddev->events) 
1194                                 return -EINVAL;
1195         } else if (mddev->bitmap) {
1196                 /* if adding to array with a bitmap, then we can accept an
1197                  * older device ... but not too old.
1198                  */
1199                 if (ev1 < mddev->bitmap->events_cleared)
1200                         return 0;
1201         } else {
1202                 if (ev1 < mddev->events)
1203                         /* just a hot-add of a new device, leave raid_disk at -1 */
1204                         return 0;
1205         }
1206
1207         if (mddev->level != LEVEL_MULTIPATH) {
1208                 desc = sb->disks + rdev->desc_nr;
1209
1210                 if (desc->state & (1<<MD_DISK_FAULTY))
1211                         set_bit(Faulty, &rdev->flags);
1212                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213                             desc->raid_disk < mddev->raid_disks */) {
1214                         set_bit(In_sync, &rdev->flags);
1215                         rdev->raid_disk = desc->raid_disk;
1216                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217                         /* active but not in sync implies recovery up to
1218                          * reshape position.  We don't know exactly where
1219                          * that is, so set to zero for now */
1220                         if (mddev->minor_version >= 91) {
1221                                 rdev->recovery_offset = 0;
1222                                 rdev->raid_disk = desc->raid_disk;
1223                         }
1224                 }
1225                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226                         set_bit(WriteMostly, &rdev->flags);
1227         } else /* MULTIPATH are always insync */
1228                 set_bit(In_sync, &rdev->flags);
1229         return 0;
1230 }
1231
1232 /*
1233  * sync_super for 0.90.0
1234  */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237         mdp_super_t *sb;
1238         struct md_rdev *rdev2;
1239         int next_spare = mddev->raid_disks;
1240
1241
1242         /* make rdev->sb match mddev data..
1243          *
1244          * 1/ zero out disks
1245          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246          * 3/ any empty disks < next_spare become removed
1247          *
1248          * disks[0] gets initialised to REMOVED because
1249          * we cannot be sure from other fields if it has
1250          * been initialised or not.
1251          */
1252         int i;
1253         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254
1255         rdev->sb_size = MD_SB_BYTES;
1256
1257         sb = page_address(rdev->sb_page);
1258
1259         memset(sb, 0, sizeof(*sb));
1260
1261         sb->md_magic = MD_SB_MAGIC;
1262         sb->major_version = mddev->major_version;
1263         sb->patch_version = mddev->patch_version;
1264         sb->gvalid_words  = 0; /* ignored */
1265         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269
1270         sb->ctime = mddev->ctime;
1271         sb->level = mddev->level;
1272         sb->size = mddev->dev_sectors / 2;
1273         sb->raid_disks = mddev->raid_disks;
1274         sb->md_minor = mddev->md_minor;
1275         sb->not_persistent = 0;
1276         sb->utime = mddev->utime;
1277         sb->state = 0;
1278         sb->events_hi = (mddev->events>>32);
1279         sb->events_lo = (u32)mddev->events;
1280
1281         if (mddev->reshape_position == MaxSector)
1282                 sb->minor_version = 90;
1283         else {
1284                 sb->minor_version = 91;
1285                 sb->reshape_position = mddev->reshape_position;
1286                 sb->new_level = mddev->new_level;
1287                 sb->delta_disks = mddev->delta_disks;
1288                 sb->new_layout = mddev->new_layout;
1289                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1290         }
1291         mddev->minor_version = sb->minor_version;
1292         if (mddev->in_sync)
1293         {
1294                 sb->recovery_cp = mddev->recovery_cp;
1295                 sb->cp_events_hi = (mddev->events>>32);
1296                 sb->cp_events_lo = (u32)mddev->events;
1297                 if (mddev->recovery_cp == MaxSector)
1298                         sb->state = (1<< MD_SB_CLEAN);
1299         } else
1300                 sb->recovery_cp = 0;
1301
1302         sb->layout = mddev->layout;
1303         sb->chunk_size = mddev->chunk_sectors << 9;
1304
1305         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307
1308         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309         rdev_for_each(rdev2, mddev) {
1310                 mdp_disk_t *d;
1311                 int desc_nr;
1312                 int is_active = test_bit(In_sync, &rdev2->flags);
1313
1314                 if (rdev2->raid_disk >= 0 &&
1315                     sb->minor_version >= 91)
1316                         /* we have nowhere to store the recovery_offset,
1317                          * but if it is not below the reshape_position,
1318                          * we can piggy-back on that.
1319                          */
1320                         is_active = 1;
1321                 if (rdev2->raid_disk < 0 ||
1322                     test_bit(Faulty, &rdev2->flags))
1323                         is_active = 0;
1324                 if (is_active)
1325                         desc_nr = rdev2->raid_disk;
1326                 else
1327                         desc_nr = next_spare++;
1328                 rdev2->desc_nr = desc_nr;
1329                 d = &sb->disks[rdev2->desc_nr];
1330                 nr_disks++;
1331                 d->number = rdev2->desc_nr;
1332                 d->major = MAJOR(rdev2->bdev->bd_dev);
1333                 d->minor = MINOR(rdev2->bdev->bd_dev);
1334                 if (is_active)
1335                         d->raid_disk = rdev2->raid_disk;
1336                 else
1337                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1338                 if (test_bit(Faulty, &rdev2->flags))
1339                         d->state = (1<<MD_DISK_FAULTY);
1340                 else if (is_active) {
1341                         d->state = (1<<MD_DISK_ACTIVE);
1342                         if (test_bit(In_sync, &rdev2->flags))
1343                                 d->state |= (1<<MD_DISK_SYNC);
1344                         active++;
1345                         working++;
1346                 } else {
1347                         d->state = 0;
1348                         spare++;
1349                         working++;
1350                 }
1351                 if (test_bit(WriteMostly, &rdev2->flags))
1352                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353         }
1354         /* now set the "removed" and "faulty" bits on any missing devices */
1355         for (i=0 ; i < mddev->raid_disks ; i++) {
1356                 mdp_disk_t *d = &sb->disks[i];
1357                 if (d->state == 0 && d->number == 0) {
1358                         d->number = i;
1359                         d->raid_disk = i;
1360                         d->state = (1<<MD_DISK_REMOVED);
1361                         d->state |= (1<<MD_DISK_FAULTY);
1362                         failed++;
1363                 }
1364         }
1365         sb->nr_disks = nr_disks;
1366         sb->active_disks = active;
1367         sb->working_disks = working;
1368         sb->failed_disks = failed;
1369         sb->spare_disks = spare;
1370
1371         sb->this_disk = sb->disks[rdev->desc_nr];
1372         sb->sb_csum = calc_sb_csum(sb);
1373 }
1374
1375 /*
1376  * rdev_size_change for 0.90.0
1377  */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382                 return 0; /* component must fit device */
1383         if (rdev->mddev->bitmap_info.offset)
1384                 return 0; /* can't move bitmap */
1385         rdev->sb_start = calc_dev_sboffset(rdev);
1386         if (!num_sectors || num_sectors > rdev->sb_start)
1387                 num_sectors = rdev->sb_start;
1388         /* Limit to 4TB as metadata cannot record more than that.
1389          * 4TB == 2^32 KB, or 2*2^32 sectors.
1390          */
1391         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392                 num_sectors = (2ULL << 32) - 2;
1393         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394                        rdev->sb_page);
1395         md_super_wait(rdev->mddev);
1396         return num_sectors;
1397 }
1398
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402         /* non-zero offset changes not possible with v0.90 */
1403         return new_offset == 0;
1404 }
1405
1406 /*
1407  * version 1 superblock
1408  */
1409
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412         __le32 disk_csum;
1413         u32 csum;
1414         unsigned long long newcsum;
1415         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416         __le32 *isuper = (__le32*)sb;
1417
1418         disk_csum = sb->sb_csum;
1419         sb->sb_csum = 0;
1420         newcsum = 0;
1421         for (; size >= 4; size -= 4)
1422                 newcsum += le32_to_cpu(*isuper++);
1423
1424         if (size == 2)
1425                 newcsum += le16_to_cpu(*(__le16*) isuper);
1426
1427         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1428         sb->sb_csum = disk_csum;
1429         return cpu_to_le32(csum);
1430 }
1431
1432 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1433                             int acknowledged);
1434 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1435 {
1436         struct mdp_superblock_1 *sb;
1437         int ret;
1438         sector_t sb_start;
1439         sector_t sectors;
1440         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1441         int bmask;
1442
1443         /*
1444          * Calculate the position of the superblock in 512byte sectors.
1445          * It is always aligned to a 4K boundary and
1446          * depeding on minor_version, it can be:
1447          * 0: At least 8K, but less than 12K, from end of device
1448          * 1: At start of device
1449          * 2: 4K from start of device.
1450          */
1451         switch(minor_version) {
1452         case 0:
1453                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1454                 sb_start -= 8*2;
1455                 sb_start &= ~(sector_t)(4*2-1);
1456                 break;
1457         case 1:
1458                 sb_start = 0;
1459                 break;
1460         case 2:
1461                 sb_start = 8;
1462                 break;
1463         default:
1464                 return -EINVAL;
1465         }
1466         rdev->sb_start = sb_start;
1467
1468         /* superblock is rarely larger than 1K, but it can be larger,
1469          * and it is safe to read 4k, so we do that
1470          */
1471         ret = read_disk_sb(rdev, 4096);
1472         if (ret) return ret;
1473
1474
1475         sb = page_address(rdev->sb_page);
1476
1477         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1478             sb->major_version != cpu_to_le32(1) ||
1479             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1480             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1481             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1482                 return -EINVAL;
1483
1484         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1485                 printk("md: invalid superblock checksum on %s\n",
1486                         bdevname(rdev->bdev,b));
1487                 return -EINVAL;
1488         }
1489         if (le64_to_cpu(sb->data_size) < 10) {
1490                 printk("md: data_size too small on %s\n",
1491                        bdevname(rdev->bdev,b));
1492                 return -EINVAL;
1493         }
1494         if (sb->pad0 ||
1495             sb->pad3[0] ||
1496             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1497                 /* Some padding is non-zero, might be a new feature */
1498                 return -EINVAL;
1499
1500         rdev->preferred_minor = 0xffff;
1501         rdev->data_offset = le64_to_cpu(sb->data_offset);
1502         rdev->new_data_offset = rdev->data_offset;
1503         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1504             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1505                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1506         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1507
1508         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1509         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1510         if (rdev->sb_size & bmask)
1511                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1512
1513         if (minor_version
1514             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1515                 return -EINVAL;
1516         if (minor_version
1517             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1518                 return -EINVAL;
1519
1520         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1521                 rdev->desc_nr = -1;
1522         else
1523                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1524
1525         if (!rdev->bb_page) {
1526                 rdev->bb_page = alloc_page(GFP_KERNEL);
1527                 if (!rdev->bb_page)
1528                         return -ENOMEM;
1529         }
1530         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1531             rdev->badblocks.count == 0) {
1532                 /* need to load the bad block list.
1533                  * Currently we limit it to one page.
1534                  */
1535                 s32 offset;
1536                 sector_t bb_sector;
1537                 u64 *bbp;
1538                 int i;
1539                 int sectors = le16_to_cpu(sb->bblog_size);
1540                 if (sectors > (PAGE_SIZE / 512))
1541                         return -EINVAL;
1542                 offset = le32_to_cpu(sb->bblog_offset);
1543                 if (offset == 0)
1544                         return -EINVAL;
1545                 bb_sector = (long long)offset;
1546                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1547                                   rdev->bb_page, READ, true))
1548                         return -EIO;
1549                 bbp = (u64 *)page_address(rdev->bb_page);
1550                 rdev->badblocks.shift = sb->bblog_shift;
1551                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1552                         u64 bb = le64_to_cpu(*bbp);
1553                         int count = bb & (0x3ff);
1554                         u64 sector = bb >> 10;
1555                         sector <<= sb->bblog_shift;
1556                         count <<= sb->bblog_shift;
1557                         if (bb + 1 == 0)
1558                                 break;
1559                         if (md_set_badblocks(&rdev->badblocks,
1560                                              sector, count, 1) == 0)
1561                                 return -EINVAL;
1562                 }
1563         } else if (sb->bblog_offset == 0)
1564                 rdev->badblocks.shift = -1;
1565
1566         if (!refdev) {
1567                 ret = 1;
1568         } else {
1569                 __u64 ev1, ev2;
1570                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1571
1572                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1573                     sb->level != refsb->level ||
1574                     sb->layout != refsb->layout ||
1575                     sb->chunksize != refsb->chunksize) {
1576                         printk(KERN_WARNING "md: %s has strangely different"
1577                                 " superblock to %s\n",
1578                                 bdevname(rdev->bdev,b),
1579                                 bdevname(refdev->bdev,b2));
1580                         return -EINVAL;
1581                 }
1582                 ev1 = le64_to_cpu(sb->events);
1583                 ev2 = le64_to_cpu(refsb->events);
1584
1585                 if (ev1 > ev2)
1586                         ret = 1;
1587                 else
1588                         ret = 0;
1589         }
1590         if (minor_version) {
1591                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1592                 sectors -= rdev->data_offset;
1593         } else
1594                 sectors = rdev->sb_start;
1595         if (sectors < le64_to_cpu(sb->data_size))
1596                 return -EINVAL;
1597         rdev->sectors = le64_to_cpu(sb->data_size);
1598         return ret;
1599 }
1600
1601 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1602 {
1603         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1604         __u64 ev1 = le64_to_cpu(sb->events);
1605
1606         rdev->raid_disk = -1;
1607         clear_bit(Faulty, &rdev->flags);
1608         clear_bit(In_sync, &rdev->flags);
1609         clear_bit(WriteMostly, &rdev->flags);
1610
1611         if (mddev->raid_disks == 0) {
1612                 mddev->major_version = 1;
1613                 mddev->patch_version = 0;
1614                 mddev->external = 0;
1615                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1616                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1617                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1618                 mddev->level = le32_to_cpu(sb->level);
1619                 mddev->clevel[0] = 0;
1620                 mddev->layout = le32_to_cpu(sb->layout);
1621                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1622                 mddev->dev_sectors = le64_to_cpu(sb->size);
1623                 mddev->events = ev1;
1624                 mddev->bitmap_info.offset = 0;
1625                 mddev->bitmap_info.space = 0;
1626                 /* Default location for bitmap is 1K after superblock
1627                  * using 3K - total of 4K
1628                  */
1629                 mddev->bitmap_info.default_offset = 1024 >> 9;
1630                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1631                 mddev->reshape_backwards = 0;
1632
1633                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1634                 memcpy(mddev->uuid, sb->set_uuid, 16);
1635
1636                 mddev->max_disks =  (4096-256)/2;
1637
1638                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1639                     mddev->bitmap_info.file == NULL) {
1640                         mddev->bitmap_info.offset =
1641                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1642                         /* Metadata doesn't record how much space is available.
1643                          * For 1.0, we assume we can use up to the superblock
1644                          * if before, else to 4K beyond superblock.
1645                          * For others, assume no change is possible.
1646                          */
1647                         if (mddev->minor_version > 0)
1648                                 mddev->bitmap_info.space = 0;
1649                         else if (mddev->bitmap_info.offset > 0)
1650                                 mddev->bitmap_info.space =
1651                                         8 - mddev->bitmap_info.offset;
1652                         else
1653                                 mddev->bitmap_info.space =
1654                                         -mddev->bitmap_info.offset;
1655                 }
1656
1657                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660                         mddev->new_level = le32_to_cpu(sb->new_level);
1661                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1662                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663                         if (mddev->delta_disks < 0 ||
1664                             (mddev->delta_disks == 0 &&
1665                              (le32_to_cpu(sb->feature_map)
1666                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1667                                 mddev->reshape_backwards = 1;
1668                 } else {
1669                         mddev->reshape_position = MaxSector;
1670                         mddev->delta_disks = 0;
1671                         mddev->new_level = mddev->level;
1672                         mddev->new_layout = mddev->layout;
1673                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1674                 }
1675
1676         } else if (mddev->pers == NULL) {
1677                 /* Insist of good event counter while assembling, except for
1678                  * spares (which don't need an event count) */
1679                 ++ev1;
1680                 if (rdev->desc_nr >= 0 &&
1681                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1682                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1683                         if (ev1 < mddev->events)
1684                                 return -EINVAL;
1685         } else if (mddev->bitmap) {
1686                 /* If adding to array with a bitmap, then we can accept an
1687                  * older device, but not too old.
1688                  */
1689                 if (ev1 < mddev->bitmap->events_cleared)
1690                         return 0;
1691         } else {
1692                 if (ev1 < mddev->events)
1693                         /* just a hot-add of a new device, leave raid_disk at -1 */
1694                         return 0;
1695         }
1696         if (mddev->level != LEVEL_MULTIPATH) {
1697                 int role;
1698                 if (rdev->desc_nr < 0 ||
1699                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1700                         role = 0xffff;
1701                         rdev->desc_nr = -1;
1702                 } else
1703                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1704                 switch(role) {
1705                 case 0xffff: /* spare */
1706                         break;
1707                 case 0xfffe: /* faulty */
1708                         set_bit(Faulty, &rdev->flags);
1709                         break;
1710                 default:
1711                         if ((le32_to_cpu(sb->feature_map) &
1712                              MD_FEATURE_RECOVERY_OFFSET))
1713                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1714                         else
1715                                 set_bit(In_sync, &rdev->flags);
1716                         rdev->raid_disk = role;
1717                         break;
1718                 }
1719                 if (sb->devflags & WriteMostly1)
1720                         set_bit(WriteMostly, &rdev->flags);
1721                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1722                         set_bit(Replacement, &rdev->flags);
1723         } else /* MULTIPATH are always insync */
1724                 set_bit(In_sync, &rdev->flags);
1725
1726         return 0;
1727 }
1728
1729 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1730 {
1731         struct mdp_superblock_1 *sb;
1732         struct md_rdev *rdev2;
1733         int max_dev, i;
1734         /* make rdev->sb match mddev and rdev data. */
1735
1736         sb = page_address(rdev->sb_page);
1737
1738         sb->feature_map = 0;
1739         sb->pad0 = 0;
1740         sb->recovery_offset = cpu_to_le64(0);
1741         memset(sb->pad3, 0, sizeof(sb->pad3));
1742
1743         sb->utime = cpu_to_le64((__u64)mddev->utime);
1744         sb->events = cpu_to_le64(mddev->events);
1745         if (mddev->in_sync)
1746                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1747         else
1748                 sb->resync_offset = cpu_to_le64(0);
1749
1750         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1751
1752         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1753         sb->size = cpu_to_le64(mddev->dev_sectors);
1754         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1755         sb->level = cpu_to_le32(mddev->level);
1756         sb->layout = cpu_to_le32(mddev->layout);
1757
1758         if (test_bit(WriteMostly, &rdev->flags))
1759                 sb->devflags |= WriteMostly1;
1760         else
1761                 sb->devflags &= ~WriteMostly1;
1762         sb->data_offset = cpu_to_le64(rdev->data_offset);
1763         sb->data_size = cpu_to_le64(rdev->sectors);
1764
1765         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1766                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1767                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1768         }
1769
1770         if (rdev->raid_disk >= 0 &&
1771             !test_bit(In_sync, &rdev->flags)) {
1772                 sb->feature_map |=
1773                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1774                 sb->recovery_offset =
1775                         cpu_to_le64(rdev->recovery_offset);
1776         }
1777         if (test_bit(Replacement, &rdev->flags))
1778                 sb->feature_map |=
1779                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1780
1781         if (mddev->reshape_position != MaxSector) {
1782                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1783                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1784                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1785                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1786                 sb->new_level = cpu_to_le32(mddev->new_level);
1787                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1788                 if (mddev->delta_disks == 0 &&
1789                     mddev->reshape_backwards)
1790                         sb->feature_map
1791                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1792                 if (rdev->new_data_offset != rdev->data_offset) {
1793                         sb->feature_map
1794                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1795                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1796                                                              - rdev->data_offset));
1797                 }
1798         }
1799
1800         if (rdev->badblocks.count == 0)
1801                 /* Nothing to do for bad blocks*/ ;
1802         else if (sb->bblog_offset == 0)
1803                 /* Cannot record bad blocks on this device */
1804                 md_error(mddev, rdev);
1805         else {
1806                 struct badblocks *bb = &rdev->badblocks;
1807                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1808                 u64 *p = bb->page;
1809                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1810                 if (bb->changed) {
1811                         unsigned seq;
1812
1813 retry:
1814                         seq = read_seqbegin(&bb->lock);
1815
1816                         memset(bbp, 0xff, PAGE_SIZE);
1817
1818                         for (i = 0 ; i < bb->count ; i++) {
1819                                 u64 internal_bb = p[i];
1820                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1821                                                 | BB_LEN(internal_bb));
1822                                 bbp[i] = cpu_to_le64(store_bb);
1823                         }
1824                         bb->changed = 0;
1825                         if (read_seqretry(&bb->lock, seq))
1826                                 goto retry;
1827
1828                         bb->sector = (rdev->sb_start +
1829                                       (int)le32_to_cpu(sb->bblog_offset));
1830                         bb->size = le16_to_cpu(sb->bblog_size);
1831                 }
1832         }
1833
1834         max_dev = 0;
1835         rdev_for_each(rdev2, mddev)
1836                 if (rdev2->desc_nr+1 > max_dev)
1837                         max_dev = rdev2->desc_nr+1;
1838
1839         if (max_dev > le32_to_cpu(sb->max_dev)) {
1840                 int bmask;
1841                 sb->max_dev = cpu_to_le32(max_dev);
1842                 rdev->sb_size = max_dev * 2 + 256;
1843                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1844                 if (rdev->sb_size & bmask)
1845                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1846         } else
1847                 max_dev = le32_to_cpu(sb->max_dev);
1848
1849         for (i=0; i<max_dev;i++)
1850                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1851         
1852         rdev_for_each(rdev2, mddev) {
1853                 i = rdev2->desc_nr;
1854                 if (test_bit(Faulty, &rdev2->flags))
1855                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1856                 else if (test_bit(In_sync, &rdev2->flags))
1857                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1858                 else if (rdev2->raid_disk >= 0)
1859                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1860                 else
1861                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1862         }
1863
1864         sb->sb_csum = calc_sb_1_csum(sb);
1865 }
1866
1867 static unsigned long long
1868 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1869 {
1870         struct mdp_superblock_1 *sb;
1871         sector_t max_sectors;
1872         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1873                 return 0; /* component must fit device */
1874         if (rdev->data_offset != rdev->new_data_offset)
1875                 return 0; /* too confusing */
1876         if (rdev->sb_start < rdev->data_offset) {
1877                 /* minor versions 1 and 2; superblock before data */
1878                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1879                 max_sectors -= rdev->data_offset;
1880                 if (!num_sectors || num_sectors > max_sectors)
1881                         num_sectors = max_sectors;
1882         } else if (rdev->mddev->bitmap_info.offset) {
1883                 /* minor version 0 with bitmap we can't move */
1884                 return 0;
1885         } else {
1886                 /* minor version 0; superblock after data */
1887                 sector_t sb_start;
1888                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1889                 sb_start &= ~(sector_t)(4*2 - 1);
1890                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1891                 if (!num_sectors || num_sectors > max_sectors)
1892                         num_sectors = max_sectors;
1893                 rdev->sb_start = sb_start;
1894         }
1895         sb = page_address(rdev->sb_page);
1896         sb->data_size = cpu_to_le64(num_sectors);
1897         sb->super_offset = rdev->sb_start;
1898         sb->sb_csum = calc_sb_1_csum(sb);
1899         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1900                        rdev->sb_page);
1901         md_super_wait(rdev->mddev);
1902         return num_sectors;
1903
1904 }
1905
1906 static int
1907 super_1_allow_new_offset(struct md_rdev *rdev,
1908                          unsigned long long new_offset)
1909 {
1910         /* All necessary checks on new >= old have been done */
1911         struct bitmap *bitmap;
1912         if (new_offset >= rdev->data_offset)
1913                 return 1;
1914
1915         /* with 1.0 metadata, there is no metadata to tread on
1916          * so we can always move back */
1917         if (rdev->mddev->minor_version == 0)
1918                 return 1;
1919
1920         /* otherwise we must be sure not to step on
1921          * any metadata, so stay:
1922          * 36K beyond start of superblock
1923          * beyond end of badblocks
1924          * beyond write-intent bitmap
1925          */
1926         if (rdev->sb_start + (32+4)*2 > new_offset)
1927                 return 0;
1928         bitmap = rdev->mddev->bitmap;
1929         if (bitmap && !rdev->mddev->bitmap_info.file &&
1930             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1931             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1932                 return 0;
1933         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1934                 return 0;
1935
1936         return 1;
1937 }
1938
1939 static struct super_type super_types[] = {
1940         [0] = {
1941                 .name   = "0.90.0",
1942                 .owner  = THIS_MODULE,
1943                 .load_super         = super_90_load,
1944                 .validate_super     = super_90_validate,
1945                 .sync_super         = super_90_sync,
1946                 .rdev_size_change   = super_90_rdev_size_change,
1947                 .allow_new_offset   = super_90_allow_new_offset,
1948         },
1949         [1] = {
1950                 .name   = "md-1",
1951                 .owner  = THIS_MODULE,
1952                 .load_super         = super_1_load,
1953                 .validate_super     = super_1_validate,
1954                 .sync_super         = super_1_sync,
1955                 .rdev_size_change   = super_1_rdev_size_change,
1956                 .allow_new_offset   = super_1_allow_new_offset,
1957         },
1958 };
1959
1960 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1961 {
1962         if (mddev->sync_super) {
1963                 mddev->sync_super(mddev, rdev);
1964                 return;
1965         }
1966
1967         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1968
1969         super_types[mddev->major_version].sync_super(mddev, rdev);
1970 }
1971
1972 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1973 {
1974         struct md_rdev *rdev, *rdev2;
1975
1976         rcu_read_lock();
1977         rdev_for_each_rcu(rdev, mddev1)
1978                 rdev_for_each_rcu(rdev2, mddev2)
1979                         if (rdev->bdev->bd_contains ==
1980                             rdev2->bdev->bd_contains) {
1981                                 rcu_read_unlock();
1982                                 return 1;
1983                         }
1984         rcu_read_unlock();
1985         return 0;
1986 }
1987
1988 static LIST_HEAD(pending_raid_disks);
1989
1990 /*
1991  * Try to register data integrity profile for an mddev
1992  *
1993  * This is called when an array is started and after a disk has been kicked
1994  * from the array. It only succeeds if all working and active component devices
1995  * are integrity capable with matching profiles.
1996  */
1997 int md_integrity_register(struct mddev *mddev)
1998 {
1999         struct md_rdev *rdev, *reference = NULL;
2000
2001         if (list_empty(&mddev->disks))
2002                 return 0; /* nothing to do */
2003         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2004                 return 0; /* shouldn't register, or already is */
2005         rdev_for_each(rdev, mddev) {
2006                 /* skip spares and non-functional disks */
2007                 if (test_bit(Faulty, &rdev->flags))
2008                         continue;
2009                 if (rdev->raid_disk < 0)
2010                         continue;
2011                 if (!reference) {
2012                         /* Use the first rdev as the reference */
2013                         reference = rdev;
2014                         continue;
2015                 }
2016                 /* does this rdev's profile match the reference profile? */
2017                 if (blk_integrity_compare(reference->bdev->bd_disk,
2018                                 rdev->bdev->bd_disk) < 0)
2019                         return -EINVAL;
2020         }
2021         if (!reference || !bdev_get_integrity(reference->bdev))
2022                 return 0;
2023         /*
2024          * All component devices are integrity capable and have matching
2025          * profiles, register the common profile for the md device.
2026          */
2027         if (blk_integrity_register(mddev->gendisk,
2028                         bdev_get_integrity(reference->bdev)) != 0) {
2029                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2030                         mdname(mddev));
2031                 return -EINVAL;
2032         }
2033         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2034         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2035                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2036                        mdname(mddev));
2037                 return -EINVAL;
2038         }
2039         return 0;
2040 }
2041 EXPORT_SYMBOL(md_integrity_register);
2042
2043 /* Disable data integrity if non-capable/non-matching disk is being added */
2044 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2045 {
2046         struct blk_integrity *bi_rdev;
2047         struct blk_integrity *bi_mddev;
2048
2049         if (!mddev->gendisk)
2050                 return;
2051
2052         bi_rdev = bdev_get_integrity(rdev->bdev);
2053         bi_mddev = blk_get_integrity(mddev->gendisk);
2054
2055         if (!bi_mddev) /* nothing to do */
2056                 return;
2057         if (rdev->raid_disk < 0) /* skip spares */
2058                 return;
2059         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2060                                              rdev->bdev->bd_disk) >= 0)
2061                 return;
2062         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2063         blk_integrity_unregister(mddev->gendisk);
2064 }
2065 EXPORT_SYMBOL(md_integrity_add_rdev);
2066
2067 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2068 {
2069         char b[BDEVNAME_SIZE];
2070         struct kobject *ko;
2071         char *s;
2072         int err;
2073
2074         if (rdev->mddev) {
2075                 MD_BUG();
2076                 return -EINVAL;
2077         }
2078
2079         /* prevent duplicates */
2080         if (find_rdev(mddev, rdev->bdev->bd_dev))
2081                 return -EEXIST;
2082
2083         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2084         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2085                         rdev->sectors < mddev->dev_sectors)) {
2086                 if (mddev->pers) {
2087                         /* Cannot change size, so fail
2088                          * If mddev->level <= 0, then we don't care
2089                          * about aligning sizes (e.g. linear)
2090                          */
2091                         if (mddev->level > 0)
2092                                 return -ENOSPC;
2093                 } else
2094                         mddev->dev_sectors = rdev->sectors;
2095         }
2096
2097         /* Verify rdev->desc_nr is unique.
2098          * If it is -1, assign a free number, else
2099          * check number is not in use
2100          */
2101         if (rdev->desc_nr < 0) {
2102                 int choice = 0;
2103                 if (mddev->pers) choice = mddev->raid_disks;
2104                 while (find_rdev_nr(mddev, choice))
2105                         choice++;
2106                 rdev->desc_nr = choice;
2107         } else {
2108                 if (find_rdev_nr(mddev, rdev->desc_nr))
2109                         return -EBUSY;
2110         }
2111         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2112                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2113                        mdname(mddev), mddev->max_disks);
2114                 return -EBUSY;
2115         }
2116         bdevname(rdev->bdev,b);
2117         while ( (s=strchr(b, '/')) != NULL)
2118                 *s = '!';
2119
2120         rdev->mddev = mddev;
2121         printk(KERN_INFO "md: bind<%s>\n", b);
2122
2123         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2124                 goto fail;
2125
2126         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2127         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2128                 /* failure here is OK */;
2129         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2130
2131         list_add_rcu(&rdev->same_set, &mddev->disks);
2132         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2133
2134         /* May as well allow recovery to be retried once */
2135         mddev->recovery_disabled++;
2136
2137         return 0;
2138
2139  fail:
2140         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2141                b, mdname(mddev));
2142         return err;
2143 }
2144
2145 static void md_delayed_delete(struct work_struct *ws)
2146 {
2147         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2148         kobject_del(&rdev->kobj);
2149         kobject_put(&rdev->kobj);
2150 }
2151
2152 static void unbind_rdev_from_array(struct md_rdev * rdev)
2153 {
2154         char b[BDEVNAME_SIZE];
2155         if (!rdev->mddev) {
2156                 MD_BUG();
2157                 return;
2158         }
2159         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2160         list_del_rcu(&rdev->same_set);
2161         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2162         rdev->mddev = NULL;
2163         sysfs_remove_link(&rdev->kobj, "block");
2164         sysfs_put(rdev->sysfs_state);
2165         rdev->sysfs_state = NULL;
2166         rdev->badblocks.count = 0;
2167         /* We need to delay this, otherwise we can deadlock when
2168          * writing to 'remove' to "dev/state".  We also need
2169          * to delay it due to rcu usage.
2170          */
2171         synchronize_rcu();
2172         INIT_WORK(&rdev->del_work, md_delayed_delete);
2173         kobject_get(&rdev->kobj);
2174         queue_work(md_misc_wq, &rdev->del_work);
2175 }
2176
2177 /*
2178  * prevent the device from being mounted, repartitioned or
2179  * otherwise reused by a RAID array (or any other kernel
2180  * subsystem), by bd_claiming the device.
2181  */
2182 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2183 {
2184         int err = 0;
2185         struct block_device *bdev;
2186         char b[BDEVNAME_SIZE];
2187
2188         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2189                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2190         if (IS_ERR(bdev)) {
2191                 printk(KERN_ERR "md: could not open %s.\n",
2192                         __bdevname(dev, b));
2193                 return PTR_ERR(bdev);
2194         }
2195         rdev->bdev = bdev;
2196         return err;
2197 }
2198
2199 static void unlock_rdev(struct md_rdev *rdev)
2200 {
2201         struct block_device *bdev = rdev->bdev;
2202         rdev->bdev = NULL;
2203         if (!bdev)
2204                 MD_BUG();
2205         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2206 }
2207
2208 void md_autodetect_dev(dev_t dev);
2209
2210 static void export_rdev(struct md_rdev * rdev)
2211 {
2212         char b[BDEVNAME_SIZE];
2213         printk(KERN_INFO "md: export_rdev(%s)\n",
2214                 bdevname(rdev->bdev,b));
2215         if (rdev->mddev)
2216                 MD_BUG();
2217         md_rdev_clear(rdev);
2218 #ifndef MODULE
2219         if (test_bit(AutoDetected, &rdev->flags))
2220                 md_autodetect_dev(rdev->bdev->bd_dev);
2221 #endif
2222         unlock_rdev(rdev);
2223         kobject_put(&rdev->kobj);
2224 }
2225
2226 static void kick_rdev_from_array(struct md_rdev * rdev)
2227 {
2228         unbind_rdev_from_array(rdev);
2229         export_rdev(rdev);
2230 }
2231
2232 static void export_array(struct mddev *mddev)
2233 {
2234         struct md_rdev *rdev, *tmp;
2235
2236         rdev_for_each_safe(rdev, tmp, mddev) {
2237                 if (!rdev->mddev) {
2238                         MD_BUG();
2239                         continue;
2240                 }
2241                 kick_rdev_from_array(rdev);
2242         }
2243         if (!list_empty(&mddev->disks))
2244                 MD_BUG();
2245         mddev->raid_disks = 0;
2246         mddev->major_version = 0;
2247 }
2248
2249 static void print_desc(mdp_disk_t *desc)
2250 {
2251         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2252                 desc->major,desc->minor,desc->raid_disk,desc->state);
2253 }
2254
2255 static void print_sb_90(mdp_super_t *sb)
2256 {
2257         int i;
2258
2259         printk(KERN_INFO 
2260                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2261                 sb->major_version, sb->minor_version, sb->patch_version,
2262                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2263                 sb->ctime);
2264         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2265                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2266                 sb->md_minor, sb->layout, sb->chunk_size);
2267         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2268                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2269                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2270                 sb->failed_disks, sb->spare_disks,
2271                 sb->sb_csum, (unsigned long)sb->events_lo);
2272
2273         printk(KERN_INFO);
2274         for (i = 0; i < MD_SB_DISKS; i++) {
2275                 mdp_disk_t *desc;
2276
2277                 desc = sb->disks + i;
2278                 if (desc->number || desc->major || desc->minor ||
2279                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2280                         printk("     D %2d: ", i);
2281                         print_desc(desc);
2282                 }
2283         }
2284         printk(KERN_INFO "md:     THIS: ");
2285         print_desc(&sb->this_disk);
2286 }
2287
2288 static void print_sb_1(struct mdp_superblock_1 *sb)
2289 {
2290         __u8 *uuid;
2291
2292         uuid = sb->set_uuid;
2293         printk(KERN_INFO
2294                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2295                "md:    Name: \"%s\" CT:%llu\n",
2296                 le32_to_cpu(sb->major_version),
2297                 le32_to_cpu(sb->feature_map),
2298                 uuid,
2299                 sb->set_name,
2300                 (unsigned long long)le64_to_cpu(sb->ctime)
2301                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2302
2303         uuid = sb->device_uuid;
2304         printk(KERN_INFO
2305                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2306                         " RO:%llu\n"
2307                "md:     Dev:%08x UUID: %pU\n"
2308                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2309                "md:         (MaxDev:%u) \n",
2310                 le32_to_cpu(sb->level),
2311                 (unsigned long long)le64_to_cpu(sb->size),
2312                 le32_to_cpu(sb->raid_disks),
2313                 le32_to_cpu(sb->layout),
2314                 le32_to_cpu(sb->chunksize),
2315                 (unsigned long long)le64_to_cpu(sb->data_offset),
2316                 (unsigned long long)le64_to_cpu(sb->data_size),
2317                 (unsigned long long)le64_to_cpu(sb->super_offset),
2318                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2319                 le32_to_cpu(sb->dev_number),
2320                 uuid,
2321                 sb->devflags,
2322                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2323                 (unsigned long long)le64_to_cpu(sb->events),
2324                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2325                 le32_to_cpu(sb->sb_csum),
2326                 le32_to_cpu(sb->max_dev)
2327                 );
2328 }
2329
2330 static void print_rdev(struct md_rdev *rdev, int major_version)
2331 {
2332         char b[BDEVNAME_SIZE];
2333         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2334                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2335                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2336                 rdev->desc_nr);
2337         if (rdev->sb_loaded) {
2338                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2339                 switch (major_version) {
2340                 case 0:
2341                         print_sb_90(page_address(rdev->sb_page));
2342                         break;
2343                 case 1:
2344                         print_sb_1(page_address(rdev->sb_page));
2345                         break;
2346                 }
2347         } else
2348                 printk(KERN_INFO "md: no rdev superblock!\n");
2349 }
2350
2351 static void md_print_devices(void)
2352 {
2353         struct list_head *tmp;
2354         struct md_rdev *rdev;
2355         struct mddev *mddev;
2356         char b[BDEVNAME_SIZE];
2357
2358         printk("\n");
2359         printk("md:     **********************************\n");
2360         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2361         printk("md:     **********************************\n");
2362         for_each_mddev(mddev, tmp) {
2363
2364                 if (mddev->bitmap)
2365                         bitmap_print_sb(mddev->bitmap);
2366                 else
2367                         printk("%s: ", mdname(mddev));
2368                 rdev_for_each(rdev, mddev)
2369                         printk("<%s>", bdevname(rdev->bdev,b));
2370                 printk("\n");
2371
2372                 rdev_for_each(rdev, mddev)
2373                         print_rdev(rdev, mddev->major_version);
2374         }
2375         printk("md:     **********************************\n");
2376         printk("\n");
2377 }
2378
2379
2380 static void sync_sbs(struct mddev * mddev, int nospares)
2381 {
2382         /* Update each superblock (in-memory image), but
2383          * if we are allowed to, skip spares which already
2384          * have the right event counter, or have one earlier
2385          * (which would mean they aren't being marked as dirty
2386          * with the rest of the array)
2387          */
2388         struct md_rdev *rdev;
2389         rdev_for_each(rdev, mddev) {
2390                 if (rdev->sb_events == mddev->events ||
2391                     (nospares &&
2392                      rdev->raid_disk < 0 &&
2393                      rdev->sb_events+1 == mddev->events)) {
2394                         /* Don't update this superblock */
2395                         rdev->sb_loaded = 2;
2396                 } else {
2397                         sync_super(mddev, rdev);
2398                         rdev->sb_loaded = 1;
2399                 }
2400         }
2401 }
2402
2403 static void md_update_sb(struct mddev * mddev, int force_change)
2404 {
2405         struct md_rdev *rdev;
2406         int sync_req;
2407         int nospares = 0;
2408         int any_badblocks_changed = 0;
2409
2410 repeat:
2411         /* First make sure individual recovery_offsets are correct */
2412         rdev_for_each(rdev, mddev) {
2413                 if (rdev->raid_disk >= 0 &&
2414                     mddev->delta_disks >= 0 &&
2415                     !test_bit(In_sync, &rdev->flags) &&
2416                     mddev->curr_resync_completed > rdev->recovery_offset)
2417                                 rdev->recovery_offset = mddev->curr_resync_completed;
2418
2419         }       
2420         if (!mddev->persistent) {
2421                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2422                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2423                 if (!mddev->external) {
2424                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2425                         rdev_for_each(rdev, mddev) {
2426                                 if (rdev->badblocks.changed) {
2427                                         rdev->badblocks.changed = 0;
2428                                         md_ack_all_badblocks(&rdev->badblocks);
2429                                         md_error(mddev, rdev);
2430                                 }
2431                                 clear_bit(Blocked, &rdev->flags);
2432                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2433                                 wake_up(&rdev->blocked_wait);
2434                         }
2435                 }
2436                 wake_up(&mddev->sb_wait);
2437                 return;
2438         }
2439
2440         spin_lock_irq(&mddev->write_lock);
2441
2442         mddev->utime = get_seconds();
2443
2444         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2445                 force_change = 1;
2446         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2447                 /* just a clean<-> dirty transition, possibly leave spares alone,
2448                  * though if events isn't the right even/odd, we will have to do
2449                  * spares after all
2450                  */
2451                 nospares = 1;
2452         if (force_change)
2453                 nospares = 0;
2454         if (mddev->degraded)
2455                 /* If the array is degraded, then skipping spares is both
2456                  * dangerous and fairly pointless.
2457                  * Dangerous because a device that was removed from the array
2458                  * might have a event_count that still looks up-to-date,
2459                  * so it can be re-added without a resync.
2460                  * Pointless because if there are any spares to skip,
2461                  * then a recovery will happen and soon that array won't
2462                  * be degraded any more and the spare can go back to sleep then.
2463                  */
2464                 nospares = 0;
2465
2466         sync_req = mddev->in_sync;
2467
2468         /* If this is just a dirty<->clean transition, and the array is clean
2469          * and 'events' is odd, we can roll back to the previous clean state */
2470         if (nospares
2471             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2472             && mddev->can_decrease_events
2473             && mddev->events != 1) {
2474                 mddev->events--;
2475                 mddev->can_decrease_events = 0;
2476         } else {
2477                 /* otherwise we have to go forward and ... */
2478                 mddev->events ++;
2479                 mddev->can_decrease_events = nospares;
2480         }
2481
2482         if (!mddev->events) {
2483                 /*
2484                  * oops, this 64-bit counter should never wrap.
2485                  * Either we are in around ~1 trillion A.C., assuming
2486                  * 1 reboot per second, or we have a bug:
2487                  */
2488                 MD_BUG();
2489                 mddev->events --;
2490         }
2491
2492         rdev_for_each(rdev, mddev) {
2493                 if (rdev->badblocks.changed)
2494                         any_badblocks_changed++;
2495                 if (test_bit(Faulty, &rdev->flags))
2496                         set_bit(FaultRecorded, &rdev->flags);
2497         }
2498
2499         sync_sbs(mddev, nospares);
2500         spin_unlock_irq(&mddev->write_lock);
2501
2502         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2503                  mdname(mddev), mddev->in_sync);
2504
2505         bitmap_update_sb(mddev->bitmap);
2506         rdev_for_each(rdev, mddev) {
2507                 char b[BDEVNAME_SIZE];
2508
2509                 if (rdev->sb_loaded != 1)
2510                         continue; /* no noise on spare devices */
2511
2512                 if (!test_bit(Faulty, &rdev->flags) &&
2513                     rdev->saved_raid_disk == -1) {
2514                         md_super_write(mddev,rdev,
2515                                        rdev->sb_start, rdev->sb_size,
2516                                        rdev->sb_page);
2517                         pr_debug("md: (write) %s's sb offset: %llu\n",
2518                                  bdevname(rdev->bdev, b),
2519                                  (unsigned long long)rdev->sb_start);
2520                         rdev->sb_events = mddev->events;
2521                         if (rdev->badblocks.size) {
2522                                 md_super_write(mddev, rdev,
2523                                                rdev->badblocks.sector,
2524                                                rdev->badblocks.size << 9,
2525                                                rdev->bb_page);
2526                                 rdev->badblocks.size = 0;
2527                         }
2528
2529                 } else if (test_bit(Faulty, &rdev->flags))
2530                         pr_debug("md: %s (skipping faulty)\n",
2531                                  bdevname(rdev->bdev, b));
2532                 else
2533                         pr_debug("(skipping incremental s/r ");
2534
2535                 if (mddev->level == LEVEL_MULTIPATH)
2536                         /* only need to write one superblock... */
2537                         break;
2538         }
2539         md_super_wait(mddev);
2540         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2541
2542         spin_lock_irq(&mddev->write_lock);
2543         if (mddev->in_sync != sync_req ||
2544             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2545                 /* have to write it out again */
2546                 spin_unlock_irq(&mddev->write_lock);
2547                 goto repeat;
2548         }
2549         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2550         spin_unlock_irq(&mddev->write_lock);
2551         wake_up(&mddev->sb_wait);
2552         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2553                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2554
2555         rdev_for_each(rdev, mddev) {
2556                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2557                         clear_bit(Blocked, &rdev->flags);
2558
2559                 if (any_badblocks_changed)
2560                         md_ack_all_badblocks(&rdev->badblocks);
2561                 clear_bit(BlockedBadBlocks, &rdev->flags);
2562                 wake_up(&rdev->blocked_wait);
2563         }
2564 }
2565
2566 /* words written to sysfs files may, or may not, be \n terminated.
2567  * We want to accept with case. For this we use cmd_match.
2568  */
2569 static int cmd_match(const char *cmd, const char *str)
2570 {
2571         /* See if cmd, written into a sysfs file, matches
2572          * str.  They must either be the same, or cmd can
2573          * have a trailing newline
2574          */
2575         while (*cmd && *str && *cmd == *str) {
2576                 cmd++;
2577                 str++;
2578         }
2579         if (*cmd == '\n')
2580                 cmd++;
2581         if (*str || *cmd)
2582                 return 0;
2583         return 1;
2584 }
2585
2586 struct rdev_sysfs_entry {
2587         struct attribute attr;
2588         ssize_t (*show)(struct md_rdev *, char *);
2589         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2590 };
2591
2592 static ssize_t
2593 state_show(struct md_rdev *rdev, char *page)
2594 {
2595         char *sep = "";
2596         size_t len = 0;
2597
2598         if (test_bit(Faulty, &rdev->flags) ||
2599             rdev->badblocks.unacked_exist) {
2600                 len+= sprintf(page+len, "%sfaulty",sep);
2601                 sep = ",";
2602         }
2603         if (test_bit(In_sync, &rdev->flags)) {
2604                 len += sprintf(page+len, "%sin_sync",sep);
2605                 sep = ",";
2606         }
2607         if (test_bit(WriteMostly, &rdev->flags)) {
2608                 len += sprintf(page+len, "%swrite_mostly",sep);
2609                 sep = ",";
2610         }
2611         if (test_bit(Blocked, &rdev->flags) ||
2612             (rdev->badblocks.unacked_exist
2613              && !test_bit(Faulty, &rdev->flags))) {
2614                 len += sprintf(page+len, "%sblocked", sep);
2615                 sep = ",";
2616         }
2617         if (!test_bit(Faulty, &rdev->flags) &&
2618             !test_bit(In_sync, &rdev->flags)) {
2619                 len += sprintf(page+len, "%sspare", sep);
2620                 sep = ",";
2621         }
2622         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2623                 len += sprintf(page+len, "%swrite_error", sep);
2624                 sep = ",";
2625         }
2626         if (test_bit(WantReplacement, &rdev->flags)) {
2627                 len += sprintf(page+len, "%swant_replacement", sep);
2628                 sep = ",";
2629         }
2630         if (test_bit(Replacement, &rdev->flags)) {
2631                 len += sprintf(page+len, "%sreplacement", sep);
2632                 sep = ",";
2633         }
2634
2635         return len+sprintf(page+len, "\n");
2636 }
2637
2638 static ssize_t
2639 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2640 {
2641         /* can write
2642          *  faulty  - simulates an error
2643          *  remove  - disconnects the device
2644          *  writemostly - sets write_mostly
2645          *  -writemostly - clears write_mostly
2646          *  blocked - sets the Blocked flags
2647          *  -blocked - clears the Blocked and possibly simulates an error
2648          *  insync - sets Insync providing device isn't active
2649          *  write_error - sets WriteErrorSeen
2650          *  -write_error - clears WriteErrorSeen
2651          */
2652         int err = -EINVAL;
2653         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2654                 md_error(rdev->mddev, rdev);
2655                 if (test_bit(Faulty, &rdev->flags))
2656                         err = 0;
2657                 else
2658                         err = -EBUSY;
2659         } else if (cmd_match(buf, "remove")) {
2660                 if (rdev->raid_disk >= 0)
2661                         err = -EBUSY;
2662                 else {
2663                         struct mddev *mddev = rdev->mddev;
2664                         kick_rdev_from_array(rdev);
2665                         if (mddev->pers)
2666                                 md_update_sb(mddev, 1);
2667                         md_new_event(mddev);
2668                         err = 0;
2669                 }
2670         } else if (cmd_match(buf, "writemostly")) {
2671                 set_bit(WriteMostly, &rdev->flags);
2672                 err = 0;
2673         } else if (cmd_match(buf, "-writemostly")) {
2674                 clear_bit(WriteMostly, &rdev->flags);
2675                 err = 0;
2676         } else if (cmd_match(buf, "blocked")) {
2677                 set_bit(Blocked, &rdev->flags);
2678                 err = 0;
2679         } else if (cmd_match(buf, "-blocked")) {
2680                 if (!test_bit(Faulty, &rdev->flags) &&
2681                     rdev->badblocks.unacked_exist) {
2682                         /* metadata handler doesn't understand badblocks,
2683                          * so we need to fail the device
2684                          */
2685                         md_error(rdev->mddev, rdev);
2686                 }
2687                 clear_bit(Blocked, &rdev->flags);
2688                 clear_bit(BlockedBadBlocks, &rdev->flags);
2689                 wake_up(&rdev->blocked_wait);
2690                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2691                 md_wakeup_thread(rdev->mddev->thread);
2692
2693                 err = 0;
2694         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2695                 set_bit(In_sync, &rdev->flags);
2696                 err = 0;
2697         } else if (cmd_match(buf, "write_error")) {
2698                 set_bit(WriteErrorSeen, &rdev->flags);
2699                 err = 0;
2700         } else if (cmd_match(buf, "-write_error")) {
2701                 clear_bit(WriteErrorSeen, &rdev->flags);
2702                 err = 0;
2703         } else if (cmd_match(buf, "want_replacement")) {
2704                 /* Any non-spare device that is not a replacement can
2705                  * become want_replacement at any time, but we then need to
2706                  * check if recovery is needed.
2707                  */
2708                 if (rdev->raid_disk >= 0 &&
2709                     !test_bit(Replacement, &rdev->flags))
2710                         set_bit(WantReplacement, &rdev->flags);
2711                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2712                 md_wakeup_thread(rdev->mddev->thread);
2713                 err = 0;
2714         } else if (cmd_match(buf, "-want_replacement")) {
2715                 /* Clearing 'want_replacement' is always allowed.
2716                  * Once replacements starts it is too late though.
2717                  */
2718                 err = 0;
2719                 clear_bit(WantReplacement, &rdev->flags);
2720         } else if (cmd_match(buf, "replacement")) {
2721                 /* Can only set a device as a replacement when array has not
2722                  * yet been started.  Once running, replacement is automatic
2723                  * from spares, or by assigning 'slot'.
2724                  */
2725                 if (rdev->mddev->pers)
2726                         err = -EBUSY;
2727                 else {
2728                         set_bit(Replacement, &rdev->flags);
2729                         err = 0;
2730                 }
2731         } else if (cmd_match(buf, "-replacement")) {
2732                 /* Similarly, can only clear Replacement before start */
2733                 if (rdev->mddev->pers)
2734                         err = -EBUSY;
2735                 else {
2736                         clear_bit(Replacement, &rdev->flags);
2737                         err = 0;
2738                 }
2739         }
2740         if (!err)
2741                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2742         return err ? err : len;
2743 }
2744 static struct rdev_sysfs_entry rdev_state =
2745 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2746
2747 static ssize_t
2748 errors_show(struct md_rdev *rdev, char *page)
2749 {
2750         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2751 }
2752
2753 static ssize_t
2754 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2755 {
2756         char *e;
2757         unsigned long n = simple_strtoul(buf, &e, 10);
2758         if (*buf && (*e == 0 || *e == '\n')) {
2759                 atomic_set(&rdev->corrected_errors, n);
2760                 return len;
2761         }
2762         return -EINVAL;
2763 }
2764 static struct rdev_sysfs_entry rdev_errors =
2765 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2766
2767 static ssize_t
2768 slot_show(struct md_rdev *rdev, char *page)
2769 {
2770         if (rdev->raid_disk < 0)
2771                 return sprintf(page, "none\n");
2772         else
2773                 return sprintf(page, "%d\n", rdev->raid_disk);
2774 }
2775
2776 static ssize_t
2777 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2778 {
2779         char *e;
2780         int err;
2781         int slot = simple_strtoul(buf, &e, 10);
2782         if (strncmp(buf, "none", 4)==0)
2783                 slot = -1;
2784         else if (e==buf || (*e && *e!= '\n'))
2785                 return -EINVAL;
2786         if (rdev->mddev->pers && slot == -1) {
2787                 /* Setting 'slot' on an active array requires also
2788                  * updating the 'rd%d' link, and communicating
2789                  * with the personality with ->hot_*_disk.
2790                  * For now we only support removing
2791                  * failed/spare devices.  This normally happens automatically,
2792                  * but not when the metadata is externally managed.
2793                  */
2794                 if (rdev->raid_disk == -1)
2795                         return -EEXIST;
2796                 /* personality does all needed checks */
2797                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2798                         return -EINVAL;
2799                 err = rdev->mddev->pers->
2800                         hot_remove_disk(rdev->mddev, rdev);
2801                 if (err)
2802                         return err;
2803                 sysfs_unlink_rdev(rdev->mddev, rdev);
2804                 rdev->raid_disk = -1;
2805                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2806                 md_wakeup_thread(rdev->mddev->thread);
2807         } else if (rdev->mddev->pers) {
2808                 /* Activating a spare .. or possibly reactivating
2809                  * if we ever get bitmaps working here.
2810                  */
2811
2812                 if (rdev->raid_disk != -1)
2813                         return -EBUSY;
2814
2815                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2816                         return -EBUSY;
2817
2818                 if (rdev->mddev->pers->hot_add_disk == NULL)
2819                         return -EINVAL;
2820
2821                 if (slot >= rdev->mddev->raid_disks &&
2822                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2823                         return -ENOSPC;
2824
2825                 rdev->raid_disk = slot;
2826                 if (test_bit(In_sync, &rdev->flags))
2827                         rdev->saved_raid_disk = slot;
2828                 else
2829                         rdev->saved_raid_disk = -1;
2830                 clear_bit(In_sync, &rdev->flags);
2831                 err = rdev->mddev->pers->
2832                         hot_add_disk(rdev->mddev, rdev);
2833                 if (err) {
2834                         rdev->raid_disk = -1;
2835                         return err;
2836                 } else
2837                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2838                 if (sysfs_link_rdev(rdev->mddev, rdev))
2839                         /* failure here is OK */;
2840                 /* don't wakeup anyone, leave that to userspace. */
2841         } else {
2842                 if (slot >= rdev->mddev->raid_disks &&
2843                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2844                         return -ENOSPC;
2845                 rdev->raid_disk = slot;
2846                 /* assume it is working */
2847                 clear_bit(Faulty, &rdev->flags);
2848                 clear_bit(WriteMostly, &rdev->flags);
2849                 set_bit(In_sync, &rdev->flags);
2850                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2851         }
2852         return len;
2853 }
2854
2855
2856 static struct rdev_sysfs_entry rdev_slot =
2857 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2858
2859 static ssize_t
2860 offset_show(struct md_rdev *rdev, char *page)
2861 {
2862         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2863 }
2864
2865 static ssize_t
2866 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2867 {
2868         unsigned long long offset;
2869         if (strict_strtoull(buf, 10, &offset) < 0)
2870                 return -EINVAL;
2871         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2872                 return -EBUSY;
2873         if (rdev->sectors && rdev->mddev->external)
2874                 /* Must set offset before size, so overlap checks
2875                  * can be sane */
2876                 return -EBUSY;
2877         rdev->data_offset = offset;
2878         rdev->new_data_offset = offset;
2879         return len;
2880 }
2881
2882 static struct rdev_sysfs_entry rdev_offset =
2883 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2884
2885 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2886 {
2887         return sprintf(page, "%llu\n",
2888                        (unsigned long long)rdev->new_data_offset);
2889 }
2890
2891 static ssize_t new_offset_store(struct md_rdev *rdev,
2892                                 const char *buf, size_t len)
2893 {
2894         unsigned long long new_offset;
2895         struct mddev *mddev = rdev->mddev;
2896
2897         if (strict_strtoull(buf, 10, &new_offset) < 0)
2898                 return -EINVAL;
2899
2900         if (mddev->sync_thread)
2901                 return -EBUSY;
2902         if (new_offset == rdev->data_offset)
2903                 /* reset is always permitted */
2904                 ;
2905         else if (new_offset > rdev->data_offset) {
2906                 /* must not push array size beyond rdev_sectors */
2907                 if (new_offset - rdev->data_offset
2908                     + mddev->dev_sectors > rdev->sectors)
2909                                 return -E2BIG;
2910         }
2911         /* Metadata worries about other space details. */
2912
2913         /* decreasing the offset is inconsistent with a backwards
2914          * reshape.
2915          */
2916         if (new_offset < rdev->data_offset &&
2917             mddev->reshape_backwards)
2918                 return -EINVAL;
2919         /* Increasing offset is inconsistent with forwards
2920          * reshape.  reshape_direction should be set to
2921          * 'backwards' first.
2922          */
2923         if (new_offset > rdev->data_offset &&
2924             !mddev->reshape_backwards)
2925                 return -EINVAL;
2926
2927         if (mddev->pers && mddev->persistent &&
2928             !super_types[mddev->major_version]
2929             .allow_new_offset(rdev, new_offset))
2930                 return -E2BIG;
2931         rdev->new_data_offset = new_offset;
2932         if (new_offset > rdev->data_offset)
2933                 mddev->reshape_backwards = 1;
2934         else if (new_offset < rdev->data_offset)
2935                 mddev->reshape_backwards = 0;
2936
2937         return len;
2938 }
2939 static struct rdev_sysfs_entry rdev_new_offset =
2940 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2941
2942 static ssize_t
2943 rdev_size_show(struct md_rdev *rdev, char *page)
2944 {
2945         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2946 }
2947
2948 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2949 {
2950         /* check if two start/length pairs overlap */
2951         if (s1+l1 <= s2)
2952                 return 0;
2953         if (s2+l2 <= s1)
2954                 return 0;
2955         return 1;
2956 }
2957
2958 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2959 {
2960         unsigned long long blocks;
2961         sector_t new;
2962
2963         if (strict_strtoull(buf, 10, &blocks) < 0)
2964                 return -EINVAL;
2965
2966         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2967                 return -EINVAL; /* sector conversion overflow */
2968
2969         new = blocks * 2;
2970         if (new != blocks * 2)
2971                 return -EINVAL; /* unsigned long long to sector_t overflow */
2972
2973         *sectors = new;
2974         return 0;
2975 }
2976
2977 static ssize_t
2978 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2979 {
2980         struct mddev *my_mddev = rdev->mddev;
2981         sector_t oldsectors = rdev->sectors;
2982         sector_t sectors;
2983
2984         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2985                 return -EINVAL;
2986         if (rdev->data_offset != rdev->new_data_offset)
2987                 return -EINVAL; /* too confusing */
2988         if (my_mddev->pers && rdev->raid_disk >= 0) {
2989                 if (my_mddev->persistent) {
2990                         sectors = super_types[my_mddev->major_version].
2991                                 rdev_size_change(rdev, sectors);
2992                         if (!sectors)
2993                                 return -EBUSY;
2994                 } else if (!sectors)
2995                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2996                                 rdev->data_offset;
2997         }
2998         if (sectors < my_mddev->dev_sectors)
2999                 return -EINVAL; /* component must fit device */
3000
3001         rdev->sectors = sectors;
3002         if (sectors > oldsectors && my_mddev->external) {
3003                 /* need to check that all other rdevs with the same ->bdev
3004                  * do not overlap.  We need to unlock the mddev to avoid
3005                  * a deadlock.  We have already changed rdev->sectors, and if
3006                  * we have to change it back, we will have the lock again.
3007                  */
3008                 struct mddev *mddev;
3009                 int overlap = 0;
3010                 struct list_head *tmp;
3011
3012                 mddev_unlock(my_mddev);
3013                 for_each_mddev(mddev, tmp) {
3014                         struct md_rdev *rdev2;
3015
3016                         mddev_lock(mddev);
3017                         rdev_for_each(rdev2, mddev)
3018                                 if (rdev->bdev == rdev2->bdev &&
3019                                     rdev != rdev2 &&
3020                                     overlaps(rdev->data_offset, rdev->sectors,
3021                                              rdev2->data_offset,
3022                                              rdev2->sectors)) {
3023                                         overlap = 1;
3024                                         break;
3025                                 }
3026                         mddev_unlock(mddev);
3027                         if (overlap) {
3028                                 mddev_put(mddev);
3029                                 break;
3030                         }
3031                 }
3032                 mddev_lock(my_mddev);
3033                 if (overlap) {
3034                         /* Someone else could have slipped in a size
3035                          * change here, but doing so is just silly.
3036                          * We put oldsectors back because we *know* it is
3037                          * safe, and trust userspace not to race with
3038                          * itself
3039                          */
3040                         rdev->sectors = oldsectors;
3041                         return -EBUSY;
3042                 }
3043         }
3044         return len;
3045 }
3046
3047 static struct rdev_sysfs_entry rdev_size =
3048 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3049
3050
3051 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3052 {
3053         unsigned long long recovery_start = rdev->recovery_offset;
3054
3055         if (test_bit(In_sync, &rdev->flags) ||
3056             recovery_start == MaxSector)
3057                 return sprintf(page, "none\n");
3058
3059         return sprintf(page, "%llu\n", recovery_start);
3060 }
3061
3062 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3063 {
3064         unsigned long long recovery_start;
3065
3066         if (cmd_match(buf, "none"))
3067                 recovery_start = MaxSector;
3068         else if (strict_strtoull(buf, 10, &recovery_start))
3069                 return -EINVAL;
3070
3071         if (rdev->mddev->pers &&
3072             rdev->raid_disk >= 0)
3073                 return -EBUSY;
3074
3075         rdev->recovery_offset = recovery_start;
3076         if (recovery_start == MaxSector)
3077                 set_bit(In_sync, &rdev->flags);
3078         else
3079                 clear_bit(In_sync, &rdev->flags);
3080         return len;
3081 }
3082
3083 static struct rdev_sysfs_entry rdev_recovery_start =
3084 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3085
3086
3087 static ssize_t
3088 badblocks_show(struct badblocks *bb, char *page, int unack);
3089 static ssize_t
3090 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3091
3092 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3093 {
3094         return badblocks_show(&rdev->badblocks, page, 0);
3095 }
3096 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3097 {
3098         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3099         /* Maybe that ack was all we needed */
3100         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3101                 wake_up(&rdev->blocked_wait);
3102         return rv;
3103 }
3104 static struct rdev_sysfs_entry rdev_bad_blocks =
3105 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3106
3107
3108 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3109 {
3110         return badblocks_show(&rdev->badblocks, page, 1);
3111 }
3112 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3113 {
3114         return badblocks_store(&rdev->badblocks, page, len, 1);
3115 }
3116 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3117 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3118
3119 static struct attribute *rdev_default_attrs[] = {
3120         &rdev_state.attr,
3121         &rdev_errors.attr,
3122         &rdev_slot.attr,
3123         &rdev_offset.attr,
3124         &rdev_new_offset.attr,
3125         &rdev_size.attr,
3126         &rdev_recovery_start.attr,
3127         &rdev_bad_blocks.attr,
3128         &rdev_unack_bad_blocks.attr,
3129         NULL,
3130 };
3131 static ssize_t
3132 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3133 {
3134         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3135         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3136         struct mddev *mddev = rdev->mddev;
3137         ssize_t rv;
3138
3139         if (!entry->show)
3140                 return -EIO;
3141
3142         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3143         if (!rv) {
3144                 if (rdev->mddev == NULL)
3145                         rv = -EBUSY;
3146                 else
3147                         rv = entry->show(rdev, page);
3148                 mddev_unlock(mddev);
3149         }
3150         return rv;
3151 }
3152
3153 static ssize_t
3154 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3155               const char *page, size_t length)
3156 {
3157         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3158         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3159         ssize_t rv;
3160         struct mddev *mddev = rdev->mddev;
3161
3162         if (!entry->store)
3163                 return -EIO;
3164         if (!capable(CAP_SYS_ADMIN))
3165                 return -EACCES;
3166         rv = mddev ? mddev_lock(mddev): -EBUSY;
3167         if (!rv) {
3168                 if (rdev->mddev == NULL)
3169                         rv = -EBUSY;
3170                 else
3171                         rv = entry->store(rdev, page, length);
3172                 mddev_unlock(mddev);
3173         }
3174         return rv;
3175 }
3176
3177 static void rdev_free(struct kobject *ko)
3178 {
3179         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3180         kfree(rdev);
3181 }
3182 static const struct sysfs_ops rdev_sysfs_ops = {
3183         .show           = rdev_attr_show,
3184         .store          = rdev_attr_store,
3185 };
3186 static struct kobj_type rdev_ktype = {
3187         .release        = rdev_free,
3188         .sysfs_ops      = &rdev_sysfs_ops,
3189         .default_attrs  = rdev_default_attrs,
3190 };
3191
3192 int md_rdev_init(struct md_rdev *rdev)
3193 {
3194         rdev->desc_nr = -1;
3195         rdev->saved_raid_disk = -1;
3196         rdev->raid_disk = -1;
3197         rdev->flags = 0;
3198         rdev->data_offset = 0;
3199         rdev->new_data_offset = 0;
3200         rdev->sb_events = 0;
3201         rdev->last_read_error.tv_sec  = 0;
3202         rdev->last_read_error.tv_nsec = 0;
3203         rdev->sb_loaded = 0;
3204         rdev->bb_page = NULL;
3205         atomic_set(&rdev->nr_pending, 0);
3206         atomic_set(&rdev->read_errors, 0);
3207         atomic_set(&rdev->corrected_errors, 0);
3208
3209         INIT_LIST_HEAD(&rdev->same_set);
3210         init_waitqueue_head(&rdev->blocked_wait);
3211
3212         /* Add space to store bad block list.
3213          * This reserves the space even on arrays where it cannot
3214          * be used - I wonder if that matters
3215          */
3216         rdev->badblocks.count = 0;
3217         rdev->badblocks.shift = 0;
3218         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3219         seqlock_init(&rdev->badblocks.lock);
3220         if (rdev->badblocks.page == NULL)
3221                 return -ENOMEM;
3222
3223         return 0;
3224 }
3225 EXPORT_SYMBOL_GPL(md_rdev_init);
3226 /*
3227  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3228  *
3229  * mark the device faulty if:
3230  *
3231  *   - the device is nonexistent (zero size)
3232  *   - the device has no valid superblock
3233  *
3234  * a faulty rdev _never_ has rdev->sb set.
3235  */
3236 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3237 {
3238         char b[BDEVNAME_SIZE];
3239         int err;
3240         struct md_rdev *rdev;
3241         sector_t size;
3242
3243         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3244         if (!rdev) {
3245                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3246                 return ERR_PTR(-ENOMEM);
3247         }
3248
3249         err = md_rdev_init(rdev);
3250         if (err)
3251                 goto abort_free;
3252         err = alloc_disk_sb(rdev);
3253         if (err)
3254                 goto abort_free;
3255
3256         err = lock_rdev(rdev, newdev, super_format == -2);
3257         if (err)
3258                 goto abort_free;
3259
3260         kobject_init(&rdev->kobj, &rdev_ktype);
3261
3262         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3263         if (!size) {
3264                 printk(KERN_WARNING 
3265                         "md: %s has zero or unknown size, marking faulty!\n",
3266                         bdevname(rdev->bdev,b));
3267                 err = -EINVAL;
3268                 goto abort_free;
3269         }
3270
3271         if (super_format >= 0) {
3272                 err = super_types[super_format].
3273                         load_super(rdev, NULL, super_minor);
3274                 if (err == -EINVAL) {
3275                         printk(KERN_WARNING
3276                                 "md: %s does not have a valid v%d.%d "
3277                                "superblock, not importing!\n",
3278                                 bdevname(rdev->bdev,b),
3279                                super_format, super_minor);
3280                         goto abort_free;
3281                 }
3282                 if (err < 0) {
3283                         printk(KERN_WARNING 
3284                                 "md: could not read %s's sb, not importing!\n",
3285                                 bdevname(rdev->bdev,b));
3286                         goto abort_free;
3287                 }
3288         }
3289         if (super_format == -1)
3290                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3291                 rdev->badblocks.shift = -1;
3292
3293         return rdev;
3294
3295 abort_free:
3296         if (rdev->bdev)
3297                 unlock_rdev(rdev);
3298         md_rdev_clear(rdev);
3299         kfree(rdev);
3300         return ERR_PTR(err);
3301 }
3302
3303 /*
3304  * Check a full RAID array for plausibility
3305  */
3306
3307
3308 static void analyze_sbs(struct mddev * mddev)
3309 {
3310         int i;
3311         struct md_rdev *rdev, *freshest, *tmp;
3312         char b[BDEVNAME_SIZE];
3313
3314         freshest = NULL;
3315         rdev_for_each_safe(rdev, tmp, mddev)
3316                 switch (super_types[mddev->major_version].
3317                         load_super(rdev, freshest, mddev->minor_version)) {
3318                 case 1:
3319                         freshest = rdev;
3320                         break;
3321                 case 0:
3322                         break;
3323                 default:
3324                         printk( KERN_ERR \
3325                                 "md: fatal superblock inconsistency in %s"
3326                                 " -- removing from array\n", 
3327                                 bdevname(rdev->bdev,b));
3328                         kick_rdev_from_array(rdev);
3329                 }
3330
3331
3332         super_types[mddev->major_version].
3333                 validate_super(mddev, freshest);
3334
3335         i = 0;
3336         rdev_for_each_safe(rdev, tmp, mddev) {
3337                 if (mddev->max_disks &&
3338                     (rdev->desc_nr >= mddev->max_disks ||
3339                      i > mddev->max_disks)) {
3340                         printk(KERN_WARNING
3341                                "md: %s: %s: only %d devices permitted\n",
3342                                mdname(mddev), bdevname(rdev->bdev, b),
3343                                mddev->max_disks);
3344                         kick_rdev_from_array(rdev);
3345                         continue;
3346                 }
3347                 if (rdev != freshest)
3348                         if (super_types[mddev->major_version].
3349                             validate_super(mddev, rdev)) {
3350                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3351                                         " from array!\n",
3352                                         bdevname(rdev->bdev,b));
3353                                 kick_rdev_from_array(rdev);
3354                                 continue;
3355                         }
3356                 if (mddev->level == LEVEL_MULTIPATH) {
3357                         rdev->desc_nr = i++;
3358                         rdev->raid_disk = rdev->desc_nr;
3359                         set_bit(In_sync, &rdev->flags);
3360                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3361                         rdev->raid_disk = -1;
3362                         clear_bit(In_sync, &rdev->flags);
3363                 }
3364         }
3365 }
3366
3367 /* Read a fixed-point number.
3368  * Numbers in sysfs attributes should be in "standard" units where
3369  * possible, so time should be in seconds.
3370  * However we internally use a a much smaller unit such as 
3371  * milliseconds or jiffies.
3372  * This function takes a decimal number with a possible fractional
3373  * component, and produces an integer which is the result of
3374  * multiplying that number by 10^'scale'.
3375  * all without any floating-point arithmetic.
3376  */
3377 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3378 {
3379         unsigned long result = 0;
3380         long decimals = -1;
3381         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3382                 if (*cp == '.')
3383                         decimals = 0;
3384                 else if (decimals < scale) {
3385                         unsigned int value;
3386                         value = *cp - '0';
3387                         result = result * 10 + value;
3388                         if (decimals >= 0)
3389                                 decimals++;
3390                 }
3391                 cp++;
3392         }
3393         if (*cp == '\n')
3394                 cp++;
3395         if (*cp)
3396                 return -EINVAL;
3397         if (decimals < 0)
3398                 decimals = 0;
3399         while (decimals < scale) {
3400                 result *= 10;
3401                 decimals ++;
3402         }
3403         *res = result;
3404         return 0;
3405 }
3406
3407
3408 static void md_safemode_timeout(unsigned long data);
3409
3410 static ssize_t
3411 safe_delay_show(struct mddev *mddev, char *page)
3412 {
3413         int msec = (mddev->safemode_delay*1000)/HZ;
3414         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3415 }
3416 static ssize_t
3417 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3418 {
3419         unsigned long msec;
3420
3421         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3422                 return -EINVAL;
3423         if (msec == 0)
3424                 mddev->safemode_delay = 0;
3425         else {
3426                 unsigned long old_delay = mddev->safemode_delay;
3427                 mddev->safemode_delay = (msec*HZ)/1000;
3428                 if (mddev->safemode_delay == 0)
3429                         mddev->safemode_delay = 1;
3430                 if (mddev->safemode_delay < old_delay)
3431                         md_safemode_timeout((unsigned long)mddev);
3432         }
3433         return len;
3434 }
3435 static struct md_sysfs_entry md_safe_delay =
3436 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3437
3438 static ssize_t
3439 level_show(struct mddev *mddev, char *page)
3440 {
3441         struct md_personality *p = mddev->pers;
3442         if (p)
3443                 return sprintf(page, "%s\n", p->name);
3444         else if (mddev->clevel[0])
3445                 return sprintf(page, "%s\n", mddev->clevel);
3446         else if (mddev->level != LEVEL_NONE)
3447                 return sprintf(page, "%d\n", mddev->level);
3448         else
3449                 return 0;
3450 }
3451
3452 static ssize_t
3453 level_store(struct mddev *mddev, const char *buf, size_t len)
3454 {
3455         char clevel[16];
3456         ssize_t rv = len;
3457         struct md_personality *pers;
3458         long level;
3459         void *priv;
3460         struct md_rdev *rdev;
3461
3462         if (mddev->pers == NULL) {
3463                 if (len == 0)
3464                         return 0;
3465                 if (len >= sizeof(mddev->clevel))
3466                         return -ENOSPC;
3467                 strncpy(mddev->clevel, buf, len);
3468                 if (mddev->clevel[len-1] == '\n')
3469                         len--;
3470                 mddev->clevel[len] = 0;
3471                 mddev->level = LEVEL_NONE;
3472                 return rv;
3473         }
3474
3475         /* request to change the personality.  Need to ensure:
3476          *  - array is not engaged in resync/recovery/reshape
3477          *  - old personality can be suspended
3478          *  - new personality will access other array.
3479          */
3480
3481         if (mddev->sync_thread ||
3482             mddev->reshape_position != MaxSector ||
3483             mddev->sysfs_active)
3484                 return -EBUSY;
3485
3486         if (!mddev->pers->quiesce) {
3487                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3488                        mdname(mddev), mddev->pers->name);
3489                 return -EINVAL;
3490         }
3491
3492         /* Now find the new personality */
3493         if (len == 0 || len >= sizeof(clevel))
3494                 return -EINVAL;
3495         strncpy(clevel, buf, len);
3496         if (clevel[len-1] == '\n')
3497                 len--;
3498         clevel[len] = 0;
3499         if (strict_strtol(clevel, 10, &level))
3500                 level = LEVEL_NONE;
3501
3502         if (request_module("md-%s", clevel) != 0)
3503                 request_module("md-level-%s", clevel);
3504         spin_lock(&pers_lock);
3505         pers = find_pers(level, clevel);
3506         if (!pers || !try_module_get(pers->owner)) {
3507                 spin_unlock(&pers_lock);
3508                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3509                 return -EINVAL;
3510         }
3511         spin_unlock(&pers_lock);
3512
3513         if (pers == mddev->pers) {
3514                 /* Nothing to do! */
3515                 module_put(pers->owner);
3516                 return rv;
3517         }
3518         if (!pers->takeover) {
3519                 module_put(pers->owner);
3520                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3521                        mdname(mddev), clevel);
3522                 return -EINVAL;
3523         }
3524
3525         rdev_for_each(rdev, mddev)
3526                 rdev->new_raid_disk = rdev->raid_disk;
3527
3528         /* ->takeover must set new_* and/or delta_disks
3529          * if it succeeds, and may set them when it fails.
3530          */
3531         priv = pers->takeover(mddev);
3532         if (IS_ERR(priv)) {
3533                 mddev->new_level = mddev->level;
3534                 mddev->new_layout = mddev->layout;
3535                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3536                 mddev->raid_disks -= mddev->delta_disks;
3537                 mddev->delta_disks = 0;
3538                 mddev->reshape_backwards = 0;
3539                 module_put(pers->owner);
3540                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3541                        mdname(mddev), clevel);
3542                 return PTR_ERR(priv);
3543         }
3544
3545         /* Looks like we have a winner */
3546         mddev_suspend(mddev);
3547         mddev->pers->stop(mddev);
3548         
3549         if (mddev->pers->sync_request == NULL &&
3550             pers->sync_request != NULL) {
3551                 /* need to add the md_redundancy_group */
3552                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3553                         printk(KERN_WARNING
3554                                "md: cannot register extra attributes for %s\n",
3555                                mdname(mddev));
3556                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3557         }               
3558         if (mddev->pers->sync_request != NULL &&
3559             pers->sync_request == NULL) {
3560                 /* need to remove the md_redundancy_group */
3561                 if (mddev->to_remove == NULL)
3562                         mddev->to_remove = &md_redundancy_group;
3563         }
3564
3565         if (mddev->pers->sync_request == NULL &&
3566             mddev->external) {
3567                 /* We are converting from a no-redundancy array
3568                  * to a redundancy array and metadata is managed
3569                  * externally so we need to be sure that writes
3570                  * won't block due to a need to transition
3571                  *      clean->dirty
3572                  * until external management is started.
3573                  */
3574                 mddev->in_sync = 0;
3575                 mddev->safemode_delay = 0;
3576                 mddev->safemode = 0;
3577         }
3578
3579         rdev_for_each(rdev, mddev) {
3580                 if (rdev->raid_disk < 0)
3581                         continue;
3582                 if (rdev->new_raid_disk >= mddev->raid_disks)
3583                         rdev->new_raid_disk = -1;
3584                 if (rdev->new_raid_disk == rdev->raid_disk)
3585                         continue;
3586                 sysfs_unlink_rdev(mddev, rdev);
3587         }
3588         rdev_for_each(rdev, mddev) {
3589                 if (rdev->raid_disk < 0)
3590                         continue;
3591                 if (rdev->new_raid_disk == rdev->raid_disk)
3592                         continue;
3593                 rdev->raid_disk = rdev->new_raid_disk;
3594                 if (rdev->raid_disk < 0)
3595                         clear_bit(In_sync, &rdev->flags);
3596                 else {
3597                         if (sysfs_link_rdev(mddev, rdev))
3598                                 printk(KERN_WARNING "md: cannot register rd%d"
3599                                        " for %s after level change\n",
3600                                        rdev->raid_disk, mdname(mddev));
3601                 }
3602         }
3603
3604         module_put(mddev->pers->owner);
3605         mddev->pers = pers;
3606         mddev->private = priv;
3607         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3608         mddev->level = mddev->new_level;
3609         mddev->layout = mddev->new_layout;
3610         mddev->chunk_sectors = mddev->new_chunk_sectors;
3611         mddev->delta_disks = 0;
3612         mddev->reshape_backwards = 0;
3613         mddev->degraded = 0;
3614         if (mddev->pers->sync_request == NULL) {
3615                 /* this is now an array without redundancy, so
3616                  * it must always be in_sync
3617                  */
3618                 mddev->in_sync = 1;
3619                 del_timer_sync(&mddev->safemode_timer);
3620         }
3621         pers->run(mddev);
3622         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3623         mddev_resume(mddev);
3624         sysfs_notify(&mddev->kobj, NULL, "level");
3625         md_new_event(mddev);
3626         return rv;
3627 }
3628
3629 static struct md_sysfs_entry md_level =
3630 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3631
3632
3633 static ssize_t
3634 layout_show(struct mddev *mddev, char *page)
3635 {
3636         /* just a number, not meaningful for all levels */
3637         if (mddev->reshape_position != MaxSector &&
3638             mddev->layout != mddev->new_layout)
3639                 return sprintf(page, "%d (%d)\n",
3640                                mddev->new_layout, mddev->layout);
3641         return sprintf(page, "%d\n", mddev->layout);
3642 }
3643
3644 static ssize_t
3645 layout_store(struct mddev *mddev, const char *buf, size_t len)
3646 {
3647         char *e;
3648         unsigned long n = simple_strtoul(buf, &e, 10);
3649
3650         if (!*buf || (*e && *e != '\n'))
3651                 return -EINVAL;
3652
3653         if (mddev->pers) {
3654                 int err;
3655                 if (mddev->pers->check_reshape == NULL)
3656                         return -EBUSY;
3657                 mddev->new_layout = n;
3658                 err = mddev->pers->check_reshape(mddev);
3659                 if (err) {
3660                         mddev->new_layout = mddev->layout;
3661                         return err;
3662                 }
3663         } else {
3664                 mddev->new_layout = n;
3665                 if (mddev->reshape_position == MaxSector)
3666                         mddev->layout = n;
3667         }
3668         return len;
3669 }
3670 static struct md_sysfs_entry md_layout =
3671 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3672
3673
3674 static ssize_t
3675 raid_disks_show(struct mddev *mddev, char *page)
3676 {
3677         if (mddev->raid_disks == 0)
3678                 return 0;
3679         if (mddev->reshape_position != MaxSector &&
3680             mddev->delta_disks != 0)
3681                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3682                                mddev->raid_disks - mddev->delta_disks);
3683         return sprintf(page, "%d\n", mddev->raid_disks);
3684 }
3685
3686 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3687
3688 static ssize_t
3689 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691         char *e;
3692         int rv = 0;
3693         unsigned long n = simple_strtoul(buf, &e, 10);
3694
3695         if (!*buf || (*e && *e != '\n'))
3696                 return -EINVAL;
3697
3698         if (mddev->pers)
3699                 rv = update_raid_disks(mddev, n);
3700         else if (mddev->reshape_position != MaxSector) {
3701                 struct md_rdev *rdev;
3702                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3703
3704                 rdev_for_each(rdev, mddev) {
3705                         if (olddisks < n &&
3706                             rdev->data_offset < rdev->new_data_offset)
3707                                 return -EINVAL;
3708                         if (olddisks > n &&
3709                             rdev->data_offset > rdev->new_data_offset)
3710                                 return -EINVAL;
3711                 }
3712                 mddev->delta_disks = n - olddisks;
3713                 mddev->raid_disks = n;
3714                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3715         } else
3716                 mddev->raid_disks = n;
3717         return rv ? rv : len;
3718 }
3719 static struct md_sysfs_entry md_raid_disks =
3720 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3721
3722 static ssize_t
3723 chunk_size_show(struct mddev *mddev, char *page)
3724 {
3725         if (mddev->reshape_position != MaxSector &&
3726             mddev->chunk_sectors != mddev->new_chunk_sectors)
3727                 return sprintf(page, "%d (%d)\n",
3728                                mddev->new_chunk_sectors << 9,
3729                                mddev->chunk_sectors << 9);
3730         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3731 }
3732
3733 static ssize_t
3734 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3735 {
3736         char *e;
3737         unsigned long n = simple_strtoul(buf, &e, 10);
3738
3739         if (!*buf || (*e && *e != '\n'))
3740                 return -EINVAL;
3741
3742         if (mddev->pers) {
3743                 int err;
3744                 if (mddev->pers->check_reshape == NULL)
3745                         return -EBUSY;
3746                 mddev->new_chunk_sectors = n >> 9;
3747                 err = mddev->pers->check_reshape(mddev);
3748                 if (err) {
3749                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3750                         return err;
3751                 }
3752         } else {
3753                 mddev->new_chunk_sectors = n >> 9;
3754                 if (mddev->reshape_position == MaxSector)
3755                         mddev->chunk_sectors = n >> 9;
3756         }
3757         return len;
3758 }
3759 static struct md_sysfs_entry md_chunk_size =
3760 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3761
3762 static ssize_t
3763 resync_start_show(struct mddev *mddev, char *page)
3764 {
3765         if (mddev->recovery_cp == MaxSector)
3766                 return sprintf(page, "none\n");
3767         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3768 }
3769
3770 static ssize_t
3771 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3772 {
3773         char *e;
3774         unsigned long long n = simple_strtoull(buf, &e, 10);
3775
3776         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3777                 return -EBUSY;
3778         if (cmd_match(buf, "none"))
3779                 n = MaxSector;
3780         else if (!*buf || (*e && *e != '\n'))
3781                 return -EINVAL;
3782
3783         mddev->recovery_cp = n;
3784         if (mddev->pers)
3785                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3786         return len;
3787 }
3788 static struct md_sysfs_entry md_resync_start =
3789 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3790
3791 /*
3792  * The array state can be:
3793  *
3794  * clear
3795  *     No devices, no size, no level
3796  *     Equivalent to STOP_ARRAY ioctl
3797  * inactive
3798  *     May have some settings, but array is not active
3799  *        all IO results in error
3800  *     When written, doesn't tear down array, but just stops it
3801  * suspended (not supported yet)
3802  *     All IO requests will block. The array can be reconfigured.
3803  *     Writing this, if accepted, will block until array is quiescent
3804  * readonly
3805  *     no resync can happen.  no superblocks get written.
3806  *     write requests fail
3807  * read-auto
3808  *     like readonly, but behaves like 'clean' on a write request.
3809  *
3810  * clean - no pending writes, but otherwise active.
3811  *     When written to inactive array, starts without resync
3812  *     If a write request arrives then
3813  *       if metadata is known, mark 'dirty' and switch to 'active'.
3814  *       if not known, block and switch to write-pending
3815  *     If written to an active array that has pending writes, then fails.
3816  * active
3817  *     fully active: IO and resync can be happening.
3818  *     When written to inactive array, starts with resync
3819  *
3820  * write-pending
3821  *     clean, but writes are blocked waiting for 'active' to be written.
3822  *
3823  * active-idle
3824  *     like active, but no writes have been seen for a while (100msec).
3825  *
3826  */
3827 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3828                    write_pending, active_idle, bad_word};
3829 static char *array_states[] = {
3830         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3831         "write-pending", "active-idle", NULL };
3832
3833 static int match_word(const char *word, char **list)
3834 {
3835         int n;
3836         for (n=0; list[n]; n++)
3837                 if (cmd_match(word, list[n]))
3838                         break;
3839         return n;
3840 }
3841
3842 static ssize_t
3843 array_state_show(struct mddev *mddev, char *page)
3844 {
3845         enum array_state st = inactive;
3846
3847         if (mddev->pers)
3848                 switch(mddev->ro) {
3849                 case 1:
3850                         st = readonly;
3851                         break;
3852                 case 2:
3853                         st = read_auto;
3854                         break;
3855                 case 0:
3856                         if (mddev->in_sync)
3857                                 st = clean;
3858                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3859                                 st = write_pending;
3860                         else if (mddev->safemode)
3861                                 st = active_idle;
3862                         else
3863                                 st = active;
3864                 }
3865         else {
3866                 if (list_empty(&mddev->disks) &&
3867                     mddev->raid_disks == 0 &&
3868                     mddev->dev_sectors == 0)
3869                         st = clear;
3870                 else
3871                         st = inactive;
3872         }
3873         return sprintf(page, "%s\n", array_states[st]);
3874 }
3875
3876 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3877 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3878 static int do_md_run(struct mddev * mddev);
3879 static int restart_array(struct mddev *mddev);
3880
3881 static ssize_t
3882 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3883 {
3884         int err = -EINVAL;
3885         enum array_state st = match_word(buf, array_states);
3886         switch(st) {
3887         case bad_word:
3888                 break;
3889         case clear:
3890                 /* stopping an active array */
3891                 err = do_md_stop(mddev, 0, NULL);
3892                 break;
3893         case inactive:
3894                 /* stopping an active array */
3895                 if (mddev->pers)
3896                         err = do_md_stop(mddev, 2, NULL);
3897                 else
3898                         err = 0; /* already inactive */
3899                 break;
3900         case suspended:
3901                 break; /* not supported yet */
3902         case readonly:
3903                 if (mddev->pers)
3904                         err = md_set_readonly(mddev, NULL);
3905                 else {
3906                         mddev->ro = 1;
3907                         set_disk_ro(mddev->gendisk, 1);
3908                         err = do_md_run(mddev);
3909                 }
3910                 break;
3911         case read_auto:
3912                 if (mddev->pers) {
3913                         if (mddev->ro == 0)
3914                                 err = md_set_readonly(mddev, NULL);
3915                         else if (mddev->ro == 1)
3916                                 err = restart_array(mddev);
3917                         if (err == 0) {
3918                                 mddev->ro = 2;
3919                                 set_disk_ro(mddev->gendisk, 0);
3920                         }
3921                 } else {
3922                         mddev->ro = 2;
3923                         err = do_md_run(mddev);
3924                 }
3925                 break;
3926         case clean:
3927                 if (mddev->pers) {
3928                         restart_array(mddev);
3929                         spin_lock_irq(&mddev->write_lock);
3930                         if (atomic_read(&mddev->writes_pending) == 0) {
3931                                 if (mddev->in_sync == 0) {
3932                                         mddev->in_sync = 1;
3933                                         if (mddev->safemode == 1)
3934                                                 mddev->safemode = 0;
3935                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3936                                 }
3937                                 err = 0;
3938                         } else
3939                                 err = -EBUSY;
3940                         spin_unlock_irq(&mddev->write_lock);
3941                 } else
3942                         err = -EINVAL;
3943                 break;
3944         case active:
3945                 if (mddev->pers) {
3946                         restart_array(mddev);
3947                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3948                         wake_up(&mddev->sb_wait);
3949                         err = 0;
3950                 } else {
3951                         mddev->ro = 0;
3952                         set_disk_ro(mddev->gendisk, 0);
3953                         err = do_md_run(mddev);
3954                 }
3955                 break;
3956         case write_pending:
3957         case active_idle:
3958                 /* these cannot be set */
3959                 break;
3960         }
3961         if (err)
3962                 return err;
3963         else {
3964                 if (mddev->hold_active == UNTIL_IOCTL)
3965                         mddev->hold_active = 0;
3966                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3967                 return len;
3968         }
3969 }
3970 static struct md_sysfs_entry md_array_state =
3971 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3972
3973 static ssize_t
3974 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3975         return sprintf(page, "%d\n",
3976                        atomic_read(&mddev->max_corr_read_errors));
3977 }
3978
3979 static ssize_t
3980 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3981 {
3982         char *e;
3983         unsigned long n = simple_strtoul(buf, &e, 10);
3984
3985         if (*buf && (*e == 0 || *e == '\n')) {
3986                 atomic_set(&mddev->max_corr_read_errors, n);
3987                 return len;
3988         }
3989         return -EINVAL;
3990 }
3991
3992 static struct md_sysfs_entry max_corr_read_errors =
3993 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3994         max_corrected_read_errors_store);
3995
3996 static ssize_t
3997 null_show(struct mddev *mddev, char *page)
3998 {
3999         return -EINVAL;
4000 }
4001
4002 static ssize_t
4003 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4004 {
4005         /* buf must be %d:%d\n? giving major and minor numbers */
4006         /* The new device is added to the array.
4007          * If the array has a persistent superblock, we read the
4008          * superblock to initialise info and check validity.
4009          * Otherwise, only checking done is that in bind_rdev_to_array,
4010          * which mainly checks size.
4011          */
4012         char *e;
4013         int major = simple_strtoul(buf, &e, 10);
4014         int minor;
4015         dev_t dev;
4016         struct md_rdev *rdev;
4017         int err;
4018
4019         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4020                 return -EINVAL;
4021         minor = simple_strtoul(e+1, &e, 10);
4022         if (*e && *e != '\n')
4023                 return -EINVAL;
4024         dev = MKDEV(major, minor);
4025         if (major != MAJOR(dev) ||
4026             minor != MINOR(dev))
4027                 return -EOVERFLOW;
4028
4029
4030         if (mddev->persistent) {
4031                 rdev = md_import_device(dev, mddev->major_version,
4032                                         mddev->minor_version);
4033                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4034                         struct md_rdev *rdev0
4035                                 = list_entry(mddev->disks.next,
4036                                              struct md_rdev, same_set);
4037                         err = super_types[mddev->major_version]
4038                                 .load_super(rdev, rdev0, mddev->minor_version);
4039                         if (err < 0)
4040                                 goto out;
4041                 }
4042         } else if (mddev->external)
4043                 rdev = md_import_device(dev, -2, -1);
4044         else
4045                 rdev = md_import_device(dev, -1, -1);
4046
4047         if (IS_ERR(rdev))
4048                 return PTR_ERR(rdev);
4049         err = bind_rdev_to_array(rdev, mddev);
4050  out:
4051         if (err)
4052                 export_rdev(rdev);
4053         return err ? err : len;
4054 }
4055
4056 static struct md_sysfs_entry md_new_device =
4057 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4058
4059 static ssize_t
4060 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062         char *end;
4063         unsigned long chunk, end_chunk;
4064
4065         if (!mddev->bitmap)
4066                 goto out;
4067         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4068         while (*buf) {
4069                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4070                 if (buf == end) break;
4071                 if (*end == '-') { /* range */
4072                         buf = end + 1;
4073                         end_chunk = simple_strtoul(buf, &end, 0);
4074                         if (buf == end) break;
4075                 }
4076                 if (*end && !isspace(*end)) break;
4077                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4078                 buf = skip_spaces(end);
4079         }
4080         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4081 out:
4082         return len;
4083 }
4084
4085 static struct md_sysfs_entry md_bitmap =
4086 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4087
4088 static ssize_t
4089 size_show(struct mddev *mddev, char *page)
4090 {
4091         return sprintf(page, "%llu\n",
4092                 (unsigned long long)mddev->dev_sectors / 2);
4093 }
4094
4095 static int update_size(struct mddev *mddev, sector_t num_sectors);
4096
4097 static ssize_t
4098 size_store(struct mddev *mddev, const char *buf, size_t len)
4099 {
4100         /* If array is inactive, we can reduce the component size, but
4101          * not increase it (except from 0).
4102          * If array is active, we can try an on-line resize
4103          */
4104         sector_t sectors;
4105         int err = strict_blocks_to_sectors(buf, &sectors);
4106
4107         if (err < 0)
4108                 return err;
4109         if (mddev->pers) {
4110                 err = update_size(mddev, sectors);
4111                 md_update_sb(mddev, 1);
4112         } else {
4113                 if (mddev->dev_sectors == 0 ||
4114                     mddev->dev_sectors > sectors)
4115                         mddev->dev_sectors = sectors;
4116                 else
4117                         err = -ENOSPC;
4118         }
4119         return err ? err : len;
4120 }
4121
4122 static struct md_sysfs_entry md_size =
4123 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4124
4125
4126 /* Metadata version.
4127  * This is one of
4128  *   'none' for arrays with no metadata (good luck...)
4129  *   'external' for arrays with externally managed metadata,
4130  * or N.M for internally known formats
4131  */
4132 static ssize_t
4133 metadata_show(struct mddev *mddev, char *page)
4134 {
4135         if (mddev->persistent)
4136                 return sprintf(page, "%d.%d\n",
4137                                mddev->major_version, mddev->minor_version);
4138         else if (mddev->external)
4139                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4140         else
4141                 return sprintf(page, "none\n");
4142 }
4143
4144 static ssize_t
4145 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4146 {
4147         int major, minor;
4148         char *e;
4149         /* Changing the details of 'external' metadata is
4150          * always permitted.  Otherwise there must be
4151          * no devices attached to the array.
4152          */
4153         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4154                 ;
4155         else if (!list_empty(&mddev->disks))
4156                 return -EBUSY;
4157
4158         if (cmd_match(buf, "none")) {
4159                 mddev->persistent = 0;
4160                 mddev->external = 0;
4161                 mddev->major_version = 0;
4162                 mddev->minor_version = 90;
4163                 return len;
4164         }
4165         if (strncmp(buf, "external:", 9) == 0) {
4166                 size_t namelen = len-9;
4167                 if (namelen >= sizeof(mddev->metadata_type))
4168                         namelen = sizeof(mddev->metadata_type)-1;
4169                 strncpy(mddev->metadata_type, buf+9, namelen);
4170                 mddev->metadata_type[namelen] = 0;
4171                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4172                         mddev->metadata_type[--namelen] = 0;
4173                 mddev->persistent = 0;
4174                 mddev->external = 1;
4175                 mddev->major_version = 0;
4176                 mddev->minor_version = 90;
4177                 return len;
4178         }
4179         major = simple_strtoul(buf, &e, 10);
4180         if (e==buf || *e != '.')
4181                 return -EINVAL;
4182         buf = e+1;
4183         minor = simple_strtoul(buf, &e, 10);
4184         if (e==buf || (*e && *e != '\n') )
4185                 return -EINVAL;
4186         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4187                 return -ENOENT;
4188         mddev->major_version = major;
4189         mddev->minor_version = minor;
4190         mddev->persistent = 1;
4191         mddev->external = 0;
4192         return len;
4193 }
4194
4195 static struct md_sysfs_entry md_metadata =
4196 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4197
4198 static ssize_t
4199 action_show(struct mddev *mddev, char *page)
4200 {
4201         char *type = "idle";
4202         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4203                 type = "frozen";
4204         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4205             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4206                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4207                         type = "reshape";
4208                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4209                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4210                                 type = "resync";
4211                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4212                                 type = "check";
4213                         else
4214                                 type = "repair";
4215                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4216                         type = "recover";
4217         }
4218         return sprintf(page, "%s\n", type);
4219 }
4220
4221 static void reap_sync_thread(struct mddev *mddev);
4222
4223 static ssize_t
4224 action_store(struct mddev *mddev, const char *page, size_t len)
4225 {
4226         if (!mddev->pers || !mddev->pers->sync_request)
4227                 return -EINVAL;
4228
4229         if (cmd_match(page, "frozen"))
4230                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231         else
4232                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4233
4234         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4235                 if (mddev->sync_thread) {
4236                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237                         reap_sync_thread(mddev);
4238                 }
4239         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4240                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4241                 return -EBUSY;
4242         else if (cmd_match(page, "resync"))
4243                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244         else if (cmd_match(page, "recover")) {
4245                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4247         } else if (cmd_match(page, "reshape")) {
4248                 int err;
4249                 if (mddev->pers->start_reshape == NULL)
4250                         return -EINVAL;
4251                 err = mddev->pers->start_reshape(mddev);
4252                 if (err)
4253                         return err;
4254                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4255         } else {
4256                 if (cmd_match(page, "check"))
4257                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258                 else if (!cmd_match(page, "repair"))
4259                         return -EINVAL;
4260                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4261                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4262         }
4263         if (mddev->ro == 2) {
4264                 /* A write to sync_action is enough to justify
4265                  * canceling read-auto mode
4266                  */
4267                 mddev->ro = 0;
4268                 md_wakeup_thread(mddev->sync_thread);
4269         }
4270         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4271         md_wakeup_thread(mddev->thread);
4272         sysfs_notify_dirent_safe(mddev->sysfs_action);
4273         return len;
4274 }
4275
4276 static ssize_t
4277 mismatch_cnt_show(struct mddev *mddev, char *page)
4278 {
4279         return sprintf(page, "%llu\n",
4280                        (unsigned long long)
4281                        atomic64_read(&mddev->resync_mismatches));
4282 }
4283
4284 static struct md_sysfs_entry md_scan_mode =
4285 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4286
4287
4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4289
4290 static ssize_t
4291 sync_min_show(struct mddev *mddev, char *page)
4292 {
4293         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4294                        mddev->sync_speed_min ? "local": "system");
4295 }
4296
4297 static ssize_t
4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300         int min;
4301         char *e;
4302         if (strncmp(buf, "system", 6)==0) {
4303                 mddev->sync_speed_min = 0;
4304                 return len;
4305         }
4306         min = simple_strtoul(buf, &e, 10);
4307         if (buf == e || (*e && *e != '\n') || min <= 0)
4308                 return -EINVAL;
4309         mddev->sync_speed_min = min;
4310         return len;
4311 }
4312
4313 static struct md_sysfs_entry md_sync_min =
4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4315
4316 static ssize_t
4317 sync_max_show(struct mddev *mddev, char *page)
4318 {
4319         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4320                        mddev->sync_speed_max ? "local": "system");
4321 }
4322
4323 static ssize_t
4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326         int max;
4327         char *e;
4328         if (strncmp(buf, "system", 6)==0) {
4329                 mddev->sync_speed_max = 0;
4330                 return len;
4331         }
4332         max = simple_strtoul(buf, &e, 10);
4333         if (buf == e || (*e && *e != '\n') || max <= 0)
4334                 return -EINVAL;
4335         mddev->sync_speed_max = max;
4336         return len;
4337 }
4338
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345         return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358         long n;
4359
4360         if (strict_strtol(buf, 10, &n))
4361                 return -EINVAL;
4362
4363         if (n != 0 && n != 1)
4364                 return -EINVAL;
4365
4366         mddev->parallel_resync = n;
4367
4368         if (mddev->sync_thread)
4369                 wake_up(&resync_wait);
4370
4371         return len;
4372 }
4373
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377        sync_force_parallel_show, sync_force_parallel_store);
4378
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382         unsigned long resync, dt, db;
4383         if (mddev->curr_resync == 0)
4384                 return sprintf(page, "none\n");
4385         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386         dt = (jiffies - mddev->resync_mark) / HZ;
4387         if (!dt) dt++;
4388         db = resync - mddev->resync_mark_cnt;
4389         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397         unsigned long long max_sectors, resync;
4398
4399         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400                 return sprintf(page, "none\n");
4401
4402         if (mddev->curr_resync == 1 ||
4403             mddev->curr_resync == 2)
4404                 return sprintf(page, "delayed\n");
4405
4406         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4407             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4408                 max_sectors = mddev->resync_max_sectors;
4409         else
4410                 max_sectors = mddev->dev_sectors;
4411
4412         resync = mddev->curr_resync_completed;
4413         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4414 }
4415
4416 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4417
4418 static ssize_t
4419 min_sync_show(struct mddev *mddev, char *page)
4420 {
4421         return sprintf(page, "%llu\n",
4422                        (unsigned long long)mddev->resync_min);
4423 }
4424 static ssize_t
4425 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4426 {
4427         unsigned long long min;
4428         if (strict_strtoull(buf, 10, &min))
4429                 return -EINVAL;
4430         if (min > mddev->resync_max)
4431                 return -EINVAL;
4432         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4433                 return -EBUSY;
4434
4435         /* Must be a multiple of chunk_size */
4436         if (mddev->chunk_sectors) {
4437                 sector_t temp = min;
4438                 if (sector_div(temp, mddev->chunk_sectors))
4439                         return -EINVAL;
4440         }
4441         mddev->resync_min = min;
4442
4443         return len;
4444 }
4445
4446 static struct md_sysfs_entry md_min_sync =
4447 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4448
4449 static ssize_t
4450 max_sync_show(struct mddev *mddev, char *page)
4451 {
4452         if (mddev->resync_max == MaxSector)
4453                 return sprintf(page, "max\n");
4454         else
4455                 return sprintf(page, "%llu\n",
4456                                (unsigned long long)mddev->resync_max);
4457 }
4458 static ssize_t
4459 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4460 {
4461         if (strncmp(buf, "max", 3) == 0)
4462                 mddev->resync_max = MaxSector;
4463         else {
4464                 unsigned long long max;
4465                 if (strict_strtoull(buf, 10, &max))
4466                         return -EINVAL;
4467                 if (max < mddev->resync_min)
4468                         return -EINVAL;
4469                 if (max < mddev->resync_max &&
4470                     mddev->ro == 0 &&
4471                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4472                         return -EBUSY;
4473
4474                 /* Must be a multiple of chunk_size */
4475                 if (mddev->chunk_sectors) {
4476                         sector_t temp = max;
4477                         if (sector_div(temp, mddev->chunk_sectors))
4478                                 return -EINVAL;
4479                 }
4480                 mddev->resync_max = max;
4481         }
4482         wake_up(&mddev->recovery_wait);
4483         return len;
4484 }
4485
4486 static struct md_sysfs_entry md_max_sync =
4487 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4488
4489 static ssize_t
4490 suspend_lo_show(struct mddev *mddev, char *page)
4491 {
4492         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4493 }
4494
4495 static ssize_t
4496 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4497 {
4498         char *e;
4499         unsigned long long new = simple_strtoull(buf, &e, 10);
4500         unsigned long long old = mddev->suspend_lo;
4501
4502         if (mddev->pers == NULL || 
4503             mddev->pers->quiesce == NULL)
4504                 return -EINVAL;
4505         if (buf == e || (*e && *e != '\n'))
4506                 return -EINVAL;
4507
4508         mddev->suspend_lo = new;
4509         if (new >= old)
4510                 /* Shrinking suspended region */
4511                 mddev->pers->quiesce(mddev, 2);
4512         else {
4513                 /* Expanding suspended region - need to wait */
4514                 mddev->pers->quiesce(mddev, 1);
4515                 mddev->pers->quiesce(mddev, 0);
4516         }
4517         return len;
4518 }
4519 static struct md_sysfs_entry md_suspend_lo =
4520 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4521
4522
4523 static ssize_t
4524 suspend_hi_show(struct mddev *mddev, char *page)
4525 {
4526         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4527 }
4528
4529 static ssize_t
4530 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4531 {
4532         char *e;
4533         unsigned long long new = simple_strtoull(buf, &e, 10);
4534         unsigned long long old = mddev->suspend_hi;
4535
4536         if (mddev->pers == NULL ||
4537             mddev->pers->quiesce == NULL)
4538                 return -EINVAL;
4539         if (buf == e || (*e && *e != '\n'))
4540                 return -EINVAL;
4541
4542         mddev->suspend_hi = new;
4543         if (new <= old)
4544                 /* Shrinking suspended region */
4545                 mddev->pers->quiesce(mddev, 2);
4546         else {
4547                 /* Expanding suspended region - need to wait */
4548                 mddev->pers->quiesce(mddev, 1);
4549                 mddev->pers->quiesce(mddev, 0);
4550         }
4551         return len;
4552 }
4553 static struct md_sysfs_entry md_suspend_hi =
4554 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4555
4556 static ssize_t
4557 reshape_position_show(struct mddev *mddev, char *page)
4558 {
4559         if (mddev->reshape_position != MaxSector)
4560                 return sprintf(page, "%llu\n",
4561                                (unsigned long long)mddev->reshape_position);
4562         strcpy(page, "none\n");
4563         return 5;
4564 }
4565
4566 static ssize_t
4567 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4568 {
4569         struct md_rdev *rdev;
4570         char *e;
4571         unsigned long long new = simple_strtoull(buf, &e, 10);
4572         if (mddev->pers)
4573                 return -EBUSY;
4574         if (buf == e || (*e && *e != '\n'))
4575                 return -EINVAL;
4576         mddev->reshape_position = new;
4577         mddev->delta_disks = 0;
4578         mddev->reshape_backwards = 0;
4579         mddev->new_level = mddev->level;
4580         mddev->new_layout = mddev->layout;
4581         mddev->new_chunk_sectors = mddev->chunk_sectors;
4582         rdev_for_each(rdev, mddev)
4583                 rdev->new_data_offset = rdev->data_offset;
4584         return len;
4585 }
4586
4587 static struct md_sysfs_entry md_reshape_position =
4588 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4589        reshape_position_store);
4590
4591 static ssize_t
4592 reshape_direction_show(struct mddev *mddev, char *page)
4593 {
4594         return sprintf(page, "%s\n",
4595                        mddev->reshape_backwards ? "backwards" : "forwards");
4596 }
4597
4598 static ssize_t
4599 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4600 {
4601         int backwards = 0;
4602         if (cmd_match(buf, "forwards"))
4603                 backwards = 0;
4604         else if (cmd_match(buf, "backwards"))
4605                 backwards = 1;
4606         else
4607                 return -EINVAL;
4608         if (mddev->reshape_backwards == backwards)
4609                 return len;
4610
4611         /* check if we are allowed to change */
4612         if (mddev->delta_disks)
4613                 return -EBUSY;
4614
4615         if (mddev->persistent &&
4616             mddev->major_version == 0)
4617                 return -EINVAL;
4618
4619         mddev->reshape_backwards = backwards;
4620         return len;
4621 }
4622
4623 static struct md_sysfs_entry md_reshape_direction =
4624 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4625        reshape_direction_store);
4626
4627 static ssize_t
4628 array_size_show(struct mddev *mddev, char *page)
4629 {
4630         if (mddev->external_size)
4631                 return sprintf(page, "%llu\n",
4632                                (unsigned long long)mddev->array_sectors/2);
4633         else
4634                 return sprintf(page, "default\n");
4635 }
4636
4637 static ssize_t
4638 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4639 {
4640         sector_t sectors;
4641
4642         if (strncmp(buf, "default", 7) == 0) {
4643                 if (mddev->pers)
4644                         sectors = mddev->pers->size(mddev, 0, 0);
4645                 else
4646                         sectors = mddev->array_sectors;
4647
4648                 mddev->external_size = 0;
4649         } else {
4650                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4651                         return -EINVAL;
4652                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4653                         return -E2BIG;
4654
4655                 mddev->external_size = 1;
4656         }
4657
4658         mddev->array_sectors = sectors;
4659         if (mddev->pers) {
4660                 set_capacity(mddev->gendisk, mddev->array_sectors);
4661                 revalidate_disk(mddev->gendisk);
4662         }
4663         return len;
4664 }
4665
4666 static struct md_sysfs_entry md_array_size =
4667 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4668        array_size_store);
4669
4670 static struct attribute *md_default_attrs[] = {
4671         &md_level.attr,
4672         &md_layout.attr,
4673         &md_raid_disks.attr,
4674         &md_chunk_size.attr,
4675         &md_size.attr,
4676         &md_resync_start.attr,
4677         &md_metadata.attr,
4678         &md_new_device.attr,
4679         &md_safe_delay.attr,
4680         &md_array_state.attr,
4681         &md_reshape_position.attr,
4682         &md_reshape_direction.attr,
4683         &md_array_size.attr,
4684         &max_corr_read_errors.attr,
4685         NULL,
4686 };
4687
4688 static struct attribute *md_redundancy_attrs[] = {
4689         &md_scan_mode.attr,
4690         &md_mismatches.attr,
4691         &md_sync_min.attr,
4692         &md_sync_max.attr,
4693         &md_sync_speed.attr,
4694         &md_sync_force_parallel.attr,
4695         &md_sync_completed.attr,
4696         &md_min_sync.attr,
4697         &md_max_sync.attr,
4698         &md_suspend_lo.attr,
4699         &md_suspend_hi.attr,
4700         &md_bitmap.attr,
4701         &md_degraded.attr,
4702         NULL,
4703 };
4704 static struct attribute_group md_redundancy_group = {
4705         .name = NULL,
4706         .attrs = md_redundancy_attrs,
4707 };
4708
4709
4710 static ssize_t
4711 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4712 {
4713         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4714         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4715         ssize_t rv;
4716
4717         if (!entry->show)
4718                 return -EIO;
4719         spin_lock(&all_mddevs_lock);
4720         if (list_empty(&mddev->all_mddevs)) {
4721                 spin_unlock(&all_mddevs_lock);
4722                 return -EBUSY;
4723         }
4724         mddev_get(mddev);
4725         spin_unlock(&all_mddevs_lock);
4726
4727         rv = mddev_lock(mddev);
4728         if (!rv) {
4729                 rv = entry->show(mddev, page);
4730                 mddev_unlock(mddev);
4731         }
4732         mddev_put(mddev);
4733         return rv;
4734 }
4735
4736 static ssize_t
4737 md_attr_store(struct kobject *kobj, struct attribute *attr,
4738               const char *page, size_t length)
4739 {
4740         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4741         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4742         ssize_t rv;
4743
4744         if (!entry->store)
4745                 return -EIO;
4746         if (!capable(CAP_SYS_ADMIN))
4747                 return -EACCES;
4748         spin_lock(&all_mddevs_lock);
4749         if (list_empty(&mddev->all_mddevs)) {
4750                 spin_unlock(&all_mddevs_lock);
4751                 return -EBUSY;
4752         }
4753         mddev_get(mddev);
4754         spin_unlock(&all_mddevs_lock);
4755         if (entry->store == new_dev_store)
4756                 flush_workqueue(md_misc_wq);
4757         rv = mddev_lock(mddev);
4758         if (!rv) {
4759                 rv = entry->store(mddev, page, length);
4760                 mddev_unlock(mddev);
4761         }
4762         mddev_put(mddev);
4763         return rv;
4764 }
4765
4766 static void md_free(struct kobject *ko)
4767 {
4768         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4769
4770         if (mddev->sysfs_state)
4771                 sysfs_put(mddev->sysfs_state);
4772
4773         if (mddev->gendisk) {
4774                 del_gendisk(mddev->gendisk);
4775                 put_disk(mddev->gendisk);
4776         }
4777         if (mddev->queue)
4778                 blk_cleanup_queue(mddev->queue);
4779
4780         kfree(mddev);
4781 }
4782
4783 static const struct sysfs_ops md_sysfs_ops = {
4784         .show   = md_attr_show,
4785         .store  = md_attr_store,
4786 };
4787 static struct kobj_type md_ktype = {
4788         .release        = md_free,
4789         .sysfs_ops      = &md_sysfs_ops,
4790         .default_attrs  = md_default_attrs,
4791 };
4792
4793 int mdp_major = 0;
4794
4795 static void mddev_delayed_delete(struct work_struct *ws)
4796 {
4797         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4798
4799         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4800         kobject_del(&mddev->kobj);
4801         kobject_put(&mddev->kobj);
4802 }
4803
4804 static int md_alloc(dev_t dev, char *name)
4805 {
4806         static DEFINE_MUTEX(disks_mutex);
4807         struct mddev *mddev = mddev_find(dev);
4808         struct gendisk *disk;
4809         int partitioned;
4810         int shift;
4811         int unit;
4812         int error;
4813
4814         if (!mddev)
4815                 return -ENODEV;
4816
4817         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4818         shift = partitioned ? MdpMinorShift : 0;
4819         unit = MINOR(mddev->unit) >> shift;
4820
4821         /* wait for any previous instance of this device to be
4822          * completely removed (mddev_delayed_delete).
4823          */
4824         flush_workqueue(md_misc_wq);
4825
4826         mutex_lock(&disks_mutex);
4827         error = -EEXIST;
4828         if (mddev->gendisk)
4829                 goto abort;
4830
4831         if (name) {
4832                 /* Need to ensure that 'name' is not a duplicate.
4833                  */
4834                 struct mddev *mddev2;
4835                 spin_lock(&all_mddevs_lock);
4836
4837                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4838                         if (mddev2->gendisk &&
4839                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4840                                 spin_unlock(&all_mddevs_lock);
4841                                 goto abort;
4842                         }
4843                 spin_unlock(&all_mddevs_lock);
4844         }
4845
4846         error = -ENOMEM;
4847         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4848         if (!mddev->queue)
4849                 goto abort;
4850         mddev->queue->queuedata = mddev;
4851
4852         blk_queue_make_request(mddev->queue, md_make_request);
4853         blk_set_stacking_limits(&mddev->queue->limits);
4854
4855         disk = alloc_disk(1 << shift);
4856         if (!disk) {
4857                 blk_cleanup_queue(mddev->queue);
4858                 mddev->queue = NULL;
4859                 goto abort;
4860         }
4861         disk->major = MAJOR(mddev->unit);
4862         disk->first_minor = unit << shift;
4863         if (name)
4864                 strcpy(disk->disk_name, name);
4865         else if (partitioned)
4866                 sprintf(disk->disk_name, "md_d%d", unit);
4867         else
4868                 sprintf(disk->disk_name, "md%d", unit);
4869         disk->fops = &md_fops;
4870         disk->private_data = mddev;
4871         disk->queue = mddev->queue;
4872         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4873         /* Allow extended partitions.  This makes the
4874          * 'mdp' device redundant, but we can't really
4875          * remove it now.
4876          */
4877         disk->flags |= GENHD_FL_EXT_DEVT;
4878         mddev->gendisk = disk;
4879         /* As soon as we call add_disk(), another thread could get
4880          * through to md_open, so make sure it doesn't get too far
4881          */
4882         mutex_lock(&mddev->open_mutex);
4883         add_disk(disk);
4884
4885         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4886                                      &disk_to_dev(disk)->kobj, "%s", "md");
4887         if (error) {
4888                 /* This isn't possible, but as kobject_init_and_add is marked
4889                  * __must_check, we must do something with the result
4890                  */
4891                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4892                        disk->disk_name);
4893                 error = 0;
4894         }
4895         if (mddev->kobj.sd &&
4896             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4897                 printk(KERN_DEBUG "pointless warning\n");
4898         mutex_unlock(&mddev->open_mutex);
4899  abort:
4900         mutex_unlock(&disks_mutex);
4901         if (!error && mddev->kobj.sd) {
4902                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4903                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4904         }
4905         mddev_put(mddev);
4906         return error;
4907 }
4908
4909 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4910 {
4911         md_alloc(dev, NULL);
4912         return NULL;
4913 }
4914
4915 static int add_named_array(const char *val, struct kernel_param *kp)
4916 {
4917         /* val must be "md_*" where * is not all digits.
4918          * We allocate an array with a large free minor number, and
4919          * set the name to val.  val must not already be an active name.
4920          */
4921         int len = strlen(val);
4922         char buf[DISK_NAME_LEN];
4923
4924         while (len && val[len-1] == '\n')
4925                 len--;
4926         if (len >= DISK_NAME_LEN)
4927                 return -E2BIG;
4928         strlcpy(buf, val, len+1);
4929         if (strncmp(buf, "md_", 3) != 0)
4930                 return -EINVAL;
4931         return md_alloc(0, buf);
4932 }
4933
4934 static void md_safemode_timeout(unsigned long data)
4935 {
4936         struct mddev *mddev = (struct mddev *) data;
4937
4938         if (!atomic_read(&mddev->writes_pending)) {
4939                 mddev->safemode = 1;
4940                 if (mddev->external)
4941                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4942         }
4943         md_wakeup_thread(mddev->thread);
4944 }
4945
4946 static int start_dirty_degraded;
4947
4948 int md_run(struct mddev *mddev)
4949 {
4950         int err;
4951         struct md_rdev *rdev;
4952         struct md_personality *pers;
4953
4954         if (list_empty(&mddev->disks))
4955                 /* cannot run an array with no devices.. */
4956                 return -EINVAL;
4957
4958         if (mddev->pers)
4959                 return -EBUSY;
4960         /* Cannot run until previous stop completes properly */
4961         if (mddev->sysfs_active)
4962                 return -EBUSY;
4963
4964         /*
4965          * Analyze all RAID superblock(s)
4966          */
4967         if (!mddev->raid_disks) {
4968                 if (!mddev->persistent)
4969                         return -EINVAL;
4970                 analyze_sbs(mddev);
4971         }
4972
4973         if (mddev->level != LEVEL_NONE)
4974                 request_module("md-level-%d", mddev->level);
4975         else if (mddev->clevel[0])
4976                 request_module("md-%s", mddev->clevel);
4977
4978         /*
4979          * Drop all container device buffers, from now on
4980          * the only valid external interface is through the md
4981          * device.
4982          */
4983         rdev_for_each(rdev, mddev) {
4984                 if (test_bit(Faulty, &rdev->flags))
4985                         continue;
4986                 sync_blockdev(rdev->bdev);
4987                 invalidate_bdev(rdev->bdev);
4988
4989                 /* perform some consistency tests on the device.
4990                  * We don't want the data to overlap the metadata,
4991                  * Internal Bitmap issues have been handled elsewhere.
4992                  */
4993                 if (rdev->meta_bdev) {
4994                         /* Nothing to check */;
4995                 } else if (rdev->data_offset < rdev->sb_start) {
4996                         if (mddev->dev_sectors &&
4997                             rdev->data_offset + mddev->dev_sectors
4998                             > rdev->sb_start) {
4999                                 printk("md: %s: data overlaps metadata\n",
5000                                        mdname(mddev));
5001                                 return -EINVAL;
5002                         }
5003                 } else {
5004                         if (rdev->sb_start + rdev->sb_size/512
5005                             > rdev->data_offset) {
5006                                 printk("md: %s: metadata overlaps data\n",
5007                                        mdname(mddev));
5008                                 return -EINVAL;
5009                         }
5010                 }
5011                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5012         }
5013
5014         if (mddev->bio_set == NULL)
5015                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5016
5017         spin_lock(&pers_lock);
5018         pers = find_pers(mddev->level, mddev->clevel);
5019         if (!pers || !try_module_get(pers->owner)) {
5020                 spin_unlock(&pers_lock);
5021                 if (mddev->level != LEVEL_NONE)
5022                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5023                                mddev->level);
5024                 else
5025                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5026                                mddev->clevel);
5027                 return -EINVAL;
5028         }
5029         mddev->pers = pers;
5030         spin_unlock(&pers_lock);
5031         if (mddev->level != pers->level) {
5032                 mddev->level = pers->level;
5033                 mddev->new_level = pers->level;
5034         }
5035         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5036
5037         if (mddev->reshape_position != MaxSector &&
5038             pers->start_reshape == NULL) {
5039                 /* This personality cannot handle reshaping... */
5040                 mddev->pers = NULL;
5041                 module_put(pers->owner);
5042                 return -EINVAL;
5043         }
5044
5045         if (pers->sync_request) {
5046                 /* Warn if this is a potentially silly
5047                  * configuration.
5048                  */
5049                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5050                 struct md_rdev *rdev2;
5051                 int warned = 0;
5052
5053                 rdev_for_each(rdev, mddev)
5054                         rdev_for_each(rdev2, mddev) {
5055                                 if (rdev < rdev2 &&
5056                                     rdev->bdev->bd_contains ==
5057                                     rdev2->bdev->bd_contains) {
5058                                         printk(KERN_WARNING
5059                                                "%s: WARNING: %s appears to be"
5060                                                " on the same physical disk as"
5061                                                " %s.\n",
5062                                                mdname(mddev),
5063                                                bdevname(rdev->bdev,b),
5064                                                bdevname(rdev2->bdev,b2));
5065                                         warned = 1;
5066                                 }
5067                         }
5068
5069                 if (warned)
5070                         printk(KERN_WARNING
5071                                "True protection against single-disk"
5072                                " failure might be compromised.\n");
5073         }
5074
5075         mddev->recovery = 0;
5076         /* may be over-ridden by personality */
5077         mddev->resync_max_sectors = mddev->dev_sectors;
5078
5079         mddev->ok_start_degraded = start_dirty_degraded;
5080
5081         if (start_readonly && mddev->ro == 0)
5082                 mddev->ro = 2; /* read-only, but switch on first write */
5083
5084         err = mddev->pers->run(mddev);
5085         if (err)
5086                 printk(KERN_ERR "md: pers->run() failed ...\n");
5087         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5088                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5089                           " but 'external_size' not in effect?\n", __func__);
5090                 printk(KERN_ERR
5091                        "md: invalid array_size %llu > default size %llu\n",
5092                        (unsigned long long)mddev->array_sectors / 2,
5093                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5094                 err = -EINVAL;
5095                 mddev->pers->stop(mddev);
5096         }
5097         if (err == 0 && mddev->pers->sync_request &&
5098             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5099                 err = bitmap_create(mddev);
5100                 if (err) {
5101                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5102                                mdname(mddev), err);
5103                         mddev->pers->stop(mddev);
5104                 }
5105         }
5106         if (err) {
5107                 module_put(mddev->pers->owner);
5108                 mddev->pers = NULL;
5109                 bitmap_destroy(mddev);
5110                 return err;
5111         }
5112         if (mddev->pers->sync_request) {
5113                 if (mddev->kobj.sd &&
5114                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5115                         printk(KERN_WARNING
5116                                "md: cannot register extra attributes for %s\n",
5117                                mdname(mddev));
5118                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5119         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5120                 mddev->ro = 0;
5121
5122         atomic_set(&mddev->writes_pending,0);
5123         atomic_set(&mddev->max_corr_read_errors,
5124                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5125         mddev->safemode = 0;
5126         mddev->safemode_timer.function = md_safemode_timeout;
5127         mddev->safemode_timer.data = (unsigned long) mddev;
5128         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5129         mddev->in_sync = 1;
5130         smp_wmb();
5131         mddev->ready = 1;
5132         rdev_for_each(rdev, mddev)
5133                 if (rdev->raid_disk >= 0)
5134                         if (sysfs_link_rdev(mddev, rdev))
5135                                 /* failure here is OK */;
5136         
5137         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5138         
5139         if (mddev->flags)
5140                 md_update_sb(mddev, 0);
5141
5142         md_new_event(mddev);
5143         sysfs_notify_dirent_safe(mddev->sysfs_state);
5144         sysfs_notify_dirent_safe(mddev->sysfs_action);
5145         sysfs_notify(&mddev->kobj, NULL, "degraded");
5146         return 0;
5147 }
5148 EXPORT_SYMBOL_GPL(md_run);
5149
5150 static int do_md_run(struct mddev *mddev)
5151 {
5152         int err;
5153
5154         err = md_run(mddev);
5155         if (err)
5156                 goto out;
5157         err = bitmap_load(mddev);
5158         if (err) {
5159                 bitmap_destroy(mddev);
5160                 goto out;
5161         }
5162
5163         md_wakeup_thread(mddev->thread);
5164         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5165
5166         set_capacity(mddev->gendisk, mddev->array_sectors);
5167         revalidate_disk(mddev->gendisk);
5168         mddev->changed = 1;
5169         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5170 out:
5171         return err;
5172 }
5173
5174 static int restart_array(struct mddev *mddev)
5175 {
5176         struct gendisk *disk = mddev->gendisk;
5177
5178         /* Complain if it has no devices */
5179         if (list_empty(&mddev->disks))
5180                 return -ENXIO;
5181         if (!mddev->pers)
5182                 return -EINVAL;
5183         if (!mddev->ro)
5184                 return -EBUSY;
5185         mddev->safemode = 0;
5186         mddev->ro = 0;
5187         set_disk_ro(disk, 0);
5188         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5189                 mdname(mddev));
5190         /* Kick recovery or resync if necessary */
5191         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5192         md_wakeup_thread(mddev->thread);
5193         md_wakeup_thread(mddev->sync_thread);
5194         sysfs_notify_dirent_safe(mddev->sysfs_state);
5195         return 0;
5196 }
5197
5198 /* similar to deny_write_access, but accounts for our holding a reference
5199  * to the file ourselves */
5200 static int deny_bitmap_write_access(struct file * file)
5201 {
5202         struct inode *inode = file->f_mapping->host;
5203
5204         spin_lock(&inode->i_lock);
5205         if (atomic_read(&inode->i_writecount) > 1) {
5206                 spin_unlock(&inode->i_lock);
5207                 return -ETXTBSY;
5208         }
5209         atomic_set(&inode->i_writecount, -1);
5210         spin_unlock(&inode->i_lock);
5211
5212         return 0;
5213 }
5214
5215 void restore_bitmap_write_access(struct file *file)
5216 {
5217         struct inode *inode = file->f_mapping->host;
5218
5219         spin_lock(&inode->i_lock);
5220         atomic_set(&inode->i_writecount, 1);
5221         spin_unlock(&inode->i_lock);
5222 }
5223
5224 static void md_clean(struct mddev *mddev)
5225 {
5226         mddev->array_sectors = 0;
5227         mddev->external_size = 0;
5228         mddev->dev_sectors = 0;
5229         mddev->raid_disks = 0;
5230         mddev->recovery_cp = 0;
5231         mddev->resync_min = 0;
5232         mddev->resync_max = MaxSector;
5233         mddev->reshape_position = MaxSector;
5234         mddev->external = 0;
5235         mddev->persistent = 0;
5236         mddev->level = LEVEL_NONE;
5237         mddev->clevel[0] = 0;
5238         mddev->flags = 0;
5239         mddev->ro = 0;
5240         mddev->metadata_type[0] = 0;
5241         mddev->chunk_sectors = 0;
5242         mddev->ctime = mddev->utime = 0;
5243         mddev->layout = 0;
5244         mddev->max_disks = 0;
5245         mddev->events = 0;
5246         mddev->can_decrease_events = 0;
5247         mddev->delta_disks = 0;
5248         mddev->reshape_backwards = 0;
5249         mddev->new_level = LEVEL_NONE;
5250         mddev->new_layout = 0;
5251         mddev->new_chunk_sectors = 0;
5252         mddev->curr_resync = 0;
5253         atomic64_set(&mddev->resync_mismatches, 0);
5254         mddev->suspend_lo = mddev->suspend_hi = 0;
5255         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5256         mddev->recovery = 0;
5257         mddev->in_sync = 0;
5258         mddev->changed = 0;
5259         mddev->degraded = 0;
5260         mddev->safemode = 0;
5261         mddev->merge_check_needed = 0;
5262         mddev->bitmap_info.offset = 0;
5263         mddev->bitmap_info.default_offset = 0;
5264         mddev->bitmap_info.default_space = 0;
5265         mddev->bitmap_info.chunksize = 0;
5266         mddev->bitmap_info.daemon_sleep = 0;
5267         mddev->bitmap_info.max_write_behind = 0;
5268 }
5269
5270 static void __md_stop_writes(struct mddev *mddev)
5271 {
5272         if (mddev->sync_thread) {
5273                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5274                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5275                 reap_sync_thread(mddev);
5276         }
5277
5278         del_timer_sync(&mddev->safemode_timer);
5279
5280         bitmap_flush(mddev);
5281         md_super_wait(mddev);
5282
5283         if (!mddev->in_sync || mddev->flags) {
5284                 /* mark array as shutdown cleanly */
5285                 mddev->in_sync = 1;
5286                 md_update_sb(mddev, 1);
5287         }
5288 }
5289
5290 void md_stop_writes(struct mddev *mddev)
5291 {
5292         mddev_lock(mddev);
5293         __md_stop_writes(mddev);
5294         mddev_unlock(mddev);
5295 }
5296 EXPORT_SYMBOL_GPL(md_stop_writes);
5297
5298 static void __md_stop(struct mddev *mddev)
5299 {
5300         mddev->ready = 0;
5301         mddev->pers->stop(mddev);
5302         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5303                 mddev->to_remove = &md_redundancy_group;
5304         module_put(mddev->pers->owner);
5305         mddev->pers = NULL;
5306         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5307 }
5308
5309 void md_stop(struct mddev *mddev)
5310 {
5311         /* stop the array and free an attached data structures.
5312          * This is called from dm-raid
5313          */
5314         __md_stop(mddev);
5315         bitmap_destroy(mddev);
5316         if (mddev->bio_set)
5317                 bioset_free(mddev->bio_set);
5318 }
5319
5320 EXPORT_SYMBOL_GPL(md_stop);
5321
5322 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5323 {
5324         int err = 0;
5325         mutex_lock(&mddev->open_mutex);
5326         if (atomic_read(&mddev->openers) > !!bdev) {
5327                 printk("md: %s still in use.\n",mdname(mddev));
5328                 err = -EBUSY;
5329                 goto out;
5330         }
5331         if (bdev)
5332                 sync_blockdev(bdev);
5333         if (mddev->pers) {
5334                 __md_stop_writes(mddev);
5335
5336                 err  = -ENXIO;
5337                 if (mddev->ro==1)
5338                         goto out;
5339                 mddev->ro = 1;
5340                 set_disk_ro(mddev->gendisk, 1);
5341                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5342                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5343                 err = 0;        
5344         }
5345 out:
5346         mutex_unlock(&mddev->open_mutex);
5347         return err;
5348 }
5349
5350 /* mode:
5351  *   0 - completely stop and dis-assemble array
5352  *   2 - stop but do not disassemble array
5353  */
5354 static int do_md_stop(struct mddev * mddev, int mode,
5355                       struct block_device *bdev)
5356 {
5357         struct gendisk *disk = mddev->gendisk;
5358         struct md_rdev *rdev;
5359
5360         mutex_lock(&mddev->open_mutex);
5361         if (atomic_read(&mddev->openers) > !!bdev ||
5362             mddev->sysfs_active) {
5363                 printk("md: %s still in use.\n",mdname(mddev));
5364                 mutex_unlock(&mddev->open_mutex);
5365                 return -EBUSY;
5366         }
5367         if (bdev)
5368                 /* It is possible IO was issued on some other
5369                  * open file which was closed before we took ->open_mutex.
5370                  * As that was not the last close __blkdev_put will not
5371                  * have called sync_blockdev, so we must.
5372                  */
5373                 sync_blockdev(bdev);
5374
5375         if (mddev->pers) {
5376                 if (mddev->ro)
5377                         set_disk_ro(disk, 0);
5378
5379                 __md_stop_writes(mddev);
5380                 __md_stop(mddev);
5381                 mddev->queue->merge_bvec_fn = NULL;
5382                 mddev->queue->backing_dev_info.congested_fn = NULL;
5383
5384                 /* tell userspace to handle 'inactive' */
5385                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5386
5387                 rdev_for_each(rdev, mddev)
5388                         if (rdev->raid_disk >= 0)
5389                                 sysfs_unlink_rdev(mddev, rdev);
5390
5391                 set_capacity(disk, 0);
5392                 mutex_unlock(&mddev->open_mutex);
5393                 mddev->changed = 1;
5394                 revalidate_disk(disk);
5395
5396                 if (mddev->ro)
5397                         mddev->ro = 0;
5398         } else
5399                 mutex_unlock(&mddev->open_mutex);
5400         /*
5401          * Free resources if final stop
5402          */
5403         if (mode == 0) {
5404                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5405
5406                 bitmap_destroy(mddev);
5407                 if (mddev->bitmap_info.file) {
5408                         restore_bitmap_write_access(mddev->bitmap_info.file);
5409                         fput(mddev->bitmap_info.file);
5410                         mddev->bitmap_info.file = NULL;
5411                 }
5412                 mddev->bitmap_info.offset = 0;
5413
5414                 export_array(mddev);
5415
5416                 md_clean(mddev);
5417                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5418                 if (mddev->hold_active == UNTIL_STOP)
5419                         mddev->hold_active = 0;
5420         }
5421         blk_integrity_unregister(disk);
5422         md_new_event(mddev);
5423         sysfs_notify_dirent_safe(mddev->sysfs_state);
5424         return 0;
5425 }
5426
5427 #ifndef MODULE
5428 static void autorun_array(struct mddev *mddev)
5429 {
5430         struct md_rdev *rdev;
5431         int err;
5432
5433         if (list_empty(&mddev->disks))
5434                 return;
5435
5436         printk(KERN_INFO "md: running: ");
5437
5438         rdev_for_each(rdev, mddev) {
5439                 char b[BDEVNAME_SIZE];
5440                 printk("<%s>", bdevname(rdev->bdev,b));
5441         }
5442         printk("\n");
5443
5444         err = do_md_run(mddev);
5445         if (err) {
5446                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5447                 do_md_stop(mddev, 0, NULL);
5448         }
5449 }
5450
5451 /*
5452  * lets try to run arrays based on all disks that have arrived
5453  * until now. (those are in pending_raid_disks)
5454  *
5455  * the method: pick the first pending disk, collect all disks with
5456  * the same UUID, remove all from the pending list and put them into
5457  * the 'same_array' list. Then order this list based on superblock
5458  * update time (freshest comes first), kick out 'old' disks and
5459  * compare superblocks. If everything's fine then run it.
5460  *
5461  * If "unit" is allocated, then bump its reference count
5462  */
5463 static void autorun_devices(int part)
5464 {
5465         struct md_rdev *rdev0, *rdev, *tmp;
5466         struct mddev *mddev;
5467         char b[BDEVNAME_SIZE];
5468
5469         printk(KERN_INFO "md: autorun ...\n");
5470         while (!list_empty(&pending_raid_disks)) {
5471                 int unit;
5472                 dev_t dev;
5473                 LIST_HEAD(candidates);
5474                 rdev0 = list_entry(pending_raid_disks.next,
5475                                          struct md_rdev, same_set);
5476
5477                 printk(KERN_INFO "md: considering %s ...\n",
5478                         bdevname(rdev0->bdev,b));
5479                 INIT_LIST_HEAD(&candidates);
5480                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5481                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5482                                 printk(KERN_INFO "md:  adding %s ...\n",
5483                                         bdevname(rdev->bdev,b));
5484                                 list_move(&rdev->same_set, &candidates);
5485                         }
5486                 /*
5487                  * now we have a set of devices, with all of them having
5488                  * mostly sane superblocks. It's time to allocate the
5489                  * mddev.
5490                  */
5491                 if (part) {
5492                         dev = MKDEV(mdp_major,
5493                                     rdev0->preferred_minor << MdpMinorShift);
5494                         unit = MINOR(dev) >> MdpMinorShift;
5495                 } else {
5496                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5497                         unit = MINOR(dev);
5498                 }
5499                 if (rdev0->preferred_minor != unit) {
5500                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5501                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5502                         break;
5503                 }
5504
5505                 md_probe(dev, NULL, NULL);
5506                 mddev = mddev_find(dev);
5507                 if (!mddev || !mddev->gendisk) {
5508                         if (mddev)
5509                                 mddev_put(mddev);
5510                         printk(KERN_ERR
5511                                 "md: cannot allocate memory for md drive.\n");
5512                         break;
5513                 }
5514                 if (mddev_lock(mddev)) 
5515                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5516                                mdname(mddev));
5517                 else if (mddev->raid_disks || mddev->major_version
5518                          || !list_empty(&mddev->disks)) {
5519                         printk(KERN_WARNING 
5520                                 "md: %s already running, cannot run %s\n",
5521                                 mdname(mddev), bdevname(rdev0->bdev,b));
5522                         mddev_unlock(mddev);
5523                 } else {
5524                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5525                         mddev->persistent = 1;
5526                         rdev_for_each_list(rdev, tmp, &candidates) {
5527                                 list_del_init(&rdev->same_set);
5528                                 if (bind_rdev_to_array(rdev, mddev))
5529                                         export_rdev(rdev);
5530                         }
5531                         autorun_array(mddev);
5532                         mddev_unlock(mddev);
5533                 }
5534                 /* on success, candidates will be empty, on error
5535                  * it won't...
5536                  */
5537                 rdev_for_each_list(rdev, tmp, &candidates) {
5538                         list_del_init(&rdev->same_set);
5539                         export_rdev(rdev);
5540                 }
5541                 mddev_put(mddev);
5542         }
5543         printk(KERN_INFO "md: ... autorun DONE.\n");
5544 }
5545 #endif /* !MODULE */
5546
5547 static int get_version(void __user * arg)
5548 {
5549         mdu_version_t ver;
5550
5551         ver.major = MD_MAJOR_VERSION;
5552         ver.minor = MD_MINOR_VERSION;
5553         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5554
5555         if (copy_to_user(arg, &ver, sizeof(ver)))
5556                 return -EFAULT;
5557
5558         return 0;
5559 }
5560
5561 static int get_array_info(struct mddev * mddev, void __user * arg)
5562 {
5563         mdu_array_info_t info;
5564         int nr,working,insync,failed,spare;
5565         struct md_rdev *rdev;
5566
5567         nr = working = insync = failed = spare = 0;
5568         rcu_read_lock();
5569         rdev_for_each_rcu(rdev, mddev) {
5570                 nr++;
5571                 if (test_bit(Faulty, &rdev->flags))
5572                         failed++;
5573                 else {
5574                         working++;
5575                         if (test_bit(In_sync, &rdev->flags))
5576                                 insync++;       
5577                         else
5578                                 spare++;
5579                 }
5580         }
5581         rcu_read_unlock();
5582
5583         info.major_version = mddev->major_version;
5584         info.minor_version = mddev->minor_version;
5585         info.patch_version = MD_PATCHLEVEL_VERSION;
5586         info.ctime         = mddev->ctime;
5587         info.level         = mddev->level;
5588         info.size          = mddev->dev_sectors / 2;
5589         if (info.size != mddev->dev_sectors / 2) /* overflow */
5590                 info.size = -1;
5591         info.nr_disks      = nr;
5592         info.raid_disks    = mddev->raid_disks;
5593         info.md_minor      = mddev->md_minor;
5594         info.not_persistent= !mddev->persistent;
5595
5596         info.utime         = mddev->utime;
5597         info.state         = 0;
5598         if (mddev->in_sync)
5599                 info.state = (1<<MD_SB_CLEAN);
5600         if (mddev->bitmap && mddev->bitmap_info.offset)
5601                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5602         info.active_disks  = insync;
5603         info.working_disks = working;
5604         info.failed_disks  = failed;
5605         info.spare_disks   = spare;
5606
5607         info.layout        = mddev->layout;
5608         info.chunk_size    = mddev->chunk_sectors << 9;
5609
5610         if (copy_to_user(arg, &info, sizeof(info)))
5611                 return -EFAULT;
5612
5613         return 0;
5614 }
5615
5616 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5617 {
5618         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5619         char *ptr, *buf = NULL;
5620         int err = -ENOMEM;
5621
5622         if (md_allow_write(mddev))
5623                 file = kmalloc(sizeof(*file), GFP_NOIO);
5624         else
5625                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5626
5627         if (!file)
5628                 goto out;
5629
5630         /* bitmap disabled, zero the first byte and copy out */
5631         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632                 file->pathname[0] = '\0';
5633                 goto copy_out;
5634         }
5635
5636         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637         if (!buf)
5638                 goto out;
5639
5640         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641                      buf, sizeof(file->pathname));
5642         if (IS_ERR(ptr))
5643                 goto out;
5644
5645         strcpy(file->pathname, ptr);
5646
5647 copy_out:
5648         err = 0;
5649         if (copy_to_user(arg, file, sizeof(*file)))
5650                 err = -EFAULT;
5651 out:
5652         kfree(buf);
5653         kfree(file);
5654         return err;
5655 }
5656
5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659         mdu_disk_info_t info;
5660         struct md_rdev *rdev;
5661
5662         if (copy_from_user(&info, arg, sizeof(info)))
5663                 return -EFAULT;
5664
5665         rcu_read_lock();
5666         rdev = find_rdev_nr_rcu(mddev, info.number);
5667         if (rdev) {
5668                 info.major = MAJOR(rdev->bdev->bd_dev);
5669                 info.minor = MINOR(rdev->bdev->bd_dev);
5670                 info.raid_disk = rdev->raid_disk;
5671                 info.state = 0;
5672                 if (test_bit(Faulty, &rdev->flags))
5673                         info.state |= (1<<MD_DISK_FAULTY);
5674                 else if (test_bit(In_sync, &rdev->flags)) {
5675                         info.state |= (1<<MD_DISK_ACTIVE);
5676                         info.state |= (1<<MD_DISK_SYNC);
5677                 }
5678                 if (test_bit(WriteMostly, &rdev->flags))
5679                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680         } else {
5681                 info.major = info.minor = 0;
5682                 info.raid_disk = -1;
5683                 info.state = (1<<MD_DISK_REMOVED);
5684         }
5685         rcu_read_unlock();
5686
5687         if (copy_to_user(arg, &info, sizeof(info)))
5688                 return -EFAULT;
5689
5690         return 0;
5691 }
5692
5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696         struct md_rdev *rdev;
5697         dev_t dev = MKDEV(info->major,info->minor);
5698
5699         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700                 return -EOVERFLOW;
5701
5702         if (!mddev->raid_disks) {
5703                 int err;
5704                 /* expecting a device which has a superblock */
5705                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706                 if (IS_ERR(rdev)) {
5707                         printk(KERN_WARNING 
5708                                 "md: md_import_device returned %ld\n",
5709                                 PTR_ERR(rdev));
5710                         return PTR_ERR(rdev);
5711                 }
5712                 if (!list_empty(&mddev->disks)) {
5713                         struct md_rdev *rdev0
5714                                 = list_entry(mddev->disks.next,
5715                                              struct md_rdev, same_set);
5716                         err = super_types[mddev->major_version]
5717                                 .load_super(rdev, rdev0, mddev->minor_version);
5718                         if (err < 0) {
5719                                 printk(KERN_WARNING 
5720                                         "md: %s has different UUID to %s\n",
5721                                         bdevname(rdev->bdev,b), 
5722                                         bdevname(rdev0->bdev,b2));
5723                                 export_rdev(rdev);
5724                                 return -EINVAL;
5725                         }
5726                 }
5727                 err = bind_rdev_to_array(rdev, mddev);
5728                 if (err)
5729                         export_rdev(rdev);
5730                 return err;
5731         }
5732
5733         /*
5734          * add_new_disk can be used once the array is assembled
5735          * to add "hot spares".  They must already have a superblock
5736          * written
5737          */
5738         if (mddev->pers) {
5739                 int err;
5740                 if (!mddev->pers->hot_add_disk) {
5741                         printk(KERN_WARNING 
5742                                 "%s: personality does not support diskops!\n",
5743                                mdname(mddev));
5744                         return -EINVAL;
5745                 }
5746                 if (mddev->persistent)
5747                         rdev = md_import_device(dev, mddev->major_version,
5748                                                 mddev->minor_version);
5749                 else
5750                         rdev = md_import_device(dev, -1, -1);
5751                 if (IS_ERR(rdev)) {
5752                         printk(KERN_WARNING 
5753                                 "md: md_import_device returned %ld\n",
5754                                 PTR_ERR(rdev));
5755                         return PTR_ERR(rdev);
5756                 }
5757                 /* set saved_raid_disk if appropriate */
5758                 if (!mddev->persistent) {
5759                         if (info->state & (1<<MD_DISK_SYNC)  &&
5760                             info->raid_disk < mddev->raid_disks) {
5761                                 rdev->raid_disk = info->raid_disk;
5762                                 set_bit(In_sync, &rdev->flags);
5763                         } else
5764                                 rdev->raid_disk = -1;
5765                 } else
5766                         super_types[mddev->major_version].
5767                                 validate_super(mddev, rdev);
5768                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5769                      rdev->raid_disk != info->raid_disk) {
5770                         /* This was a hot-add request, but events doesn't
5771                          * match, so reject it.
5772                          */
5773                         export_rdev(rdev);
5774                         return -EINVAL;
5775                 }
5776
5777                 if (test_bit(In_sync, &rdev->flags))
5778                         rdev->saved_raid_disk = rdev->raid_disk;
5779                 else
5780                         rdev->saved_raid_disk = -1;
5781
5782                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784                         set_bit(WriteMostly, &rdev->flags);
5785                 else
5786                         clear_bit(WriteMostly, &rdev->flags);
5787
5788                 rdev->raid_disk = -1;
5789                 err = bind_rdev_to_array(rdev, mddev);
5790                 if (!err && !mddev->pers->hot_remove_disk) {
5791                         /* If there is hot_add_disk but no hot_remove_disk
5792                          * then added disks for geometry changes,
5793                          * and should be added immediately.
5794                          */
5795                         super_types[mddev->major_version].
5796                                 validate_super(mddev, rdev);
5797                         err = mddev->pers->hot_add_disk(mddev, rdev);
5798                         if (err)
5799                                 unbind_rdev_from_array(rdev);
5800                 }
5801                 if (err)
5802                         export_rdev(rdev);
5803                 else
5804                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5805
5806                 md_update_sb(mddev, 1);
5807                 if (mddev->degraded)
5808                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810                 if (!err)
5811                         md_new_event(mddev);
5812                 md_wakeup_thread(mddev->thread);
5813                 return err;
5814         }
5815
5816         /* otherwise, add_new_disk is only allowed
5817          * for major_version==0 superblocks
5818          */
5819         if (mddev->major_version != 0) {
5820                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821                        mdname(mddev));
5822                 return -EINVAL;
5823         }
5824
5825         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826                 int err;
5827                 rdev = md_import_device(dev, -1, 0);
5828                 if (IS_ERR(rdev)) {
5829                         printk(KERN_WARNING 
5830                                 "md: error, md_import_device() returned %ld\n",
5831                                 PTR_ERR(rdev));
5832                         return PTR_ERR(rdev);
5833                 }
5834                 rdev->desc_nr = info->number;
5835                 if (info->raid_disk < mddev->raid_disks)
5836                         rdev->raid_disk = info->raid_disk;
5837                 else
5838                         rdev->raid_disk = -1;
5839
5840                 if (rdev->raid_disk < mddev->raid_disks)
5841                         if (info->state & (1<<MD_DISK_SYNC))
5842                                 set_bit(In_sync, &rdev->flags);
5843
5844                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845                         set_bit(WriteMostly, &rdev->flags);
5846
5847                 if (!mddev->persistent) {
5848                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850                 } else
5851                         rdev->sb_start = calc_dev_sboffset(rdev);
5852                 rdev->sectors = rdev->sb_start;
5853
5854                 err = bind_rdev_to_array(rdev, mddev);
5855                 if (err) {
5856                         export_rdev(rdev);
5857                         return err;
5858                 }
5859         }
5860
5861         return 0;
5862 }
5863
5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866         char b[BDEVNAME_SIZE];
5867         struct md_rdev *rdev;
5868
5869         rdev = find_rdev(mddev, dev);
5870         if (!rdev)
5871                 return -ENXIO;
5872
5873         if (rdev->raid_disk >= 0)
5874                 goto busy;
5875
5876         kick_rdev_from_array(rdev);
5877         md_update_sb(mddev, 1);
5878         md_new_event(mddev);
5879
5880         return 0;
5881 busy:
5882         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5883                 bdevname(rdev->bdev,b), mdname(mddev));
5884         return -EBUSY;
5885 }
5886
5887 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5888 {
5889         char b[BDEVNAME_SIZE];
5890         int err;
5891         struct md_rdev *rdev;
5892
5893         if (!mddev->pers)
5894                 return -ENODEV;
5895
5896         if (mddev->major_version != 0) {
5897                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5898                         " version-0 superblocks.\n",
5899                         mdname(mddev));
5900                 return -EINVAL;
5901         }
5902         if (!mddev->pers->hot_add_disk) {
5903                 printk(KERN_WARNING 
5904                         "%s: personality does not support diskops!\n",
5905                         mdname(mddev));
5906                 return -EINVAL;
5907         }
5908
5909         rdev = md_import_device(dev, -1, 0);
5910         if (IS_ERR(rdev)) {
5911                 printk(KERN_WARNING 
5912                         "md: error, md_import_device() returned %ld\n",
5913                         PTR_ERR(rdev));
5914                 return -EINVAL;
5915         }
5916
5917         if (mddev->persistent)
5918                 rdev->sb_start = calc_dev_sboffset(rdev);
5919         else
5920                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5921
5922         rdev->sectors = rdev->sb_start;
5923
5924         if (test_bit(Faulty, &rdev->flags)) {
5925                 printk(KERN_WARNING 
5926                         "md: can not hot-add faulty %s disk to %s!\n",
5927                         bdevname(rdev->bdev,b), mdname(mddev));
5928                 err = -EINVAL;
5929                 goto abort_export;
5930         }
5931         clear_bit(In_sync, &rdev->flags);
5932         rdev->desc_nr = -1;
5933         rdev->saved_raid_disk = -1;
5934         err = bind_rdev_to_array(rdev, mddev);
5935         if (err)
5936                 goto abort_export;
5937
5938         /*
5939          * The rest should better be atomic, we can have disk failures
5940          * noticed in interrupt contexts ...
5941          */
5942
5943         rdev->raid_disk = -1;
5944
5945         md_update_sb(mddev, 1);
5946
5947         /*
5948          * Kick recovery, maybe this spare has to be added to the
5949          * array immediately.
5950          */
5951         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5952         md_wakeup_thread(mddev->thread);
5953         md_new_event(mddev);
5954         return 0;
5955
5956 abort_export:
5957         export_rdev(rdev);
5958         return err;
5959 }
5960
5961 static int set_bitmap_file(struct mddev *mddev, int fd)
5962 {
5963         int err;
5964
5965         if (mddev->pers) {
5966                 if (!mddev->pers->quiesce)
5967                         return -EBUSY;
5968                 if (mddev->recovery || mddev->sync_thread)
5969                         return -EBUSY;
5970                 /* we should be able to change the bitmap.. */
5971         }
5972
5973
5974         if (fd >= 0) {
5975                 if (mddev->bitmap)
5976                         return -EEXIST; /* cannot add when bitmap is present */
5977                 mddev->bitmap_info.file = fget(fd);
5978
5979                 if (mddev->bitmap_info.file == NULL) {
5980                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5981                                mdname(mddev));
5982                         return -EBADF;
5983                 }
5984
5985                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5986                 if (err) {
5987                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5988                                mdname(mddev));
5989                         fput(mddev->bitmap_info.file);
5990                         mddev->bitmap_info.file = NULL;
5991                         return err;
5992                 }
5993                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5994         } else if (mddev->bitmap == NULL)
5995                 return -ENOENT; /* cannot remove what isn't there */
5996         err = 0;
5997         if (mddev->pers) {
5998                 mddev->pers->quiesce(mddev, 1);
5999                 if (fd >= 0) {
6000                         err = bitmap_create(mddev);
6001                         if (!err)
6002                                 err = bitmap_load(mddev);
6003                 }
6004                 if (fd < 0 || err) {
6005                         bitmap_destroy(mddev);
6006                         fd = -1; /* make sure to put the file */
6007                 }
6008                 mddev->pers->quiesce(mddev, 0);
6009         }
6010         if (fd < 0) {
6011                 if (mddev->bitmap_info.file) {
6012                         restore_bitmap_write_access(mddev->bitmap_info.file);
6013                         fput(mddev->bitmap_info.file);
6014                 }
6015                 mddev->bitmap_info.file = NULL;
6016         }
6017
6018         return err;
6019 }
6020
6021 /*
6022  * set_array_info is used two different ways
6023  * The original usage is when creating a new array.
6024  * In this usage, raid_disks is > 0 and it together with
6025  *  level, size, not_persistent,layout,chunksize determine the
6026  *  shape of the array.
6027  *  This will always create an array with a type-0.90.0 superblock.
6028  * The newer usage is when assembling an array.
6029  *  In this case raid_disks will be 0, and the major_version field is
6030  *  use to determine which style super-blocks are to be found on the devices.
6031  *  The minor and patch _version numbers are also kept incase the
6032  *  super_block handler wishes to interpret them.
6033  */
6034 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6035 {
6036
6037         if (info->raid_disks == 0) {
6038                 /* just setting version number for superblock loading */
6039                 if (info->major_version < 0 ||
6040                     info->major_version >= ARRAY_SIZE(super_types) ||
6041                     super_types[info->major_version].name == NULL) {
6042                         /* maybe try to auto-load a module? */
6043                         printk(KERN_INFO 
6044                                 "md: superblock version %d not known\n",
6045                                 info->major_version);
6046                         return -EINVAL;
6047                 }
6048                 mddev->major_version = info->major_version;
6049                 mddev->minor_version = info->minor_version;
6050                 mddev->patch_version = info->patch_version;
6051                 mddev->persistent = !info->not_persistent;
6052                 /* ensure mddev_put doesn't delete this now that there
6053                  * is some minimal configuration.
6054                  */
6055                 mddev->ctime         = get_seconds();
6056                 return 0;
6057         }
6058         mddev->major_version = MD_MAJOR_VERSION;
6059         mddev->minor_version = MD_MINOR_VERSION;
6060         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6061         mddev->ctime         = get_seconds();
6062
6063         mddev->level         = info->level;
6064         mddev->clevel[0]     = 0;
6065         mddev->dev_sectors   = 2 * (sector_t)info->size;
6066         mddev->raid_disks    = info->raid_disks;
6067         /* don't set md_minor, it is determined by which /dev/md* was
6068          * openned
6069          */
6070         if (info->state & (1<<MD_SB_CLEAN))
6071                 mddev->recovery_cp = MaxSector;
6072         else
6073                 mddev->recovery_cp = 0;
6074         mddev->persistent    = ! info->not_persistent;
6075         mddev->external      = 0;
6076
6077         mddev->layout        = info->layout;
6078         mddev->chunk_sectors = info->chunk_size >> 9;
6079
6080         mddev->max_disks     = MD_SB_DISKS;
6081
6082         if (mddev->persistent)
6083                 mddev->flags         = 0;
6084         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6085
6086         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6087         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6088         mddev->bitmap_info.offset = 0;
6089
6090         mddev->reshape_position = MaxSector;
6091
6092         /*
6093          * Generate a 128 bit UUID
6094          */
6095         get_random_bytes(mddev->uuid, 16);
6096
6097         mddev->new_level = mddev->level;
6098         mddev->new_chunk_sectors = mddev->chunk_sectors;
6099         mddev->new_layout = mddev->layout;
6100         mddev->delta_disks = 0;
6101         mddev->reshape_backwards = 0;
6102
6103         return 0;
6104 }
6105
6106 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6107 {
6108         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6109
6110         if (mddev->external_size)
6111                 return;
6112
6113         mddev->array_sectors = array_sectors;
6114 }
6115 EXPORT_SYMBOL(md_set_array_sectors);
6116
6117 static int update_size(struct mddev *mddev, sector_t num_sectors)
6118 {
6119         struct md_rdev *rdev;
6120         int rv;
6121         int fit = (num_sectors == 0);
6122
6123         if (mddev->pers->resize == NULL)
6124                 return -EINVAL;
6125         /* The "num_sectors" is the number of sectors of each device that
6126          * is used.  This can only make sense for arrays with redundancy.
6127          * linear and raid0 always use whatever space is available. We can only
6128          * consider changing this number if no resync or reconstruction is
6129          * happening, and if the new size is acceptable. It must fit before the
6130          * sb_start or, if that is <data_offset, it must fit before the size
6131          * of each device.  If num_sectors is zero, we find the largest size
6132          * that fits.
6133          */
6134         if (mddev->sync_thread)
6135                 return -EBUSY;
6136
6137         rdev_for_each(rdev, mddev) {
6138                 sector_t avail = rdev->sectors;
6139
6140                 if (fit && (num_sectors == 0 || num_sectors > avail))
6141                         num_sectors = avail;
6142                 if (avail < num_sectors)
6143                         return -ENOSPC;
6144         }
6145         rv = mddev->pers->resize(mddev, num_sectors);
6146         if (!rv)
6147                 revalidate_disk(mddev->gendisk);
6148         return rv;
6149 }
6150
6151 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6152 {
6153         int rv;
6154         struct md_rdev *rdev;
6155         /* change the number of raid disks */
6156         if (mddev->pers->check_reshape == NULL)
6157                 return -EINVAL;
6158         if (raid_disks <= 0 ||
6159             (mddev->max_disks && raid_disks >= mddev->max_disks))
6160                 return -EINVAL;
6161         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6162                 return -EBUSY;
6163
6164         rdev_for_each(rdev, mddev) {
6165                 if (mddev->raid_disks < raid_disks &&
6166                     rdev->data_offset < rdev->new_data_offset)
6167                         return -EINVAL;
6168                 if (mddev->raid_disks > raid_disks &&
6169                     rdev->data_offset > rdev->new_data_offset)
6170                         return -EINVAL;
6171         }
6172
6173         mddev->delta_disks = raid_disks - mddev->raid_disks;
6174         if (mddev->delta_disks < 0)
6175                 mddev->reshape_backwards = 1;
6176         else if (mddev->delta_disks > 0)
6177                 mddev->reshape_backwards = 0;
6178
6179         rv = mddev->pers->check_reshape(mddev);
6180         if (rv < 0) {
6181                 mddev->delta_disks = 0;
6182                 mddev->reshape_backwards = 0;
6183         }
6184         return rv;
6185 }
6186
6187
6188 /*
6189  * update_array_info is used to change the configuration of an
6190  * on-line array.
6191  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6192  * fields in the info are checked against the array.
6193  * Any differences that cannot be handled will cause an error.
6194  * Normally, only one change can be managed at a time.
6195  */
6196 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6197 {
6198         int rv = 0;
6199         int cnt = 0;
6200         int state = 0;
6201
6202         /* calculate expected state,ignoring low bits */
6203         if (mddev->bitmap && mddev->bitmap_info.offset)
6204                 state |= (1 << MD_SB_BITMAP_PRESENT);
6205
6206         if (mddev->major_version != info->major_version ||
6207             mddev->minor_version != info->minor_version ||
6208 /*          mddev->patch_version != info->patch_version || */
6209             mddev->ctime         != info->ctime         ||
6210             mddev->level         != info->level         ||
6211 /*          mddev->layout        != info->layout        || */
6212             !mddev->persistent   != info->not_persistent||
6213             mddev->chunk_sectors != info->chunk_size >> 9 ||
6214             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6215             ((state^info->state) & 0xfffffe00)
6216                 )
6217                 return -EINVAL;
6218         /* Check there is only one change */
6219         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6220                 cnt++;
6221         if (mddev->raid_disks != info->raid_disks)
6222                 cnt++;
6223         if (mddev->layout != info->layout)
6224                 cnt++;
6225         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6226                 cnt++;
6227         if (cnt == 0)
6228                 return 0;
6229         if (cnt > 1)
6230                 return -EINVAL;
6231
6232         if (mddev->layout != info->layout) {
6233                 /* Change layout
6234                  * we don't need to do anything at the md level, the
6235                  * personality will take care of it all.
6236                  */
6237                 if (mddev->pers->check_reshape == NULL)
6238                         return -EINVAL;
6239                 else {
6240                         mddev->new_layout = info->layout;
6241                         rv = mddev->pers->check_reshape(mddev);
6242                         if (rv)
6243                                 mddev->new_layout = mddev->layout;
6244                         return rv;
6245                 }
6246         }
6247         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6248                 rv = update_size(mddev, (sector_t)info->size * 2);
6249
6250         if (mddev->raid_disks    != info->raid_disks)
6251                 rv = update_raid_disks(mddev, info->raid_disks);
6252
6253         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6254                 if (mddev->pers->quiesce == NULL)
6255                         return -EINVAL;
6256                 if (mddev->recovery || mddev->sync_thread)
6257                         return -EBUSY;
6258                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6259                         /* add the bitmap */
6260                         if (mddev->bitmap)
6261                                 return -EEXIST;
6262                         if (mddev->bitmap_info.default_offset == 0)
6263                                 return -EINVAL;
6264                         mddev->bitmap_info.offset =
6265                                 mddev->bitmap_info.default_offset;
6266                         mddev->bitmap_info.space =
6267                                 mddev->bitmap_info.default_space;
6268                         mddev->pers->quiesce(mddev, 1);
6269                         rv = bitmap_create(mddev);
6270                         if (!rv)
6271                                 rv = bitmap_load(mddev);
6272                         if (rv)
6273                                 bitmap_destroy(mddev);
6274                         mddev->pers->quiesce(mddev, 0);
6275                 } else {
6276                         /* remove the bitmap */
6277                         if (!mddev->bitmap)
6278                                 return -ENOENT;
6279                         if (mddev->bitmap->storage.file)
6280                                 return -EINVAL;
6281                         mddev->pers->quiesce(mddev, 1);
6282                         bitmap_destroy(mddev);
6283                         mddev->pers->quiesce(mddev, 0);
6284                         mddev->bitmap_info.offset = 0;
6285                 }
6286         }
6287         md_update_sb(mddev, 1);
6288         return rv;
6289 }
6290
6291 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6292 {
6293         struct md_rdev *rdev;
6294         int err = 0;
6295
6296         if (mddev->pers == NULL)
6297                 return -ENODEV;
6298
6299         rcu_read_lock();
6300         rdev = find_rdev_rcu(mddev, dev);
6301         if (!rdev)
6302                 err =  -ENODEV;
6303         else {
6304                 md_error(mddev, rdev);
6305                 if (!test_bit(Faulty, &rdev->flags))
6306                         err = -EBUSY;
6307         }
6308         rcu_read_unlock();
6309         return err;
6310 }
6311
6312 /*
6313  * We have a problem here : there is no easy way to give a CHS
6314  * virtual geometry. We currently pretend that we have a 2 heads
6315  * 4 sectors (with a BIG number of cylinders...). This drives
6316  * dosfs just mad... ;-)
6317  */
6318 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6319 {
6320         struct mddev *mddev = bdev->bd_disk->private_data;
6321
6322         geo->heads = 2;
6323         geo->sectors = 4;
6324         geo->cylinders = mddev->array_sectors / 8;
6325         return 0;
6326 }
6327
6328 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6329                         unsigned int cmd, unsigned long arg)
6330 {
6331         int err = 0;
6332         void __user *argp = (void __user *)arg;
6333         struct mddev *mddev = NULL;
6334         int ro;
6335
6336         switch (cmd) {
6337         case RAID_VERSION:
6338         case GET_ARRAY_INFO:
6339         case GET_DISK_INFO:
6340                 break;
6341         default:
6342                 if (!capable(CAP_SYS_ADMIN))
6343                         return -EACCES;
6344         }
6345
6346         /*
6347          * Commands dealing with the RAID driver but not any
6348          * particular array:
6349          */
6350         switch (cmd) {
6351         case RAID_VERSION:
6352                 err = get_version(argp);
6353                 goto done;
6354
6355         case PRINT_RAID_DEBUG:
6356                 err = 0;
6357                 md_print_devices();
6358                 goto done;
6359
6360 #ifndef MODULE
6361         case RAID_AUTORUN:
6362                 err = 0;
6363                 autostart_arrays(arg);
6364                 goto done;
6365 #endif
6366         default:;
6367         }
6368
6369         /*
6370          * Commands creating/starting a new array:
6371          */
6372
6373         mddev = bdev->bd_disk->private_data;
6374
6375         if (!mddev) {
6376                 BUG();
6377                 goto abort;
6378         }
6379
6380         /* Some actions do not requires the mutex */
6381         switch (cmd) {
6382         case GET_ARRAY_INFO:
6383                 if (!mddev->raid_disks && !mddev->external)
6384                         err = -ENODEV;
6385                 else
6386                         err = get_array_info(mddev, argp);
6387                 goto abort;
6388
6389         case GET_DISK_INFO:
6390                 if (!mddev->raid_disks && !mddev->external)
6391                         err = -ENODEV;
6392                 else
6393                         err = get_disk_info(mddev, argp);
6394                 goto abort;
6395
6396         case SET_DISK_FAULTY:
6397                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6398                 goto abort;
6399         }
6400
6401         if (cmd == ADD_NEW_DISK)
6402                 /* need to ensure md_delayed_delete() has completed */
6403                 flush_workqueue(md_misc_wq);
6404
6405         err = mddev_lock(mddev);
6406         if (err) {
6407                 printk(KERN_INFO 
6408                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6409                         err, cmd);
6410                 goto abort;
6411         }
6412
6413         if (cmd == SET_ARRAY_INFO) {
6414                 mdu_array_info_t info;
6415                 if (!arg)
6416                         memset(&info, 0, sizeof(info));
6417                 else if (copy_from_user(&info, argp, sizeof(info))) {
6418                         err = -EFAULT;
6419                         goto abort_unlock;
6420                 }
6421                 if (mddev->pers) {
6422                         err = update_array_info(mddev, &info);
6423                         if (err) {
6424                                 printk(KERN_WARNING "md: couldn't update"
6425                                        " array info. %d\n", err);
6426                                 goto abort_unlock;
6427                         }
6428                         goto done_unlock;
6429                 }
6430                 if (!list_empty(&mddev->disks)) {
6431                         printk(KERN_WARNING
6432                                "md: array %s already has disks!\n",
6433                                mdname(mddev));
6434                         err = -EBUSY;
6435                         goto abort_unlock;
6436                 }
6437                 if (mddev->raid_disks) {
6438                         printk(KERN_WARNING
6439                                "md: array %s already initialised!\n",
6440                                mdname(mddev));
6441                         err = -EBUSY;
6442                         goto abort_unlock;
6443                 }
6444                 err = set_array_info(mddev, &info);
6445                 if (err) {
6446                         printk(KERN_WARNING "md: couldn't set"
6447                                " array info. %d\n", err);
6448                         goto abort_unlock;
6449                 }
6450                 goto done_unlock;
6451         }
6452
6453         /*
6454          * Commands querying/configuring an existing array:
6455          */
6456         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6457          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6458         if ((!mddev->raid_disks && !mddev->external)
6459             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6460             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6461             && cmd != GET_BITMAP_FILE) {
6462                 err = -ENODEV;
6463                 goto abort_unlock;
6464         }
6465
6466         /*
6467          * Commands even a read-only array can execute:
6468          */
6469         switch (cmd) {
6470         case GET_BITMAP_FILE:
6471                 err = get_bitmap_file(mddev, argp);
6472                 goto done_unlock;
6473
6474         case RESTART_ARRAY_RW:
6475                 err = restart_array(mddev);
6476                 goto done_unlock;
6477
6478         case STOP_ARRAY:
6479                 err = do_md_stop(mddev, 0, bdev);
6480                 goto done_unlock;
6481
6482         case STOP_ARRAY_RO:
6483                 err = md_set_readonly(mddev, bdev);
6484                 goto done_unlock;
6485
6486         case BLKROSET:
6487                 if (get_user(ro, (int __user *)(arg))) {
6488                         err = -EFAULT;
6489                         goto done_unlock;
6490                 }
6491                 err = -EINVAL;
6492
6493                 /* if the bdev is going readonly the value of mddev->ro
6494                  * does not matter, no writes are coming
6495                  */
6496                 if (ro)
6497                         goto done_unlock;
6498
6499                 /* are we are already prepared for writes? */
6500                 if (mddev->ro != 1)
6501                         goto done_unlock;
6502
6503                 /* transitioning to readauto need only happen for
6504                  * arrays that call md_write_start
6505                  */
6506                 if (mddev->pers) {
6507                         err = restart_array(mddev);
6508                         if (err == 0) {
6509                                 mddev->ro = 2;
6510                                 set_disk_ro(mddev->gendisk, 0);
6511                         }
6512                 }
6513                 goto done_unlock;
6514         }
6515
6516         /*
6517          * The remaining ioctls are changing the state of the
6518          * superblock, so we do not allow them on read-only arrays.
6519          * However non-MD ioctls (e.g. get-size) will still come through
6520          * here and hit the 'default' below, so only disallow
6521          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6522          */
6523         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6524                 if (mddev->ro == 2) {
6525                         mddev->ro = 0;
6526                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6527                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6528                         md_wakeup_thread(mddev->thread);
6529                 } else {
6530                         err = -EROFS;
6531                         goto abort_unlock;
6532                 }
6533         }
6534
6535         switch (cmd) {
6536         case ADD_NEW_DISK:
6537         {
6538                 mdu_disk_info_t info;
6539                 if (copy_from_user(&info, argp, sizeof(info)))
6540                         err = -EFAULT;
6541                 else
6542                         err = add_new_disk(mddev, &info);
6543                 goto done_unlock;
6544         }
6545
6546         case HOT_REMOVE_DISK:
6547                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6548                 goto done_unlock;
6549
6550         case HOT_ADD_DISK:
6551                 err = hot_add_disk(mddev, new_decode_dev(arg));
6552                 goto done_unlock;
6553
6554         case RUN_ARRAY:
6555                 err = do_md_run(mddev);
6556                 goto done_unlock;
6557
6558         case SET_BITMAP_FILE:
6559                 err = set_bitmap_file(mddev, (int)arg);
6560                 goto done_unlock;
6561
6562         default:
6563                 err = -EINVAL;
6564                 goto abort_unlock;
6565         }
6566
6567 done_unlock:
6568 abort_unlock:
6569         if (mddev->hold_active == UNTIL_IOCTL &&
6570             err != -EINVAL)
6571                 mddev->hold_active = 0;
6572         mddev_unlock(mddev);
6573
6574         return err;
6575 done:
6576         if (err)
6577                 MD_BUG();
6578 abort:
6579         return err;
6580 }
6581 #ifdef CONFIG_COMPAT
6582 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6583                     unsigned int cmd, unsigned long arg)
6584 {
6585         switch (cmd) {
6586         case HOT_REMOVE_DISK:
6587         case HOT_ADD_DISK:
6588         case SET_DISK_FAULTY:
6589         case SET_BITMAP_FILE:
6590                 /* These take in integer arg, do not convert */
6591                 break;
6592         default:
6593                 arg = (unsigned long)compat_ptr(arg);
6594                 break;
6595         }
6596
6597         return md_ioctl(bdev, mode, cmd, arg);
6598 }
6599 #endif /* CONFIG_COMPAT */
6600
6601 static int md_open(struct block_device *bdev, fmode_t mode)
6602 {
6603         /*
6604          * Succeed if we can lock the mddev, which confirms that
6605          * it isn't being stopped right now.
6606          */
6607         struct mddev *mddev = mddev_find(bdev->bd_dev);
6608         int err;
6609
6610         if (!mddev)
6611                 return -ENODEV;
6612
6613         if (mddev->gendisk != bdev->bd_disk) {
6614                 /* we are racing with mddev_put which is discarding this
6615                  * bd_disk.
6616                  */
6617                 mddev_put(mddev);
6618                 /* Wait until bdev->bd_disk is definitely gone */
6619                 flush_workqueue(md_misc_wq);
6620                 /* Then retry the open from the top */
6621                 return -ERESTARTSYS;
6622         }
6623         BUG_ON(mddev != bdev->bd_disk->private_data);
6624
6625         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6626                 goto out;
6627
6628         err = 0;
6629         atomic_inc(&mddev->openers);
6630         mutex_unlock(&mddev->open_mutex);
6631
6632         check_disk_change(bdev);
6633  out:
6634         return err;
6635 }
6636
6637 static int md_release(struct gendisk *disk, fmode_t mode)
6638 {
6639         struct mddev *mddev = disk->private_data;
6640
6641         BUG_ON(!mddev);
6642         atomic_dec(&mddev->openers);
6643         mddev_put(mddev);
6644
6645         return 0;
6646 }
6647
6648 static int md_media_changed(struct gendisk *disk)
6649 {
6650         struct mddev *mddev = disk->private_data;
6651
6652         return mddev->changed;
6653 }
6654
6655 static int md_revalidate(struct gendisk *disk)
6656 {
6657         struct mddev *mddev = disk->private_data;
6658
6659         mddev->changed = 0;
6660         return 0;
6661 }
6662 static const struct block_device_operations md_fops =
6663 {
6664         .owner          = THIS_MODULE,
6665         .open           = md_open,
6666         .release        = md_release,
6667         .ioctl          = md_ioctl,
6668 #ifdef CONFIG_COMPAT
6669         .compat_ioctl   = md_compat_ioctl,
6670 #endif
6671         .getgeo         = md_getgeo,
6672         .media_changed  = md_media_changed,
6673         .revalidate_disk= md_revalidate,
6674 };
6675
6676 static int md_thread(void * arg)
6677 {
6678         struct md_thread *thread = arg;
6679
6680         /*
6681          * md_thread is a 'system-thread', it's priority should be very
6682          * high. We avoid resource deadlocks individually in each
6683          * raid personality. (RAID5 does preallocation) We also use RR and
6684          * the very same RT priority as kswapd, thus we will never get
6685          * into a priority inversion deadlock.
6686          *
6687          * we definitely have to have equal or higher priority than
6688          * bdflush, otherwise bdflush will deadlock if there are too
6689          * many dirty RAID5 blocks.
6690          */
6691
6692         allow_signal(SIGKILL);
6693         while (!kthread_should_stop()) {
6694
6695                 /* We need to wait INTERRUPTIBLE so that
6696                  * we don't add to the load-average.
6697                  * That means we need to be sure no signals are
6698                  * pending
6699                  */
6700                 if (signal_pending(current))
6701                         flush_signals(current);
6702
6703                 wait_event_interruptible_timeout
6704                         (thread->wqueue,
6705                          test_bit(THREAD_WAKEUP, &thread->flags)
6706                          || kthread_should_stop(),
6707                          thread->timeout);
6708
6709                 clear_bit(THREAD_WAKEUP, &thread->flags);
6710                 if (!kthread_should_stop())
6711                         thread->run(thread);
6712         }
6713
6714         return 0;
6715 }
6716
6717 void md_wakeup_thread(struct md_thread *thread)
6718 {
6719         if (thread) {
6720                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6721                 set_bit(THREAD_WAKEUP, &thread->flags);
6722                 wake_up(&thread->wqueue);
6723         }
6724 }
6725
6726 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6727                 struct mddev *mddev, const char *name)
6728 {
6729         struct md_thread *thread;
6730
6731         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6732         if (!thread)
6733                 return NULL;
6734
6735         init_waitqueue_head(&thread->wqueue);
6736
6737         thread->run = run;
6738         thread->mddev = mddev;
6739         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6740         thread->tsk = kthread_run(md_thread, thread,
6741                                   "%s_%s",
6742                                   mdname(thread->mddev),
6743                                   name);
6744         if (IS_ERR(thread->tsk)) {
6745                 kfree(thread);
6746                 return NULL;
6747         }
6748         return thread;
6749 }
6750
6751 void md_unregister_thread(struct md_thread **threadp)
6752 {
6753         struct md_thread *thread = *threadp;
6754         if (!thread)
6755                 return;
6756         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6757         /* Locking ensures that mddev_unlock does not wake_up a
6758          * non-existent thread
6759          */
6760         spin_lock(&pers_lock);
6761         *threadp = NULL;
6762         spin_unlock(&pers_lock);
6763
6764         kthread_stop(thread->tsk);
6765         kfree(thread);
6766 }
6767
6768 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6769 {
6770         if (!mddev) {
6771                 MD_BUG();
6772                 return;
6773         }
6774
6775         if (!rdev || test_bit(Faulty, &rdev->flags))
6776                 return;
6777
6778         if (!mddev->pers || !mddev->pers->error_handler)
6779                 return;
6780         mddev->pers->error_handler(mddev,rdev);
6781         if (mddev->degraded)
6782                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6783         sysfs_notify_dirent_safe(rdev->sysfs_state);
6784         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6785         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6786         md_wakeup_thread(mddev->thread);
6787         if (mddev->event_work.func)
6788                 queue_work(md_misc_wq, &mddev->event_work);
6789         md_new_event_inintr(mddev);
6790 }
6791
6792 /* seq_file implementation /proc/mdstat */
6793
6794 static void status_unused(struct seq_file *seq)
6795 {
6796         int i = 0;
6797         struct md_rdev *rdev;
6798
6799         seq_printf(seq, "unused devices: ");
6800
6801         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6802                 char b[BDEVNAME_SIZE];
6803                 i++;
6804                 seq_printf(seq, "%s ",
6805                               bdevname(rdev->bdev,b));
6806         }
6807         if (!i)
6808                 seq_printf(seq, "<none>");
6809
6810         seq_printf(seq, "\n");
6811 }
6812
6813
6814 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6815 {
6816         sector_t max_sectors, resync, res;
6817         unsigned long dt, db;
6818         sector_t rt;
6819         int scale;
6820         unsigned int per_milli;
6821
6822         if (mddev->curr_resync <= 3)
6823                 resync = 0;
6824         else
6825                 resync = mddev->curr_resync
6826                         - atomic_read(&mddev->recovery_active);
6827
6828         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6829             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6830                 max_sectors = mddev->resync_max_sectors;
6831         else
6832                 max_sectors = mddev->dev_sectors;
6833
6834         /*
6835          * Should not happen.
6836          */
6837         if (!max_sectors) {
6838                 MD_BUG();
6839                 return;
6840         }
6841         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6842          * in a sector_t, and (max_sectors>>scale) will fit in a
6843          * u32, as those are the requirements for sector_div.
6844          * Thus 'scale' must be at least 10
6845          */
6846         scale = 10;
6847         if (sizeof(sector_t) > sizeof(unsigned long)) {
6848                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6849                         scale++;
6850         }
6851         res = (resync>>scale)*1000;
6852         sector_div(res, (u32)((max_sectors>>scale)+1));
6853
6854         per_milli = res;
6855         {
6856                 int i, x = per_milli/50, y = 20-x;
6857                 seq_printf(seq, "[");
6858                 for (i = 0; i < x; i++)
6859                         seq_printf(seq, "=");
6860                 seq_printf(seq, ">");
6861                 for (i = 0; i < y; i++)
6862                         seq_printf(seq, ".");
6863                 seq_printf(seq, "] ");
6864         }
6865         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6866                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6867                     "reshape" :
6868                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6869                      "check" :
6870                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6871                       "resync" : "recovery"))),
6872                    per_milli/10, per_milli % 10,
6873                    (unsigned long long) resync/2,
6874                    (unsigned long long) max_sectors/2);
6875
6876         /*
6877          * dt: time from mark until now
6878          * db: blocks written from mark until now
6879          * rt: remaining time
6880          *
6881          * rt is a sector_t, so could be 32bit or 64bit.
6882          * So we divide before multiply in case it is 32bit and close
6883          * to the limit.
6884          * We scale the divisor (db) by 32 to avoid losing precision
6885          * near the end of resync when the number of remaining sectors
6886          * is close to 'db'.
6887          * We then divide rt by 32 after multiplying by db to compensate.
6888          * The '+1' avoids division by zero if db is very small.
6889          */
6890         dt = ((jiffies - mddev->resync_mark) / HZ);
6891         if (!dt) dt++;
6892         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6893                 - mddev->resync_mark_cnt;
6894
6895         rt = max_sectors - resync;    /* number of remaining sectors */
6896         sector_div(rt, db/32+1);
6897         rt *= dt;
6898         rt >>= 5;
6899
6900         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6901                    ((unsigned long)rt % 60)/6);
6902
6903         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6904 }
6905
6906 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6907 {
6908         struct list_head *tmp;
6909         loff_t l = *pos;
6910         struct mddev *mddev;
6911
6912         if (l >= 0x10000)
6913                 return NULL;
6914         if (!l--)
6915                 /* header */
6916                 return (void*)1;
6917
6918         spin_lock(&all_mddevs_lock);
6919         list_for_each(tmp,&all_mddevs)
6920                 if (!l--) {
6921                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6922                         mddev_get(mddev);
6923                         spin_unlock(&all_mddevs_lock);
6924                         return mddev;
6925                 }
6926         spin_unlock(&all_mddevs_lock);
6927         if (!l--)
6928                 return (void*)2;/* tail */
6929         return NULL;
6930 }
6931
6932 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6933 {
6934         struct list_head *tmp;
6935         struct mddev *next_mddev, *mddev = v;
6936         
6937         ++*pos;
6938         if (v == (void*)2)
6939                 return NULL;
6940
6941         spin_lock(&all_mddevs_lock);
6942         if (v == (void*)1)
6943                 tmp = all_mddevs.next;
6944         else
6945                 tmp = mddev->all_mddevs.next;
6946         if (tmp != &all_mddevs)
6947                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6948         else {
6949                 next_mddev = (void*)2;
6950                 *pos = 0x10000;
6951         }               
6952         spin_unlock(&all_mddevs_lock);
6953
6954         if (v != (void*)1)
6955                 mddev_put(mddev);
6956         return next_mddev;
6957
6958 }
6959
6960 static void md_seq_stop(struct seq_file *seq, void *v)
6961 {
6962         struct mddev *mddev = v;
6963
6964         if (mddev && v != (void*)1 && v != (void*)2)
6965                 mddev_put(mddev);
6966 }
6967
6968 static int md_seq_show(struct seq_file *seq, void *v)
6969 {
6970         struct mddev *mddev = v;
6971         sector_t sectors;
6972         struct md_rdev *rdev;
6973
6974         if (v == (void*)1) {
6975                 struct md_personality *pers;
6976                 seq_printf(seq, "Personalities : ");
6977                 spin_lock(&pers_lock);
6978                 list_for_each_entry(pers, &pers_list, list)
6979                         seq_printf(seq, "[%s] ", pers->name);
6980
6981                 spin_unlock(&pers_lock);
6982                 seq_printf(seq, "\n");
6983                 seq->poll_event = atomic_read(&md_event_count);
6984                 return 0;
6985         }
6986         if (v == (void*)2) {
6987                 status_unused(seq);
6988                 return 0;
6989         }
6990
6991         if (mddev_lock(mddev) < 0)
6992                 return -EINTR;
6993
6994         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6995                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6996                                                 mddev->pers ? "" : "in");
6997                 if (mddev->pers) {
6998                         if (mddev->ro==1)
6999                                 seq_printf(seq, " (read-only)");
7000                         if (mddev->ro==2)
7001                                 seq_printf(seq, " (auto-read-only)");
7002                         seq_printf(seq, " %s", mddev->pers->name);
7003                 }
7004
7005                 sectors = 0;
7006                 rdev_for_each(rdev, mddev) {
7007                         char b[BDEVNAME_SIZE];
7008                         seq_printf(seq, " %s[%d]",
7009                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7010                         if (test_bit(WriteMostly, &rdev->flags))
7011                                 seq_printf(seq, "(W)");
7012                         if (test_bit(Faulty, &rdev->flags)) {
7013                                 seq_printf(seq, "(F)");
7014                                 continue;
7015                         }
7016                         if (rdev->raid_disk < 0)
7017                                 seq_printf(seq, "(S)"); /* spare */
7018                         if (test_bit(Replacement, &rdev->flags))
7019                                 seq_printf(seq, "(R)");
7020                         sectors += rdev->sectors;
7021                 }
7022
7023                 if (!list_empty(&mddev->disks)) {
7024                         if (mddev->pers)
7025                                 seq_printf(seq, "\n      %llu blocks",
7026                                            (unsigned long long)
7027                                            mddev->array_sectors / 2);
7028                         else
7029                                 seq_printf(seq, "\n      %llu blocks",
7030                                            (unsigned long long)sectors / 2);
7031                 }
7032                 if (mddev->persistent) {
7033                         if (mddev->major_version != 0 ||
7034                             mddev->minor_version != 90) {
7035                                 seq_printf(seq," super %d.%d",
7036                                            mddev->major_version,
7037                                            mddev->minor_version);
7038                         }
7039                 } else if (mddev->external)
7040                         seq_printf(seq, " super external:%s",
7041                                    mddev->metadata_type);
7042                 else
7043                         seq_printf(seq, " super non-persistent");
7044
7045                 if (mddev->pers) {
7046                         mddev->pers->status(seq, mddev);
7047                         seq_printf(seq, "\n      ");
7048                         if (mddev->pers->sync_request) {
7049                                 if (mddev->curr_resync > 2) {
7050                                         status_resync(seq, mddev);
7051                                         seq_printf(seq, "\n      ");
7052                                 } else if (mddev->curr_resync >= 1)
7053                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7054                                 else if (mddev->recovery_cp < MaxSector)
7055                                         seq_printf(seq, "\tresync=PENDING\n      ");
7056                         }
7057                 } else
7058                         seq_printf(seq, "\n       ");
7059
7060                 bitmap_status(seq, mddev->bitmap);
7061
7062                 seq_printf(seq, "\n");
7063         }
7064         mddev_unlock(mddev);
7065         
7066         return 0;
7067 }
7068
7069 static const struct seq_operations md_seq_ops = {
7070         .start  = md_seq_start,
7071         .next   = md_seq_next,
7072         .stop   = md_seq_stop,
7073         .show   = md_seq_show,
7074 };
7075
7076 static int md_seq_open(struct inode *inode, struct file *file)
7077 {
7078         struct seq_file *seq;
7079         int error;
7080
7081         error = seq_open(file, &md_seq_ops);
7082         if (error)
7083                 return error;
7084
7085         seq = file->private_data;
7086         seq->poll_event = atomic_read(&md_event_count);
7087         return error;
7088 }
7089
7090 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7091 {
7092         struct seq_file *seq = filp->private_data;
7093         int mask;
7094
7095         poll_wait(filp, &md_event_waiters, wait);
7096
7097         /* always allow read */
7098         mask = POLLIN | POLLRDNORM;
7099
7100         if (seq->poll_event != atomic_read(&md_event_count))
7101                 mask |= POLLERR | POLLPRI;
7102         return mask;
7103 }
7104
7105 static const struct file_operations md_seq_fops = {
7106         .owner          = THIS_MODULE,
7107         .open           = md_seq_open,
7108         .read           = seq_read,
7109         .llseek         = seq_lseek,
7110         .release        = seq_release_private,
7111         .poll           = mdstat_poll,
7112 };
7113
7114 int register_md_personality(struct md_personality *p)
7115 {
7116         spin_lock(&pers_lock);
7117         list_add_tail(&p->list, &pers_list);
7118         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7119         spin_unlock(&pers_lock);
7120         return 0;
7121 }
7122
7123 int unregister_md_personality(struct md_personality *p)
7124 {
7125         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7126         spin_lock(&pers_lock);
7127         list_del_init(&p->list);
7128         spin_unlock(&pers_lock);
7129         return 0;
7130 }
7131
7132 static int is_mddev_idle(struct mddev *mddev, int init)
7133 {
7134         struct md_rdev * rdev;
7135         int idle;
7136         int curr_events;
7137
7138         idle = 1;
7139         rcu_read_lock();
7140         rdev_for_each_rcu(rdev, mddev) {
7141                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7142                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7143                               (int)part_stat_read(&disk->part0, sectors[1]) -
7144                               atomic_read(&disk->sync_io);
7145                 /* sync IO will cause sync_io to increase before the disk_stats
7146                  * as sync_io is counted when a request starts, and
7147                  * disk_stats is counted when it completes.
7148                  * So resync activity will cause curr_events to be smaller than
7149                  * when there was no such activity.
7150                  * non-sync IO will cause disk_stat to increase without
7151                  * increasing sync_io so curr_events will (eventually)
7152                  * be larger than it was before.  Once it becomes
7153                  * substantially larger, the test below will cause
7154                  * the array to appear non-idle, and resync will slow
7155                  * down.
7156                  * If there is a lot of outstanding resync activity when
7157                  * we set last_event to curr_events, then all that activity
7158                  * completing might cause the array to appear non-idle
7159                  * and resync will be slowed down even though there might
7160                  * not have been non-resync activity.  This will only
7161                  * happen once though.  'last_events' will soon reflect
7162                  * the state where there is little or no outstanding
7163                  * resync requests, and further resync activity will
7164                  * always make curr_events less than last_events.
7165                  *
7166                  */
7167                 if (init || curr_events - rdev->last_events > 64) {
7168                         rdev->last_events = curr_events;
7169                         idle = 0;
7170                 }
7171         }
7172         rcu_read_unlock();
7173         return idle;
7174 }
7175
7176 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7177 {
7178         /* another "blocks" (512byte) blocks have been synced */
7179         atomic_sub(blocks, &mddev->recovery_active);
7180         wake_up(&mddev->recovery_wait);
7181         if (!ok) {
7182                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7183                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7184                 md_wakeup_thread(mddev->thread);
7185                 // stop recovery, signal do_sync ....
7186         }
7187 }
7188
7189
7190 /* md_write_start(mddev, bi)
7191  * If we need to update some array metadata (e.g. 'active' flag
7192  * in superblock) before writing, schedule a superblock update
7193  * and wait for it to complete.
7194  */
7195 void md_write_start(struct mddev *mddev, struct bio *bi)
7196 {
7197         int did_change = 0;
7198         if (bio_data_dir(bi) != WRITE)
7199                 return;
7200
7201         BUG_ON(mddev->ro == 1);
7202         if (mddev->ro == 2) {
7203                 /* need to switch to read/write */
7204                 mddev->ro = 0;
7205                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7206                 md_wakeup_thread(mddev->thread);
7207                 md_wakeup_thread(mddev->sync_thread);
7208                 did_change = 1;
7209         }
7210         atomic_inc(&mddev->writes_pending);
7211         if (mddev->safemode == 1)
7212                 mddev->safemode = 0;
7213         if (mddev->in_sync) {
7214                 spin_lock_irq(&mddev->write_lock);
7215                 if (mddev->in_sync) {
7216                         mddev->in_sync = 0;
7217                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7218                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7219                         md_wakeup_thread(mddev->thread);
7220                         did_change = 1;
7221                 }
7222                 spin_unlock_irq(&mddev->write_lock);
7223         }
7224         if (did_change)
7225                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7226         wait_event(mddev->sb_wait,
7227                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7228 }
7229
7230 void md_write_end(struct mddev *mddev)
7231 {
7232         if (atomic_dec_and_test(&mddev->writes_pending)) {
7233                 if (mddev->safemode == 2)
7234                         md_wakeup_thread(mddev->thread);
7235                 else if (mddev->safemode_delay)
7236                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7237         }
7238 }
7239
7240 /* md_allow_write(mddev)
7241  * Calling this ensures that the array is marked 'active' so that writes
7242  * may proceed without blocking.  It is important to call this before
7243  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7244  * Must be called with mddev_lock held.
7245  *
7246  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7247  * is dropped, so return -EAGAIN after notifying userspace.
7248  */
7249 int md_allow_write(struct mddev *mddev)
7250 {
7251         if (!mddev->pers)
7252                 return 0;
7253         if (mddev->ro)
7254                 return 0;
7255         if (!mddev->pers->sync_request)
7256                 return 0;
7257
7258         spin_lock_irq(&mddev->write_lock);
7259         if (mddev->in_sync) {
7260                 mddev->in_sync = 0;
7261                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7262                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7263                 if (mddev->safemode_delay &&
7264                     mddev->safemode == 0)
7265                         mddev->safemode = 1;
7266                 spin_unlock_irq(&mddev->write_lock);
7267                 md_update_sb(mddev, 0);
7268                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7269         } else
7270                 spin_unlock_irq(&mddev->write_lock);
7271
7272         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7273                 return -EAGAIN;
7274         else
7275                 return 0;
7276 }
7277 EXPORT_SYMBOL_GPL(md_allow_write);
7278
7279 #define SYNC_MARKS      10
7280 #define SYNC_MARK_STEP  (3*HZ)
7281 #define UPDATE_FREQUENCY (5*60*HZ)
7282 void md_do_sync(struct md_thread *thread)
7283 {
7284         struct mddev *mddev = thread->mddev;
7285         struct mddev *mddev2;
7286         unsigned int currspeed = 0,
7287                  window;
7288         sector_t max_sectors,j, io_sectors;
7289         unsigned long mark[SYNC_MARKS];
7290         unsigned long update_time;
7291         sector_t mark_cnt[SYNC_MARKS];
7292         int last_mark,m;
7293         struct list_head *tmp;
7294         sector_t last_check;
7295         int skipped = 0;
7296         struct md_rdev *rdev;
7297         char *desc;
7298         struct blk_plug plug;
7299
7300         /* just incase thread restarts... */
7301         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7302                 return;
7303         if (mddev->ro) /* never try to sync a read-only array */
7304                 return;
7305
7306         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7307                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7308                         desc = "data-check";
7309                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7310                         desc = "requested-resync";
7311                 else
7312                         desc = "resync";
7313         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7314                 desc = "reshape";
7315         else
7316                 desc = "recovery";
7317
7318         /* we overload curr_resync somewhat here.
7319          * 0 == not engaged in resync at all
7320          * 2 == checking that there is no conflict with another sync
7321          * 1 == like 2, but have yielded to allow conflicting resync to
7322          *              commense
7323          * other == active in resync - this many blocks
7324          *
7325          * Before starting a resync we must have set curr_resync to
7326          * 2, and then checked that every "conflicting" array has curr_resync
7327          * less than ours.  When we find one that is the same or higher
7328          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7329          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7330          * This will mean we have to start checking from the beginning again.
7331          *
7332          */
7333
7334         do {
7335                 mddev->curr_resync = 2;
7336
7337         try_again:
7338                 if (kthread_should_stop())
7339                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7340
7341                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7342                         goto skip;
7343                 for_each_mddev(mddev2, tmp) {
7344                         if (mddev2 == mddev)
7345                                 continue;
7346                         if (!mddev->parallel_resync
7347                         &&  mddev2->curr_resync
7348                         &&  match_mddev_units(mddev, mddev2)) {
7349                                 DEFINE_WAIT(wq);
7350                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7351                                         /* arbitrarily yield */
7352                                         mddev->curr_resync = 1;
7353                                         wake_up(&resync_wait);
7354                                 }
7355                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7356                                         /* no need to wait here, we can wait the next
7357                                          * time 'round when curr_resync == 2
7358                                          */
7359                                         continue;
7360                                 /* We need to wait 'interruptible' so as not to
7361                                  * contribute to the load average, and not to
7362                                  * be caught by 'softlockup'
7363                                  */
7364                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7365                                 if (!kthread_should_stop() &&
7366                                     mddev2->curr_resync >= mddev->curr_resync) {
7367                                         printk(KERN_INFO "md: delaying %s of %s"
7368                                                " until %s has finished (they"
7369                                                " share one or more physical units)\n",
7370                                                desc, mdname(mddev), mdname(mddev2));
7371                                         mddev_put(mddev2);
7372                                         if (signal_pending(current))
7373                                                 flush_signals(current);
7374                                         schedule();
7375                                         finish_wait(&resync_wait, &wq);
7376                                         goto try_again;
7377                                 }
7378                                 finish_wait(&resync_wait, &wq);
7379                         }
7380                 }
7381         } while (mddev->curr_resync < 2);
7382
7383         j = 0;
7384         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7385                 /* resync follows the size requested by the personality,
7386                  * which defaults to physical size, but can be virtual size
7387                  */
7388                 max_sectors = mddev->resync_max_sectors;
7389                 atomic64_set(&mddev->resync_mismatches, 0);
7390                 /* we don't use the checkpoint if there's a bitmap */
7391                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7392                         j = mddev->resync_min;
7393                 else if (!mddev->bitmap)
7394                         j = mddev->recovery_cp;
7395
7396         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7397                 max_sectors = mddev->resync_max_sectors;
7398         else {
7399                 /* recovery follows the physical size of devices */
7400                 max_sectors = mddev->dev_sectors;
7401                 j = MaxSector;
7402                 rcu_read_lock();
7403                 rdev_for_each_rcu(rdev, mddev)
7404                         if (rdev->raid_disk >= 0 &&
7405                             !test_bit(Faulty, &rdev->flags) &&
7406                             !test_bit(In_sync, &rdev->flags) &&
7407                             rdev->recovery_offset < j)
7408                                 j = rdev->recovery_offset;
7409                 rcu_read_unlock();
7410         }
7411
7412         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7413         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7414                 " %d KB/sec/disk.\n", speed_min(mddev));
7415         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7416                "(but not more than %d KB/sec) for %s.\n",
7417                speed_max(mddev), desc);
7418
7419         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7420
7421         io_sectors = 0;
7422         for (m = 0; m < SYNC_MARKS; m++) {
7423                 mark[m] = jiffies;
7424                 mark_cnt[m] = io_sectors;
7425         }
7426         last_mark = 0;
7427         mddev->resync_mark = mark[last_mark];
7428         mddev->resync_mark_cnt = mark_cnt[last_mark];
7429
7430         /*
7431          * Tune reconstruction:
7432          */
7433         window = 32*(PAGE_SIZE/512);
7434         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7435                 window/2, (unsigned long long)max_sectors/2);
7436
7437         atomic_set(&mddev->recovery_active, 0);
7438         last_check = 0;
7439
7440         if (j>2) {
7441                 printk(KERN_INFO 
7442                        "md: resuming %s of %s from checkpoint.\n",
7443                        desc, mdname(mddev));
7444                 mddev->curr_resync = j;
7445         } else
7446                 mddev->curr_resync = 3; /* no longer delayed */
7447         mddev->curr_resync_completed = j;
7448         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7449         md_new_event(mddev);
7450         update_time = jiffies;
7451
7452         blk_start_plug(&plug);
7453         while (j < max_sectors) {
7454                 sector_t sectors;
7455
7456                 skipped = 0;
7457
7458                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7459                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7460                       (mddev->curr_resync - mddev->curr_resync_completed)
7461                       > (max_sectors >> 4)) ||
7462                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7463                      (j - mddev->curr_resync_completed)*2
7464                      >= mddev->resync_max - mddev->curr_resync_completed
7465                             )) {
7466                         /* time to update curr_resync_completed */
7467                         wait_event(mddev->recovery_wait,
7468                                    atomic_read(&mddev->recovery_active) == 0);
7469                         mddev->curr_resync_completed = j;
7470                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7471                             j > mddev->recovery_cp)
7472                                 mddev->recovery_cp = j;
7473                         update_time = jiffies;
7474                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7475                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7476                 }
7477
7478                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7479                         /* As this condition is controlled by user-space,
7480                          * we can block indefinitely, so use '_interruptible'
7481                          * to avoid triggering warnings.
7482                          */
7483                         flush_signals(current); /* just in case */
7484                         wait_event_interruptible(mddev->recovery_wait,
7485                                                  mddev->resync_max > j
7486                                                  || kthread_should_stop());
7487                 }
7488
7489                 if (kthread_should_stop())
7490                         goto interrupted;
7491
7492                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7493                                                   currspeed < speed_min(mddev));
7494                 if (sectors == 0) {
7495                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7496                         goto out;
7497                 }
7498
7499                 if (!skipped) { /* actual IO requested */
7500                         io_sectors += sectors;
7501                         atomic_add(sectors, &mddev->recovery_active);
7502                 }
7503
7504                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7505                         break;
7506
7507                 j += sectors;
7508                 if (j > 2)
7509                         mddev->curr_resync = j;
7510                 mddev->curr_mark_cnt = io_sectors;
7511                 if (last_check == 0)
7512                         /* this is the earliest that rebuild will be
7513                          * visible in /proc/mdstat
7514                          */
7515                         md_new_event(mddev);
7516
7517                 if (last_check + window > io_sectors || j == max_sectors)
7518                         continue;
7519
7520                 last_check = io_sectors;
7521         repeat:
7522                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7523                         /* step marks */
7524                         int next = (last_mark+1) % SYNC_MARKS;
7525
7526                         mddev->resync_mark = mark[next];
7527                         mddev->resync_mark_cnt = mark_cnt[next];
7528                         mark[next] = jiffies;
7529                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7530                         last_mark = next;
7531                 }
7532
7533
7534                 if (kthread_should_stop())
7535                         goto interrupted;
7536
7537
7538                 /*
7539                  * this loop exits only if either when we are slower than
7540                  * the 'hard' speed limit, or the system was IO-idle for
7541                  * a jiffy.
7542                  * the system might be non-idle CPU-wise, but we only care
7543                  * about not overloading the IO subsystem. (things like an
7544                  * e2fsck being done on the RAID array should execute fast)
7545                  */
7546                 cond_resched();
7547
7548                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7549                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7550
7551                 if (currspeed > speed_min(mddev)) {
7552                         if ((currspeed > speed_max(mddev)) ||
7553                                         !is_mddev_idle(mddev, 0)) {
7554                                 msleep(500);
7555                                 goto repeat;
7556                         }
7557                 }
7558         }
7559         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7560         /*
7561          * this also signals 'finished resyncing' to md_stop
7562          */
7563  out:
7564         blk_finish_plug(&plug);
7565         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7566
7567         /* tell personality that we are finished */
7568         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7569
7570         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7571             mddev->curr_resync > 2) {
7572                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7573                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7574                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7575                                         printk(KERN_INFO
7576                                                "md: checkpointing %s of %s.\n",
7577                                                desc, mdname(mddev));
7578                                         if (test_bit(MD_RECOVERY_ERROR,
7579                                                 &mddev->recovery))
7580                                                 mddev->recovery_cp =
7581                                                         mddev->curr_resync_completed;
7582                                         else
7583                                                 mddev->recovery_cp =
7584                                                         mddev->curr_resync;
7585                                 }
7586                         } else
7587                                 mddev->recovery_cp = MaxSector;
7588                 } else {
7589                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7590                                 mddev->curr_resync = MaxSector;
7591                         rcu_read_lock();
7592                         rdev_for_each_rcu(rdev, mddev)
7593                                 if (rdev->raid_disk >= 0 &&
7594                                     mddev->delta_disks >= 0 &&
7595                                     !test_bit(Faulty, &rdev->flags) &&
7596                                     !test_bit(In_sync, &rdev->flags) &&
7597                                     rdev->recovery_offset < mddev->curr_resync)
7598                                         rdev->recovery_offset = mddev->curr_resync;
7599                         rcu_read_unlock();
7600                 }
7601         }
7602  skip:
7603         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7604
7605         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7606                 /* We completed so min/max setting can be forgotten if used. */
7607                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7608                         mddev->resync_min = 0;
7609                 mddev->resync_max = MaxSector;
7610         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7611                 mddev->resync_min = mddev->curr_resync_completed;
7612         mddev->curr_resync = 0;
7613         wake_up(&resync_wait);
7614         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7615         md_wakeup_thread(mddev->thread);
7616         return;
7617
7618  interrupted:
7619         /*
7620          * got a signal, exit.
7621          */
7622         printk(KERN_INFO
7623                "md: md_do_sync() got signal ... exiting\n");
7624         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7625         goto out;
7626
7627 }
7628 EXPORT_SYMBOL_GPL(md_do_sync);
7629
7630 static int remove_and_add_spares(struct mddev *mddev)
7631 {
7632         struct md_rdev *rdev;
7633         int spares = 0;
7634         int removed = 0;
7635
7636         rdev_for_each(rdev, mddev)
7637                 if (rdev->raid_disk >= 0 &&
7638                     !test_bit(Blocked, &rdev->flags) &&
7639                     (test_bit(Faulty, &rdev->flags) ||
7640                      ! test_bit(In_sync, &rdev->flags)) &&
7641                     atomic_read(&rdev->nr_pending)==0) {
7642                         if (mddev->pers->hot_remove_disk(
7643                                     mddev, rdev) == 0) {
7644                                 sysfs_unlink_rdev(mddev, rdev);
7645                                 rdev->raid_disk = -1;
7646                                 removed++;
7647                         }
7648                 }
7649         if (removed)
7650                 sysfs_notify(&mddev->kobj, NULL,
7651                              "degraded");
7652
7653
7654         rdev_for_each(rdev, mddev) {
7655                 if (rdev->raid_disk >= 0 &&
7656                     !test_bit(In_sync, &rdev->flags) &&
7657                     !test_bit(Faulty, &rdev->flags))
7658                         spares++;
7659                 if (rdev->raid_disk < 0
7660                     && !test_bit(Faulty, &rdev->flags)) {
7661                         rdev->recovery_offset = 0;
7662                         if (mddev->pers->
7663                             hot_add_disk(mddev, rdev) == 0) {
7664                                 if (sysfs_link_rdev(mddev, rdev))
7665                                         /* failure here is OK */;
7666                                 spares++;
7667                                 md_new_event(mddev);
7668                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7669                         }
7670                 }
7671         }
7672         if (removed)
7673                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7674         return spares;
7675 }
7676
7677 static void reap_sync_thread(struct mddev *mddev)
7678 {
7679         struct md_rdev *rdev;
7680
7681         /* resync has finished, collect result */
7682         md_unregister_thread(&mddev->sync_thread);
7683         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7684             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7685                 /* success...*/
7686                 /* activate any spares */
7687                 if (mddev->pers->spare_active(mddev)) {
7688                         sysfs_notify(&mddev->kobj, NULL,
7689                                      "degraded");
7690                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7691                 }
7692         }
7693         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7694             mddev->pers->finish_reshape)
7695                 mddev->pers->finish_reshape(mddev);
7696
7697         /* If array is no-longer degraded, then any saved_raid_disk
7698          * information must be scrapped.  Also if any device is now
7699          * In_sync we must scrape the saved_raid_disk for that device
7700          * do the superblock for an incrementally recovered device
7701          * written out.
7702          */
7703         rdev_for_each(rdev, mddev)
7704                 if (!mddev->degraded ||
7705                     test_bit(In_sync, &rdev->flags))
7706                         rdev->saved_raid_disk = -1;
7707
7708         md_update_sb(mddev, 1);
7709         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7710         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7711         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7712         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7713         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7714         /* flag recovery needed just to double check */
7715         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7716         sysfs_notify_dirent_safe(mddev->sysfs_action);
7717         md_new_event(mddev);
7718         if (mddev->event_work.func)
7719                 queue_work(md_misc_wq, &mddev->event_work);
7720 }
7721
7722 /*
7723  * This routine is regularly called by all per-raid-array threads to
7724  * deal with generic issues like resync and super-block update.
7725  * Raid personalities that don't have a thread (linear/raid0) do not
7726  * need this as they never do any recovery or update the superblock.
7727  *
7728  * It does not do any resync itself, but rather "forks" off other threads
7729  * to do that as needed.
7730  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7731  * "->recovery" and create a thread at ->sync_thread.
7732  * When the thread finishes it sets MD_RECOVERY_DONE
7733  * and wakeups up this thread which will reap the thread and finish up.
7734  * This thread also removes any faulty devices (with nr_pending == 0).
7735  *
7736  * The overall approach is:
7737  *  1/ if the superblock needs updating, update it.
7738  *  2/ If a recovery thread is running, don't do anything else.
7739  *  3/ If recovery has finished, clean up, possibly marking spares active.
7740  *  4/ If there are any faulty devices, remove them.
7741  *  5/ If array is degraded, try to add spares devices
7742  *  6/ If array has spares or is not in-sync, start a resync thread.
7743  */
7744 void md_check_recovery(struct mddev *mddev)
7745 {
7746         if (mddev->suspended)
7747                 return;
7748
7749         if (mddev->bitmap)
7750                 bitmap_daemon_work(mddev);
7751
7752         if (signal_pending(current)) {
7753                 if (mddev->pers->sync_request && !mddev->external) {
7754                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7755                                mdname(mddev));
7756                         mddev->safemode = 2;
7757                 }
7758                 flush_signals(current);
7759         }
7760
7761         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7762                 return;
7763         if ( ! (
7764                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7765                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7766                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7767                 (mddev->external == 0 && mddev->safemode == 1) ||
7768                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7769                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7770                 ))
7771                 return;
7772
7773         if (mddev_trylock(mddev)) {
7774                 int spares = 0;
7775
7776                 if (mddev->ro) {
7777                         /* Only thing we do on a ro array is remove
7778                          * failed devices.
7779                          */
7780                         struct md_rdev *rdev;
7781                         rdev_for_each(rdev, mddev)
7782                                 if (rdev->raid_disk >= 0 &&
7783                                     !test_bit(Blocked, &rdev->flags) &&
7784                                     test_bit(Faulty, &rdev->flags) &&
7785                                     atomic_read(&rdev->nr_pending)==0) {
7786                                         if (mddev->pers->hot_remove_disk(
7787                                                     mddev, rdev) == 0) {
7788                                                 sysfs_unlink_rdev(mddev, rdev);
7789                                                 rdev->raid_disk = -1;
7790                                         }
7791                                 }
7792                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7793                         goto unlock;
7794                 }
7795
7796                 if (!mddev->external) {
7797                         int did_change = 0;
7798                         spin_lock_irq(&mddev->write_lock);
7799                         if (mddev->safemode &&
7800                             !atomic_read(&mddev->writes_pending) &&
7801                             !mddev->in_sync &&
7802                             mddev->recovery_cp == MaxSector) {
7803                                 mddev->in_sync = 1;
7804                                 did_change = 1;
7805                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7806                         }
7807                         if (mddev->safemode == 1)
7808                                 mddev->safemode = 0;
7809                         spin_unlock_irq(&mddev->write_lock);
7810                         if (did_change)
7811                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7812                 }
7813
7814                 if (mddev->flags)
7815                         md_update_sb(mddev, 0);
7816
7817                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7818                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7819                         /* resync/recovery still happening */
7820                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7821                         goto unlock;
7822                 }
7823                 if (mddev->sync_thread) {
7824                         reap_sync_thread(mddev);
7825                         goto unlock;
7826                 }
7827                 /* Set RUNNING before clearing NEEDED to avoid
7828                  * any transients in the value of "sync_action".
7829                  */
7830                 mddev->curr_resync_completed = 0;
7831                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7832                 /* Clear some bits that don't mean anything, but
7833                  * might be left set
7834                  */
7835                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7836                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7837
7838                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7839                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7840                         goto unlock;
7841                 /* no recovery is running.
7842                  * remove any failed drives, then
7843                  * add spares if possible.
7844                  * Spares are also removed and re-added, to allow
7845                  * the personality to fail the re-add.
7846                  */
7847
7848                 if (mddev->reshape_position != MaxSector) {
7849                         if (mddev->pers->check_reshape == NULL ||
7850                             mddev->pers->check_reshape(mddev) != 0)
7851                                 /* Cannot proceed */
7852                                 goto unlock;
7853                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7854                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7855                 } else if ((spares = remove_and_add_spares(mddev))) {
7856                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7857                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7858                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7859                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7860                 } else if (mddev->recovery_cp < MaxSector) {
7861                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7862                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7863                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7864                         /* nothing to be done ... */
7865                         goto unlock;
7866
7867                 if (mddev->pers->sync_request) {
7868                         if (spares) {
7869                                 /* We are adding a device or devices to an array
7870                                  * which has the bitmap stored on all devices.
7871                                  * So make sure all bitmap pages get written
7872                                  */
7873                                 bitmap_write_all(mddev->bitmap);
7874                         }
7875                         mddev->sync_thread = md_register_thread(md_do_sync,
7876                                                                 mddev,
7877                                                                 "resync");
7878                         if (!mddev->sync_thread) {
7879                                 printk(KERN_ERR "%s: could not start resync"
7880                                         " thread...\n", 
7881                                         mdname(mddev));
7882                                 /* leave the spares where they are, it shouldn't hurt */
7883                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7884                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7885                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7886                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7887                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7888                         } else
7889                                 md_wakeup_thread(mddev->sync_thread);
7890                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7891                         md_new_event(mddev);
7892                 }
7893         unlock:
7894                 if (!mddev->sync_thread) {
7895                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7896                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7897                                                &mddev->recovery))
7898                                 if (mddev->sysfs_action)
7899                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7900                 }
7901                 mddev_unlock(mddev);
7902         }
7903 }
7904
7905 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7906 {
7907         sysfs_notify_dirent_safe(rdev->sysfs_state);
7908         wait_event_timeout(rdev->blocked_wait,
7909                            !test_bit(Blocked, &rdev->flags) &&
7910                            !test_bit(BlockedBadBlocks, &rdev->flags),
7911                            msecs_to_jiffies(5000));
7912         rdev_dec_pending(rdev, mddev);
7913 }
7914 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7915
7916 void md_finish_reshape(struct mddev *mddev)
7917 {
7918         /* called be personality module when reshape completes. */
7919         struct md_rdev *rdev;
7920
7921         rdev_for_each(rdev, mddev) {
7922                 if (rdev->data_offset > rdev->new_data_offset)
7923                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7924                 else
7925                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7926                 rdev->data_offset = rdev->new_data_offset;
7927         }
7928 }
7929 EXPORT_SYMBOL(md_finish_reshape);
7930
7931 /* Bad block management.
7932  * We can record which blocks on each device are 'bad' and so just
7933  * fail those blocks, or that stripe, rather than the whole device.
7934  * Entries in the bad-block table are 64bits wide.  This comprises:
7935  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7936  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7937  *  A 'shift' can be set so that larger blocks are tracked and
7938  *  consequently larger devices can be covered.
7939  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7940  *
7941  * Locking of the bad-block table uses a seqlock so md_is_badblock
7942  * might need to retry if it is very unlucky.
7943  * We will sometimes want to check for bad blocks in a bi_end_io function,
7944  * so we use the write_seqlock_irq variant.
7945  *
7946  * When looking for a bad block we specify a range and want to
7947  * know if any block in the range is bad.  So we binary-search
7948  * to the last range that starts at-or-before the given endpoint,
7949  * (or "before the sector after the target range")
7950  * then see if it ends after the given start.
7951  * We return
7952  *  0 if there are no known bad blocks in the range
7953  *  1 if there are known bad block which are all acknowledged
7954  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7955  * plus the start/length of the first bad section we overlap.
7956  */
7957 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7958                    sector_t *first_bad, int *bad_sectors)
7959 {
7960         int hi;
7961         int lo;
7962         u64 *p = bb->page;
7963         int rv;
7964         sector_t target = s + sectors;
7965         unsigned seq;
7966
7967         if (bb->shift > 0) {
7968                 /* round the start down, and the end up */
7969                 s >>= bb->shift;
7970                 target += (1<<bb->shift) - 1;
7971                 target >>= bb->shift;
7972                 sectors = target - s;
7973         }
7974         /* 'target' is now the first block after the bad range */
7975
7976 retry:
7977         seq = read_seqbegin(&bb->lock);
7978         lo = 0;
7979         rv = 0;
7980         hi = bb->count;
7981
7982         /* Binary search between lo and hi for 'target'
7983          * i.e. for the last range that starts before 'target'
7984          */
7985         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7986          * are known not to be the last range before target.
7987          * VARIANT: hi-lo is the number of possible
7988          * ranges, and decreases until it reaches 1
7989          */
7990         while (hi - lo > 1) {
7991                 int mid = (lo + hi) / 2;
7992                 sector_t a = BB_OFFSET(p[mid]);
7993                 if (a < target)
7994                         /* This could still be the one, earlier ranges
7995                          * could not. */
7996                         lo = mid;
7997                 else
7998                         /* This and later ranges are definitely out. */
7999                         hi = mid;
8000         }
8001         /* 'lo' might be the last that started before target, but 'hi' isn't */
8002         if (hi > lo) {
8003                 /* need to check all range that end after 's' to see if
8004                  * any are unacknowledged.
8005                  */
8006                 while (lo >= 0 &&
8007                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8008                         if (BB_OFFSET(p[lo]) < target) {
8009                                 /* starts before the end, and finishes after
8010                                  * the start, so they must overlap
8011                                  */
8012                                 if (rv != -1 && BB_ACK(p[lo]))
8013                                         rv = 1;
8014                                 else
8015                                         rv = -1;
8016                                 *first_bad = BB_OFFSET(p[lo]);
8017                                 *bad_sectors = BB_LEN(p[lo]);
8018                         }
8019                         lo--;
8020                 }
8021         }
8022
8023         if (read_seqretry(&bb->lock, seq))
8024                 goto retry;
8025
8026         return rv;
8027 }
8028 EXPORT_SYMBOL_GPL(md_is_badblock);
8029
8030 /*
8031  * Add a range of bad blocks to the table.
8032  * This might extend the table, or might contract it
8033  * if two adjacent ranges can be merged.
8034  * We binary-search to find the 'insertion' point, then
8035  * decide how best to handle it.
8036  */
8037 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8038                             int acknowledged)
8039 {
8040         u64 *p;
8041         int lo, hi;
8042         int rv = 1;
8043
8044         if (bb->shift < 0)
8045                 /* badblocks are disabled */
8046                 return 0;
8047
8048         if (bb->shift) {
8049                 /* round the start down, and the end up */
8050                 sector_t next = s + sectors;
8051                 s >>= bb->shift;
8052                 next += (1<<bb->shift) - 1;
8053                 next >>= bb->shift;
8054                 sectors = next - s;
8055         }
8056
8057         write_seqlock_irq(&bb->lock);
8058
8059         p = bb->page;
8060         lo = 0;
8061         hi = bb->count;
8062         /* Find the last range that starts at-or-before 's' */
8063         while (hi - lo > 1) {
8064                 int mid = (lo + hi) / 2;
8065                 sector_t a = BB_OFFSET(p[mid]);
8066                 if (a <= s)
8067                         lo = mid;
8068                 else
8069                         hi = mid;
8070         }
8071         if (hi > lo && BB_OFFSET(p[lo]) > s)
8072                 hi = lo;
8073
8074         if (hi > lo) {
8075                 /* we found a range that might merge with the start
8076                  * of our new range
8077                  */
8078                 sector_t a = BB_OFFSET(p[lo]);
8079                 sector_t e = a + BB_LEN(p[lo]);
8080                 int ack = BB_ACK(p[lo]);
8081                 if (e >= s) {
8082                         /* Yes, we can merge with a previous range */
8083                         if (s == a && s + sectors >= e)
8084                                 /* new range covers old */
8085                                 ack = acknowledged;
8086                         else
8087                                 ack = ack && acknowledged;
8088
8089                         if (e < s + sectors)
8090                                 e = s + sectors;
8091                         if (e - a <= BB_MAX_LEN) {
8092                                 p[lo] = BB_MAKE(a, e-a, ack);
8093                                 s = e;
8094                         } else {
8095                                 /* does not all fit in one range,
8096                                  * make p[lo] maximal
8097                                  */
8098                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8099                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8100                                 s = a + BB_MAX_LEN;
8101                         }
8102                         sectors = e - s;
8103                 }
8104         }
8105         if (sectors && hi < bb->count) {
8106                 /* 'hi' points to the first range that starts after 's'.
8107                  * Maybe we can merge with the start of that range */
8108                 sector_t a = BB_OFFSET(p[hi]);
8109                 sector_t e = a + BB_LEN(p[hi]);
8110                 int ack = BB_ACK(p[hi]);
8111                 if (a <= s + sectors) {
8112                         /* merging is possible */
8113                         if (e <= s + sectors) {
8114                                 /* full overlap */
8115                                 e = s + sectors;
8116                                 ack = acknowledged;
8117                         } else
8118                                 ack = ack && acknowledged;
8119
8120                         a = s;
8121                         if (e - a <= BB_MAX_LEN) {
8122                                 p[hi] = BB_MAKE(a, e-a, ack);
8123                                 s = e;
8124                         } else {
8125                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8126                                 s = a + BB_MAX_LEN;
8127                         }
8128                         sectors = e - s;
8129                         lo = hi;
8130                         hi++;
8131                 }
8132         }
8133         if (sectors == 0 && hi < bb->count) {
8134                 /* we might be able to combine lo and hi */
8135                 /* Note: 's' is at the end of 'lo' */
8136                 sector_t a = BB_OFFSET(p[hi]);
8137                 int lolen = BB_LEN(p[lo]);
8138                 int hilen = BB_LEN(p[hi]);
8139                 int newlen = lolen + hilen - (s - a);
8140                 if (s >= a && newlen < BB_MAX_LEN) {
8141                         /* yes, we can combine them */
8142                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8143                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8144                         memmove(p + hi, p + hi + 1,
8145                                 (bb->count - hi - 1) * 8);
8146                         bb->count--;
8147                 }
8148         }
8149         while (sectors) {
8150                 /* didn't merge (it all).
8151                  * Need to add a range just before 'hi' */
8152                 if (bb->count >= MD_MAX_BADBLOCKS) {
8153                         /* No room for more */
8154                         rv = 0;
8155                         break;
8156                 } else {
8157                         int this_sectors = sectors;
8158                         memmove(p + hi + 1, p + hi,
8159                                 (bb->count - hi) * 8);
8160                         bb->count++;
8161
8162                         if (this_sectors > BB_MAX_LEN)
8163                                 this_sectors = BB_MAX_LEN;
8164                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8165                         sectors -= this_sectors;
8166                         s += this_sectors;
8167                 }
8168         }
8169
8170         bb->changed = 1;
8171         if (!acknowledged)
8172                 bb->unacked_exist = 1;
8173         write_sequnlock_irq(&bb->lock);
8174
8175         return rv;
8176 }
8177
8178 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8179                        int is_new)
8180 {
8181         int rv;
8182         if (is_new)
8183                 s += rdev->new_data_offset;
8184         else
8185                 s += rdev->data_offset;
8186         rv = md_set_badblocks(&rdev->badblocks,
8187                               s, sectors, 0);
8188         if (rv) {
8189                 /* Make sure they get written out promptly */
8190                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8191                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8192                 md_wakeup_thread(rdev->mddev->thread);
8193         }
8194         return rv;
8195 }
8196 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8197
8198 /*
8199  * Remove a range of bad blocks from the table.
8200  * This may involve extending the table if we spilt a region,
8201  * but it must not fail.  So if the table becomes full, we just
8202  * drop the remove request.
8203  */
8204 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8205 {
8206         u64 *p;
8207         int lo, hi;
8208         sector_t target = s + sectors;
8209         int rv = 0;
8210
8211         if (bb->shift > 0) {
8212                 /* When clearing we round the start up and the end down.
8213                  * This should not matter as the shift should align with
8214                  * the block size and no rounding should ever be needed.
8215                  * However it is better the think a block is bad when it
8216                  * isn't than to think a block is not bad when it is.
8217                  */
8218                 s += (1<<bb->shift) - 1;
8219                 s >>= bb->shift;
8220                 target >>= bb->shift;
8221                 sectors = target - s;
8222         }
8223
8224         write_seqlock_irq(&bb->lock);
8225
8226         p = bb->page;
8227         lo = 0;
8228         hi = bb->count;
8229         /* Find the last range that starts before 'target' */
8230         while (hi - lo > 1) {
8231                 int mid = (lo + hi) / 2;
8232                 sector_t a = BB_OFFSET(p[mid]);
8233                 if (a < target)
8234                         lo = mid;
8235                 else
8236                         hi = mid;
8237         }
8238         if (hi > lo) {
8239                 /* p[lo] is the last range that could overlap the
8240                  * current range.  Earlier ranges could also overlap,
8241                  * but only this one can overlap the end of the range.
8242                  */
8243                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8244                         /* Partial overlap, leave the tail of this range */
8245                         int ack = BB_ACK(p[lo]);
8246                         sector_t a = BB_OFFSET(p[lo]);
8247                         sector_t end = a + BB_LEN(p[lo]);
8248
8249                         if (a < s) {
8250                                 /* we need to split this range */
8251                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8252                                         rv = 0;
8253                                         goto out;
8254                                 }
8255                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8256                                 bb->count++;
8257                                 p[lo] = BB_MAKE(a, s-a, ack);
8258                                 lo++;
8259                         }
8260                         p[lo] = BB_MAKE(target, end - target, ack);
8261                         /* there is no longer an overlap */
8262                         hi = lo;
8263                         lo--;
8264                 }
8265                 while (lo >= 0 &&
8266                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8267                         /* This range does overlap */
8268                         if (BB_OFFSET(p[lo]) < s) {
8269                                 /* Keep the early parts of this range. */
8270                                 int ack = BB_ACK(p[lo]);
8271                                 sector_t start = BB_OFFSET(p[lo]);
8272                                 p[lo] = BB_MAKE(start, s - start, ack);
8273                                 /* now low doesn't overlap, so.. */
8274                                 break;
8275                         }
8276                         lo--;
8277                 }
8278                 /* 'lo' is strictly before, 'hi' is strictly after,
8279                  * anything between needs to be discarded
8280                  */
8281                 if (hi - lo > 1) {
8282                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8283                         bb->count -= (hi - lo - 1);
8284                 }
8285         }
8286
8287         bb->changed = 1;
8288 out:
8289         write_sequnlock_irq(&bb->lock);
8290         return rv;
8291 }
8292
8293 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8294                          int is_new)
8295 {
8296         if (is_new)
8297                 s += rdev->new_data_offset;
8298         else
8299                 s += rdev->data_offset;
8300         return md_clear_badblocks(&rdev->badblocks,
8301                                   s, sectors);
8302 }
8303 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8304
8305 /*
8306  * Acknowledge all bad blocks in a list.
8307  * This only succeeds if ->changed is clear.  It is used by
8308  * in-kernel metadata updates
8309  */
8310 void md_ack_all_badblocks(struct badblocks *bb)
8311 {
8312         if (bb->page == NULL || bb->changed)
8313                 /* no point even trying */
8314                 return;
8315         write_seqlock_irq(&bb->lock);
8316
8317         if (bb->changed == 0 && bb->unacked_exist) {
8318                 u64 *p = bb->page;
8319                 int i;
8320                 for (i = 0; i < bb->count ; i++) {
8321                         if (!BB_ACK(p[i])) {
8322                                 sector_t start = BB_OFFSET(p[i]);
8323                                 int len = BB_LEN(p[i]);
8324                                 p[i] = BB_MAKE(start, len, 1);
8325                         }
8326                 }
8327                 bb->unacked_exist = 0;
8328         }
8329         write_sequnlock_irq(&bb->lock);
8330 }
8331 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8332
8333 /* sysfs access to bad-blocks list.
8334  * We present two files.
8335  * 'bad-blocks' lists sector numbers and lengths of ranges that
8336  *    are recorded as bad.  The list is truncated to fit within
8337  *    the one-page limit of sysfs.
8338  *    Writing "sector length" to this file adds an acknowledged
8339  *    bad block list.
8340  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8341  *    been acknowledged.  Writing to this file adds bad blocks
8342  *    without acknowledging them.  This is largely for testing.
8343  */
8344
8345 static ssize_t
8346 badblocks_show(struct badblocks *bb, char *page, int unack)
8347 {
8348         size_t len;
8349         int i;
8350         u64 *p = bb->page;
8351         unsigned seq;
8352
8353         if (bb->shift < 0)
8354                 return 0;
8355
8356 retry:
8357         seq = read_seqbegin(&bb->lock);
8358
8359         len = 0;
8360         i = 0;
8361
8362         while (len < PAGE_SIZE && i < bb->count) {
8363                 sector_t s = BB_OFFSET(p[i]);
8364                 unsigned int length = BB_LEN(p[i]);
8365                 int ack = BB_ACK(p[i]);
8366                 i++;
8367
8368                 if (unack && ack)
8369                         continue;
8370
8371                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8372                                 (unsigned long long)s << bb->shift,
8373                                 length << bb->shift);
8374         }
8375         if (unack && len == 0)
8376                 bb->unacked_exist = 0;
8377
8378         if (read_seqretry(&bb->lock, seq))
8379                 goto retry;
8380
8381         return len;
8382 }
8383
8384 #define DO_DEBUG 1
8385
8386 static ssize_t
8387 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8388 {
8389         unsigned long long sector;
8390         int length;
8391         char newline;
8392 #ifdef DO_DEBUG
8393         /* Allow clearing via sysfs *only* for testing/debugging.
8394          * Normally only a successful write may clear a badblock
8395          */
8396         int clear = 0;
8397         if (page[0] == '-') {
8398                 clear = 1;
8399                 page++;
8400         }
8401 #endif /* DO_DEBUG */
8402
8403         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8404         case 3:
8405                 if (newline != '\n')
8406                         return -EINVAL;
8407         case 2:
8408                 if (length <= 0)
8409                         return -EINVAL;
8410                 break;
8411         default:
8412                 return -EINVAL;
8413         }
8414
8415 #ifdef DO_DEBUG
8416         if (clear) {
8417                 md_clear_badblocks(bb, sector, length);
8418                 return len;
8419         }
8420 #endif /* DO_DEBUG */
8421         if (md_set_badblocks(bb, sector, length, !unack))
8422                 return len;
8423         else
8424                 return -ENOSPC;
8425 }
8426
8427 static int md_notify_reboot(struct notifier_block *this,
8428                             unsigned long code, void *x)
8429 {
8430         struct list_head *tmp;
8431         struct mddev *mddev;
8432         int need_delay = 0;
8433
8434         for_each_mddev(mddev, tmp) {
8435                 if (mddev_trylock(mddev)) {
8436                         if (mddev->pers)
8437                                 __md_stop_writes(mddev);
8438                         mddev->safemode = 2;
8439                         mddev_unlock(mddev);
8440                 }
8441                 need_delay = 1;
8442         }
8443         /*
8444          * certain more exotic SCSI devices are known to be
8445          * volatile wrt too early system reboots. While the
8446          * right place to handle this issue is the given
8447          * driver, we do want to have a safe RAID driver ...
8448          */
8449         if (need_delay)
8450                 mdelay(1000*1);
8451
8452         return NOTIFY_DONE;
8453 }
8454
8455 static struct notifier_block md_notifier = {
8456         .notifier_call  = md_notify_reboot,
8457         .next           = NULL,
8458         .priority       = INT_MAX, /* before any real devices */
8459 };
8460
8461 static void md_geninit(void)
8462 {
8463         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8464
8465         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8466 }
8467
8468 static int __init md_init(void)
8469 {
8470         int ret = -ENOMEM;
8471
8472         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8473         if (!md_wq)
8474                 goto err_wq;
8475
8476         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8477         if (!md_misc_wq)
8478                 goto err_misc_wq;
8479
8480         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8481                 goto err_md;
8482
8483         if ((ret = register_blkdev(0, "mdp")) < 0)
8484                 goto err_mdp;
8485         mdp_major = ret;
8486
8487         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8488                             md_probe, NULL, NULL);
8489         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8490                             md_probe, NULL, NULL);
8491
8492         register_reboot_notifier(&md_notifier);
8493         raid_table_header = register_sysctl_table(raid_root_table);
8494
8495         md_geninit();
8496         return 0;
8497
8498 err_mdp:
8499         unregister_blkdev(MD_MAJOR, "md");
8500 err_md:
8501         destroy_workqueue(md_misc_wq);
8502 err_misc_wq:
8503         destroy_workqueue(md_wq);
8504 err_wq:
8505         return ret;
8506 }
8507
8508 #ifndef MODULE
8509
8510 /*
8511  * Searches all registered partitions for autorun RAID arrays
8512  * at boot time.
8513  */
8514
8515 static LIST_HEAD(all_detected_devices);
8516 struct detected_devices_node {
8517         struct list_head list;
8518         dev_t dev;
8519 };
8520
8521 void md_autodetect_dev(dev_t dev)
8522 {
8523         struct detected_devices_node *node_detected_dev;
8524
8525         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8526         if (node_detected_dev) {
8527                 node_detected_dev->dev = dev;
8528                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8529         } else {
8530                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8531                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8532         }
8533 }
8534
8535
8536 static void autostart_arrays(int part)
8537 {
8538         struct md_rdev *rdev;
8539         struct detected_devices_node *node_detected_dev;
8540         dev_t dev;
8541         int i_scanned, i_passed;
8542
8543         i_scanned = 0;
8544         i_passed = 0;
8545
8546         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8547
8548         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8549                 i_scanned++;
8550                 node_detected_dev = list_entry(all_detected_devices.next,
8551                                         struct detected_devices_node, list);
8552                 list_del(&node_detected_dev->list);
8553                 dev = node_detected_dev->dev;
8554                 kfree(node_detected_dev);
8555                 rdev = md_import_device(dev,0, 90);
8556                 if (IS_ERR(rdev))
8557                         continue;
8558
8559                 if (test_bit(Faulty, &rdev->flags)) {
8560                         MD_BUG();
8561                         continue;
8562                 }
8563                 set_bit(AutoDetected, &rdev->flags);
8564                 list_add(&rdev->same_set, &pending_raid_disks);
8565                 i_passed++;
8566         }
8567
8568         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8569                                                 i_scanned, i_passed);
8570
8571         autorun_devices(part);
8572 }
8573
8574 #endif /* !MODULE */
8575
8576 static __exit void md_exit(void)
8577 {
8578         struct mddev *mddev;
8579         struct list_head *tmp;
8580
8581         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8582         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8583
8584         unregister_blkdev(MD_MAJOR,"md");
8585         unregister_blkdev(mdp_major, "mdp");
8586         unregister_reboot_notifier(&md_notifier);
8587         unregister_sysctl_table(raid_table_header);
8588         remove_proc_entry("mdstat", NULL);
8589         for_each_mddev(mddev, tmp) {
8590                 export_array(mddev);
8591                 mddev->hold_active = 0;
8592         }
8593         destroy_workqueue(md_misc_wq);
8594         destroy_workqueue(md_wq);
8595 }
8596
8597 subsys_initcall(md_init);
8598 module_exit(md_exit)
8599
8600 static int get_ro(char *buffer, struct kernel_param *kp)
8601 {
8602         return sprintf(buffer, "%d", start_readonly);
8603 }
8604 static int set_ro(const char *val, struct kernel_param *kp)
8605 {
8606         char *e;
8607         int num = simple_strtoul(val, &e, 10);
8608         if (*val && (*e == '\0' || *e == '\n')) {
8609                 start_readonly = num;
8610                 return 0;
8611         }
8612         return -EINVAL;
8613 }
8614
8615 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8616 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8617
8618 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8619
8620 EXPORT_SYMBOL(register_md_personality);
8621 EXPORT_SYMBOL(unregister_md_personality);
8622 EXPORT_SYMBOL(md_error);
8623 EXPORT_SYMBOL(md_done_sync);
8624 EXPORT_SYMBOL(md_write_start);
8625 EXPORT_SYMBOL(md_write_end);
8626 EXPORT_SYMBOL(md_register_thread);
8627 EXPORT_SYMBOL(md_unregister_thread);
8628 EXPORT_SYMBOL(md_wakeup_thread);
8629 EXPORT_SYMBOL(md_check_recovery);
8630 MODULE_LICENSE("GPL");
8631 MODULE_DESCRIPTION("MD RAID framework");
8632 MODULE_ALIAS("md");
8633 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);