md: simplify export_array()
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200         atomic_inc(&md_event_count);
201         wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210         atomic_inc(&md_event_count);
211         wake_up(&md_event_waiters);
212 }
213
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)                                     \
230                                                                         \
231         for (({ spin_lock(&all_mddevs_lock);                            \
232                 _tmp = all_mddevs.next;                                 \
233                 _mddev = NULL;});                                       \
234              ({ if (_tmp != &all_mddevs)                                \
235                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236                 spin_unlock(&all_mddevs_lock);                          \
237                 if (_mddev) mddev_put(_mddev);                          \
238                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
239                 _tmp != &all_mddevs;});                                 \
240              ({ spin_lock(&all_mddevs_lock);                            \
241                 _tmp = _tmp->next;})                                    \
242                 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254         const int rw = bio_data_dir(bio);
255         struct mddev *mddev = q->queuedata;
256         int cpu;
257         unsigned int sectors;
258
259         if (mddev == NULL || mddev->pers == NULL
260             || !mddev->ready) {
261                 bio_io_error(bio);
262                 return;
263         }
264         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266                 return;
267         }
268         smp_rmb(); /* Ensure implications of  'active' are visible */
269         rcu_read_lock();
270         if (mddev->suspended) {
271                 DEFINE_WAIT(__wait);
272                 for (;;) {
273                         prepare_to_wait(&mddev->sb_wait, &__wait,
274                                         TASK_UNINTERRUPTIBLE);
275                         if (!mddev->suspended)
276                                 break;
277                         rcu_read_unlock();
278                         schedule();
279                         rcu_read_lock();
280                 }
281                 finish_wait(&mddev->sb_wait, &__wait);
282         }
283         atomic_inc(&mddev->active_io);
284         rcu_read_unlock();
285
286         /*
287          * save the sectors now since our bio can
288          * go away inside make_request
289          */
290         sectors = bio_sectors(bio);
291         mddev->pers->make_request(mddev, bio);
292
293         cpu = part_stat_lock();
294         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296         part_stat_unlock();
297
298         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299                 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310         BUG_ON(mddev->suspended);
311         mddev->suspended = 1;
312         synchronize_rcu();
313         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314         mddev->pers->quiesce(mddev, 1);
315
316         del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322         mddev->suspended = 0;
323         wake_up(&mddev->sb_wait);
324         mddev->pers->quiesce(mddev, 0);
325
326         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327         md_wakeup_thread(mddev->thread);
328         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334         return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339  * Generic flush handling for md
340  */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344         struct md_rdev *rdev = bio->bi_private;
345         struct mddev *mddev = rdev->mddev;
346
347         rdev_dec_pending(rdev, mddev);
348
349         if (atomic_dec_and_test(&mddev->flush_pending)) {
350                 /* The pre-request flush has finished */
351                 queue_work(md_wq, &mddev->flush_work);
352         }
353         bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361         struct md_rdev *rdev;
362
363         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364         atomic_set(&mddev->flush_pending, 1);
365         rcu_read_lock();
366         rdev_for_each_rcu(rdev, mddev)
367                 if (rdev->raid_disk >= 0 &&
368                     !test_bit(Faulty, &rdev->flags)) {
369                         /* Take two references, one is dropped
370                          * when request finishes, one after
371                          * we reclaim rcu_read_lock
372                          */
373                         struct bio *bi;
374                         atomic_inc(&rdev->nr_pending);
375                         atomic_inc(&rdev->nr_pending);
376                         rcu_read_unlock();
377                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378                         bi->bi_end_io = md_end_flush;
379                         bi->bi_private = rdev;
380                         bi->bi_bdev = rdev->bdev;
381                         atomic_inc(&mddev->flush_pending);
382                         submit_bio(WRITE_FLUSH, bi);
383                         rcu_read_lock();
384                         rdev_dec_pending(rdev, mddev);
385                 }
386         rcu_read_unlock();
387         if (atomic_dec_and_test(&mddev->flush_pending))
388                 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394         struct bio *bio = mddev->flush_bio;
395
396         if (bio->bi_iter.bi_size == 0)
397                 /* an empty barrier - all done */
398                 bio_endio(bio, 0);
399         else {
400                 bio->bi_rw &= ~REQ_FLUSH;
401                 mddev->pers->make_request(mddev, bio);
402         }
403
404         mddev->flush_bio = NULL;
405         wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410         spin_lock_irq(&mddev->write_lock);
411         wait_event_lock_irq(mddev->sb_wait,
412                             !mddev->flush_bio,
413                             mddev->write_lock);
414         mddev->flush_bio = bio;
415         spin_unlock_irq(&mddev->write_lock);
416
417         INIT_WORK(&mddev->flush_work, submit_flushes);
418         queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424         struct mddev *mddev = cb->data;
425         md_wakeup_thread(mddev->thread);
426         kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432         atomic_inc(&mddev->active);
433         return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440         struct bio_set *bs = NULL;
441
442         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443                 return;
444         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445             mddev->ctime == 0 && !mddev->hold_active) {
446                 /* Array is not configured at all, and not held active,
447                  * so destroy it */
448                 list_del_init(&mddev->all_mddevs);
449                 bs = mddev->bio_set;
450                 mddev->bio_set = NULL;
451                 if (mddev->gendisk) {
452                         /* We did a probe so need to clean up.  Call
453                          * queue_work inside the spinlock so that
454                          * flush_workqueue() after mddev_find will
455                          * succeed in waiting for the work to be done.
456                          */
457                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458                         queue_work(md_misc_wq, &mddev->del_work);
459                 } else
460                         kfree(mddev);
461         }
462         spin_unlock(&all_mddevs_lock);
463         if (bs)
464                 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469         mutex_init(&mddev->open_mutex);
470         mutex_init(&mddev->reconfig_mutex);
471         mutex_init(&mddev->bitmap_info.mutex);
472         INIT_LIST_HEAD(&mddev->disks);
473         INIT_LIST_HEAD(&mddev->all_mddevs);
474         init_timer(&mddev->safemode_timer);
475         atomic_set(&mddev->active, 1);
476         atomic_set(&mddev->openers, 0);
477         atomic_set(&mddev->active_io, 0);
478         spin_lock_init(&mddev->write_lock);
479         atomic_set(&mddev->flush_pending, 0);
480         init_waitqueue_head(&mddev->sb_wait);
481         init_waitqueue_head(&mddev->recovery_wait);
482         mddev->reshape_position = MaxSector;
483         mddev->reshape_backwards = 0;
484         mddev->last_sync_action = "none";
485         mddev->resync_min = 0;
486         mddev->resync_max = MaxSector;
487         mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493         struct mddev *mddev, *new = NULL;
494
495         if (unit && MAJOR(unit) != MD_MAJOR)
496                 unit &= ~((1<<MdpMinorShift)-1);
497
498  retry:
499         spin_lock(&all_mddevs_lock);
500
501         if (unit) {
502                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503                         if (mddev->unit == unit) {
504                                 mddev_get(mddev);
505                                 spin_unlock(&all_mddevs_lock);
506                                 kfree(new);
507                                 return mddev;
508                         }
509
510                 if (new) {
511                         list_add(&new->all_mddevs, &all_mddevs);
512                         spin_unlock(&all_mddevs_lock);
513                         new->hold_active = UNTIL_IOCTL;
514                         return new;
515                 }
516         } else if (new) {
517                 /* find an unused unit number */
518                 static int next_minor = 512;
519                 int start = next_minor;
520                 int is_free = 0;
521                 int dev = 0;
522                 while (!is_free) {
523                         dev = MKDEV(MD_MAJOR, next_minor);
524                         next_minor++;
525                         if (next_minor > MINORMASK)
526                                 next_minor = 0;
527                         if (next_minor == start) {
528                                 /* Oh dear, all in use. */
529                                 spin_unlock(&all_mddevs_lock);
530                                 kfree(new);
531                                 return NULL;
532                         }
533                                 
534                         is_free = 1;
535                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536                                 if (mddev->unit == dev) {
537                                         is_free = 0;
538                                         break;
539                                 }
540                 }
541                 new->unit = dev;
542                 new->md_minor = MINOR(dev);
543                 new->hold_active = UNTIL_STOP;
544                 list_add(&new->all_mddevs, &all_mddevs);
545                 spin_unlock(&all_mddevs_lock);
546                 return new;
547         }
548         spin_unlock(&all_mddevs_lock);
549
550         new = kzalloc(sizeof(*new), GFP_KERNEL);
551         if (!new)
552                 return NULL;
553
554         new->unit = unit;
555         if (MAJOR(unit) == MD_MAJOR)
556                 new->md_minor = MINOR(unit);
557         else
558                 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560         mddev_init(new);
561
562         goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567         return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571  * failure due to interrupts is not acceptable.
572  */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575         mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580         return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585         return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592         if (mddev->to_remove) {
593                 /* These cannot be removed under reconfig_mutex as
594                  * an access to the files will try to take reconfig_mutex
595                  * while holding the file unremovable, which leads to
596                  * a deadlock.
597                  * So hold set sysfs_active while the remove in happeing,
598                  * and anything else which might set ->to_remove or my
599                  * otherwise change the sysfs namespace will fail with
600                  * -EBUSY if sysfs_active is still set.
601                  * We set sysfs_active under reconfig_mutex and elsewhere
602                  * test it under the same mutex to ensure its correct value
603                  * is seen.
604                  */
605                 struct attribute_group *to_remove = mddev->to_remove;
606                 mddev->to_remove = NULL;
607                 mddev->sysfs_active = 1;
608                 mutex_unlock(&mddev->reconfig_mutex);
609
610                 if (mddev->kobj.sd) {
611                         if (to_remove != &md_redundancy_group)
612                                 sysfs_remove_group(&mddev->kobj, to_remove);
613                         if (mddev->pers == NULL ||
614                             mddev->pers->sync_request == NULL) {
615                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616                                 if (mddev->sysfs_action)
617                                         sysfs_put(mddev->sysfs_action);
618                                 mddev->sysfs_action = NULL;
619                         }
620                 }
621                 mddev->sysfs_active = 0;
622         } else
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625         /* As we've dropped the mutex we need a spinlock to
626          * make sure the thread doesn't disappear
627          */
628         spin_lock(&pers_lock);
629         md_wakeup_thread(mddev->thread);
630         spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each_rcu(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643
644 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
645 {
646         struct md_rdev *rdev;
647
648         rdev_for_each(rdev, mddev)
649                 if (rdev->bdev->bd_dev == dev)
650                         return rdev;
651
652         return NULL;
653 }
654
655 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
656 {
657         struct md_rdev *rdev;
658
659         rdev_for_each_rcu(rdev, mddev)
660                 if (rdev->bdev->bd_dev == dev)
661                         return rdev;
662
663         return NULL;
664 }
665
666 static struct md_personality *find_pers(int level, char *clevel)
667 {
668         struct md_personality *pers;
669         list_for_each_entry(pers, &pers_list, list) {
670                 if (level != LEVEL_NONE && pers->level == level)
671                         return pers;
672                 if (strcmp(pers->name, clevel)==0)
673                         return pers;
674         }
675         return NULL;
676 }
677
678 /* return the offset of the super block in 512byte sectors */
679 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
680 {
681         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
682         return MD_NEW_SIZE_SECTORS(num_sectors);
683 }
684
685 static int alloc_disk_sb(struct md_rdev * rdev)
686 {
687         if (rdev->sb_page)
688                 MD_BUG();
689
690         rdev->sb_page = alloc_page(GFP_KERNEL);
691         if (!rdev->sb_page) {
692                 printk(KERN_ALERT "md: out of memory.\n");
693                 return -ENOMEM;
694         }
695
696         return 0;
697 }
698
699 void md_rdev_clear(struct md_rdev *rdev)
700 {
701         if (rdev->sb_page) {
702                 put_page(rdev->sb_page);
703                 rdev->sb_loaded = 0;
704                 rdev->sb_page = NULL;
705                 rdev->sb_start = 0;
706                 rdev->sectors = 0;
707         }
708         if (rdev->bb_page) {
709                 put_page(rdev->bb_page);
710                 rdev->bb_page = NULL;
711         }
712         kfree(rdev->badblocks.page);
713         rdev->badblocks.page = NULL;
714 }
715 EXPORT_SYMBOL_GPL(md_rdev_clear);
716
717 static void super_written(struct bio *bio, int error)
718 {
719         struct md_rdev *rdev = bio->bi_private;
720         struct mddev *mddev = rdev->mddev;
721
722         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
723                 printk("md: super_written gets error=%d, uptodate=%d\n",
724                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
725                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
726                 md_error(mddev, rdev);
727         }
728
729         if (atomic_dec_and_test(&mddev->pending_writes))
730                 wake_up(&mddev->sb_wait);
731         bio_put(bio);
732 }
733
734 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
735                    sector_t sector, int size, struct page *page)
736 {
737         /* write first size bytes of page to sector of rdev
738          * Increment mddev->pending_writes before returning
739          * and decrement it on completion, waking up sb_wait
740          * if zero is reached.
741          * If an error occurred, call md_error
742          */
743         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
744
745         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
746         bio->bi_iter.bi_sector = sector;
747         bio_add_page(bio, page, size, 0);
748         bio->bi_private = rdev;
749         bio->bi_end_io = super_written;
750
751         atomic_inc(&mddev->pending_writes);
752         submit_bio(WRITE_FLUSH_FUA, bio);
753 }
754
755 void md_super_wait(struct mddev *mddev)
756 {
757         /* wait for all superblock writes that were scheduled to complete */
758         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
759 }
760
761 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
762                  struct page *page, int rw, bool metadata_op)
763 {
764         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
765         int ret;
766
767         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
768                 rdev->meta_bdev : rdev->bdev;
769         if (metadata_op)
770                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
771         else if (rdev->mddev->reshape_position != MaxSector &&
772                  (rdev->mddev->reshape_backwards ==
773                   (sector >= rdev->mddev->reshape_position)))
774                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
775         else
776                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
777         bio_add_page(bio, page, size, 0);
778         submit_bio_wait(rw, bio);
779
780         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
781         bio_put(bio);
782         return ret;
783 }
784 EXPORT_SYMBOL_GPL(sync_page_io);
785
786 static int read_disk_sb(struct md_rdev * rdev, int size)
787 {
788         char b[BDEVNAME_SIZE];
789         if (!rdev->sb_page) {
790                 MD_BUG();
791                 return -EINVAL;
792         }
793         if (rdev->sb_loaded)
794                 return 0;
795
796
797         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
798                 goto fail;
799         rdev->sb_loaded = 1;
800         return 0;
801
802 fail:
803         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
804                 bdevname(rdev->bdev,b));
805         return -EINVAL;
806 }
807
808 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810         return  sb1->set_uuid0 == sb2->set_uuid0 &&
811                 sb1->set_uuid1 == sb2->set_uuid1 &&
812                 sb1->set_uuid2 == sb2->set_uuid2 &&
813                 sb1->set_uuid3 == sb2->set_uuid3;
814 }
815
816 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
817 {
818         int ret;
819         mdp_super_t *tmp1, *tmp2;
820
821         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
822         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
823
824         if (!tmp1 || !tmp2) {
825                 ret = 0;
826                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
827                 goto abort;
828         }
829
830         *tmp1 = *sb1;
831         *tmp2 = *sb2;
832
833         /*
834          * nr_disks is not constant
835          */
836         tmp1->nr_disks = 0;
837         tmp2->nr_disks = 0;
838
839         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
840 abort:
841         kfree(tmp1);
842         kfree(tmp2);
843         return ret;
844 }
845
846
847 static u32 md_csum_fold(u32 csum)
848 {
849         csum = (csum & 0xffff) + (csum >> 16);
850         return (csum & 0xffff) + (csum >> 16);
851 }
852
853 static unsigned int calc_sb_csum(mdp_super_t * sb)
854 {
855         u64 newcsum = 0;
856         u32 *sb32 = (u32*)sb;
857         int i;
858         unsigned int disk_csum, csum;
859
860         disk_csum = sb->sb_csum;
861         sb->sb_csum = 0;
862
863         for (i = 0; i < MD_SB_BYTES/4 ; i++)
864                 newcsum += sb32[i];
865         csum = (newcsum & 0xffffffff) + (newcsum>>32);
866
867
868 #ifdef CONFIG_ALPHA
869         /* This used to use csum_partial, which was wrong for several
870          * reasons including that different results are returned on
871          * different architectures.  It isn't critical that we get exactly
872          * the same return value as before (we always csum_fold before
873          * testing, and that removes any differences).  However as we
874          * know that csum_partial always returned a 16bit value on
875          * alphas, do a fold to maximise conformity to previous behaviour.
876          */
877         sb->sb_csum = md_csum_fold(disk_csum);
878 #else
879         sb->sb_csum = disk_csum;
880 #endif
881         return csum;
882 }
883
884
885 /*
886  * Handle superblock details.
887  * We want to be able to handle multiple superblock formats
888  * so we have a common interface to them all, and an array of
889  * different handlers.
890  * We rely on user-space to write the initial superblock, and support
891  * reading and updating of superblocks.
892  * Interface methods are:
893  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894  *      loads and validates a superblock on dev.
895  *      if refdev != NULL, compare superblocks on both devices
896  *    Return:
897  *      0 - dev has a superblock that is compatible with refdev
898  *      1 - dev has a superblock that is compatible and newer than refdev
899  *          so dev should be used as the refdev in future
900  *     -EINVAL superblock incompatible or invalid
901  *     -othererror e.g. -EIO
902  *
903  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
904  *      Verify that dev is acceptable into mddev.
905  *       The first time, mddev->raid_disks will be 0, and data from
906  *       dev should be merged in.  Subsequent calls check that dev
907  *       is new enough.  Return 0 or -EINVAL
908  *
909  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
910  *     Update the superblock for rdev with data in mddev
911  *     This does not write to disc.
912  *
913  */
914
915 struct super_type  {
916         char                *name;
917         struct module       *owner;
918         int                 (*load_super)(struct md_rdev *rdev,
919                                           struct md_rdev *refdev,
920                                           int minor_version);
921         int                 (*validate_super)(struct mddev *mddev,
922                                               struct md_rdev *rdev);
923         void                (*sync_super)(struct mddev *mddev,
924                                           struct md_rdev *rdev);
925         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
926                                                 sector_t num_sectors);
927         int                 (*allow_new_offset)(struct md_rdev *rdev,
928                                                 unsigned long long new_offset);
929 };
930
931 /*
932  * Check that the given mddev has no bitmap.
933  *
934  * This function is called from the run method of all personalities that do not
935  * support bitmaps. It prints an error message and returns non-zero if mddev
936  * has a bitmap. Otherwise, it returns 0.
937  *
938  */
939 int md_check_no_bitmap(struct mddev *mddev)
940 {
941         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
942                 return 0;
943         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944                 mdname(mddev), mddev->pers->name);
945         return 1;
946 }
947 EXPORT_SYMBOL(md_check_no_bitmap);
948
949 /*
950  * load_super for 0.90.0 
951  */
952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
953 {
954         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
955         mdp_super_t *sb;
956         int ret;
957
958         /*
959          * Calculate the position of the superblock (512byte sectors),
960          * it's at the end of the disk.
961          *
962          * It also happens to be a multiple of 4Kb.
963          */
964         rdev->sb_start = calc_dev_sboffset(rdev);
965
966         ret = read_disk_sb(rdev, MD_SB_BYTES);
967         if (ret) return ret;
968
969         ret = -EINVAL;
970
971         bdevname(rdev->bdev, b);
972         sb = page_address(rdev->sb_page);
973
974         if (sb->md_magic != MD_SB_MAGIC) {
975                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
976                        b);
977                 goto abort;
978         }
979
980         if (sb->major_version != 0 ||
981             sb->minor_version < 90 ||
982             sb->minor_version > 91) {
983                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984                         sb->major_version, sb->minor_version,
985                         b);
986                 goto abort;
987         }
988
989         if (sb->raid_disks <= 0)
990                 goto abort;
991
992         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
994                         b);
995                 goto abort;
996         }
997
998         rdev->preferred_minor = sb->md_minor;
999         rdev->data_offset = 0;
1000         rdev->new_data_offset = 0;
1001         rdev->sb_size = MD_SB_BYTES;
1002         rdev->badblocks.shift = -1;
1003
1004         if (sb->level == LEVEL_MULTIPATH)
1005                 rdev->desc_nr = -1;
1006         else
1007                 rdev->desc_nr = sb->this_disk.number;
1008
1009         if (!refdev) {
1010                 ret = 1;
1011         } else {
1012                 __u64 ev1, ev2;
1013                 mdp_super_t *refsb = page_address(refdev->sb_page);
1014                 if (!uuid_equal(refsb, sb)) {
1015                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016                                 b, bdevname(refdev->bdev,b2));
1017                         goto abort;
1018                 }
1019                 if (!sb_equal(refsb, sb)) {
1020                         printk(KERN_WARNING "md: %s has same UUID"
1021                                " but different superblock to %s\n",
1022                                b, bdevname(refdev->bdev, b2));
1023                         goto abort;
1024                 }
1025                 ev1 = md_event(sb);
1026                 ev2 = md_event(refsb);
1027                 if (ev1 > ev2)
1028                         ret = 1;
1029                 else 
1030                         ret = 0;
1031         }
1032         rdev->sectors = rdev->sb_start;
1033         /* Limit to 4TB as metadata cannot record more than that.
1034          * (not needed for Linear and RAID0 as metadata doesn't
1035          * record this size)
1036          */
1037         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1038                 rdev->sectors = (2ULL << 32) - 2;
1039
1040         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1041                 /* "this cannot possibly happen" ... */
1042                 ret = -EINVAL;
1043
1044  abort:
1045         return ret;
1046 }
1047
1048 /*
1049  * validate_super for 0.90.0
1050  */
1051 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1052 {
1053         mdp_disk_t *desc;
1054         mdp_super_t *sb = page_address(rdev->sb_page);
1055         __u64 ev1 = md_event(sb);
1056
1057         rdev->raid_disk = -1;
1058         clear_bit(Faulty, &rdev->flags);
1059         clear_bit(In_sync, &rdev->flags);
1060         clear_bit(Bitmap_sync, &rdev->flags);
1061         clear_bit(WriteMostly, &rdev->flags);
1062
1063         if (mddev->raid_disks == 0) {
1064                 mddev->major_version = 0;
1065                 mddev->minor_version = sb->minor_version;
1066                 mddev->patch_version = sb->patch_version;
1067                 mddev->external = 0;
1068                 mddev->chunk_sectors = sb->chunk_size >> 9;
1069                 mddev->ctime = sb->ctime;
1070                 mddev->utime = sb->utime;
1071                 mddev->level = sb->level;
1072                 mddev->clevel[0] = 0;
1073                 mddev->layout = sb->layout;
1074                 mddev->raid_disks = sb->raid_disks;
1075                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1076                 mddev->events = ev1;
1077                 mddev->bitmap_info.offset = 0;
1078                 mddev->bitmap_info.space = 0;
1079                 /* bitmap can use 60 K after the 4K superblocks */
1080                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1081                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1082                 mddev->reshape_backwards = 0;
1083
1084                 if (mddev->minor_version >= 91) {
1085                         mddev->reshape_position = sb->reshape_position;
1086                         mddev->delta_disks = sb->delta_disks;
1087                         mddev->new_level = sb->new_level;
1088                         mddev->new_layout = sb->new_layout;
1089                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1090                         if (mddev->delta_disks < 0)
1091                                 mddev->reshape_backwards = 1;
1092                 } else {
1093                         mddev->reshape_position = MaxSector;
1094                         mddev->delta_disks = 0;
1095                         mddev->new_level = mddev->level;
1096                         mddev->new_layout = mddev->layout;
1097                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1098                 }
1099
1100                 if (sb->state & (1<<MD_SB_CLEAN))
1101                         mddev->recovery_cp = MaxSector;
1102                 else {
1103                         if (sb->events_hi == sb->cp_events_hi && 
1104                                 sb->events_lo == sb->cp_events_lo) {
1105                                 mddev->recovery_cp = sb->recovery_cp;
1106                         } else
1107                                 mddev->recovery_cp = 0;
1108                 }
1109
1110                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1111                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1112                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1113                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1114
1115                 mddev->max_disks = MD_SB_DISKS;
1116
1117                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1118                     mddev->bitmap_info.file == NULL) {
1119                         mddev->bitmap_info.offset =
1120                                 mddev->bitmap_info.default_offset;
1121                         mddev->bitmap_info.space =
1122                                 mddev->bitmap_info.default_space;
1123                 }
1124
1125         } else if (mddev->pers == NULL) {
1126                 /* Insist on good event counter while assembling, except
1127                  * for spares (which don't need an event count) */
1128                 ++ev1;
1129                 if (sb->disks[rdev->desc_nr].state & (
1130                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1131                         if (ev1 < mddev->events) 
1132                                 return -EINVAL;
1133         } else if (mddev->bitmap) {
1134                 /* if adding to array with a bitmap, then we can accept an
1135                  * older device ... but not too old.
1136                  */
1137                 if (ev1 < mddev->bitmap->events_cleared)
1138                         return 0;
1139                 if (ev1 < mddev->events)
1140                         set_bit(Bitmap_sync, &rdev->flags);
1141         } else {
1142                 if (ev1 < mddev->events)
1143                         /* just a hot-add of a new device, leave raid_disk at -1 */
1144                         return 0;
1145         }
1146
1147         if (mddev->level != LEVEL_MULTIPATH) {
1148                 desc = sb->disks + rdev->desc_nr;
1149
1150                 if (desc->state & (1<<MD_DISK_FAULTY))
1151                         set_bit(Faulty, &rdev->flags);
1152                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1153                             desc->raid_disk < mddev->raid_disks */) {
1154                         set_bit(In_sync, &rdev->flags);
1155                         rdev->raid_disk = desc->raid_disk;
1156                         rdev->saved_raid_disk = desc->raid_disk;
1157                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158                         /* active but not in sync implies recovery up to
1159                          * reshape position.  We don't know exactly where
1160                          * that is, so set to zero for now */
1161                         if (mddev->minor_version >= 91) {
1162                                 rdev->recovery_offset = 0;
1163                                 rdev->raid_disk = desc->raid_disk;
1164                         }
1165                 }
1166                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167                         set_bit(WriteMostly, &rdev->flags);
1168         } else /* MULTIPATH are always insync */
1169                 set_bit(In_sync, &rdev->flags);
1170         return 0;
1171 }
1172
1173 /*
1174  * sync_super for 0.90.0
1175  */
1176 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1177 {
1178         mdp_super_t *sb;
1179         struct md_rdev *rdev2;
1180         int next_spare = mddev->raid_disks;
1181
1182
1183         /* make rdev->sb match mddev data..
1184          *
1185          * 1/ zero out disks
1186          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187          * 3/ any empty disks < next_spare become removed
1188          *
1189          * disks[0] gets initialised to REMOVED because
1190          * we cannot be sure from other fields if it has
1191          * been initialised or not.
1192          */
1193         int i;
1194         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195
1196         rdev->sb_size = MD_SB_BYTES;
1197
1198         sb = page_address(rdev->sb_page);
1199
1200         memset(sb, 0, sizeof(*sb));
1201
1202         sb->md_magic = MD_SB_MAGIC;
1203         sb->major_version = mddev->major_version;
1204         sb->patch_version = mddev->patch_version;
1205         sb->gvalid_words  = 0; /* ignored */
1206         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210
1211         sb->ctime = mddev->ctime;
1212         sb->level = mddev->level;
1213         sb->size = mddev->dev_sectors / 2;
1214         sb->raid_disks = mddev->raid_disks;
1215         sb->md_minor = mddev->md_minor;
1216         sb->not_persistent = 0;
1217         sb->utime = mddev->utime;
1218         sb->state = 0;
1219         sb->events_hi = (mddev->events>>32);
1220         sb->events_lo = (u32)mddev->events;
1221
1222         if (mddev->reshape_position == MaxSector)
1223                 sb->minor_version = 90;
1224         else {
1225                 sb->minor_version = 91;
1226                 sb->reshape_position = mddev->reshape_position;
1227                 sb->new_level = mddev->new_level;
1228                 sb->delta_disks = mddev->delta_disks;
1229                 sb->new_layout = mddev->new_layout;
1230                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231         }
1232         mddev->minor_version = sb->minor_version;
1233         if (mddev->in_sync)
1234         {
1235                 sb->recovery_cp = mddev->recovery_cp;
1236                 sb->cp_events_hi = (mddev->events>>32);
1237                 sb->cp_events_lo = (u32)mddev->events;
1238                 if (mddev->recovery_cp == MaxSector)
1239                         sb->state = (1<< MD_SB_CLEAN);
1240         } else
1241                 sb->recovery_cp = 0;
1242
1243         sb->layout = mddev->layout;
1244         sb->chunk_size = mddev->chunk_sectors << 9;
1245
1246         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248
1249         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250         rdev_for_each(rdev2, mddev) {
1251                 mdp_disk_t *d;
1252                 int desc_nr;
1253                 int is_active = test_bit(In_sync, &rdev2->flags);
1254
1255                 if (rdev2->raid_disk >= 0 &&
1256                     sb->minor_version >= 91)
1257                         /* we have nowhere to store the recovery_offset,
1258                          * but if it is not below the reshape_position,
1259                          * we can piggy-back on that.
1260                          */
1261                         is_active = 1;
1262                 if (rdev2->raid_disk < 0 ||
1263                     test_bit(Faulty, &rdev2->flags))
1264                         is_active = 0;
1265                 if (is_active)
1266                         desc_nr = rdev2->raid_disk;
1267                 else
1268                         desc_nr = next_spare++;
1269                 rdev2->desc_nr = desc_nr;
1270                 d = &sb->disks[rdev2->desc_nr];
1271                 nr_disks++;
1272                 d->number = rdev2->desc_nr;
1273                 d->major = MAJOR(rdev2->bdev->bd_dev);
1274                 d->minor = MINOR(rdev2->bdev->bd_dev);
1275                 if (is_active)
1276                         d->raid_disk = rdev2->raid_disk;
1277                 else
1278                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1279                 if (test_bit(Faulty, &rdev2->flags))
1280                         d->state = (1<<MD_DISK_FAULTY);
1281                 else if (is_active) {
1282                         d->state = (1<<MD_DISK_ACTIVE);
1283                         if (test_bit(In_sync, &rdev2->flags))
1284                                 d->state |= (1<<MD_DISK_SYNC);
1285                         active++;
1286                         working++;
1287                 } else {
1288                         d->state = 0;
1289                         spare++;
1290                         working++;
1291                 }
1292                 if (test_bit(WriteMostly, &rdev2->flags))
1293                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294         }
1295         /* now set the "removed" and "faulty" bits on any missing devices */
1296         for (i=0 ; i < mddev->raid_disks ; i++) {
1297                 mdp_disk_t *d = &sb->disks[i];
1298                 if (d->state == 0 && d->number == 0) {
1299                         d->number = i;
1300                         d->raid_disk = i;
1301                         d->state = (1<<MD_DISK_REMOVED);
1302                         d->state |= (1<<MD_DISK_FAULTY);
1303                         failed++;
1304                 }
1305         }
1306         sb->nr_disks = nr_disks;
1307         sb->active_disks = active;
1308         sb->working_disks = working;
1309         sb->failed_disks = failed;
1310         sb->spare_disks = spare;
1311
1312         sb->this_disk = sb->disks[rdev->desc_nr];
1313         sb->sb_csum = calc_sb_csum(sb);
1314 }
1315
1316 /*
1317  * rdev_size_change for 0.90.0
1318  */
1319 static unsigned long long
1320 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1321 {
1322         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323                 return 0; /* component must fit device */
1324         if (rdev->mddev->bitmap_info.offset)
1325                 return 0; /* can't move bitmap */
1326         rdev->sb_start = calc_dev_sboffset(rdev);
1327         if (!num_sectors || num_sectors > rdev->sb_start)
1328                 num_sectors = rdev->sb_start;
1329         /* Limit to 4TB as metadata cannot record more than that.
1330          * 4TB == 2^32 KB, or 2*2^32 sectors.
1331          */
1332         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1333                 num_sectors = (2ULL << 32) - 2;
1334         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1335                        rdev->sb_page);
1336         md_super_wait(rdev->mddev);
1337         return num_sectors;
1338 }
1339
1340 static int
1341 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1342 {
1343         /* non-zero offset changes not possible with v0.90 */
1344         return new_offset == 0;
1345 }
1346
1347 /*
1348  * version 1 superblock
1349  */
1350
1351 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1352 {
1353         __le32 disk_csum;
1354         u32 csum;
1355         unsigned long long newcsum;
1356         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1357         __le32 *isuper = (__le32*)sb;
1358
1359         disk_csum = sb->sb_csum;
1360         sb->sb_csum = 0;
1361         newcsum = 0;
1362         for (; size >= 4; size -= 4)
1363                 newcsum += le32_to_cpu(*isuper++);
1364
1365         if (size == 2)
1366                 newcsum += le16_to_cpu(*(__le16*) isuper);
1367
1368         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1369         sb->sb_csum = disk_csum;
1370         return cpu_to_le32(csum);
1371 }
1372
1373 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1374                             int acknowledged);
1375 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1376 {
1377         struct mdp_superblock_1 *sb;
1378         int ret;
1379         sector_t sb_start;
1380         sector_t sectors;
1381         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1382         int bmask;
1383
1384         /*
1385          * Calculate the position of the superblock in 512byte sectors.
1386          * It is always aligned to a 4K boundary and
1387          * depeding on minor_version, it can be:
1388          * 0: At least 8K, but less than 12K, from end of device
1389          * 1: At start of device
1390          * 2: 4K from start of device.
1391          */
1392         switch(minor_version) {
1393         case 0:
1394                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1395                 sb_start -= 8*2;
1396                 sb_start &= ~(sector_t)(4*2-1);
1397                 break;
1398         case 1:
1399                 sb_start = 0;
1400                 break;
1401         case 2:
1402                 sb_start = 8;
1403                 break;
1404         default:
1405                 return -EINVAL;
1406         }
1407         rdev->sb_start = sb_start;
1408
1409         /* superblock is rarely larger than 1K, but it can be larger,
1410          * and it is safe to read 4k, so we do that
1411          */
1412         ret = read_disk_sb(rdev, 4096);
1413         if (ret) return ret;
1414
1415
1416         sb = page_address(rdev->sb_page);
1417
1418         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1419             sb->major_version != cpu_to_le32(1) ||
1420             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1421             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1422             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423                 return -EINVAL;
1424
1425         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1426                 printk("md: invalid superblock checksum on %s\n",
1427                         bdevname(rdev->bdev,b));
1428                 return -EINVAL;
1429         }
1430         if (le64_to_cpu(sb->data_size) < 10) {
1431                 printk("md: data_size too small on %s\n",
1432                        bdevname(rdev->bdev,b));
1433                 return -EINVAL;
1434         }
1435         if (sb->pad0 ||
1436             sb->pad3[0] ||
1437             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1438                 /* Some padding is non-zero, might be a new feature */
1439                 return -EINVAL;
1440
1441         rdev->preferred_minor = 0xffff;
1442         rdev->data_offset = le64_to_cpu(sb->data_offset);
1443         rdev->new_data_offset = rdev->data_offset;
1444         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1445             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1446                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1447         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1448
1449         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1450         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1451         if (rdev->sb_size & bmask)
1452                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1453
1454         if (minor_version
1455             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1456                 return -EINVAL;
1457         if (minor_version
1458             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1459                 return -EINVAL;
1460
1461         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1462                 rdev->desc_nr = -1;
1463         else
1464                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1465
1466         if (!rdev->bb_page) {
1467                 rdev->bb_page = alloc_page(GFP_KERNEL);
1468                 if (!rdev->bb_page)
1469                         return -ENOMEM;
1470         }
1471         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1472             rdev->badblocks.count == 0) {
1473                 /* need to load the bad block list.
1474                  * Currently we limit it to one page.
1475                  */
1476                 s32 offset;
1477                 sector_t bb_sector;
1478                 u64 *bbp;
1479                 int i;
1480                 int sectors = le16_to_cpu(sb->bblog_size);
1481                 if (sectors > (PAGE_SIZE / 512))
1482                         return -EINVAL;
1483                 offset = le32_to_cpu(sb->bblog_offset);
1484                 if (offset == 0)
1485                         return -EINVAL;
1486                 bb_sector = (long long)offset;
1487                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1488                                   rdev->bb_page, READ, true))
1489                         return -EIO;
1490                 bbp = (u64 *)page_address(rdev->bb_page);
1491                 rdev->badblocks.shift = sb->bblog_shift;
1492                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1493                         u64 bb = le64_to_cpu(*bbp);
1494                         int count = bb & (0x3ff);
1495                         u64 sector = bb >> 10;
1496                         sector <<= sb->bblog_shift;
1497                         count <<= sb->bblog_shift;
1498                         if (bb + 1 == 0)
1499                                 break;
1500                         if (md_set_badblocks(&rdev->badblocks,
1501                                              sector, count, 1) == 0)
1502                                 return -EINVAL;
1503                 }
1504         } else if (sb->bblog_offset != 0)
1505                 rdev->badblocks.shift = 0;
1506
1507         if (!refdev) {
1508                 ret = 1;
1509         } else {
1510                 __u64 ev1, ev2;
1511                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1512
1513                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1514                     sb->level != refsb->level ||
1515                     sb->layout != refsb->layout ||
1516                     sb->chunksize != refsb->chunksize) {
1517                         printk(KERN_WARNING "md: %s has strangely different"
1518                                 " superblock to %s\n",
1519                                 bdevname(rdev->bdev,b),
1520                                 bdevname(refdev->bdev,b2));
1521                         return -EINVAL;
1522                 }
1523                 ev1 = le64_to_cpu(sb->events);
1524                 ev2 = le64_to_cpu(refsb->events);
1525
1526                 if (ev1 > ev2)
1527                         ret = 1;
1528                 else
1529                         ret = 0;
1530         }
1531         if (minor_version) {
1532                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1533                 sectors -= rdev->data_offset;
1534         } else
1535                 sectors = rdev->sb_start;
1536         if (sectors < le64_to_cpu(sb->data_size))
1537                 return -EINVAL;
1538         rdev->sectors = le64_to_cpu(sb->data_size);
1539         return ret;
1540 }
1541
1542 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1543 {
1544         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1545         __u64 ev1 = le64_to_cpu(sb->events);
1546
1547         rdev->raid_disk = -1;
1548         clear_bit(Faulty, &rdev->flags);
1549         clear_bit(In_sync, &rdev->flags);
1550         clear_bit(Bitmap_sync, &rdev->flags);
1551         clear_bit(WriteMostly, &rdev->flags);
1552
1553         if (mddev->raid_disks == 0) {
1554                 mddev->major_version = 1;
1555                 mddev->patch_version = 0;
1556                 mddev->external = 0;
1557                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1558                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1559                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1560                 mddev->level = le32_to_cpu(sb->level);
1561                 mddev->clevel[0] = 0;
1562                 mddev->layout = le32_to_cpu(sb->layout);
1563                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1564                 mddev->dev_sectors = le64_to_cpu(sb->size);
1565                 mddev->events = ev1;
1566                 mddev->bitmap_info.offset = 0;
1567                 mddev->bitmap_info.space = 0;
1568                 /* Default location for bitmap is 1K after superblock
1569                  * using 3K - total of 4K
1570                  */
1571                 mddev->bitmap_info.default_offset = 1024 >> 9;
1572                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1573                 mddev->reshape_backwards = 0;
1574
1575                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1576                 memcpy(mddev->uuid, sb->set_uuid, 16);
1577
1578                 mddev->max_disks =  (4096-256)/2;
1579
1580                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1581                     mddev->bitmap_info.file == NULL) {
1582                         mddev->bitmap_info.offset =
1583                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1584                         /* Metadata doesn't record how much space is available.
1585                          * For 1.0, we assume we can use up to the superblock
1586                          * if before, else to 4K beyond superblock.
1587                          * For others, assume no change is possible.
1588                          */
1589                         if (mddev->minor_version > 0)
1590                                 mddev->bitmap_info.space = 0;
1591                         else if (mddev->bitmap_info.offset > 0)
1592                                 mddev->bitmap_info.space =
1593                                         8 - mddev->bitmap_info.offset;
1594                         else
1595                                 mddev->bitmap_info.space =
1596                                         -mddev->bitmap_info.offset;
1597                 }
1598
1599                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1600                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1601                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1602                         mddev->new_level = le32_to_cpu(sb->new_level);
1603                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1604                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1605                         if (mddev->delta_disks < 0 ||
1606                             (mddev->delta_disks == 0 &&
1607                              (le32_to_cpu(sb->feature_map)
1608                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1609                                 mddev->reshape_backwards = 1;
1610                 } else {
1611                         mddev->reshape_position = MaxSector;
1612                         mddev->delta_disks = 0;
1613                         mddev->new_level = mddev->level;
1614                         mddev->new_layout = mddev->layout;
1615                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1616                 }
1617
1618         } else if (mddev->pers == NULL) {
1619                 /* Insist of good event counter while assembling, except for
1620                  * spares (which don't need an event count) */
1621                 ++ev1;
1622                 if (rdev->desc_nr >= 0 &&
1623                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1624                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1625                         if (ev1 < mddev->events)
1626                                 return -EINVAL;
1627         } else if (mddev->bitmap) {
1628                 /* If adding to array with a bitmap, then we can accept an
1629                  * older device, but not too old.
1630                  */
1631                 if (ev1 < mddev->bitmap->events_cleared)
1632                         return 0;
1633                 if (ev1 < mddev->events)
1634                         set_bit(Bitmap_sync, &rdev->flags);
1635         } else {
1636                 if (ev1 < mddev->events)
1637                         /* just a hot-add of a new device, leave raid_disk at -1 */
1638                         return 0;
1639         }
1640         if (mddev->level != LEVEL_MULTIPATH) {
1641                 int role;
1642                 if (rdev->desc_nr < 0 ||
1643                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1644                         role = 0xffff;
1645                         rdev->desc_nr = -1;
1646                 } else
1647                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1648                 switch(role) {
1649                 case 0xffff: /* spare */
1650                         break;
1651                 case 0xfffe: /* faulty */
1652                         set_bit(Faulty, &rdev->flags);
1653                         break;
1654                 default:
1655                         rdev->saved_raid_disk = role;
1656                         if ((le32_to_cpu(sb->feature_map) &
1657                              MD_FEATURE_RECOVERY_OFFSET)) {
1658                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1659                                 if (!(le32_to_cpu(sb->feature_map) &
1660                                       MD_FEATURE_RECOVERY_BITMAP))
1661                                         rdev->saved_raid_disk = -1;
1662                         } else
1663                                 set_bit(In_sync, &rdev->flags);
1664                         rdev->raid_disk = role;
1665                         break;
1666                 }
1667                 if (sb->devflags & WriteMostly1)
1668                         set_bit(WriteMostly, &rdev->flags);
1669                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1670                         set_bit(Replacement, &rdev->flags);
1671         } else /* MULTIPATH are always insync */
1672                 set_bit(In_sync, &rdev->flags);
1673
1674         return 0;
1675 }
1676
1677 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1678 {
1679         struct mdp_superblock_1 *sb;
1680         struct md_rdev *rdev2;
1681         int max_dev, i;
1682         /* make rdev->sb match mddev and rdev data. */
1683
1684         sb = page_address(rdev->sb_page);
1685
1686         sb->feature_map = 0;
1687         sb->pad0 = 0;
1688         sb->recovery_offset = cpu_to_le64(0);
1689         memset(sb->pad3, 0, sizeof(sb->pad3));
1690
1691         sb->utime = cpu_to_le64((__u64)mddev->utime);
1692         sb->events = cpu_to_le64(mddev->events);
1693         if (mddev->in_sync)
1694                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1695         else
1696                 sb->resync_offset = cpu_to_le64(0);
1697
1698         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1699
1700         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1701         sb->size = cpu_to_le64(mddev->dev_sectors);
1702         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1703         sb->level = cpu_to_le32(mddev->level);
1704         sb->layout = cpu_to_le32(mddev->layout);
1705
1706         if (test_bit(WriteMostly, &rdev->flags))
1707                 sb->devflags |= WriteMostly1;
1708         else
1709                 sb->devflags &= ~WriteMostly1;
1710         sb->data_offset = cpu_to_le64(rdev->data_offset);
1711         sb->data_size = cpu_to_le64(rdev->sectors);
1712
1713         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1714                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1715                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1716         }
1717
1718         if (rdev->raid_disk >= 0 &&
1719             !test_bit(In_sync, &rdev->flags)) {
1720                 sb->feature_map |=
1721                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1722                 sb->recovery_offset =
1723                         cpu_to_le64(rdev->recovery_offset);
1724                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1725                         sb->feature_map |=
1726                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1727         }
1728         if (test_bit(Replacement, &rdev->flags))
1729                 sb->feature_map |=
1730                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1731
1732         if (mddev->reshape_position != MaxSector) {
1733                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1734                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1735                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1736                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1737                 sb->new_level = cpu_to_le32(mddev->new_level);
1738                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1739                 if (mddev->delta_disks == 0 &&
1740                     mddev->reshape_backwards)
1741                         sb->feature_map
1742                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1743                 if (rdev->new_data_offset != rdev->data_offset) {
1744                         sb->feature_map
1745                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1746                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1747                                                              - rdev->data_offset));
1748                 }
1749         }
1750
1751         if (rdev->badblocks.count == 0)
1752                 /* Nothing to do for bad blocks*/ ;
1753         else if (sb->bblog_offset == 0)
1754                 /* Cannot record bad blocks on this device */
1755                 md_error(mddev, rdev);
1756         else {
1757                 struct badblocks *bb = &rdev->badblocks;
1758                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1759                 u64 *p = bb->page;
1760                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1761                 if (bb->changed) {
1762                         unsigned seq;
1763
1764 retry:
1765                         seq = read_seqbegin(&bb->lock);
1766
1767                         memset(bbp, 0xff, PAGE_SIZE);
1768
1769                         for (i = 0 ; i < bb->count ; i++) {
1770                                 u64 internal_bb = p[i];
1771                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1772                                                 | BB_LEN(internal_bb));
1773                                 bbp[i] = cpu_to_le64(store_bb);
1774                         }
1775                         bb->changed = 0;
1776                         if (read_seqretry(&bb->lock, seq))
1777                                 goto retry;
1778
1779                         bb->sector = (rdev->sb_start +
1780                                       (int)le32_to_cpu(sb->bblog_offset));
1781                         bb->size = le16_to_cpu(sb->bblog_size);
1782                 }
1783         }
1784
1785         max_dev = 0;
1786         rdev_for_each(rdev2, mddev)
1787                 if (rdev2->desc_nr+1 > max_dev)
1788                         max_dev = rdev2->desc_nr+1;
1789
1790         if (max_dev > le32_to_cpu(sb->max_dev)) {
1791                 int bmask;
1792                 sb->max_dev = cpu_to_le32(max_dev);
1793                 rdev->sb_size = max_dev * 2 + 256;
1794                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1795                 if (rdev->sb_size & bmask)
1796                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1797         } else
1798                 max_dev = le32_to_cpu(sb->max_dev);
1799
1800         for (i=0; i<max_dev;i++)
1801                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1802         
1803         rdev_for_each(rdev2, mddev) {
1804                 i = rdev2->desc_nr;
1805                 if (test_bit(Faulty, &rdev2->flags))
1806                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807                 else if (test_bit(In_sync, &rdev2->flags))
1808                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1809                 else if (rdev2->raid_disk >= 0)
1810                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1811                 else
1812                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1813         }
1814
1815         sb->sb_csum = calc_sb_1_csum(sb);
1816 }
1817
1818 static unsigned long long
1819 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1820 {
1821         struct mdp_superblock_1 *sb;
1822         sector_t max_sectors;
1823         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1824                 return 0; /* component must fit device */
1825         if (rdev->data_offset != rdev->new_data_offset)
1826                 return 0; /* too confusing */
1827         if (rdev->sb_start < rdev->data_offset) {
1828                 /* minor versions 1 and 2; superblock before data */
1829                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1830                 max_sectors -= rdev->data_offset;
1831                 if (!num_sectors || num_sectors > max_sectors)
1832                         num_sectors = max_sectors;
1833         } else if (rdev->mddev->bitmap_info.offset) {
1834                 /* minor version 0 with bitmap we can't move */
1835                 return 0;
1836         } else {
1837                 /* minor version 0; superblock after data */
1838                 sector_t sb_start;
1839                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1840                 sb_start &= ~(sector_t)(4*2 - 1);
1841                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1842                 if (!num_sectors || num_sectors > max_sectors)
1843                         num_sectors = max_sectors;
1844                 rdev->sb_start = sb_start;
1845         }
1846         sb = page_address(rdev->sb_page);
1847         sb->data_size = cpu_to_le64(num_sectors);
1848         sb->super_offset = rdev->sb_start;
1849         sb->sb_csum = calc_sb_1_csum(sb);
1850         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1851                        rdev->sb_page);
1852         md_super_wait(rdev->mddev);
1853         return num_sectors;
1854
1855 }
1856
1857 static int
1858 super_1_allow_new_offset(struct md_rdev *rdev,
1859                          unsigned long long new_offset)
1860 {
1861         /* All necessary checks on new >= old have been done */
1862         struct bitmap *bitmap;
1863         if (new_offset >= rdev->data_offset)
1864                 return 1;
1865
1866         /* with 1.0 metadata, there is no metadata to tread on
1867          * so we can always move back */
1868         if (rdev->mddev->minor_version == 0)
1869                 return 1;
1870
1871         /* otherwise we must be sure not to step on
1872          * any metadata, so stay:
1873          * 36K beyond start of superblock
1874          * beyond end of badblocks
1875          * beyond write-intent bitmap
1876          */
1877         if (rdev->sb_start + (32+4)*2 > new_offset)
1878                 return 0;
1879         bitmap = rdev->mddev->bitmap;
1880         if (bitmap && !rdev->mddev->bitmap_info.file &&
1881             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1882             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1883                 return 0;
1884         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1885                 return 0;
1886
1887         return 1;
1888 }
1889
1890 static struct super_type super_types[] = {
1891         [0] = {
1892                 .name   = "0.90.0",
1893                 .owner  = THIS_MODULE,
1894                 .load_super         = super_90_load,
1895                 .validate_super     = super_90_validate,
1896                 .sync_super         = super_90_sync,
1897                 .rdev_size_change   = super_90_rdev_size_change,
1898                 .allow_new_offset   = super_90_allow_new_offset,
1899         },
1900         [1] = {
1901                 .name   = "md-1",
1902                 .owner  = THIS_MODULE,
1903                 .load_super         = super_1_load,
1904                 .validate_super     = super_1_validate,
1905                 .sync_super         = super_1_sync,
1906                 .rdev_size_change   = super_1_rdev_size_change,
1907                 .allow_new_offset   = super_1_allow_new_offset,
1908         },
1909 };
1910
1911 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1912 {
1913         if (mddev->sync_super) {
1914                 mddev->sync_super(mddev, rdev);
1915                 return;
1916         }
1917
1918         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1919
1920         super_types[mddev->major_version].sync_super(mddev, rdev);
1921 }
1922
1923 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1924 {
1925         struct md_rdev *rdev, *rdev2;
1926
1927         rcu_read_lock();
1928         rdev_for_each_rcu(rdev, mddev1)
1929                 rdev_for_each_rcu(rdev2, mddev2)
1930                         if (rdev->bdev->bd_contains ==
1931                             rdev2->bdev->bd_contains) {
1932                                 rcu_read_unlock();
1933                                 return 1;
1934                         }
1935         rcu_read_unlock();
1936         return 0;
1937 }
1938
1939 static LIST_HEAD(pending_raid_disks);
1940
1941 /*
1942  * Try to register data integrity profile for an mddev
1943  *
1944  * This is called when an array is started and after a disk has been kicked
1945  * from the array. It only succeeds if all working and active component devices
1946  * are integrity capable with matching profiles.
1947  */
1948 int md_integrity_register(struct mddev *mddev)
1949 {
1950         struct md_rdev *rdev, *reference = NULL;
1951
1952         if (list_empty(&mddev->disks))
1953                 return 0; /* nothing to do */
1954         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1955                 return 0; /* shouldn't register, or already is */
1956         rdev_for_each(rdev, mddev) {
1957                 /* skip spares and non-functional disks */
1958                 if (test_bit(Faulty, &rdev->flags))
1959                         continue;
1960                 if (rdev->raid_disk < 0)
1961                         continue;
1962                 if (!reference) {
1963                         /* Use the first rdev as the reference */
1964                         reference = rdev;
1965                         continue;
1966                 }
1967                 /* does this rdev's profile match the reference profile? */
1968                 if (blk_integrity_compare(reference->bdev->bd_disk,
1969                                 rdev->bdev->bd_disk) < 0)
1970                         return -EINVAL;
1971         }
1972         if (!reference || !bdev_get_integrity(reference->bdev))
1973                 return 0;
1974         /*
1975          * All component devices are integrity capable and have matching
1976          * profiles, register the common profile for the md device.
1977          */
1978         if (blk_integrity_register(mddev->gendisk,
1979                         bdev_get_integrity(reference->bdev)) != 0) {
1980                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1981                         mdname(mddev));
1982                 return -EINVAL;
1983         }
1984         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1985         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1986                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1987                        mdname(mddev));
1988                 return -EINVAL;
1989         }
1990         return 0;
1991 }
1992 EXPORT_SYMBOL(md_integrity_register);
1993
1994 /* Disable data integrity if non-capable/non-matching disk is being added */
1995 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1996 {
1997         struct blk_integrity *bi_rdev;
1998         struct blk_integrity *bi_mddev;
1999
2000         if (!mddev->gendisk)
2001                 return;
2002
2003         bi_rdev = bdev_get_integrity(rdev->bdev);
2004         bi_mddev = blk_get_integrity(mddev->gendisk);
2005
2006         if (!bi_mddev) /* nothing to do */
2007                 return;
2008         if (rdev->raid_disk < 0) /* skip spares */
2009                 return;
2010         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2011                                              rdev->bdev->bd_disk) >= 0)
2012                 return;
2013         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2014         blk_integrity_unregister(mddev->gendisk);
2015 }
2016 EXPORT_SYMBOL(md_integrity_add_rdev);
2017
2018 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2019 {
2020         char b[BDEVNAME_SIZE];
2021         struct kobject *ko;
2022         char *s;
2023         int err;
2024
2025         if (rdev->mddev) {
2026                 MD_BUG();
2027                 return -EINVAL;
2028         }
2029
2030         /* prevent duplicates */
2031         if (find_rdev(mddev, rdev->bdev->bd_dev))
2032                 return -EEXIST;
2033
2034         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2035         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2036                         rdev->sectors < mddev->dev_sectors)) {
2037                 if (mddev->pers) {
2038                         /* Cannot change size, so fail
2039                          * If mddev->level <= 0, then we don't care
2040                          * about aligning sizes (e.g. linear)
2041                          */
2042                         if (mddev->level > 0)
2043                                 return -ENOSPC;
2044                 } else
2045                         mddev->dev_sectors = rdev->sectors;
2046         }
2047
2048         /* Verify rdev->desc_nr is unique.
2049          * If it is -1, assign a free number, else
2050          * check number is not in use
2051          */
2052         rcu_read_lock();
2053         if (rdev->desc_nr < 0) {
2054                 int choice = 0;
2055                 if (mddev->pers)
2056                         choice = mddev->raid_disks;
2057                 while (find_rdev_nr_rcu(mddev, choice))
2058                         choice++;
2059                 rdev->desc_nr = choice;
2060         } else {
2061                 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2062                         rcu_read_unlock();
2063                         return -EBUSY;
2064                 }
2065         }
2066         rcu_read_unlock();
2067         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2068                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2069                        mdname(mddev), mddev->max_disks);
2070                 return -EBUSY;
2071         }
2072         bdevname(rdev->bdev,b);
2073         while ( (s=strchr(b, '/')) != NULL)
2074                 *s = '!';
2075
2076         rdev->mddev = mddev;
2077         printk(KERN_INFO "md: bind<%s>\n", b);
2078
2079         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2080                 goto fail;
2081
2082         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2083         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2084                 /* failure here is OK */;
2085         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2086
2087         list_add_rcu(&rdev->same_set, &mddev->disks);
2088         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2089
2090         /* May as well allow recovery to be retried once */
2091         mddev->recovery_disabled++;
2092
2093         return 0;
2094
2095  fail:
2096         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2097                b, mdname(mddev));
2098         return err;
2099 }
2100
2101 static void md_delayed_delete(struct work_struct *ws)
2102 {
2103         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2104         kobject_del(&rdev->kobj);
2105         kobject_put(&rdev->kobj);
2106 }
2107
2108 static void unbind_rdev_from_array(struct md_rdev * rdev)
2109 {
2110         char b[BDEVNAME_SIZE];
2111         if (!rdev->mddev) {
2112                 MD_BUG();
2113                 return;
2114         }
2115         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2116         list_del_rcu(&rdev->same_set);
2117         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2118         rdev->mddev = NULL;
2119         sysfs_remove_link(&rdev->kobj, "block");
2120         sysfs_put(rdev->sysfs_state);
2121         rdev->sysfs_state = NULL;
2122         rdev->badblocks.count = 0;
2123         /* We need to delay this, otherwise we can deadlock when
2124          * writing to 'remove' to "dev/state".  We also need
2125          * to delay it due to rcu usage.
2126          */
2127         synchronize_rcu();
2128         INIT_WORK(&rdev->del_work, md_delayed_delete);
2129         kobject_get(&rdev->kobj);
2130         queue_work(md_misc_wq, &rdev->del_work);
2131 }
2132
2133 /*
2134  * prevent the device from being mounted, repartitioned or
2135  * otherwise reused by a RAID array (or any other kernel
2136  * subsystem), by bd_claiming the device.
2137  */
2138 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2139 {
2140         int err = 0;
2141         struct block_device *bdev;
2142         char b[BDEVNAME_SIZE];
2143
2144         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2145                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2146         if (IS_ERR(bdev)) {
2147                 printk(KERN_ERR "md: could not open %s.\n",
2148                         __bdevname(dev, b));
2149                 return PTR_ERR(bdev);
2150         }
2151         rdev->bdev = bdev;
2152         return err;
2153 }
2154
2155 static void unlock_rdev(struct md_rdev *rdev)
2156 {
2157         struct block_device *bdev = rdev->bdev;
2158         rdev->bdev = NULL;
2159         if (!bdev)
2160                 MD_BUG();
2161         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2162 }
2163
2164 void md_autodetect_dev(dev_t dev);
2165
2166 static void export_rdev(struct md_rdev * rdev)
2167 {
2168         char b[BDEVNAME_SIZE];
2169         printk(KERN_INFO "md: export_rdev(%s)\n",
2170                 bdevname(rdev->bdev,b));
2171         if (rdev->mddev)
2172                 MD_BUG();
2173         md_rdev_clear(rdev);
2174 #ifndef MODULE
2175         if (test_bit(AutoDetected, &rdev->flags))
2176                 md_autodetect_dev(rdev->bdev->bd_dev);
2177 #endif
2178         unlock_rdev(rdev);
2179         kobject_put(&rdev->kobj);
2180 }
2181
2182 static void kick_rdev_from_array(struct md_rdev * rdev)
2183 {
2184         unbind_rdev_from_array(rdev);
2185         export_rdev(rdev);
2186 }
2187
2188 static void export_array(struct mddev *mddev)
2189 {
2190         struct md_rdev *rdev;
2191
2192         while (!list_empty(&mddev->disks)) {
2193                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2194                                         same_set);
2195                 kick_rdev_from_array(rdev);
2196         }
2197         mddev->raid_disks = 0;
2198         mddev->major_version = 0;
2199 }
2200
2201 static void print_desc(mdp_disk_t *desc)
2202 {
2203         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2204                 desc->major,desc->minor,desc->raid_disk,desc->state);
2205 }
2206
2207 static void print_sb_90(mdp_super_t *sb)
2208 {
2209         int i;
2210
2211         printk(KERN_INFO 
2212                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2213                 sb->major_version, sb->minor_version, sb->patch_version,
2214                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2215                 sb->ctime);
2216         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2217                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2218                 sb->md_minor, sb->layout, sb->chunk_size);
2219         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2220                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2221                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2222                 sb->failed_disks, sb->spare_disks,
2223                 sb->sb_csum, (unsigned long)sb->events_lo);
2224
2225         printk(KERN_INFO);
2226         for (i = 0; i < MD_SB_DISKS; i++) {
2227                 mdp_disk_t *desc;
2228
2229                 desc = sb->disks + i;
2230                 if (desc->number || desc->major || desc->minor ||
2231                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2232                         printk("     D %2d: ", i);
2233                         print_desc(desc);
2234                 }
2235         }
2236         printk(KERN_INFO "md:     THIS: ");
2237         print_desc(&sb->this_disk);
2238 }
2239
2240 static void print_sb_1(struct mdp_superblock_1 *sb)
2241 {
2242         __u8 *uuid;
2243
2244         uuid = sb->set_uuid;
2245         printk(KERN_INFO
2246                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2247                "md:    Name: \"%s\" CT:%llu\n",
2248                 le32_to_cpu(sb->major_version),
2249                 le32_to_cpu(sb->feature_map),
2250                 uuid,
2251                 sb->set_name,
2252                 (unsigned long long)le64_to_cpu(sb->ctime)
2253                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2254
2255         uuid = sb->device_uuid;
2256         printk(KERN_INFO
2257                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2258                         " RO:%llu\n"
2259                "md:     Dev:%08x UUID: %pU\n"
2260                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2261                "md:         (MaxDev:%u) \n",
2262                 le32_to_cpu(sb->level),
2263                 (unsigned long long)le64_to_cpu(sb->size),
2264                 le32_to_cpu(sb->raid_disks),
2265                 le32_to_cpu(sb->layout),
2266                 le32_to_cpu(sb->chunksize),
2267                 (unsigned long long)le64_to_cpu(sb->data_offset),
2268                 (unsigned long long)le64_to_cpu(sb->data_size),
2269                 (unsigned long long)le64_to_cpu(sb->super_offset),
2270                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2271                 le32_to_cpu(sb->dev_number),
2272                 uuid,
2273                 sb->devflags,
2274                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2275                 (unsigned long long)le64_to_cpu(sb->events),
2276                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2277                 le32_to_cpu(sb->sb_csum),
2278                 le32_to_cpu(sb->max_dev)
2279                 );
2280 }
2281
2282 static void print_rdev(struct md_rdev *rdev, int major_version)
2283 {
2284         char b[BDEVNAME_SIZE];
2285         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2286                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2287                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2288                 rdev->desc_nr);
2289         if (rdev->sb_loaded) {
2290                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2291                 switch (major_version) {
2292                 case 0:
2293                         print_sb_90(page_address(rdev->sb_page));
2294                         break;
2295                 case 1:
2296                         print_sb_1(page_address(rdev->sb_page));
2297                         break;
2298                 }
2299         } else
2300                 printk(KERN_INFO "md: no rdev superblock!\n");
2301 }
2302
2303 static void md_print_devices(void)
2304 {
2305         struct list_head *tmp;
2306         struct md_rdev *rdev;
2307         struct mddev *mddev;
2308         char b[BDEVNAME_SIZE];
2309
2310         printk("\n");
2311         printk("md:     **********************************\n");
2312         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2313         printk("md:     **********************************\n");
2314         for_each_mddev(mddev, tmp) {
2315
2316                 if (mddev->bitmap)
2317                         bitmap_print_sb(mddev->bitmap);
2318                 else
2319                         printk("%s: ", mdname(mddev));
2320                 rdev_for_each(rdev, mddev)
2321                         printk("<%s>", bdevname(rdev->bdev,b));
2322                 printk("\n");
2323
2324                 rdev_for_each(rdev, mddev)
2325                         print_rdev(rdev, mddev->major_version);
2326         }
2327         printk("md:     **********************************\n");
2328         printk("\n");
2329 }
2330
2331
2332 static void sync_sbs(struct mddev * mddev, int nospares)
2333 {
2334         /* Update each superblock (in-memory image), but
2335          * if we are allowed to, skip spares which already
2336          * have the right event counter, or have one earlier
2337          * (which would mean they aren't being marked as dirty
2338          * with the rest of the array)
2339          */
2340         struct md_rdev *rdev;
2341         rdev_for_each(rdev, mddev) {
2342                 if (rdev->sb_events == mddev->events ||
2343                     (nospares &&
2344                      rdev->raid_disk < 0 &&
2345                      rdev->sb_events+1 == mddev->events)) {
2346                         /* Don't update this superblock */
2347                         rdev->sb_loaded = 2;
2348                 } else {
2349                         sync_super(mddev, rdev);
2350                         rdev->sb_loaded = 1;
2351                 }
2352         }
2353 }
2354
2355 static void md_update_sb(struct mddev * mddev, int force_change)
2356 {
2357         struct md_rdev *rdev;
2358         int sync_req;
2359         int nospares = 0;
2360         int any_badblocks_changed = 0;
2361
2362         if (mddev->ro) {
2363                 if (force_change)
2364                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2365                 return;
2366         }
2367 repeat:
2368         /* First make sure individual recovery_offsets are correct */
2369         rdev_for_each(rdev, mddev) {
2370                 if (rdev->raid_disk >= 0 &&
2371                     mddev->delta_disks >= 0 &&
2372                     !test_bit(In_sync, &rdev->flags) &&
2373                     mddev->curr_resync_completed > rdev->recovery_offset)
2374                                 rdev->recovery_offset = mddev->curr_resync_completed;
2375
2376         }       
2377         if (!mddev->persistent) {
2378                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2379                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2380                 if (!mddev->external) {
2381                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2382                         rdev_for_each(rdev, mddev) {
2383                                 if (rdev->badblocks.changed) {
2384                                         rdev->badblocks.changed = 0;
2385                                         md_ack_all_badblocks(&rdev->badblocks);
2386                                         md_error(mddev, rdev);
2387                                 }
2388                                 clear_bit(Blocked, &rdev->flags);
2389                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2390                                 wake_up(&rdev->blocked_wait);
2391                         }
2392                 }
2393                 wake_up(&mddev->sb_wait);
2394                 return;
2395         }
2396
2397         spin_lock_irq(&mddev->write_lock);
2398
2399         mddev->utime = get_seconds();
2400
2401         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2402                 force_change = 1;
2403         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2404                 /* just a clean<-> dirty transition, possibly leave spares alone,
2405                  * though if events isn't the right even/odd, we will have to do
2406                  * spares after all
2407                  */
2408                 nospares = 1;
2409         if (force_change)
2410                 nospares = 0;
2411         if (mddev->degraded)
2412                 /* If the array is degraded, then skipping spares is both
2413                  * dangerous and fairly pointless.
2414                  * Dangerous because a device that was removed from the array
2415                  * might have a event_count that still looks up-to-date,
2416                  * so it can be re-added without a resync.
2417                  * Pointless because if there are any spares to skip,
2418                  * then a recovery will happen and soon that array won't
2419                  * be degraded any more and the spare can go back to sleep then.
2420                  */
2421                 nospares = 0;
2422
2423         sync_req = mddev->in_sync;
2424
2425         /* If this is just a dirty<->clean transition, and the array is clean
2426          * and 'events' is odd, we can roll back to the previous clean state */
2427         if (nospares
2428             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2429             && mddev->can_decrease_events
2430             && mddev->events != 1) {
2431                 mddev->events--;
2432                 mddev->can_decrease_events = 0;
2433         } else {
2434                 /* otherwise we have to go forward and ... */
2435                 mddev->events ++;
2436                 mddev->can_decrease_events = nospares;
2437         }
2438
2439         if (!mddev->events) {
2440                 /*
2441                  * oops, this 64-bit counter should never wrap.
2442                  * Either we are in around ~1 trillion A.C., assuming
2443                  * 1 reboot per second, or we have a bug:
2444                  */
2445                 MD_BUG();
2446                 mddev->events --;
2447         }
2448
2449         rdev_for_each(rdev, mddev) {
2450                 if (rdev->badblocks.changed)
2451                         any_badblocks_changed++;
2452                 if (test_bit(Faulty, &rdev->flags))
2453                         set_bit(FaultRecorded, &rdev->flags);
2454         }
2455
2456         sync_sbs(mddev, nospares);
2457         spin_unlock_irq(&mddev->write_lock);
2458
2459         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2460                  mdname(mddev), mddev->in_sync);
2461
2462         bitmap_update_sb(mddev->bitmap);
2463         rdev_for_each(rdev, mddev) {
2464                 char b[BDEVNAME_SIZE];
2465
2466                 if (rdev->sb_loaded != 1)
2467                         continue; /* no noise on spare devices */
2468
2469                 if (!test_bit(Faulty, &rdev->flags)) {
2470                         md_super_write(mddev,rdev,
2471                                        rdev->sb_start, rdev->sb_size,
2472                                        rdev->sb_page);
2473                         pr_debug("md: (write) %s's sb offset: %llu\n",
2474                                  bdevname(rdev->bdev, b),
2475                                  (unsigned long long)rdev->sb_start);
2476                         rdev->sb_events = mddev->events;
2477                         if (rdev->badblocks.size) {
2478                                 md_super_write(mddev, rdev,
2479                                                rdev->badblocks.sector,
2480                                                rdev->badblocks.size << 9,
2481                                                rdev->bb_page);
2482                                 rdev->badblocks.size = 0;
2483                         }
2484
2485                 } else
2486                         pr_debug("md: %s (skipping faulty)\n",
2487                                  bdevname(rdev->bdev, b));
2488
2489                 if (mddev->level == LEVEL_MULTIPATH)
2490                         /* only need to write one superblock... */
2491                         break;
2492         }
2493         md_super_wait(mddev);
2494         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2495
2496         spin_lock_irq(&mddev->write_lock);
2497         if (mddev->in_sync != sync_req ||
2498             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2499                 /* have to write it out again */
2500                 spin_unlock_irq(&mddev->write_lock);
2501                 goto repeat;
2502         }
2503         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2504         spin_unlock_irq(&mddev->write_lock);
2505         wake_up(&mddev->sb_wait);
2506         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2507                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2508
2509         rdev_for_each(rdev, mddev) {
2510                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2511                         clear_bit(Blocked, &rdev->flags);
2512
2513                 if (any_badblocks_changed)
2514                         md_ack_all_badblocks(&rdev->badblocks);
2515                 clear_bit(BlockedBadBlocks, &rdev->flags);
2516                 wake_up(&rdev->blocked_wait);
2517         }
2518 }
2519
2520 /* words written to sysfs files may, or may not, be \n terminated.
2521  * We want to accept with case. For this we use cmd_match.
2522  */
2523 static int cmd_match(const char *cmd, const char *str)
2524 {
2525         /* See if cmd, written into a sysfs file, matches
2526          * str.  They must either be the same, or cmd can
2527          * have a trailing newline
2528          */
2529         while (*cmd && *str && *cmd == *str) {
2530                 cmd++;
2531                 str++;
2532         }
2533         if (*cmd == '\n')
2534                 cmd++;
2535         if (*str || *cmd)
2536                 return 0;
2537         return 1;
2538 }
2539
2540 struct rdev_sysfs_entry {
2541         struct attribute attr;
2542         ssize_t (*show)(struct md_rdev *, char *);
2543         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2544 };
2545
2546 static ssize_t
2547 state_show(struct md_rdev *rdev, char *page)
2548 {
2549         char *sep = "";
2550         size_t len = 0;
2551
2552         if (test_bit(Faulty, &rdev->flags) ||
2553             rdev->badblocks.unacked_exist) {
2554                 len+= sprintf(page+len, "%sfaulty",sep);
2555                 sep = ",";
2556         }
2557         if (test_bit(In_sync, &rdev->flags)) {
2558                 len += sprintf(page+len, "%sin_sync",sep);
2559                 sep = ",";
2560         }
2561         if (test_bit(WriteMostly, &rdev->flags)) {
2562                 len += sprintf(page+len, "%swrite_mostly",sep);
2563                 sep = ",";
2564         }
2565         if (test_bit(Blocked, &rdev->flags) ||
2566             (rdev->badblocks.unacked_exist
2567              && !test_bit(Faulty, &rdev->flags))) {
2568                 len += sprintf(page+len, "%sblocked", sep);
2569                 sep = ",";
2570         }
2571         if (!test_bit(Faulty, &rdev->flags) &&
2572             !test_bit(In_sync, &rdev->flags)) {
2573                 len += sprintf(page+len, "%sspare", sep);
2574                 sep = ",";
2575         }
2576         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2577                 len += sprintf(page+len, "%swrite_error", sep);
2578                 sep = ",";
2579         }
2580         if (test_bit(WantReplacement, &rdev->flags)) {
2581                 len += sprintf(page+len, "%swant_replacement", sep);
2582                 sep = ",";
2583         }
2584         if (test_bit(Replacement, &rdev->flags)) {
2585                 len += sprintf(page+len, "%sreplacement", sep);
2586                 sep = ",";
2587         }
2588
2589         return len+sprintf(page+len, "\n");
2590 }
2591
2592 static ssize_t
2593 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2594 {
2595         /* can write
2596          *  faulty  - simulates an error
2597          *  remove  - disconnects the device
2598          *  writemostly - sets write_mostly
2599          *  -writemostly - clears write_mostly
2600          *  blocked - sets the Blocked flags
2601          *  -blocked - clears the Blocked and possibly simulates an error
2602          *  insync - sets Insync providing device isn't active
2603          *  -insync - clear Insync for a device with a slot assigned,
2604          *            so that it gets rebuilt based on bitmap
2605          *  write_error - sets WriteErrorSeen
2606          *  -write_error - clears WriteErrorSeen
2607          */
2608         int err = -EINVAL;
2609         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2610                 md_error(rdev->mddev, rdev);
2611                 if (test_bit(Faulty, &rdev->flags))
2612                         err = 0;
2613                 else
2614                         err = -EBUSY;
2615         } else if (cmd_match(buf, "remove")) {
2616                 if (rdev->raid_disk >= 0)
2617                         err = -EBUSY;
2618                 else {
2619                         struct mddev *mddev = rdev->mddev;
2620                         kick_rdev_from_array(rdev);
2621                         if (mddev->pers)
2622                                 md_update_sb(mddev, 1);
2623                         md_new_event(mddev);
2624                         err = 0;
2625                 }
2626         } else if (cmd_match(buf, "writemostly")) {
2627                 set_bit(WriteMostly, &rdev->flags);
2628                 err = 0;
2629         } else if (cmd_match(buf, "-writemostly")) {
2630                 clear_bit(WriteMostly, &rdev->flags);
2631                 err = 0;
2632         } else if (cmd_match(buf, "blocked")) {
2633                 set_bit(Blocked, &rdev->flags);
2634                 err = 0;
2635         } else if (cmd_match(buf, "-blocked")) {
2636                 if (!test_bit(Faulty, &rdev->flags) &&
2637                     rdev->badblocks.unacked_exist) {
2638                         /* metadata handler doesn't understand badblocks,
2639                          * so we need to fail the device
2640                          */
2641                         md_error(rdev->mddev, rdev);
2642                 }
2643                 clear_bit(Blocked, &rdev->flags);
2644                 clear_bit(BlockedBadBlocks, &rdev->flags);
2645                 wake_up(&rdev->blocked_wait);
2646                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2647                 md_wakeup_thread(rdev->mddev->thread);
2648
2649                 err = 0;
2650         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2651                 set_bit(In_sync, &rdev->flags);
2652                 err = 0;
2653         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2654                 clear_bit(In_sync, &rdev->flags);
2655                 rdev->saved_raid_disk = rdev->raid_disk;
2656                 rdev->raid_disk = -1;
2657                 err = 0;
2658         } else if (cmd_match(buf, "write_error")) {
2659                 set_bit(WriteErrorSeen, &rdev->flags);
2660                 err = 0;
2661         } else if (cmd_match(buf, "-write_error")) {
2662                 clear_bit(WriteErrorSeen, &rdev->flags);
2663                 err = 0;
2664         } else if (cmd_match(buf, "want_replacement")) {
2665                 /* Any non-spare device that is not a replacement can
2666                  * become want_replacement at any time, but we then need to
2667                  * check if recovery is needed.
2668                  */
2669                 if (rdev->raid_disk >= 0 &&
2670                     !test_bit(Replacement, &rdev->flags))
2671                         set_bit(WantReplacement, &rdev->flags);
2672                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2673                 md_wakeup_thread(rdev->mddev->thread);
2674                 err = 0;
2675         } else if (cmd_match(buf, "-want_replacement")) {
2676                 /* Clearing 'want_replacement' is always allowed.
2677                  * Once replacements starts it is too late though.
2678                  */
2679                 err = 0;
2680                 clear_bit(WantReplacement, &rdev->flags);
2681         } else if (cmd_match(buf, "replacement")) {
2682                 /* Can only set a device as a replacement when array has not
2683                  * yet been started.  Once running, replacement is automatic
2684                  * from spares, or by assigning 'slot'.
2685                  */
2686                 if (rdev->mddev->pers)
2687                         err = -EBUSY;
2688                 else {
2689                         set_bit(Replacement, &rdev->flags);
2690                         err = 0;
2691                 }
2692         } else if (cmd_match(buf, "-replacement")) {
2693                 /* Similarly, can only clear Replacement before start */
2694                 if (rdev->mddev->pers)
2695                         err = -EBUSY;
2696                 else {
2697                         clear_bit(Replacement, &rdev->flags);
2698                         err = 0;
2699                 }
2700         }
2701         if (!err)
2702                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2703         return err ? err : len;
2704 }
2705 static struct rdev_sysfs_entry rdev_state =
2706 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2707
2708 static ssize_t
2709 errors_show(struct md_rdev *rdev, char *page)
2710 {
2711         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2712 }
2713
2714 static ssize_t
2715 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2716 {
2717         char *e;
2718         unsigned long n = simple_strtoul(buf, &e, 10);
2719         if (*buf && (*e == 0 || *e == '\n')) {
2720                 atomic_set(&rdev->corrected_errors, n);
2721                 return len;
2722         }
2723         return -EINVAL;
2724 }
2725 static struct rdev_sysfs_entry rdev_errors =
2726 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2727
2728 static ssize_t
2729 slot_show(struct md_rdev *rdev, char *page)
2730 {
2731         if (rdev->raid_disk < 0)
2732                 return sprintf(page, "none\n");
2733         else
2734                 return sprintf(page, "%d\n", rdev->raid_disk);
2735 }
2736
2737 static ssize_t
2738 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2739 {
2740         char *e;
2741         int err;
2742         int slot = simple_strtoul(buf, &e, 10);
2743         if (strncmp(buf, "none", 4)==0)
2744                 slot = -1;
2745         else if (e==buf || (*e && *e!= '\n'))
2746                 return -EINVAL;
2747         if (rdev->mddev->pers && slot == -1) {
2748                 /* Setting 'slot' on an active array requires also
2749                  * updating the 'rd%d' link, and communicating
2750                  * with the personality with ->hot_*_disk.
2751                  * For now we only support removing
2752                  * failed/spare devices.  This normally happens automatically,
2753                  * but not when the metadata is externally managed.
2754                  */
2755                 if (rdev->raid_disk == -1)
2756                         return -EEXIST;
2757                 /* personality does all needed checks */
2758                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2759                         return -EINVAL;
2760                 clear_bit(Blocked, &rdev->flags);
2761                 remove_and_add_spares(rdev->mddev, rdev);
2762                 if (rdev->raid_disk >= 0)
2763                         return -EBUSY;
2764                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2765                 md_wakeup_thread(rdev->mddev->thread);
2766         } else if (rdev->mddev->pers) {
2767                 /* Activating a spare .. or possibly reactivating
2768                  * if we ever get bitmaps working here.
2769                  */
2770
2771                 if (rdev->raid_disk != -1)
2772                         return -EBUSY;
2773
2774                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2775                         return -EBUSY;
2776
2777                 if (rdev->mddev->pers->hot_add_disk == NULL)
2778                         return -EINVAL;
2779
2780                 if (slot >= rdev->mddev->raid_disks &&
2781                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2782                         return -ENOSPC;
2783
2784                 rdev->raid_disk = slot;
2785                 if (test_bit(In_sync, &rdev->flags))
2786                         rdev->saved_raid_disk = slot;
2787                 else
2788                         rdev->saved_raid_disk = -1;
2789                 clear_bit(In_sync, &rdev->flags);
2790                 clear_bit(Bitmap_sync, &rdev->flags);
2791                 err = rdev->mddev->pers->
2792                         hot_add_disk(rdev->mddev, rdev);
2793                 if (err) {
2794                         rdev->raid_disk = -1;
2795                         return err;
2796                 } else
2797                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2798                 if (sysfs_link_rdev(rdev->mddev, rdev))
2799                         /* failure here is OK */;
2800                 /* don't wakeup anyone, leave that to userspace. */
2801         } else {
2802                 if (slot >= rdev->mddev->raid_disks &&
2803                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804                         return -ENOSPC;
2805                 rdev->raid_disk = slot;
2806                 /* assume it is working */
2807                 clear_bit(Faulty, &rdev->flags);
2808                 clear_bit(WriteMostly, &rdev->flags);
2809                 set_bit(In_sync, &rdev->flags);
2810                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2811         }
2812         return len;
2813 }
2814
2815
2816 static struct rdev_sysfs_entry rdev_slot =
2817 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2818
2819 static ssize_t
2820 offset_show(struct md_rdev *rdev, char *page)
2821 {
2822         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2823 }
2824
2825 static ssize_t
2826 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2827 {
2828         unsigned long long offset;
2829         if (kstrtoull(buf, 10, &offset) < 0)
2830                 return -EINVAL;
2831         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2832                 return -EBUSY;
2833         if (rdev->sectors && rdev->mddev->external)
2834                 /* Must set offset before size, so overlap checks
2835                  * can be sane */
2836                 return -EBUSY;
2837         rdev->data_offset = offset;
2838         rdev->new_data_offset = offset;
2839         return len;
2840 }
2841
2842 static struct rdev_sysfs_entry rdev_offset =
2843 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2844
2845 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2846 {
2847         return sprintf(page, "%llu\n",
2848                        (unsigned long long)rdev->new_data_offset);
2849 }
2850
2851 static ssize_t new_offset_store(struct md_rdev *rdev,
2852                                 const char *buf, size_t len)
2853 {
2854         unsigned long long new_offset;
2855         struct mddev *mddev = rdev->mddev;
2856
2857         if (kstrtoull(buf, 10, &new_offset) < 0)
2858                 return -EINVAL;
2859
2860         if (mddev->sync_thread)
2861                 return -EBUSY;
2862         if (new_offset == rdev->data_offset)
2863                 /* reset is always permitted */
2864                 ;
2865         else if (new_offset > rdev->data_offset) {
2866                 /* must not push array size beyond rdev_sectors */
2867                 if (new_offset - rdev->data_offset
2868                     + mddev->dev_sectors > rdev->sectors)
2869                                 return -E2BIG;
2870         }
2871         /* Metadata worries about other space details. */
2872
2873         /* decreasing the offset is inconsistent with a backwards
2874          * reshape.
2875          */
2876         if (new_offset < rdev->data_offset &&
2877             mddev->reshape_backwards)
2878                 return -EINVAL;
2879         /* Increasing offset is inconsistent with forwards
2880          * reshape.  reshape_direction should be set to
2881          * 'backwards' first.
2882          */
2883         if (new_offset > rdev->data_offset &&
2884             !mddev->reshape_backwards)
2885                 return -EINVAL;
2886
2887         if (mddev->pers && mddev->persistent &&
2888             !super_types[mddev->major_version]
2889             .allow_new_offset(rdev, new_offset))
2890                 return -E2BIG;
2891         rdev->new_data_offset = new_offset;
2892         if (new_offset > rdev->data_offset)
2893                 mddev->reshape_backwards = 1;
2894         else if (new_offset < rdev->data_offset)
2895                 mddev->reshape_backwards = 0;
2896
2897         return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910         /* check if two start/length pairs overlap */
2911         if (s1+l1 <= s2)
2912                 return 0;
2913         if (s2+l2 <= s1)
2914                 return 0;
2915         return 1;
2916 }
2917
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920         unsigned long long blocks;
2921         sector_t new;
2922
2923         if (kstrtoull(buf, 10, &blocks) < 0)
2924                 return -EINVAL;
2925
2926         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927                 return -EINVAL; /* sector conversion overflow */
2928
2929         new = blocks * 2;
2930         if (new != blocks * 2)
2931                 return -EINVAL; /* unsigned long long to sector_t overflow */
2932
2933         *sectors = new;
2934         return 0;
2935 }
2936
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940         struct mddev *my_mddev = rdev->mddev;
2941         sector_t oldsectors = rdev->sectors;
2942         sector_t sectors;
2943
2944         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2945                 return -EINVAL;
2946         if (rdev->data_offset != rdev->new_data_offset)
2947                 return -EINVAL; /* too confusing */
2948         if (my_mddev->pers && rdev->raid_disk >= 0) {
2949                 if (my_mddev->persistent) {
2950                         sectors = super_types[my_mddev->major_version].
2951                                 rdev_size_change(rdev, sectors);
2952                         if (!sectors)
2953                                 return -EBUSY;
2954                 } else if (!sectors)
2955                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2956                                 rdev->data_offset;
2957                 if (!my_mddev->pers->resize)
2958                         /* Cannot change size for RAID0 or Linear etc */
2959                         return -EINVAL;
2960         }
2961         if (sectors < my_mddev->dev_sectors)
2962                 return -EINVAL; /* component must fit device */
2963
2964         rdev->sectors = sectors;
2965         if (sectors > oldsectors && my_mddev->external) {
2966                 /* need to check that all other rdevs with the same ->bdev
2967                  * do not overlap.  We need to unlock the mddev to avoid
2968                  * a deadlock.  We have already changed rdev->sectors, and if
2969                  * we have to change it back, we will have the lock again.
2970                  */
2971                 struct mddev *mddev;
2972                 int overlap = 0;
2973                 struct list_head *tmp;
2974
2975                 mddev_unlock(my_mddev);
2976                 for_each_mddev(mddev, tmp) {
2977                         struct md_rdev *rdev2;
2978
2979                         mddev_lock_nointr(mddev);
2980                         rdev_for_each(rdev2, mddev)
2981                                 if (rdev->bdev == rdev2->bdev &&
2982                                     rdev != rdev2 &&
2983                                     overlaps(rdev->data_offset, rdev->sectors,
2984                                              rdev2->data_offset,
2985                                              rdev2->sectors)) {
2986                                         overlap = 1;
2987                                         break;
2988                                 }
2989                         mddev_unlock(mddev);
2990                         if (overlap) {
2991                                 mddev_put(mddev);
2992                                 break;
2993                         }
2994                 }
2995                 mddev_lock_nointr(my_mddev);
2996                 if (overlap) {
2997                         /* Someone else could have slipped in a size
2998                          * change here, but doing so is just silly.
2999                          * We put oldsectors back because we *know* it is
3000                          * safe, and trust userspace not to race with
3001                          * itself
3002                          */
3003                         rdev->sectors = oldsectors;
3004                         return -EBUSY;
3005                 }
3006         }
3007         return len;
3008 }
3009
3010 static struct rdev_sysfs_entry rdev_size =
3011 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3012
3013
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016         unsigned long long recovery_start = rdev->recovery_offset;
3017
3018         if (test_bit(In_sync, &rdev->flags) ||
3019             recovery_start == MaxSector)
3020                 return sprintf(page, "none\n");
3021
3022         return sprintf(page, "%llu\n", recovery_start);
3023 }
3024
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027         unsigned long long recovery_start;
3028
3029         if (cmd_match(buf, "none"))
3030                 recovery_start = MaxSector;
3031         else if (kstrtoull(buf, 10, &recovery_start))
3032                 return -EINVAL;
3033
3034         if (rdev->mddev->pers &&
3035             rdev->raid_disk >= 0)
3036                 return -EBUSY;
3037
3038         rdev->recovery_offset = recovery_start;
3039         if (recovery_start == MaxSector)
3040                 set_bit(In_sync, &rdev->flags);
3041         else
3042                 clear_bit(In_sync, &rdev->flags);
3043         return len;
3044 }
3045
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048
3049
3050 static ssize_t
3051 badblocks_show(struct badblocks *bb, char *page, int unack);
3052 static ssize_t
3053 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3054
3055 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3056 {
3057         return badblocks_show(&rdev->badblocks, page, 0);
3058 }
3059 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3060 {
3061         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3062         /* Maybe that ack was all we needed */
3063         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3064                 wake_up(&rdev->blocked_wait);
3065         return rv;
3066 }
3067 static struct rdev_sysfs_entry rdev_bad_blocks =
3068 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3069
3070
3071 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3072 {
3073         return badblocks_show(&rdev->badblocks, page, 1);
3074 }
3075 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3076 {
3077         return badblocks_store(&rdev->badblocks, page, len, 1);
3078 }
3079 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3080 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3081
3082 static struct attribute *rdev_default_attrs[] = {
3083         &rdev_state.attr,
3084         &rdev_errors.attr,
3085         &rdev_slot.attr,
3086         &rdev_offset.attr,
3087         &rdev_new_offset.attr,
3088         &rdev_size.attr,
3089         &rdev_recovery_start.attr,
3090         &rdev_bad_blocks.attr,
3091         &rdev_unack_bad_blocks.attr,
3092         NULL,
3093 };
3094 static ssize_t
3095 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3096 {
3097         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3098         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3099         struct mddev *mddev = rdev->mddev;
3100         ssize_t rv;
3101
3102         if (!entry->show)
3103                 return -EIO;
3104
3105         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3106         if (!rv) {
3107                 if (rdev->mddev == NULL)
3108                         rv = -EBUSY;
3109                 else
3110                         rv = entry->show(rdev, page);
3111                 mddev_unlock(mddev);
3112         }
3113         return rv;
3114 }
3115
3116 static ssize_t
3117 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3118               const char *page, size_t length)
3119 {
3120         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3121         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3122         ssize_t rv;
3123         struct mddev *mddev = rdev->mddev;
3124
3125         if (!entry->store)
3126                 return -EIO;
3127         if (!capable(CAP_SYS_ADMIN))
3128                 return -EACCES;
3129         rv = mddev ? mddev_lock(mddev): -EBUSY;
3130         if (!rv) {
3131                 if (rdev->mddev == NULL)
3132                         rv = -EBUSY;
3133                 else
3134                         rv = entry->store(rdev, page, length);
3135                 mddev_unlock(mddev);
3136         }
3137         return rv;
3138 }
3139
3140 static void rdev_free(struct kobject *ko)
3141 {
3142         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3143         kfree(rdev);
3144 }
3145 static const struct sysfs_ops rdev_sysfs_ops = {
3146         .show           = rdev_attr_show,
3147         .store          = rdev_attr_store,
3148 };
3149 static struct kobj_type rdev_ktype = {
3150         .release        = rdev_free,
3151         .sysfs_ops      = &rdev_sysfs_ops,
3152         .default_attrs  = rdev_default_attrs,
3153 };
3154
3155 int md_rdev_init(struct md_rdev *rdev)
3156 {
3157         rdev->desc_nr = -1;
3158         rdev->saved_raid_disk = -1;
3159         rdev->raid_disk = -1;
3160         rdev->flags = 0;
3161         rdev->data_offset = 0;
3162         rdev->new_data_offset = 0;
3163         rdev->sb_events = 0;
3164         rdev->last_read_error.tv_sec  = 0;
3165         rdev->last_read_error.tv_nsec = 0;
3166         rdev->sb_loaded = 0;
3167         rdev->bb_page = NULL;
3168         atomic_set(&rdev->nr_pending, 0);
3169         atomic_set(&rdev->read_errors, 0);
3170         atomic_set(&rdev->corrected_errors, 0);
3171
3172         INIT_LIST_HEAD(&rdev->same_set);
3173         init_waitqueue_head(&rdev->blocked_wait);
3174
3175         /* Add space to store bad block list.
3176          * This reserves the space even on arrays where it cannot
3177          * be used - I wonder if that matters
3178          */
3179         rdev->badblocks.count = 0;
3180         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3181         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3182         seqlock_init(&rdev->badblocks.lock);
3183         if (rdev->badblocks.page == NULL)
3184                 return -ENOMEM;
3185
3186         return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(md_rdev_init);
3189 /*
3190  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3191  *
3192  * mark the device faulty if:
3193  *
3194  *   - the device is nonexistent (zero size)
3195  *   - the device has no valid superblock
3196  *
3197  * a faulty rdev _never_ has rdev->sb set.
3198  */
3199 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3200 {
3201         char b[BDEVNAME_SIZE];
3202         int err;
3203         struct md_rdev *rdev;
3204         sector_t size;
3205
3206         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3207         if (!rdev) {
3208                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3209                 return ERR_PTR(-ENOMEM);
3210         }
3211
3212         err = md_rdev_init(rdev);
3213         if (err)
3214                 goto abort_free;
3215         err = alloc_disk_sb(rdev);
3216         if (err)
3217                 goto abort_free;
3218
3219         err = lock_rdev(rdev, newdev, super_format == -2);
3220         if (err)
3221                 goto abort_free;
3222
3223         kobject_init(&rdev->kobj, &rdev_ktype);
3224
3225         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3226         if (!size) {
3227                 printk(KERN_WARNING 
3228                         "md: %s has zero or unknown size, marking faulty!\n",
3229                         bdevname(rdev->bdev,b));
3230                 err = -EINVAL;
3231                 goto abort_free;
3232         }
3233
3234         if (super_format >= 0) {
3235                 err = super_types[super_format].
3236                         load_super(rdev, NULL, super_minor);
3237                 if (err == -EINVAL) {
3238                         printk(KERN_WARNING
3239                                 "md: %s does not have a valid v%d.%d "
3240                                "superblock, not importing!\n",
3241                                 bdevname(rdev->bdev,b),
3242                                super_format, super_minor);
3243                         goto abort_free;
3244                 }
3245                 if (err < 0) {
3246                         printk(KERN_WARNING 
3247                                 "md: could not read %s's sb, not importing!\n",
3248                                 bdevname(rdev->bdev,b));
3249                         goto abort_free;
3250                 }
3251         }
3252
3253         return rdev;
3254
3255 abort_free:
3256         if (rdev->bdev)
3257                 unlock_rdev(rdev);
3258         md_rdev_clear(rdev);
3259         kfree(rdev);
3260         return ERR_PTR(err);
3261 }
3262
3263 /*
3264  * Check a full RAID array for plausibility
3265  */
3266
3267
3268 static void analyze_sbs(struct mddev * mddev)
3269 {
3270         int i;
3271         struct md_rdev *rdev, *freshest, *tmp;
3272         char b[BDEVNAME_SIZE];
3273
3274         freshest = NULL;
3275         rdev_for_each_safe(rdev, tmp, mddev)
3276                 switch (super_types[mddev->major_version].
3277                         load_super(rdev, freshest, mddev->minor_version)) {
3278                 case 1:
3279                         freshest = rdev;
3280                         break;
3281                 case 0:
3282                         break;
3283                 default:
3284                         printk( KERN_ERR \
3285                                 "md: fatal superblock inconsistency in %s"
3286                                 " -- removing from array\n", 
3287                                 bdevname(rdev->bdev,b));
3288                         kick_rdev_from_array(rdev);
3289                 }
3290
3291
3292         super_types[mddev->major_version].
3293                 validate_super(mddev, freshest);
3294
3295         i = 0;
3296         rdev_for_each_safe(rdev, tmp, mddev) {
3297                 if (mddev->max_disks &&
3298                     (rdev->desc_nr >= mddev->max_disks ||
3299                      i > mddev->max_disks)) {
3300                         printk(KERN_WARNING
3301                                "md: %s: %s: only %d devices permitted\n",
3302                                mdname(mddev), bdevname(rdev->bdev, b),
3303                                mddev->max_disks);
3304                         kick_rdev_from_array(rdev);
3305                         continue;
3306                 }
3307                 if (rdev != freshest)
3308                         if (super_types[mddev->major_version].
3309                             validate_super(mddev, rdev)) {
3310                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3311                                         " from array!\n",
3312                                         bdevname(rdev->bdev,b));
3313                                 kick_rdev_from_array(rdev);
3314                                 continue;
3315                         }
3316                 if (mddev->level == LEVEL_MULTIPATH) {
3317                         rdev->desc_nr = i++;
3318                         rdev->raid_disk = rdev->desc_nr;
3319                         set_bit(In_sync, &rdev->flags);
3320                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3321                         rdev->raid_disk = -1;
3322                         clear_bit(In_sync, &rdev->flags);
3323                 }
3324         }
3325 }
3326
3327 /* Read a fixed-point number.
3328  * Numbers in sysfs attributes should be in "standard" units where
3329  * possible, so time should be in seconds.
3330  * However we internally use a a much smaller unit such as 
3331  * milliseconds or jiffies.
3332  * This function takes a decimal number with a possible fractional
3333  * component, and produces an integer which is the result of
3334  * multiplying that number by 10^'scale'.
3335  * all without any floating-point arithmetic.
3336  */
3337 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3338 {
3339         unsigned long result = 0;
3340         long decimals = -1;
3341         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3342                 if (*cp == '.')
3343                         decimals = 0;
3344                 else if (decimals < scale) {
3345                         unsigned int value;
3346                         value = *cp - '0';
3347                         result = result * 10 + value;
3348                         if (decimals >= 0)
3349                                 decimals++;
3350                 }
3351                 cp++;
3352         }
3353         if (*cp == '\n')
3354                 cp++;
3355         if (*cp)
3356                 return -EINVAL;
3357         if (decimals < 0)
3358                 decimals = 0;
3359         while (decimals < scale) {
3360                 result *= 10;
3361                 decimals ++;
3362         }
3363         *res = result;
3364         return 0;
3365 }
3366
3367
3368 static void md_safemode_timeout(unsigned long data);
3369
3370 static ssize_t
3371 safe_delay_show(struct mddev *mddev, char *page)
3372 {
3373         int msec = (mddev->safemode_delay*1000)/HZ;
3374         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3375 }
3376 static ssize_t
3377 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3378 {
3379         unsigned long msec;
3380
3381         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3382                 return -EINVAL;
3383         if (msec == 0)
3384                 mddev->safemode_delay = 0;
3385         else {
3386                 unsigned long old_delay = mddev->safemode_delay;
3387                 mddev->safemode_delay = (msec*HZ)/1000;
3388                 if (mddev->safemode_delay == 0)
3389                         mddev->safemode_delay = 1;
3390                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3391                         md_safemode_timeout((unsigned long)mddev);
3392         }
3393         return len;
3394 }
3395 static struct md_sysfs_entry md_safe_delay =
3396 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3397
3398 static ssize_t
3399 level_show(struct mddev *mddev, char *page)
3400 {
3401         struct md_personality *p = mddev->pers;
3402         if (p)
3403                 return sprintf(page, "%s\n", p->name);
3404         else if (mddev->clevel[0])
3405                 return sprintf(page, "%s\n", mddev->clevel);
3406         else if (mddev->level != LEVEL_NONE)
3407                 return sprintf(page, "%d\n", mddev->level);
3408         else
3409                 return 0;
3410 }
3411
3412 static ssize_t
3413 level_store(struct mddev *mddev, const char *buf, size_t len)
3414 {
3415         char clevel[16];
3416         ssize_t rv = len;
3417         struct md_personality *pers;
3418         long level;
3419         void *priv;
3420         struct md_rdev *rdev;
3421
3422         if (mddev->pers == NULL) {
3423                 if (len == 0)
3424                         return 0;
3425                 if (len >= sizeof(mddev->clevel))
3426                         return -ENOSPC;
3427                 strncpy(mddev->clevel, buf, len);
3428                 if (mddev->clevel[len-1] == '\n')
3429                         len--;
3430                 mddev->clevel[len] = 0;
3431                 mddev->level = LEVEL_NONE;
3432                 return rv;
3433         }
3434         if (mddev->ro)
3435                 return  -EROFS;
3436
3437         /* request to change the personality.  Need to ensure:
3438          *  - array is not engaged in resync/recovery/reshape
3439          *  - old personality can be suspended
3440          *  - new personality will access other array.
3441          */
3442
3443         if (mddev->sync_thread ||
3444             mddev->reshape_position != MaxSector ||
3445             mddev->sysfs_active)
3446                 return -EBUSY;
3447
3448         if (!mddev->pers->quiesce) {
3449                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3450                        mdname(mddev), mddev->pers->name);
3451                 return -EINVAL;
3452         }
3453
3454         /* Now find the new personality */
3455         if (len == 0 || len >= sizeof(clevel))
3456                 return -EINVAL;
3457         strncpy(clevel, buf, len);
3458         if (clevel[len-1] == '\n')
3459                 len--;
3460         clevel[len] = 0;
3461         if (kstrtol(clevel, 10, &level))
3462                 level = LEVEL_NONE;
3463
3464         if (request_module("md-%s", clevel) != 0)
3465                 request_module("md-level-%s", clevel);
3466         spin_lock(&pers_lock);
3467         pers = find_pers(level, clevel);
3468         if (!pers || !try_module_get(pers->owner)) {
3469                 spin_unlock(&pers_lock);
3470                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3471                 return -EINVAL;
3472         }
3473         spin_unlock(&pers_lock);
3474
3475         if (pers == mddev->pers) {
3476                 /* Nothing to do! */
3477                 module_put(pers->owner);
3478                 return rv;
3479         }
3480         if (!pers->takeover) {
3481                 module_put(pers->owner);
3482                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3483                        mdname(mddev), clevel);
3484                 return -EINVAL;
3485         }
3486
3487         rdev_for_each(rdev, mddev)
3488                 rdev->new_raid_disk = rdev->raid_disk;
3489
3490         /* ->takeover must set new_* and/or delta_disks
3491          * if it succeeds, and may set them when it fails.
3492          */
3493         priv = pers->takeover(mddev);
3494         if (IS_ERR(priv)) {
3495                 mddev->new_level = mddev->level;
3496                 mddev->new_layout = mddev->layout;
3497                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3498                 mddev->raid_disks -= mddev->delta_disks;
3499                 mddev->delta_disks = 0;
3500                 mddev->reshape_backwards = 0;
3501                 module_put(pers->owner);
3502                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3503                        mdname(mddev), clevel);
3504                 return PTR_ERR(priv);
3505         }
3506
3507         /* Looks like we have a winner */
3508         mddev_suspend(mddev);
3509         mddev->pers->stop(mddev);
3510         
3511         if (mddev->pers->sync_request == NULL &&
3512             pers->sync_request != NULL) {
3513                 /* need to add the md_redundancy_group */
3514                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3515                         printk(KERN_WARNING
3516                                "md: cannot register extra attributes for %s\n",
3517                                mdname(mddev));
3518                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3519         }               
3520         if (mddev->pers->sync_request != NULL &&
3521             pers->sync_request == NULL) {
3522                 /* need to remove the md_redundancy_group */
3523                 if (mddev->to_remove == NULL)
3524                         mddev->to_remove = &md_redundancy_group;
3525         }
3526
3527         if (mddev->pers->sync_request == NULL &&
3528             mddev->external) {
3529                 /* We are converting from a no-redundancy array
3530                  * to a redundancy array and metadata is managed
3531                  * externally so we need to be sure that writes
3532                  * won't block due to a need to transition
3533                  *      clean->dirty
3534                  * until external management is started.
3535                  */
3536                 mddev->in_sync = 0;
3537                 mddev->safemode_delay = 0;
3538                 mddev->safemode = 0;
3539         }
3540
3541         rdev_for_each(rdev, mddev) {
3542                 if (rdev->raid_disk < 0)
3543                         continue;
3544                 if (rdev->new_raid_disk >= mddev->raid_disks)
3545                         rdev->new_raid_disk = -1;
3546                 if (rdev->new_raid_disk == rdev->raid_disk)
3547                         continue;
3548                 sysfs_unlink_rdev(mddev, rdev);
3549         }
3550         rdev_for_each(rdev, mddev) {
3551                 if (rdev->raid_disk < 0)
3552                         continue;
3553                 if (rdev->new_raid_disk == rdev->raid_disk)
3554                         continue;
3555                 rdev->raid_disk = rdev->new_raid_disk;
3556                 if (rdev->raid_disk < 0)
3557                         clear_bit(In_sync, &rdev->flags);
3558                 else {
3559                         if (sysfs_link_rdev(mddev, rdev))
3560                                 printk(KERN_WARNING "md: cannot register rd%d"
3561                                        " for %s after level change\n",
3562                                        rdev->raid_disk, mdname(mddev));
3563                 }
3564         }
3565
3566         module_put(mddev->pers->owner);
3567         mddev->pers = pers;
3568         mddev->private = priv;
3569         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3570         mddev->level = mddev->new_level;
3571         mddev->layout = mddev->new_layout;
3572         mddev->chunk_sectors = mddev->new_chunk_sectors;
3573         mddev->delta_disks = 0;
3574         mddev->reshape_backwards = 0;
3575         mddev->degraded = 0;
3576         if (mddev->pers->sync_request == NULL) {
3577                 /* this is now an array without redundancy, so
3578                  * it must always be in_sync
3579                  */
3580                 mddev->in_sync = 1;
3581                 del_timer_sync(&mddev->safemode_timer);
3582         }
3583         blk_set_stacking_limits(&mddev->queue->limits);
3584         pers->run(mddev);
3585         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3586         mddev_resume(mddev);
3587         if (!mddev->thread)
3588                 md_update_sb(mddev, 1);
3589         sysfs_notify(&mddev->kobj, NULL, "level");
3590         md_new_event(mddev);
3591         return rv;
3592 }
3593
3594 static struct md_sysfs_entry md_level =
3595 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3596
3597
3598 static ssize_t
3599 layout_show(struct mddev *mddev, char *page)
3600 {
3601         /* just a number, not meaningful for all levels */
3602         if (mddev->reshape_position != MaxSector &&
3603             mddev->layout != mddev->new_layout)
3604                 return sprintf(page, "%d (%d)\n",
3605                                mddev->new_layout, mddev->layout);
3606         return sprintf(page, "%d\n", mddev->layout);
3607 }
3608
3609 static ssize_t
3610 layout_store(struct mddev *mddev, const char *buf, size_t len)
3611 {
3612         char *e;
3613         unsigned long n = simple_strtoul(buf, &e, 10);
3614
3615         if (!*buf || (*e && *e != '\n'))
3616                 return -EINVAL;
3617
3618         if (mddev->pers) {
3619                 int err;
3620                 if (mddev->pers->check_reshape == NULL)
3621                         return -EBUSY;
3622                 if (mddev->ro)
3623                         return -EROFS;
3624                 mddev->new_layout = n;
3625                 err = mddev->pers->check_reshape(mddev);
3626                 if (err) {
3627                         mddev->new_layout = mddev->layout;
3628                         return err;
3629                 }
3630         } else {
3631                 mddev->new_layout = n;
3632                 if (mddev->reshape_position == MaxSector)
3633                         mddev->layout = n;
3634         }
3635         return len;
3636 }
3637 static struct md_sysfs_entry md_layout =
3638 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3639
3640
3641 static ssize_t
3642 raid_disks_show(struct mddev *mddev, char *page)
3643 {
3644         if (mddev->raid_disks == 0)
3645                 return 0;
3646         if (mddev->reshape_position != MaxSector &&
3647             mddev->delta_disks != 0)
3648                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3649                                mddev->raid_disks - mddev->delta_disks);
3650         return sprintf(page, "%d\n", mddev->raid_disks);
3651 }
3652
3653 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3654
3655 static ssize_t
3656 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3657 {
3658         char *e;
3659         int rv = 0;
3660         unsigned long n = simple_strtoul(buf, &e, 10);
3661
3662         if (!*buf || (*e && *e != '\n'))
3663                 return -EINVAL;
3664
3665         if (mddev->pers)
3666                 rv = update_raid_disks(mddev, n);
3667         else if (mddev->reshape_position != MaxSector) {
3668                 struct md_rdev *rdev;
3669                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3670
3671                 rdev_for_each(rdev, mddev) {
3672                         if (olddisks < n &&
3673                             rdev->data_offset < rdev->new_data_offset)
3674                                 return -EINVAL;
3675                         if (olddisks > n &&
3676                             rdev->data_offset > rdev->new_data_offset)
3677                                 return -EINVAL;
3678                 }
3679                 mddev->delta_disks = n - olddisks;
3680                 mddev->raid_disks = n;
3681                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3682         } else
3683                 mddev->raid_disks = n;
3684         return rv ? rv : len;
3685 }
3686 static struct md_sysfs_entry md_raid_disks =
3687 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3688
3689 static ssize_t
3690 chunk_size_show(struct mddev *mddev, char *page)
3691 {
3692         if (mddev->reshape_position != MaxSector &&
3693             mddev->chunk_sectors != mddev->new_chunk_sectors)
3694                 return sprintf(page, "%d (%d)\n",
3695                                mddev->new_chunk_sectors << 9,
3696                                mddev->chunk_sectors << 9);
3697         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3698 }
3699
3700 static ssize_t
3701 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3702 {
3703         char *e;
3704         unsigned long n = simple_strtoul(buf, &e, 10);
3705
3706         if (!*buf || (*e && *e != '\n'))
3707                 return -EINVAL;
3708
3709         if (mddev->pers) {
3710                 int err;
3711                 if (mddev->pers->check_reshape == NULL)
3712                         return -EBUSY;
3713                 if (mddev->ro)
3714                         return -EROFS;
3715                 mddev->new_chunk_sectors = n >> 9;
3716                 err = mddev->pers->check_reshape(mddev);
3717                 if (err) {
3718                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3719                         return err;
3720                 }
3721         } else {
3722                 mddev->new_chunk_sectors = n >> 9;
3723                 if (mddev->reshape_position == MaxSector)
3724                         mddev->chunk_sectors = n >> 9;
3725         }
3726         return len;
3727 }
3728 static struct md_sysfs_entry md_chunk_size =
3729 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3730
3731 static ssize_t
3732 resync_start_show(struct mddev *mddev, char *page)
3733 {
3734         if (mddev->recovery_cp == MaxSector)
3735                 return sprintf(page, "none\n");
3736         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3737 }
3738
3739 static ssize_t
3740 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3741 {
3742         char *e;
3743         unsigned long long n = simple_strtoull(buf, &e, 10);
3744
3745         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3746                 return -EBUSY;
3747         if (cmd_match(buf, "none"))
3748                 n = MaxSector;
3749         else if (!*buf || (*e && *e != '\n'))
3750                 return -EINVAL;
3751
3752         mddev->recovery_cp = n;
3753         if (mddev->pers)
3754                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3755         return len;
3756 }
3757 static struct md_sysfs_entry md_resync_start =
3758 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3759
3760 /*
3761  * The array state can be:
3762  *
3763  * clear
3764  *     No devices, no size, no level
3765  *     Equivalent to STOP_ARRAY ioctl
3766  * inactive
3767  *     May have some settings, but array is not active
3768  *        all IO results in error
3769  *     When written, doesn't tear down array, but just stops it
3770  * suspended (not supported yet)
3771  *     All IO requests will block. The array can be reconfigured.
3772  *     Writing this, if accepted, will block until array is quiescent
3773  * readonly
3774  *     no resync can happen.  no superblocks get written.
3775  *     write requests fail
3776  * read-auto
3777  *     like readonly, but behaves like 'clean' on a write request.
3778  *
3779  * clean - no pending writes, but otherwise active.
3780  *     When written to inactive array, starts without resync
3781  *     If a write request arrives then
3782  *       if metadata is known, mark 'dirty' and switch to 'active'.
3783  *       if not known, block and switch to write-pending
3784  *     If written to an active array that has pending writes, then fails.
3785  * active
3786  *     fully active: IO and resync can be happening.
3787  *     When written to inactive array, starts with resync
3788  *
3789  * write-pending
3790  *     clean, but writes are blocked waiting for 'active' to be written.
3791  *
3792  * active-idle
3793  *     like active, but no writes have been seen for a while (100msec).
3794  *
3795  */
3796 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3797                    write_pending, active_idle, bad_word};
3798 static char *array_states[] = {
3799         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3800         "write-pending", "active-idle", NULL };
3801
3802 static int match_word(const char *word, char **list)
3803 {
3804         int n;
3805         for (n=0; list[n]; n++)
3806                 if (cmd_match(word, list[n]))
3807                         break;
3808         return n;
3809 }
3810
3811 static ssize_t
3812 array_state_show(struct mddev *mddev, char *page)
3813 {
3814         enum array_state st = inactive;
3815
3816         if (mddev->pers)
3817                 switch(mddev->ro) {
3818                 case 1:
3819                         st = readonly;
3820                         break;
3821                 case 2:
3822                         st = read_auto;
3823                         break;
3824                 case 0:
3825                         if (mddev->in_sync)
3826                                 st = clean;
3827                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3828                                 st = write_pending;
3829                         else if (mddev->safemode)
3830                                 st = active_idle;
3831                         else
3832                                 st = active;
3833                 }
3834         else {
3835                 if (list_empty(&mddev->disks) &&
3836                     mddev->raid_disks == 0 &&
3837                     mddev->dev_sectors == 0)
3838                         st = clear;
3839                 else
3840                         st = inactive;
3841         }
3842         return sprintf(page, "%s\n", array_states[st]);
3843 }
3844
3845 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3846 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3847 static int do_md_run(struct mddev * mddev);
3848 static int restart_array(struct mddev *mddev);
3849
3850 static ssize_t
3851 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3852 {
3853         int err = -EINVAL;
3854         enum array_state st = match_word(buf, array_states);
3855         switch(st) {
3856         case bad_word:
3857                 break;
3858         case clear:
3859                 /* stopping an active array */
3860                 err = do_md_stop(mddev, 0, NULL);
3861                 break;
3862         case inactive:
3863                 /* stopping an active array */
3864                 if (mddev->pers)
3865                         err = do_md_stop(mddev, 2, NULL);
3866                 else
3867                         err = 0; /* already inactive */
3868                 break;
3869         case suspended:
3870                 break; /* not supported yet */
3871         case readonly:
3872                 if (mddev->pers)
3873                         err = md_set_readonly(mddev, NULL);
3874                 else {
3875                         mddev->ro = 1;
3876                         set_disk_ro(mddev->gendisk, 1);
3877                         err = do_md_run(mddev);
3878                 }
3879                 break;
3880         case read_auto:
3881                 if (mddev->pers) {
3882                         if (mddev->ro == 0)
3883                                 err = md_set_readonly(mddev, NULL);
3884                         else if (mddev->ro == 1)
3885                                 err = restart_array(mddev);
3886                         if (err == 0) {
3887                                 mddev->ro = 2;
3888                                 set_disk_ro(mddev->gendisk, 0);
3889                         }
3890                 } else {
3891                         mddev->ro = 2;
3892                         err = do_md_run(mddev);
3893                 }
3894                 break;
3895         case clean:
3896                 if (mddev->pers) {
3897                         restart_array(mddev);
3898                         spin_lock_irq(&mddev->write_lock);
3899                         if (atomic_read(&mddev->writes_pending) == 0) {
3900                                 if (mddev->in_sync == 0) {
3901                                         mddev->in_sync = 1;
3902                                         if (mddev->safemode == 1)
3903                                                 mddev->safemode = 0;
3904                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3905                                 }
3906                                 err = 0;
3907                         } else
3908                                 err = -EBUSY;
3909                         spin_unlock_irq(&mddev->write_lock);
3910                 } else
3911                         err = -EINVAL;
3912                 break;
3913         case active:
3914                 if (mddev->pers) {
3915                         restart_array(mddev);
3916                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3917                         wake_up(&mddev->sb_wait);
3918                         err = 0;
3919                 } else {
3920                         mddev->ro = 0;
3921                         set_disk_ro(mddev->gendisk, 0);
3922                         err = do_md_run(mddev);
3923                 }
3924                 break;
3925         case write_pending:
3926         case active_idle:
3927                 /* these cannot be set */
3928                 break;
3929         }
3930         if (err)
3931                 return err;
3932         else {
3933                 if (mddev->hold_active == UNTIL_IOCTL)
3934                         mddev->hold_active = 0;
3935                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3936                 return len;
3937         }
3938 }
3939 static struct md_sysfs_entry md_array_state =
3940 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3941
3942 static ssize_t
3943 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3944         return sprintf(page, "%d\n",
3945                        atomic_read(&mddev->max_corr_read_errors));
3946 }
3947
3948 static ssize_t
3949 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3950 {
3951         char *e;
3952         unsigned long n = simple_strtoul(buf, &e, 10);
3953
3954         if (*buf && (*e == 0 || *e == '\n')) {
3955                 atomic_set(&mddev->max_corr_read_errors, n);
3956                 return len;
3957         }
3958         return -EINVAL;
3959 }
3960
3961 static struct md_sysfs_entry max_corr_read_errors =
3962 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3963         max_corrected_read_errors_store);
3964
3965 static ssize_t
3966 null_show(struct mddev *mddev, char *page)
3967 {
3968         return -EINVAL;
3969 }
3970
3971 static ssize_t
3972 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3973 {
3974         /* buf must be %d:%d\n? giving major and minor numbers */
3975         /* The new device is added to the array.
3976          * If the array has a persistent superblock, we read the
3977          * superblock to initialise info and check validity.
3978          * Otherwise, only checking done is that in bind_rdev_to_array,
3979          * which mainly checks size.
3980          */
3981         char *e;
3982         int major = simple_strtoul(buf, &e, 10);
3983         int minor;
3984         dev_t dev;
3985         struct md_rdev *rdev;
3986         int err;
3987
3988         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3989                 return -EINVAL;
3990         minor = simple_strtoul(e+1, &e, 10);
3991         if (*e && *e != '\n')
3992                 return -EINVAL;
3993         dev = MKDEV(major, minor);
3994         if (major != MAJOR(dev) ||
3995             minor != MINOR(dev))
3996                 return -EOVERFLOW;
3997
3998
3999         if (mddev->persistent) {
4000                 rdev = md_import_device(dev, mddev->major_version,
4001                                         mddev->minor_version);
4002                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4003                         struct md_rdev *rdev0
4004                                 = list_entry(mddev->disks.next,
4005                                              struct md_rdev, same_set);
4006                         err = super_types[mddev->major_version]
4007                                 .load_super(rdev, rdev0, mddev->minor_version);
4008                         if (err < 0)
4009                                 goto out;
4010                 }
4011         } else if (mddev->external)
4012                 rdev = md_import_device(dev, -2, -1);
4013         else
4014                 rdev = md_import_device(dev, -1, -1);
4015
4016         if (IS_ERR(rdev))
4017                 return PTR_ERR(rdev);
4018         err = bind_rdev_to_array(rdev, mddev);
4019  out:
4020         if (err)
4021                 export_rdev(rdev);
4022         return err ? err : len;
4023 }
4024
4025 static struct md_sysfs_entry md_new_device =
4026 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4027
4028 static ssize_t
4029 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4030 {
4031         char *end;
4032         unsigned long chunk, end_chunk;
4033
4034         if (!mddev->bitmap)
4035                 goto out;
4036         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4037         while (*buf) {
4038                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4039                 if (buf == end) break;
4040                 if (*end == '-') { /* range */
4041                         buf = end + 1;
4042                         end_chunk = simple_strtoul(buf, &end, 0);
4043                         if (buf == end) break;
4044                 }
4045                 if (*end && !isspace(*end)) break;
4046                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4047                 buf = skip_spaces(end);
4048         }
4049         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4050 out:
4051         return len;
4052 }
4053
4054 static struct md_sysfs_entry md_bitmap =
4055 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4056
4057 static ssize_t
4058 size_show(struct mddev *mddev, char *page)
4059 {
4060         return sprintf(page, "%llu\n",
4061                 (unsigned long long)mddev->dev_sectors / 2);
4062 }
4063
4064 static int update_size(struct mddev *mddev, sector_t num_sectors);
4065
4066 static ssize_t
4067 size_store(struct mddev *mddev, const char *buf, size_t len)
4068 {
4069         /* If array is inactive, we can reduce the component size, but
4070          * not increase it (except from 0).
4071          * If array is active, we can try an on-line resize
4072          */
4073         sector_t sectors;
4074         int err = strict_blocks_to_sectors(buf, &sectors);
4075
4076         if (err < 0)
4077                 return err;
4078         if (mddev->pers) {
4079                 err = update_size(mddev, sectors);
4080                 md_update_sb(mddev, 1);
4081         } else {
4082                 if (mddev->dev_sectors == 0 ||
4083                     mddev->dev_sectors > sectors)
4084                         mddev->dev_sectors = sectors;
4085                 else
4086                         err = -ENOSPC;
4087         }
4088         return err ? err : len;
4089 }
4090
4091 static struct md_sysfs_entry md_size =
4092 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4093
4094
4095 /* Metadata version.
4096  * This is one of
4097  *   'none' for arrays with no metadata (good luck...)
4098  *   'external' for arrays with externally managed metadata,
4099  * or N.M for internally known formats
4100  */
4101 static ssize_t
4102 metadata_show(struct mddev *mddev, char *page)
4103 {
4104         if (mddev->persistent)
4105                 return sprintf(page, "%d.%d\n",
4106                                mddev->major_version, mddev->minor_version);
4107         else if (mddev->external)
4108                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4109         else
4110                 return sprintf(page, "none\n");
4111 }
4112
4113 static ssize_t
4114 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4115 {
4116         int major, minor;
4117         char *e;
4118         /* Changing the details of 'external' metadata is
4119          * always permitted.  Otherwise there must be
4120          * no devices attached to the array.
4121          */
4122         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4123                 ;
4124         else if (!list_empty(&mddev->disks))
4125                 return -EBUSY;
4126
4127         if (cmd_match(buf, "none")) {
4128                 mddev->persistent = 0;
4129                 mddev->external = 0;
4130                 mddev->major_version = 0;
4131                 mddev->minor_version = 90;
4132                 return len;
4133         }
4134         if (strncmp(buf, "external:", 9) == 0) {
4135                 size_t namelen = len-9;
4136                 if (namelen >= sizeof(mddev->metadata_type))
4137                         namelen = sizeof(mddev->metadata_type)-1;
4138                 strncpy(mddev->metadata_type, buf+9, namelen);
4139                 mddev->metadata_type[namelen] = 0;
4140                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4141                         mddev->metadata_type[--namelen] = 0;
4142                 mddev->persistent = 0;
4143                 mddev->external = 1;
4144                 mddev->major_version = 0;
4145                 mddev->minor_version = 90;
4146                 return len;
4147         }
4148         major = simple_strtoul(buf, &e, 10);
4149         if (e==buf || *e != '.')
4150                 return -EINVAL;
4151         buf = e+1;
4152         minor = simple_strtoul(buf, &e, 10);
4153         if (e==buf || (*e && *e != '\n') )
4154                 return -EINVAL;
4155         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4156                 return -ENOENT;
4157         mddev->major_version = major;
4158         mddev->minor_version = minor;
4159         mddev->persistent = 1;
4160         mddev->external = 0;
4161         return len;
4162 }
4163
4164 static struct md_sysfs_entry md_metadata =
4165 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4166
4167 static ssize_t
4168 action_show(struct mddev *mddev, char *page)
4169 {
4170         char *type = "idle";
4171         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4172                 type = "frozen";
4173         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4174             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4175                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4176                         type = "reshape";
4177                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4178                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4179                                 type = "resync";
4180                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4181                                 type = "check";
4182                         else
4183                                 type = "repair";
4184                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4185                         type = "recover";
4186         }
4187         return sprintf(page, "%s\n", type);
4188 }
4189
4190 static ssize_t
4191 action_store(struct mddev *mddev, const char *page, size_t len)
4192 {
4193         if (!mddev->pers || !mddev->pers->sync_request)
4194                 return -EINVAL;
4195
4196         if (cmd_match(page, "frozen"))
4197                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4198         else
4199                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4200
4201         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4202                 if (mddev->sync_thread) {
4203                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4204                         md_reap_sync_thread(mddev);
4205                 }
4206         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4207                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4208                 return -EBUSY;
4209         else if (cmd_match(page, "resync"))
4210                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4211         else if (cmd_match(page, "recover")) {
4212                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4213                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4214         } else if (cmd_match(page, "reshape")) {
4215                 int err;
4216                 if (mddev->pers->start_reshape == NULL)
4217                         return -EINVAL;
4218                 err = mddev->pers->start_reshape(mddev);
4219                 if (err)
4220                         return err;
4221                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4222         } else {
4223                 if (cmd_match(page, "check"))
4224                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4225                 else if (!cmd_match(page, "repair"))
4226                         return -EINVAL;
4227                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4228                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4229         }
4230         if (mddev->ro == 2) {
4231                 /* A write to sync_action is enough to justify
4232                  * canceling read-auto mode
4233                  */
4234                 mddev->ro = 0;
4235                 md_wakeup_thread(mddev->sync_thread);
4236         }
4237         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4238         md_wakeup_thread(mddev->thread);
4239         sysfs_notify_dirent_safe(mddev->sysfs_action);
4240         return len;
4241 }
4242
4243 static struct md_sysfs_entry md_scan_mode =
4244 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4245
4246 static ssize_t
4247 last_sync_action_show(struct mddev *mddev, char *page)
4248 {
4249         return sprintf(page, "%s\n", mddev->last_sync_action);
4250 }
4251
4252 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4253
4254 static ssize_t
4255 mismatch_cnt_show(struct mddev *mddev, char *page)
4256 {
4257         return sprintf(page, "%llu\n",
4258                        (unsigned long long)
4259                        atomic64_read(&mddev->resync_mismatches));
4260 }
4261
4262 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4263
4264 static ssize_t
4265 sync_min_show(struct mddev *mddev, char *page)
4266 {
4267         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4268                        mddev->sync_speed_min ? "local": "system");
4269 }
4270
4271 static ssize_t
4272 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4273 {
4274         int min;
4275         char *e;
4276         if (strncmp(buf, "system", 6)==0) {
4277                 mddev->sync_speed_min = 0;
4278                 return len;
4279         }
4280         min = simple_strtoul(buf, &e, 10);
4281         if (buf == e || (*e && *e != '\n') || min <= 0)
4282                 return -EINVAL;
4283         mddev->sync_speed_min = min;
4284         return len;
4285 }
4286
4287 static struct md_sysfs_entry md_sync_min =
4288 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4289
4290 static ssize_t
4291 sync_max_show(struct mddev *mddev, char *page)
4292 {
4293         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4294                        mddev->sync_speed_max ? "local": "system");
4295 }
4296
4297 static ssize_t
4298 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300         int max;
4301         char *e;
4302         if (strncmp(buf, "system", 6)==0) {
4303                 mddev->sync_speed_max = 0;
4304                 return len;
4305         }
4306         max = simple_strtoul(buf, &e, 10);
4307         if (buf == e || (*e && *e != '\n') || max <= 0)
4308                 return -EINVAL;
4309         mddev->sync_speed_max = max;
4310         return len;
4311 }
4312
4313 static struct md_sysfs_entry md_sync_max =
4314 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4315
4316 static ssize_t
4317 degraded_show(struct mddev *mddev, char *page)
4318 {
4319         return sprintf(page, "%d\n", mddev->degraded);
4320 }
4321 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4322
4323 static ssize_t
4324 sync_force_parallel_show(struct mddev *mddev, char *page)
4325 {
4326         return sprintf(page, "%d\n", mddev->parallel_resync);
4327 }
4328
4329 static ssize_t
4330 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4331 {
4332         long n;
4333
4334         if (kstrtol(buf, 10, &n))
4335                 return -EINVAL;
4336
4337         if (n != 0 && n != 1)
4338                 return -EINVAL;
4339
4340         mddev->parallel_resync = n;
4341
4342         if (mddev->sync_thread)
4343                 wake_up(&resync_wait);
4344
4345         return len;
4346 }
4347
4348 /* force parallel resync, even with shared block devices */
4349 static struct md_sysfs_entry md_sync_force_parallel =
4350 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4351        sync_force_parallel_show, sync_force_parallel_store);
4352
4353 static ssize_t
4354 sync_speed_show(struct mddev *mddev, char *page)
4355 {
4356         unsigned long resync, dt, db;
4357         if (mddev->curr_resync == 0)
4358                 return sprintf(page, "none\n");
4359         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4360         dt = (jiffies - mddev->resync_mark) / HZ;
4361         if (!dt) dt++;
4362         db = resync - mddev->resync_mark_cnt;
4363         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4364 }
4365
4366 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4367
4368 static ssize_t
4369 sync_completed_show(struct mddev *mddev, char *page)
4370 {
4371         unsigned long long max_sectors, resync;
4372
4373         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4374                 return sprintf(page, "none\n");
4375
4376         if (mddev->curr_resync == 1 ||
4377             mddev->curr_resync == 2)
4378                 return sprintf(page, "delayed\n");
4379
4380         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4381             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4382                 max_sectors = mddev->resync_max_sectors;
4383         else
4384                 max_sectors = mddev->dev_sectors;
4385
4386         resync = mddev->curr_resync_completed;
4387         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4388 }
4389
4390 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4391
4392 static ssize_t
4393 min_sync_show(struct mddev *mddev, char *page)
4394 {
4395         return sprintf(page, "%llu\n",
4396                        (unsigned long long)mddev->resync_min);
4397 }
4398 static ssize_t
4399 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4400 {
4401         unsigned long long min;
4402         if (kstrtoull(buf, 10, &min))
4403                 return -EINVAL;
4404         if (min > mddev->resync_max)
4405                 return -EINVAL;
4406         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407                 return -EBUSY;
4408
4409         /* Must be a multiple of chunk_size */
4410         if (mddev->chunk_sectors) {
4411                 sector_t temp = min;
4412                 if (sector_div(temp, mddev->chunk_sectors))
4413                         return -EINVAL;
4414         }
4415         mddev->resync_min = min;
4416
4417         return len;
4418 }
4419
4420 static struct md_sysfs_entry md_min_sync =
4421 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4422
4423 static ssize_t
4424 max_sync_show(struct mddev *mddev, char *page)
4425 {
4426         if (mddev->resync_max == MaxSector)
4427                 return sprintf(page, "max\n");
4428         else
4429                 return sprintf(page, "%llu\n",
4430                                (unsigned long long)mddev->resync_max);
4431 }
4432 static ssize_t
4433 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435         if (strncmp(buf, "max", 3) == 0)
4436                 mddev->resync_max = MaxSector;
4437         else {
4438                 unsigned long long max;
4439                 if (kstrtoull(buf, 10, &max))
4440                         return -EINVAL;
4441                 if (max < mddev->resync_min)
4442                         return -EINVAL;
4443                 if (max < mddev->resync_max &&
4444                     mddev->ro == 0 &&
4445                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4446                         return -EBUSY;
4447
4448                 /* Must be a multiple of chunk_size */
4449                 if (mddev->chunk_sectors) {
4450                         sector_t temp = max;
4451                         if (sector_div(temp, mddev->chunk_sectors))
4452                                 return -EINVAL;
4453                 }
4454                 mddev->resync_max = max;
4455         }
4456         wake_up(&mddev->recovery_wait);
4457         return len;
4458 }
4459
4460 static struct md_sysfs_entry md_max_sync =
4461 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4462
4463 static ssize_t
4464 suspend_lo_show(struct mddev *mddev, char *page)
4465 {
4466         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4467 }
4468
4469 static ssize_t
4470 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4471 {
4472         char *e;
4473         unsigned long long new = simple_strtoull(buf, &e, 10);
4474         unsigned long long old = mddev->suspend_lo;
4475
4476         if (mddev->pers == NULL || 
4477             mddev->pers->quiesce == NULL)
4478                 return -EINVAL;
4479         if (buf == e || (*e && *e != '\n'))
4480                 return -EINVAL;
4481
4482         mddev->suspend_lo = new;
4483         if (new >= old)
4484                 /* Shrinking suspended region */
4485                 mddev->pers->quiesce(mddev, 2);
4486         else {
4487                 /* Expanding suspended region - need to wait */
4488                 mddev->pers->quiesce(mddev, 1);
4489                 mddev->pers->quiesce(mddev, 0);
4490         }
4491         return len;
4492 }
4493 static struct md_sysfs_entry md_suspend_lo =
4494 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4495
4496
4497 static ssize_t
4498 suspend_hi_show(struct mddev *mddev, char *page)
4499 {
4500         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4501 }
4502
4503 static ssize_t
4504 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4505 {
4506         char *e;
4507         unsigned long long new = simple_strtoull(buf, &e, 10);
4508         unsigned long long old = mddev->suspend_hi;
4509
4510         if (mddev->pers == NULL ||
4511             mddev->pers->quiesce == NULL)
4512                 return -EINVAL;
4513         if (buf == e || (*e && *e != '\n'))
4514                 return -EINVAL;
4515
4516         mddev->suspend_hi = new;
4517         if (new <= old)
4518                 /* Shrinking suspended region */
4519                 mddev->pers->quiesce(mddev, 2);
4520         else {
4521                 /* Expanding suspended region - need to wait */
4522                 mddev->pers->quiesce(mddev, 1);
4523                 mddev->pers->quiesce(mddev, 0);
4524         }
4525         return len;
4526 }
4527 static struct md_sysfs_entry md_suspend_hi =
4528 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4529
4530 static ssize_t
4531 reshape_position_show(struct mddev *mddev, char *page)
4532 {
4533         if (mddev->reshape_position != MaxSector)
4534                 return sprintf(page, "%llu\n",
4535                                (unsigned long long)mddev->reshape_position);
4536         strcpy(page, "none\n");
4537         return 5;
4538 }
4539
4540 static ssize_t
4541 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4542 {
4543         struct md_rdev *rdev;
4544         char *e;
4545         unsigned long long new = simple_strtoull(buf, &e, 10);
4546         if (mddev->pers)
4547                 return -EBUSY;
4548         if (buf == e || (*e && *e != '\n'))
4549                 return -EINVAL;
4550         mddev->reshape_position = new;
4551         mddev->delta_disks = 0;
4552         mddev->reshape_backwards = 0;
4553         mddev->new_level = mddev->level;
4554         mddev->new_layout = mddev->layout;
4555         mddev->new_chunk_sectors = mddev->chunk_sectors;
4556         rdev_for_each(rdev, mddev)
4557                 rdev->new_data_offset = rdev->data_offset;
4558         return len;
4559 }
4560
4561 static struct md_sysfs_entry md_reshape_position =
4562 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4563        reshape_position_store);
4564
4565 static ssize_t
4566 reshape_direction_show(struct mddev *mddev, char *page)
4567 {
4568         return sprintf(page, "%s\n",
4569                        mddev->reshape_backwards ? "backwards" : "forwards");
4570 }
4571
4572 static ssize_t
4573 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4574 {
4575         int backwards = 0;
4576         if (cmd_match(buf, "forwards"))
4577                 backwards = 0;
4578         else if (cmd_match(buf, "backwards"))
4579                 backwards = 1;
4580         else
4581                 return -EINVAL;
4582         if (mddev->reshape_backwards == backwards)
4583                 return len;
4584
4585         /* check if we are allowed to change */
4586         if (mddev->delta_disks)
4587                 return -EBUSY;
4588
4589         if (mddev->persistent &&
4590             mddev->major_version == 0)
4591                 return -EINVAL;
4592
4593         mddev->reshape_backwards = backwards;
4594         return len;
4595 }
4596
4597 static struct md_sysfs_entry md_reshape_direction =
4598 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4599        reshape_direction_store);
4600
4601 static ssize_t
4602 array_size_show(struct mddev *mddev, char *page)
4603 {
4604         if (mddev->external_size)
4605                 return sprintf(page, "%llu\n",
4606                                (unsigned long long)mddev->array_sectors/2);
4607         else
4608                 return sprintf(page, "default\n");
4609 }
4610
4611 static ssize_t
4612 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4613 {
4614         sector_t sectors;
4615
4616         if (strncmp(buf, "default", 7) == 0) {
4617                 if (mddev->pers)
4618                         sectors = mddev->pers->size(mddev, 0, 0);
4619                 else
4620                         sectors = mddev->array_sectors;
4621
4622                 mddev->external_size = 0;
4623         } else {
4624                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4625                         return -EINVAL;
4626                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4627                         return -E2BIG;
4628
4629                 mddev->external_size = 1;
4630         }
4631
4632         mddev->array_sectors = sectors;
4633         if (mddev->pers) {
4634                 set_capacity(mddev->gendisk, mddev->array_sectors);
4635                 revalidate_disk(mddev->gendisk);
4636         }
4637         return len;
4638 }
4639
4640 static struct md_sysfs_entry md_array_size =
4641 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4642        array_size_store);
4643
4644 static struct attribute *md_default_attrs[] = {
4645         &md_level.attr,
4646         &md_layout.attr,
4647         &md_raid_disks.attr,
4648         &md_chunk_size.attr,
4649         &md_size.attr,
4650         &md_resync_start.attr,
4651         &md_metadata.attr,
4652         &md_new_device.attr,
4653         &md_safe_delay.attr,
4654         &md_array_state.attr,
4655         &md_reshape_position.attr,
4656         &md_reshape_direction.attr,
4657         &md_array_size.attr,
4658         &max_corr_read_errors.attr,
4659         NULL,
4660 };
4661
4662 static struct attribute *md_redundancy_attrs[] = {
4663         &md_scan_mode.attr,
4664         &md_last_scan_mode.attr,
4665         &md_mismatches.attr,
4666         &md_sync_min.attr,
4667         &md_sync_max.attr,
4668         &md_sync_speed.attr,
4669         &md_sync_force_parallel.attr,
4670         &md_sync_completed.attr,
4671         &md_min_sync.attr,
4672         &md_max_sync.attr,
4673         &md_suspend_lo.attr,
4674         &md_suspend_hi.attr,
4675         &md_bitmap.attr,
4676         &md_degraded.attr,
4677         NULL,
4678 };
4679 static struct attribute_group md_redundancy_group = {
4680         .name = NULL,
4681         .attrs = md_redundancy_attrs,
4682 };
4683
4684
4685 static ssize_t
4686 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4687 {
4688         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4689         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4690         ssize_t rv;
4691
4692         if (!entry->show)
4693                 return -EIO;
4694         spin_lock(&all_mddevs_lock);
4695         if (list_empty(&mddev->all_mddevs)) {
4696                 spin_unlock(&all_mddevs_lock);
4697                 return -EBUSY;
4698         }
4699         mddev_get(mddev);
4700         spin_unlock(&all_mddevs_lock);
4701
4702         rv = mddev_lock(mddev);
4703         if (!rv) {
4704                 rv = entry->show(mddev, page);
4705                 mddev_unlock(mddev);
4706         }
4707         mddev_put(mddev);
4708         return rv;
4709 }
4710
4711 static ssize_t
4712 md_attr_store(struct kobject *kobj, struct attribute *attr,
4713               const char *page, size_t length)
4714 {
4715         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4716         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4717         ssize_t rv;
4718
4719         if (!entry->store)
4720                 return -EIO;
4721         if (!capable(CAP_SYS_ADMIN))
4722                 return -EACCES;
4723         spin_lock(&all_mddevs_lock);
4724         if (list_empty(&mddev->all_mddevs)) {
4725                 spin_unlock(&all_mddevs_lock);
4726                 return -EBUSY;
4727         }
4728         mddev_get(mddev);
4729         spin_unlock(&all_mddevs_lock);
4730         if (entry->store == new_dev_store)
4731                 flush_workqueue(md_misc_wq);
4732         rv = mddev_lock(mddev);
4733         if (!rv) {
4734                 rv = entry->store(mddev, page, length);
4735                 mddev_unlock(mddev);
4736         }
4737         mddev_put(mddev);
4738         return rv;
4739 }
4740
4741 static void md_free(struct kobject *ko)
4742 {
4743         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4744
4745         if (mddev->sysfs_state)
4746                 sysfs_put(mddev->sysfs_state);
4747
4748         if (mddev->gendisk) {
4749                 del_gendisk(mddev->gendisk);
4750                 put_disk(mddev->gendisk);
4751         }
4752         if (mddev->queue)
4753                 blk_cleanup_queue(mddev->queue);
4754
4755         kfree(mddev);
4756 }
4757
4758 static const struct sysfs_ops md_sysfs_ops = {
4759         .show   = md_attr_show,
4760         .store  = md_attr_store,
4761 };
4762 static struct kobj_type md_ktype = {
4763         .release        = md_free,
4764         .sysfs_ops      = &md_sysfs_ops,
4765         .default_attrs  = md_default_attrs,
4766 };
4767
4768 int mdp_major = 0;
4769
4770 static void mddev_delayed_delete(struct work_struct *ws)
4771 {
4772         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4773
4774         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4775         kobject_del(&mddev->kobj);
4776         kobject_put(&mddev->kobj);
4777 }
4778
4779 static int md_alloc(dev_t dev, char *name)
4780 {
4781         static DEFINE_MUTEX(disks_mutex);
4782         struct mddev *mddev = mddev_find(dev);
4783         struct gendisk *disk;
4784         int partitioned;
4785         int shift;
4786         int unit;
4787         int error;
4788
4789         if (!mddev)
4790                 return -ENODEV;
4791
4792         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4793         shift = partitioned ? MdpMinorShift : 0;
4794         unit = MINOR(mddev->unit) >> shift;
4795
4796         /* wait for any previous instance of this device to be
4797          * completely removed (mddev_delayed_delete).
4798          */
4799         flush_workqueue(md_misc_wq);
4800
4801         mutex_lock(&disks_mutex);
4802         error = -EEXIST;
4803         if (mddev->gendisk)
4804                 goto abort;
4805
4806         if (name) {
4807                 /* Need to ensure that 'name' is not a duplicate.
4808                  */
4809                 struct mddev *mddev2;
4810                 spin_lock(&all_mddevs_lock);
4811
4812                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4813                         if (mddev2->gendisk &&
4814                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4815                                 spin_unlock(&all_mddevs_lock);
4816                                 goto abort;
4817                         }
4818                 spin_unlock(&all_mddevs_lock);
4819         }
4820
4821         error = -ENOMEM;
4822         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4823         if (!mddev->queue)
4824                 goto abort;
4825         mddev->queue->queuedata = mddev;
4826
4827         blk_queue_make_request(mddev->queue, md_make_request);
4828         blk_set_stacking_limits(&mddev->queue->limits);
4829
4830         disk = alloc_disk(1 << shift);
4831         if (!disk) {
4832                 blk_cleanup_queue(mddev->queue);
4833                 mddev->queue = NULL;
4834                 goto abort;
4835         }
4836         disk->major = MAJOR(mddev->unit);
4837         disk->first_minor = unit << shift;
4838         if (name)
4839                 strcpy(disk->disk_name, name);
4840         else if (partitioned)
4841                 sprintf(disk->disk_name, "md_d%d", unit);
4842         else
4843                 sprintf(disk->disk_name, "md%d", unit);
4844         disk->fops = &md_fops;
4845         disk->private_data = mddev;
4846         disk->queue = mddev->queue;
4847         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4848         /* Allow extended partitions.  This makes the
4849          * 'mdp' device redundant, but we can't really
4850          * remove it now.
4851          */
4852         disk->flags |= GENHD_FL_EXT_DEVT;
4853         mddev->gendisk = disk;
4854         /* As soon as we call add_disk(), another thread could get
4855          * through to md_open, so make sure it doesn't get too far
4856          */
4857         mutex_lock(&mddev->open_mutex);
4858         add_disk(disk);
4859
4860         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4861                                      &disk_to_dev(disk)->kobj, "%s", "md");
4862         if (error) {
4863                 /* This isn't possible, but as kobject_init_and_add is marked
4864                  * __must_check, we must do something with the result
4865                  */
4866                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4867                        disk->disk_name);
4868                 error = 0;
4869         }
4870         if (mddev->kobj.sd &&
4871             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4872                 printk(KERN_DEBUG "pointless warning\n");
4873         mutex_unlock(&mddev->open_mutex);
4874  abort:
4875         mutex_unlock(&disks_mutex);
4876         if (!error && mddev->kobj.sd) {
4877                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4878                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4879         }
4880         mddev_put(mddev);
4881         return error;
4882 }
4883
4884 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4885 {
4886         md_alloc(dev, NULL);
4887         return NULL;
4888 }
4889
4890 static int add_named_array(const char *val, struct kernel_param *kp)
4891 {
4892         /* val must be "md_*" where * is not all digits.
4893          * We allocate an array with a large free minor number, and
4894          * set the name to val.  val must not already be an active name.
4895          */
4896         int len = strlen(val);
4897         char buf[DISK_NAME_LEN];
4898
4899         while (len && val[len-1] == '\n')
4900                 len--;
4901         if (len >= DISK_NAME_LEN)
4902                 return -E2BIG;
4903         strlcpy(buf, val, len+1);
4904         if (strncmp(buf, "md_", 3) != 0)
4905                 return -EINVAL;
4906         return md_alloc(0, buf);
4907 }
4908
4909 static void md_safemode_timeout(unsigned long data)
4910 {
4911         struct mddev *mddev = (struct mddev *) data;
4912
4913         if (!atomic_read(&mddev->writes_pending)) {
4914                 mddev->safemode = 1;
4915                 if (mddev->external)
4916                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4917         }
4918         md_wakeup_thread(mddev->thread);
4919 }
4920
4921 static int start_dirty_degraded;
4922
4923 int md_run(struct mddev *mddev)
4924 {
4925         int err;
4926         struct md_rdev *rdev;
4927         struct md_personality *pers;
4928
4929         if (list_empty(&mddev->disks))
4930                 /* cannot run an array with no devices.. */
4931                 return -EINVAL;
4932
4933         if (mddev->pers)
4934                 return -EBUSY;
4935         /* Cannot run until previous stop completes properly */
4936         if (mddev->sysfs_active)
4937                 return -EBUSY;
4938
4939         /*
4940          * Analyze all RAID superblock(s)
4941          */
4942         if (!mddev->raid_disks) {
4943                 if (!mddev->persistent)
4944                         return -EINVAL;
4945                 analyze_sbs(mddev);
4946         }
4947
4948         if (mddev->level != LEVEL_NONE)
4949                 request_module("md-level-%d", mddev->level);
4950         else if (mddev->clevel[0])
4951                 request_module("md-%s", mddev->clevel);
4952
4953         /*
4954          * Drop all container device buffers, from now on
4955          * the only valid external interface is through the md
4956          * device.
4957          */
4958         rdev_for_each(rdev, mddev) {
4959                 if (test_bit(Faulty, &rdev->flags))
4960                         continue;
4961                 sync_blockdev(rdev->bdev);
4962                 invalidate_bdev(rdev->bdev);
4963
4964                 /* perform some consistency tests on the device.
4965                  * We don't want the data to overlap the metadata,
4966                  * Internal Bitmap issues have been handled elsewhere.
4967                  */
4968                 if (rdev->meta_bdev) {
4969                         /* Nothing to check */;
4970                 } else if (rdev->data_offset < rdev->sb_start) {
4971                         if (mddev->dev_sectors &&
4972                             rdev->data_offset + mddev->dev_sectors
4973                             > rdev->sb_start) {
4974                                 printk("md: %s: data overlaps metadata\n",
4975                                        mdname(mddev));
4976                                 return -EINVAL;
4977                         }
4978                 } else {
4979                         if (rdev->sb_start + rdev->sb_size/512
4980                             > rdev->data_offset) {
4981                                 printk("md: %s: metadata overlaps data\n",
4982                                        mdname(mddev));
4983                                 return -EINVAL;
4984                         }
4985                 }
4986                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4987         }
4988
4989         if (mddev->bio_set == NULL)
4990                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4991
4992         spin_lock(&pers_lock);
4993         pers = find_pers(mddev->level, mddev->clevel);
4994         if (!pers || !try_module_get(pers->owner)) {
4995                 spin_unlock(&pers_lock);
4996                 if (mddev->level != LEVEL_NONE)
4997                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4998                                mddev->level);
4999                 else
5000                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5001                                mddev->clevel);
5002                 return -EINVAL;
5003         }
5004         mddev->pers = pers;
5005         spin_unlock(&pers_lock);
5006         if (mddev->level != pers->level) {
5007                 mddev->level = pers->level;
5008                 mddev->new_level = pers->level;
5009         }
5010         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5011
5012         if (mddev->reshape_position != MaxSector &&
5013             pers->start_reshape == NULL) {
5014                 /* This personality cannot handle reshaping... */
5015                 mddev->pers = NULL;
5016                 module_put(pers->owner);
5017                 return -EINVAL;
5018         }
5019
5020         if (pers->sync_request) {
5021                 /* Warn if this is a potentially silly
5022                  * configuration.
5023                  */
5024                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5025                 struct md_rdev *rdev2;
5026                 int warned = 0;
5027
5028                 rdev_for_each(rdev, mddev)
5029                         rdev_for_each(rdev2, mddev) {
5030                                 if (rdev < rdev2 &&
5031                                     rdev->bdev->bd_contains ==
5032                                     rdev2->bdev->bd_contains) {
5033                                         printk(KERN_WARNING
5034                                                "%s: WARNING: %s appears to be"
5035                                                " on the same physical disk as"
5036                                                " %s.\n",
5037                                                mdname(mddev),
5038                                                bdevname(rdev->bdev,b),
5039                                                bdevname(rdev2->bdev,b2));
5040                                         warned = 1;
5041                                 }
5042                         }
5043
5044                 if (warned)
5045                         printk(KERN_WARNING
5046                                "True protection against single-disk"
5047                                " failure might be compromised.\n");
5048         }
5049
5050         mddev->recovery = 0;
5051         /* may be over-ridden by personality */
5052         mddev->resync_max_sectors = mddev->dev_sectors;
5053
5054         mddev->ok_start_degraded = start_dirty_degraded;
5055
5056         if (start_readonly && mddev->ro == 0)
5057                 mddev->ro = 2; /* read-only, but switch on first write */
5058
5059         err = mddev->pers->run(mddev);
5060         if (err)
5061                 printk(KERN_ERR "md: pers->run() failed ...\n");
5062         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5063                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5064                           " but 'external_size' not in effect?\n", __func__);
5065                 printk(KERN_ERR
5066                        "md: invalid array_size %llu > default size %llu\n",
5067                        (unsigned long long)mddev->array_sectors / 2,
5068                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5069                 err = -EINVAL;
5070                 mddev->pers->stop(mddev);
5071         }
5072         if (err == 0 && mddev->pers->sync_request &&
5073             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5074                 err = bitmap_create(mddev);
5075                 if (err) {
5076                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5077                                mdname(mddev), err);
5078                         mddev->pers->stop(mddev);
5079                 }
5080         }
5081         if (err) {
5082                 module_put(mddev->pers->owner);
5083                 mddev->pers = NULL;
5084                 bitmap_destroy(mddev);
5085                 return err;
5086         }
5087         if (mddev->pers->sync_request) {
5088                 if (mddev->kobj.sd &&
5089                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5090                         printk(KERN_WARNING
5091                                "md: cannot register extra attributes for %s\n",
5092                                mdname(mddev));
5093                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5094         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5095                 mddev->ro = 0;
5096
5097         atomic_set(&mddev->writes_pending,0);
5098         atomic_set(&mddev->max_corr_read_errors,
5099                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5100         mddev->safemode = 0;
5101         mddev->safemode_timer.function = md_safemode_timeout;
5102         mddev->safemode_timer.data = (unsigned long) mddev;
5103         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5104         mddev->in_sync = 1;
5105         smp_wmb();
5106         mddev->ready = 1;
5107         rdev_for_each(rdev, mddev)
5108                 if (rdev->raid_disk >= 0)
5109                         if (sysfs_link_rdev(mddev, rdev))
5110                                 /* failure here is OK */;
5111         
5112         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5113         
5114         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5115                 md_update_sb(mddev, 0);
5116
5117         md_new_event(mddev);
5118         sysfs_notify_dirent_safe(mddev->sysfs_state);
5119         sysfs_notify_dirent_safe(mddev->sysfs_action);
5120         sysfs_notify(&mddev->kobj, NULL, "degraded");
5121         return 0;
5122 }
5123 EXPORT_SYMBOL_GPL(md_run);
5124
5125 static int do_md_run(struct mddev *mddev)
5126 {
5127         int err;
5128
5129         err = md_run(mddev);
5130         if (err)
5131                 goto out;
5132         err = bitmap_load(mddev);
5133         if (err) {
5134                 bitmap_destroy(mddev);
5135                 goto out;
5136         }
5137
5138         md_wakeup_thread(mddev->thread);
5139         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5140
5141         set_capacity(mddev->gendisk, mddev->array_sectors);
5142         revalidate_disk(mddev->gendisk);
5143         mddev->changed = 1;
5144         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5145 out:
5146         return err;
5147 }
5148
5149 static int restart_array(struct mddev *mddev)
5150 {
5151         struct gendisk *disk = mddev->gendisk;
5152
5153         /* Complain if it has no devices */
5154         if (list_empty(&mddev->disks))
5155                 return -ENXIO;
5156         if (!mddev->pers)
5157                 return -EINVAL;
5158         if (!mddev->ro)
5159                 return -EBUSY;
5160         mddev->safemode = 0;
5161         mddev->ro = 0;
5162         set_disk_ro(disk, 0);
5163         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5164                 mdname(mddev));
5165         /* Kick recovery or resync if necessary */
5166         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5167         md_wakeup_thread(mddev->thread);
5168         md_wakeup_thread(mddev->sync_thread);
5169         sysfs_notify_dirent_safe(mddev->sysfs_state);
5170         return 0;
5171 }
5172
5173 static void md_clean(struct mddev *mddev)
5174 {
5175         mddev->array_sectors = 0;
5176         mddev->external_size = 0;
5177         mddev->dev_sectors = 0;
5178         mddev->raid_disks = 0;
5179         mddev->recovery_cp = 0;
5180         mddev->resync_min = 0;
5181         mddev->resync_max = MaxSector;
5182         mddev->reshape_position = MaxSector;
5183         mddev->external = 0;
5184         mddev->persistent = 0;
5185         mddev->level = LEVEL_NONE;
5186         mddev->clevel[0] = 0;
5187         mddev->flags = 0;
5188         mddev->ro = 0;
5189         mddev->metadata_type[0] = 0;
5190         mddev->chunk_sectors = 0;
5191         mddev->ctime = mddev->utime = 0;
5192         mddev->layout = 0;
5193         mddev->max_disks = 0;
5194         mddev->events = 0;
5195         mddev->can_decrease_events = 0;
5196         mddev->delta_disks = 0;
5197         mddev->reshape_backwards = 0;
5198         mddev->new_level = LEVEL_NONE;
5199         mddev->new_layout = 0;
5200         mddev->new_chunk_sectors = 0;
5201         mddev->curr_resync = 0;
5202         atomic64_set(&mddev->resync_mismatches, 0);
5203         mddev->suspend_lo = mddev->suspend_hi = 0;
5204         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5205         mddev->recovery = 0;
5206         mddev->in_sync = 0;
5207         mddev->changed = 0;
5208         mddev->degraded = 0;
5209         mddev->safemode = 0;
5210         mddev->merge_check_needed = 0;
5211         mddev->bitmap_info.offset = 0;
5212         mddev->bitmap_info.default_offset = 0;
5213         mddev->bitmap_info.default_space = 0;
5214         mddev->bitmap_info.chunksize = 0;
5215         mddev->bitmap_info.daemon_sleep = 0;
5216         mddev->bitmap_info.max_write_behind = 0;
5217 }
5218
5219 static void __md_stop_writes(struct mddev *mddev)
5220 {
5221         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5222         if (mddev->sync_thread) {
5223                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5224                 md_reap_sync_thread(mddev);
5225         }
5226
5227         del_timer_sync(&mddev->safemode_timer);
5228
5229         bitmap_flush(mddev);
5230         md_super_wait(mddev);
5231
5232         if (mddev->ro == 0 &&
5233             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5234                 /* mark array as shutdown cleanly */
5235                 mddev->in_sync = 1;
5236                 md_update_sb(mddev, 1);
5237         }
5238 }
5239
5240 void md_stop_writes(struct mddev *mddev)
5241 {
5242         mddev_lock_nointr(mddev);
5243         __md_stop_writes(mddev);
5244         mddev_unlock(mddev);
5245 }
5246 EXPORT_SYMBOL_GPL(md_stop_writes);
5247
5248 static void __md_stop(struct mddev *mddev)
5249 {
5250         mddev->ready = 0;
5251         mddev->pers->stop(mddev);
5252         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5253                 mddev->to_remove = &md_redundancy_group;
5254         module_put(mddev->pers->owner);
5255         mddev->pers = NULL;
5256         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5257 }
5258
5259 void md_stop(struct mddev *mddev)
5260 {
5261         /* stop the array and free an attached data structures.
5262          * This is called from dm-raid
5263          */
5264         __md_stop(mddev);
5265         bitmap_destroy(mddev);
5266         if (mddev->bio_set)
5267                 bioset_free(mddev->bio_set);
5268 }
5269
5270 EXPORT_SYMBOL_GPL(md_stop);
5271
5272 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5273 {
5274         int err = 0;
5275         int did_freeze = 0;
5276
5277         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5278                 did_freeze = 1;
5279                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5280                 md_wakeup_thread(mddev->thread);
5281         }
5282         if (mddev->sync_thread) {
5283                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5284                 /* Thread might be blocked waiting for metadata update
5285                  * which will now never happen */
5286                 wake_up_process(mddev->sync_thread->tsk);
5287         }
5288         mddev_unlock(mddev);
5289         wait_event(resync_wait, mddev->sync_thread == NULL);
5290         mddev_lock_nointr(mddev);
5291
5292         mutex_lock(&mddev->open_mutex);
5293         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5294             mddev->sync_thread ||
5295             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5296                 printk("md: %s still in use.\n",mdname(mddev));
5297                 if (did_freeze) {
5298                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5299                         md_wakeup_thread(mddev->thread);
5300                 }
5301                 err = -EBUSY;
5302                 goto out;
5303         }
5304         if (mddev->pers) {
5305                 __md_stop_writes(mddev);
5306
5307                 err  = -ENXIO;
5308                 if (mddev->ro==1)
5309                         goto out;
5310                 mddev->ro = 1;
5311                 set_disk_ro(mddev->gendisk, 1);
5312                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5313                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5314                 err = 0;
5315         }
5316 out:
5317         mutex_unlock(&mddev->open_mutex);
5318         return err;
5319 }
5320
5321 /* mode:
5322  *   0 - completely stop and dis-assemble array
5323  *   2 - stop but do not disassemble array
5324  */
5325 static int do_md_stop(struct mddev * mddev, int mode,
5326                       struct block_device *bdev)
5327 {
5328         struct gendisk *disk = mddev->gendisk;
5329         struct md_rdev *rdev;
5330         int did_freeze = 0;
5331
5332         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5333                 did_freeze = 1;
5334                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5335                 md_wakeup_thread(mddev->thread);
5336         }
5337         if (mddev->sync_thread) {
5338                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5339                 /* Thread might be blocked waiting for metadata update
5340                  * which will now never happen */
5341                 wake_up_process(mddev->sync_thread->tsk);
5342         }
5343         mddev_unlock(mddev);
5344         wait_event(resync_wait, mddev->sync_thread == NULL);
5345         mddev_lock_nointr(mddev);
5346
5347         mutex_lock(&mddev->open_mutex);
5348         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5349             mddev->sysfs_active ||
5350             mddev->sync_thread ||
5351             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5352                 printk("md: %s still in use.\n",mdname(mddev));
5353                 mutex_unlock(&mddev->open_mutex);
5354                 if (did_freeze) {
5355                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5356                         md_wakeup_thread(mddev->thread);
5357                 }
5358                 return -EBUSY;
5359         }
5360         if (mddev->pers) {
5361                 if (mddev->ro)
5362                         set_disk_ro(disk, 0);
5363
5364                 __md_stop_writes(mddev);
5365                 __md_stop(mddev);
5366                 mddev->queue->merge_bvec_fn = NULL;
5367                 mddev->queue->backing_dev_info.congested_fn = NULL;
5368
5369                 /* tell userspace to handle 'inactive' */
5370                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5371
5372                 rdev_for_each(rdev, mddev)
5373                         if (rdev->raid_disk >= 0)
5374                                 sysfs_unlink_rdev(mddev, rdev);
5375
5376                 set_capacity(disk, 0);
5377                 mutex_unlock(&mddev->open_mutex);
5378                 mddev->changed = 1;
5379                 revalidate_disk(disk);
5380
5381                 if (mddev->ro)
5382                         mddev->ro = 0;
5383         } else
5384                 mutex_unlock(&mddev->open_mutex);
5385         /*
5386          * Free resources if final stop
5387          */
5388         if (mode == 0) {
5389                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5390
5391                 bitmap_destroy(mddev);
5392                 if (mddev->bitmap_info.file) {
5393                         fput(mddev->bitmap_info.file);
5394                         mddev->bitmap_info.file = NULL;
5395                 }
5396                 mddev->bitmap_info.offset = 0;
5397
5398                 export_array(mddev);
5399
5400                 md_clean(mddev);
5401                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5402                 if (mddev->hold_active == UNTIL_STOP)
5403                         mddev->hold_active = 0;
5404         }
5405         blk_integrity_unregister(disk);
5406         md_new_event(mddev);
5407         sysfs_notify_dirent_safe(mddev->sysfs_state);
5408         return 0;
5409 }
5410
5411 #ifndef MODULE
5412 static void autorun_array(struct mddev *mddev)
5413 {
5414         struct md_rdev *rdev;
5415         int err;
5416
5417         if (list_empty(&mddev->disks))
5418                 return;
5419
5420         printk(KERN_INFO "md: running: ");
5421
5422         rdev_for_each(rdev, mddev) {
5423                 char b[BDEVNAME_SIZE];
5424                 printk("<%s>", bdevname(rdev->bdev,b));
5425         }
5426         printk("\n");
5427
5428         err = do_md_run(mddev);
5429         if (err) {
5430                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5431                 do_md_stop(mddev, 0, NULL);
5432         }
5433 }
5434
5435 /*
5436  * lets try to run arrays based on all disks that have arrived
5437  * until now. (those are in pending_raid_disks)
5438  *
5439  * the method: pick the first pending disk, collect all disks with
5440  * the same UUID, remove all from the pending list and put them into
5441  * the 'same_array' list. Then order this list based on superblock
5442  * update time (freshest comes first), kick out 'old' disks and
5443  * compare superblocks. If everything's fine then run it.
5444  *
5445  * If "unit" is allocated, then bump its reference count
5446  */
5447 static void autorun_devices(int part)
5448 {
5449         struct md_rdev *rdev0, *rdev, *tmp;
5450         struct mddev *mddev;
5451         char b[BDEVNAME_SIZE];
5452
5453         printk(KERN_INFO "md: autorun ...\n");
5454         while (!list_empty(&pending_raid_disks)) {
5455                 int unit;
5456                 dev_t dev;
5457                 LIST_HEAD(candidates);
5458                 rdev0 = list_entry(pending_raid_disks.next,
5459                                          struct md_rdev, same_set);
5460
5461                 printk(KERN_INFO "md: considering %s ...\n",
5462                         bdevname(rdev0->bdev,b));
5463                 INIT_LIST_HEAD(&candidates);
5464                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5465                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5466                                 printk(KERN_INFO "md:  adding %s ...\n",
5467                                         bdevname(rdev->bdev,b));
5468                                 list_move(&rdev->same_set, &candidates);
5469                         }
5470                 /*
5471                  * now we have a set of devices, with all of them having
5472                  * mostly sane superblocks. It's time to allocate the
5473                  * mddev.
5474                  */
5475                 if (part) {
5476                         dev = MKDEV(mdp_major,
5477                                     rdev0->preferred_minor << MdpMinorShift);
5478                         unit = MINOR(dev) >> MdpMinorShift;
5479                 } else {
5480                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5481                         unit = MINOR(dev);
5482                 }
5483                 if (rdev0->preferred_minor != unit) {
5484                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5485                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5486                         break;
5487                 }
5488
5489                 md_probe(dev, NULL, NULL);
5490                 mddev = mddev_find(dev);
5491                 if (!mddev || !mddev->gendisk) {
5492                         if (mddev)
5493                                 mddev_put(mddev);
5494                         printk(KERN_ERR
5495                                 "md: cannot allocate memory for md drive.\n");
5496                         break;
5497                 }
5498                 if (mddev_lock(mddev)) 
5499                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5500                                mdname(mddev));
5501                 else if (mddev->raid_disks || mddev->major_version
5502                          || !list_empty(&mddev->disks)) {
5503                         printk(KERN_WARNING 
5504                                 "md: %s already running, cannot run %s\n",
5505                                 mdname(mddev), bdevname(rdev0->bdev,b));
5506                         mddev_unlock(mddev);
5507                 } else {
5508                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5509                         mddev->persistent = 1;
5510                         rdev_for_each_list(rdev, tmp, &candidates) {
5511                                 list_del_init(&rdev->same_set);
5512                                 if (bind_rdev_to_array(rdev, mddev))
5513                                         export_rdev(rdev);
5514                         }
5515                         autorun_array(mddev);
5516                         mddev_unlock(mddev);
5517                 }
5518                 /* on success, candidates will be empty, on error
5519                  * it won't...
5520                  */
5521                 rdev_for_each_list(rdev, tmp, &candidates) {
5522                         list_del_init(&rdev->same_set);
5523                         export_rdev(rdev);
5524                 }
5525                 mddev_put(mddev);
5526         }
5527         printk(KERN_INFO "md: ... autorun DONE.\n");
5528 }
5529 #endif /* !MODULE */
5530
5531 static int get_version(void __user * arg)
5532 {
5533         mdu_version_t ver;
5534
5535         ver.major = MD_MAJOR_VERSION;
5536         ver.minor = MD_MINOR_VERSION;
5537         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5538
5539         if (copy_to_user(arg, &ver, sizeof(ver)))
5540                 return -EFAULT;
5541
5542         return 0;
5543 }
5544
5545 static int get_array_info(struct mddev * mddev, void __user * arg)
5546 {
5547         mdu_array_info_t info;
5548         int nr,working,insync,failed,spare;
5549         struct md_rdev *rdev;
5550
5551         nr = working = insync = failed = spare = 0;
5552         rcu_read_lock();
5553         rdev_for_each_rcu(rdev, mddev) {
5554                 nr++;
5555                 if (test_bit(Faulty, &rdev->flags))
5556                         failed++;
5557                 else {
5558                         working++;
5559                         if (test_bit(In_sync, &rdev->flags))
5560                                 insync++;       
5561                         else
5562                                 spare++;
5563                 }
5564         }
5565         rcu_read_unlock();
5566
5567         info.major_version = mddev->major_version;
5568         info.minor_version = mddev->minor_version;
5569         info.patch_version = MD_PATCHLEVEL_VERSION;
5570         info.ctime         = mddev->ctime;
5571         info.level         = mddev->level;
5572         info.size          = mddev->dev_sectors / 2;
5573         if (info.size != mddev->dev_sectors / 2) /* overflow */
5574                 info.size = -1;
5575         info.nr_disks      = nr;
5576         info.raid_disks    = mddev->raid_disks;
5577         info.md_minor      = mddev->md_minor;
5578         info.not_persistent= !mddev->persistent;
5579
5580         info.utime         = mddev->utime;
5581         info.state         = 0;
5582         if (mddev->in_sync)
5583                 info.state = (1<<MD_SB_CLEAN);
5584         if (mddev->bitmap && mddev->bitmap_info.offset)
5585                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5586         info.active_disks  = insync;
5587         info.working_disks = working;
5588         info.failed_disks  = failed;
5589         info.spare_disks   = spare;
5590
5591         info.layout        = mddev->layout;
5592         info.chunk_size    = mddev->chunk_sectors << 9;
5593
5594         if (copy_to_user(arg, &info, sizeof(info)))
5595                 return -EFAULT;
5596
5597         return 0;
5598 }
5599
5600 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5601 {
5602         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5603         char *ptr, *buf = NULL;
5604         int err = -ENOMEM;
5605
5606         file = kmalloc(sizeof(*file), GFP_NOIO);
5607
5608         if (!file)
5609                 goto out;
5610
5611         /* bitmap disabled, zero the first byte and copy out */
5612         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5613                 file->pathname[0] = '\0';
5614                 goto copy_out;
5615         }
5616
5617         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5618         if (!buf)
5619                 goto out;
5620
5621         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5622                      buf, sizeof(file->pathname));
5623         if (IS_ERR(ptr))
5624                 goto out;
5625
5626         strcpy(file->pathname, ptr);
5627
5628 copy_out:
5629         err = 0;
5630         if (copy_to_user(arg, file, sizeof(*file)))
5631                 err = -EFAULT;
5632 out:
5633         kfree(buf);
5634         kfree(file);
5635         return err;
5636 }
5637
5638 static int get_disk_info(struct mddev * mddev, void __user * arg)
5639 {
5640         mdu_disk_info_t info;
5641         struct md_rdev *rdev;
5642
5643         if (copy_from_user(&info, arg, sizeof(info)))
5644                 return -EFAULT;
5645
5646         rcu_read_lock();
5647         rdev = find_rdev_nr_rcu(mddev, info.number);
5648         if (rdev) {
5649                 info.major = MAJOR(rdev->bdev->bd_dev);
5650                 info.minor = MINOR(rdev->bdev->bd_dev);
5651                 info.raid_disk = rdev->raid_disk;
5652                 info.state = 0;
5653                 if (test_bit(Faulty, &rdev->flags))
5654                         info.state |= (1<<MD_DISK_FAULTY);
5655                 else if (test_bit(In_sync, &rdev->flags)) {
5656                         info.state |= (1<<MD_DISK_ACTIVE);
5657                         info.state |= (1<<MD_DISK_SYNC);
5658                 }
5659                 if (test_bit(WriteMostly, &rdev->flags))
5660                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5661         } else {
5662                 info.major = info.minor = 0;
5663                 info.raid_disk = -1;
5664                 info.state = (1<<MD_DISK_REMOVED);
5665         }
5666         rcu_read_unlock();
5667
5668         if (copy_to_user(arg, &info, sizeof(info)))
5669                 return -EFAULT;
5670
5671         return 0;
5672 }
5673
5674 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5675 {
5676         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5677         struct md_rdev *rdev;
5678         dev_t dev = MKDEV(info->major,info->minor);
5679
5680         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5681                 return -EOVERFLOW;
5682
5683         if (!mddev->raid_disks) {
5684                 int err;
5685                 /* expecting a device which has a superblock */
5686                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5687                 if (IS_ERR(rdev)) {
5688                         printk(KERN_WARNING 
5689                                 "md: md_import_device returned %ld\n",
5690                                 PTR_ERR(rdev));
5691                         return PTR_ERR(rdev);
5692                 }
5693                 if (!list_empty(&mddev->disks)) {
5694                         struct md_rdev *rdev0
5695                                 = list_entry(mddev->disks.next,
5696                                              struct md_rdev, same_set);
5697                         err = super_types[mddev->major_version]
5698                                 .load_super(rdev, rdev0, mddev->minor_version);
5699                         if (err < 0) {
5700                                 printk(KERN_WARNING 
5701                                         "md: %s has different UUID to %s\n",
5702                                         bdevname(rdev->bdev,b), 
5703                                         bdevname(rdev0->bdev,b2));
5704                                 export_rdev(rdev);
5705                                 return -EINVAL;
5706                         }
5707                 }
5708                 err = bind_rdev_to_array(rdev, mddev);
5709                 if (err)
5710                         export_rdev(rdev);
5711                 return err;
5712         }
5713
5714         /*
5715          * add_new_disk can be used once the array is assembled
5716          * to add "hot spares".  They must already have a superblock
5717          * written
5718          */
5719         if (mddev->pers) {
5720                 int err;
5721                 if (!mddev->pers->hot_add_disk) {
5722                         printk(KERN_WARNING 
5723                                 "%s: personality does not support diskops!\n",
5724                                mdname(mddev));
5725                         return -EINVAL;
5726                 }
5727                 if (mddev->persistent)
5728                         rdev = md_import_device(dev, mddev->major_version,
5729                                                 mddev->minor_version);
5730                 else
5731                         rdev = md_import_device(dev, -1, -1);
5732                 if (IS_ERR(rdev)) {
5733                         printk(KERN_WARNING 
5734                                 "md: md_import_device returned %ld\n",
5735                                 PTR_ERR(rdev));
5736                         return PTR_ERR(rdev);
5737                 }
5738                 /* set saved_raid_disk if appropriate */
5739                 if (!mddev->persistent) {
5740                         if (info->state & (1<<MD_DISK_SYNC)  &&
5741                             info->raid_disk < mddev->raid_disks) {
5742                                 rdev->raid_disk = info->raid_disk;
5743                                 set_bit(In_sync, &rdev->flags);
5744                                 clear_bit(Bitmap_sync, &rdev->flags);
5745                         } else
5746                                 rdev->raid_disk = -1;
5747                         rdev->saved_raid_disk = rdev->raid_disk;
5748                 } else
5749                         super_types[mddev->major_version].
5750                                 validate_super(mddev, rdev);
5751                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5752                      rdev->raid_disk != info->raid_disk) {
5753                         /* This was a hot-add request, but events doesn't
5754                          * match, so reject it.
5755                          */
5756                         export_rdev(rdev);
5757                         return -EINVAL;
5758                 }
5759
5760                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5761                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5762                         set_bit(WriteMostly, &rdev->flags);
5763                 else
5764                         clear_bit(WriteMostly, &rdev->flags);
5765
5766                 rdev->raid_disk = -1;
5767                 err = bind_rdev_to_array(rdev, mddev);
5768                 if (!err && !mddev->pers->hot_remove_disk) {
5769                         /* If there is hot_add_disk but no hot_remove_disk
5770                          * then added disks for geometry changes,
5771                          * and should be added immediately.
5772                          */
5773                         super_types[mddev->major_version].
5774                                 validate_super(mddev, rdev);
5775                         err = mddev->pers->hot_add_disk(mddev, rdev);
5776                         if (err)
5777                                 unbind_rdev_from_array(rdev);
5778                 }
5779                 if (err)
5780                         export_rdev(rdev);
5781                 else
5782                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5783
5784                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5785                 if (mddev->degraded)
5786                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5787                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5788                 if (!err)
5789                         md_new_event(mddev);
5790                 md_wakeup_thread(mddev->thread);
5791                 return err;
5792         }
5793
5794         /* otherwise, add_new_disk is only allowed
5795          * for major_version==0 superblocks
5796          */
5797         if (mddev->major_version != 0) {
5798                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5799                        mdname(mddev));
5800                 return -EINVAL;
5801         }
5802
5803         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5804                 int err;
5805                 rdev = md_import_device(dev, -1, 0);
5806                 if (IS_ERR(rdev)) {
5807                         printk(KERN_WARNING 
5808                                 "md: error, md_import_device() returned %ld\n",
5809                                 PTR_ERR(rdev));
5810                         return PTR_ERR(rdev);
5811                 }
5812                 rdev->desc_nr = info->number;
5813                 if (info->raid_disk < mddev->raid_disks)
5814                         rdev->raid_disk = info->raid_disk;
5815                 else
5816                         rdev->raid_disk = -1;
5817
5818                 if (rdev->raid_disk < mddev->raid_disks)
5819                         if (info->state & (1<<MD_DISK_SYNC))
5820                                 set_bit(In_sync, &rdev->flags);
5821
5822                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5823                         set_bit(WriteMostly, &rdev->flags);
5824
5825                 if (!mddev->persistent) {
5826                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5827                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5828                 } else
5829                         rdev->sb_start = calc_dev_sboffset(rdev);
5830                 rdev->sectors = rdev->sb_start;
5831
5832                 err = bind_rdev_to_array(rdev, mddev);
5833                 if (err) {
5834                         export_rdev(rdev);
5835                         return err;
5836                 }
5837         }
5838
5839         return 0;
5840 }
5841
5842 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5843 {
5844         char b[BDEVNAME_SIZE];
5845         struct md_rdev *rdev;
5846
5847         rdev = find_rdev(mddev, dev);
5848         if (!rdev)
5849                 return -ENXIO;
5850
5851         clear_bit(Blocked, &rdev->flags);
5852         remove_and_add_spares(mddev, rdev);
5853
5854         if (rdev->raid_disk >= 0)
5855                 goto busy;
5856
5857         kick_rdev_from_array(rdev);
5858         md_update_sb(mddev, 1);
5859         md_new_event(mddev);
5860
5861         return 0;
5862 busy:
5863         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5864                 bdevname(rdev->bdev,b), mdname(mddev));
5865         return -EBUSY;
5866 }
5867
5868 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5869 {
5870         char b[BDEVNAME_SIZE];
5871         int err;
5872         struct md_rdev *rdev;
5873
5874         if (!mddev->pers)
5875                 return -ENODEV;
5876
5877         if (mddev->major_version != 0) {
5878                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5879                         " version-0 superblocks.\n",
5880                         mdname(mddev));
5881                 return -EINVAL;
5882         }
5883         if (!mddev->pers->hot_add_disk) {
5884                 printk(KERN_WARNING 
5885                         "%s: personality does not support diskops!\n",
5886                         mdname(mddev));
5887                 return -EINVAL;
5888         }
5889
5890         rdev = md_import_device(dev, -1, 0);
5891         if (IS_ERR(rdev)) {
5892                 printk(KERN_WARNING 
5893                         "md: error, md_import_device() returned %ld\n",
5894                         PTR_ERR(rdev));
5895                 return -EINVAL;
5896         }
5897
5898         if (mddev->persistent)
5899                 rdev->sb_start = calc_dev_sboffset(rdev);
5900         else
5901                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5902
5903         rdev->sectors = rdev->sb_start;
5904
5905         if (test_bit(Faulty, &rdev->flags)) {
5906                 printk(KERN_WARNING 
5907                         "md: can not hot-add faulty %s disk to %s!\n",
5908                         bdevname(rdev->bdev,b), mdname(mddev));
5909                 err = -EINVAL;
5910                 goto abort_export;
5911         }
5912         clear_bit(In_sync, &rdev->flags);
5913         rdev->desc_nr = -1;
5914         rdev->saved_raid_disk = -1;
5915         err = bind_rdev_to_array(rdev, mddev);
5916         if (err)
5917                 goto abort_export;
5918
5919         /*
5920          * The rest should better be atomic, we can have disk failures
5921          * noticed in interrupt contexts ...
5922          */
5923
5924         rdev->raid_disk = -1;
5925
5926         md_update_sb(mddev, 1);
5927
5928         /*
5929          * Kick recovery, maybe this spare has to be added to the
5930          * array immediately.
5931          */
5932         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5933         md_wakeup_thread(mddev->thread);
5934         md_new_event(mddev);
5935         return 0;
5936
5937 abort_export:
5938         export_rdev(rdev);
5939         return err;
5940 }
5941
5942 static int set_bitmap_file(struct mddev *mddev, int fd)
5943 {
5944         int err = 0;
5945
5946         if (mddev->pers) {
5947                 if (!mddev->pers->quiesce || !mddev->thread)
5948                         return -EBUSY;
5949                 if (mddev->recovery || mddev->sync_thread)
5950                         return -EBUSY;
5951                 /* we should be able to change the bitmap.. */
5952         }
5953
5954
5955         if (fd >= 0) {
5956                 struct inode *inode;
5957                 if (mddev->bitmap)
5958                         return -EEXIST; /* cannot add when bitmap is present */
5959                 mddev->bitmap_info.file = fget(fd);
5960
5961                 if (mddev->bitmap_info.file == NULL) {
5962                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5963                                mdname(mddev));
5964                         return -EBADF;
5965                 }
5966
5967                 inode = mddev->bitmap_info.file->f_mapping->host;
5968                 if (!S_ISREG(inode->i_mode)) {
5969                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5970                                mdname(mddev));
5971                         err = -EBADF;
5972                 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5973                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5974                                mdname(mddev));
5975                         err = -EBADF;
5976                 } else if (atomic_read(&inode->i_writecount) != 1) {
5977                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5978                                mdname(mddev));
5979                         err = -EBUSY;
5980                 }
5981                 if (err) {
5982                         fput(mddev->bitmap_info.file);
5983                         mddev->bitmap_info.file = NULL;
5984                         return err;
5985                 }
5986                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5987         } else if (mddev->bitmap == NULL)
5988                 return -ENOENT; /* cannot remove what isn't there */
5989         err = 0;
5990         if (mddev->pers) {
5991                 mddev->pers->quiesce(mddev, 1);
5992                 if (fd >= 0) {
5993                         err = bitmap_create(mddev);
5994                         if (!err)
5995                                 err = bitmap_load(mddev);
5996                 }
5997                 if (fd < 0 || err) {
5998                         bitmap_destroy(mddev);
5999                         fd = -1; /* make sure to put the file */
6000                 }
6001                 mddev->pers->quiesce(mddev, 0);
6002         }
6003         if (fd < 0) {
6004                 if (mddev->bitmap_info.file)
6005                         fput(mddev->bitmap_info.file);
6006                 mddev->bitmap_info.file = NULL;
6007         }
6008
6009         return err;
6010 }
6011
6012 /*
6013  * set_array_info is used two different ways
6014  * The original usage is when creating a new array.
6015  * In this usage, raid_disks is > 0 and it together with
6016  *  level, size, not_persistent,layout,chunksize determine the
6017  *  shape of the array.
6018  *  This will always create an array with a type-0.90.0 superblock.
6019  * The newer usage is when assembling an array.
6020  *  In this case raid_disks will be 0, and the major_version field is
6021  *  use to determine which style super-blocks are to be found on the devices.
6022  *  The minor and patch _version numbers are also kept incase the
6023  *  super_block handler wishes to interpret them.
6024  */
6025 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6026 {
6027
6028         if (info->raid_disks == 0) {
6029                 /* just setting version number for superblock loading */
6030                 if (info->major_version < 0 ||
6031                     info->major_version >= ARRAY_SIZE(super_types) ||
6032                     super_types[info->major_version].name == NULL) {
6033                         /* maybe try to auto-load a module? */
6034                         printk(KERN_INFO 
6035                                 "md: superblock version %d not known\n",
6036                                 info->major_version);
6037                         return -EINVAL;
6038                 }
6039                 mddev->major_version = info->major_version;
6040                 mddev->minor_version = info->minor_version;
6041                 mddev->patch_version = info->patch_version;
6042                 mddev->persistent = !info->not_persistent;
6043                 /* ensure mddev_put doesn't delete this now that there
6044                  * is some minimal configuration.
6045                  */
6046                 mddev->ctime         = get_seconds();
6047                 return 0;
6048         }
6049         mddev->major_version = MD_MAJOR_VERSION;
6050         mddev->minor_version = MD_MINOR_VERSION;
6051         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6052         mddev->ctime         = get_seconds();
6053
6054         mddev->level         = info->level;
6055         mddev->clevel[0]     = 0;
6056         mddev->dev_sectors   = 2 * (sector_t)info->size;
6057         mddev->raid_disks    = info->raid_disks;
6058         /* don't set md_minor, it is determined by which /dev/md* was
6059          * openned
6060          */
6061         if (info->state & (1<<MD_SB_CLEAN))
6062                 mddev->recovery_cp = MaxSector;
6063         else
6064                 mddev->recovery_cp = 0;
6065         mddev->persistent    = ! info->not_persistent;
6066         mddev->external      = 0;
6067
6068         mddev->layout        = info->layout;
6069         mddev->chunk_sectors = info->chunk_size >> 9;
6070
6071         mddev->max_disks     = MD_SB_DISKS;
6072
6073         if (mddev->persistent)
6074                 mddev->flags         = 0;
6075         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6076
6077         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6078         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6079         mddev->bitmap_info.offset = 0;
6080
6081         mddev->reshape_position = MaxSector;
6082
6083         /*
6084          * Generate a 128 bit UUID
6085          */
6086         get_random_bytes(mddev->uuid, 16);
6087
6088         mddev->new_level = mddev->level;
6089         mddev->new_chunk_sectors = mddev->chunk_sectors;
6090         mddev->new_layout = mddev->layout;
6091         mddev->delta_disks = 0;
6092         mddev->reshape_backwards = 0;
6093
6094         return 0;
6095 }
6096
6097 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6098 {
6099         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6100
6101         if (mddev->external_size)
6102                 return;
6103
6104         mddev->array_sectors = array_sectors;
6105 }
6106 EXPORT_SYMBOL(md_set_array_sectors);
6107
6108 static int update_size(struct mddev *mddev, sector_t num_sectors)
6109 {
6110         struct md_rdev *rdev;
6111         int rv;
6112         int fit = (num_sectors == 0);
6113
6114         if (mddev->pers->resize == NULL)
6115                 return -EINVAL;
6116         /* The "num_sectors" is the number of sectors of each device that
6117          * is used.  This can only make sense for arrays with redundancy.
6118          * linear and raid0 always use whatever space is available. We can only
6119          * consider changing this number if no resync or reconstruction is
6120          * happening, and if the new size is acceptable. It must fit before the
6121          * sb_start or, if that is <data_offset, it must fit before the size
6122          * of each device.  If num_sectors is zero, we find the largest size
6123          * that fits.
6124          */
6125         if (mddev->sync_thread)
6126                 return -EBUSY;
6127         if (mddev->ro)
6128                 return -EROFS;
6129
6130         rdev_for_each(rdev, mddev) {
6131                 sector_t avail = rdev->sectors;
6132
6133                 if (fit && (num_sectors == 0 || num_sectors > avail))
6134                         num_sectors = avail;
6135                 if (avail < num_sectors)
6136                         return -ENOSPC;
6137         }
6138         rv = mddev->pers->resize(mddev, num_sectors);
6139         if (!rv)
6140                 revalidate_disk(mddev->gendisk);
6141         return rv;
6142 }
6143
6144 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6145 {
6146         int rv;
6147         struct md_rdev *rdev;
6148         /* change the number of raid disks */
6149         if (mddev->pers->check_reshape == NULL)
6150                 return -EINVAL;
6151         if (mddev->ro)
6152                 return -EROFS;
6153         if (raid_disks <= 0 ||
6154             (mddev->max_disks && raid_disks >= mddev->max_disks))
6155                 return -EINVAL;
6156         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6157                 return -EBUSY;
6158
6159         rdev_for_each(rdev, mddev) {
6160                 if (mddev->raid_disks < raid_disks &&
6161                     rdev->data_offset < rdev->new_data_offset)
6162                         return -EINVAL;
6163                 if (mddev->raid_disks > raid_disks &&
6164                     rdev->data_offset > rdev->new_data_offset)
6165                         return -EINVAL;
6166         }
6167
6168         mddev->delta_disks = raid_disks - mddev->raid_disks;
6169         if (mddev->delta_disks < 0)
6170                 mddev->reshape_backwards = 1;
6171         else if (mddev->delta_disks > 0)
6172                 mddev->reshape_backwards = 0;
6173
6174         rv = mddev->pers->check_reshape(mddev);
6175         if (rv < 0) {
6176                 mddev->delta_disks = 0;
6177                 mddev->reshape_backwards = 0;
6178         }
6179         return rv;
6180 }
6181
6182
6183 /*
6184  * update_array_info is used to change the configuration of an
6185  * on-line array.
6186  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6187  * fields in the info are checked against the array.
6188  * Any differences that cannot be handled will cause an error.
6189  * Normally, only one change can be managed at a time.
6190  */
6191 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6192 {
6193         int rv = 0;
6194         int cnt = 0;
6195         int state = 0;
6196
6197         /* calculate expected state,ignoring low bits */
6198         if (mddev->bitmap && mddev->bitmap_info.offset)
6199                 state |= (1 << MD_SB_BITMAP_PRESENT);
6200
6201         if (mddev->major_version != info->major_version ||
6202             mddev->minor_version != info->minor_version ||
6203 /*          mddev->patch_version != info->patch_version || */
6204             mddev->ctime         != info->ctime         ||
6205             mddev->level         != info->level         ||
6206 /*          mddev->layout        != info->layout        || */
6207             !mddev->persistent   != info->not_persistent||
6208             mddev->chunk_sectors != info->chunk_size >> 9 ||
6209             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6210             ((state^info->state) & 0xfffffe00)
6211                 )
6212                 return -EINVAL;
6213         /* Check there is only one change */
6214         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6215                 cnt++;
6216         if (mddev->raid_disks != info->raid_disks)
6217                 cnt++;
6218         if (mddev->layout != info->layout)
6219                 cnt++;
6220         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6221                 cnt++;
6222         if (cnt == 0)
6223                 return 0;
6224         if (cnt > 1)
6225                 return -EINVAL;
6226
6227         if (mddev->layout != info->layout) {
6228                 /* Change layout
6229                  * we don't need to do anything at the md level, the
6230                  * personality will take care of it all.
6231                  */
6232                 if (mddev->pers->check_reshape == NULL)
6233                         return -EINVAL;
6234                 else {
6235                         mddev->new_layout = info->layout;
6236                         rv = mddev->pers->check_reshape(mddev);
6237                         if (rv)
6238                                 mddev->new_layout = mddev->layout;
6239                         return rv;
6240                 }
6241         }
6242         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6243                 rv = update_size(mddev, (sector_t)info->size * 2);
6244
6245         if (mddev->raid_disks    != info->raid_disks)
6246                 rv = update_raid_disks(mddev, info->raid_disks);
6247
6248         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6249                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6250                         return -EINVAL;
6251                 if (mddev->recovery || mddev->sync_thread)
6252                         return -EBUSY;
6253                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6254                         /* add the bitmap */
6255                         if (mddev->bitmap)
6256                                 return -EEXIST;
6257                         if (mddev->bitmap_info.default_offset == 0)
6258                                 return -EINVAL;
6259                         mddev->bitmap_info.offset =
6260                                 mddev->bitmap_info.default_offset;
6261                         mddev->bitmap_info.space =
6262                                 mddev->bitmap_info.default_space;
6263                         mddev->pers->quiesce(mddev, 1);
6264                         rv = bitmap_create(mddev);
6265                         if (!rv)
6266                                 rv = bitmap_load(mddev);
6267                         if (rv)
6268                                 bitmap_destroy(mddev);
6269                         mddev->pers->quiesce(mddev, 0);
6270                 } else {
6271                         /* remove the bitmap */
6272                         if (!mddev->bitmap)
6273                                 return -ENOENT;
6274                         if (mddev->bitmap->storage.file)
6275                                 return -EINVAL;
6276                         mddev->pers->quiesce(mddev, 1);
6277                         bitmap_destroy(mddev);
6278                         mddev->pers->quiesce(mddev, 0);
6279                         mddev->bitmap_info.offset = 0;
6280                 }
6281         }
6282         md_update_sb(mddev, 1);
6283         return rv;
6284 }
6285
6286 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6287 {
6288         struct md_rdev *rdev;
6289         int err = 0;
6290
6291         if (mddev->pers == NULL)
6292                 return -ENODEV;
6293
6294         rcu_read_lock();
6295         rdev = find_rdev_rcu(mddev, dev);
6296         if (!rdev)
6297                 err =  -ENODEV;
6298         else {
6299                 md_error(mddev, rdev);
6300                 if (!test_bit(Faulty, &rdev->flags))
6301                         err = -EBUSY;
6302         }
6303         rcu_read_unlock();
6304         return err;
6305 }
6306
6307 /*
6308  * We have a problem here : there is no easy way to give a CHS
6309  * virtual geometry. We currently pretend that we have a 2 heads
6310  * 4 sectors (with a BIG number of cylinders...). This drives
6311  * dosfs just mad... ;-)
6312  */
6313 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6314 {
6315         struct mddev *mddev = bdev->bd_disk->private_data;
6316
6317         geo->heads = 2;
6318         geo->sectors = 4;
6319         geo->cylinders = mddev->array_sectors / 8;
6320         return 0;
6321 }
6322
6323 static inline bool md_ioctl_valid(unsigned int cmd)
6324 {
6325         switch (cmd) {
6326         case ADD_NEW_DISK:
6327         case BLKROSET:
6328         case GET_ARRAY_INFO:
6329         case GET_BITMAP_FILE:
6330         case GET_DISK_INFO:
6331         case HOT_ADD_DISK:
6332         case HOT_REMOVE_DISK:
6333         case PRINT_RAID_DEBUG:
6334         case RAID_AUTORUN:
6335         case RAID_VERSION:
6336         case RESTART_ARRAY_RW:
6337         case RUN_ARRAY:
6338         case SET_ARRAY_INFO:
6339         case SET_BITMAP_FILE:
6340         case SET_DISK_FAULTY:
6341         case STOP_ARRAY:
6342         case STOP_ARRAY_RO:
6343                 return true;
6344         default:
6345                 return false;
6346         }
6347 }
6348
6349 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6350                         unsigned int cmd, unsigned long arg)
6351 {
6352         int err = 0;
6353         void __user *argp = (void __user *)arg;
6354         struct mddev *mddev = NULL;
6355         int ro;
6356
6357         if (!md_ioctl_valid(cmd))
6358                 return -ENOTTY;
6359
6360         switch (cmd) {
6361         case RAID_VERSION:
6362         case GET_ARRAY_INFO:
6363         case GET_DISK_INFO:
6364                 break;
6365         default:
6366                 if (!capable(CAP_SYS_ADMIN))
6367                         return -EACCES;
6368         }
6369
6370         /*
6371          * Commands dealing with the RAID driver but not any
6372          * particular array:
6373          */
6374         switch (cmd) {
6375         case RAID_VERSION:
6376                 err = get_version(argp);
6377                 goto done;
6378
6379         case PRINT_RAID_DEBUG:
6380                 err = 0;
6381                 md_print_devices();
6382                 goto done;
6383
6384 #ifndef MODULE
6385         case RAID_AUTORUN:
6386                 err = 0;
6387                 autostart_arrays(arg);
6388                 goto done;
6389 #endif
6390         default:;
6391         }
6392
6393         /*
6394          * Commands creating/starting a new array:
6395          */
6396
6397         mddev = bdev->bd_disk->private_data;
6398
6399         if (!mddev) {
6400                 BUG();
6401                 goto abort;
6402         }
6403
6404         /* Some actions do not requires the mutex */
6405         switch (cmd) {
6406         case GET_ARRAY_INFO:
6407                 if (!mddev->raid_disks && !mddev->external)
6408                         err = -ENODEV;
6409                 else
6410                         err = get_array_info(mddev, argp);
6411                 goto abort;
6412
6413         case GET_DISK_INFO:
6414                 if (!mddev->raid_disks && !mddev->external)
6415                         err = -ENODEV;
6416                 else
6417                         err = get_disk_info(mddev, argp);
6418                 goto abort;
6419
6420         case SET_DISK_FAULTY:
6421                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6422                 goto abort;
6423         }
6424
6425         if (cmd == ADD_NEW_DISK)
6426                 /* need to ensure md_delayed_delete() has completed */
6427                 flush_workqueue(md_misc_wq);
6428
6429         if (cmd == HOT_REMOVE_DISK)
6430                 /* need to ensure recovery thread has run */
6431                 wait_event_interruptible_timeout(mddev->sb_wait,
6432                                                  !test_bit(MD_RECOVERY_NEEDED,
6433                                                            &mddev->flags),
6434                                                  msecs_to_jiffies(5000));
6435         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6436                 /* Need to flush page cache, and ensure no-one else opens
6437                  * and writes
6438                  */
6439                 mutex_lock(&mddev->open_mutex);
6440                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6441                         mutex_unlock(&mddev->open_mutex);
6442                         err = -EBUSY;
6443                         goto abort;
6444                 }
6445                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6446                 mutex_unlock(&mddev->open_mutex);
6447                 sync_blockdev(bdev);
6448         }
6449         err = mddev_lock(mddev);
6450         if (err) {
6451                 printk(KERN_INFO 
6452                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6453                         err, cmd);
6454                 goto abort;
6455         }
6456
6457         if (cmd == SET_ARRAY_INFO) {
6458                 mdu_array_info_t info;
6459                 if (!arg)
6460                         memset(&info, 0, sizeof(info));
6461                 else if (copy_from_user(&info, argp, sizeof(info))) {
6462                         err = -EFAULT;
6463                         goto abort_unlock;
6464                 }
6465                 if (mddev->pers) {
6466                         err = update_array_info(mddev, &info);
6467                         if (err) {
6468                                 printk(KERN_WARNING "md: couldn't update"
6469                                        " array info. %d\n", err);
6470                                 goto abort_unlock;
6471                         }
6472                         goto done_unlock;
6473                 }
6474                 if (!list_empty(&mddev->disks)) {
6475                         printk(KERN_WARNING
6476                                "md: array %s already has disks!\n",
6477                                mdname(mddev));
6478                         err = -EBUSY;
6479                         goto abort_unlock;
6480                 }
6481                 if (mddev->raid_disks) {
6482                         printk(KERN_WARNING
6483                                "md: array %s already initialised!\n",
6484                                mdname(mddev));
6485                         err = -EBUSY;
6486                         goto abort_unlock;
6487                 }
6488                 err = set_array_info(mddev, &info);
6489                 if (err) {
6490                         printk(KERN_WARNING "md: couldn't set"
6491                                " array info. %d\n", err);
6492                         goto abort_unlock;
6493                 }
6494                 goto done_unlock;
6495         }
6496
6497         /*
6498          * Commands querying/configuring an existing array:
6499          */
6500         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6501          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6502         if ((!mddev->raid_disks && !mddev->external)
6503             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6504             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6505             && cmd != GET_BITMAP_FILE) {
6506                 err = -ENODEV;
6507                 goto abort_unlock;
6508         }
6509
6510         /*
6511          * Commands even a read-only array can execute:
6512          */
6513         switch (cmd) {
6514         case GET_BITMAP_FILE:
6515                 err = get_bitmap_file(mddev, argp);
6516                 goto done_unlock;
6517
6518         case RESTART_ARRAY_RW:
6519                 err = restart_array(mddev);
6520                 goto done_unlock;
6521
6522         case STOP_ARRAY:
6523                 err = do_md_stop(mddev, 0, bdev);
6524                 goto done_unlock;
6525
6526         case STOP_ARRAY_RO:
6527                 err = md_set_readonly(mddev, bdev);
6528                 goto done_unlock;
6529
6530         case HOT_REMOVE_DISK:
6531                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6532                 goto done_unlock;
6533
6534         case ADD_NEW_DISK:
6535                 /* We can support ADD_NEW_DISK on read-only arrays
6536                  * on if we are re-adding a preexisting device.
6537                  * So require mddev->pers and MD_DISK_SYNC.
6538                  */
6539                 if (mddev->pers) {
6540                         mdu_disk_info_t info;
6541                         if (copy_from_user(&info, argp, sizeof(info)))
6542                                 err = -EFAULT;
6543                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6544                                 /* Need to clear read-only for this */
6545                                 break;
6546                         else
6547                                 err = add_new_disk(mddev, &info);
6548                         goto done_unlock;
6549                 }
6550                 break;
6551
6552         case BLKROSET:
6553                 if (get_user(ro, (int __user *)(arg))) {
6554                         err = -EFAULT;
6555                         goto done_unlock;
6556                 }
6557                 err = -EINVAL;
6558
6559                 /* if the bdev is going readonly the value of mddev->ro
6560                  * does not matter, no writes are coming
6561                  */
6562                 if (ro)
6563                         goto done_unlock;
6564
6565                 /* are we are already prepared for writes? */
6566                 if (mddev->ro != 1)
6567                         goto done_unlock;
6568
6569                 /* transitioning to readauto need only happen for
6570                  * arrays that call md_write_start
6571                  */
6572                 if (mddev->pers) {
6573                         err = restart_array(mddev);
6574                         if (err == 0) {
6575                                 mddev->ro = 2;
6576                                 set_disk_ro(mddev->gendisk, 0);
6577                         }
6578                 }
6579                 goto done_unlock;
6580         }
6581
6582         /*
6583          * The remaining ioctls are changing the state of the
6584          * superblock, so we do not allow them on read-only arrays.
6585          * However non-MD ioctls (e.g. get-size) will still come through
6586          * here and hit the 'default' below, so only disallow
6587          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6588          */
6589         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6590                 if (mddev->ro == 2) {
6591                         mddev->ro = 0;
6592                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6593                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6594                         /* mddev_unlock will wake thread */
6595                         /* If a device failed while we were read-only, we
6596                          * need to make sure the metadata is updated now.
6597                          */
6598                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6599                                 mddev_unlock(mddev);
6600                                 wait_event(mddev->sb_wait,
6601                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6602                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6603                                 mddev_lock_nointr(mddev);
6604                         }
6605                 } else {
6606                         err = -EROFS;
6607                         goto abort_unlock;
6608                 }
6609         }
6610
6611         switch (cmd) {
6612         case ADD_NEW_DISK:
6613         {
6614                 mdu_disk_info_t info;
6615                 if (copy_from_user(&info, argp, sizeof(info)))
6616                         err = -EFAULT;
6617                 else
6618                         err = add_new_disk(mddev, &info);
6619                 goto done_unlock;
6620         }
6621
6622         case HOT_ADD_DISK:
6623                 err = hot_add_disk(mddev, new_decode_dev(arg));
6624                 goto done_unlock;
6625
6626         case RUN_ARRAY:
6627                 err = do_md_run(mddev);
6628                 goto done_unlock;
6629
6630         case SET_BITMAP_FILE:
6631                 err = set_bitmap_file(mddev, (int)arg);
6632                 goto done_unlock;
6633
6634         default:
6635                 err = -EINVAL;
6636                 goto abort_unlock;
6637         }
6638
6639 done_unlock:
6640 abort_unlock:
6641         if (mddev->hold_active == UNTIL_IOCTL &&
6642             err != -EINVAL)
6643                 mddev->hold_active = 0;
6644         mddev_unlock(mddev);
6645
6646         return err;
6647 done:
6648         if (err)
6649                 MD_BUG();
6650 abort:
6651         return err;
6652 }
6653 #ifdef CONFIG_COMPAT
6654 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6655                     unsigned int cmd, unsigned long arg)
6656 {
6657         switch (cmd) {
6658         case HOT_REMOVE_DISK:
6659         case HOT_ADD_DISK:
6660         case SET_DISK_FAULTY:
6661         case SET_BITMAP_FILE:
6662                 /* These take in integer arg, do not convert */
6663                 break;
6664         default:
6665                 arg = (unsigned long)compat_ptr(arg);
6666                 break;
6667         }
6668
6669         return md_ioctl(bdev, mode, cmd, arg);
6670 }
6671 #endif /* CONFIG_COMPAT */
6672
6673 static int md_open(struct block_device *bdev, fmode_t mode)
6674 {
6675         /*
6676          * Succeed if we can lock the mddev, which confirms that
6677          * it isn't being stopped right now.
6678          */
6679         struct mddev *mddev = mddev_find(bdev->bd_dev);
6680         int err;
6681
6682         if (!mddev)
6683                 return -ENODEV;
6684
6685         if (mddev->gendisk != bdev->bd_disk) {
6686                 /* we are racing with mddev_put which is discarding this
6687                  * bd_disk.
6688                  */
6689                 mddev_put(mddev);
6690                 /* Wait until bdev->bd_disk is definitely gone */
6691                 flush_workqueue(md_misc_wq);
6692                 /* Then retry the open from the top */
6693                 return -ERESTARTSYS;
6694         }
6695         BUG_ON(mddev != bdev->bd_disk->private_data);
6696
6697         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6698                 goto out;
6699
6700         err = 0;
6701         atomic_inc(&mddev->openers);
6702         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6703         mutex_unlock(&mddev->open_mutex);
6704
6705         check_disk_change(bdev);
6706  out:
6707         return err;
6708 }
6709
6710 static void md_release(struct gendisk *disk, fmode_t mode)
6711 {
6712         struct mddev *mddev = disk->private_data;
6713
6714         BUG_ON(!mddev);
6715         atomic_dec(&mddev->openers);
6716         mddev_put(mddev);
6717 }
6718
6719 static int md_media_changed(struct gendisk *disk)
6720 {
6721         struct mddev *mddev = disk->private_data;
6722
6723         return mddev->changed;
6724 }
6725
6726 static int md_revalidate(struct gendisk *disk)
6727 {
6728         struct mddev *mddev = disk->private_data;
6729
6730         mddev->changed = 0;
6731         return 0;
6732 }
6733 static const struct block_device_operations md_fops =
6734 {
6735         .owner          = THIS_MODULE,
6736         .open           = md_open,
6737         .release        = md_release,
6738         .ioctl          = md_ioctl,
6739 #ifdef CONFIG_COMPAT
6740         .compat_ioctl   = md_compat_ioctl,
6741 #endif
6742         .getgeo         = md_getgeo,
6743         .media_changed  = md_media_changed,
6744         .revalidate_disk= md_revalidate,
6745 };
6746
6747 static int md_thread(void * arg)
6748 {
6749         struct md_thread *thread = arg;
6750
6751         /*
6752          * md_thread is a 'system-thread', it's priority should be very
6753          * high. We avoid resource deadlocks individually in each
6754          * raid personality. (RAID5 does preallocation) We also use RR and
6755          * the very same RT priority as kswapd, thus we will never get
6756          * into a priority inversion deadlock.
6757          *
6758          * we definitely have to have equal or higher priority than
6759          * bdflush, otherwise bdflush will deadlock if there are too
6760          * many dirty RAID5 blocks.
6761          */
6762
6763         allow_signal(SIGKILL);
6764         while (!kthread_should_stop()) {
6765
6766                 /* We need to wait INTERRUPTIBLE so that
6767                  * we don't add to the load-average.
6768                  * That means we need to be sure no signals are
6769                  * pending
6770                  */
6771                 if (signal_pending(current))
6772                         flush_signals(current);
6773
6774                 wait_event_interruptible_timeout
6775                         (thread->wqueue,
6776                          test_bit(THREAD_WAKEUP, &thread->flags)
6777                          || kthread_should_stop(),
6778                          thread->timeout);
6779
6780                 clear_bit(THREAD_WAKEUP, &thread->flags);
6781                 if (!kthread_should_stop())
6782                         thread->run(thread);
6783         }
6784
6785         return 0;
6786 }
6787
6788 void md_wakeup_thread(struct md_thread *thread)
6789 {
6790         if (thread) {
6791                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6792                 set_bit(THREAD_WAKEUP, &thread->flags);
6793                 wake_up(&thread->wqueue);
6794         }
6795 }
6796
6797 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6798                 struct mddev *mddev, const char *name)
6799 {
6800         struct md_thread *thread;
6801
6802         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6803         if (!thread)
6804                 return NULL;
6805
6806         init_waitqueue_head(&thread->wqueue);
6807
6808         thread->run = run;
6809         thread->mddev = mddev;
6810         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6811         thread->tsk = kthread_run(md_thread, thread,
6812                                   "%s_%s",
6813                                   mdname(thread->mddev),
6814                                   name);
6815         if (IS_ERR(thread->tsk)) {
6816                 kfree(thread);
6817                 return NULL;
6818         }
6819         return thread;
6820 }
6821
6822 void md_unregister_thread(struct md_thread **threadp)
6823 {
6824         struct md_thread *thread = *threadp;
6825         if (!thread)
6826                 return;
6827         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6828         /* Locking ensures that mddev_unlock does not wake_up a
6829          * non-existent thread
6830          */
6831         spin_lock(&pers_lock);
6832         *threadp = NULL;
6833         spin_unlock(&pers_lock);
6834
6835         kthread_stop(thread->tsk);
6836         kfree(thread);
6837 }
6838
6839 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6840 {
6841         if (!mddev) {
6842                 MD_BUG();
6843                 return;
6844         }
6845
6846         if (!rdev || test_bit(Faulty, &rdev->flags))
6847                 return;
6848
6849         if (!mddev->pers || !mddev->pers->error_handler)
6850                 return;
6851         mddev->pers->error_handler(mddev,rdev);
6852         if (mddev->degraded)
6853                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6854         sysfs_notify_dirent_safe(rdev->sysfs_state);
6855         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6856         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6857         md_wakeup_thread(mddev->thread);
6858         if (mddev->event_work.func)
6859                 queue_work(md_misc_wq, &mddev->event_work);
6860         md_new_event_inintr(mddev);
6861 }
6862
6863 /* seq_file implementation /proc/mdstat */
6864
6865 static void status_unused(struct seq_file *seq)
6866 {
6867         int i = 0;
6868         struct md_rdev *rdev;
6869
6870         seq_printf(seq, "unused devices: ");
6871
6872         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6873                 char b[BDEVNAME_SIZE];
6874                 i++;
6875                 seq_printf(seq, "%s ",
6876                               bdevname(rdev->bdev,b));
6877         }
6878         if (!i)
6879                 seq_printf(seq, "<none>");
6880
6881         seq_printf(seq, "\n");
6882 }
6883
6884
6885 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6886 {
6887         sector_t max_sectors, resync, res;
6888         unsigned long dt, db;
6889         sector_t rt;
6890         int scale;
6891         unsigned int per_milli;
6892
6893         if (mddev->curr_resync <= 3)
6894                 resync = 0;
6895         else
6896                 resync = mddev->curr_resync
6897                         - atomic_read(&mddev->recovery_active);
6898
6899         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6900             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6901                 max_sectors = mddev->resync_max_sectors;
6902         else
6903                 max_sectors = mddev->dev_sectors;
6904
6905         /*
6906          * Should not happen.
6907          */
6908         if (!max_sectors) {
6909                 MD_BUG();
6910                 return;
6911         }
6912         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6913          * in a sector_t, and (max_sectors>>scale) will fit in a
6914          * u32, as those are the requirements for sector_div.
6915          * Thus 'scale' must be at least 10
6916          */
6917         scale = 10;
6918         if (sizeof(sector_t) > sizeof(unsigned long)) {
6919                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6920                         scale++;
6921         }
6922         res = (resync>>scale)*1000;
6923         sector_div(res, (u32)((max_sectors>>scale)+1));
6924
6925         per_milli = res;
6926         {
6927                 int i, x = per_milli/50, y = 20-x;
6928                 seq_printf(seq, "[");
6929                 for (i = 0; i < x; i++)
6930                         seq_printf(seq, "=");
6931                 seq_printf(seq, ">");
6932                 for (i = 0; i < y; i++)
6933                         seq_printf(seq, ".");
6934                 seq_printf(seq, "] ");
6935         }
6936         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6937                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6938                     "reshape" :
6939                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6940                      "check" :
6941                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6942                       "resync" : "recovery"))),
6943                    per_milli/10, per_milli % 10,
6944                    (unsigned long long) resync/2,
6945                    (unsigned long long) max_sectors/2);
6946
6947         /*
6948          * dt: time from mark until now
6949          * db: blocks written from mark until now
6950          * rt: remaining time
6951          *
6952          * rt is a sector_t, so could be 32bit or 64bit.
6953          * So we divide before multiply in case it is 32bit and close
6954          * to the limit.
6955          * We scale the divisor (db) by 32 to avoid losing precision
6956          * near the end of resync when the number of remaining sectors
6957          * is close to 'db'.
6958          * We then divide rt by 32 after multiplying by db to compensate.
6959          * The '+1' avoids division by zero if db is very small.
6960          */
6961         dt = ((jiffies - mddev->resync_mark) / HZ);
6962         if (!dt) dt++;
6963         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6964                 - mddev->resync_mark_cnt;
6965
6966         rt = max_sectors - resync;    /* number of remaining sectors */
6967         sector_div(rt, db/32+1);
6968         rt *= dt;
6969         rt >>= 5;
6970
6971         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6972                    ((unsigned long)rt % 60)/6);
6973
6974         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6975 }
6976
6977 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6978 {
6979         struct list_head *tmp;
6980         loff_t l = *pos;
6981         struct mddev *mddev;
6982
6983         if (l >= 0x10000)
6984                 return NULL;
6985         if (!l--)
6986                 /* header */
6987                 return (void*)1;
6988
6989         spin_lock(&all_mddevs_lock);
6990         list_for_each(tmp,&all_mddevs)
6991                 if (!l--) {
6992                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6993                         mddev_get(mddev);
6994                         spin_unlock(&all_mddevs_lock);
6995                         return mddev;
6996                 }
6997         spin_unlock(&all_mddevs_lock);
6998         if (!l--)
6999                 return (void*)2;/* tail */
7000         return NULL;
7001 }
7002
7003 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7004 {
7005         struct list_head *tmp;
7006         struct mddev *next_mddev, *mddev = v;
7007         
7008         ++*pos;
7009         if (v == (void*)2)
7010                 return NULL;
7011
7012         spin_lock(&all_mddevs_lock);
7013         if (v == (void*)1)
7014                 tmp = all_mddevs.next;
7015         else
7016                 tmp = mddev->all_mddevs.next;
7017         if (tmp != &all_mddevs)
7018                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7019         else {
7020                 next_mddev = (void*)2;
7021                 *pos = 0x10000;
7022         }               
7023         spin_unlock(&all_mddevs_lock);
7024
7025         if (v != (void*)1)
7026                 mddev_put(mddev);
7027         return next_mddev;
7028
7029 }
7030
7031 static void md_seq_stop(struct seq_file *seq, void *v)
7032 {
7033         struct mddev *mddev = v;
7034
7035         if (mddev && v != (void*)1 && v != (void*)2)
7036                 mddev_put(mddev);
7037 }
7038
7039 static int md_seq_show(struct seq_file *seq, void *v)
7040 {
7041         struct mddev *mddev = v;
7042         sector_t sectors;
7043         struct md_rdev *rdev;
7044
7045         if (v == (void*)1) {
7046                 struct md_personality *pers;
7047                 seq_printf(seq, "Personalities : ");
7048                 spin_lock(&pers_lock);
7049                 list_for_each_entry(pers, &pers_list, list)
7050                         seq_printf(seq, "[%s] ", pers->name);
7051
7052                 spin_unlock(&pers_lock);
7053                 seq_printf(seq, "\n");
7054                 seq->poll_event = atomic_read(&md_event_count);
7055                 return 0;
7056         }
7057         if (v == (void*)2) {
7058                 status_unused(seq);
7059                 return 0;
7060         }
7061
7062         if (mddev_lock(mddev) < 0)
7063                 return -EINTR;
7064
7065         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7066                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7067                                                 mddev->pers ? "" : "in");
7068                 if (mddev->pers) {
7069                         if (mddev->ro==1)
7070                                 seq_printf(seq, " (read-only)");
7071                         if (mddev->ro==2)
7072                                 seq_printf(seq, " (auto-read-only)");
7073                         seq_printf(seq, " %s", mddev->pers->name);
7074                 }
7075
7076                 sectors = 0;
7077                 rdev_for_each(rdev, mddev) {
7078                         char b[BDEVNAME_SIZE];
7079                         seq_printf(seq, " %s[%d]",
7080                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7081                         if (test_bit(WriteMostly, &rdev->flags))
7082                                 seq_printf(seq, "(W)");
7083                         if (test_bit(Faulty, &rdev->flags)) {
7084                                 seq_printf(seq, "(F)");
7085                                 continue;
7086                         }
7087                         if (rdev->raid_disk < 0)
7088                                 seq_printf(seq, "(S)"); /* spare */
7089                         if (test_bit(Replacement, &rdev->flags))
7090                                 seq_printf(seq, "(R)");
7091                         sectors += rdev->sectors;
7092                 }
7093
7094                 if (!list_empty(&mddev->disks)) {
7095                         if (mddev->pers)
7096                                 seq_printf(seq, "\n      %llu blocks",
7097                                            (unsigned long long)
7098                                            mddev->array_sectors / 2);
7099                         else
7100                                 seq_printf(seq, "\n      %llu blocks",
7101                                            (unsigned long long)sectors / 2);
7102                 }
7103                 if (mddev->persistent) {
7104                         if (mddev->major_version != 0 ||
7105                             mddev->minor_version != 90) {
7106                                 seq_printf(seq," super %d.%d",
7107                                            mddev->major_version,
7108                                            mddev->minor_version);
7109                         }
7110                 } else if (mddev->external)
7111                         seq_printf(seq, " super external:%s",
7112                                    mddev->metadata_type);
7113                 else
7114                         seq_printf(seq, " super non-persistent");
7115
7116                 if (mddev->pers) {
7117                         mddev->pers->status(seq, mddev);
7118                         seq_printf(seq, "\n      ");
7119                         if (mddev->pers->sync_request) {
7120                                 if (mddev->curr_resync > 2) {
7121                                         status_resync(seq, mddev);
7122                                         seq_printf(seq, "\n      ");
7123                                 } else if (mddev->curr_resync >= 1)
7124                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7125                                 else if (mddev->recovery_cp < MaxSector)
7126                                         seq_printf(seq, "\tresync=PENDING\n      ");
7127                         }
7128                 } else
7129                         seq_printf(seq, "\n       ");
7130
7131                 bitmap_status(seq, mddev->bitmap);
7132
7133                 seq_printf(seq, "\n");
7134         }
7135         mddev_unlock(mddev);
7136         
7137         return 0;
7138 }
7139
7140 static const struct seq_operations md_seq_ops = {
7141         .start  = md_seq_start,
7142         .next   = md_seq_next,
7143         .stop   = md_seq_stop,
7144         .show   = md_seq_show,
7145 };
7146
7147 static int md_seq_open(struct inode *inode, struct file *file)
7148 {
7149         struct seq_file *seq;
7150         int error;
7151
7152         error = seq_open(file, &md_seq_ops);
7153         if (error)
7154                 return error;
7155
7156         seq = file->private_data;
7157         seq->poll_event = atomic_read(&md_event_count);
7158         return error;
7159 }
7160
7161 static int md_unloading;
7162 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7163 {
7164         struct seq_file *seq = filp->private_data;
7165         int mask;
7166
7167         if (md_unloading)
7168                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
7169         poll_wait(filp, &md_event_waiters, wait);
7170
7171         /* always allow read */
7172         mask = POLLIN | POLLRDNORM;
7173
7174         if (seq->poll_event != atomic_read(&md_event_count))
7175                 mask |= POLLERR | POLLPRI;
7176         return mask;
7177 }
7178
7179 static const struct file_operations md_seq_fops = {
7180         .owner          = THIS_MODULE,
7181         .open           = md_seq_open,
7182         .read           = seq_read,
7183         .llseek         = seq_lseek,
7184         .release        = seq_release_private,
7185         .poll           = mdstat_poll,
7186 };
7187
7188 int register_md_personality(struct md_personality *p)
7189 {
7190         spin_lock(&pers_lock);
7191         list_add_tail(&p->list, &pers_list);
7192         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7193         spin_unlock(&pers_lock);
7194         return 0;
7195 }
7196
7197 int unregister_md_personality(struct md_personality *p)
7198 {
7199         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7200         spin_lock(&pers_lock);
7201         list_del_init(&p->list);
7202         spin_unlock(&pers_lock);
7203         return 0;
7204 }
7205
7206 static int is_mddev_idle(struct mddev *mddev, int init)
7207 {
7208         struct md_rdev * rdev;
7209         int idle;
7210         int curr_events;
7211
7212         idle = 1;
7213         rcu_read_lock();
7214         rdev_for_each_rcu(rdev, mddev) {
7215                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7216                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7217                               (int)part_stat_read(&disk->part0, sectors[1]) -
7218                               atomic_read(&disk->sync_io);
7219                 /* sync IO will cause sync_io to increase before the disk_stats
7220                  * as sync_io is counted when a request starts, and
7221                  * disk_stats is counted when it completes.
7222                  * So resync activity will cause curr_events to be smaller than
7223                  * when there was no such activity.
7224                  * non-sync IO will cause disk_stat to increase without
7225                  * increasing sync_io so curr_events will (eventually)
7226                  * be larger than it was before.  Once it becomes
7227                  * substantially larger, the test below will cause
7228                  * the array to appear non-idle, and resync will slow
7229                  * down.
7230                  * If there is a lot of outstanding resync activity when
7231                  * we set last_event to curr_events, then all that activity
7232                  * completing might cause the array to appear non-idle
7233                  * and resync will be slowed down even though there might
7234                  * not have been non-resync activity.  This will only
7235                  * happen once though.  'last_events' will soon reflect
7236                  * the state where there is little or no outstanding
7237                  * resync requests, and further resync activity will
7238                  * always make curr_events less than last_events.
7239                  *
7240                  */
7241                 if (init || curr_events - rdev->last_events > 64) {
7242                         rdev->last_events = curr_events;
7243                         idle = 0;
7244                 }
7245         }
7246         rcu_read_unlock();
7247         return idle;
7248 }
7249
7250 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7251 {
7252         /* another "blocks" (512byte) blocks have been synced */
7253         atomic_sub(blocks, &mddev->recovery_active);
7254         wake_up(&mddev->recovery_wait);
7255         if (!ok) {
7256                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7257                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7258                 md_wakeup_thread(mddev->thread);
7259                 // stop recovery, signal do_sync ....
7260         }
7261 }
7262
7263
7264 /* md_write_start(mddev, bi)
7265  * If we need to update some array metadata (e.g. 'active' flag
7266  * in superblock) before writing, schedule a superblock update
7267  * and wait for it to complete.
7268  */
7269 void md_write_start(struct mddev *mddev, struct bio *bi)
7270 {
7271         int did_change = 0;
7272         if (bio_data_dir(bi) != WRITE)
7273                 return;
7274
7275         BUG_ON(mddev->ro == 1);
7276         if (mddev->ro == 2) {
7277                 /* need to switch to read/write */
7278                 mddev->ro = 0;
7279                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7280                 md_wakeup_thread(mddev->thread);
7281                 md_wakeup_thread(mddev->sync_thread);
7282                 did_change = 1;
7283         }
7284         atomic_inc(&mddev->writes_pending);
7285         if (mddev->safemode == 1)
7286                 mddev->safemode = 0;
7287         if (mddev->in_sync) {
7288                 spin_lock_irq(&mddev->write_lock);
7289                 if (mddev->in_sync) {
7290                         mddev->in_sync = 0;
7291                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7292                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7293                         md_wakeup_thread(mddev->thread);
7294                         did_change = 1;
7295                 }
7296                 spin_unlock_irq(&mddev->write_lock);
7297         }
7298         if (did_change)
7299                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7300         wait_event(mddev->sb_wait,
7301                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7302 }
7303
7304 void md_write_end(struct mddev *mddev)
7305 {
7306         if (atomic_dec_and_test(&mddev->writes_pending)) {
7307                 if (mddev->safemode == 2)
7308                         md_wakeup_thread(mddev->thread);
7309                 else if (mddev->safemode_delay)
7310                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7311         }
7312 }
7313
7314 /* md_allow_write(mddev)
7315  * Calling this ensures that the array is marked 'active' so that writes
7316  * may proceed without blocking.  It is important to call this before
7317  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7318  * Must be called with mddev_lock held.
7319  *
7320  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7321  * is dropped, so return -EAGAIN after notifying userspace.
7322  */
7323 int md_allow_write(struct mddev *mddev)
7324 {
7325         if (!mddev->pers)
7326                 return 0;
7327         if (mddev->ro)
7328                 return 0;
7329         if (!mddev->pers->sync_request)
7330                 return 0;
7331
7332         spin_lock_irq(&mddev->write_lock);
7333         if (mddev->in_sync) {
7334                 mddev->in_sync = 0;
7335                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7336                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7337                 if (mddev->safemode_delay &&
7338                     mddev->safemode == 0)
7339                         mddev->safemode = 1;
7340                 spin_unlock_irq(&mddev->write_lock);
7341                 md_update_sb(mddev, 0);
7342                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7343         } else
7344                 spin_unlock_irq(&mddev->write_lock);
7345
7346         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7347                 return -EAGAIN;
7348         else
7349                 return 0;
7350 }
7351 EXPORT_SYMBOL_GPL(md_allow_write);
7352
7353 #define SYNC_MARKS      10
7354 #define SYNC_MARK_STEP  (3*HZ)
7355 #define UPDATE_FREQUENCY (5*60*HZ)
7356 void md_do_sync(struct md_thread *thread)
7357 {
7358         struct mddev *mddev = thread->mddev;
7359         struct mddev *mddev2;
7360         unsigned int currspeed = 0,
7361                  window;
7362         sector_t max_sectors,j, io_sectors, recovery_done;
7363         unsigned long mark[SYNC_MARKS];
7364         unsigned long update_time;
7365         sector_t mark_cnt[SYNC_MARKS];
7366         int last_mark,m;
7367         struct list_head *tmp;
7368         sector_t last_check;
7369         int skipped = 0;
7370         struct md_rdev *rdev;
7371         char *desc, *action = NULL;
7372         struct blk_plug plug;
7373
7374         /* just incase thread restarts... */
7375         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7376                 return;
7377         if (mddev->ro) {/* never try to sync a read-only array */
7378                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7379                 return;
7380         }
7381
7382         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7383                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7384                         desc = "data-check";
7385                         action = "check";
7386                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7387                         desc = "requested-resync";
7388                         action = "repair";
7389                 } else
7390                         desc = "resync";
7391         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7392                 desc = "reshape";
7393         else
7394                 desc = "recovery";
7395
7396         mddev->last_sync_action = action ?: desc;
7397
7398         /* we overload curr_resync somewhat here.
7399          * 0 == not engaged in resync at all
7400          * 2 == checking that there is no conflict with another sync
7401          * 1 == like 2, but have yielded to allow conflicting resync to
7402          *              commense
7403          * other == active in resync - this many blocks
7404          *
7405          * Before starting a resync we must have set curr_resync to
7406          * 2, and then checked that every "conflicting" array has curr_resync
7407          * less than ours.  When we find one that is the same or higher
7408          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7409          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7410          * This will mean we have to start checking from the beginning again.
7411          *
7412          */
7413
7414         do {
7415                 mddev->curr_resync = 2;
7416
7417         try_again:
7418                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7419                         goto skip;
7420                 for_each_mddev(mddev2, tmp) {
7421                         if (mddev2 == mddev)
7422                                 continue;
7423                         if (!mddev->parallel_resync
7424                         &&  mddev2->curr_resync
7425                         &&  match_mddev_units(mddev, mddev2)) {
7426                                 DEFINE_WAIT(wq);
7427                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7428                                         /* arbitrarily yield */
7429                                         mddev->curr_resync = 1;
7430                                         wake_up(&resync_wait);
7431                                 }
7432                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7433                                         /* no need to wait here, we can wait the next
7434                                          * time 'round when curr_resync == 2
7435                                          */
7436                                         continue;
7437                                 /* We need to wait 'interruptible' so as not to
7438                                  * contribute to the load average, and not to
7439                                  * be caught by 'softlockup'
7440                                  */
7441                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7442                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7443                                     mddev2->curr_resync >= mddev->curr_resync) {
7444                                         printk(KERN_INFO "md: delaying %s of %s"
7445                                                " until %s has finished (they"
7446                                                " share one or more physical units)\n",
7447                                                desc, mdname(mddev), mdname(mddev2));
7448                                         mddev_put(mddev2);
7449                                         if (signal_pending(current))
7450                                                 flush_signals(current);
7451                                         schedule();
7452                                         finish_wait(&resync_wait, &wq);
7453                                         goto try_again;
7454                                 }
7455                                 finish_wait(&resync_wait, &wq);
7456                         }
7457                 }
7458         } while (mddev->curr_resync < 2);
7459
7460         j = 0;
7461         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7462                 /* resync follows the size requested by the personality,
7463                  * which defaults to physical size, but can be virtual size
7464                  */
7465                 max_sectors = mddev->resync_max_sectors;
7466                 atomic64_set(&mddev->resync_mismatches, 0);
7467                 /* we don't use the checkpoint if there's a bitmap */
7468                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7469                         j = mddev->resync_min;
7470                 else if (!mddev->bitmap)
7471                         j = mddev->recovery_cp;
7472
7473         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7474                 max_sectors = mddev->resync_max_sectors;
7475         else {
7476                 /* recovery follows the physical size of devices */
7477                 max_sectors = mddev->dev_sectors;
7478                 j = MaxSector;
7479                 rcu_read_lock();
7480                 rdev_for_each_rcu(rdev, mddev)
7481                         if (rdev->raid_disk >= 0 &&
7482                             !test_bit(Faulty, &rdev->flags) &&
7483                             !test_bit(In_sync, &rdev->flags) &&
7484                             rdev->recovery_offset < j)
7485                                 j = rdev->recovery_offset;
7486                 rcu_read_unlock();
7487
7488                 /* If there is a bitmap, we need to make sure all
7489                  * writes that started before we added a spare
7490                  * complete before we start doing a recovery.
7491                  * Otherwise the write might complete and (via
7492                  * bitmap_endwrite) set a bit in the bitmap after the
7493                  * recovery has checked that bit and skipped that
7494                  * region.
7495                  */
7496                 if (mddev->bitmap) {
7497                         mddev->pers->quiesce(mddev, 1);
7498                         mddev->pers->quiesce(mddev, 0);
7499                 }
7500         }
7501
7502         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7503         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7504                 " %d KB/sec/disk.\n", speed_min(mddev));
7505         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7506                "(but not more than %d KB/sec) for %s.\n",
7507                speed_max(mddev), desc);
7508
7509         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7510
7511         io_sectors = 0;
7512         for (m = 0; m < SYNC_MARKS; m++) {
7513                 mark[m] = jiffies;
7514                 mark_cnt[m] = io_sectors;
7515         }
7516         last_mark = 0;
7517         mddev->resync_mark = mark[last_mark];
7518         mddev->resync_mark_cnt = mark_cnt[last_mark];
7519
7520         /*
7521          * Tune reconstruction:
7522          */
7523         window = 32*(PAGE_SIZE/512);
7524         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7525                 window/2, (unsigned long long)max_sectors/2);
7526
7527         atomic_set(&mddev->recovery_active, 0);
7528         last_check = 0;
7529
7530         if (j>2) {
7531                 printk(KERN_INFO
7532                        "md: resuming %s of %s from checkpoint.\n",
7533                        desc, mdname(mddev));
7534                 mddev->curr_resync = j;
7535         } else
7536                 mddev->curr_resync = 3; /* no longer delayed */
7537         mddev->curr_resync_completed = j;
7538         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7539         md_new_event(mddev);
7540         update_time = jiffies;
7541
7542         blk_start_plug(&plug);
7543         while (j < max_sectors) {
7544                 sector_t sectors;
7545
7546                 skipped = 0;
7547
7548                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7549                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7550                       (mddev->curr_resync - mddev->curr_resync_completed)
7551                       > (max_sectors >> 4)) ||
7552                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7553                      (j - mddev->curr_resync_completed)*2
7554                      >= mddev->resync_max - mddev->curr_resync_completed
7555                             )) {
7556                         /* time to update curr_resync_completed */
7557                         wait_event(mddev->recovery_wait,
7558                                    atomic_read(&mddev->recovery_active) == 0);
7559                         mddev->curr_resync_completed = j;
7560                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7561                             j > mddev->recovery_cp)
7562                                 mddev->recovery_cp = j;
7563                         update_time = jiffies;
7564                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7565                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7566                 }
7567
7568                 while (j >= mddev->resync_max &&
7569                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7570                         /* As this condition is controlled by user-space,
7571                          * we can block indefinitely, so use '_interruptible'
7572                          * to avoid triggering warnings.
7573                          */
7574                         flush_signals(current); /* just in case */
7575                         wait_event_interruptible(mddev->recovery_wait,
7576                                                  mddev->resync_max > j
7577                                                  || test_bit(MD_RECOVERY_INTR,
7578                                                              &mddev->recovery));
7579                 }
7580
7581                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7582                         break;
7583
7584                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7585                                                   currspeed < speed_min(mddev));
7586                 if (sectors == 0) {
7587                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7588                         break;
7589                 }
7590
7591                 if (!skipped) { /* actual IO requested */
7592                         io_sectors += sectors;
7593                         atomic_add(sectors, &mddev->recovery_active);
7594                 }
7595
7596                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7597                         break;
7598
7599                 j += sectors;
7600                 if (j > 2)
7601                         mddev->curr_resync = j;
7602                 mddev->curr_mark_cnt = io_sectors;
7603                 if (last_check == 0)
7604                         /* this is the earliest that rebuild will be
7605                          * visible in /proc/mdstat
7606                          */
7607                         md_new_event(mddev);
7608
7609                 if (last_check + window > io_sectors || j == max_sectors)
7610                         continue;
7611
7612                 last_check = io_sectors;
7613         repeat:
7614                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7615                         /* step marks */
7616                         int next = (last_mark+1) % SYNC_MARKS;
7617
7618                         mddev->resync_mark = mark[next];
7619                         mddev->resync_mark_cnt = mark_cnt[next];
7620                         mark[next] = jiffies;
7621                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7622                         last_mark = next;
7623                 }
7624
7625                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7626                         break;
7627
7628                 /*
7629                  * this loop exits only if either when we are slower than
7630                  * the 'hard' speed limit, or the system was IO-idle for
7631                  * a jiffy.
7632                  * the system might be non-idle CPU-wise, but we only care
7633                  * about not overloading the IO subsystem. (things like an
7634                  * e2fsck being done on the RAID array should execute fast)
7635                  */
7636                 cond_resched();
7637
7638                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7639                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7640                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7641
7642                 if (currspeed > speed_min(mddev)) {
7643                         if ((currspeed > speed_max(mddev)) ||
7644                                         !is_mddev_idle(mddev, 0)) {
7645                                 msleep(500);
7646                                 goto repeat;
7647                         }
7648                 }
7649         }
7650         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7651                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7652                ? "interrupted" : "done");
7653         /*
7654          * this also signals 'finished resyncing' to md_stop
7655          */
7656         blk_finish_plug(&plug);
7657         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7658
7659         /* tell personality that we are finished */
7660         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7661
7662         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7663             mddev->curr_resync > 2) {
7664                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7665                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7666                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7667                                         printk(KERN_INFO
7668                                                "md: checkpointing %s of %s.\n",
7669                                                desc, mdname(mddev));
7670                                         if (test_bit(MD_RECOVERY_ERROR,
7671                                                 &mddev->recovery))
7672                                                 mddev->recovery_cp =
7673                                                         mddev->curr_resync_completed;
7674                                         else
7675                                                 mddev->recovery_cp =
7676                                                         mddev->curr_resync;
7677                                 }
7678                         } else
7679                                 mddev->recovery_cp = MaxSector;
7680                 } else {
7681                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7682                                 mddev->curr_resync = MaxSector;
7683                         rcu_read_lock();
7684                         rdev_for_each_rcu(rdev, mddev)
7685                                 if (rdev->raid_disk >= 0 &&
7686                                     mddev->delta_disks >= 0 &&
7687                                     !test_bit(Faulty, &rdev->flags) &&
7688                                     !test_bit(In_sync, &rdev->flags) &&
7689                                     rdev->recovery_offset < mddev->curr_resync)
7690                                         rdev->recovery_offset = mddev->curr_resync;
7691                         rcu_read_unlock();
7692                 }
7693         }
7694  skip:
7695         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7696
7697         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7698                 /* We completed so min/max setting can be forgotten if used. */
7699                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7700                         mddev->resync_min = 0;
7701                 mddev->resync_max = MaxSector;
7702         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7703                 mddev->resync_min = mddev->curr_resync_completed;
7704         mddev->curr_resync = 0;
7705         wake_up(&resync_wait);
7706         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7707         md_wakeup_thread(mddev->thread);
7708         return;
7709 }
7710 EXPORT_SYMBOL_GPL(md_do_sync);
7711
7712 static int remove_and_add_spares(struct mddev *mddev,
7713                                  struct md_rdev *this)
7714 {
7715         struct md_rdev *rdev;
7716         int spares = 0;
7717         int removed = 0;
7718
7719         rdev_for_each(rdev, mddev)
7720                 if ((this == NULL || rdev == this) &&
7721                     rdev->raid_disk >= 0 &&
7722                     !test_bit(Blocked, &rdev->flags) &&
7723                     (test_bit(Faulty, &rdev->flags) ||
7724                      ! test_bit(In_sync, &rdev->flags)) &&
7725                     atomic_read(&rdev->nr_pending)==0) {
7726                         if (mddev->pers->hot_remove_disk(
7727                                     mddev, rdev) == 0) {
7728                                 sysfs_unlink_rdev(mddev, rdev);
7729                                 rdev->raid_disk = -1;
7730                                 removed++;
7731                         }
7732                 }
7733         if (removed && mddev->kobj.sd)
7734                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7735
7736         if (this)
7737                 goto no_add;
7738
7739         rdev_for_each(rdev, mddev) {
7740                 if (rdev->raid_disk >= 0 &&
7741                     !test_bit(In_sync, &rdev->flags) &&
7742                     !test_bit(Faulty, &rdev->flags))
7743                         spares++;
7744                 if (rdev->raid_disk >= 0)
7745                         continue;
7746                 if (test_bit(Faulty, &rdev->flags))
7747                         continue;
7748                 if (mddev->ro &&
7749                     ! (rdev->saved_raid_disk >= 0 &&
7750                        !test_bit(Bitmap_sync, &rdev->flags)))
7751                         continue;
7752
7753                 if (rdev->saved_raid_disk < 0)
7754                         rdev->recovery_offset = 0;
7755                 if (mddev->pers->
7756                     hot_add_disk(mddev, rdev) == 0) {
7757                         if (sysfs_link_rdev(mddev, rdev))
7758                                 /* failure here is OK */;
7759                         spares++;
7760                         md_new_event(mddev);
7761                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7762                 }
7763         }
7764 no_add:
7765         if (removed)
7766                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7767         return spares;
7768 }
7769
7770 /*
7771  * This routine is regularly called by all per-raid-array threads to
7772  * deal with generic issues like resync and super-block update.
7773  * Raid personalities that don't have a thread (linear/raid0) do not
7774  * need this as they never do any recovery or update the superblock.
7775  *
7776  * It does not do any resync itself, but rather "forks" off other threads
7777  * to do that as needed.
7778  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7779  * "->recovery" and create a thread at ->sync_thread.
7780  * When the thread finishes it sets MD_RECOVERY_DONE
7781  * and wakeups up this thread which will reap the thread and finish up.
7782  * This thread also removes any faulty devices (with nr_pending == 0).
7783  *
7784  * The overall approach is:
7785  *  1/ if the superblock needs updating, update it.
7786  *  2/ If a recovery thread is running, don't do anything else.
7787  *  3/ If recovery has finished, clean up, possibly marking spares active.
7788  *  4/ If there are any faulty devices, remove them.
7789  *  5/ If array is degraded, try to add spares devices
7790  *  6/ If array has spares or is not in-sync, start a resync thread.
7791  */
7792 void md_check_recovery(struct mddev *mddev)
7793 {
7794         if (mddev->suspended)
7795                 return;
7796
7797         if (mddev->bitmap)
7798                 bitmap_daemon_work(mddev);
7799
7800         if (signal_pending(current)) {
7801                 if (mddev->pers->sync_request && !mddev->external) {
7802                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7803                                mdname(mddev));
7804                         mddev->safemode = 2;
7805                 }
7806                 flush_signals(current);
7807         }
7808
7809         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7810                 return;
7811         if ( ! (
7812                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7813                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7814                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7815                 (mddev->external == 0 && mddev->safemode == 1) ||
7816                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7817                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7818                 ))
7819                 return;
7820
7821         if (mddev_trylock(mddev)) {
7822                 int spares = 0;
7823
7824                 if (mddev->ro) {
7825                         /* On a read-only array we can:
7826                          * - remove failed devices
7827                          * - add already-in_sync devices if the array itself
7828                          *   is in-sync.
7829                          * As we only add devices that are already in-sync,
7830                          * we can activate the spares immediately.
7831                          */
7832                         remove_and_add_spares(mddev, NULL);
7833                         /* There is no thread, but we need to call
7834                          * ->spare_active and clear saved_raid_disk
7835                          */
7836                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7837                         md_reap_sync_thread(mddev);
7838                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7839                         goto unlock;
7840                 }
7841
7842                 if (!mddev->external) {
7843                         int did_change = 0;
7844                         spin_lock_irq(&mddev->write_lock);
7845                         if (mddev->safemode &&
7846                             !atomic_read(&mddev->writes_pending) &&
7847                             !mddev->in_sync &&
7848                             mddev->recovery_cp == MaxSector) {
7849                                 mddev->in_sync = 1;
7850                                 did_change = 1;
7851                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7852                         }
7853                         if (mddev->safemode == 1)
7854                                 mddev->safemode = 0;
7855                         spin_unlock_irq(&mddev->write_lock);
7856                         if (did_change)
7857                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7858                 }
7859
7860                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7861                         md_update_sb(mddev, 0);
7862
7863                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7864                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7865                         /* resync/recovery still happening */
7866                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7867                         goto unlock;
7868                 }
7869                 if (mddev->sync_thread) {
7870                         md_reap_sync_thread(mddev);
7871                         goto unlock;
7872                 }
7873                 /* Set RUNNING before clearing NEEDED to avoid
7874                  * any transients in the value of "sync_action".
7875                  */
7876                 mddev->curr_resync_completed = 0;
7877                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7878                 /* Clear some bits that don't mean anything, but
7879                  * might be left set
7880                  */
7881                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7882                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7883
7884                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7885                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7886                         goto unlock;
7887                 /* no recovery is running.
7888                  * remove any failed drives, then
7889                  * add spares if possible.
7890                  * Spares are also removed and re-added, to allow
7891                  * the personality to fail the re-add.
7892                  */
7893
7894                 if (mddev->reshape_position != MaxSector) {
7895                         if (mddev->pers->check_reshape == NULL ||
7896                             mddev->pers->check_reshape(mddev) != 0)
7897                                 /* Cannot proceed */
7898                                 goto unlock;
7899                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7900                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7901                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7902                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7903                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7904                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7905                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7906                 } else if (mddev->recovery_cp < MaxSector) {
7907                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7908                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7909                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7910                         /* nothing to be done ... */
7911                         goto unlock;
7912
7913                 if (mddev->pers->sync_request) {
7914                         if (spares) {
7915                                 /* We are adding a device or devices to an array
7916                                  * which has the bitmap stored on all devices.
7917                                  * So make sure all bitmap pages get written
7918                                  */
7919                                 bitmap_write_all(mddev->bitmap);
7920                         }
7921                         mddev->sync_thread = md_register_thread(md_do_sync,
7922                                                                 mddev,
7923                                                                 "resync");
7924                         if (!mddev->sync_thread) {
7925                                 printk(KERN_ERR "%s: could not start resync"
7926                                         " thread...\n", 
7927                                         mdname(mddev));
7928                                 /* leave the spares where they are, it shouldn't hurt */
7929                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7930                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7931                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7932                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7933                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7934                         } else
7935                                 md_wakeup_thread(mddev->sync_thread);
7936                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7937                         md_new_event(mddev);
7938                 }
7939         unlock:
7940                 wake_up(&mddev->sb_wait);
7941
7942                 if (!mddev->sync_thread) {
7943                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7944                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7945                                                &mddev->recovery))
7946                                 if (mddev->sysfs_action)
7947                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7948                 }
7949                 mddev_unlock(mddev);
7950         }
7951 }
7952
7953 void md_reap_sync_thread(struct mddev *mddev)
7954 {
7955         struct md_rdev *rdev;
7956
7957         /* resync has finished, collect result */
7958         md_unregister_thread(&mddev->sync_thread);
7959         wake_up(&resync_wait);
7960         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7961             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7962                 /* success...*/
7963                 /* activate any spares */
7964                 if (mddev->pers->spare_active(mddev)) {
7965                         sysfs_notify(&mddev->kobj, NULL,
7966                                      "degraded");
7967                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7968                 }
7969         }
7970         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7971             mddev->pers->finish_reshape)
7972                 mddev->pers->finish_reshape(mddev);
7973
7974         /* If array is no-longer degraded, then any saved_raid_disk
7975          * information must be scrapped.
7976          */
7977         if (!mddev->degraded)
7978                 rdev_for_each(rdev, mddev)
7979                         rdev->saved_raid_disk = -1;
7980
7981         md_update_sb(mddev, 1);
7982         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7983         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7984         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7985         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7986         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7987         /* flag recovery needed just to double check */
7988         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7989         sysfs_notify_dirent_safe(mddev->sysfs_action);
7990         md_new_event(mddev);
7991         if (mddev->event_work.func)
7992                 queue_work(md_misc_wq, &mddev->event_work);
7993 }
7994
7995 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7996 {
7997         sysfs_notify_dirent_safe(rdev->sysfs_state);
7998         wait_event_timeout(rdev->blocked_wait,
7999                            !test_bit(Blocked, &rdev->flags) &&
8000                            !test_bit(BlockedBadBlocks, &rdev->flags),
8001                            msecs_to_jiffies(5000));
8002         rdev_dec_pending(rdev, mddev);
8003 }
8004 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8005
8006 void md_finish_reshape(struct mddev *mddev)
8007 {
8008         /* called be personality module when reshape completes. */
8009         struct md_rdev *rdev;
8010
8011         rdev_for_each(rdev, mddev) {
8012                 if (rdev->data_offset > rdev->new_data_offset)
8013                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8014                 else
8015                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8016                 rdev->data_offset = rdev->new_data_offset;
8017         }
8018 }
8019 EXPORT_SYMBOL(md_finish_reshape);
8020
8021 /* Bad block management.
8022  * We can record which blocks on each device are 'bad' and so just
8023  * fail those blocks, or that stripe, rather than the whole device.
8024  * Entries in the bad-block table are 64bits wide.  This comprises:
8025  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8026  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8027  *  A 'shift' can be set so that larger blocks are tracked and
8028  *  consequently larger devices can be covered.
8029  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8030  *
8031  * Locking of the bad-block table uses a seqlock so md_is_badblock
8032  * might need to retry if it is very unlucky.
8033  * We will sometimes want to check for bad blocks in a bi_end_io function,
8034  * so we use the write_seqlock_irq variant.
8035  *
8036  * When looking for a bad block we specify a range and want to
8037  * know if any block in the range is bad.  So we binary-search
8038  * to the last range that starts at-or-before the given endpoint,
8039  * (or "before the sector after the target range")
8040  * then see if it ends after the given start.
8041  * We return
8042  *  0 if there are no known bad blocks in the range
8043  *  1 if there are known bad block which are all acknowledged
8044  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8045  * plus the start/length of the first bad section we overlap.
8046  */
8047 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8048                    sector_t *first_bad, int *bad_sectors)
8049 {
8050         int hi;
8051         int lo;
8052         u64 *p = bb->page;
8053         int rv;
8054         sector_t target = s + sectors;
8055         unsigned seq;
8056
8057         if (bb->shift > 0) {
8058                 /* round the start down, and the end up */
8059                 s >>= bb->shift;
8060                 target += (1<<bb->shift) - 1;
8061                 target >>= bb->shift;
8062                 sectors = target - s;
8063         }
8064         /* 'target' is now the first block after the bad range */
8065
8066 retry:
8067         seq = read_seqbegin(&bb->lock);
8068         lo = 0;
8069         rv = 0;
8070         hi = bb->count;
8071
8072         /* Binary search between lo and hi for 'target'
8073          * i.e. for the last range that starts before 'target'
8074          */
8075         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8076          * are known not to be the last range before target.
8077          * VARIANT: hi-lo is the number of possible
8078          * ranges, and decreases until it reaches 1
8079          */
8080         while (hi - lo > 1) {
8081                 int mid = (lo + hi) / 2;
8082                 sector_t a = BB_OFFSET(p[mid]);
8083                 if (a < target)
8084                         /* This could still be the one, earlier ranges
8085                          * could not. */
8086                         lo = mid;
8087                 else
8088                         /* This and later ranges are definitely out. */
8089                         hi = mid;
8090         }
8091         /* 'lo' might be the last that started before target, but 'hi' isn't */
8092         if (hi > lo) {
8093                 /* need to check all range that end after 's' to see if
8094                  * any are unacknowledged.
8095                  */
8096                 while (lo >= 0 &&
8097                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8098                         if (BB_OFFSET(p[lo]) < target) {
8099                                 /* starts before the end, and finishes after
8100                                  * the start, so they must overlap
8101                                  */
8102                                 if (rv != -1 && BB_ACK(p[lo]))
8103                                         rv = 1;
8104                                 else
8105                                         rv = -1;
8106                                 *first_bad = BB_OFFSET(p[lo]);
8107                                 *bad_sectors = BB_LEN(p[lo]);
8108                         }
8109                         lo--;
8110                 }
8111         }
8112
8113         if (read_seqretry(&bb->lock, seq))
8114                 goto retry;
8115
8116         return rv;
8117 }
8118 EXPORT_SYMBOL_GPL(md_is_badblock);
8119
8120 /*
8121  * Add a range of bad blocks to the table.
8122  * This might extend the table, or might contract it
8123  * if two adjacent ranges can be merged.
8124  * We binary-search to find the 'insertion' point, then
8125  * decide how best to handle it.
8126  */
8127 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8128                             int acknowledged)
8129 {
8130         u64 *p;
8131         int lo, hi;
8132         int rv = 1;
8133         unsigned long flags;
8134
8135         if (bb->shift < 0)
8136                 /* badblocks are disabled */
8137                 return 0;
8138
8139         if (bb->shift) {
8140                 /* round the start down, and the end up */
8141                 sector_t next = s + sectors;
8142                 s >>= bb->shift;
8143                 next += (1<<bb->shift) - 1;
8144                 next >>= bb->shift;
8145                 sectors = next - s;
8146         }
8147
8148         write_seqlock_irqsave(&bb->lock, flags);
8149
8150         p = bb->page;
8151         lo = 0;
8152         hi = bb->count;
8153         /* Find the last range that starts at-or-before 's' */
8154         while (hi - lo > 1) {
8155                 int mid = (lo + hi) / 2;
8156                 sector_t a = BB_OFFSET(p[mid]);
8157                 if (a <= s)
8158                         lo = mid;
8159                 else
8160                         hi = mid;
8161         }
8162         if (hi > lo && BB_OFFSET(p[lo]) > s)
8163                 hi = lo;
8164
8165         if (hi > lo) {
8166                 /* we found a range that might merge with the start
8167                  * of our new range
8168                  */
8169                 sector_t a = BB_OFFSET(p[lo]);
8170                 sector_t e = a + BB_LEN(p[lo]);
8171                 int ack = BB_ACK(p[lo]);
8172                 if (e >= s) {
8173                         /* Yes, we can merge with a previous range */
8174                         if (s == a && s + sectors >= e)
8175                                 /* new range covers old */
8176                                 ack = acknowledged;
8177                         else
8178                                 ack = ack && acknowledged;
8179
8180                         if (e < s + sectors)
8181                                 e = s + sectors;
8182                         if (e - a <= BB_MAX_LEN) {
8183                                 p[lo] = BB_MAKE(a, e-a, ack);
8184                                 s = e;
8185                         } else {
8186                                 /* does not all fit in one range,
8187                                  * make p[lo] maximal
8188                                  */
8189                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8190                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8191                                 s = a + BB_MAX_LEN;
8192                         }
8193                         sectors = e - s;
8194                 }
8195         }
8196         if (sectors && hi < bb->count) {
8197                 /* 'hi' points to the first range that starts after 's'.
8198                  * Maybe we can merge with the start of that range */
8199                 sector_t a = BB_OFFSET(p[hi]);
8200                 sector_t e = a + BB_LEN(p[hi]);
8201                 int ack = BB_ACK(p[hi]);
8202                 if (a <= s + sectors) {
8203                         /* merging is possible */
8204                         if (e <= s + sectors) {
8205                                 /* full overlap */
8206                                 e = s + sectors;
8207                                 ack = acknowledged;
8208                         } else
8209                                 ack = ack && acknowledged;
8210
8211                         a = s;
8212                         if (e - a <= BB_MAX_LEN) {
8213                                 p[hi] = BB_MAKE(a, e-a, ack);
8214                                 s = e;
8215                         } else {
8216                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8217                                 s = a + BB_MAX_LEN;
8218                         }
8219                         sectors = e - s;
8220                         lo = hi;
8221                         hi++;
8222                 }
8223         }
8224         if (sectors == 0 && hi < bb->count) {
8225                 /* we might be able to combine lo and hi */
8226                 /* Note: 's' is at the end of 'lo' */
8227                 sector_t a = BB_OFFSET(p[hi]);
8228                 int lolen = BB_LEN(p[lo]);
8229                 int hilen = BB_LEN(p[hi]);
8230                 int newlen = lolen + hilen - (s - a);
8231                 if (s >= a && newlen < BB_MAX_LEN) {
8232                         /* yes, we can combine them */
8233                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8234                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8235                         memmove(p + hi, p + hi + 1,
8236                                 (bb->count - hi - 1) * 8);
8237                         bb->count--;
8238                 }
8239         }
8240         while (sectors) {
8241                 /* didn't merge (it all).
8242                  * Need to add a range just before 'hi' */
8243                 if (bb->count >= MD_MAX_BADBLOCKS) {
8244                         /* No room for more */
8245                         rv = 0;
8246                         break;
8247                 } else {
8248                         int this_sectors = sectors;
8249                         memmove(p + hi + 1, p + hi,
8250                                 (bb->count - hi) * 8);
8251                         bb->count++;
8252
8253                         if (this_sectors > BB_MAX_LEN)
8254                                 this_sectors = BB_MAX_LEN;
8255                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8256                         sectors -= this_sectors;
8257                         s += this_sectors;
8258                 }
8259         }
8260
8261         bb->changed = 1;
8262         if (!acknowledged)
8263                 bb->unacked_exist = 1;
8264         write_sequnlock_irqrestore(&bb->lock, flags);
8265
8266         return rv;
8267 }
8268
8269 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8270                        int is_new)
8271 {
8272         int rv;
8273         if (is_new)
8274                 s += rdev->new_data_offset;
8275         else
8276                 s += rdev->data_offset;
8277         rv = md_set_badblocks(&rdev->badblocks,
8278                               s, sectors, 0);
8279         if (rv) {
8280                 /* Make sure they get written out promptly */
8281                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8282                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8283                 md_wakeup_thread(rdev->mddev->thread);
8284         }
8285         return rv;
8286 }
8287 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8288
8289 /*
8290  * Remove a range of bad blocks from the table.
8291  * This may involve extending the table if we spilt a region,
8292  * but it must not fail.  So if the table becomes full, we just
8293  * drop the remove request.
8294  */
8295 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8296 {
8297         u64 *p;
8298         int lo, hi;
8299         sector_t target = s + sectors;
8300         int rv = 0;
8301
8302         if (bb->shift > 0) {
8303                 /* When clearing we round the start up and the end down.
8304                  * This should not matter as the shift should align with
8305                  * the block size and no rounding should ever be needed.
8306                  * However it is better the think a block is bad when it
8307                  * isn't than to think a block is not bad when it is.
8308                  */
8309                 s += (1<<bb->shift) - 1;
8310                 s >>= bb->shift;
8311                 target >>= bb->shift;
8312                 sectors = target - s;
8313         }
8314
8315         write_seqlock_irq(&bb->lock);
8316
8317         p = bb->page;
8318         lo = 0;
8319         hi = bb->count;
8320         /* Find the last range that starts before 'target' */
8321         while (hi - lo > 1) {
8322                 int mid = (lo + hi) / 2;
8323                 sector_t a = BB_OFFSET(p[mid]);
8324                 if (a < target)
8325                         lo = mid;
8326                 else
8327                         hi = mid;
8328         }
8329         if (hi > lo) {
8330                 /* p[lo] is the last range that could overlap the
8331                  * current range.  Earlier ranges could also overlap,
8332                  * but only this one can overlap the end of the range.
8333                  */
8334                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8335                         /* Partial overlap, leave the tail of this range */
8336                         int ack = BB_ACK(p[lo]);
8337                         sector_t a = BB_OFFSET(p[lo]);
8338                         sector_t end = a + BB_LEN(p[lo]);
8339
8340                         if (a < s) {
8341                                 /* we need to split this range */
8342                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8343                                         rv = -ENOSPC;
8344                                         goto out;
8345                                 }
8346                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8347                                 bb->count++;
8348                                 p[lo] = BB_MAKE(a, s-a, ack);
8349                                 lo++;
8350                         }
8351                         p[lo] = BB_MAKE(target, end - target, ack);
8352                         /* there is no longer an overlap */
8353                         hi = lo;
8354                         lo--;
8355                 }
8356                 while (lo >= 0 &&
8357                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8358                         /* This range does overlap */
8359                         if (BB_OFFSET(p[lo]) < s) {
8360                                 /* Keep the early parts of this range. */
8361                                 int ack = BB_ACK(p[lo]);
8362                                 sector_t start = BB_OFFSET(p[lo]);
8363                                 p[lo] = BB_MAKE(start, s - start, ack);
8364                                 /* now low doesn't overlap, so.. */
8365                                 break;
8366                         }
8367                         lo--;
8368                 }
8369                 /* 'lo' is strictly before, 'hi' is strictly after,
8370                  * anything between needs to be discarded
8371                  */
8372                 if (hi - lo > 1) {
8373                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8374                         bb->count -= (hi - lo - 1);
8375                 }
8376         }
8377
8378         bb->changed = 1;
8379 out:
8380         write_sequnlock_irq(&bb->lock);
8381         return rv;
8382 }
8383
8384 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8385                          int is_new)
8386 {
8387         if (is_new)
8388                 s += rdev->new_data_offset;
8389         else
8390                 s += rdev->data_offset;
8391         return md_clear_badblocks(&rdev->badblocks,
8392                                   s, sectors);
8393 }
8394 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8395
8396 /*
8397  * Acknowledge all bad blocks in a list.
8398  * This only succeeds if ->changed is clear.  It is used by
8399  * in-kernel metadata updates
8400  */
8401 void md_ack_all_badblocks(struct badblocks *bb)
8402 {
8403         if (bb->page == NULL || bb->changed)
8404                 /* no point even trying */
8405                 return;
8406         write_seqlock_irq(&bb->lock);
8407
8408         if (bb->changed == 0 && bb->unacked_exist) {
8409                 u64 *p = bb->page;
8410                 int i;
8411                 for (i = 0; i < bb->count ; i++) {
8412                         if (!BB_ACK(p[i])) {
8413                                 sector_t start = BB_OFFSET(p[i]);
8414                                 int len = BB_LEN(p[i]);
8415                                 p[i] = BB_MAKE(start, len, 1);
8416                         }
8417                 }
8418                 bb->unacked_exist = 0;
8419         }
8420         write_sequnlock_irq(&bb->lock);
8421 }
8422 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8423
8424 /* sysfs access to bad-blocks list.
8425  * We present two files.
8426  * 'bad-blocks' lists sector numbers and lengths of ranges that
8427  *    are recorded as bad.  The list is truncated to fit within
8428  *    the one-page limit of sysfs.
8429  *    Writing "sector length" to this file adds an acknowledged
8430  *    bad block list.
8431  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8432  *    been acknowledged.  Writing to this file adds bad blocks
8433  *    without acknowledging them.  This is largely for testing.
8434  */
8435
8436 static ssize_t
8437 badblocks_show(struct badblocks *bb, char *page, int unack)
8438 {
8439         size_t len;
8440         int i;
8441         u64 *p = bb->page;
8442         unsigned seq;
8443
8444         if (bb->shift < 0)
8445                 return 0;
8446
8447 retry:
8448         seq = read_seqbegin(&bb->lock);
8449
8450         len = 0;
8451         i = 0;
8452
8453         while (len < PAGE_SIZE && i < bb->count) {
8454                 sector_t s = BB_OFFSET(p[i]);
8455                 unsigned int length = BB_LEN(p[i]);
8456                 int ack = BB_ACK(p[i]);
8457                 i++;
8458
8459                 if (unack && ack)
8460                         continue;
8461
8462                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8463                                 (unsigned long long)s << bb->shift,
8464                                 length << bb->shift);
8465         }
8466         if (unack && len == 0)
8467                 bb->unacked_exist = 0;
8468
8469         if (read_seqretry(&bb->lock, seq))
8470                 goto retry;
8471
8472         return len;
8473 }
8474
8475 #define DO_DEBUG 1
8476
8477 static ssize_t
8478 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8479 {
8480         unsigned long long sector;
8481         int length;
8482         char newline;
8483 #ifdef DO_DEBUG
8484         /* Allow clearing via sysfs *only* for testing/debugging.
8485          * Normally only a successful write may clear a badblock
8486          */
8487         int clear = 0;
8488         if (page[0] == '-') {
8489                 clear = 1;
8490                 page++;
8491         }
8492 #endif /* DO_DEBUG */
8493
8494         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8495         case 3:
8496                 if (newline != '\n')
8497                         return -EINVAL;
8498         case 2:
8499                 if (length <= 0)
8500                         return -EINVAL;
8501                 break;
8502         default:
8503                 return -EINVAL;
8504         }
8505
8506 #ifdef DO_DEBUG
8507         if (clear) {
8508                 md_clear_badblocks(bb, sector, length);
8509                 return len;
8510         }
8511 #endif /* DO_DEBUG */
8512         if (md_set_badblocks(bb, sector, length, !unack))
8513                 return len;
8514         else
8515                 return -ENOSPC;
8516 }
8517
8518 static int md_notify_reboot(struct notifier_block *this,
8519                             unsigned long code, void *x)
8520 {
8521         struct list_head *tmp;
8522         struct mddev *mddev;
8523         int need_delay = 0;
8524
8525         for_each_mddev(mddev, tmp) {
8526                 if (mddev_trylock(mddev)) {
8527                         if (mddev->pers)
8528                                 __md_stop_writes(mddev);
8529                         if (mddev->persistent)
8530                                 mddev->safemode = 2;
8531                         mddev_unlock(mddev);
8532                 }
8533                 need_delay = 1;
8534         }
8535         /*
8536          * certain more exotic SCSI devices are known to be
8537          * volatile wrt too early system reboots. While the
8538          * right place to handle this issue is the given
8539          * driver, we do want to have a safe RAID driver ...
8540          */
8541         if (need_delay)
8542                 mdelay(1000*1);
8543
8544         return NOTIFY_DONE;
8545 }
8546
8547 static struct notifier_block md_notifier = {
8548         .notifier_call  = md_notify_reboot,
8549         .next           = NULL,
8550         .priority       = INT_MAX, /* before any real devices */
8551 };
8552
8553 static void md_geninit(void)
8554 {
8555         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8556
8557         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8558 }
8559
8560 static int __init md_init(void)
8561 {
8562         int ret = -ENOMEM;
8563
8564         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8565         if (!md_wq)
8566                 goto err_wq;
8567
8568         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8569         if (!md_misc_wq)
8570                 goto err_misc_wq;
8571
8572         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8573                 goto err_md;
8574
8575         if ((ret = register_blkdev(0, "mdp")) < 0)
8576                 goto err_mdp;
8577         mdp_major = ret;
8578
8579         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8580                             md_probe, NULL, NULL);
8581         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8582                             md_probe, NULL, NULL);
8583
8584         register_reboot_notifier(&md_notifier);
8585         raid_table_header = register_sysctl_table(raid_root_table);
8586
8587         md_geninit();
8588         return 0;
8589
8590 err_mdp:
8591         unregister_blkdev(MD_MAJOR, "md");
8592 err_md:
8593         destroy_workqueue(md_misc_wq);
8594 err_misc_wq:
8595         destroy_workqueue(md_wq);
8596 err_wq:
8597         return ret;
8598 }
8599
8600 #ifndef MODULE
8601
8602 /*
8603  * Searches all registered partitions for autorun RAID arrays
8604  * at boot time.
8605  */
8606
8607 static LIST_HEAD(all_detected_devices);
8608 struct detected_devices_node {
8609         struct list_head list;
8610         dev_t dev;
8611 };
8612
8613 void md_autodetect_dev(dev_t dev)
8614 {
8615         struct detected_devices_node *node_detected_dev;
8616
8617         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8618         if (node_detected_dev) {
8619                 node_detected_dev->dev = dev;
8620                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8621         } else {
8622                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8623                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8624         }
8625 }
8626
8627
8628 static void autostart_arrays(int part)
8629 {
8630         struct md_rdev *rdev;
8631         struct detected_devices_node *node_detected_dev;
8632         dev_t dev;
8633         int i_scanned, i_passed;
8634
8635         i_scanned = 0;
8636         i_passed = 0;
8637
8638         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8639
8640         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8641                 i_scanned++;
8642                 node_detected_dev = list_entry(all_detected_devices.next,
8643                                         struct detected_devices_node, list);
8644                 list_del(&node_detected_dev->list);
8645                 dev = node_detected_dev->dev;
8646                 kfree(node_detected_dev);
8647                 rdev = md_import_device(dev,0, 90);
8648                 if (IS_ERR(rdev))
8649                         continue;
8650
8651                 if (test_bit(Faulty, &rdev->flags)) {
8652                         MD_BUG();
8653                         continue;
8654                 }
8655                 set_bit(AutoDetected, &rdev->flags);
8656                 list_add(&rdev->same_set, &pending_raid_disks);
8657                 i_passed++;
8658         }
8659
8660         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8661                                                 i_scanned, i_passed);
8662
8663         autorun_devices(part);
8664 }
8665
8666 #endif /* !MODULE */
8667
8668 static __exit void md_exit(void)
8669 {
8670         struct mddev *mddev;
8671         struct list_head *tmp;
8672         int delay = 1;
8673
8674         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8675         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8676
8677         unregister_blkdev(MD_MAJOR,"md");
8678         unregister_blkdev(mdp_major, "mdp");
8679         unregister_reboot_notifier(&md_notifier);
8680         unregister_sysctl_table(raid_table_header);
8681
8682         /* We cannot unload the modules while some process is
8683          * waiting for us in select() or poll() - wake them up
8684          */
8685         md_unloading = 1;
8686         while (waitqueue_active(&md_event_waiters)) {
8687                 /* not safe to leave yet */
8688                 wake_up(&md_event_waiters);
8689                 msleep(delay);
8690                 delay += delay;
8691         }
8692         remove_proc_entry("mdstat", NULL);
8693
8694         for_each_mddev(mddev, tmp) {
8695                 export_array(mddev);
8696                 mddev->hold_active = 0;
8697         }
8698         destroy_workqueue(md_misc_wq);
8699         destroy_workqueue(md_wq);
8700 }
8701
8702 subsys_initcall(md_init);
8703 module_exit(md_exit)
8704
8705 static int get_ro(char *buffer, struct kernel_param *kp)
8706 {
8707         return sprintf(buffer, "%d", start_readonly);
8708 }
8709 static int set_ro(const char *val, struct kernel_param *kp)
8710 {
8711         char *e;
8712         int num = simple_strtoul(val, &e, 10);
8713         if (*val && (*e == '\0' || *e == '\n')) {
8714                 start_readonly = num;
8715                 return 0;
8716         }
8717         return -EINVAL;
8718 }
8719
8720 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8721 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8722
8723 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8724
8725 EXPORT_SYMBOL(register_md_personality);
8726 EXPORT_SYMBOL(unregister_md_personality);
8727 EXPORT_SYMBOL(md_error);
8728 EXPORT_SYMBOL(md_done_sync);
8729 EXPORT_SYMBOL(md_write_start);
8730 EXPORT_SYMBOL(md_write_end);
8731 EXPORT_SYMBOL(md_register_thread);
8732 EXPORT_SYMBOL(md_unregister_thread);
8733 EXPORT_SYMBOL(md_wakeup_thread);
8734 EXPORT_SYMBOL(md_check_recovery);
8735 EXPORT_SYMBOL(md_reap_sync_thread);
8736 MODULE_LICENSE("GPL");
8737 MODULE_DESCRIPTION("MD RAID framework");
8738 MODULE_ALIAS("md");
8739 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);