md: fix bug due to nested suspend
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         blk_queue_split(q, &bio, q->bio_split);
261
262         if (mddev == NULL || mddev->pers == NULL
263             || !mddev->ready) {
264                 bio_io_error(bio);
265                 return BLK_QC_T_NONE;
266         }
267         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268                 if (bio_sectors(bio) != 0)
269                         bio->bi_error = -EROFS;
270                 bio_endio(bio);
271                 return BLK_QC_T_NONE;
272         }
273         smp_rmb(); /* Ensure implications of  'active' are visible */
274         rcu_read_lock();
275         if (mddev->suspended) {
276                 DEFINE_WAIT(__wait);
277                 for (;;) {
278                         prepare_to_wait(&mddev->sb_wait, &__wait,
279                                         TASK_UNINTERRUPTIBLE);
280                         if (!mddev->suspended)
281                                 break;
282                         rcu_read_unlock();
283                         schedule();
284                         rcu_read_lock();
285                 }
286                 finish_wait(&mddev->sb_wait, &__wait);
287         }
288         atomic_inc(&mddev->active_io);
289         rcu_read_unlock();
290
291         /*
292          * save the sectors now since our bio can
293          * go away inside make_request
294          */
295         sectors = bio_sectors(bio);
296         mddev->pers->make_request(mddev, bio);
297
298         cpu = part_stat_lock();
299         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301         part_stat_unlock();
302
303         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304                 wake_up(&mddev->sb_wait);
305
306         return BLK_QC_T_NONE;
307 }
308
309 /* mddev_suspend makes sure no new requests are submitted
310  * to the device, and that any requests that have been submitted
311  * are completely handled.
312  * Once mddev_detach() is called and completes, the module will be
313  * completely unused.
314  */
315 void mddev_suspend(struct mddev *mddev)
316 {
317         if (mddev->suspended++)
318                 return;
319         synchronize_rcu();
320         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
321         mddev->pers->quiesce(mddev, 1);
322
323         del_timer_sync(&mddev->safemode_timer);
324 }
325 EXPORT_SYMBOL_GPL(mddev_suspend);
326
327 void mddev_resume(struct mddev *mddev)
328 {
329         if (--mddev->suspended)
330                 return;
331         wake_up(&mddev->sb_wait);
332         mddev->pers->quiesce(mddev, 0);
333
334         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
335         md_wakeup_thread(mddev->thread);
336         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
337 }
338 EXPORT_SYMBOL_GPL(mddev_resume);
339
340 int mddev_congested(struct mddev *mddev, int bits)
341 {
342         struct md_personality *pers = mddev->pers;
343         int ret = 0;
344
345         rcu_read_lock();
346         if (mddev->suspended)
347                 ret = 1;
348         else if (pers && pers->congested)
349                 ret = pers->congested(mddev, bits);
350         rcu_read_unlock();
351         return ret;
352 }
353 EXPORT_SYMBOL_GPL(mddev_congested);
354 static int md_congested(void *data, int bits)
355 {
356         struct mddev *mddev = data;
357         return mddev_congested(mddev, bits);
358 }
359
360 /*
361  * Generic flush handling for md
362  */
363
364 static void md_end_flush(struct bio *bio)
365 {
366         struct md_rdev *rdev = bio->bi_private;
367         struct mddev *mddev = rdev->mddev;
368
369         rdev_dec_pending(rdev, mddev);
370
371         if (atomic_dec_and_test(&mddev->flush_pending)) {
372                 /* The pre-request flush has finished */
373                 queue_work(md_wq, &mddev->flush_work);
374         }
375         bio_put(bio);
376 }
377
378 static void md_submit_flush_data(struct work_struct *ws);
379
380 static void submit_flushes(struct work_struct *ws)
381 {
382         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
383         struct md_rdev *rdev;
384
385         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
386         atomic_set(&mddev->flush_pending, 1);
387         rcu_read_lock();
388         rdev_for_each_rcu(rdev, mddev)
389                 if (rdev->raid_disk >= 0 &&
390                     !test_bit(Faulty, &rdev->flags)) {
391                         /* Take two references, one is dropped
392                          * when request finishes, one after
393                          * we reclaim rcu_read_lock
394                          */
395                         struct bio *bi;
396                         atomic_inc(&rdev->nr_pending);
397                         atomic_inc(&rdev->nr_pending);
398                         rcu_read_unlock();
399                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
400                         bi->bi_end_io = md_end_flush;
401                         bi->bi_private = rdev;
402                         bi->bi_bdev = rdev->bdev;
403                         atomic_inc(&mddev->flush_pending);
404                         submit_bio(WRITE_FLUSH, bi);
405                         rcu_read_lock();
406                         rdev_dec_pending(rdev, mddev);
407                 }
408         rcu_read_unlock();
409         if (atomic_dec_and_test(&mddev->flush_pending))
410                 queue_work(md_wq, &mddev->flush_work);
411 }
412
413 static void md_submit_flush_data(struct work_struct *ws)
414 {
415         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
416         struct bio *bio = mddev->flush_bio;
417
418         if (bio->bi_iter.bi_size == 0)
419                 /* an empty barrier - all done */
420                 bio_endio(bio);
421         else {
422                 bio->bi_rw &= ~REQ_FLUSH;
423                 mddev->pers->make_request(mddev, bio);
424         }
425
426         mddev->flush_bio = NULL;
427         wake_up(&mddev->sb_wait);
428 }
429
430 void md_flush_request(struct mddev *mddev, struct bio *bio)
431 {
432         spin_lock_irq(&mddev->lock);
433         wait_event_lock_irq(mddev->sb_wait,
434                             !mddev->flush_bio,
435                             mddev->lock);
436         mddev->flush_bio = bio;
437         spin_unlock_irq(&mddev->lock);
438
439         INIT_WORK(&mddev->flush_work, submit_flushes);
440         queue_work(md_wq, &mddev->flush_work);
441 }
442 EXPORT_SYMBOL(md_flush_request);
443
444 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
445 {
446         struct mddev *mddev = cb->data;
447         md_wakeup_thread(mddev->thread);
448         kfree(cb);
449 }
450 EXPORT_SYMBOL(md_unplug);
451
452 static inline struct mddev *mddev_get(struct mddev *mddev)
453 {
454         atomic_inc(&mddev->active);
455         return mddev;
456 }
457
458 static void mddev_delayed_delete(struct work_struct *ws);
459
460 static void mddev_put(struct mddev *mddev)
461 {
462         struct bio_set *bs = NULL;
463
464         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
465                 return;
466         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
467             mddev->ctime == 0 && !mddev->hold_active) {
468                 /* Array is not configured at all, and not held active,
469                  * so destroy it */
470                 list_del_init(&mddev->all_mddevs);
471                 bs = mddev->bio_set;
472                 mddev->bio_set = NULL;
473                 if (mddev->gendisk) {
474                         /* We did a probe so need to clean up.  Call
475                          * queue_work inside the spinlock so that
476                          * flush_workqueue() after mddev_find will
477                          * succeed in waiting for the work to be done.
478                          */
479                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
480                         queue_work(md_misc_wq, &mddev->del_work);
481                 } else
482                         kfree(mddev);
483         }
484         spin_unlock(&all_mddevs_lock);
485         if (bs)
486                 bioset_free(bs);
487 }
488
489 static void md_safemode_timeout(unsigned long data);
490
491 void mddev_init(struct mddev *mddev)
492 {
493         mutex_init(&mddev->open_mutex);
494         mutex_init(&mddev->reconfig_mutex);
495         mutex_init(&mddev->bitmap_info.mutex);
496         INIT_LIST_HEAD(&mddev->disks);
497         INIT_LIST_HEAD(&mddev->all_mddevs);
498         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
499                     (unsigned long) mddev);
500         atomic_set(&mddev->active, 1);
501         atomic_set(&mddev->openers, 0);
502         atomic_set(&mddev->active_io, 0);
503         spin_lock_init(&mddev->lock);
504         atomic_set(&mddev->flush_pending, 0);
505         init_waitqueue_head(&mddev->sb_wait);
506         init_waitqueue_head(&mddev->recovery_wait);
507         mddev->reshape_position = MaxSector;
508         mddev->reshape_backwards = 0;
509         mddev->last_sync_action = "none";
510         mddev->resync_min = 0;
511         mddev->resync_max = MaxSector;
512         mddev->level = LEVEL_NONE;
513 }
514 EXPORT_SYMBOL_GPL(mddev_init);
515
516 static struct mddev *mddev_find(dev_t unit)
517 {
518         struct mddev *mddev, *new = NULL;
519
520         if (unit && MAJOR(unit) != MD_MAJOR)
521                 unit &= ~((1<<MdpMinorShift)-1);
522
523  retry:
524         spin_lock(&all_mddevs_lock);
525
526         if (unit) {
527                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
528                         if (mddev->unit == unit) {
529                                 mddev_get(mddev);
530                                 spin_unlock(&all_mddevs_lock);
531                                 kfree(new);
532                                 return mddev;
533                         }
534
535                 if (new) {
536                         list_add(&new->all_mddevs, &all_mddevs);
537                         spin_unlock(&all_mddevs_lock);
538                         new->hold_active = UNTIL_IOCTL;
539                         return new;
540                 }
541         } else if (new) {
542                 /* find an unused unit number */
543                 static int next_minor = 512;
544                 int start = next_minor;
545                 int is_free = 0;
546                 int dev = 0;
547                 while (!is_free) {
548                         dev = MKDEV(MD_MAJOR, next_minor);
549                         next_minor++;
550                         if (next_minor > MINORMASK)
551                                 next_minor = 0;
552                         if (next_minor == start) {
553                                 /* Oh dear, all in use. */
554                                 spin_unlock(&all_mddevs_lock);
555                                 kfree(new);
556                                 return NULL;
557                         }
558
559                         is_free = 1;
560                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
561                                 if (mddev->unit == dev) {
562                                         is_free = 0;
563                                         break;
564                                 }
565                 }
566                 new->unit = dev;
567                 new->md_minor = MINOR(dev);
568                 new->hold_active = UNTIL_STOP;
569                 list_add(&new->all_mddevs, &all_mddevs);
570                 spin_unlock(&all_mddevs_lock);
571                 return new;
572         }
573         spin_unlock(&all_mddevs_lock);
574
575         new = kzalloc(sizeof(*new), GFP_KERNEL);
576         if (!new)
577                 return NULL;
578
579         new->unit = unit;
580         if (MAJOR(unit) == MD_MAJOR)
581                 new->md_minor = MINOR(unit);
582         else
583                 new->md_minor = MINOR(unit) >> MdpMinorShift;
584
585         mddev_init(new);
586
587         goto retry;
588 }
589
590 static struct attribute_group md_redundancy_group;
591
592 void mddev_unlock(struct mddev *mddev)
593 {
594         if (mddev->to_remove) {
595                 /* These cannot be removed under reconfig_mutex as
596                  * an access to the files will try to take reconfig_mutex
597                  * while holding the file unremovable, which leads to
598                  * a deadlock.
599                  * So hold set sysfs_active while the remove in happeing,
600                  * and anything else which might set ->to_remove or my
601                  * otherwise change the sysfs namespace will fail with
602                  * -EBUSY if sysfs_active is still set.
603                  * We set sysfs_active under reconfig_mutex and elsewhere
604                  * test it under the same mutex to ensure its correct value
605                  * is seen.
606                  */
607                 struct attribute_group *to_remove = mddev->to_remove;
608                 mddev->to_remove = NULL;
609                 mddev->sysfs_active = 1;
610                 mutex_unlock(&mddev->reconfig_mutex);
611
612                 if (mddev->kobj.sd) {
613                         if (to_remove != &md_redundancy_group)
614                                 sysfs_remove_group(&mddev->kobj, to_remove);
615                         if (mddev->pers == NULL ||
616                             mddev->pers->sync_request == NULL) {
617                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
618                                 if (mddev->sysfs_action)
619                                         sysfs_put(mddev->sysfs_action);
620                                 mddev->sysfs_action = NULL;
621                         }
622                 }
623                 mddev->sysfs_active = 0;
624         } else
625                 mutex_unlock(&mddev->reconfig_mutex);
626
627         /* As we've dropped the mutex we need a spinlock to
628          * make sure the thread doesn't disappear
629          */
630         spin_lock(&pers_lock);
631         md_wakeup_thread(mddev->thread);
632         spin_unlock(&pers_lock);
633 }
634 EXPORT_SYMBOL_GPL(mddev_unlock);
635
636 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
637 {
638         struct md_rdev *rdev;
639
640         rdev_for_each_rcu(rdev, mddev)
641                 if (rdev->desc_nr == nr)
642                         return rdev;
643
644         return NULL;
645 }
646 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
647
648 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
649 {
650         struct md_rdev *rdev;
651
652         rdev_for_each(rdev, mddev)
653                 if (rdev->bdev->bd_dev == dev)
654                         return rdev;
655
656         return NULL;
657 }
658
659 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
660 {
661         struct md_rdev *rdev;
662
663         rdev_for_each_rcu(rdev, mddev)
664                 if (rdev->bdev->bd_dev == dev)
665                         return rdev;
666
667         return NULL;
668 }
669
670 static struct md_personality *find_pers(int level, char *clevel)
671 {
672         struct md_personality *pers;
673         list_for_each_entry(pers, &pers_list, list) {
674                 if (level != LEVEL_NONE && pers->level == level)
675                         return pers;
676                 if (strcmp(pers->name, clevel)==0)
677                         return pers;
678         }
679         return NULL;
680 }
681
682 /* return the offset of the super block in 512byte sectors */
683 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
684 {
685         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
686         return MD_NEW_SIZE_SECTORS(num_sectors);
687 }
688
689 static int alloc_disk_sb(struct md_rdev *rdev)
690 {
691         rdev->sb_page = alloc_page(GFP_KERNEL);
692         if (!rdev->sb_page) {
693                 printk(KERN_ALERT "md: out of memory.\n");
694                 return -ENOMEM;
695         }
696
697         return 0;
698 }
699
700 void md_rdev_clear(struct md_rdev *rdev)
701 {
702         if (rdev->sb_page) {
703                 put_page(rdev->sb_page);
704                 rdev->sb_loaded = 0;
705                 rdev->sb_page = NULL;
706                 rdev->sb_start = 0;
707                 rdev->sectors = 0;
708         }
709         if (rdev->bb_page) {
710                 put_page(rdev->bb_page);
711                 rdev->bb_page = NULL;
712         }
713         kfree(rdev->badblocks.page);
714         rdev->badblocks.page = NULL;
715 }
716 EXPORT_SYMBOL_GPL(md_rdev_clear);
717
718 static void super_written(struct bio *bio)
719 {
720         struct md_rdev *rdev = bio->bi_private;
721         struct mddev *mddev = rdev->mddev;
722
723         if (bio->bi_error) {
724                 printk("md: super_written gets error=%d\n", bio->bi_error);
725                 md_error(mddev, rdev);
726         }
727
728         if (atomic_dec_and_test(&mddev->pending_writes))
729                 wake_up(&mddev->sb_wait);
730         bio_put(bio);
731 }
732
733 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
734                    sector_t sector, int size, struct page *page)
735 {
736         /* write first size bytes of page to sector of rdev
737          * Increment mddev->pending_writes before returning
738          * and decrement it on completion, waking up sb_wait
739          * if zero is reached.
740          * If an error occurred, call md_error
741          */
742         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
743
744         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
745         bio->bi_iter.bi_sector = sector;
746         bio_add_page(bio, page, size, 0);
747         bio->bi_private = rdev;
748         bio->bi_end_io = super_written;
749
750         atomic_inc(&mddev->pending_writes);
751         submit_bio(WRITE_FLUSH_FUA, bio);
752 }
753
754 void md_super_wait(struct mddev *mddev)
755 {
756         /* wait for all superblock writes that were scheduled to complete */
757         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
758 }
759
760 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
761                  struct page *page, int rw, bool metadata_op)
762 {
763         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
764         int ret;
765
766         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
767                 rdev->meta_bdev : rdev->bdev;
768         if (metadata_op)
769                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
770         else if (rdev->mddev->reshape_position != MaxSector &&
771                  (rdev->mddev->reshape_backwards ==
772                   (sector >= rdev->mddev->reshape_position)))
773                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
774         else
775                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
776         bio_add_page(bio, page, size, 0);
777         submit_bio_wait(rw, bio);
778
779         ret = !bio->bi_error;
780         bio_put(bio);
781         return ret;
782 }
783 EXPORT_SYMBOL_GPL(sync_page_io);
784
785 static int read_disk_sb(struct md_rdev *rdev, int size)
786 {
787         char b[BDEVNAME_SIZE];
788
789         if (rdev->sb_loaded)
790                 return 0;
791
792         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
793                 goto fail;
794         rdev->sb_loaded = 1;
795         return 0;
796
797 fail:
798         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
799                 bdevname(rdev->bdev,b));
800         return -EINVAL;
801 }
802
803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805         return  sb1->set_uuid0 == sb2->set_uuid0 &&
806                 sb1->set_uuid1 == sb2->set_uuid1 &&
807                 sb1->set_uuid2 == sb2->set_uuid2 &&
808                 sb1->set_uuid3 == sb2->set_uuid3;
809 }
810
811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813         int ret;
814         mdp_super_t *tmp1, *tmp2;
815
816         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
817         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
818
819         if (!tmp1 || !tmp2) {
820                 ret = 0;
821                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
822                 goto abort;
823         }
824
825         *tmp1 = *sb1;
826         *tmp2 = *sb2;
827
828         /*
829          * nr_disks is not constant
830          */
831         tmp1->nr_disks = 0;
832         tmp2->nr_disks = 0;
833
834         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
835 abort:
836         kfree(tmp1);
837         kfree(tmp2);
838         return ret;
839 }
840
841 static u32 md_csum_fold(u32 csum)
842 {
843         csum = (csum & 0xffff) + (csum >> 16);
844         return (csum & 0xffff) + (csum >> 16);
845 }
846
847 static unsigned int calc_sb_csum(mdp_super_t *sb)
848 {
849         u64 newcsum = 0;
850         u32 *sb32 = (u32*)sb;
851         int i;
852         unsigned int disk_csum, csum;
853
854         disk_csum = sb->sb_csum;
855         sb->sb_csum = 0;
856
857         for (i = 0; i < MD_SB_BYTES/4 ; i++)
858                 newcsum += sb32[i];
859         csum = (newcsum & 0xffffffff) + (newcsum>>32);
860
861 #ifdef CONFIG_ALPHA
862         /* This used to use csum_partial, which was wrong for several
863          * reasons including that different results are returned on
864          * different architectures.  It isn't critical that we get exactly
865          * the same return value as before (we always csum_fold before
866          * testing, and that removes any differences).  However as we
867          * know that csum_partial always returned a 16bit value on
868          * alphas, do a fold to maximise conformity to previous behaviour.
869          */
870         sb->sb_csum = md_csum_fold(disk_csum);
871 #else
872         sb->sb_csum = disk_csum;
873 #endif
874         return csum;
875 }
876
877 /*
878  * Handle superblock details.
879  * We want to be able to handle multiple superblock formats
880  * so we have a common interface to them all, and an array of
881  * different handlers.
882  * We rely on user-space to write the initial superblock, and support
883  * reading and updating of superblocks.
884  * Interface methods are:
885  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
886  *      loads and validates a superblock on dev.
887  *      if refdev != NULL, compare superblocks on both devices
888  *    Return:
889  *      0 - dev has a superblock that is compatible with refdev
890  *      1 - dev has a superblock that is compatible and newer than refdev
891  *          so dev should be used as the refdev in future
892  *     -EINVAL superblock incompatible or invalid
893  *     -othererror e.g. -EIO
894  *
895  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
896  *      Verify that dev is acceptable into mddev.
897  *       The first time, mddev->raid_disks will be 0, and data from
898  *       dev should be merged in.  Subsequent calls check that dev
899  *       is new enough.  Return 0 or -EINVAL
900  *
901  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
902  *     Update the superblock for rdev with data in mddev
903  *     This does not write to disc.
904  *
905  */
906
907 struct super_type  {
908         char                *name;
909         struct module       *owner;
910         int                 (*load_super)(struct md_rdev *rdev,
911                                           struct md_rdev *refdev,
912                                           int minor_version);
913         int                 (*validate_super)(struct mddev *mddev,
914                                               struct md_rdev *rdev);
915         void                (*sync_super)(struct mddev *mddev,
916                                           struct md_rdev *rdev);
917         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
918                                                 sector_t num_sectors);
919         int                 (*allow_new_offset)(struct md_rdev *rdev,
920                                                 unsigned long long new_offset);
921 };
922
923 /*
924  * Check that the given mddev has no bitmap.
925  *
926  * This function is called from the run method of all personalities that do not
927  * support bitmaps. It prints an error message and returns non-zero if mddev
928  * has a bitmap. Otherwise, it returns 0.
929  *
930  */
931 int md_check_no_bitmap(struct mddev *mddev)
932 {
933         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
934                 return 0;
935         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
936                 mdname(mddev), mddev->pers->name);
937         return 1;
938 }
939 EXPORT_SYMBOL(md_check_no_bitmap);
940
941 /*
942  * load_super for 0.90.0
943  */
944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
945 {
946         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
947         mdp_super_t *sb;
948         int ret;
949
950         /*
951          * Calculate the position of the superblock (512byte sectors),
952          * it's at the end of the disk.
953          *
954          * It also happens to be a multiple of 4Kb.
955          */
956         rdev->sb_start = calc_dev_sboffset(rdev);
957
958         ret = read_disk_sb(rdev, MD_SB_BYTES);
959         if (ret) return ret;
960
961         ret = -EINVAL;
962
963         bdevname(rdev->bdev, b);
964         sb = page_address(rdev->sb_page);
965
966         if (sb->md_magic != MD_SB_MAGIC) {
967                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
968                        b);
969                 goto abort;
970         }
971
972         if (sb->major_version != 0 ||
973             sb->minor_version < 90 ||
974             sb->minor_version > 91) {
975                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
976                         sb->major_version, sb->minor_version,
977                         b);
978                 goto abort;
979         }
980
981         if (sb->raid_disks <= 0)
982                 goto abort;
983
984         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
985                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
986                         b);
987                 goto abort;
988         }
989
990         rdev->preferred_minor = sb->md_minor;
991         rdev->data_offset = 0;
992         rdev->new_data_offset = 0;
993         rdev->sb_size = MD_SB_BYTES;
994         rdev->badblocks.shift = -1;
995
996         if (sb->level == LEVEL_MULTIPATH)
997                 rdev->desc_nr = -1;
998         else
999                 rdev->desc_nr = sb->this_disk.number;
1000
1001         if (!refdev) {
1002                 ret = 1;
1003         } else {
1004                 __u64 ev1, ev2;
1005                 mdp_super_t *refsb = page_address(refdev->sb_page);
1006                 if (!uuid_equal(refsb, sb)) {
1007                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1008                                 b, bdevname(refdev->bdev,b2));
1009                         goto abort;
1010                 }
1011                 if (!sb_equal(refsb, sb)) {
1012                         printk(KERN_WARNING "md: %s has same UUID"
1013                                " but different superblock to %s\n",
1014                                b, bdevname(refdev->bdev, b2));
1015                         goto abort;
1016                 }
1017                 ev1 = md_event(sb);
1018                 ev2 = md_event(refsb);
1019                 if (ev1 > ev2)
1020                         ret = 1;
1021                 else
1022                         ret = 0;
1023         }
1024         rdev->sectors = rdev->sb_start;
1025         /* Limit to 4TB as metadata cannot record more than that.
1026          * (not needed for Linear and RAID0 as metadata doesn't
1027          * record this size)
1028          */
1029         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1030                 rdev->sectors = (2ULL << 32) - 2;
1031
1032         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1033                 /* "this cannot possibly happen" ... */
1034                 ret = -EINVAL;
1035
1036  abort:
1037         return ret;
1038 }
1039
1040 /*
1041  * validate_super for 0.90.0
1042  */
1043 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1044 {
1045         mdp_disk_t *desc;
1046         mdp_super_t *sb = page_address(rdev->sb_page);
1047         __u64 ev1 = md_event(sb);
1048
1049         rdev->raid_disk = -1;
1050         clear_bit(Faulty, &rdev->flags);
1051         clear_bit(In_sync, &rdev->flags);
1052         clear_bit(Bitmap_sync, &rdev->flags);
1053         clear_bit(WriteMostly, &rdev->flags);
1054
1055         if (mddev->raid_disks == 0) {
1056                 mddev->major_version = 0;
1057                 mddev->minor_version = sb->minor_version;
1058                 mddev->patch_version = sb->patch_version;
1059                 mddev->external = 0;
1060                 mddev->chunk_sectors = sb->chunk_size >> 9;
1061                 mddev->ctime = sb->ctime;
1062                 mddev->utime = sb->utime;
1063                 mddev->level = sb->level;
1064                 mddev->clevel[0] = 0;
1065                 mddev->layout = sb->layout;
1066                 mddev->raid_disks = sb->raid_disks;
1067                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1068                 mddev->events = ev1;
1069                 mddev->bitmap_info.offset = 0;
1070                 mddev->bitmap_info.space = 0;
1071                 /* bitmap can use 60 K after the 4K superblocks */
1072                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1073                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1074                 mddev->reshape_backwards = 0;
1075
1076                 if (mddev->minor_version >= 91) {
1077                         mddev->reshape_position = sb->reshape_position;
1078                         mddev->delta_disks = sb->delta_disks;
1079                         mddev->new_level = sb->new_level;
1080                         mddev->new_layout = sb->new_layout;
1081                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1082                         if (mddev->delta_disks < 0)
1083                                 mddev->reshape_backwards = 1;
1084                 } else {
1085                         mddev->reshape_position = MaxSector;
1086                         mddev->delta_disks = 0;
1087                         mddev->new_level = mddev->level;
1088                         mddev->new_layout = mddev->layout;
1089                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1090                 }
1091
1092                 if (sb->state & (1<<MD_SB_CLEAN))
1093                         mddev->recovery_cp = MaxSector;
1094                 else {
1095                         if (sb->events_hi == sb->cp_events_hi &&
1096                                 sb->events_lo == sb->cp_events_lo) {
1097                                 mddev->recovery_cp = sb->recovery_cp;
1098                         } else
1099                                 mddev->recovery_cp = 0;
1100                 }
1101
1102                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1103                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1104                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1105                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1106
1107                 mddev->max_disks = MD_SB_DISKS;
1108
1109                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1110                     mddev->bitmap_info.file == NULL) {
1111                         mddev->bitmap_info.offset =
1112                                 mddev->bitmap_info.default_offset;
1113                         mddev->bitmap_info.space =
1114                                 mddev->bitmap_info.default_space;
1115                 }
1116
1117         } else if (mddev->pers == NULL) {
1118                 /* Insist on good event counter while assembling, except
1119                  * for spares (which don't need an event count) */
1120                 ++ev1;
1121                 if (sb->disks[rdev->desc_nr].state & (
1122                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1123                         if (ev1 < mddev->events)
1124                                 return -EINVAL;
1125         } else if (mddev->bitmap) {
1126                 /* if adding to array with a bitmap, then we can accept an
1127                  * older device ... but not too old.
1128                  */
1129                 if (ev1 < mddev->bitmap->events_cleared)
1130                         return 0;
1131                 if (ev1 < mddev->events)
1132                         set_bit(Bitmap_sync, &rdev->flags);
1133         } else {
1134                 if (ev1 < mddev->events)
1135                         /* just a hot-add of a new device, leave raid_disk at -1 */
1136                         return 0;
1137         }
1138
1139         if (mddev->level != LEVEL_MULTIPATH) {
1140                 desc = sb->disks + rdev->desc_nr;
1141
1142                 if (desc->state & (1<<MD_DISK_FAULTY))
1143                         set_bit(Faulty, &rdev->flags);
1144                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1145                             desc->raid_disk < mddev->raid_disks */) {
1146                         set_bit(In_sync, &rdev->flags);
1147                         rdev->raid_disk = desc->raid_disk;
1148                         rdev->saved_raid_disk = desc->raid_disk;
1149                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1150                         /* active but not in sync implies recovery up to
1151                          * reshape position.  We don't know exactly where
1152                          * that is, so set to zero for now */
1153                         if (mddev->minor_version >= 91) {
1154                                 rdev->recovery_offset = 0;
1155                                 rdev->raid_disk = desc->raid_disk;
1156                         }
1157                 }
1158                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1159                         set_bit(WriteMostly, &rdev->flags);
1160         } else /* MULTIPATH are always insync */
1161                 set_bit(In_sync, &rdev->flags);
1162         return 0;
1163 }
1164
1165 /*
1166  * sync_super for 0.90.0
1167  */
1168 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1169 {
1170         mdp_super_t *sb;
1171         struct md_rdev *rdev2;
1172         int next_spare = mddev->raid_disks;
1173
1174         /* make rdev->sb match mddev data..
1175          *
1176          * 1/ zero out disks
1177          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1178          * 3/ any empty disks < next_spare become removed
1179          *
1180          * disks[0] gets initialised to REMOVED because
1181          * we cannot be sure from other fields if it has
1182          * been initialised or not.
1183          */
1184         int i;
1185         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1186
1187         rdev->sb_size = MD_SB_BYTES;
1188
1189         sb = page_address(rdev->sb_page);
1190
1191         memset(sb, 0, sizeof(*sb));
1192
1193         sb->md_magic = MD_SB_MAGIC;
1194         sb->major_version = mddev->major_version;
1195         sb->patch_version = mddev->patch_version;
1196         sb->gvalid_words  = 0; /* ignored */
1197         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1198         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1199         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1200         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1201
1202         sb->ctime = mddev->ctime;
1203         sb->level = mddev->level;
1204         sb->size = mddev->dev_sectors / 2;
1205         sb->raid_disks = mddev->raid_disks;
1206         sb->md_minor = mddev->md_minor;
1207         sb->not_persistent = 0;
1208         sb->utime = mddev->utime;
1209         sb->state = 0;
1210         sb->events_hi = (mddev->events>>32);
1211         sb->events_lo = (u32)mddev->events;
1212
1213         if (mddev->reshape_position == MaxSector)
1214                 sb->minor_version = 90;
1215         else {
1216                 sb->minor_version = 91;
1217                 sb->reshape_position = mddev->reshape_position;
1218                 sb->new_level = mddev->new_level;
1219                 sb->delta_disks = mddev->delta_disks;
1220                 sb->new_layout = mddev->new_layout;
1221                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1222         }
1223         mddev->minor_version = sb->minor_version;
1224         if (mddev->in_sync)
1225         {
1226                 sb->recovery_cp = mddev->recovery_cp;
1227                 sb->cp_events_hi = (mddev->events>>32);
1228                 sb->cp_events_lo = (u32)mddev->events;
1229                 if (mddev->recovery_cp == MaxSector)
1230                         sb->state = (1<< MD_SB_CLEAN);
1231         } else
1232                 sb->recovery_cp = 0;
1233
1234         sb->layout = mddev->layout;
1235         sb->chunk_size = mddev->chunk_sectors << 9;
1236
1237         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1238                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1239
1240         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1241         rdev_for_each(rdev2, mddev) {
1242                 mdp_disk_t *d;
1243                 int desc_nr;
1244                 int is_active = test_bit(In_sync, &rdev2->flags);
1245
1246                 if (rdev2->raid_disk >= 0 &&
1247                     sb->minor_version >= 91)
1248                         /* we have nowhere to store the recovery_offset,
1249                          * but if it is not below the reshape_position,
1250                          * we can piggy-back on that.
1251                          */
1252                         is_active = 1;
1253                 if (rdev2->raid_disk < 0 ||
1254                     test_bit(Faulty, &rdev2->flags))
1255                         is_active = 0;
1256                 if (is_active)
1257                         desc_nr = rdev2->raid_disk;
1258                 else
1259                         desc_nr = next_spare++;
1260                 rdev2->desc_nr = desc_nr;
1261                 d = &sb->disks[rdev2->desc_nr];
1262                 nr_disks++;
1263                 d->number = rdev2->desc_nr;
1264                 d->major = MAJOR(rdev2->bdev->bd_dev);
1265                 d->minor = MINOR(rdev2->bdev->bd_dev);
1266                 if (is_active)
1267                         d->raid_disk = rdev2->raid_disk;
1268                 else
1269                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1270                 if (test_bit(Faulty, &rdev2->flags))
1271                         d->state = (1<<MD_DISK_FAULTY);
1272                 else if (is_active) {
1273                         d->state = (1<<MD_DISK_ACTIVE);
1274                         if (test_bit(In_sync, &rdev2->flags))
1275                                 d->state |= (1<<MD_DISK_SYNC);
1276                         active++;
1277                         working++;
1278                 } else {
1279                         d->state = 0;
1280                         spare++;
1281                         working++;
1282                 }
1283                 if (test_bit(WriteMostly, &rdev2->flags))
1284                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1285         }
1286         /* now set the "removed" and "faulty" bits on any missing devices */
1287         for (i=0 ; i < mddev->raid_disks ; i++) {
1288                 mdp_disk_t *d = &sb->disks[i];
1289                 if (d->state == 0 && d->number == 0) {
1290                         d->number = i;
1291                         d->raid_disk = i;
1292                         d->state = (1<<MD_DISK_REMOVED);
1293                         d->state |= (1<<MD_DISK_FAULTY);
1294                         failed++;
1295                 }
1296         }
1297         sb->nr_disks = nr_disks;
1298         sb->active_disks = active;
1299         sb->working_disks = working;
1300         sb->failed_disks = failed;
1301         sb->spare_disks = spare;
1302
1303         sb->this_disk = sb->disks[rdev->desc_nr];
1304         sb->sb_csum = calc_sb_csum(sb);
1305 }
1306
1307 /*
1308  * rdev_size_change for 0.90.0
1309  */
1310 static unsigned long long
1311 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1312 {
1313         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1314                 return 0; /* component must fit device */
1315         if (rdev->mddev->bitmap_info.offset)
1316                 return 0; /* can't move bitmap */
1317         rdev->sb_start = calc_dev_sboffset(rdev);
1318         if (!num_sectors || num_sectors > rdev->sb_start)
1319                 num_sectors = rdev->sb_start;
1320         /* Limit to 4TB as metadata cannot record more than that.
1321          * 4TB == 2^32 KB, or 2*2^32 sectors.
1322          */
1323         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1324                 num_sectors = (2ULL << 32) - 2;
1325         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1326                        rdev->sb_page);
1327         md_super_wait(rdev->mddev);
1328         return num_sectors;
1329 }
1330
1331 static int
1332 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1333 {
1334         /* non-zero offset changes not possible with v0.90 */
1335         return new_offset == 0;
1336 }
1337
1338 /*
1339  * version 1 superblock
1340  */
1341
1342 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1343 {
1344         __le32 disk_csum;
1345         u32 csum;
1346         unsigned long long newcsum;
1347         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1348         __le32 *isuper = (__le32*)sb;
1349
1350         disk_csum = sb->sb_csum;
1351         sb->sb_csum = 0;
1352         newcsum = 0;
1353         for (; size >= 4; size -= 4)
1354                 newcsum += le32_to_cpu(*isuper++);
1355
1356         if (size == 2)
1357                 newcsum += le16_to_cpu(*(__le16*) isuper);
1358
1359         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1360         sb->sb_csum = disk_csum;
1361         return cpu_to_le32(csum);
1362 }
1363
1364 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1365                             int acknowledged);
1366 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1367 {
1368         struct mdp_superblock_1 *sb;
1369         int ret;
1370         sector_t sb_start;
1371         sector_t sectors;
1372         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1373         int bmask;
1374
1375         /*
1376          * Calculate the position of the superblock in 512byte sectors.
1377          * It is always aligned to a 4K boundary and
1378          * depeding on minor_version, it can be:
1379          * 0: At least 8K, but less than 12K, from end of device
1380          * 1: At start of device
1381          * 2: 4K from start of device.
1382          */
1383         switch(minor_version) {
1384         case 0:
1385                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1386                 sb_start -= 8*2;
1387                 sb_start &= ~(sector_t)(4*2-1);
1388                 break;
1389         case 1:
1390                 sb_start = 0;
1391                 break;
1392         case 2:
1393                 sb_start = 8;
1394                 break;
1395         default:
1396                 return -EINVAL;
1397         }
1398         rdev->sb_start = sb_start;
1399
1400         /* superblock is rarely larger than 1K, but it can be larger,
1401          * and it is safe to read 4k, so we do that
1402          */
1403         ret = read_disk_sb(rdev, 4096);
1404         if (ret) return ret;
1405
1406         sb = page_address(rdev->sb_page);
1407
1408         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1409             sb->major_version != cpu_to_le32(1) ||
1410             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1411             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1412             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1413                 return -EINVAL;
1414
1415         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1416                 printk("md: invalid superblock checksum on %s\n",
1417                         bdevname(rdev->bdev,b));
1418                 return -EINVAL;
1419         }
1420         if (le64_to_cpu(sb->data_size) < 10) {
1421                 printk("md: data_size too small on %s\n",
1422                        bdevname(rdev->bdev,b));
1423                 return -EINVAL;
1424         }
1425         if (sb->pad0 ||
1426             sb->pad3[0] ||
1427             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1428                 /* Some padding is non-zero, might be a new feature */
1429                 return -EINVAL;
1430
1431         rdev->preferred_minor = 0xffff;
1432         rdev->data_offset = le64_to_cpu(sb->data_offset);
1433         rdev->new_data_offset = rdev->data_offset;
1434         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1435             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1436                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1437         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1438
1439         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1440         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1441         if (rdev->sb_size & bmask)
1442                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1443
1444         if (minor_version
1445             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1446                 return -EINVAL;
1447         if (minor_version
1448             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1449                 return -EINVAL;
1450
1451         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1452                 rdev->desc_nr = -1;
1453         else
1454                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1455
1456         if (!rdev->bb_page) {
1457                 rdev->bb_page = alloc_page(GFP_KERNEL);
1458                 if (!rdev->bb_page)
1459                         return -ENOMEM;
1460         }
1461         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1462             rdev->badblocks.count == 0) {
1463                 /* need to load the bad block list.
1464                  * Currently we limit it to one page.
1465                  */
1466                 s32 offset;
1467                 sector_t bb_sector;
1468                 u64 *bbp;
1469                 int i;
1470                 int sectors = le16_to_cpu(sb->bblog_size);
1471                 if (sectors > (PAGE_SIZE / 512))
1472                         return -EINVAL;
1473                 offset = le32_to_cpu(sb->bblog_offset);
1474                 if (offset == 0)
1475                         return -EINVAL;
1476                 bb_sector = (long long)offset;
1477                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1478                                   rdev->bb_page, READ, true))
1479                         return -EIO;
1480                 bbp = (u64 *)page_address(rdev->bb_page);
1481                 rdev->badblocks.shift = sb->bblog_shift;
1482                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1483                         u64 bb = le64_to_cpu(*bbp);
1484                         int count = bb & (0x3ff);
1485                         u64 sector = bb >> 10;
1486                         sector <<= sb->bblog_shift;
1487                         count <<= sb->bblog_shift;
1488                         if (bb + 1 == 0)
1489                                 break;
1490                         if (md_set_badblocks(&rdev->badblocks,
1491                                              sector, count, 1) == 0)
1492                                 return -EINVAL;
1493                 }
1494         } else if (sb->bblog_offset != 0)
1495                 rdev->badblocks.shift = 0;
1496
1497         if (!refdev) {
1498                 ret = 1;
1499         } else {
1500                 __u64 ev1, ev2;
1501                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1502
1503                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1504                     sb->level != refsb->level ||
1505                     sb->layout != refsb->layout ||
1506                     sb->chunksize != refsb->chunksize) {
1507                         printk(KERN_WARNING "md: %s has strangely different"
1508                                 " superblock to %s\n",
1509                                 bdevname(rdev->bdev,b),
1510                                 bdevname(refdev->bdev,b2));
1511                         return -EINVAL;
1512                 }
1513                 ev1 = le64_to_cpu(sb->events);
1514                 ev2 = le64_to_cpu(refsb->events);
1515
1516                 if (ev1 > ev2)
1517                         ret = 1;
1518                 else
1519                         ret = 0;
1520         }
1521         if (minor_version) {
1522                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1523                 sectors -= rdev->data_offset;
1524         } else
1525                 sectors = rdev->sb_start;
1526         if (sectors < le64_to_cpu(sb->data_size))
1527                 return -EINVAL;
1528         rdev->sectors = le64_to_cpu(sb->data_size);
1529         return ret;
1530 }
1531
1532 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1533 {
1534         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1535         __u64 ev1 = le64_to_cpu(sb->events);
1536
1537         rdev->raid_disk = -1;
1538         clear_bit(Faulty, &rdev->flags);
1539         clear_bit(In_sync, &rdev->flags);
1540         clear_bit(Bitmap_sync, &rdev->flags);
1541         clear_bit(WriteMostly, &rdev->flags);
1542
1543         if (mddev->raid_disks == 0) {
1544                 mddev->major_version = 1;
1545                 mddev->patch_version = 0;
1546                 mddev->external = 0;
1547                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1548                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1549                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1550                 mddev->level = le32_to_cpu(sb->level);
1551                 mddev->clevel[0] = 0;
1552                 mddev->layout = le32_to_cpu(sb->layout);
1553                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1554                 mddev->dev_sectors = le64_to_cpu(sb->size);
1555                 mddev->events = ev1;
1556                 mddev->bitmap_info.offset = 0;
1557                 mddev->bitmap_info.space = 0;
1558                 /* Default location for bitmap is 1K after superblock
1559                  * using 3K - total of 4K
1560                  */
1561                 mddev->bitmap_info.default_offset = 1024 >> 9;
1562                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1563                 mddev->reshape_backwards = 0;
1564
1565                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1566                 memcpy(mddev->uuid, sb->set_uuid, 16);
1567
1568                 mddev->max_disks =  (4096-256)/2;
1569
1570                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1571                     mddev->bitmap_info.file == NULL) {
1572                         mddev->bitmap_info.offset =
1573                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1574                         /* Metadata doesn't record how much space is available.
1575                          * For 1.0, we assume we can use up to the superblock
1576                          * if before, else to 4K beyond superblock.
1577                          * For others, assume no change is possible.
1578                          */
1579                         if (mddev->minor_version > 0)
1580                                 mddev->bitmap_info.space = 0;
1581                         else if (mddev->bitmap_info.offset > 0)
1582                                 mddev->bitmap_info.space =
1583                                         8 - mddev->bitmap_info.offset;
1584                         else
1585                                 mddev->bitmap_info.space =
1586                                         -mddev->bitmap_info.offset;
1587                 }
1588
1589                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1590                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1591                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1592                         mddev->new_level = le32_to_cpu(sb->new_level);
1593                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1594                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1595                         if (mddev->delta_disks < 0 ||
1596                             (mddev->delta_disks == 0 &&
1597                              (le32_to_cpu(sb->feature_map)
1598                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1599                                 mddev->reshape_backwards = 1;
1600                 } else {
1601                         mddev->reshape_position = MaxSector;
1602                         mddev->delta_disks = 0;
1603                         mddev->new_level = mddev->level;
1604                         mddev->new_layout = mddev->layout;
1605                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1606                 }
1607
1608         } else if (mddev->pers == NULL) {
1609                 /* Insist of good event counter while assembling, except for
1610                  * spares (which don't need an event count) */
1611                 ++ev1;
1612                 if (rdev->desc_nr >= 0 &&
1613                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614                     (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615                      le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616                         if (ev1 < mddev->events)
1617                                 return -EINVAL;
1618         } else if (mddev->bitmap) {
1619                 /* If adding to array with a bitmap, then we can accept an
1620                  * older device, but not too old.
1621                  */
1622                 if (ev1 < mddev->bitmap->events_cleared)
1623                         return 0;
1624                 if (ev1 < mddev->events)
1625                         set_bit(Bitmap_sync, &rdev->flags);
1626         } else {
1627                 if (ev1 < mddev->events)
1628                         /* just a hot-add of a new device, leave raid_disk at -1 */
1629                         return 0;
1630         }
1631         if (mddev->level != LEVEL_MULTIPATH) {
1632                 int role;
1633                 if (rdev->desc_nr < 0 ||
1634                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635                         role = MD_DISK_ROLE_SPARE;
1636                         rdev->desc_nr = -1;
1637                 } else
1638                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639                 switch(role) {
1640                 case MD_DISK_ROLE_SPARE: /* spare */
1641                         break;
1642                 case MD_DISK_ROLE_FAULTY: /* faulty */
1643                         set_bit(Faulty, &rdev->flags);
1644                         break;
1645                 case MD_DISK_ROLE_JOURNAL: /* journal device */
1646                         if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647                                 /* journal device without journal feature */
1648                                 printk(KERN_WARNING
1649                                   "md: journal device provided without journal feature, ignoring the device\n");
1650                                 return -EINVAL;
1651                         }
1652                         set_bit(Journal, &rdev->flags);
1653                         rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654                         if (mddev->recovery_cp == MaxSector)
1655                                 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1656                         rdev->raid_disk = 0;
1657                         break;
1658                 default:
1659                         rdev->saved_raid_disk = role;
1660                         if ((le32_to_cpu(sb->feature_map) &
1661                              MD_FEATURE_RECOVERY_OFFSET)) {
1662                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1663                                 if (!(le32_to_cpu(sb->feature_map) &
1664                                       MD_FEATURE_RECOVERY_BITMAP))
1665                                         rdev->saved_raid_disk = -1;
1666                         } else
1667                                 set_bit(In_sync, &rdev->flags);
1668                         rdev->raid_disk = role;
1669                         break;
1670                 }
1671                 if (sb->devflags & WriteMostly1)
1672                         set_bit(WriteMostly, &rdev->flags);
1673                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1674                         set_bit(Replacement, &rdev->flags);
1675                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1676                         set_bit(MD_HAS_JOURNAL, &mddev->flags);
1677         } else /* MULTIPATH are always insync */
1678                 set_bit(In_sync, &rdev->flags);
1679
1680         return 0;
1681 }
1682
1683 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1684 {
1685         struct mdp_superblock_1 *sb;
1686         struct md_rdev *rdev2;
1687         int max_dev, i;
1688         /* make rdev->sb match mddev and rdev data. */
1689
1690         sb = page_address(rdev->sb_page);
1691
1692         sb->feature_map = 0;
1693         sb->pad0 = 0;
1694         sb->recovery_offset = cpu_to_le64(0);
1695         memset(sb->pad3, 0, sizeof(sb->pad3));
1696
1697         sb->utime = cpu_to_le64((__u64)mddev->utime);
1698         sb->events = cpu_to_le64(mddev->events);
1699         if (mddev->in_sync)
1700                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1701         else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1702                 sb->resync_offset = cpu_to_le64(MaxSector);
1703         else
1704                 sb->resync_offset = cpu_to_le64(0);
1705
1706         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1707
1708         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1709         sb->size = cpu_to_le64(mddev->dev_sectors);
1710         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1711         sb->level = cpu_to_le32(mddev->level);
1712         sb->layout = cpu_to_le32(mddev->layout);
1713
1714         if (test_bit(WriteMostly, &rdev->flags))
1715                 sb->devflags |= WriteMostly1;
1716         else
1717                 sb->devflags &= ~WriteMostly1;
1718         sb->data_offset = cpu_to_le64(rdev->data_offset);
1719         sb->data_size = cpu_to_le64(rdev->sectors);
1720
1721         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1722                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1723                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1724         }
1725
1726         if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1727             !test_bit(In_sync, &rdev->flags)) {
1728                 sb->feature_map |=
1729                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1730                 sb->recovery_offset =
1731                         cpu_to_le64(rdev->recovery_offset);
1732                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1733                         sb->feature_map |=
1734                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1735         }
1736         /* Note: recovery_offset and journal_tail share space  */
1737         if (test_bit(Journal, &rdev->flags))
1738                 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1739         if (test_bit(Replacement, &rdev->flags))
1740                 sb->feature_map |=
1741                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1742
1743         if (mddev->reshape_position != MaxSector) {
1744                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1745                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1746                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1747                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1748                 sb->new_level = cpu_to_le32(mddev->new_level);
1749                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1750                 if (mddev->delta_disks == 0 &&
1751                     mddev->reshape_backwards)
1752                         sb->feature_map
1753                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1754                 if (rdev->new_data_offset != rdev->data_offset) {
1755                         sb->feature_map
1756                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1757                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1758                                                              - rdev->data_offset));
1759                 }
1760         }
1761
1762         if (mddev_is_clustered(mddev))
1763                 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1764
1765         if (rdev->badblocks.count == 0)
1766                 /* Nothing to do for bad blocks*/ ;
1767         else if (sb->bblog_offset == 0)
1768                 /* Cannot record bad blocks on this device */
1769                 md_error(mddev, rdev);
1770         else {
1771                 struct badblocks *bb = &rdev->badblocks;
1772                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1773                 u64 *p = bb->page;
1774                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1775                 if (bb->changed) {
1776                         unsigned seq;
1777
1778 retry:
1779                         seq = read_seqbegin(&bb->lock);
1780
1781                         memset(bbp, 0xff, PAGE_SIZE);
1782
1783                         for (i = 0 ; i < bb->count ; i++) {
1784                                 u64 internal_bb = p[i];
1785                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1786                                                 | BB_LEN(internal_bb));
1787                                 bbp[i] = cpu_to_le64(store_bb);
1788                         }
1789                         bb->changed = 0;
1790                         if (read_seqretry(&bb->lock, seq))
1791                                 goto retry;
1792
1793                         bb->sector = (rdev->sb_start +
1794                                       (int)le32_to_cpu(sb->bblog_offset));
1795                         bb->size = le16_to_cpu(sb->bblog_size);
1796                 }
1797         }
1798
1799         max_dev = 0;
1800         rdev_for_each(rdev2, mddev)
1801                 if (rdev2->desc_nr+1 > max_dev)
1802                         max_dev = rdev2->desc_nr+1;
1803
1804         if (max_dev > le32_to_cpu(sb->max_dev)) {
1805                 int bmask;
1806                 sb->max_dev = cpu_to_le32(max_dev);
1807                 rdev->sb_size = max_dev * 2 + 256;
1808                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1809                 if (rdev->sb_size & bmask)
1810                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1811         } else
1812                 max_dev = le32_to_cpu(sb->max_dev);
1813
1814         for (i=0; i<max_dev;i++)
1815                 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1816
1817         if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1818                 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1819
1820         rdev_for_each(rdev2, mddev) {
1821                 i = rdev2->desc_nr;
1822                 if (test_bit(Faulty, &rdev2->flags))
1823                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1824                 else if (test_bit(In_sync, &rdev2->flags))
1825                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826                 else if (test_bit(Journal, &rdev2->flags))
1827                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1828                 else if (rdev2->raid_disk >= 0)
1829                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1830                 else
1831                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1832         }
1833
1834         sb->sb_csum = calc_sb_1_csum(sb);
1835 }
1836
1837 static unsigned long long
1838 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1839 {
1840         struct mdp_superblock_1 *sb;
1841         sector_t max_sectors;
1842         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1843                 return 0; /* component must fit device */
1844         if (rdev->data_offset != rdev->new_data_offset)
1845                 return 0; /* too confusing */
1846         if (rdev->sb_start < rdev->data_offset) {
1847                 /* minor versions 1 and 2; superblock before data */
1848                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1849                 max_sectors -= rdev->data_offset;
1850                 if (!num_sectors || num_sectors > max_sectors)
1851                         num_sectors = max_sectors;
1852         } else if (rdev->mddev->bitmap_info.offset) {
1853                 /* minor version 0 with bitmap we can't move */
1854                 return 0;
1855         } else {
1856                 /* minor version 0; superblock after data */
1857                 sector_t sb_start;
1858                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1859                 sb_start &= ~(sector_t)(4*2 - 1);
1860                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1861                 if (!num_sectors || num_sectors > max_sectors)
1862                         num_sectors = max_sectors;
1863                 rdev->sb_start = sb_start;
1864         }
1865         sb = page_address(rdev->sb_page);
1866         sb->data_size = cpu_to_le64(num_sectors);
1867         sb->super_offset = rdev->sb_start;
1868         sb->sb_csum = calc_sb_1_csum(sb);
1869         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1870                        rdev->sb_page);
1871         md_super_wait(rdev->mddev);
1872         return num_sectors;
1873
1874 }
1875
1876 static int
1877 super_1_allow_new_offset(struct md_rdev *rdev,
1878                          unsigned long long new_offset)
1879 {
1880         /* All necessary checks on new >= old have been done */
1881         struct bitmap *bitmap;
1882         if (new_offset >= rdev->data_offset)
1883                 return 1;
1884
1885         /* with 1.0 metadata, there is no metadata to tread on
1886          * so we can always move back */
1887         if (rdev->mddev->minor_version == 0)
1888                 return 1;
1889
1890         /* otherwise we must be sure not to step on
1891          * any metadata, so stay:
1892          * 36K beyond start of superblock
1893          * beyond end of badblocks
1894          * beyond write-intent bitmap
1895          */
1896         if (rdev->sb_start + (32+4)*2 > new_offset)
1897                 return 0;
1898         bitmap = rdev->mddev->bitmap;
1899         if (bitmap && !rdev->mddev->bitmap_info.file &&
1900             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1901             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1902                 return 0;
1903         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1904                 return 0;
1905
1906         return 1;
1907 }
1908
1909 static struct super_type super_types[] = {
1910         [0] = {
1911                 .name   = "0.90.0",
1912                 .owner  = THIS_MODULE,
1913                 .load_super         = super_90_load,
1914                 .validate_super     = super_90_validate,
1915                 .sync_super         = super_90_sync,
1916                 .rdev_size_change   = super_90_rdev_size_change,
1917                 .allow_new_offset   = super_90_allow_new_offset,
1918         },
1919         [1] = {
1920                 .name   = "md-1",
1921                 .owner  = THIS_MODULE,
1922                 .load_super         = super_1_load,
1923                 .validate_super     = super_1_validate,
1924                 .sync_super         = super_1_sync,
1925                 .rdev_size_change   = super_1_rdev_size_change,
1926                 .allow_new_offset   = super_1_allow_new_offset,
1927         },
1928 };
1929
1930 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1931 {
1932         if (mddev->sync_super) {
1933                 mddev->sync_super(mddev, rdev);
1934                 return;
1935         }
1936
1937         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1938
1939         super_types[mddev->major_version].sync_super(mddev, rdev);
1940 }
1941
1942 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1943 {
1944         struct md_rdev *rdev, *rdev2;
1945
1946         rcu_read_lock();
1947         rdev_for_each_rcu(rdev, mddev1) {
1948                 if (test_bit(Faulty, &rdev->flags) ||
1949                     test_bit(Journal, &rdev->flags) ||
1950                     rdev->raid_disk == -1)
1951                         continue;
1952                 rdev_for_each_rcu(rdev2, mddev2) {
1953                         if (test_bit(Faulty, &rdev2->flags) ||
1954                             test_bit(Journal, &rdev2->flags) ||
1955                             rdev2->raid_disk == -1)
1956                                 continue;
1957                         if (rdev->bdev->bd_contains ==
1958                             rdev2->bdev->bd_contains) {
1959                                 rcu_read_unlock();
1960                                 return 1;
1961                         }
1962                 }
1963         }
1964         rcu_read_unlock();
1965         return 0;
1966 }
1967
1968 static LIST_HEAD(pending_raid_disks);
1969
1970 /*
1971  * Try to register data integrity profile for an mddev
1972  *
1973  * This is called when an array is started and after a disk has been kicked
1974  * from the array. It only succeeds if all working and active component devices
1975  * are integrity capable with matching profiles.
1976  */
1977 int md_integrity_register(struct mddev *mddev)
1978 {
1979         struct md_rdev *rdev, *reference = NULL;
1980
1981         if (list_empty(&mddev->disks))
1982                 return 0; /* nothing to do */
1983         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1984                 return 0; /* shouldn't register, or already is */
1985         rdev_for_each(rdev, mddev) {
1986                 /* skip spares and non-functional disks */
1987                 if (test_bit(Faulty, &rdev->flags))
1988                         continue;
1989                 if (rdev->raid_disk < 0)
1990                         continue;
1991                 if (!reference) {
1992                         /* Use the first rdev as the reference */
1993                         reference = rdev;
1994                         continue;
1995                 }
1996                 /* does this rdev's profile match the reference profile? */
1997                 if (blk_integrity_compare(reference->bdev->bd_disk,
1998                                 rdev->bdev->bd_disk) < 0)
1999                         return -EINVAL;
2000         }
2001         if (!reference || !bdev_get_integrity(reference->bdev))
2002                 return 0;
2003         /*
2004          * All component devices are integrity capable and have matching
2005          * profiles, register the common profile for the md device.
2006          */
2007         blk_integrity_register(mddev->gendisk,
2008                                bdev_get_integrity(reference->bdev));
2009
2010         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2011         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2012                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2013                        mdname(mddev));
2014                 return -EINVAL;
2015         }
2016         return 0;
2017 }
2018 EXPORT_SYMBOL(md_integrity_register);
2019
2020 /* Disable data integrity if non-capable/non-matching disk is being added */
2021 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2022 {
2023         struct blk_integrity *bi_rdev;
2024         struct blk_integrity *bi_mddev;
2025
2026         if (!mddev->gendisk)
2027                 return;
2028
2029         bi_rdev = bdev_get_integrity(rdev->bdev);
2030         bi_mddev = blk_get_integrity(mddev->gendisk);
2031
2032         if (!bi_mddev) /* nothing to do */
2033                 return;
2034         if (rdev->raid_disk < 0) /* skip spares */
2035                 return;
2036         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2037                                              rdev->bdev->bd_disk) >= 0)
2038                 return;
2039         WARN_ON_ONCE(!mddev->suspended);
2040         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2041         blk_integrity_unregister(mddev->gendisk);
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047         char b[BDEVNAME_SIZE];
2048         struct kobject *ko;
2049         int err;
2050
2051         /* prevent duplicates */
2052         if (find_rdev(mddev, rdev->bdev->bd_dev))
2053                 return -EEXIST;
2054
2055         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2056         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2057                         rdev->sectors < mddev->dev_sectors)) {
2058                 if (mddev->pers) {
2059                         /* Cannot change size, so fail
2060                          * If mddev->level <= 0, then we don't care
2061                          * about aligning sizes (e.g. linear)
2062                          */
2063                         if (mddev->level > 0)
2064                                 return -ENOSPC;
2065                 } else
2066                         mddev->dev_sectors = rdev->sectors;
2067         }
2068
2069         /* Verify rdev->desc_nr is unique.
2070          * If it is -1, assign a free number, else
2071          * check number is not in use
2072          */
2073         rcu_read_lock();
2074         if (rdev->desc_nr < 0) {
2075                 int choice = 0;
2076                 if (mddev->pers)
2077                         choice = mddev->raid_disks;
2078                 while (md_find_rdev_nr_rcu(mddev, choice))
2079                         choice++;
2080                 rdev->desc_nr = choice;
2081         } else {
2082                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2083                         rcu_read_unlock();
2084                         return -EBUSY;
2085                 }
2086         }
2087         rcu_read_unlock();
2088         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2089                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2090                        mdname(mddev), mddev->max_disks);
2091                 return -EBUSY;
2092         }
2093         bdevname(rdev->bdev,b);
2094         strreplace(b, '/', '!');
2095
2096         rdev->mddev = mddev;
2097         printk(KERN_INFO "md: bind<%s>\n", b);
2098
2099         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2100                 goto fail;
2101
2102         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2103         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2104                 /* failure here is OK */;
2105         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2106
2107         list_add_rcu(&rdev->same_set, &mddev->disks);
2108         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2109
2110         /* May as well allow recovery to be retried once */
2111         mddev->recovery_disabled++;
2112
2113         return 0;
2114
2115  fail:
2116         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2117                b, mdname(mddev));
2118         return err;
2119 }
2120
2121 static void md_delayed_delete(struct work_struct *ws)
2122 {
2123         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2124         kobject_del(&rdev->kobj);
2125         kobject_put(&rdev->kobj);
2126 }
2127
2128 static void unbind_rdev_from_array(struct md_rdev *rdev)
2129 {
2130         char b[BDEVNAME_SIZE];
2131
2132         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2133         list_del_rcu(&rdev->same_set);
2134         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2135         rdev->mddev = NULL;
2136         sysfs_remove_link(&rdev->kobj, "block");
2137         sysfs_put(rdev->sysfs_state);
2138         rdev->sysfs_state = NULL;
2139         rdev->badblocks.count = 0;
2140         /* We need to delay this, otherwise we can deadlock when
2141          * writing to 'remove' to "dev/state".  We also need
2142          * to delay it due to rcu usage.
2143          */
2144         synchronize_rcu();
2145         INIT_WORK(&rdev->del_work, md_delayed_delete);
2146         kobject_get(&rdev->kobj);
2147         queue_work(md_misc_wq, &rdev->del_work);
2148 }
2149
2150 /*
2151  * prevent the device from being mounted, repartitioned or
2152  * otherwise reused by a RAID array (or any other kernel
2153  * subsystem), by bd_claiming the device.
2154  */
2155 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2156 {
2157         int err = 0;
2158         struct block_device *bdev;
2159         char b[BDEVNAME_SIZE];
2160
2161         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2162                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2163         if (IS_ERR(bdev)) {
2164                 printk(KERN_ERR "md: could not open %s.\n",
2165                         __bdevname(dev, b));
2166                 return PTR_ERR(bdev);
2167         }
2168         rdev->bdev = bdev;
2169         return err;
2170 }
2171
2172 static void unlock_rdev(struct md_rdev *rdev)
2173 {
2174         struct block_device *bdev = rdev->bdev;
2175         rdev->bdev = NULL;
2176         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2177 }
2178
2179 void md_autodetect_dev(dev_t dev);
2180
2181 static void export_rdev(struct md_rdev *rdev)
2182 {
2183         char b[BDEVNAME_SIZE];
2184
2185         printk(KERN_INFO "md: export_rdev(%s)\n",
2186                 bdevname(rdev->bdev,b));
2187         md_rdev_clear(rdev);
2188 #ifndef MODULE
2189         if (test_bit(AutoDetected, &rdev->flags))
2190                 md_autodetect_dev(rdev->bdev->bd_dev);
2191 #endif
2192         unlock_rdev(rdev);
2193         kobject_put(&rdev->kobj);
2194 }
2195
2196 void md_kick_rdev_from_array(struct md_rdev *rdev)
2197 {
2198         unbind_rdev_from_array(rdev);
2199         export_rdev(rdev);
2200 }
2201 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2202
2203 static void export_array(struct mddev *mddev)
2204 {
2205         struct md_rdev *rdev;
2206
2207         while (!list_empty(&mddev->disks)) {
2208                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2209                                         same_set);
2210                 md_kick_rdev_from_array(rdev);
2211         }
2212         mddev->raid_disks = 0;
2213         mddev->major_version = 0;
2214 }
2215
2216 static void sync_sbs(struct mddev *mddev, int nospares)
2217 {
2218         /* Update each superblock (in-memory image), but
2219          * if we are allowed to, skip spares which already
2220          * have the right event counter, or have one earlier
2221          * (which would mean they aren't being marked as dirty
2222          * with the rest of the array)
2223          */
2224         struct md_rdev *rdev;
2225         rdev_for_each(rdev, mddev) {
2226                 if (rdev->sb_events == mddev->events ||
2227                     (nospares &&
2228                      rdev->raid_disk < 0 &&
2229                      rdev->sb_events+1 == mddev->events)) {
2230                         /* Don't update this superblock */
2231                         rdev->sb_loaded = 2;
2232                 } else {
2233                         sync_super(mddev, rdev);
2234                         rdev->sb_loaded = 1;
2235                 }
2236         }
2237 }
2238
2239 static bool does_sb_need_changing(struct mddev *mddev)
2240 {
2241         struct md_rdev *rdev;
2242         struct mdp_superblock_1 *sb;
2243         int role;
2244
2245         /* Find a good rdev */
2246         rdev_for_each(rdev, mddev)
2247                 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2248                         break;
2249
2250         /* No good device found. */
2251         if (!rdev)
2252                 return false;
2253
2254         sb = page_address(rdev->sb_page);
2255         /* Check if a device has become faulty or a spare become active */
2256         rdev_for_each(rdev, mddev) {
2257                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2258                 /* Device activated? */
2259                 if (role == 0xffff && rdev->raid_disk >=0 &&
2260                     !test_bit(Faulty, &rdev->flags))
2261                         return true;
2262                 /* Device turned faulty? */
2263                 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2264                         return true;
2265         }
2266
2267         /* Check if any mddev parameters have changed */
2268         if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2269             (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2270             (mddev->layout != le64_to_cpu(sb->layout)) ||
2271             (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2272             (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2273                 return true;
2274
2275         return false;
2276 }
2277
2278 void md_update_sb(struct mddev *mddev, int force_change)
2279 {
2280         struct md_rdev *rdev;
2281         int sync_req;
2282         int nospares = 0;
2283         int any_badblocks_changed = 0;
2284         int ret = -1;
2285
2286         if (mddev->ro) {
2287                 if (force_change)
2288                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2289                 return;
2290         }
2291
2292         if (mddev_is_clustered(mddev)) {
2293                 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2294                         force_change = 1;
2295                 ret = md_cluster_ops->metadata_update_start(mddev);
2296                 /* Has someone else has updated the sb */
2297                 if (!does_sb_need_changing(mddev)) {
2298                         if (ret == 0)
2299                                 md_cluster_ops->metadata_update_cancel(mddev);
2300                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2301                         return;
2302                 }
2303         }
2304 repeat:
2305         /* First make sure individual recovery_offsets are correct */
2306         rdev_for_each(rdev, mddev) {
2307                 if (rdev->raid_disk >= 0 &&
2308                     mddev->delta_disks >= 0 &&
2309                     !test_bit(Journal, &rdev->flags) &&
2310                     !test_bit(In_sync, &rdev->flags) &&
2311                     mddev->curr_resync_completed > rdev->recovery_offset)
2312                                 rdev->recovery_offset = mddev->curr_resync_completed;
2313
2314         }
2315         if (!mddev->persistent) {
2316                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2317                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2318                 if (!mddev->external) {
2319                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2320                         rdev_for_each(rdev, mddev) {
2321                                 if (rdev->badblocks.changed) {
2322                                         rdev->badblocks.changed = 0;
2323                                         md_ack_all_badblocks(&rdev->badblocks);
2324                                         md_error(mddev, rdev);
2325                                 }
2326                                 clear_bit(Blocked, &rdev->flags);
2327                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2328                                 wake_up(&rdev->blocked_wait);
2329                         }
2330                 }
2331                 wake_up(&mddev->sb_wait);
2332                 return;
2333         }
2334
2335         spin_lock(&mddev->lock);
2336
2337         mddev->utime = get_seconds();
2338
2339         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2340                 force_change = 1;
2341         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2342                 /* just a clean<-> dirty transition, possibly leave spares alone,
2343                  * though if events isn't the right even/odd, we will have to do
2344                  * spares after all
2345                  */
2346                 nospares = 1;
2347         if (force_change)
2348                 nospares = 0;
2349         if (mddev->degraded)
2350                 /* If the array is degraded, then skipping spares is both
2351                  * dangerous and fairly pointless.
2352                  * Dangerous because a device that was removed from the array
2353                  * might have a event_count that still looks up-to-date,
2354                  * so it can be re-added without a resync.
2355                  * Pointless because if there are any spares to skip,
2356                  * then a recovery will happen and soon that array won't
2357                  * be degraded any more and the spare can go back to sleep then.
2358                  */
2359                 nospares = 0;
2360
2361         sync_req = mddev->in_sync;
2362
2363         /* If this is just a dirty<->clean transition, and the array is clean
2364          * and 'events' is odd, we can roll back to the previous clean state */
2365         if (nospares
2366             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2367             && mddev->can_decrease_events
2368             && mddev->events != 1) {
2369                 mddev->events--;
2370                 mddev->can_decrease_events = 0;
2371         } else {
2372                 /* otherwise we have to go forward and ... */
2373                 mddev->events ++;
2374                 mddev->can_decrease_events = nospares;
2375         }
2376
2377         /*
2378          * This 64-bit counter should never wrap.
2379          * Either we are in around ~1 trillion A.C., assuming
2380          * 1 reboot per second, or we have a bug...
2381          */
2382         WARN_ON(mddev->events == 0);
2383
2384         rdev_for_each(rdev, mddev) {
2385                 if (rdev->badblocks.changed)
2386                         any_badblocks_changed++;
2387                 if (test_bit(Faulty, &rdev->flags))
2388                         set_bit(FaultRecorded, &rdev->flags);
2389         }
2390
2391         sync_sbs(mddev, nospares);
2392         spin_unlock(&mddev->lock);
2393
2394         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2395                  mdname(mddev), mddev->in_sync);
2396
2397         bitmap_update_sb(mddev->bitmap);
2398         rdev_for_each(rdev, mddev) {
2399                 char b[BDEVNAME_SIZE];
2400
2401                 if (rdev->sb_loaded != 1)
2402                         continue; /* no noise on spare devices */
2403
2404                 if (!test_bit(Faulty, &rdev->flags)) {
2405                         md_super_write(mddev,rdev,
2406                                        rdev->sb_start, rdev->sb_size,
2407                                        rdev->sb_page);
2408                         pr_debug("md: (write) %s's sb offset: %llu\n",
2409                                  bdevname(rdev->bdev, b),
2410                                  (unsigned long long)rdev->sb_start);
2411                         rdev->sb_events = mddev->events;
2412                         if (rdev->badblocks.size) {
2413                                 md_super_write(mddev, rdev,
2414                                                rdev->badblocks.sector,
2415                                                rdev->badblocks.size << 9,
2416                                                rdev->bb_page);
2417                                 rdev->badblocks.size = 0;
2418                         }
2419
2420                 } else
2421                         pr_debug("md: %s (skipping faulty)\n",
2422                                  bdevname(rdev->bdev, b));
2423
2424                 if (mddev->level == LEVEL_MULTIPATH)
2425                         /* only need to write one superblock... */
2426                         break;
2427         }
2428         md_super_wait(mddev);
2429         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2430
2431         spin_lock(&mddev->lock);
2432         if (mddev->in_sync != sync_req ||
2433             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2434                 /* have to write it out again */
2435                 spin_unlock(&mddev->lock);
2436                 goto repeat;
2437         }
2438         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2439         spin_unlock(&mddev->lock);
2440         wake_up(&mddev->sb_wait);
2441         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2442                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2443
2444         rdev_for_each(rdev, mddev) {
2445                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2446                         clear_bit(Blocked, &rdev->flags);
2447
2448                 if (any_badblocks_changed)
2449                         md_ack_all_badblocks(&rdev->badblocks);
2450                 clear_bit(BlockedBadBlocks, &rdev->flags);
2451                 wake_up(&rdev->blocked_wait);
2452         }
2453
2454         if (mddev_is_clustered(mddev) && ret == 0)
2455                 md_cluster_ops->metadata_update_finish(mddev);
2456 }
2457 EXPORT_SYMBOL(md_update_sb);
2458
2459 static int add_bound_rdev(struct md_rdev *rdev)
2460 {
2461         struct mddev *mddev = rdev->mddev;
2462         int err = 0;
2463
2464         if (!mddev->pers->hot_remove_disk) {
2465                 /* If there is hot_add_disk but no hot_remove_disk
2466                  * then added disks for geometry changes,
2467                  * and should be added immediately.
2468                  */
2469                 super_types[mddev->major_version].
2470                         validate_super(mddev, rdev);
2471                 err = mddev->pers->hot_add_disk(mddev, rdev);
2472                 if (err) {
2473                         unbind_rdev_from_array(rdev);
2474                         export_rdev(rdev);
2475                         return err;
2476                 }
2477         }
2478         sysfs_notify_dirent_safe(rdev->sysfs_state);
2479
2480         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2481         if (mddev->degraded)
2482                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2483         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2484         md_new_event(mddev);
2485         md_wakeup_thread(mddev->thread);
2486         return 0;
2487 }
2488
2489 /* words written to sysfs files may, or may not, be \n terminated.
2490  * We want to accept with case. For this we use cmd_match.
2491  */
2492 static int cmd_match(const char *cmd, const char *str)
2493 {
2494         /* See if cmd, written into a sysfs file, matches
2495          * str.  They must either be the same, or cmd can
2496          * have a trailing newline
2497          */
2498         while (*cmd && *str && *cmd == *str) {
2499                 cmd++;
2500                 str++;
2501         }
2502         if (*cmd == '\n')
2503                 cmd++;
2504         if (*str || *cmd)
2505                 return 0;
2506         return 1;
2507 }
2508
2509 struct rdev_sysfs_entry {
2510         struct attribute attr;
2511         ssize_t (*show)(struct md_rdev *, char *);
2512         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2513 };
2514
2515 static ssize_t
2516 state_show(struct md_rdev *rdev, char *page)
2517 {
2518         char *sep = "";
2519         size_t len = 0;
2520         unsigned long flags = ACCESS_ONCE(rdev->flags);
2521
2522         if (test_bit(Faulty, &flags) ||
2523             rdev->badblocks.unacked_exist) {
2524                 len+= sprintf(page+len, "%sfaulty",sep);
2525                 sep = ",";
2526         }
2527         if (test_bit(In_sync, &flags)) {
2528                 len += sprintf(page+len, "%sin_sync",sep);
2529                 sep = ",";
2530         }
2531         if (test_bit(Journal, &flags)) {
2532                 len += sprintf(page+len, "%sjournal",sep);
2533                 sep = ",";
2534         }
2535         if (test_bit(WriteMostly, &flags)) {
2536                 len += sprintf(page+len, "%swrite_mostly",sep);
2537                 sep = ",";
2538         }
2539         if (test_bit(Blocked, &flags) ||
2540             (rdev->badblocks.unacked_exist
2541              && !test_bit(Faulty, &flags))) {
2542                 len += sprintf(page+len, "%sblocked", sep);
2543                 sep = ",";
2544         }
2545         if (!test_bit(Faulty, &flags) &&
2546             !test_bit(Journal, &flags) &&
2547             !test_bit(In_sync, &flags)) {
2548                 len += sprintf(page+len, "%sspare", sep);
2549                 sep = ",";
2550         }
2551         if (test_bit(WriteErrorSeen, &flags)) {
2552                 len += sprintf(page+len, "%swrite_error", sep);
2553                 sep = ",";
2554         }
2555         if (test_bit(WantReplacement, &flags)) {
2556                 len += sprintf(page+len, "%swant_replacement", sep);
2557                 sep = ",";
2558         }
2559         if (test_bit(Replacement, &flags)) {
2560                 len += sprintf(page+len, "%sreplacement", sep);
2561                 sep = ",";
2562         }
2563
2564         return len+sprintf(page+len, "\n");
2565 }
2566
2567 static ssize_t
2568 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2569 {
2570         /* can write
2571          *  faulty  - simulates an error
2572          *  remove  - disconnects the device
2573          *  writemostly - sets write_mostly
2574          *  -writemostly - clears write_mostly
2575          *  blocked - sets the Blocked flags
2576          *  -blocked - clears the Blocked and possibly simulates an error
2577          *  insync - sets Insync providing device isn't active
2578          *  -insync - clear Insync for a device with a slot assigned,
2579          *            so that it gets rebuilt based on bitmap
2580          *  write_error - sets WriteErrorSeen
2581          *  -write_error - clears WriteErrorSeen
2582          */
2583         int err = -EINVAL;
2584         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2585                 md_error(rdev->mddev, rdev);
2586                 if (test_bit(Faulty, &rdev->flags))
2587                         err = 0;
2588                 else
2589                         err = -EBUSY;
2590         } else if (cmd_match(buf, "remove")) {
2591                 if (rdev->raid_disk >= 0)
2592                         err = -EBUSY;
2593                 else {
2594                         struct mddev *mddev = rdev->mddev;
2595                         err = 0;
2596                         if (mddev_is_clustered(mddev))
2597                                 err = md_cluster_ops->remove_disk(mddev, rdev);
2598
2599                         if (err == 0) {
2600                                 md_kick_rdev_from_array(rdev);
2601                                 if (mddev->pers)
2602                                         md_update_sb(mddev, 1);
2603                                 md_new_event(mddev);
2604                         }
2605                 }
2606         } else if (cmd_match(buf, "writemostly")) {
2607                 set_bit(WriteMostly, &rdev->flags);
2608                 err = 0;
2609         } else if (cmd_match(buf, "-writemostly")) {
2610                 clear_bit(WriteMostly, &rdev->flags);
2611                 err = 0;
2612         } else if (cmd_match(buf, "blocked")) {
2613                 set_bit(Blocked, &rdev->flags);
2614                 err = 0;
2615         } else if (cmd_match(buf, "-blocked")) {
2616                 if (!test_bit(Faulty, &rdev->flags) &&
2617                     rdev->badblocks.unacked_exist) {
2618                         /* metadata handler doesn't understand badblocks,
2619                          * so we need to fail the device
2620                          */
2621                         md_error(rdev->mddev, rdev);
2622                 }
2623                 clear_bit(Blocked, &rdev->flags);
2624                 clear_bit(BlockedBadBlocks, &rdev->flags);
2625                 wake_up(&rdev->blocked_wait);
2626                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2627                 md_wakeup_thread(rdev->mddev->thread);
2628
2629                 err = 0;
2630         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2631                 set_bit(In_sync, &rdev->flags);
2632                 err = 0;
2633         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2634                    !test_bit(Journal, &rdev->flags)) {
2635                 if (rdev->mddev->pers == NULL) {
2636                         clear_bit(In_sync, &rdev->flags);
2637                         rdev->saved_raid_disk = rdev->raid_disk;
2638                         rdev->raid_disk = -1;
2639                         err = 0;
2640                 }
2641         } else if (cmd_match(buf, "write_error")) {
2642                 set_bit(WriteErrorSeen, &rdev->flags);
2643                 err = 0;
2644         } else if (cmd_match(buf, "-write_error")) {
2645                 clear_bit(WriteErrorSeen, &rdev->flags);
2646                 err = 0;
2647         } else if (cmd_match(buf, "want_replacement")) {
2648                 /* Any non-spare device that is not a replacement can
2649                  * become want_replacement at any time, but we then need to
2650                  * check if recovery is needed.
2651                  */
2652                 if (rdev->raid_disk >= 0 &&
2653                     !test_bit(Journal, &rdev->flags) &&
2654                     !test_bit(Replacement, &rdev->flags))
2655                         set_bit(WantReplacement, &rdev->flags);
2656                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2657                 md_wakeup_thread(rdev->mddev->thread);
2658                 err = 0;
2659         } else if (cmd_match(buf, "-want_replacement")) {
2660                 /* Clearing 'want_replacement' is always allowed.
2661                  * Once replacements starts it is too late though.
2662                  */
2663                 err = 0;
2664                 clear_bit(WantReplacement, &rdev->flags);
2665         } else if (cmd_match(buf, "replacement")) {
2666                 /* Can only set a device as a replacement when array has not
2667                  * yet been started.  Once running, replacement is automatic
2668                  * from spares, or by assigning 'slot'.
2669                  */
2670                 if (rdev->mddev->pers)
2671                         err = -EBUSY;
2672                 else {
2673                         set_bit(Replacement, &rdev->flags);
2674                         err = 0;
2675                 }
2676         } else if (cmd_match(buf, "-replacement")) {
2677                 /* Similarly, can only clear Replacement before start */
2678                 if (rdev->mddev->pers)
2679                         err = -EBUSY;
2680                 else {
2681                         clear_bit(Replacement, &rdev->flags);
2682                         err = 0;
2683                 }
2684         } else if (cmd_match(buf, "re-add")) {
2685                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2686                         /* clear_bit is performed _after_ all the devices
2687                          * have their local Faulty bit cleared. If any writes
2688                          * happen in the meantime in the local node, they
2689                          * will land in the local bitmap, which will be synced
2690                          * by this node eventually
2691                          */
2692                         if (!mddev_is_clustered(rdev->mddev) ||
2693                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2694                                 clear_bit(Faulty, &rdev->flags);
2695                                 err = add_bound_rdev(rdev);
2696                         }
2697                 } else
2698                         err = -EBUSY;
2699         }
2700         if (!err)
2701                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2702         return err ? err : len;
2703 }
2704 static struct rdev_sysfs_entry rdev_state =
2705 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2706
2707 static ssize_t
2708 errors_show(struct md_rdev *rdev, char *page)
2709 {
2710         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2711 }
2712
2713 static ssize_t
2714 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2715 {
2716         unsigned int n;
2717         int rv;
2718
2719         rv = kstrtouint(buf, 10, &n);
2720         if (rv < 0)
2721                 return rv;
2722         atomic_set(&rdev->corrected_errors, n);
2723         return len;
2724 }
2725 static struct rdev_sysfs_entry rdev_errors =
2726 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2727
2728 static ssize_t
2729 slot_show(struct md_rdev *rdev, char *page)
2730 {
2731         if (test_bit(Journal, &rdev->flags))
2732                 return sprintf(page, "journal\n");
2733         else if (rdev->raid_disk < 0)
2734                 return sprintf(page, "none\n");
2735         else
2736                 return sprintf(page, "%d\n", rdev->raid_disk);
2737 }
2738
2739 static ssize_t
2740 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2741 {
2742         int slot;
2743         int err;
2744
2745         if (test_bit(Journal, &rdev->flags))
2746                 return -EBUSY;
2747         if (strncmp(buf, "none", 4)==0)
2748                 slot = -1;
2749         else {
2750                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2751                 if (err < 0)
2752                         return err;
2753         }
2754         if (rdev->mddev->pers && slot == -1) {
2755                 /* Setting 'slot' on an active array requires also
2756                  * updating the 'rd%d' link, and communicating
2757                  * with the personality with ->hot_*_disk.
2758                  * For now we only support removing
2759                  * failed/spare devices.  This normally happens automatically,
2760                  * but not when the metadata is externally managed.
2761                  */
2762                 if (rdev->raid_disk == -1)
2763                         return -EEXIST;
2764                 /* personality does all needed checks */
2765                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2766                         return -EINVAL;
2767                 clear_bit(Blocked, &rdev->flags);
2768                 remove_and_add_spares(rdev->mddev, rdev);
2769                 if (rdev->raid_disk >= 0)
2770                         return -EBUSY;
2771                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2772                 md_wakeup_thread(rdev->mddev->thread);
2773         } else if (rdev->mddev->pers) {
2774                 /* Activating a spare .. or possibly reactivating
2775                  * if we ever get bitmaps working here.
2776                  */
2777
2778                 if (rdev->raid_disk != -1)
2779                         return -EBUSY;
2780
2781                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2782                         return -EBUSY;
2783
2784                 if (rdev->mddev->pers->hot_add_disk == NULL)
2785                         return -EINVAL;
2786
2787                 if (slot >= rdev->mddev->raid_disks &&
2788                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2789                         return -ENOSPC;
2790
2791                 rdev->raid_disk = slot;
2792                 if (test_bit(In_sync, &rdev->flags))
2793                         rdev->saved_raid_disk = slot;
2794                 else
2795                         rdev->saved_raid_disk = -1;
2796                 clear_bit(In_sync, &rdev->flags);
2797                 clear_bit(Bitmap_sync, &rdev->flags);
2798                 remove_and_add_spares(rdev->mddev, rdev);
2799                 if (rdev->raid_disk == -1)
2800                         return -EBUSY;
2801                 /* don't wakeup anyone, leave that to userspace. */
2802         } else {
2803                 if (slot >= rdev->mddev->raid_disks &&
2804                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2805                         return -ENOSPC;
2806                 rdev->raid_disk = slot;
2807                 /* assume it is working */
2808                 clear_bit(Faulty, &rdev->flags);
2809                 clear_bit(WriteMostly, &rdev->flags);
2810                 set_bit(In_sync, &rdev->flags);
2811                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2812         }
2813         return len;
2814 }
2815
2816 static struct rdev_sysfs_entry rdev_slot =
2817 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2818
2819 static ssize_t
2820 offset_show(struct md_rdev *rdev, char *page)
2821 {
2822         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2823 }
2824
2825 static ssize_t
2826 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2827 {
2828         unsigned long long offset;
2829         if (kstrtoull(buf, 10, &offset) < 0)
2830                 return -EINVAL;
2831         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2832                 return -EBUSY;
2833         if (rdev->sectors && rdev->mddev->external)
2834                 /* Must set offset before size, so overlap checks
2835                  * can be sane */
2836                 return -EBUSY;
2837         rdev->data_offset = offset;
2838         rdev->new_data_offset = offset;
2839         return len;
2840 }
2841
2842 static struct rdev_sysfs_entry rdev_offset =
2843 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2844
2845 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2846 {
2847         return sprintf(page, "%llu\n",
2848                        (unsigned long long)rdev->new_data_offset);
2849 }
2850
2851 static ssize_t new_offset_store(struct md_rdev *rdev,
2852                                 const char *buf, size_t len)
2853 {
2854         unsigned long long new_offset;
2855         struct mddev *mddev = rdev->mddev;
2856
2857         if (kstrtoull(buf, 10, &new_offset) < 0)
2858                 return -EINVAL;
2859
2860         if (mddev->sync_thread ||
2861             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2862                 return -EBUSY;
2863         if (new_offset == rdev->data_offset)
2864                 /* reset is always permitted */
2865                 ;
2866         else if (new_offset > rdev->data_offset) {
2867                 /* must not push array size beyond rdev_sectors */
2868                 if (new_offset - rdev->data_offset
2869                     + mddev->dev_sectors > rdev->sectors)
2870                                 return -E2BIG;
2871         }
2872         /* Metadata worries about other space details. */
2873
2874         /* decreasing the offset is inconsistent with a backwards
2875          * reshape.
2876          */
2877         if (new_offset < rdev->data_offset &&
2878             mddev->reshape_backwards)
2879                 return -EINVAL;
2880         /* Increasing offset is inconsistent with forwards
2881          * reshape.  reshape_direction should be set to
2882          * 'backwards' first.
2883          */
2884         if (new_offset > rdev->data_offset &&
2885             !mddev->reshape_backwards)
2886                 return -EINVAL;
2887
2888         if (mddev->pers && mddev->persistent &&
2889             !super_types[mddev->major_version]
2890             .allow_new_offset(rdev, new_offset))
2891                 return -E2BIG;
2892         rdev->new_data_offset = new_offset;
2893         if (new_offset > rdev->data_offset)
2894                 mddev->reshape_backwards = 1;
2895         else if (new_offset < rdev->data_offset)
2896                 mddev->reshape_backwards = 0;
2897
2898         return len;
2899 }
2900 static struct rdev_sysfs_entry rdev_new_offset =
2901 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2902
2903 static ssize_t
2904 rdev_size_show(struct md_rdev *rdev, char *page)
2905 {
2906         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2907 }
2908
2909 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2910 {
2911         /* check if two start/length pairs overlap */
2912         if (s1+l1 <= s2)
2913                 return 0;
2914         if (s2+l2 <= s1)
2915                 return 0;
2916         return 1;
2917 }
2918
2919 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2920 {
2921         unsigned long long blocks;
2922         sector_t new;
2923
2924         if (kstrtoull(buf, 10, &blocks) < 0)
2925                 return -EINVAL;
2926
2927         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2928                 return -EINVAL; /* sector conversion overflow */
2929
2930         new = blocks * 2;
2931         if (new != blocks * 2)
2932                 return -EINVAL; /* unsigned long long to sector_t overflow */
2933
2934         *sectors = new;
2935         return 0;
2936 }
2937
2938 static ssize_t
2939 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2940 {
2941         struct mddev *my_mddev = rdev->mddev;
2942         sector_t oldsectors = rdev->sectors;
2943         sector_t sectors;
2944
2945         if (test_bit(Journal, &rdev->flags))
2946                 return -EBUSY;
2947         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2948                 return -EINVAL;
2949         if (rdev->data_offset != rdev->new_data_offset)
2950                 return -EINVAL; /* too confusing */
2951         if (my_mddev->pers && rdev->raid_disk >= 0) {
2952                 if (my_mddev->persistent) {
2953                         sectors = super_types[my_mddev->major_version].
2954                                 rdev_size_change(rdev, sectors);
2955                         if (!sectors)
2956                                 return -EBUSY;
2957                 } else if (!sectors)
2958                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2959                                 rdev->data_offset;
2960                 if (!my_mddev->pers->resize)
2961                         /* Cannot change size for RAID0 or Linear etc */
2962                         return -EINVAL;
2963         }
2964         if (sectors < my_mddev->dev_sectors)
2965                 return -EINVAL; /* component must fit device */
2966
2967         rdev->sectors = sectors;
2968         if (sectors > oldsectors && my_mddev->external) {
2969                 /* Need to check that all other rdevs with the same
2970                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2971                  * the rdev lists safely.
2972                  * This check does not provide a hard guarantee, it
2973                  * just helps avoid dangerous mistakes.
2974                  */
2975                 struct mddev *mddev;
2976                 int overlap = 0;
2977                 struct list_head *tmp;
2978
2979                 rcu_read_lock();
2980                 for_each_mddev(mddev, tmp) {
2981                         struct md_rdev *rdev2;
2982
2983                         rdev_for_each(rdev2, mddev)
2984                                 if (rdev->bdev == rdev2->bdev &&
2985                                     rdev != rdev2 &&
2986                                     overlaps(rdev->data_offset, rdev->sectors,
2987                                              rdev2->data_offset,
2988                                              rdev2->sectors)) {
2989                                         overlap = 1;
2990                                         break;
2991                                 }
2992                         if (overlap) {
2993                                 mddev_put(mddev);
2994                                 break;
2995                         }
2996                 }
2997                 rcu_read_unlock();
2998                 if (overlap) {
2999                         /* Someone else could have slipped in a size
3000                          * change here, but doing so is just silly.
3001                          * We put oldsectors back because we *know* it is
3002                          * safe, and trust userspace not to race with
3003                          * itself
3004                          */
3005                         rdev->sectors = oldsectors;
3006                         return -EBUSY;
3007                 }
3008         }
3009         return len;
3010 }
3011
3012 static struct rdev_sysfs_entry rdev_size =
3013 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3014
3015 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3016 {
3017         unsigned long long recovery_start = rdev->recovery_offset;
3018
3019         if (test_bit(In_sync, &rdev->flags) ||
3020             recovery_start == MaxSector)
3021                 return sprintf(page, "none\n");
3022
3023         return sprintf(page, "%llu\n", recovery_start);
3024 }
3025
3026 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3027 {
3028         unsigned long long recovery_start;
3029
3030         if (cmd_match(buf, "none"))
3031                 recovery_start = MaxSector;
3032         else if (kstrtoull(buf, 10, &recovery_start))
3033                 return -EINVAL;
3034
3035         if (rdev->mddev->pers &&
3036             rdev->raid_disk >= 0)
3037                 return -EBUSY;
3038
3039         rdev->recovery_offset = recovery_start;
3040         if (recovery_start == MaxSector)
3041                 set_bit(In_sync, &rdev->flags);
3042         else
3043                 clear_bit(In_sync, &rdev->flags);
3044         return len;
3045 }
3046
3047 static struct rdev_sysfs_entry rdev_recovery_start =
3048 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3049
3050 static ssize_t
3051 badblocks_show(struct badblocks *bb, char *page, int unack);
3052 static ssize_t
3053 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3054
3055 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3056 {
3057         return badblocks_show(&rdev->badblocks, page, 0);
3058 }
3059 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3060 {
3061         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3062         /* Maybe that ack was all we needed */
3063         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3064                 wake_up(&rdev->blocked_wait);
3065         return rv;
3066 }
3067 static struct rdev_sysfs_entry rdev_bad_blocks =
3068 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3069
3070 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3071 {
3072         return badblocks_show(&rdev->badblocks, page, 1);
3073 }
3074 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3075 {
3076         return badblocks_store(&rdev->badblocks, page, len, 1);
3077 }
3078 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3079 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3080
3081 static struct attribute *rdev_default_attrs[] = {
3082         &rdev_state.attr,
3083         &rdev_errors.attr,
3084         &rdev_slot.attr,
3085         &rdev_offset.attr,
3086         &rdev_new_offset.attr,
3087         &rdev_size.attr,
3088         &rdev_recovery_start.attr,
3089         &rdev_bad_blocks.attr,
3090         &rdev_unack_bad_blocks.attr,
3091         NULL,
3092 };
3093 static ssize_t
3094 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3095 {
3096         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3097         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3098
3099         if (!entry->show)
3100                 return -EIO;
3101         if (!rdev->mddev)
3102                 return -EBUSY;
3103         return entry->show(rdev, page);
3104 }
3105
3106 static ssize_t
3107 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3108               const char *page, size_t length)
3109 {
3110         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3111         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3112         ssize_t rv;
3113         struct mddev *mddev = rdev->mddev;
3114
3115         if (!entry->store)
3116                 return -EIO;
3117         if (!capable(CAP_SYS_ADMIN))
3118                 return -EACCES;
3119         rv = mddev ? mddev_lock(mddev): -EBUSY;
3120         if (!rv) {
3121                 if (rdev->mddev == NULL)
3122                         rv = -EBUSY;
3123                 else
3124                         rv = entry->store(rdev, page, length);
3125                 mddev_unlock(mddev);
3126         }
3127         return rv;
3128 }
3129
3130 static void rdev_free(struct kobject *ko)
3131 {
3132         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3133         kfree(rdev);
3134 }
3135 static const struct sysfs_ops rdev_sysfs_ops = {
3136         .show           = rdev_attr_show,
3137         .store          = rdev_attr_store,
3138 };
3139 static struct kobj_type rdev_ktype = {
3140         .release        = rdev_free,
3141         .sysfs_ops      = &rdev_sysfs_ops,
3142         .default_attrs  = rdev_default_attrs,
3143 };
3144
3145 int md_rdev_init(struct md_rdev *rdev)
3146 {
3147         rdev->desc_nr = -1;
3148         rdev->saved_raid_disk = -1;
3149         rdev->raid_disk = -1;
3150         rdev->flags = 0;
3151         rdev->data_offset = 0;
3152         rdev->new_data_offset = 0;
3153         rdev->sb_events = 0;
3154         rdev->last_read_error.tv_sec  = 0;
3155         rdev->last_read_error.tv_nsec = 0;
3156         rdev->sb_loaded = 0;
3157         rdev->bb_page = NULL;
3158         atomic_set(&rdev->nr_pending, 0);
3159         atomic_set(&rdev->read_errors, 0);
3160         atomic_set(&rdev->corrected_errors, 0);
3161
3162         INIT_LIST_HEAD(&rdev->same_set);
3163         init_waitqueue_head(&rdev->blocked_wait);
3164
3165         /* Add space to store bad block list.
3166          * This reserves the space even on arrays where it cannot
3167          * be used - I wonder if that matters
3168          */
3169         rdev->badblocks.count = 0;
3170         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3171         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3172         seqlock_init(&rdev->badblocks.lock);
3173         if (rdev->badblocks.page == NULL)
3174                 return -ENOMEM;
3175
3176         return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(md_rdev_init);
3179 /*
3180  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3181  *
3182  * mark the device faulty if:
3183  *
3184  *   - the device is nonexistent (zero size)
3185  *   - the device has no valid superblock
3186  *
3187  * a faulty rdev _never_ has rdev->sb set.
3188  */
3189 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3190 {
3191         char b[BDEVNAME_SIZE];
3192         int err;
3193         struct md_rdev *rdev;
3194         sector_t size;
3195
3196         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3197         if (!rdev) {
3198                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3199                 return ERR_PTR(-ENOMEM);
3200         }
3201
3202         err = md_rdev_init(rdev);
3203         if (err)
3204                 goto abort_free;
3205         err = alloc_disk_sb(rdev);
3206         if (err)
3207                 goto abort_free;
3208
3209         err = lock_rdev(rdev, newdev, super_format == -2);
3210         if (err)
3211                 goto abort_free;
3212
3213         kobject_init(&rdev->kobj, &rdev_ktype);
3214
3215         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3216         if (!size) {
3217                 printk(KERN_WARNING
3218                         "md: %s has zero or unknown size, marking faulty!\n",
3219                         bdevname(rdev->bdev,b));
3220                 err = -EINVAL;
3221                 goto abort_free;
3222         }
3223
3224         if (super_format >= 0) {
3225                 err = super_types[super_format].
3226                         load_super(rdev, NULL, super_minor);
3227                 if (err == -EINVAL) {
3228                         printk(KERN_WARNING
3229                                 "md: %s does not have a valid v%d.%d "
3230                                "superblock, not importing!\n",
3231                                 bdevname(rdev->bdev,b),
3232                                super_format, super_minor);
3233                         goto abort_free;
3234                 }
3235                 if (err < 0) {
3236                         printk(KERN_WARNING
3237                                 "md: could not read %s's sb, not importing!\n",
3238                                 bdevname(rdev->bdev,b));
3239                         goto abort_free;
3240                 }
3241         }
3242
3243         return rdev;
3244
3245 abort_free:
3246         if (rdev->bdev)
3247                 unlock_rdev(rdev);
3248         md_rdev_clear(rdev);
3249         kfree(rdev);
3250         return ERR_PTR(err);
3251 }
3252
3253 /*
3254  * Check a full RAID array for plausibility
3255  */
3256
3257 static void analyze_sbs(struct mddev *mddev)
3258 {
3259         int i;
3260         struct md_rdev *rdev, *freshest, *tmp;
3261         char b[BDEVNAME_SIZE];
3262
3263         freshest = NULL;
3264         rdev_for_each_safe(rdev, tmp, mddev)
3265                 switch (super_types[mddev->major_version].
3266                         load_super(rdev, freshest, mddev->minor_version)) {
3267                 case 1:
3268                         freshest = rdev;
3269                         break;
3270                 case 0:
3271                         break;
3272                 default:
3273                         printk( KERN_ERR \
3274                                 "md: fatal superblock inconsistency in %s"
3275                                 " -- removing from array\n",
3276                                 bdevname(rdev->bdev,b));
3277                         md_kick_rdev_from_array(rdev);
3278                 }
3279
3280         super_types[mddev->major_version].
3281                 validate_super(mddev, freshest);
3282
3283         i = 0;
3284         rdev_for_each_safe(rdev, tmp, mddev) {
3285                 if (mddev->max_disks &&
3286                     (rdev->desc_nr >= mddev->max_disks ||
3287                      i > mddev->max_disks)) {
3288                         printk(KERN_WARNING
3289                                "md: %s: %s: only %d devices permitted\n",
3290                                mdname(mddev), bdevname(rdev->bdev, b),
3291                                mddev->max_disks);
3292                         md_kick_rdev_from_array(rdev);
3293                         continue;
3294                 }
3295                 if (rdev != freshest) {
3296                         if (super_types[mddev->major_version].
3297                             validate_super(mddev, rdev)) {
3298                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3299                                         " from array!\n",
3300                                         bdevname(rdev->bdev,b));
3301                                 md_kick_rdev_from_array(rdev);
3302                                 continue;
3303                         }
3304                 }
3305                 if (mddev->level == LEVEL_MULTIPATH) {
3306                         rdev->desc_nr = i++;
3307                         rdev->raid_disk = rdev->desc_nr;
3308                         set_bit(In_sync, &rdev->flags);
3309                 } else if (rdev->raid_disk >=
3310                             (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3311                            !test_bit(Journal, &rdev->flags)) {
3312                         rdev->raid_disk = -1;
3313                         clear_bit(In_sync, &rdev->flags);
3314                 }
3315         }
3316 }
3317
3318 /* Read a fixed-point number.
3319  * Numbers in sysfs attributes should be in "standard" units where
3320  * possible, so time should be in seconds.
3321  * However we internally use a a much smaller unit such as
3322  * milliseconds or jiffies.
3323  * This function takes a decimal number with a possible fractional
3324  * component, and produces an integer which is the result of
3325  * multiplying that number by 10^'scale'.
3326  * all without any floating-point arithmetic.
3327  */
3328 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3329 {
3330         unsigned long result = 0;
3331         long decimals = -1;
3332         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3333                 if (*cp == '.')
3334                         decimals = 0;
3335                 else if (decimals < scale) {
3336                         unsigned int value;
3337                         value = *cp - '0';
3338                         result = result * 10 + value;
3339                         if (decimals >= 0)
3340                                 decimals++;
3341                 }
3342                 cp++;
3343         }
3344         if (*cp == '\n')
3345                 cp++;
3346         if (*cp)
3347                 return -EINVAL;
3348         if (decimals < 0)
3349                 decimals = 0;
3350         while (decimals < scale) {
3351                 result *= 10;
3352                 decimals ++;
3353         }
3354         *res = result;
3355         return 0;
3356 }
3357
3358 static ssize_t
3359 safe_delay_show(struct mddev *mddev, char *page)
3360 {
3361         int msec = (mddev->safemode_delay*1000)/HZ;
3362         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3363 }
3364 static ssize_t
3365 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3366 {
3367         unsigned long msec;
3368
3369         if (mddev_is_clustered(mddev)) {
3370                 pr_info("md: Safemode is disabled for clustered mode\n");
3371                 return -EINVAL;
3372         }
3373
3374         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3375                 return -EINVAL;
3376         if (msec == 0)
3377                 mddev->safemode_delay = 0;
3378         else {
3379                 unsigned long old_delay = mddev->safemode_delay;
3380                 unsigned long new_delay = (msec*HZ)/1000;
3381
3382                 if (new_delay == 0)
3383                         new_delay = 1;
3384                 mddev->safemode_delay = new_delay;
3385                 if (new_delay < old_delay || old_delay == 0)
3386                         mod_timer(&mddev->safemode_timer, jiffies+1);
3387         }
3388         return len;
3389 }
3390 static struct md_sysfs_entry md_safe_delay =
3391 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3392
3393 static ssize_t
3394 level_show(struct mddev *mddev, char *page)
3395 {
3396         struct md_personality *p;
3397         int ret;
3398         spin_lock(&mddev->lock);
3399         p = mddev->pers;
3400         if (p)
3401                 ret = sprintf(page, "%s\n", p->name);
3402         else if (mddev->clevel[0])
3403                 ret = sprintf(page, "%s\n", mddev->clevel);
3404         else if (mddev->level != LEVEL_NONE)
3405                 ret = sprintf(page, "%d\n", mddev->level);
3406         else
3407                 ret = 0;
3408         spin_unlock(&mddev->lock);
3409         return ret;
3410 }
3411
3412 static ssize_t
3413 level_store(struct mddev *mddev, const char *buf, size_t len)
3414 {
3415         char clevel[16];
3416         ssize_t rv;
3417         size_t slen = len;
3418         struct md_personality *pers, *oldpers;
3419         long level;
3420         void *priv, *oldpriv;
3421         struct md_rdev *rdev;
3422
3423         if (slen == 0 || slen >= sizeof(clevel))
3424                 return -EINVAL;
3425
3426         rv = mddev_lock(mddev);
3427         if (rv)
3428                 return rv;
3429
3430         if (mddev->pers == NULL) {
3431                 strncpy(mddev->clevel, buf, slen);
3432                 if (mddev->clevel[slen-1] == '\n')
3433                         slen--;
3434                 mddev->clevel[slen] = 0;
3435                 mddev->level = LEVEL_NONE;
3436                 rv = len;
3437                 goto out_unlock;
3438         }
3439         rv = -EROFS;
3440         if (mddev->ro)
3441                 goto out_unlock;
3442
3443         /* request to change the personality.  Need to ensure:
3444          *  - array is not engaged in resync/recovery/reshape
3445          *  - old personality can be suspended
3446          *  - new personality will access other array.
3447          */
3448
3449         rv = -EBUSY;
3450         if (mddev->sync_thread ||
3451             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3452             mddev->reshape_position != MaxSector ||
3453             mddev->sysfs_active)
3454                 goto out_unlock;
3455
3456         rv = -EINVAL;
3457         if (!mddev->pers->quiesce) {
3458                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3459                        mdname(mddev), mddev->pers->name);
3460                 goto out_unlock;
3461         }
3462
3463         /* Now find the new personality */
3464         strncpy(clevel, buf, slen);
3465         if (clevel[slen-1] == '\n')
3466                 slen--;
3467         clevel[slen] = 0;
3468         if (kstrtol(clevel, 10, &level))
3469                 level = LEVEL_NONE;
3470
3471         if (request_module("md-%s", clevel) != 0)
3472                 request_module("md-level-%s", clevel);
3473         spin_lock(&pers_lock);
3474         pers = find_pers(level, clevel);
3475         if (!pers || !try_module_get(pers->owner)) {
3476                 spin_unlock(&pers_lock);
3477                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3478                 rv = -EINVAL;
3479                 goto out_unlock;
3480         }
3481         spin_unlock(&pers_lock);
3482
3483         if (pers == mddev->pers) {
3484                 /* Nothing to do! */
3485                 module_put(pers->owner);
3486                 rv = len;
3487                 goto out_unlock;
3488         }
3489         if (!pers->takeover) {
3490                 module_put(pers->owner);
3491                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3492                        mdname(mddev), clevel);
3493                 rv = -EINVAL;
3494                 goto out_unlock;
3495         }
3496
3497         rdev_for_each(rdev, mddev)
3498                 rdev->new_raid_disk = rdev->raid_disk;
3499
3500         /* ->takeover must set new_* and/or delta_disks
3501          * if it succeeds, and may set them when it fails.
3502          */
3503         priv = pers->takeover(mddev);
3504         if (IS_ERR(priv)) {
3505                 mddev->new_level = mddev->level;
3506                 mddev->new_layout = mddev->layout;
3507                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3508                 mddev->raid_disks -= mddev->delta_disks;
3509                 mddev->delta_disks = 0;
3510                 mddev->reshape_backwards = 0;
3511                 module_put(pers->owner);
3512                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3513                        mdname(mddev), clevel);
3514                 rv = PTR_ERR(priv);
3515                 goto out_unlock;
3516         }
3517
3518         /* Looks like we have a winner */
3519         mddev_suspend(mddev);
3520         mddev_detach(mddev);
3521
3522         spin_lock(&mddev->lock);
3523         oldpers = mddev->pers;
3524         oldpriv = mddev->private;
3525         mddev->pers = pers;
3526         mddev->private = priv;
3527         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3528         mddev->level = mddev->new_level;
3529         mddev->layout = mddev->new_layout;
3530         mddev->chunk_sectors = mddev->new_chunk_sectors;
3531         mddev->delta_disks = 0;
3532         mddev->reshape_backwards = 0;
3533         mddev->degraded = 0;
3534         spin_unlock(&mddev->lock);
3535
3536         if (oldpers->sync_request == NULL &&
3537             mddev->external) {
3538                 /* We are converting from a no-redundancy array
3539                  * to a redundancy array and metadata is managed
3540                  * externally so we need to be sure that writes
3541                  * won't block due to a need to transition
3542                  *      clean->dirty
3543                  * until external management is started.
3544                  */
3545                 mddev->in_sync = 0;
3546                 mddev->safemode_delay = 0;
3547                 mddev->safemode = 0;
3548         }
3549
3550         oldpers->free(mddev, oldpriv);
3551
3552         if (oldpers->sync_request == NULL &&
3553             pers->sync_request != NULL) {
3554                 /* need to add the md_redundancy_group */
3555                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3556                         printk(KERN_WARNING
3557                                "md: cannot register extra attributes for %s\n",
3558                                mdname(mddev));
3559                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3560         }
3561         if (oldpers->sync_request != NULL &&
3562             pers->sync_request == NULL) {
3563                 /* need to remove the md_redundancy_group */
3564                 if (mddev->to_remove == NULL)
3565                         mddev->to_remove = &md_redundancy_group;
3566         }
3567
3568         rdev_for_each(rdev, mddev) {
3569                 if (rdev->raid_disk < 0)
3570                         continue;
3571                 if (rdev->new_raid_disk >= mddev->raid_disks)
3572                         rdev->new_raid_disk = -1;
3573                 if (rdev->new_raid_disk == rdev->raid_disk)
3574                         continue;
3575                 sysfs_unlink_rdev(mddev, rdev);
3576         }
3577         rdev_for_each(rdev, mddev) {
3578                 if (rdev->raid_disk < 0)
3579                         continue;
3580                 if (rdev->new_raid_disk == rdev->raid_disk)
3581                         continue;
3582                 rdev->raid_disk = rdev->new_raid_disk;
3583                 if (rdev->raid_disk < 0)
3584                         clear_bit(In_sync, &rdev->flags);
3585                 else {
3586                         if (sysfs_link_rdev(mddev, rdev))
3587                                 printk(KERN_WARNING "md: cannot register rd%d"
3588                                        " for %s after level change\n",
3589                                        rdev->raid_disk, mdname(mddev));
3590                 }
3591         }
3592
3593         if (pers->sync_request == NULL) {
3594                 /* this is now an array without redundancy, so
3595                  * it must always be in_sync
3596                  */
3597                 mddev->in_sync = 1;
3598                 del_timer_sync(&mddev->safemode_timer);
3599         }
3600         blk_set_stacking_limits(&mddev->queue->limits);
3601         pers->run(mddev);
3602         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3603         mddev_resume(mddev);
3604         if (!mddev->thread)
3605                 md_update_sb(mddev, 1);
3606         sysfs_notify(&mddev->kobj, NULL, "level");
3607         md_new_event(mddev);
3608         rv = len;
3609 out_unlock:
3610         mddev_unlock(mddev);
3611         return rv;
3612 }
3613
3614 static struct md_sysfs_entry md_level =
3615 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3616
3617 static ssize_t
3618 layout_show(struct mddev *mddev, char *page)
3619 {
3620         /* just a number, not meaningful for all levels */
3621         if (mddev->reshape_position != MaxSector &&
3622             mddev->layout != mddev->new_layout)
3623                 return sprintf(page, "%d (%d)\n",
3624                                mddev->new_layout, mddev->layout);
3625         return sprintf(page, "%d\n", mddev->layout);
3626 }
3627
3628 static ssize_t
3629 layout_store(struct mddev *mddev, const char *buf, size_t len)
3630 {
3631         unsigned int n;
3632         int err;
3633
3634         err = kstrtouint(buf, 10, &n);
3635         if (err < 0)
3636                 return err;
3637         err = mddev_lock(mddev);
3638         if (err)
3639                 return err;
3640
3641         if (mddev->pers) {
3642                 if (mddev->pers->check_reshape == NULL)
3643                         err = -EBUSY;
3644                 else if (mddev->ro)
3645                         err = -EROFS;
3646                 else {
3647                         mddev->new_layout = n;
3648                         err = mddev->pers->check_reshape(mddev);
3649                         if (err)
3650                                 mddev->new_layout = mddev->layout;
3651                 }
3652         } else {
3653                 mddev->new_layout = n;
3654                 if (mddev->reshape_position == MaxSector)
3655                         mddev->layout = n;
3656         }
3657         mddev_unlock(mddev);
3658         return err ?: len;
3659 }
3660 static struct md_sysfs_entry md_layout =
3661 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3662
3663 static ssize_t
3664 raid_disks_show(struct mddev *mddev, char *page)
3665 {
3666         if (mddev->raid_disks == 0)
3667                 return 0;
3668         if (mddev->reshape_position != MaxSector &&
3669             mddev->delta_disks != 0)
3670                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3671                                mddev->raid_disks - mddev->delta_disks);
3672         return sprintf(page, "%d\n", mddev->raid_disks);
3673 }
3674
3675 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3676
3677 static ssize_t
3678 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3679 {
3680         unsigned int n;
3681         int err;
3682
3683         err = kstrtouint(buf, 10, &n);
3684         if (err < 0)
3685                 return err;
3686
3687         err = mddev_lock(mddev);
3688         if (err)
3689                 return err;
3690         if (mddev->pers)
3691                 err = update_raid_disks(mddev, n);
3692         else if (mddev->reshape_position != MaxSector) {
3693                 struct md_rdev *rdev;
3694                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3695
3696                 err = -EINVAL;
3697                 rdev_for_each(rdev, mddev) {
3698                         if (olddisks < n &&
3699                             rdev->data_offset < rdev->new_data_offset)
3700                                 goto out_unlock;
3701                         if (olddisks > n &&
3702                             rdev->data_offset > rdev->new_data_offset)
3703                                 goto out_unlock;
3704                 }
3705                 err = 0;
3706                 mddev->delta_disks = n - olddisks;
3707                 mddev->raid_disks = n;
3708                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3709         } else
3710                 mddev->raid_disks = n;
3711 out_unlock:
3712         mddev_unlock(mddev);
3713         return err ? err : len;
3714 }
3715 static struct md_sysfs_entry md_raid_disks =
3716 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3717
3718 static ssize_t
3719 chunk_size_show(struct mddev *mddev, char *page)
3720 {
3721         if (mddev->reshape_position != MaxSector &&
3722             mddev->chunk_sectors != mddev->new_chunk_sectors)
3723                 return sprintf(page, "%d (%d)\n",
3724                                mddev->new_chunk_sectors << 9,
3725                                mddev->chunk_sectors << 9);
3726         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3727 }
3728
3729 static ssize_t
3730 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3731 {
3732         unsigned long n;
3733         int err;
3734
3735         err = kstrtoul(buf, 10, &n);
3736         if (err < 0)
3737                 return err;
3738
3739         err = mddev_lock(mddev);
3740         if (err)
3741                 return err;
3742         if (mddev->pers) {
3743                 if (mddev->pers->check_reshape == NULL)
3744                         err = -EBUSY;
3745                 else if (mddev->ro)
3746                         err = -EROFS;
3747                 else {
3748                         mddev->new_chunk_sectors = n >> 9;
3749                         err = mddev->pers->check_reshape(mddev);
3750                         if (err)
3751                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3752                 }
3753         } else {
3754                 mddev->new_chunk_sectors = n >> 9;
3755                 if (mddev->reshape_position == MaxSector)
3756                         mddev->chunk_sectors = n >> 9;
3757         }
3758         mddev_unlock(mddev);
3759         return err ?: len;
3760 }
3761 static struct md_sysfs_entry md_chunk_size =
3762 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3763
3764 static ssize_t
3765 resync_start_show(struct mddev *mddev, char *page)
3766 {
3767         if (mddev->recovery_cp == MaxSector)
3768                 return sprintf(page, "none\n");
3769         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3770 }
3771
3772 static ssize_t
3773 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3774 {
3775         unsigned long long n;
3776         int err;
3777
3778         if (cmd_match(buf, "none"))
3779                 n = MaxSector;
3780         else {
3781                 err = kstrtoull(buf, 10, &n);
3782                 if (err < 0)
3783                         return err;
3784                 if (n != (sector_t)n)
3785                         return -EINVAL;
3786         }
3787
3788         err = mddev_lock(mddev);
3789         if (err)
3790                 return err;
3791         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3792                 err = -EBUSY;
3793
3794         if (!err) {
3795                 mddev->recovery_cp = n;
3796                 if (mddev->pers)
3797                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3798         }
3799         mddev_unlock(mddev);
3800         return err ?: len;
3801 }
3802 static struct md_sysfs_entry md_resync_start =
3803 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3804                 resync_start_show, resync_start_store);
3805
3806 /*
3807  * The array state can be:
3808  *
3809  * clear
3810  *     No devices, no size, no level
3811  *     Equivalent to STOP_ARRAY ioctl
3812  * inactive
3813  *     May have some settings, but array is not active
3814  *        all IO results in error
3815  *     When written, doesn't tear down array, but just stops it
3816  * suspended (not supported yet)
3817  *     All IO requests will block. The array can be reconfigured.
3818  *     Writing this, if accepted, will block until array is quiescent
3819  * readonly
3820  *     no resync can happen.  no superblocks get written.
3821  *     write requests fail
3822  * read-auto
3823  *     like readonly, but behaves like 'clean' on a write request.
3824  *
3825  * clean - no pending writes, but otherwise active.
3826  *     When written to inactive array, starts without resync
3827  *     If a write request arrives then
3828  *       if metadata is known, mark 'dirty' and switch to 'active'.
3829  *       if not known, block and switch to write-pending
3830  *     If written to an active array that has pending writes, then fails.
3831  * active
3832  *     fully active: IO and resync can be happening.
3833  *     When written to inactive array, starts with resync
3834  *
3835  * write-pending
3836  *     clean, but writes are blocked waiting for 'active' to be written.
3837  *
3838  * active-idle
3839  *     like active, but no writes have been seen for a while (100msec).
3840  *
3841  */
3842 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3843                    write_pending, active_idle, bad_word};
3844 static char *array_states[] = {
3845         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3846         "write-pending", "active-idle", NULL };
3847
3848 static int match_word(const char *word, char **list)
3849 {
3850         int n;
3851         for (n=0; list[n]; n++)
3852                 if (cmd_match(word, list[n]))
3853                         break;
3854         return n;
3855 }
3856
3857 static ssize_t
3858 array_state_show(struct mddev *mddev, char *page)
3859 {
3860         enum array_state st = inactive;
3861
3862         if (mddev->pers)
3863                 switch(mddev->ro) {
3864                 case 1:
3865                         st = readonly;
3866                         break;
3867                 case 2:
3868                         st = read_auto;
3869                         break;
3870                 case 0:
3871                         if (mddev->in_sync)
3872                                 st = clean;
3873                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3874                                 st = write_pending;
3875                         else if (mddev->safemode)
3876                                 st = active_idle;
3877                         else
3878                                 st = active;
3879                 }
3880         else {
3881                 if (list_empty(&mddev->disks) &&
3882                     mddev->raid_disks == 0 &&
3883                     mddev->dev_sectors == 0)
3884                         st = clear;
3885                 else
3886                         st = inactive;
3887         }
3888         return sprintf(page, "%s\n", array_states[st]);
3889 }
3890
3891 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3892 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3893 static int do_md_run(struct mddev *mddev);
3894 static int restart_array(struct mddev *mddev);
3895
3896 static ssize_t
3897 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3898 {
3899         int err;
3900         enum array_state st = match_word(buf, array_states);
3901
3902         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3903                 /* don't take reconfig_mutex when toggling between
3904                  * clean and active
3905                  */
3906                 spin_lock(&mddev->lock);
3907                 if (st == active) {
3908                         restart_array(mddev);
3909                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3910                         wake_up(&mddev->sb_wait);
3911                         err = 0;
3912                 } else /* st == clean */ {
3913                         restart_array(mddev);
3914                         if (atomic_read(&mddev->writes_pending) == 0) {
3915                                 if (mddev->in_sync == 0) {
3916                                         mddev->in_sync = 1;
3917                                         if (mddev->safemode == 1)
3918                                                 mddev->safemode = 0;
3919                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3920                                 }
3921                                 err = 0;
3922                         } else
3923                                 err = -EBUSY;
3924                 }
3925                 spin_unlock(&mddev->lock);
3926                 return err ?: len;
3927         }
3928         err = mddev_lock(mddev);
3929         if (err)
3930                 return err;
3931         err = -EINVAL;
3932         switch(st) {
3933         case bad_word:
3934                 break;
3935         case clear:
3936                 /* stopping an active array */
3937                 err = do_md_stop(mddev, 0, NULL);
3938                 break;
3939         case inactive:
3940                 /* stopping an active array */
3941                 if (mddev->pers)
3942                         err = do_md_stop(mddev, 2, NULL);
3943                 else
3944                         err = 0; /* already inactive */
3945                 break;
3946         case suspended:
3947                 break; /* not supported yet */
3948         case readonly:
3949                 if (mddev->pers)
3950                         err = md_set_readonly(mddev, NULL);
3951                 else {
3952                         mddev->ro = 1;
3953                         set_disk_ro(mddev->gendisk, 1);
3954                         err = do_md_run(mddev);
3955                 }
3956                 break;
3957         case read_auto:
3958                 if (mddev->pers) {
3959                         if (mddev->ro == 0)
3960                                 err = md_set_readonly(mddev, NULL);
3961                         else if (mddev->ro == 1)
3962                                 err = restart_array(mddev);
3963                         if (err == 0) {
3964                                 mddev->ro = 2;
3965                                 set_disk_ro(mddev->gendisk, 0);
3966                         }
3967                 } else {
3968                         mddev->ro = 2;
3969                         err = do_md_run(mddev);
3970                 }
3971                 break;
3972         case clean:
3973                 if (mddev->pers) {
3974                         err = restart_array(mddev);
3975                         if (err)
3976                                 break;
3977                         spin_lock(&mddev->lock);
3978                         if (atomic_read(&mddev->writes_pending) == 0) {
3979                                 if (mddev->in_sync == 0) {
3980                                         mddev->in_sync = 1;
3981                                         if (mddev->safemode == 1)
3982                                                 mddev->safemode = 0;
3983                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3984                                 }
3985                                 err = 0;
3986                         } else
3987                                 err = -EBUSY;
3988                         spin_unlock(&mddev->lock);
3989                 } else
3990                         err = -EINVAL;
3991                 break;
3992         case active:
3993                 if (mddev->pers) {
3994                         err = restart_array(mddev);
3995                         if (err)
3996                                 break;
3997                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3998                         wake_up(&mddev->sb_wait);
3999                         err = 0;
4000                 } else {
4001                         mddev->ro = 0;
4002                         set_disk_ro(mddev->gendisk, 0);
4003                         err = do_md_run(mddev);
4004                 }
4005                 break;
4006         case write_pending:
4007         case active_idle:
4008                 /* these cannot be set */
4009                 break;
4010         }
4011
4012         if (!err) {
4013                 if (mddev->hold_active == UNTIL_IOCTL)
4014                         mddev->hold_active = 0;
4015                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4016         }
4017         mddev_unlock(mddev);
4018         return err ?: len;
4019 }
4020 static struct md_sysfs_entry md_array_state =
4021 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4022
4023 static ssize_t
4024 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4025         return sprintf(page, "%d\n",
4026                        atomic_read(&mddev->max_corr_read_errors));
4027 }
4028
4029 static ssize_t
4030 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4031 {
4032         unsigned int n;
4033         int rv;
4034
4035         rv = kstrtouint(buf, 10, &n);
4036         if (rv < 0)
4037                 return rv;
4038         atomic_set(&mddev->max_corr_read_errors, n);
4039         return len;
4040 }
4041
4042 static struct md_sysfs_entry max_corr_read_errors =
4043 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4044         max_corrected_read_errors_store);
4045
4046 static ssize_t
4047 null_show(struct mddev *mddev, char *page)
4048 {
4049         return -EINVAL;
4050 }
4051
4052 static ssize_t
4053 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4054 {
4055         /* buf must be %d:%d\n? giving major and minor numbers */
4056         /* The new device is added to the array.
4057          * If the array has a persistent superblock, we read the
4058          * superblock to initialise info and check validity.
4059          * Otherwise, only checking done is that in bind_rdev_to_array,
4060          * which mainly checks size.
4061          */
4062         char *e;
4063         int major = simple_strtoul(buf, &e, 10);
4064         int minor;
4065         dev_t dev;
4066         struct md_rdev *rdev;
4067         int err;
4068
4069         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4070                 return -EINVAL;
4071         minor = simple_strtoul(e+1, &e, 10);
4072         if (*e && *e != '\n')
4073                 return -EINVAL;
4074         dev = MKDEV(major, minor);
4075         if (major != MAJOR(dev) ||
4076             minor != MINOR(dev))
4077                 return -EOVERFLOW;
4078
4079         flush_workqueue(md_misc_wq);
4080
4081         err = mddev_lock(mddev);
4082         if (err)
4083                 return err;
4084         if (mddev->persistent) {
4085                 rdev = md_import_device(dev, mddev->major_version,
4086                                         mddev->minor_version);
4087                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4088                         struct md_rdev *rdev0
4089                                 = list_entry(mddev->disks.next,
4090                                              struct md_rdev, same_set);
4091                         err = super_types[mddev->major_version]
4092                                 .load_super(rdev, rdev0, mddev->minor_version);
4093                         if (err < 0)
4094                                 goto out;
4095                 }
4096         } else if (mddev->external)
4097                 rdev = md_import_device(dev, -2, -1);
4098         else
4099                 rdev = md_import_device(dev, -1, -1);
4100
4101         if (IS_ERR(rdev)) {
4102                 mddev_unlock(mddev);
4103                 return PTR_ERR(rdev);
4104         }
4105         err = bind_rdev_to_array(rdev, mddev);
4106  out:
4107         if (err)
4108                 export_rdev(rdev);
4109         mddev_unlock(mddev);
4110         return err ? err : len;
4111 }
4112
4113 static struct md_sysfs_entry md_new_device =
4114 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4115
4116 static ssize_t
4117 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4118 {
4119         char *end;
4120         unsigned long chunk, end_chunk;
4121         int err;
4122
4123         err = mddev_lock(mddev);
4124         if (err)
4125                 return err;
4126         if (!mddev->bitmap)
4127                 goto out;
4128         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4129         while (*buf) {
4130                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4131                 if (buf == end) break;
4132                 if (*end == '-') { /* range */
4133                         buf = end + 1;
4134                         end_chunk = simple_strtoul(buf, &end, 0);
4135                         if (buf == end) break;
4136                 }
4137                 if (*end && !isspace(*end)) break;
4138                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4139                 buf = skip_spaces(end);
4140         }
4141         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4142 out:
4143         mddev_unlock(mddev);
4144         return len;
4145 }
4146
4147 static struct md_sysfs_entry md_bitmap =
4148 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4149
4150 static ssize_t
4151 size_show(struct mddev *mddev, char *page)
4152 {
4153         return sprintf(page, "%llu\n",
4154                 (unsigned long long)mddev->dev_sectors / 2);
4155 }
4156
4157 static int update_size(struct mddev *mddev, sector_t num_sectors);
4158
4159 static ssize_t
4160 size_store(struct mddev *mddev, const char *buf, size_t len)
4161 {
4162         /* If array is inactive, we can reduce the component size, but
4163          * not increase it (except from 0).
4164          * If array is active, we can try an on-line resize
4165          */
4166         sector_t sectors;
4167         int err = strict_blocks_to_sectors(buf, &sectors);
4168
4169         if (err < 0)
4170                 return err;
4171         err = mddev_lock(mddev);
4172         if (err)
4173                 return err;
4174         if (mddev->pers) {
4175                 err = update_size(mddev, sectors);
4176                 md_update_sb(mddev, 1);
4177         } else {
4178                 if (mddev->dev_sectors == 0 ||
4179                     mddev->dev_sectors > sectors)
4180                         mddev->dev_sectors = sectors;
4181                 else
4182                         err = -ENOSPC;
4183         }
4184         mddev_unlock(mddev);
4185         return err ? err : len;
4186 }
4187
4188 static struct md_sysfs_entry md_size =
4189 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4190
4191 /* Metadata version.
4192  * This is one of
4193  *   'none' for arrays with no metadata (good luck...)
4194  *   'external' for arrays with externally managed metadata,
4195  * or N.M for internally known formats
4196  */
4197 static ssize_t
4198 metadata_show(struct mddev *mddev, char *page)
4199 {
4200         if (mddev->persistent)
4201                 return sprintf(page, "%d.%d\n",
4202                                mddev->major_version, mddev->minor_version);
4203         else if (mddev->external)
4204                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4205         else
4206                 return sprintf(page, "none\n");
4207 }
4208
4209 static ssize_t
4210 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4211 {
4212         int major, minor;
4213         char *e;
4214         int err;
4215         /* Changing the details of 'external' metadata is
4216          * always permitted.  Otherwise there must be
4217          * no devices attached to the array.
4218          */
4219
4220         err = mddev_lock(mddev);
4221         if (err)
4222                 return err;
4223         err = -EBUSY;
4224         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4225                 ;
4226         else if (!list_empty(&mddev->disks))
4227                 goto out_unlock;
4228
4229         err = 0;
4230         if (cmd_match(buf, "none")) {
4231                 mddev->persistent = 0;
4232                 mddev->external = 0;
4233                 mddev->major_version = 0;
4234                 mddev->minor_version = 90;
4235                 goto out_unlock;
4236         }
4237         if (strncmp(buf, "external:", 9) == 0) {
4238                 size_t namelen = len-9;
4239                 if (namelen >= sizeof(mddev->metadata_type))
4240                         namelen = sizeof(mddev->metadata_type)-1;
4241                 strncpy(mddev->metadata_type, buf+9, namelen);
4242                 mddev->metadata_type[namelen] = 0;
4243                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4244                         mddev->metadata_type[--namelen] = 0;
4245                 mddev->persistent = 0;
4246                 mddev->external = 1;
4247                 mddev->major_version = 0;
4248                 mddev->minor_version = 90;
4249                 goto out_unlock;
4250         }
4251         major = simple_strtoul(buf, &e, 10);
4252         err = -EINVAL;
4253         if (e==buf || *e != '.')
4254                 goto out_unlock;
4255         buf = e+1;
4256         minor = simple_strtoul(buf, &e, 10);
4257         if (e==buf || (*e && *e != '\n') )
4258                 goto out_unlock;
4259         err = -ENOENT;
4260         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4261                 goto out_unlock;
4262         mddev->major_version = major;
4263         mddev->minor_version = minor;
4264         mddev->persistent = 1;
4265         mddev->external = 0;
4266         err = 0;
4267 out_unlock:
4268         mddev_unlock(mddev);
4269         return err ?: len;
4270 }
4271
4272 static struct md_sysfs_entry md_metadata =
4273 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4274
4275 static ssize_t
4276 action_show(struct mddev *mddev, char *page)
4277 {
4278         char *type = "idle";
4279         unsigned long recovery = mddev->recovery;
4280         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4281                 type = "frozen";
4282         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4283             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4284                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4285                         type = "reshape";
4286                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4287                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4288                                 type = "resync";
4289                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4290                                 type = "check";
4291                         else
4292                                 type = "repair";
4293                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4294                         type = "recover";
4295                 else if (mddev->reshape_position != MaxSector)
4296                         type = "reshape";
4297         }
4298         return sprintf(page, "%s\n", type);
4299 }
4300
4301 static ssize_t
4302 action_store(struct mddev *mddev, const char *page, size_t len)
4303 {
4304         if (!mddev->pers || !mddev->pers->sync_request)
4305                 return -EINVAL;
4306
4307
4308         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4309                 if (cmd_match(page, "frozen"))
4310                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4311                 else
4312                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4313                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4314                     mddev_lock(mddev) == 0) {
4315                         flush_workqueue(md_misc_wq);
4316                         if (mddev->sync_thread) {
4317                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4318                                 md_reap_sync_thread(mddev);
4319                         }
4320                         mddev_unlock(mddev);
4321                 }
4322         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4323                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4324                 return -EBUSY;
4325         else if (cmd_match(page, "resync"))
4326                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4327         else if (cmd_match(page, "recover")) {
4328                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4329                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4330         } else if (cmd_match(page, "reshape")) {
4331                 int err;
4332                 if (mddev->pers->start_reshape == NULL)
4333                         return -EINVAL;
4334                 err = mddev_lock(mddev);
4335                 if (!err) {
4336                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4337                         err = mddev->pers->start_reshape(mddev);
4338                         mddev_unlock(mddev);
4339                 }
4340                 if (err)
4341                         return err;
4342                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4343         } else {
4344                 if (cmd_match(page, "check"))
4345                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4346                 else if (!cmd_match(page, "repair"))
4347                         return -EINVAL;
4348                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4349                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4350                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4351         }
4352         if (mddev->ro == 2) {
4353                 /* A write to sync_action is enough to justify
4354                  * canceling read-auto mode
4355                  */
4356                 mddev->ro = 0;
4357                 md_wakeup_thread(mddev->sync_thread);
4358         }
4359         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4360         md_wakeup_thread(mddev->thread);
4361         sysfs_notify_dirent_safe(mddev->sysfs_action);
4362         return len;
4363 }
4364
4365 static struct md_sysfs_entry md_scan_mode =
4366 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4367
4368 static ssize_t
4369 last_sync_action_show(struct mddev *mddev, char *page)
4370 {
4371         return sprintf(page, "%s\n", mddev->last_sync_action);
4372 }
4373
4374 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4375
4376 static ssize_t
4377 mismatch_cnt_show(struct mddev *mddev, char *page)
4378 {
4379         return sprintf(page, "%llu\n",
4380                        (unsigned long long)
4381                        atomic64_read(&mddev->resync_mismatches));
4382 }
4383
4384 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4385
4386 static ssize_t
4387 sync_min_show(struct mddev *mddev, char *page)
4388 {
4389         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4390                        mddev->sync_speed_min ? "local": "system");
4391 }
4392
4393 static ssize_t
4394 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4395 {
4396         unsigned int min;
4397         int rv;
4398
4399         if (strncmp(buf, "system", 6)==0) {
4400                 min = 0;
4401         } else {
4402                 rv = kstrtouint(buf, 10, &min);
4403                 if (rv < 0)
4404                         return rv;
4405                 if (min == 0)
4406                         return -EINVAL;
4407         }
4408         mddev->sync_speed_min = min;
4409         return len;
4410 }
4411
4412 static struct md_sysfs_entry md_sync_min =
4413 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4414
4415 static ssize_t
4416 sync_max_show(struct mddev *mddev, char *page)
4417 {
4418         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4419                        mddev->sync_speed_max ? "local": "system");
4420 }
4421
4422 static ssize_t
4423 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4424 {
4425         unsigned int max;
4426         int rv;
4427
4428         if (strncmp(buf, "system", 6)==0) {
4429                 max = 0;
4430         } else {
4431                 rv = kstrtouint(buf, 10, &max);
4432                 if (rv < 0)
4433                         return rv;
4434                 if (max == 0)
4435                         return -EINVAL;
4436         }
4437         mddev->sync_speed_max = max;
4438         return len;
4439 }
4440
4441 static struct md_sysfs_entry md_sync_max =
4442 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4443
4444 static ssize_t
4445 degraded_show(struct mddev *mddev, char *page)
4446 {
4447         return sprintf(page, "%d\n", mddev->degraded);
4448 }
4449 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4450
4451 static ssize_t
4452 sync_force_parallel_show(struct mddev *mddev, char *page)
4453 {
4454         return sprintf(page, "%d\n", mddev->parallel_resync);
4455 }
4456
4457 static ssize_t
4458 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460         long n;
4461
4462         if (kstrtol(buf, 10, &n))
4463                 return -EINVAL;
4464
4465         if (n != 0 && n != 1)
4466                 return -EINVAL;
4467
4468         mddev->parallel_resync = n;
4469
4470         if (mddev->sync_thread)
4471                 wake_up(&resync_wait);
4472
4473         return len;
4474 }
4475
4476 /* force parallel resync, even with shared block devices */
4477 static struct md_sysfs_entry md_sync_force_parallel =
4478 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4479        sync_force_parallel_show, sync_force_parallel_store);
4480
4481 static ssize_t
4482 sync_speed_show(struct mddev *mddev, char *page)
4483 {
4484         unsigned long resync, dt, db;
4485         if (mddev->curr_resync == 0)
4486                 return sprintf(page, "none\n");
4487         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4488         dt = (jiffies - mddev->resync_mark) / HZ;
4489         if (!dt) dt++;
4490         db = resync - mddev->resync_mark_cnt;
4491         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4492 }
4493
4494 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4495
4496 static ssize_t
4497 sync_completed_show(struct mddev *mddev, char *page)
4498 {
4499         unsigned long long max_sectors, resync;
4500
4501         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4502                 return sprintf(page, "none\n");
4503
4504         if (mddev->curr_resync == 1 ||
4505             mddev->curr_resync == 2)
4506                 return sprintf(page, "delayed\n");
4507
4508         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4509             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4510                 max_sectors = mddev->resync_max_sectors;
4511         else
4512                 max_sectors = mddev->dev_sectors;
4513
4514         resync = mddev->curr_resync_completed;
4515         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4516 }
4517
4518 static struct md_sysfs_entry md_sync_completed =
4519         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4520
4521 static ssize_t
4522 min_sync_show(struct mddev *mddev, char *page)
4523 {
4524         return sprintf(page, "%llu\n",
4525                        (unsigned long long)mddev->resync_min);
4526 }
4527 static ssize_t
4528 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4529 {
4530         unsigned long long min;
4531         int err;
4532
4533         if (kstrtoull(buf, 10, &min))
4534                 return -EINVAL;
4535
4536         spin_lock(&mddev->lock);
4537         err = -EINVAL;
4538         if (min > mddev->resync_max)
4539                 goto out_unlock;
4540
4541         err = -EBUSY;
4542         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4543                 goto out_unlock;
4544
4545         /* Round down to multiple of 4K for safety */
4546         mddev->resync_min = round_down(min, 8);
4547         err = 0;
4548
4549 out_unlock:
4550         spin_unlock(&mddev->lock);
4551         return err ?: len;
4552 }
4553
4554 static struct md_sysfs_entry md_min_sync =
4555 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4556
4557 static ssize_t
4558 max_sync_show(struct mddev *mddev, char *page)
4559 {
4560         if (mddev->resync_max == MaxSector)
4561                 return sprintf(page, "max\n");
4562         else
4563                 return sprintf(page, "%llu\n",
4564                                (unsigned long long)mddev->resync_max);
4565 }
4566 static ssize_t
4567 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4568 {
4569         int err;
4570         spin_lock(&mddev->lock);
4571         if (strncmp(buf, "max", 3) == 0)
4572                 mddev->resync_max = MaxSector;
4573         else {
4574                 unsigned long long max;
4575                 int chunk;
4576
4577                 err = -EINVAL;
4578                 if (kstrtoull(buf, 10, &max))
4579                         goto out_unlock;
4580                 if (max < mddev->resync_min)
4581                         goto out_unlock;
4582
4583                 err = -EBUSY;
4584                 if (max < mddev->resync_max &&
4585                     mddev->ro == 0 &&
4586                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4587                         goto out_unlock;
4588
4589                 /* Must be a multiple of chunk_size */
4590                 chunk = mddev->chunk_sectors;
4591                 if (chunk) {
4592                         sector_t temp = max;
4593
4594                         err = -EINVAL;
4595                         if (sector_div(temp, chunk))
4596                                 goto out_unlock;
4597                 }
4598                 mddev->resync_max = max;
4599         }
4600         wake_up(&mddev->recovery_wait);
4601         err = 0;
4602 out_unlock:
4603         spin_unlock(&mddev->lock);
4604         return err ?: len;
4605 }
4606
4607 static struct md_sysfs_entry md_max_sync =
4608 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4609
4610 static ssize_t
4611 suspend_lo_show(struct mddev *mddev, char *page)
4612 {
4613         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4614 }
4615
4616 static ssize_t
4617 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4618 {
4619         unsigned long long old, new;
4620         int err;
4621
4622         err = kstrtoull(buf, 10, &new);
4623         if (err < 0)
4624                 return err;
4625         if (new != (sector_t)new)
4626                 return -EINVAL;
4627
4628         err = mddev_lock(mddev);
4629         if (err)
4630                 return err;
4631         err = -EINVAL;
4632         if (mddev->pers == NULL ||
4633             mddev->pers->quiesce == NULL)
4634                 goto unlock;
4635         old = mddev->suspend_lo;
4636         mddev->suspend_lo = new;
4637         if (new >= old)
4638                 /* Shrinking suspended region */
4639                 mddev->pers->quiesce(mddev, 2);
4640         else {
4641                 /* Expanding suspended region - need to wait */
4642                 mddev->pers->quiesce(mddev, 1);
4643                 mddev->pers->quiesce(mddev, 0);
4644         }
4645         err = 0;
4646 unlock:
4647         mddev_unlock(mddev);
4648         return err ?: len;
4649 }
4650 static struct md_sysfs_entry md_suspend_lo =
4651 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4652
4653 static ssize_t
4654 suspend_hi_show(struct mddev *mddev, char *page)
4655 {
4656         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4657 }
4658
4659 static ssize_t
4660 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4661 {
4662         unsigned long long old, new;
4663         int err;
4664
4665         err = kstrtoull(buf, 10, &new);
4666         if (err < 0)
4667                 return err;
4668         if (new != (sector_t)new)
4669                 return -EINVAL;
4670
4671         err = mddev_lock(mddev);
4672         if (err)
4673                 return err;
4674         err = -EINVAL;
4675         if (mddev->pers == NULL ||
4676             mddev->pers->quiesce == NULL)
4677                 goto unlock;
4678         old = mddev->suspend_hi;
4679         mddev->suspend_hi = new;
4680         if (new <= old)
4681                 /* Shrinking suspended region */
4682                 mddev->pers->quiesce(mddev, 2);
4683         else {
4684                 /* Expanding suspended region - need to wait */
4685                 mddev->pers->quiesce(mddev, 1);
4686                 mddev->pers->quiesce(mddev, 0);
4687         }
4688         err = 0;
4689 unlock:
4690         mddev_unlock(mddev);
4691         return err ?: len;
4692 }
4693 static struct md_sysfs_entry md_suspend_hi =
4694 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4695
4696 static ssize_t
4697 reshape_position_show(struct mddev *mddev, char *page)
4698 {
4699         if (mddev->reshape_position != MaxSector)
4700                 return sprintf(page, "%llu\n",
4701                                (unsigned long long)mddev->reshape_position);
4702         strcpy(page, "none\n");
4703         return 5;
4704 }
4705
4706 static ssize_t
4707 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4708 {
4709         struct md_rdev *rdev;
4710         unsigned long long new;
4711         int err;
4712
4713         err = kstrtoull(buf, 10, &new);
4714         if (err < 0)
4715                 return err;
4716         if (new != (sector_t)new)
4717                 return -EINVAL;
4718         err = mddev_lock(mddev);
4719         if (err)
4720                 return err;
4721         err = -EBUSY;
4722         if (mddev->pers)
4723                 goto unlock;
4724         mddev->reshape_position = new;
4725         mddev->delta_disks = 0;
4726         mddev->reshape_backwards = 0;
4727         mddev->new_level = mddev->level;
4728         mddev->new_layout = mddev->layout;
4729         mddev->new_chunk_sectors = mddev->chunk_sectors;
4730         rdev_for_each(rdev, mddev)
4731                 rdev->new_data_offset = rdev->data_offset;
4732         err = 0;
4733 unlock:
4734         mddev_unlock(mddev);
4735         return err ?: len;
4736 }
4737
4738 static struct md_sysfs_entry md_reshape_position =
4739 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4740        reshape_position_store);
4741
4742 static ssize_t
4743 reshape_direction_show(struct mddev *mddev, char *page)
4744 {
4745         return sprintf(page, "%s\n",
4746                        mddev->reshape_backwards ? "backwards" : "forwards");
4747 }
4748
4749 static ssize_t
4750 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4751 {
4752         int backwards = 0;
4753         int err;
4754
4755         if (cmd_match(buf, "forwards"))
4756                 backwards = 0;
4757         else if (cmd_match(buf, "backwards"))
4758                 backwards = 1;
4759         else
4760                 return -EINVAL;
4761         if (mddev->reshape_backwards == backwards)
4762                 return len;
4763
4764         err = mddev_lock(mddev);
4765         if (err)
4766                 return err;
4767         /* check if we are allowed to change */
4768         if (mddev->delta_disks)
4769                 err = -EBUSY;
4770         else if (mddev->persistent &&
4771             mddev->major_version == 0)
4772                 err =  -EINVAL;
4773         else
4774                 mddev->reshape_backwards = backwards;
4775         mddev_unlock(mddev);
4776         return err ?: len;
4777 }
4778
4779 static struct md_sysfs_entry md_reshape_direction =
4780 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4781        reshape_direction_store);
4782
4783 static ssize_t
4784 array_size_show(struct mddev *mddev, char *page)
4785 {
4786         if (mddev->external_size)
4787                 return sprintf(page, "%llu\n",
4788                                (unsigned long long)mddev->array_sectors/2);
4789         else
4790                 return sprintf(page, "default\n");
4791 }
4792
4793 static ssize_t
4794 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4795 {
4796         sector_t sectors;
4797         int err;
4798
4799         err = mddev_lock(mddev);
4800         if (err)
4801                 return err;
4802
4803         if (strncmp(buf, "default", 7) == 0) {
4804                 if (mddev->pers)
4805                         sectors = mddev->pers->size(mddev, 0, 0);
4806                 else
4807                         sectors = mddev->array_sectors;
4808
4809                 mddev->external_size = 0;
4810         } else {
4811                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4812                         err = -EINVAL;
4813                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4814                         err = -E2BIG;
4815                 else
4816                         mddev->external_size = 1;
4817         }
4818
4819         if (!err) {
4820                 mddev->array_sectors = sectors;
4821                 if (mddev->pers) {
4822                         set_capacity(mddev->gendisk, mddev->array_sectors);
4823                         revalidate_disk(mddev->gendisk);
4824                 }
4825         }
4826         mddev_unlock(mddev);
4827         return err ?: len;
4828 }
4829
4830 static struct md_sysfs_entry md_array_size =
4831 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4832        array_size_store);
4833
4834 static struct attribute *md_default_attrs[] = {
4835         &md_level.attr,
4836         &md_layout.attr,
4837         &md_raid_disks.attr,
4838         &md_chunk_size.attr,
4839         &md_size.attr,
4840         &md_resync_start.attr,
4841         &md_metadata.attr,
4842         &md_new_device.attr,
4843         &md_safe_delay.attr,
4844         &md_array_state.attr,
4845         &md_reshape_position.attr,
4846         &md_reshape_direction.attr,
4847         &md_array_size.attr,
4848         &max_corr_read_errors.attr,
4849         NULL,
4850 };
4851
4852 static struct attribute *md_redundancy_attrs[] = {
4853         &md_scan_mode.attr,
4854         &md_last_scan_mode.attr,
4855         &md_mismatches.attr,
4856         &md_sync_min.attr,
4857         &md_sync_max.attr,
4858         &md_sync_speed.attr,
4859         &md_sync_force_parallel.attr,
4860         &md_sync_completed.attr,
4861         &md_min_sync.attr,
4862         &md_max_sync.attr,
4863         &md_suspend_lo.attr,
4864         &md_suspend_hi.attr,
4865         &md_bitmap.attr,
4866         &md_degraded.attr,
4867         NULL,
4868 };
4869 static struct attribute_group md_redundancy_group = {
4870         .name = NULL,
4871         .attrs = md_redundancy_attrs,
4872 };
4873
4874 static ssize_t
4875 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4876 {
4877         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4878         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4879         ssize_t rv;
4880
4881         if (!entry->show)
4882                 return -EIO;
4883         spin_lock(&all_mddevs_lock);
4884         if (list_empty(&mddev->all_mddevs)) {
4885                 spin_unlock(&all_mddevs_lock);
4886                 return -EBUSY;
4887         }
4888         mddev_get(mddev);
4889         spin_unlock(&all_mddevs_lock);
4890
4891         rv = entry->show(mddev, page);
4892         mddev_put(mddev);
4893         return rv;
4894 }
4895
4896 static ssize_t
4897 md_attr_store(struct kobject *kobj, struct attribute *attr,
4898               const char *page, size_t length)
4899 {
4900         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4901         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4902         ssize_t rv;
4903
4904         if (!entry->store)
4905                 return -EIO;
4906         if (!capable(CAP_SYS_ADMIN))
4907                 return -EACCES;
4908         spin_lock(&all_mddevs_lock);
4909         if (list_empty(&mddev->all_mddevs)) {
4910                 spin_unlock(&all_mddevs_lock);
4911                 return -EBUSY;
4912         }
4913         mddev_get(mddev);
4914         spin_unlock(&all_mddevs_lock);
4915         rv = entry->store(mddev, page, length);
4916         mddev_put(mddev);
4917         return rv;
4918 }
4919
4920 static void md_free(struct kobject *ko)
4921 {
4922         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4923
4924         if (mddev->sysfs_state)
4925                 sysfs_put(mddev->sysfs_state);
4926
4927         if (mddev->queue)
4928                 blk_cleanup_queue(mddev->queue);
4929         if (mddev->gendisk) {
4930                 del_gendisk(mddev->gendisk);
4931                 put_disk(mddev->gendisk);
4932         }
4933
4934         kfree(mddev);
4935 }
4936
4937 static const struct sysfs_ops md_sysfs_ops = {
4938         .show   = md_attr_show,
4939         .store  = md_attr_store,
4940 };
4941 static struct kobj_type md_ktype = {
4942         .release        = md_free,
4943         .sysfs_ops      = &md_sysfs_ops,
4944         .default_attrs  = md_default_attrs,
4945 };
4946
4947 int mdp_major = 0;
4948
4949 static void mddev_delayed_delete(struct work_struct *ws)
4950 {
4951         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4952
4953         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4954         kobject_del(&mddev->kobj);
4955         kobject_put(&mddev->kobj);
4956 }
4957
4958 static int md_alloc(dev_t dev, char *name)
4959 {
4960         static DEFINE_MUTEX(disks_mutex);
4961         struct mddev *mddev = mddev_find(dev);
4962         struct gendisk *disk;
4963         int partitioned;
4964         int shift;
4965         int unit;
4966         int error;
4967
4968         if (!mddev)
4969                 return -ENODEV;
4970
4971         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4972         shift = partitioned ? MdpMinorShift : 0;
4973         unit = MINOR(mddev->unit) >> shift;
4974
4975         /* wait for any previous instance of this device to be
4976          * completely removed (mddev_delayed_delete).
4977          */
4978         flush_workqueue(md_misc_wq);
4979
4980         mutex_lock(&disks_mutex);
4981         error = -EEXIST;
4982         if (mddev->gendisk)
4983                 goto abort;
4984
4985         if (name) {
4986                 /* Need to ensure that 'name' is not a duplicate.
4987                  */
4988                 struct mddev *mddev2;
4989                 spin_lock(&all_mddevs_lock);
4990
4991                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4992                         if (mddev2->gendisk &&
4993                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4994                                 spin_unlock(&all_mddevs_lock);
4995                                 goto abort;
4996                         }
4997                 spin_unlock(&all_mddevs_lock);
4998         }
4999
5000         error = -ENOMEM;
5001         mddev->queue = blk_alloc_queue(GFP_KERNEL);
5002         if (!mddev->queue)
5003                 goto abort;
5004         mddev->queue->queuedata = mddev;
5005
5006         blk_queue_make_request(mddev->queue, md_make_request);
5007         blk_set_stacking_limits(&mddev->queue->limits);
5008
5009         disk = alloc_disk(1 << shift);
5010         if (!disk) {
5011                 blk_cleanup_queue(mddev->queue);
5012                 mddev->queue = NULL;
5013                 goto abort;
5014         }
5015         disk->major = MAJOR(mddev->unit);
5016         disk->first_minor = unit << shift;
5017         if (name)
5018                 strcpy(disk->disk_name, name);
5019         else if (partitioned)
5020                 sprintf(disk->disk_name, "md_d%d", unit);
5021         else
5022                 sprintf(disk->disk_name, "md%d", unit);
5023         disk->fops = &md_fops;
5024         disk->private_data = mddev;
5025         disk->queue = mddev->queue;
5026         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5027         /* Allow extended partitions.  This makes the
5028          * 'mdp' device redundant, but we can't really
5029          * remove it now.
5030          */
5031         disk->flags |= GENHD_FL_EXT_DEVT;
5032         mddev->gendisk = disk;
5033         /* As soon as we call add_disk(), another thread could get
5034          * through to md_open, so make sure it doesn't get too far
5035          */
5036         mutex_lock(&mddev->open_mutex);
5037         add_disk(disk);
5038
5039         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5040                                      &disk_to_dev(disk)->kobj, "%s", "md");
5041         if (error) {
5042                 /* This isn't possible, but as kobject_init_and_add is marked
5043                  * __must_check, we must do something with the result
5044                  */
5045                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5046                        disk->disk_name);
5047                 error = 0;
5048         }
5049         if (mddev->kobj.sd &&
5050             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5051                 printk(KERN_DEBUG "pointless warning\n");
5052         mutex_unlock(&mddev->open_mutex);
5053  abort:
5054         mutex_unlock(&disks_mutex);
5055         if (!error && mddev->kobj.sd) {
5056                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5057                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5058         }
5059         mddev_put(mddev);
5060         return error;
5061 }
5062
5063 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5064 {
5065         md_alloc(dev, NULL);
5066         return NULL;
5067 }
5068
5069 static int add_named_array(const char *val, struct kernel_param *kp)
5070 {
5071         /* val must be "md_*" where * is not all digits.
5072          * We allocate an array with a large free minor number, and
5073          * set the name to val.  val must not already be an active name.
5074          */
5075         int len = strlen(val);
5076         char buf[DISK_NAME_LEN];
5077
5078         while (len && val[len-1] == '\n')
5079                 len--;
5080         if (len >= DISK_NAME_LEN)
5081                 return -E2BIG;
5082         strlcpy(buf, val, len+1);
5083         if (strncmp(buf, "md_", 3) != 0)
5084                 return -EINVAL;
5085         return md_alloc(0, buf);
5086 }
5087
5088 static void md_safemode_timeout(unsigned long data)
5089 {
5090         struct mddev *mddev = (struct mddev *) data;
5091
5092         if (!atomic_read(&mddev->writes_pending)) {
5093                 mddev->safemode = 1;
5094                 if (mddev->external)
5095                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5096         }
5097         md_wakeup_thread(mddev->thread);
5098 }
5099
5100 static int start_dirty_degraded;
5101
5102 int md_run(struct mddev *mddev)
5103 {
5104         int err;
5105         struct md_rdev *rdev;
5106         struct md_personality *pers;
5107
5108         if (list_empty(&mddev->disks))
5109                 /* cannot run an array with no devices.. */
5110                 return -EINVAL;
5111
5112         if (mddev->pers)
5113                 return -EBUSY;
5114         /* Cannot run until previous stop completes properly */
5115         if (mddev->sysfs_active)
5116                 return -EBUSY;
5117
5118         /*
5119          * Analyze all RAID superblock(s)
5120          */
5121         if (!mddev->raid_disks) {
5122                 if (!mddev->persistent)
5123                         return -EINVAL;
5124                 analyze_sbs(mddev);
5125         }
5126
5127         if (mddev->level != LEVEL_NONE)
5128                 request_module("md-level-%d", mddev->level);
5129         else if (mddev->clevel[0])
5130                 request_module("md-%s", mddev->clevel);
5131
5132         /*
5133          * Drop all container device buffers, from now on
5134          * the only valid external interface is through the md
5135          * device.
5136          */
5137         rdev_for_each(rdev, mddev) {
5138                 if (test_bit(Faulty, &rdev->flags))
5139                         continue;
5140                 sync_blockdev(rdev->bdev);
5141                 invalidate_bdev(rdev->bdev);
5142
5143                 /* perform some consistency tests on the device.
5144                  * We don't want the data to overlap the metadata,
5145                  * Internal Bitmap issues have been handled elsewhere.
5146                  */
5147                 if (rdev->meta_bdev) {
5148                         /* Nothing to check */;
5149                 } else if (rdev->data_offset < rdev->sb_start) {
5150                         if (mddev->dev_sectors &&
5151                             rdev->data_offset + mddev->dev_sectors
5152                             > rdev->sb_start) {
5153                                 printk("md: %s: data overlaps metadata\n",
5154                                        mdname(mddev));
5155                                 return -EINVAL;
5156                         }
5157                 } else {
5158                         if (rdev->sb_start + rdev->sb_size/512
5159                             > rdev->data_offset) {
5160                                 printk("md: %s: metadata overlaps data\n",
5161                                        mdname(mddev));
5162                                 return -EINVAL;
5163                         }
5164                 }
5165                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5166         }
5167
5168         if (mddev->bio_set == NULL)
5169                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5170
5171         spin_lock(&pers_lock);
5172         pers = find_pers(mddev->level, mddev->clevel);
5173         if (!pers || !try_module_get(pers->owner)) {
5174                 spin_unlock(&pers_lock);
5175                 if (mddev->level != LEVEL_NONE)
5176                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5177                                mddev->level);
5178                 else
5179                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5180                                mddev->clevel);
5181                 return -EINVAL;
5182         }
5183         spin_unlock(&pers_lock);
5184         if (mddev->level != pers->level) {
5185                 mddev->level = pers->level;
5186                 mddev->new_level = pers->level;
5187         }
5188         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5189
5190         if (mddev->reshape_position != MaxSector &&
5191             pers->start_reshape == NULL) {
5192                 /* This personality cannot handle reshaping... */
5193                 module_put(pers->owner);
5194                 return -EINVAL;
5195         }
5196
5197         if (pers->sync_request) {
5198                 /* Warn if this is a potentially silly
5199                  * configuration.
5200                  */
5201                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5202                 struct md_rdev *rdev2;
5203                 int warned = 0;
5204
5205                 rdev_for_each(rdev, mddev)
5206                         rdev_for_each(rdev2, mddev) {
5207                                 if (rdev < rdev2 &&
5208                                     rdev->bdev->bd_contains ==
5209                                     rdev2->bdev->bd_contains) {
5210                                         printk(KERN_WARNING
5211                                                "%s: WARNING: %s appears to be"
5212                                                " on the same physical disk as"
5213                                                " %s.\n",
5214                                                mdname(mddev),
5215                                                bdevname(rdev->bdev,b),
5216                                                bdevname(rdev2->bdev,b2));
5217                                         warned = 1;
5218                                 }
5219                         }
5220
5221                 if (warned)
5222                         printk(KERN_WARNING
5223                                "True protection against single-disk"
5224                                " failure might be compromised.\n");
5225         }
5226
5227         mddev->recovery = 0;
5228         /* may be over-ridden by personality */
5229         mddev->resync_max_sectors = mddev->dev_sectors;
5230
5231         mddev->ok_start_degraded = start_dirty_degraded;
5232
5233         if (start_readonly && mddev->ro == 0)
5234                 mddev->ro = 2; /* read-only, but switch on first write */
5235
5236         err = pers->run(mddev);
5237         if (err)
5238                 printk(KERN_ERR "md: pers->run() failed ...\n");
5239         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5240                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5241                           " but 'external_size' not in effect?\n", __func__);
5242                 printk(KERN_ERR
5243                        "md: invalid array_size %llu > default size %llu\n",
5244                        (unsigned long long)mddev->array_sectors / 2,
5245                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5246                 err = -EINVAL;
5247         }
5248         if (err == 0 && pers->sync_request &&
5249             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5250                 struct bitmap *bitmap;
5251
5252                 bitmap = bitmap_create(mddev, -1);
5253                 if (IS_ERR(bitmap)) {
5254                         err = PTR_ERR(bitmap);
5255                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5256                                mdname(mddev), err);
5257                 } else
5258                         mddev->bitmap = bitmap;
5259
5260         }
5261         if (err) {
5262                 mddev_detach(mddev);
5263                 if (mddev->private)
5264                         pers->free(mddev, mddev->private);
5265                 mddev->private = NULL;
5266                 module_put(pers->owner);
5267                 bitmap_destroy(mddev);
5268                 return err;
5269         }
5270         if (mddev->queue) {
5271                 mddev->queue->backing_dev_info.congested_data = mddev;
5272                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5273         }
5274         if (pers->sync_request) {
5275                 if (mddev->kobj.sd &&
5276                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5277                         printk(KERN_WARNING
5278                                "md: cannot register extra attributes for %s\n",
5279                                mdname(mddev));
5280                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5281         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5282                 mddev->ro = 0;
5283
5284         atomic_set(&mddev->writes_pending,0);
5285         atomic_set(&mddev->max_corr_read_errors,
5286                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5287         mddev->safemode = 0;
5288         if (mddev_is_clustered(mddev))
5289                 mddev->safemode_delay = 0;
5290         else
5291                 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5292         mddev->in_sync = 1;
5293         smp_wmb();
5294         spin_lock(&mddev->lock);
5295         mddev->pers = pers;
5296         mddev->ready = 1;
5297         spin_unlock(&mddev->lock);
5298         rdev_for_each(rdev, mddev)
5299                 if (rdev->raid_disk >= 0)
5300                         if (sysfs_link_rdev(mddev, rdev))
5301                                 /* failure here is OK */;
5302
5303         if (mddev->degraded && !mddev->ro)
5304                 /* This ensures that recovering status is reported immediately
5305                  * via sysfs - until a lack of spares is confirmed.
5306                  */
5307                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5308         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5309
5310         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5311                 md_update_sb(mddev, 0);
5312
5313         md_new_event(mddev);
5314         sysfs_notify_dirent_safe(mddev->sysfs_state);
5315         sysfs_notify_dirent_safe(mddev->sysfs_action);
5316         sysfs_notify(&mddev->kobj, NULL, "degraded");
5317         return 0;
5318 }
5319 EXPORT_SYMBOL_GPL(md_run);
5320
5321 static int do_md_run(struct mddev *mddev)
5322 {
5323         int err;
5324
5325         err = md_run(mddev);
5326         if (err)
5327                 goto out;
5328         err = bitmap_load(mddev);
5329         if (err) {
5330                 bitmap_destroy(mddev);
5331                 goto out;
5332         }
5333
5334         if (mddev_is_clustered(mddev))
5335                 md_allow_write(mddev);
5336
5337         md_wakeup_thread(mddev->thread);
5338         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5339
5340         set_capacity(mddev->gendisk, mddev->array_sectors);
5341         revalidate_disk(mddev->gendisk);
5342         mddev->changed = 1;
5343         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5344 out:
5345         return err;
5346 }
5347
5348 static int restart_array(struct mddev *mddev)
5349 {
5350         struct gendisk *disk = mddev->gendisk;
5351
5352         /* Complain if it has no devices */
5353         if (list_empty(&mddev->disks))
5354                 return -ENXIO;
5355         if (!mddev->pers)
5356                 return -EINVAL;
5357         if (!mddev->ro)
5358                 return -EBUSY;
5359         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5360                 struct md_rdev *rdev;
5361                 bool has_journal = false;
5362
5363                 rcu_read_lock();
5364                 rdev_for_each_rcu(rdev, mddev) {
5365                         if (test_bit(Journal, &rdev->flags) &&
5366                             !test_bit(Faulty, &rdev->flags)) {
5367                                 has_journal = true;
5368                                 break;
5369                         }
5370                 }
5371                 rcu_read_unlock();
5372
5373                 /* Don't restart rw with journal missing/faulty */
5374                 if (!has_journal)
5375                         return -EINVAL;
5376         }
5377
5378         mddev->safemode = 0;
5379         mddev->ro = 0;
5380         set_disk_ro(disk, 0);
5381         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5382                 mdname(mddev));
5383         /* Kick recovery or resync if necessary */
5384         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5385         md_wakeup_thread(mddev->thread);
5386         md_wakeup_thread(mddev->sync_thread);
5387         sysfs_notify_dirent_safe(mddev->sysfs_state);
5388         return 0;
5389 }
5390
5391 static void md_clean(struct mddev *mddev)
5392 {
5393         mddev->array_sectors = 0;
5394         mddev->external_size = 0;
5395         mddev->dev_sectors = 0;
5396         mddev->raid_disks = 0;
5397         mddev->recovery_cp = 0;
5398         mddev->resync_min = 0;
5399         mddev->resync_max = MaxSector;
5400         mddev->reshape_position = MaxSector;
5401         mddev->external = 0;
5402         mddev->persistent = 0;
5403         mddev->level = LEVEL_NONE;
5404         mddev->clevel[0] = 0;
5405         mddev->flags = 0;
5406         mddev->ro = 0;
5407         mddev->metadata_type[0] = 0;
5408         mddev->chunk_sectors = 0;
5409         mddev->ctime = mddev->utime = 0;
5410         mddev->layout = 0;
5411         mddev->max_disks = 0;
5412         mddev->events = 0;
5413         mddev->can_decrease_events = 0;
5414         mddev->delta_disks = 0;
5415         mddev->reshape_backwards = 0;
5416         mddev->new_level = LEVEL_NONE;
5417         mddev->new_layout = 0;
5418         mddev->new_chunk_sectors = 0;
5419         mddev->curr_resync = 0;
5420         atomic64_set(&mddev->resync_mismatches, 0);
5421         mddev->suspend_lo = mddev->suspend_hi = 0;
5422         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5423         mddev->recovery = 0;
5424         mddev->in_sync = 0;
5425         mddev->changed = 0;
5426         mddev->degraded = 0;
5427         mddev->safemode = 0;
5428         mddev->private = NULL;
5429         mddev->bitmap_info.offset = 0;
5430         mddev->bitmap_info.default_offset = 0;
5431         mddev->bitmap_info.default_space = 0;
5432         mddev->bitmap_info.chunksize = 0;
5433         mddev->bitmap_info.daemon_sleep = 0;
5434         mddev->bitmap_info.max_write_behind = 0;
5435 }
5436
5437 static void __md_stop_writes(struct mddev *mddev)
5438 {
5439         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5440         flush_workqueue(md_misc_wq);
5441         if (mddev->sync_thread) {
5442                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5443                 md_reap_sync_thread(mddev);
5444         }
5445
5446         del_timer_sync(&mddev->safemode_timer);
5447
5448         bitmap_flush(mddev);
5449         md_super_wait(mddev);
5450
5451         if (mddev->ro == 0 &&
5452             ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5453              (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5454                 /* mark array as shutdown cleanly */
5455                 if (!mddev_is_clustered(mddev))
5456                         mddev->in_sync = 1;
5457                 md_update_sb(mddev, 1);
5458         }
5459 }
5460
5461 void md_stop_writes(struct mddev *mddev)
5462 {
5463         mddev_lock_nointr(mddev);
5464         __md_stop_writes(mddev);
5465         mddev_unlock(mddev);
5466 }
5467 EXPORT_SYMBOL_GPL(md_stop_writes);
5468
5469 static void mddev_detach(struct mddev *mddev)
5470 {
5471         struct bitmap *bitmap = mddev->bitmap;
5472         /* wait for behind writes to complete */
5473         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5474                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5475                        mdname(mddev));
5476                 /* need to kick something here to make sure I/O goes? */
5477                 wait_event(bitmap->behind_wait,
5478                            atomic_read(&bitmap->behind_writes) == 0);
5479         }
5480         if (mddev->pers && mddev->pers->quiesce) {
5481                 mddev->pers->quiesce(mddev, 1);
5482                 mddev->pers->quiesce(mddev, 0);
5483         }
5484         md_unregister_thread(&mddev->thread);
5485         if (mddev->queue)
5486                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5487 }
5488
5489 static void __md_stop(struct mddev *mddev)
5490 {
5491         struct md_personality *pers = mddev->pers;
5492         mddev_detach(mddev);
5493         /* Ensure ->event_work is done */
5494         flush_workqueue(md_misc_wq);
5495         spin_lock(&mddev->lock);
5496         mddev->ready = 0;
5497         mddev->pers = NULL;
5498         spin_unlock(&mddev->lock);
5499         pers->free(mddev, mddev->private);
5500         mddev->private = NULL;
5501         if (pers->sync_request && mddev->to_remove == NULL)
5502                 mddev->to_remove = &md_redundancy_group;
5503         module_put(pers->owner);
5504         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5505 }
5506
5507 void md_stop(struct mddev *mddev)
5508 {
5509         /* stop the array and free an attached data structures.
5510          * This is called from dm-raid
5511          */
5512         __md_stop(mddev);
5513         bitmap_destroy(mddev);
5514         if (mddev->bio_set)
5515                 bioset_free(mddev->bio_set);
5516 }
5517
5518 EXPORT_SYMBOL_GPL(md_stop);
5519
5520 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5521 {
5522         int err = 0;
5523         int did_freeze = 0;
5524
5525         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5526                 did_freeze = 1;
5527                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5528                 md_wakeup_thread(mddev->thread);
5529         }
5530         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5531                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5532         if (mddev->sync_thread)
5533                 /* Thread might be blocked waiting for metadata update
5534                  * which will now never happen */
5535                 wake_up_process(mddev->sync_thread->tsk);
5536
5537         if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5538                 return -EBUSY;
5539         mddev_unlock(mddev);
5540         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5541                                           &mddev->recovery));
5542         wait_event(mddev->sb_wait,
5543                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5544         mddev_lock_nointr(mddev);
5545
5546         mutex_lock(&mddev->open_mutex);
5547         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5548             mddev->sync_thread ||
5549             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5550             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5551                 printk("md: %s still in use.\n",mdname(mddev));
5552                 if (did_freeze) {
5553                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5554                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5555                         md_wakeup_thread(mddev->thread);
5556                 }
5557                 err = -EBUSY;
5558                 goto out;
5559         }
5560         if (mddev->pers) {
5561                 __md_stop_writes(mddev);
5562
5563                 err  = -ENXIO;
5564                 if (mddev->ro==1)
5565                         goto out;
5566                 mddev->ro = 1;
5567                 set_disk_ro(mddev->gendisk, 1);
5568                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5569                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5570                 md_wakeup_thread(mddev->thread);
5571                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5572                 err = 0;
5573         }
5574 out:
5575         mutex_unlock(&mddev->open_mutex);
5576         return err;
5577 }
5578
5579 /* mode:
5580  *   0 - completely stop and dis-assemble array
5581  *   2 - stop but do not disassemble array
5582  */
5583 static int do_md_stop(struct mddev *mddev, int mode,
5584                       struct block_device *bdev)
5585 {
5586         struct gendisk *disk = mddev->gendisk;
5587         struct md_rdev *rdev;
5588         int did_freeze = 0;
5589
5590         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5591                 did_freeze = 1;
5592                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5593                 md_wakeup_thread(mddev->thread);
5594         }
5595         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5596                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5597         if (mddev->sync_thread)
5598                 /* Thread might be blocked waiting for metadata update
5599                  * which will now never happen */
5600                 wake_up_process(mddev->sync_thread->tsk);
5601
5602         mddev_unlock(mddev);
5603         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5604                                  !test_bit(MD_RECOVERY_RUNNING,
5605                                            &mddev->recovery)));
5606         mddev_lock_nointr(mddev);
5607
5608         mutex_lock(&mddev->open_mutex);
5609         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5610             mddev->sysfs_active ||
5611             mddev->sync_thread ||
5612             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5613             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5614                 printk("md: %s still in use.\n",mdname(mddev));
5615                 mutex_unlock(&mddev->open_mutex);
5616                 if (did_freeze) {
5617                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5618                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5619                         md_wakeup_thread(mddev->thread);
5620                 }
5621                 return -EBUSY;
5622         }
5623         if (mddev->pers) {
5624                 if (mddev->ro)
5625                         set_disk_ro(disk, 0);
5626
5627                 __md_stop_writes(mddev);
5628                 __md_stop(mddev);
5629                 mddev->queue->backing_dev_info.congested_fn = NULL;
5630
5631                 /* tell userspace to handle 'inactive' */
5632                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5633
5634                 rdev_for_each(rdev, mddev)
5635                         if (rdev->raid_disk >= 0)
5636                                 sysfs_unlink_rdev(mddev, rdev);
5637
5638                 set_capacity(disk, 0);
5639                 mutex_unlock(&mddev->open_mutex);
5640                 mddev->changed = 1;
5641                 revalidate_disk(disk);
5642
5643                 if (mddev->ro)
5644                         mddev->ro = 0;
5645         } else
5646                 mutex_unlock(&mddev->open_mutex);
5647         /*
5648          * Free resources if final stop
5649          */
5650         if (mode == 0) {
5651                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5652
5653                 bitmap_destroy(mddev);
5654                 if (mddev->bitmap_info.file) {
5655                         struct file *f = mddev->bitmap_info.file;
5656                         spin_lock(&mddev->lock);
5657                         mddev->bitmap_info.file = NULL;
5658                         spin_unlock(&mddev->lock);
5659                         fput(f);
5660                 }
5661                 mddev->bitmap_info.offset = 0;
5662
5663                 export_array(mddev);
5664
5665                 md_clean(mddev);
5666                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5667                 if (mddev->hold_active == UNTIL_STOP)
5668                         mddev->hold_active = 0;
5669         }
5670         md_new_event(mddev);
5671         sysfs_notify_dirent_safe(mddev->sysfs_state);
5672         return 0;
5673 }
5674
5675 #ifndef MODULE
5676 static void autorun_array(struct mddev *mddev)
5677 {
5678         struct md_rdev *rdev;
5679         int err;
5680
5681         if (list_empty(&mddev->disks))
5682                 return;
5683
5684         printk(KERN_INFO "md: running: ");
5685
5686         rdev_for_each(rdev, mddev) {
5687                 char b[BDEVNAME_SIZE];
5688                 printk("<%s>", bdevname(rdev->bdev,b));
5689         }
5690         printk("\n");
5691
5692         err = do_md_run(mddev);
5693         if (err) {
5694                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5695                 do_md_stop(mddev, 0, NULL);
5696         }
5697 }
5698
5699 /*
5700  * lets try to run arrays based on all disks that have arrived
5701  * until now. (those are in pending_raid_disks)
5702  *
5703  * the method: pick the first pending disk, collect all disks with
5704  * the same UUID, remove all from the pending list and put them into
5705  * the 'same_array' list. Then order this list based on superblock
5706  * update time (freshest comes first), kick out 'old' disks and
5707  * compare superblocks. If everything's fine then run it.
5708  *
5709  * If "unit" is allocated, then bump its reference count
5710  */
5711 static void autorun_devices(int part)
5712 {
5713         struct md_rdev *rdev0, *rdev, *tmp;
5714         struct mddev *mddev;
5715         char b[BDEVNAME_SIZE];
5716
5717         printk(KERN_INFO "md: autorun ...\n");
5718         while (!list_empty(&pending_raid_disks)) {
5719                 int unit;
5720                 dev_t dev;
5721                 LIST_HEAD(candidates);
5722                 rdev0 = list_entry(pending_raid_disks.next,
5723                                          struct md_rdev, same_set);
5724
5725                 printk(KERN_INFO "md: considering %s ...\n",
5726                         bdevname(rdev0->bdev,b));
5727                 INIT_LIST_HEAD(&candidates);
5728                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5729                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5730                                 printk(KERN_INFO "md:  adding %s ...\n",
5731                                         bdevname(rdev->bdev,b));
5732                                 list_move(&rdev->same_set, &candidates);
5733                         }
5734                 /*
5735                  * now we have a set of devices, with all of them having
5736                  * mostly sane superblocks. It's time to allocate the
5737                  * mddev.
5738                  */
5739                 if (part) {
5740                         dev = MKDEV(mdp_major,
5741                                     rdev0->preferred_minor << MdpMinorShift);
5742                         unit = MINOR(dev) >> MdpMinorShift;
5743                 } else {
5744                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5745                         unit = MINOR(dev);
5746                 }
5747                 if (rdev0->preferred_minor != unit) {
5748                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5749                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5750                         break;
5751                 }
5752
5753                 md_probe(dev, NULL, NULL);
5754                 mddev = mddev_find(dev);
5755                 if (!mddev || !mddev->gendisk) {
5756                         if (mddev)
5757                                 mddev_put(mddev);
5758                         printk(KERN_ERR
5759                                 "md: cannot allocate memory for md drive.\n");
5760                         break;
5761                 }
5762                 if (mddev_lock(mddev))
5763                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5764                                mdname(mddev));
5765                 else if (mddev->raid_disks || mddev->major_version
5766                          || !list_empty(&mddev->disks)) {
5767                         printk(KERN_WARNING
5768                                 "md: %s already running, cannot run %s\n",
5769                                 mdname(mddev), bdevname(rdev0->bdev,b));
5770                         mddev_unlock(mddev);
5771                 } else {
5772                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5773                         mddev->persistent = 1;
5774                         rdev_for_each_list(rdev, tmp, &candidates) {
5775                                 list_del_init(&rdev->same_set);
5776                                 if (bind_rdev_to_array(rdev, mddev))
5777                                         export_rdev(rdev);
5778                         }
5779                         autorun_array(mddev);
5780                         mddev_unlock(mddev);
5781                 }
5782                 /* on success, candidates will be empty, on error
5783                  * it won't...
5784                  */
5785                 rdev_for_each_list(rdev, tmp, &candidates) {
5786                         list_del_init(&rdev->same_set);
5787                         export_rdev(rdev);
5788                 }
5789                 mddev_put(mddev);
5790         }
5791         printk(KERN_INFO "md: ... autorun DONE.\n");
5792 }
5793 #endif /* !MODULE */
5794
5795 static int get_version(void __user *arg)
5796 {
5797         mdu_version_t ver;
5798
5799         ver.major = MD_MAJOR_VERSION;
5800         ver.minor = MD_MINOR_VERSION;
5801         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5802
5803         if (copy_to_user(arg, &ver, sizeof(ver)))
5804                 return -EFAULT;
5805
5806         return 0;
5807 }
5808
5809 static int get_array_info(struct mddev *mddev, void __user *arg)
5810 {
5811         mdu_array_info_t info;
5812         int nr,working,insync,failed,spare;
5813         struct md_rdev *rdev;
5814
5815         nr = working = insync = failed = spare = 0;
5816         rcu_read_lock();
5817         rdev_for_each_rcu(rdev, mddev) {
5818                 nr++;
5819                 if (test_bit(Faulty, &rdev->flags))
5820                         failed++;
5821                 else {
5822                         working++;
5823                         if (test_bit(In_sync, &rdev->flags))
5824                                 insync++;
5825                         else
5826                                 spare++;
5827                 }
5828         }
5829         rcu_read_unlock();
5830
5831         info.major_version = mddev->major_version;
5832         info.minor_version = mddev->minor_version;
5833         info.patch_version = MD_PATCHLEVEL_VERSION;
5834         info.ctime         = mddev->ctime;
5835         info.level         = mddev->level;
5836         info.size          = mddev->dev_sectors / 2;
5837         if (info.size != mddev->dev_sectors / 2) /* overflow */
5838                 info.size = -1;
5839         info.nr_disks      = nr;
5840         info.raid_disks    = mddev->raid_disks;
5841         info.md_minor      = mddev->md_minor;
5842         info.not_persistent= !mddev->persistent;
5843
5844         info.utime         = mddev->utime;
5845         info.state         = 0;
5846         if (mddev->in_sync)
5847                 info.state = (1<<MD_SB_CLEAN);
5848         if (mddev->bitmap && mddev->bitmap_info.offset)
5849                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5850         if (mddev_is_clustered(mddev))
5851                 info.state |= (1<<MD_SB_CLUSTERED);
5852         info.active_disks  = insync;
5853         info.working_disks = working;
5854         info.failed_disks  = failed;
5855         info.spare_disks   = spare;
5856
5857         info.layout        = mddev->layout;
5858         info.chunk_size    = mddev->chunk_sectors << 9;
5859
5860         if (copy_to_user(arg, &info, sizeof(info)))
5861                 return -EFAULT;
5862
5863         return 0;
5864 }
5865
5866 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5867 {
5868         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5869         char *ptr;
5870         int err;
5871
5872         file = kzalloc(sizeof(*file), GFP_NOIO);
5873         if (!file)
5874                 return -ENOMEM;
5875
5876         err = 0;
5877         spin_lock(&mddev->lock);
5878         /* bitmap enabled */
5879         if (mddev->bitmap_info.file) {
5880                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5881                                 sizeof(file->pathname));
5882                 if (IS_ERR(ptr))
5883                         err = PTR_ERR(ptr);
5884                 else
5885                         memmove(file->pathname, ptr,
5886                                 sizeof(file->pathname)-(ptr-file->pathname));
5887         }
5888         spin_unlock(&mddev->lock);
5889
5890         if (err == 0 &&
5891             copy_to_user(arg, file, sizeof(*file)))
5892                 err = -EFAULT;
5893
5894         kfree(file);
5895         return err;
5896 }
5897
5898 static int get_disk_info(struct mddev *mddev, void __user * arg)
5899 {
5900         mdu_disk_info_t info;
5901         struct md_rdev *rdev;
5902
5903         if (copy_from_user(&info, arg, sizeof(info)))
5904                 return -EFAULT;
5905
5906         rcu_read_lock();
5907         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5908         if (rdev) {
5909                 info.major = MAJOR(rdev->bdev->bd_dev);
5910                 info.minor = MINOR(rdev->bdev->bd_dev);
5911                 info.raid_disk = rdev->raid_disk;
5912                 info.state = 0;
5913                 if (test_bit(Faulty, &rdev->flags))
5914                         info.state |= (1<<MD_DISK_FAULTY);
5915                 else if (test_bit(In_sync, &rdev->flags)) {
5916                         info.state |= (1<<MD_DISK_ACTIVE);
5917                         info.state |= (1<<MD_DISK_SYNC);
5918                 }
5919                 if (test_bit(Journal, &rdev->flags))
5920                         info.state |= (1<<MD_DISK_JOURNAL);
5921                 if (test_bit(WriteMostly, &rdev->flags))
5922                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5923         } else {
5924                 info.major = info.minor = 0;
5925                 info.raid_disk = -1;
5926                 info.state = (1<<MD_DISK_REMOVED);
5927         }
5928         rcu_read_unlock();
5929
5930         if (copy_to_user(arg, &info, sizeof(info)))
5931                 return -EFAULT;
5932
5933         return 0;
5934 }
5935
5936 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5937 {
5938         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5939         struct md_rdev *rdev;
5940         dev_t dev = MKDEV(info->major,info->minor);
5941
5942         if (mddev_is_clustered(mddev) &&
5943                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5944                 pr_err("%s: Cannot add to clustered mddev.\n",
5945                                mdname(mddev));
5946                 return -EINVAL;
5947         }
5948
5949         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5950                 return -EOVERFLOW;
5951
5952         if (!mddev->raid_disks) {
5953                 int err;
5954                 /* expecting a device which has a superblock */
5955                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5956                 if (IS_ERR(rdev)) {
5957                         printk(KERN_WARNING
5958                                 "md: md_import_device returned %ld\n",
5959                                 PTR_ERR(rdev));
5960                         return PTR_ERR(rdev);
5961                 }
5962                 if (!list_empty(&mddev->disks)) {
5963                         struct md_rdev *rdev0
5964                                 = list_entry(mddev->disks.next,
5965                                              struct md_rdev, same_set);
5966                         err = super_types[mddev->major_version]
5967                                 .load_super(rdev, rdev0, mddev->minor_version);
5968                         if (err < 0) {
5969                                 printk(KERN_WARNING
5970                                         "md: %s has different UUID to %s\n",
5971                                         bdevname(rdev->bdev,b),
5972                                         bdevname(rdev0->bdev,b2));
5973                                 export_rdev(rdev);
5974                                 return -EINVAL;
5975                         }
5976                 }
5977                 err = bind_rdev_to_array(rdev, mddev);
5978                 if (err)
5979                         export_rdev(rdev);
5980                 return err;
5981         }
5982
5983         /*
5984          * add_new_disk can be used once the array is assembled
5985          * to add "hot spares".  They must already have a superblock
5986          * written
5987          */
5988         if (mddev->pers) {
5989                 int err;
5990                 if (!mddev->pers->hot_add_disk) {
5991                         printk(KERN_WARNING
5992                                 "%s: personality does not support diskops!\n",
5993                                mdname(mddev));
5994                         return -EINVAL;
5995                 }
5996                 if (mddev->persistent)
5997                         rdev = md_import_device(dev, mddev->major_version,
5998                                                 mddev->minor_version);
5999                 else
6000                         rdev = md_import_device(dev, -1, -1);
6001                 if (IS_ERR(rdev)) {
6002                         printk(KERN_WARNING
6003                                 "md: md_import_device returned %ld\n",
6004                                 PTR_ERR(rdev));
6005                         return PTR_ERR(rdev);
6006                 }
6007                 /* set saved_raid_disk if appropriate */
6008                 if (!mddev->persistent) {
6009                         if (info->state & (1<<MD_DISK_SYNC)  &&
6010                             info->raid_disk < mddev->raid_disks) {
6011                                 rdev->raid_disk = info->raid_disk;
6012                                 set_bit(In_sync, &rdev->flags);
6013                                 clear_bit(Bitmap_sync, &rdev->flags);
6014                         } else
6015                                 rdev->raid_disk = -1;
6016                         rdev->saved_raid_disk = rdev->raid_disk;
6017                 } else
6018                         super_types[mddev->major_version].
6019                                 validate_super(mddev, rdev);
6020                 if ((info->state & (1<<MD_DISK_SYNC)) &&
6021                      rdev->raid_disk != info->raid_disk) {
6022                         /* This was a hot-add request, but events doesn't
6023                          * match, so reject it.
6024                          */
6025                         export_rdev(rdev);
6026                         return -EINVAL;
6027                 }
6028
6029                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6030                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6031                         set_bit(WriteMostly, &rdev->flags);
6032                 else
6033                         clear_bit(WriteMostly, &rdev->flags);
6034
6035                 if (info->state & (1<<MD_DISK_JOURNAL))
6036                         set_bit(Journal, &rdev->flags);
6037                 /*
6038                  * check whether the device shows up in other nodes
6039                  */
6040                 if (mddev_is_clustered(mddev)) {
6041                         if (info->state & (1 << MD_DISK_CANDIDATE))
6042                                 set_bit(Candidate, &rdev->flags);
6043                         else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6044                                 /* --add initiated by this node */
6045                                 err = md_cluster_ops->add_new_disk(mddev, rdev);
6046                                 if (err) {
6047                                         export_rdev(rdev);
6048                                         return err;
6049                                 }
6050                         }
6051                 }
6052
6053                 rdev->raid_disk = -1;
6054                 err = bind_rdev_to_array(rdev, mddev);
6055
6056                 if (err)
6057                         export_rdev(rdev);
6058
6059                 if (mddev_is_clustered(mddev)) {
6060                         if (info->state & (1 << MD_DISK_CANDIDATE))
6061                                 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6062                         else {
6063                                 if (err)
6064                                         md_cluster_ops->add_new_disk_cancel(mddev);
6065                                 else
6066                                         err = add_bound_rdev(rdev);
6067                         }
6068
6069                 } else if (!err)
6070                         err = add_bound_rdev(rdev);
6071
6072                 return err;
6073         }
6074
6075         /* otherwise, add_new_disk is only allowed
6076          * for major_version==0 superblocks
6077          */
6078         if (mddev->major_version != 0) {
6079                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6080                        mdname(mddev));
6081                 return -EINVAL;
6082         }
6083
6084         if (!(info->state & (1<<MD_DISK_FAULTY))) {
6085                 int err;
6086                 rdev = md_import_device(dev, -1, 0);
6087                 if (IS_ERR(rdev)) {
6088                         printk(KERN_WARNING
6089                                 "md: error, md_import_device() returned %ld\n",
6090                                 PTR_ERR(rdev));
6091                         return PTR_ERR(rdev);
6092                 }
6093                 rdev->desc_nr = info->number;
6094                 if (info->raid_disk < mddev->raid_disks)
6095                         rdev->raid_disk = info->raid_disk;
6096                 else
6097                         rdev->raid_disk = -1;
6098
6099                 if (rdev->raid_disk < mddev->raid_disks)
6100                         if (info->state & (1<<MD_DISK_SYNC))
6101                                 set_bit(In_sync, &rdev->flags);
6102
6103                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6104                         set_bit(WriteMostly, &rdev->flags);
6105
6106                 if (!mddev->persistent) {
6107                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
6108                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6109                 } else
6110                         rdev->sb_start = calc_dev_sboffset(rdev);
6111                 rdev->sectors = rdev->sb_start;
6112
6113                 err = bind_rdev_to_array(rdev, mddev);
6114                 if (err) {
6115                         export_rdev(rdev);
6116                         return err;
6117                 }
6118         }
6119
6120         return 0;
6121 }
6122
6123 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6124 {
6125         char b[BDEVNAME_SIZE];
6126         struct md_rdev *rdev;
6127         int ret = -1;
6128
6129         rdev = find_rdev(mddev, dev);
6130         if (!rdev)
6131                 return -ENXIO;
6132
6133         if (mddev_is_clustered(mddev))
6134                 ret = md_cluster_ops->metadata_update_start(mddev);
6135
6136         if (rdev->raid_disk < 0)
6137                 goto kick_rdev;
6138
6139         clear_bit(Blocked, &rdev->flags);
6140         remove_and_add_spares(mddev, rdev);
6141
6142         if (rdev->raid_disk >= 0)
6143                 goto busy;
6144
6145 kick_rdev:
6146         if (mddev_is_clustered(mddev) && ret == 0)
6147                 md_cluster_ops->remove_disk(mddev, rdev);
6148
6149         md_kick_rdev_from_array(rdev);
6150         md_update_sb(mddev, 1);
6151         md_new_event(mddev);
6152
6153         return 0;
6154 busy:
6155         if (mddev_is_clustered(mddev) && ret == 0)
6156                 md_cluster_ops->metadata_update_cancel(mddev);
6157
6158         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6159                 bdevname(rdev->bdev,b), mdname(mddev));
6160         return -EBUSY;
6161 }
6162
6163 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6164 {
6165         char b[BDEVNAME_SIZE];
6166         int err;
6167         struct md_rdev *rdev;
6168
6169         if (!mddev->pers)
6170                 return -ENODEV;
6171
6172         if (mddev->major_version != 0) {
6173                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6174                         " version-0 superblocks.\n",
6175                         mdname(mddev));
6176                 return -EINVAL;
6177         }
6178         if (!mddev->pers->hot_add_disk) {
6179                 printk(KERN_WARNING
6180                         "%s: personality does not support diskops!\n",
6181                         mdname(mddev));
6182                 return -EINVAL;
6183         }
6184
6185         rdev = md_import_device(dev, -1, 0);
6186         if (IS_ERR(rdev)) {
6187                 printk(KERN_WARNING
6188                         "md: error, md_import_device() returned %ld\n",
6189                         PTR_ERR(rdev));
6190                 return -EINVAL;
6191         }
6192
6193         if (mddev->persistent)
6194                 rdev->sb_start = calc_dev_sboffset(rdev);
6195         else
6196                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6197
6198         rdev->sectors = rdev->sb_start;
6199
6200         if (test_bit(Faulty, &rdev->flags)) {
6201                 printk(KERN_WARNING
6202                         "md: can not hot-add faulty %s disk to %s!\n",
6203                         bdevname(rdev->bdev,b), mdname(mddev));
6204                 err = -EINVAL;
6205                 goto abort_export;
6206         }
6207
6208         clear_bit(In_sync, &rdev->flags);
6209         rdev->desc_nr = -1;
6210         rdev->saved_raid_disk = -1;
6211         err = bind_rdev_to_array(rdev, mddev);
6212         if (err)
6213                 goto abort_export;
6214
6215         /*
6216          * The rest should better be atomic, we can have disk failures
6217          * noticed in interrupt contexts ...
6218          */
6219
6220         rdev->raid_disk = -1;
6221
6222         md_update_sb(mddev, 1);
6223         /*
6224          * Kick recovery, maybe this spare has to be added to the
6225          * array immediately.
6226          */
6227         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6228         md_wakeup_thread(mddev->thread);
6229         md_new_event(mddev);
6230         return 0;
6231
6232 abort_export:
6233         export_rdev(rdev);
6234         return err;
6235 }
6236
6237 static int set_bitmap_file(struct mddev *mddev, int fd)
6238 {
6239         int err = 0;
6240
6241         if (mddev->pers) {
6242                 if (!mddev->pers->quiesce || !mddev->thread)
6243                         return -EBUSY;
6244                 if (mddev->recovery || mddev->sync_thread)
6245                         return -EBUSY;
6246                 /* we should be able to change the bitmap.. */
6247         }
6248
6249         if (fd >= 0) {
6250                 struct inode *inode;
6251                 struct file *f;
6252
6253                 if (mddev->bitmap || mddev->bitmap_info.file)
6254                         return -EEXIST; /* cannot add when bitmap is present */
6255                 f = fget(fd);
6256
6257                 if (f == NULL) {
6258                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6259                                mdname(mddev));
6260                         return -EBADF;
6261                 }
6262
6263                 inode = f->f_mapping->host;
6264                 if (!S_ISREG(inode->i_mode)) {
6265                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6266                                mdname(mddev));
6267                         err = -EBADF;
6268                 } else if (!(f->f_mode & FMODE_WRITE)) {
6269                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6270                                mdname(mddev));
6271                         err = -EBADF;
6272                 } else if (atomic_read(&inode->i_writecount) != 1) {
6273                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6274                                mdname(mddev));
6275                         err = -EBUSY;
6276                 }
6277                 if (err) {
6278                         fput(f);
6279                         return err;
6280                 }
6281                 mddev->bitmap_info.file = f;
6282                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6283         } else if (mddev->bitmap == NULL)
6284                 return -ENOENT; /* cannot remove what isn't there */
6285         err = 0;
6286         if (mddev->pers) {
6287                 mddev->pers->quiesce(mddev, 1);
6288                 if (fd >= 0) {
6289                         struct bitmap *bitmap;
6290
6291                         bitmap = bitmap_create(mddev, -1);
6292                         if (!IS_ERR(bitmap)) {
6293                                 mddev->bitmap = bitmap;
6294                                 err = bitmap_load(mddev);
6295                         } else
6296                                 err = PTR_ERR(bitmap);
6297                 }
6298                 if (fd < 0 || err) {
6299                         bitmap_destroy(mddev);
6300                         fd = -1; /* make sure to put the file */
6301                 }
6302                 mddev->pers->quiesce(mddev, 0);
6303         }
6304         if (fd < 0) {
6305                 struct file *f = mddev->bitmap_info.file;
6306                 if (f) {
6307                         spin_lock(&mddev->lock);
6308                         mddev->bitmap_info.file = NULL;
6309                         spin_unlock(&mddev->lock);
6310                         fput(f);
6311                 }
6312         }
6313
6314         return err;
6315 }
6316
6317 /*
6318  * set_array_info is used two different ways
6319  * The original usage is when creating a new array.
6320  * In this usage, raid_disks is > 0 and it together with
6321  *  level, size, not_persistent,layout,chunksize determine the
6322  *  shape of the array.
6323  *  This will always create an array with a type-0.90.0 superblock.
6324  * The newer usage is when assembling an array.
6325  *  In this case raid_disks will be 0, and the major_version field is
6326  *  use to determine which style super-blocks are to be found on the devices.
6327  *  The minor and patch _version numbers are also kept incase the
6328  *  super_block handler wishes to interpret them.
6329  */
6330 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6331 {
6332
6333         if (info->raid_disks == 0) {
6334                 /* just setting version number for superblock loading */
6335                 if (info->major_version < 0 ||
6336                     info->major_version >= ARRAY_SIZE(super_types) ||
6337                     super_types[info->major_version].name == NULL) {
6338                         /* maybe try to auto-load a module? */
6339                         printk(KERN_INFO
6340                                 "md: superblock version %d not known\n",
6341                                 info->major_version);
6342                         return -EINVAL;
6343                 }
6344                 mddev->major_version = info->major_version;
6345                 mddev->minor_version = info->minor_version;
6346                 mddev->patch_version = info->patch_version;
6347                 mddev->persistent = !info->not_persistent;
6348                 /* ensure mddev_put doesn't delete this now that there
6349                  * is some minimal configuration.
6350                  */
6351                 mddev->ctime         = get_seconds();
6352                 return 0;
6353         }
6354         mddev->major_version = MD_MAJOR_VERSION;
6355         mddev->minor_version = MD_MINOR_VERSION;
6356         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6357         mddev->ctime         = get_seconds();
6358
6359         mddev->level         = info->level;
6360         mddev->clevel[0]     = 0;
6361         mddev->dev_sectors   = 2 * (sector_t)info->size;
6362         mddev->raid_disks    = info->raid_disks;
6363         /* don't set md_minor, it is determined by which /dev/md* was
6364          * openned
6365          */
6366         if (info->state & (1<<MD_SB_CLEAN))
6367                 mddev->recovery_cp = MaxSector;
6368         else
6369                 mddev->recovery_cp = 0;
6370         mddev->persistent    = ! info->not_persistent;
6371         mddev->external      = 0;
6372
6373         mddev->layout        = info->layout;
6374         mddev->chunk_sectors = info->chunk_size >> 9;
6375
6376         mddev->max_disks     = MD_SB_DISKS;
6377
6378         if (mddev->persistent)
6379                 mddev->flags         = 0;
6380         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6381
6382         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6383         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6384         mddev->bitmap_info.offset = 0;
6385
6386         mddev->reshape_position = MaxSector;
6387
6388         /*
6389          * Generate a 128 bit UUID
6390          */
6391         get_random_bytes(mddev->uuid, 16);
6392
6393         mddev->new_level = mddev->level;
6394         mddev->new_chunk_sectors = mddev->chunk_sectors;
6395         mddev->new_layout = mddev->layout;
6396         mddev->delta_disks = 0;
6397         mddev->reshape_backwards = 0;
6398
6399         return 0;
6400 }
6401
6402 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6403 {
6404         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6405
6406         if (mddev->external_size)
6407                 return;
6408
6409         mddev->array_sectors = array_sectors;
6410 }
6411 EXPORT_SYMBOL(md_set_array_sectors);
6412
6413 static int update_size(struct mddev *mddev, sector_t num_sectors)
6414 {
6415         struct md_rdev *rdev;
6416         int rv;
6417         int fit = (num_sectors == 0);
6418
6419         if (mddev->pers->resize == NULL)
6420                 return -EINVAL;
6421         /* The "num_sectors" is the number of sectors of each device that
6422          * is used.  This can only make sense for arrays with redundancy.
6423          * linear and raid0 always use whatever space is available. We can only
6424          * consider changing this number if no resync or reconstruction is
6425          * happening, and if the new size is acceptable. It must fit before the
6426          * sb_start or, if that is <data_offset, it must fit before the size
6427          * of each device.  If num_sectors is zero, we find the largest size
6428          * that fits.
6429          */
6430         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6431             mddev->sync_thread)
6432                 return -EBUSY;
6433         if (mddev->ro)
6434                 return -EROFS;
6435
6436         rdev_for_each(rdev, mddev) {
6437                 sector_t avail = rdev->sectors;
6438
6439                 if (fit && (num_sectors == 0 || num_sectors > avail))
6440                         num_sectors = avail;
6441                 if (avail < num_sectors)
6442                         return -ENOSPC;
6443         }
6444         rv = mddev->pers->resize(mddev, num_sectors);
6445         if (!rv)
6446                 revalidate_disk(mddev->gendisk);
6447         return rv;
6448 }
6449
6450 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6451 {
6452         int rv;
6453         struct md_rdev *rdev;
6454         /* change the number of raid disks */
6455         if (mddev->pers->check_reshape == NULL)
6456                 return -EINVAL;
6457         if (mddev->ro)
6458                 return -EROFS;
6459         if (raid_disks <= 0 ||
6460             (mddev->max_disks && raid_disks >= mddev->max_disks))
6461                 return -EINVAL;
6462         if (mddev->sync_thread ||
6463             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6464             mddev->reshape_position != MaxSector)
6465                 return -EBUSY;
6466
6467         rdev_for_each(rdev, mddev) {
6468                 if (mddev->raid_disks < raid_disks &&
6469                     rdev->data_offset < rdev->new_data_offset)
6470                         return -EINVAL;
6471                 if (mddev->raid_disks > raid_disks &&
6472                     rdev->data_offset > rdev->new_data_offset)
6473                         return -EINVAL;
6474         }
6475
6476         mddev->delta_disks = raid_disks - mddev->raid_disks;
6477         if (mddev->delta_disks < 0)
6478                 mddev->reshape_backwards = 1;
6479         else if (mddev->delta_disks > 0)
6480                 mddev->reshape_backwards = 0;
6481
6482         rv = mddev->pers->check_reshape(mddev);
6483         if (rv < 0) {
6484                 mddev->delta_disks = 0;
6485                 mddev->reshape_backwards = 0;
6486         }
6487         return rv;
6488 }
6489
6490 /*
6491  * update_array_info is used to change the configuration of an
6492  * on-line array.
6493  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6494  * fields in the info are checked against the array.
6495  * Any differences that cannot be handled will cause an error.
6496  * Normally, only one change can be managed at a time.
6497  */
6498 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6499 {
6500         int rv = 0;
6501         int cnt = 0;
6502         int state = 0;
6503
6504         /* calculate expected state,ignoring low bits */
6505         if (mddev->bitmap && mddev->bitmap_info.offset)
6506                 state |= (1 << MD_SB_BITMAP_PRESENT);
6507
6508         if (mddev->major_version != info->major_version ||
6509             mddev->minor_version != info->minor_version ||
6510 /*          mddev->patch_version != info->patch_version || */
6511             mddev->ctime         != info->ctime         ||
6512             mddev->level         != info->level         ||
6513 /*          mddev->layout        != info->layout        || */
6514             mddev->persistent    != !info->not_persistent ||
6515             mddev->chunk_sectors != info->chunk_size >> 9 ||
6516             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6517             ((state^info->state) & 0xfffffe00)
6518                 )
6519                 return -EINVAL;
6520         /* Check there is only one change */
6521         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6522                 cnt++;
6523         if (mddev->raid_disks != info->raid_disks)
6524                 cnt++;
6525         if (mddev->layout != info->layout)
6526                 cnt++;
6527         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6528                 cnt++;
6529         if (cnt == 0)
6530                 return 0;
6531         if (cnt > 1)
6532                 return -EINVAL;
6533
6534         if (mddev->layout != info->layout) {
6535                 /* Change layout
6536                  * we don't need to do anything at the md level, the
6537                  * personality will take care of it all.
6538                  */
6539                 if (mddev->pers->check_reshape == NULL)
6540                         return -EINVAL;
6541                 else {
6542                         mddev->new_layout = info->layout;
6543                         rv = mddev->pers->check_reshape(mddev);
6544                         if (rv)
6545                                 mddev->new_layout = mddev->layout;
6546                         return rv;
6547                 }
6548         }
6549         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6550                 rv = update_size(mddev, (sector_t)info->size * 2);
6551
6552         if (mddev->raid_disks    != info->raid_disks)
6553                 rv = update_raid_disks(mddev, info->raid_disks);
6554
6555         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6556                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6557                         rv = -EINVAL;
6558                         goto err;
6559                 }
6560                 if (mddev->recovery || mddev->sync_thread) {
6561                         rv = -EBUSY;
6562                         goto err;
6563                 }
6564                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6565                         struct bitmap *bitmap;
6566                         /* add the bitmap */
6567                         if (mddev->bitmap) {
6568                                 rv = -EEXIST;
6569                                 goto err;
6570                         }
6571                         if (mddev->bitmap_info.default_offset == 0) {
6572                                 rv = -EINVAL;
6573                                 goto err;
6574                         }
6575                         mddev->bitmap_info.offset =
6576                                 mddev->bitmap_info.default_offset;
6577                         mddev->bitmap_info.space =
6578                                 mddev->bitmap_info.default_space;
6579                         mddev->pers->quiesce(mddev, 1);
6580                         bitmap = bitmap_create(mddev, -1);
6581                         if (!IS_ERR(bitmap)) {
6582                                 mddev->bitmap = bitmap;
6583                                 rv = bitmap_load(mddev);
6584                         } else
6585                                 rv = PTR_ERR(bitmap);
6586                         if (rv)
6587                                 bitmap_destroy(mddev);
6588                         mddev->pers->quiesce(mddev, 0);
6589                 } else {
6590                         /* remove the bitmap */
6591                         if (!mddev->bitmap) {
6592                                 rv = -ENOENT;
6593                                 goto err;
6594                         }
6595                         if (mddev->bitmap->storage.file) {
6596                                 rv = -EINVAL;
6597                                 goto err;
6598                         }
6599                         mddev->pers->quiesce(mddev, 1);
6600                         bitmap_destroy(mddev);
6601                         mddev->pers->quiesce(mddev, 0);
6602                         mddev->bitmap_info.offset = 0;
6603                 }
6604         }
6605         md_update_sb(mddev, 1);
6606         return rv;
6607 err:
6608         return rv;
6609 }
6610
6611 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6612 {
6613         struct md_rdev *rdev;
6614         int err = 0;
6615
6616         if (mddev->pers == NULL)
6617                 return -ENODEV;
6618
6619         rcu_read_lock();
6620         rdev = find_rdev_rcu(mddev, dev);
6621         if (!rdev)
6622                 err =  -ENODEV;
6623         else {
6624                 md_error(mddev, rdev);
6625                 if (!test_bit(Faulty, &rdev->flags))
6626                         err = -EBUSY;
6627         }
6628         rcu_read_unlock();
6629         return err;
6630 }
6631
6632 /*
6633  * We have a problem here : there is no easy way to give a CHS
6634  * virtual geometry. We currently pretend that we have a 2 heads
6635  * 4 sectors (with a BIG number of cylinders...). This drives
6636  * dosfs just mad... ;-)
6637  */
6638 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6639 {
6640         struct mddev *mddev = bdev->bd_disk->private_data;
6641
6642         geo->heads = 2;
6643         geo->sectors = 4;
6644         geo->cylinders = mddev->array_sectors / 8;
6645         return 0;
6646 }
6647
6648 static inline bool md_ioctl_valid(unsigned int cmd)
6649 {
6650         switch (cmd) {
6651         case ADD_NEW_DISK:
6652         case BLKROSET:
6653         case GET_ARRAY_INFO:
6654         case GET_BITMAP_FILE:
6655         case GET_DISK_INFO:
6656         case HOT_ADD_DISK:
6657         case HOT_REMOVE_DISK:
6658         case RAID_AUTORUN:
6659         case RAID_VERSION:
6660         case RESTART_ARRAY_RW:
6661         case RUN_ARRAY:
6662         case SET_ARRAY_INFO:
6663         case SET_BITMAP_FILE:
6664         case SET_DISK_FAULTY:
6665         case STOP_ARRAY:
6666         case STOP_ARRAY_RO:
6667         case CLUSTERED_DISK_NACK:
6668                 return true;
6669         default:
6670                 return false;
6671         }
6672 }
6673
6674 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6675                         unsigned int cmd, unsigned long arg)
6676 {
6677         int err = 0;
6678         void __user *argp = (void __user *)arg;
6679         struct mddev *mddev = NULL;
6680         int ro;
6681
6682         if (!md_ioctl_valid(cmd))
6683                 return -ENOTTY;
6684
6685         switch (cmd) {
6686         case RAID_VERSION:
6687         case GET_ARRAY_INFO:
6688         case GET_DISK_INFO:
6689                 break;
6690         default:
6691                 if (!capable(CAP_SYS_ADMIN))
6692                         return -EACCES;
6693         }
6694
6695         /*
6696          * Commands dealing with the RAID driver but not any
6697          * particular array:
6698          */
6699         switch (cmd) {
6700         case RAID_VERSION:
6701                 err = get_version(argp);
6702                 goto out;
6703
6704 #ifndef MODULE
6705         case RAID_AUTORUN:
6706                 err = 0;
6707                 autostart_arrays(arg);
6708                 goto out;
6709 #endif
6710         default:;
6711         }
6712
6713         /*
6714          * Commands creating/starting a new array:
6715          */
6716
6717         mddev = bdev->bd_disk->private_data;
6718
6719         if (!mddev) {
6720                 BUG();
6721                 goto out;
6722         }
6723
6724         /* Some actions do not requires the mutex */
6725         switch (cmd) {
6726         case GET_ARRAY_INFO:
6727                 if (!mddev->raid_disks && !mddev->external)
6728                         err = -ENODEV;
6729                 else
6730                         err = get_array_info(mddev, argp);
6731                 goto out;
6732
6733         case GET_DISK_INFO:
6734                 if (!mddev->raid_disks && !mddev->external)
6735                         err = -ENODEV;
6736                 else
6737                         err = get_disk_info(mddev, argp);
6738                 goto out;
6739
6740         case SET_DISK_FAULTY:
6741                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6742                 goto out;
6743
6744         case GET_BITMAP_FILE:
6745                 err = get_bitmap_file(mddev, argp);
6746                 goto out;
6747
6748         }
6749
6750         if (cmd == ADD_NEW_DISK)
6751                 /* need to ensure md_delayed_delete() has completed */
6752                 flush_workqueue(md_misc_wq);
6753
6754         if (cmd == HOT_REMOVE_DISK)
6755                 /* need to ensure recovery thread has run */
6756                 wait_event_interruptible_timeout(mddev->sb_wait,
6757                                                  !test_bit(MD_RECOVERY_NEEDED,
6758                                                            &mddev->flags),
6759                                                  msecs_to_jiffies(5000));
6760         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6761                 /* Need to flush page cache, and ensure no-one else opens
6762                  * and writes
6763                  */
6764                 mutex_lock(&mddev->open_mutex);
6765                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6766                         mutex_unlock(&mddev->open_mutex);
6767                         err = -EBUSY;
6768                         goto out;
6769                 }
6770                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6771                 mutex_unlock(&mddev->open_mutex);
6772                 sync_blockdev(bdev);
6773         }
6774         err = mddev_lock(mddev);
6775         if (err) {
6776                 printk(KERN_INFO
6777                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6778                         err, cmd);
6779                 goto out;
6780         }
6781
6782         if (cmd == SET_ARRAY_INFO) {
6783                 mdu_array_info_t info;
6784                 if (!arg)
6785                         memset(&info, 0, sizeof(info));
6786                 else if (copy_from_user(&info, argp, sizeof(info))) {
6787                         err = -EFAULT;
6788                         goto unlock;
6789                 }
6790                 if (mddev->pers) {
6791                         err = update_array_info(mddev, &info);
6792                         if (err) {
6793                                 printk(KERN_WARNING "md: couldn't update"
6794                                        " array info. %d\n", err);
6795                                 goto unlock;
6796                         }
6797                         goto unlock;
6798                 }
6799                 if (!list_empty(&mddev->disks)) {
6800                         printk(KERN_WARNING
6801                                "md: array %s already has disks!\n",
6802                                mdname(mddev));
6803                         err = -EBUSY;
6804                         goto unlock;
6805                 }
6806                 if (mddev->raid_disks) {
6807                         printk(KERN_WARNING
6808                                "md: array %s already initialised!\n",
6809                                mdname(mddev));
6810                         err = -EBUSY;
6811                         goto unlock;
6812                 }
6813                 err = set_array_info(mddev, &info);
6814                 if (err) {
6815                         printk(KERN_WARNING "md: couldn't set"
6816                                " array info. %d\n", err);
6817                         goto unlock;
6818                 }
6819                 goto unlock;
6820         }
6821
6822         /*
6823          * Commands querying/configuring an existing array:
6824          */
6825         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6826          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6827         if ((!mddev->raid_disks && !mddev->external)
6828             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6829             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6830             && cmd != GET_BITMAP_FILE) {
6831                 err = -ENODEV;
6832                 goto unlock;
6833         }
6834
6835         /*
6836          * Commands even a read-only array can execute:
6837          */
6838         switch (cmd) {
6839         case RESTART_ARRAY_RW:
6840                 err = restart_array(mddev);
6841                 goto unlock;
6842
6843         case STOP_ARRAY:
6844                 err = do_md_stop(mddev, 0, bdev);
6845                 goto unlock;
6846
6847         case STOP_ARRAY_RO:
6848                 err = md_set_readonly(mddev, bdev);
6849                 goto unlock;
6850
6851         case HOT_REMOVE_DISK:
6852                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6853                 goto unlock;
6854
6855         case ADD_NEW_DISK:
6856                 /* We can support ADD_NEW_DISK on read-only arrays
6857                  * on if we are re-adding a preexisting device.
6858                  * So require mddev->pers and MD_DISK_SYNC.
6859                  */
6860                 if (mddev->pers) {
6861                         mdu_disk_info_t info;
6862                         if (copy_from_user(&info, argp, sizeof(info)))
6863                                 err = -EFAULT;
6864                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6865                                 /* Need to clear read-only for this */
6866                                 break;
6867                         else
6868                                 err = add_new_disk(mddev, &info);
6869                         goto unlock;
6870                 }
6871                 break;
6872
6873         case BLKROSET:
6874                 if (get_user(ro, (int __user *)(arg))) {
6875                         err = -EFAULT;
6876                         goto unlock;
6877                 }
6878                 err = -EINVAL;
6879
6880                 /* if the bdev is going readonly the value of mddev->ro
6881                  * does not matter, no writes are coming
6882                  */
6883                 if (ro)
6884                         goto unlock;
6885
6886                 /* are we are already prepared for writes? */
6887                 if (mddev->ro != 1)
6888                         goto unlock;
6889
6890                 /* transitioning to readauto need only happen for
6891                  * arrays that call md_write_start
6892                  */
6893                 if (mddev->pers) {
6894                         err = restart_array(mddev);
6895                         if (err == 0) {
6896                                 mddev->ro = 2;
6897                                 set_disk_ro(mddev->gendisk, 0);
6898                         }
6899                 }
6900                 goto unlock;
6901         }
6902
6903         /*
6904          * The remaining ioctls are changing the state of the
6905          * superblock, so we do not allow them on read-only arrays.
6906          */
6907         if (mddev->ro && mddev->pers) {
6908                 if (mddev->ro == 2) {
6909                         mddev->ro = 0;
6910                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6911                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6912                         /* mddev_unlock will wake thread */
6913                         /* If a device failed while we were read-only, we
6914                          * need to make sure the metadata is updated now.
6915                          */
6916                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6917                                 mddev_unlock(mddev);
6918                                 wait_event(mddev->sb_wait,
6919                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6920                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6921                                 mddev_lock_nointr(mddev);
6922                         }
6923                 } else {
6924                         err = -EROFS;
6925                         goto unlock;
6926                 }
6927         }
6928
6929         switch (cmd) {
6930         case ADD_NEW_DISK:
6931         {
6932                 mdu_disk_info_t info;
6933                 if (copy_from_user(&info, argp, sizeof(info)))
6934                         err = -EFAULT;
6935                 else
6936                         err = add_new_disk(mddev, &info);
6937                 goto unlock;
6938         }
6939
6940         case CLUSTERED_DISK_NACK:
6941                 if (mddev_is_clustered(mddev))
6942                         md_cluster_ops->new_disk_ack(mddev, false);
6943                 else
6944                         err = -EINVAL;
6945                 goto unlock;
6946
6947         case HOT_ADD_DISK:
6948                 err = hot_add_disk(mddev, new_decode_dev(arg));
6949                 goto unlock;
6950
6951         case RUN_ARRAY:
6952                 err = do_md_run(mddev);
6953                 goto unlock;
6954
6955         case SET_BITMAP_FILE:
6956                 err = set_bitmap_file(mddev, (int)arg);
6957                 goto unlock;
6958
6959         default:
6960                 err = -EINVAL;
6961                 goto unlock;
6962         }
6963
6964 unlock:
6965         if (mddev->hold_active == UNTIL_IOCTL &&
6966             err != -EINVAL)
6967                 mddev->hold_active = 0;
6968         mddev_unlock(mddev);
6969 out:
6970         return err;
6971 }
6972 #ifdef CONFIG_COMPAT
6973 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6974                     unsigned int cmd, unsigned long arg)
6975 {
6976         switch (cmd) {
6977         case HOT_REMOVE_DISK:
6978         case HOT_ADD_DISK:
6979         case SET_DISK_FAULTY:
6980         case SET_BITMAP_FILE:
6981                 /* These take in integer arg, do not convert */
6982                 break;
6983         default:
6984                 arg = (unsigned long)compat_ptr(arg);
6985                 break;
6986         }
6987
6988         return md_ioctl(bdev, mode, cmd, arg);
6989 }
6990 #endif /* CONFIG_COMPAT */
6991
6992 static int md_open(struct block_device *bdev, fmode_t mode)
6993 {
6994         /*
6995          * Succeed if we can lock the mddev, which confirms that
6996          * it isn't being stopped right now.
6997          */
6998         struct mddev *mddev = mddev_find(bdev->bd_dev);
6999         int err;
7000
7001         if (!mddev)
7002                 return -ENODEV;
7003
7004         if (mddev->gendisk != bdev->bd_disk) {
7005                 /* we are racing with mddev_put which is discarding this
7006                  * bd_disk.
7007                  */
7008                 mddev_put(mddev);
7009                 /* Wait until bdev->bd_disk is definitely gone */
7010                 flush_workqueue(md_misc_wq);
7011                 /* Then retry the open from the top */
7012                 return -ERESTARTSYS;
7013         }
7014         BUG_ON(mddev != bdev->bd_disk->private_data);
7015
7016         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7017                 goto out;
7018
7019         err = 0;
7020         atomic_inc(&mddev->openers);
7021         clear_bit(MD_STILL_CLOSED, &mddev->flags);
7022         mutex_unlock(&mddev->open_mutex);
7023
7024         check_disk_change(bdev);
7025  out:
7026         return err;
7027 }
7028
7029 static void md_release(struct gendisk *disk, fmode_t mode)
7030 {
7031         struct mddev *mddev = disk->private_data;
7032
7033         BUG_ON(!mddev);
7034         atomic_dec(&mddev->openers);
7035         mddev_put(mddev);
7036 }
7037
7038 static int md_media_changed(struct gendisk *disk)
7039 {
7040         struct mddev *mddev = disk->private_data;
7041
7042         return mddev->changed;
7043 }
7044
7045 static int md_revalidate(struct gendisk *disk)
7046 {
7047         struct mddev *mddev = disk->private_data;
7048
7049         mddev->changed = 0;
7050         return 0;
7051 }
7052 static const struct block_device_operations md_fops =
7053 {
7054         .owner          = THIS_MODULE,
7055         .open           = md_open,
7056         .release        = md_release,
7057         .ioctl          = md_ioctl,
7058 #ifdef CONFIG_COMPAT
7059         .compat_ioctl   = md_compat_ioctl,
7060 #endif
7061         .getgeo         = md_getgeo,
7062         .media_changed  = md_media_changed,
7063         .revalidate_disk= md_revalidate,
7064 };
7065
7066 static int md_thread(void *arg)
7067 {
7068         struct md_thread *thread = arg;
7069
7070         /*
7071          * md_thread is a 'system-thread', it's priority should be very
7072          * high. We avoid resource deadlocks individually in each
7073          * raid personality. (RAID5 does preallocation) We also use RR and
7074          * the very same RT priority as kswapd, thus we will never get
7075          * into a priority inversion deadlock.
7076          *
7077          * we definitely have to have equal or higher priority than
7078          * bdflush, otherwise bdflush will deadlock if there are too
7079          * many dirty RAID5 blocks.
7080          */
7081
7082         allow_signal(SIGKILL);
7083         while (!kthread_should_stop()) {
7084
7085                 /* We need to wait INTERRUPTIBLE so that
7086                  * we don't add to the load-average.
7087                  * That means we need to be sure no signals are
7088                  * pending
7089                  */
7090                 if (signal_pending(current))
7091                         flush_signals(current);
7092
7093                 wait_event_interruptible_timeout
7094                         (thread->wqueue,
7095                          test_bit(THREAD_WAKEUP, &thread->flags)
7096                          || kthread_should_stop(),
7097                          thread->timeout);
7098
7099                 clear_bit(THREAD_WAKEUP, &thread->flags);
7100                 if (!kthread_should_stop())
7101                         thread->run(thread);
7102         }
7103
7104         return 0;
7105 }
7106
7107 void md_wakeup_thread(struct md_thread *thread)
7108 {
7109         if (thread) {
7110                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7111                 set_bit(THREAD_WAKEUP, &thread->flags);
7112                 wake_up(&thread->wqueue);
7113         }
7114 }
7115 EXPORT_SYMBOL(md_wakeup_thread);
7116
7117 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7118                 struct mddev *mddev, const char *name)
7119 {
7120         struct md_thread *thread;
7121
7122         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7123         if (!thread)
7124                 return NULL;
7125
7126         init_waitqueue_head(&thread->wqueue);
7127
7128         thread->run = run;
7129         thread->mddev = mddev;
7130         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7131         thread->tsk = kthread_run(md_thread, thread,
7132                                   "%s_%s",
7133                                   mdname(thread->mddev),
7134                                   name);
7135         if (IS_ERR(thread->tsk)) {
7136                 kfree(thread);
7137                 return NULL;
7138         }
7139         return thread;
7140 }
7141 EXPORT_SYMBOL(md_register_thread);
7142
7143 void md_unregister_thread(struct md_thread **threadp)
7144 {
7145         struct md_thread *thread = *threadp;
7146         if (!thread)
7147                 return;
7148         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7149         /* Locking ensures that mddev_unlock does not wake_up a
7150          * non-existent thread
7151          */
7152         spin_lock(&pers_lock);
7153         *threadp = NULL;
7154         spin_unlock(&pers_lock);
7155
7156         kthread_stop(thread->tsk);
7157         kfree(thread);
7158 }
7159 EXPORT_SYMBOL(md_unregister_thread);
7160
7161 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7162 {
7163         if (!rdev || test_bit(Faulty, &rdev->flags))
7164                 return;
7165
7166         if (!mddev->pers || !mddev->pers->error_handler)
7167                 return;
7168         mddev->pers->error_handler(mddev,rdev);
7169         if (mddev->degraded)
7170                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7171         sysfs_notify_dirent_safe(rdev->sysfs_state);
7172         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7173         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7174         md_wakeup_thread(mddev->thread);
7175         if (mddev->event_work.func)
7176                 queue_work(md_misc_wq, &mddev->event_work);
7177         md_new_event_inintr(mddev);
7178 }
7179 EXPORT_SYMBOL(md_error);
7180
7181 /* seq_file implementation /proc/mdstat */
7182
7183 static void status_unused(struct seq_file *seq)
7184 {
7185         int i = 0;
7186         struct md_rdev *rdev;
7187
7188         seq_printf(seq, "unused devices: ");
7189
7190         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7191                 char b[BDEVNAME_SIZE];
7192                 i++;
7193                 seq_printf(seq, "%s ",
7194                               bdevname(rdev->bdev,b));
7195         }
7196         if (!i)
7197                 seq_printf(seq, "<none>");
7198
7199         seq_printf(seq, "\n");
7200 }
7201
7202 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7203 {
7204         sector_t max_sectors, resync, res;
7205         unsigned long dt, db;
7206         sector_t rt;
7207         int scale;
7208         unsigned int per_milli;
7209
7210         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7211             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7212                 max_sectors = mddev->resync_max_sectors;
7213         else
7214                 max_sectors = mddev->dev_sectors;
7215
7216         resync = mddev->curr_resync;
7217         if (resync <= 3) {
7218                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7219                         /* Still cleaning up */
7220                         resync = max_sectors;
7221         } else
7222                 resync -= atomic_read(&mddev->recovery_active);
7223
7224         if (resync == 0) {
7225                 if (mddev->recovery_cp < MaxSector) {
7226                         seq_printf(seq, "\tresync=PENDING");
7227                         return 1;
7228                 }
7229                 return 0;
7230         }
7231         if (resync < 3) {
7232                 seq_printf(seq, "\tresync=DELAYED");
7233                 return 1;
7234         }
7235
7236         WARN_ON(max_sectors == 0);
7237         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7238          * in a sector_t, and (max_sectors>>scale) will fit in a
7239          * u32, as those are the requirements for sector_div.
7240          * Thus 'scale' must be at least 10
7241          */
7242         scale = 10;
7243         if (sizeof(sector_t) > sizeof(unsigned long)) {
7244                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7245                         scale++;
7246         }
7247         res = (resync>>scale)*1000;
7248         sector_div(res, (u32)((max_sectors>>scale)+1));
7249
7250         per_milli = res;
7251         {
7252                 int i, x = per_milli/50, y = 20-x;
7253                 seq_printf(seq, "[");
7254                 for (i = 0; i < x; i++)
7255                         seq_printf(seq, "=");
7256                 seq_printf(seq, ">");
7257                 for (i = 0; i < y; i++)
7258                         seq_printf(seq, ".");
7259                 seq_printf(seq, "] ");
7260         }
7261         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7262                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7263                     "reshape" :
7264                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7265                      "check" :
7266                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7267                       "resync" : "recovery"))),
7268                    per_milli/10, per_milli % 10,
7269                    (unsigned long long) resync/2,
7270                    (unsigned long long) max_sectors/2);
7271
7272         /*
7273          * dt: time from mark until now
7274          * db: blocks written from mark until now
7275          * rt: remaining time
7276          *
7277          * rt is a sector_t, so could be 32bit or 64bit.
7278          * So we divide before multiply in case it is 32bit and close
7279          * to the limit.
7280          * We scale the divisor (db) by 32 to avoid losing precision
7281          * near the end of resync when the number of remaining sectors
7282          * is close to 'db'.
7283          * We then divide rt by 32 after multiplying by db to compensate.
7284          * The '+1' avoids division by zero if db is very small.
7285          */
7286         dt = ((jiffies - mddev->resync_mark) / HZ);
7287         if (!dt) dt++;
7288         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7289                 - mddev->resync_mark_cnt;
7290
7291         rt = max_sectors - resync;    /* number of remaining sectors */
7292         sector_div(rt, db/32+1);
7293         rt *= dt;
7294         rt >>= 5;
7295
7296         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7297                    ((unsigned long)rt % 60)/6);
7298
7299         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7300         return 1;
7301 }
7302
7303 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7304 {
7305         struct list_head *tmp;
7306         loff_t l = *pos;
7307         struct mddev *mddev;
7308
7309         if (l >= 0x10000)
7310                 return NULL;
7311         if (!l--)
7312                 /* header */
7313                 return (void*)1;
7314
7315         spin_lock(&all_mddevs_lock);
7316         list_for_each(tmp,&all_mddevs)
7317                 if (!l--) {
7318                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7319                         mddev_get(mddev);
7320                         spin_unlock(&all_mddevs_lock);
7321                         return mddev;
7322                 }
7323         spin_unlock(&all_mddevs_lock);
7324         if (!l--)
7325                 return (void*)2;/* tail */
7326         return NULL;
7327 }
7328
7329 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7330 {
7331         struct list_head *tmp;
7332         struct mddev *next_mddev, *mddev = v;
7333
7334         ++*pos;
7335         if (v == (void*)2)
7336                 return NULL;
7337
7338         spin_lock(&all_mddevs_lock);
7339         if (v == (void*)1)
7340                 tmp = all_mddevs.next;
7341         else
7342                 tmp = mddev->all_mddevs.next;
7343         if (tmp != &all_mddevs)
7344                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7345         else {
7346                 next_mddev = (void*)2;
7347                 *pos = 0x10000;
7348         }
7349         spin_unlock(&all_mddevs_lock);
7350
7351         if (v != (void*)1)
7352                 mddev_put(mddev);
7353         return next_mddev;
7354
7355 }
7356
7357 static void md_seq_stop(struct seq_file *seq, void *v)
7358 {
7359         struct mddev *mddev = v;
7360
7361         if (mddev && v != (void*)1 && v != (void*)2)
7362                 mddev_put(mddev);
7363 }
7364
7365 static int md_seq_show(struct seq_file *seq, void *v)
7366 {
7367         struct mddev *mddev = v;
7368         sector_t sectors;
7369         struct md_rdev *rdev;
7370
7371         if (v == (void*)1) {
7372                 struct md_personality *pers;
7373                 seq_printf(seq, "Personalities : ");
7374                 spin_lock(&pers_lock);
7375                 list_for_each_entry(pers, &pers_list, list)
7376                         seq_printf(seq, "[%s] ", pers->name);
7377
7378                 spin_unlock(&pers_lock);
7379                 seq_printf(seq, "\n");
7380                 seq->poll_event = atomic_read(&md_event_count);
7381                 return 0;
7382         }
7383         if (v == (void*)2) {
7384                 status_unused(seq);
7385                 return 0;
7386         }
7387
7388         spin_lock(&mddev->lock);
7389         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7390                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7391                                                 mddev->pers ? "" : "in");
7392                 if (mddev->pers) {
7393                         if (mddev->ro==1)
7394                                 seq_printf(seq, " (read-only)");
7395                         if (mddev->ro==2)
7396                                 seq_printf(seq, " (auto-read-only)");
7397                         seq_printf(seq, " %s", mddev->pers->name);
7398                 }
7399
7400                 sectors = 0;
7401                 rcu_read_lock();
7402                 rdev_for_each_rcu(rdev, mddev) {
7403                         char b[BDEVNAME_SIZE];
7404                         seq_printf(seq, " %s[%d]",
7405                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7406                         if (test_bit(WriteMostly, &rdev->flags))
7407                                 seq_printf(seq, "(W)");
7408                         if (test_bit(Journal, &rdev->flags))
7409                                 seq_printf(seq, "(J)");
7410                         if (test_bit(Faulty, &rdev->flags)) {
7411                                 seq_printf(seq, "(F)");
7412                                 continue;
7413                         }
7414                         if (rdev->raid_disk < 0)
7415                                 seq_printf(seq, "(S)"); /* spare */
7416                         if (test_bit(Replacement, &rdev->flags))
7417                                 seq_printf(seq, "(R)");
7418                         sectors += rdev->sectors;
7419                 }
7420                 rcu_read_unlock();
7421
7422                 if (!list_empty(&mddev->disks)) {
7423                         if (mddev->pers)
7424                                 seq_printf(seq, "\n      %llu blocks",
7425                                            (unsigned long long)
7426                                            mddev->array_sectors / 2);
7427                         else
7428                                 seq_printf(seq, "\n      %llu blocks",
7429                                            (unsigned long long)sectors / 2);
7430                 }
7431                 if (mddev->persistent) {
7432                         if (mddev->major_version != 0 ||
7433                             mddev->minor_version != 90) {
7434                                 seq_printf(seq," super %d.%d",
7435                                            mddev->major_version,
7436                                            mddev->minor_version);
7437                         }
7438                 } else if (mddev->external)
7439                         seq_printf(seq, " super external:%s",
7440                                    mddev->metadata_type);
7441                 else
7442                         seq_printf(seq, " super non-persistent");
7443
7444                 if (mddev->pers) {
7445                         mddev->pers->status(seq, mddev);
7446                         seq_printf(seq, "\n      ");
7447                         if (mddev->pers->sync_request) {
7448                                 if (status_resync(seq, mddev))
7449                                         seq_printf(seq, "\n      ");
7450                         }
7451                 } else
7452                         seq_printf(seq, "\n       ");
7453
7454                 bitmap_status(seq, mddev->bitmap);
7455
7456                 seq_printf(seq, "\n");
7457         }
7458         spin_unlock(&mddev->lock);
7459
7460         return 0;
7461 }
7462
7463 static const struct seq_operations md_seq_ops = {
7464         .start  = md_seq_start,
7465         .next   = md_seq_next,
7466         .stop   = md_seq_stop,
7467         .show   = md_seq_show,
7468 };
7469
7470 static int md_seq_open(struct inode *inode, struct file *file)
7471 {
7472         struct seq_file *seq;
7473         int error;
7474
7475         error = seq_open(file, &md_seq_ops);
7476         if (error)
7477                 return error;
7478
7479         seq = file->private_data;
7480         seq->poll_event = atomic_read(&md_event_count);
7481         return error;
7482 }
7483
7484 static int md_unloading;
7485 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7486 {
7487         struct seq_file *seq = filp->private_data;
7488         int mask;
7489
7490         if (md_unloading)
7491                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7492         poll_wait(filp, &md_event_waiters, wait);
7493
7494         /* always allow read */
7495         mask = POLLIN | POLLRDNORM;
7496
7497         if (seq->poll_event != atomic_read(&md_event_count))
7498                 mask |= POLLERR | POLLPRI;
7499         return mask;
7500 }
7501
7502 static const struct file_operations md_seq_fops = {
7503         .owner          = THIS_MODULE,
7504         .open           = md_seq_open,
7505         .read           = seq_read,
7506         .llseek         = seq_lseek,
7507         .release        = seq_release_private,
7508         .poll           = mdstat_poll,
7509 };
7510
7511 int register_md_personality(struct md_personality *p)
7512 {
7513         printk(KERN_INFO "md: %s personality registered for level %d\n",
7514                                                 p->name, p->level);
7515         spin_lock(&pers_lock);
7516         list_add_tail(&p->list, &pers_list);
7517         spin_unlock(&pers_lock);
7518         return 0;
7519 }
7520 EXPORT_SYMBOL(register_md_personality);
7521
7522 int unregister_md_personality(struct md_personality *p)
7523 {
7524         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7525         spin_lock(&pers_lock);
7526         list_del_init(&p->list);
7527         spin_unlock(&pers_lock);
7528         return 0;
7529 }
7530 EXPORT_SYMBOL(unregister_md_personality);
7531
7532 int register_md_cluster_operations(struct md_cluster_operations *ops,
7533                                    struct module *module)
7534 {
7535         int ret = 0;
7536         spin_lock(&pers_lock);
7537         if (md_cluster_ops != NULL)
7538                 ret = -EALREADY;
7539         else {
7540                 md_cluster_ops = ops;
7541                 md_cluster_mod = module;
7542         }
7543         spin_unlock(&pers_lock);
7544         return ret;
7545 }
7546 EXPORT_SYMBOL(register_md_cluster_operations);
7547
7548 int unregister_md_cluster_operations(void)
7549 {
7550         spin_lock(&pers_lock);
7551         md_cluster_ops = NULL;
7552         spin_unlock(&pers_lock);
7553         return 0;
7554 }
7555 EXPORT_SYMBOL(unregister_md_cluster_operations);
7556
7557 int md_setup_cluster(struct mddev *mddev, int nodes)
7558 {
7559         int err;
7560
7561         err = request_module("md-cluster");
7562         if (err) {
7563                 pr_err("md-cluster module not found.\n");
7564                 return -ENOENT;
7565         }
7566
7567         spin_lock(&pers_lock);
7568         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7569                 spin_unlock(&pers_lock);
7570                 return -ENOENT;
7571         }
7572         spin_unlock(&pers_lock);
7573
7574         return md_cluster_ops->join(mddev, nodes);
7575 }
7576
7577 void md_cluster_stop(struct mddev *mddev)
7578 {
7579         if (!md_cluster_ops)
7580                 return;
7581         md_cluster_ops->leave(mddev);
7582         module_put(md_cluster_mod);
7583 }
7584
7585 static int is_mddev_idle(struct mddev *mddev, int init)
7586 {
7587         struct md_rdev *rdev;
7588         int idle;
7589         int curr_events;
7590
7591         idle = 1;
7592         rcu_read_lock();
7593         rdev_for_each_rcu(rdev, mddev) {
7594                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7595                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7596                               (int)part_stat_read(&disk->part0, sectors[1]) -
7597                               atomic_read(&disk->sync_io);
7598                 /* sync IO will cause sync_io to increase before the disk_stats
7599                  * as sync_io is counted when a request starts, and
7600                  * disk_stats is counted when it completes.
7601                  * So resync activity will cause curr_events to be smaller than
7602                  * when there was no such activity.
7603                  * non-sync IO will cause disk_stat to increase without
7604                  * increasing sync_io so curr_events will (eventually)
7605                  * be larger than it was before.  Once it becomes
7606                  * substantially larger, the test below will cause
7607                  * the array to appear non-idle, and resync will slow
7608                  * down.
7609                  * If there is a lot of outstanding resync activity when
7610                  * we set last_event to curr_events, then all that activity
7611                  * completing might cause the array to appear non-idle
7612                  * and resync will be slowed down even though there might
7613                  * not have been non-resync activity.  This will only
7614                  * happen once though.  'last_events' will soon reflect
7615                  * the state where there is little or no outstanding
7616                  * resync requests, and further resync activity will
7617                  * always make curr_events less than last_events.
7618                  *
7619                  */
7620                 if (init || curr_events - rdev->last_events > 64) {
7621                         rdev->last_events = curr_events;
7622                         idle = 0;
7623                 }
7624         }
7625         rcu_read_unlock();
7626         return idle;
7627 }
7628
7629 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7630 {
7631         /* another "blocks" (512byte) blocks have been synced */
7632         atomic_sub(blocks, &mddev->recovery_active);
7633         wake_up(&mddev->recovery_wait);
7634         if (!ok) {
7635                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7636                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7637                 md_wakeup_thread(mddev->thread);
7638                 // stop recovery, signal do_sync ....
7639         }
7640 }
7641 EXPORT_SYMBOL(md_done_sync);
7642
7643 /* md_write_start(mddev, bi)
7644  * If we need to update some array metadata (e.g. 'active' flag
7645  * in superblock) before writing, schedule a superblock update
7646  * and wait for it to complete.
7647  */
7648 void md_write_start(struct mddev *mddev, struct bio *bi)
7649 {
7650         int did_change = 0;
7651         if (bio_data_dir(bi) != WRITE)
7652                 return;
7653
7654         BUG_ON(mddev->ro == 1);
7655         if (mddev->ro == 2) {
7656                 /* need to switch to read/write */
7657                 mddev->ro = 0;
7658                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7659                 md_wakeup_thread(mddev->thread);
7660                 md_wakeup_thread(mddev->sync_thread);
7661                 did_change = 1;
7662         }
7663         atomic_inc(&mddev->writes_pending);
7664         if (mddev->safemode == 1)
7665                 mddev->safemode = 0;
7666         if (mddev->in_sync) {
7667                 spin_lock(&mddev->lock);
7668                 if (mddev->in_sync) {
7669                         mddev->in_sync = 0;
7670                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7671                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7672                         md_wakeup_thread(mddev->thread);
7673                         did_change = 1;
7674                 }
7675                 spin_unlock(&mddev->lock);
7676         }
7677         if (did_change)
7678                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7679         wait_event(mddev->sb_wait,
7680                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7681 }
7682 EXPORT_SYMBOL(md_write_start);
7683
7684 void md_write_end(struct mddev *mddev)
7685 {
7686         if (atomic_dec_and_test(&mddev->writes_pending)) {
7687                 if (mddev->safemode == 2)
7688                         md_wakeup_thread(mddev->thread);
7689                 else if (mddev->safemode_delay)
7690                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7691         }
7692 }
7693 EXPORT_SYMBOL(md_write_end);
7694
7695 /* md_allow_write(mddev)
7696  * Calling this ensures that the array is marked 'active' so that writes
7697  * may proceed without blocking.  It is important to call this before
7698  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7699  * Must be called with mddev_lock held.
7700  *
7701  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7702  * is dropped, so return -EAGAIN after notifying userspace.
7703  */
7704 int md_allow_write(struct mddev *mddev)
7705 {
7706         if (!mddev->pers)
7707                 return 0;
7708         if (mddev->ro)
7709                 return 0;
7710         if (!mddev->pers->sync_request)
7711                 return 0;
7712
7713         spin_lock(&mddev->lock);
7714         if (mddev->in_sync) {
7715                 mddev->in_sync = 0;
7716                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7717                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7718                 if (mddev->safemode_delay &&
7719                     mddev->safemode == 0)
7720                         mddev->safemode = 1;
7721                 spin_unlock(&mddev->lock);
7722                 md_update_sb(mddev, 0);
7723                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7724         } else
7725                 spin_unlock(&mddev->lock);
7726
7727         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7728                 return -EAGAIN;
7729         else
7730                 return 0;
7731 }
7732 EXPORT_SYMBOL_GPL(md_allow_write);
7733
7734 #define SYNC_MARKS      10
7735 #define SYNC_MARK_STEP  (3*HZ)
7736 #define UPDATE_FREQUENCY (5*60*HZ)
7737 void md_do_sync(struct md_thread *thread)
7738 {
7739         struct mddev *mddev = thread->mddev;
7740         struct mddev *mddev2;
7741         unsigned int currspeed = 0,
7742                  window;
7743         sector_t max_sectors,j, io_sectors, recovery_done;
7744         unsigned long mark[SYNC_MARKS];
7745         unsigned long update_time;
7746         sector_t mark_cnt[SYNC_MARKS];
7747         int last_mark,m;
7748         struct list_head *tmp;
7749         sector_t last_check;
7750         int skipped = 0;
7751         struct md_rdev *rdev;
7752         char *desc, *action = NULL;
7753         struct blk_plug plug;
7754         bool cluster_resync_finished = false;
7755
7756         /* just incase thread restarts... */
7757         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7758                 return;
7759         if (mddev->ro) {/* never try to sync a read-only array */
7760                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7761                 return;
7762         }
7763
7764         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7765                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7766                         desc = "data-check";
7767                         action = "check";
7768                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7769                         desc = "requested-resync";
7770                         action = "repair";
7771                 } else
7772                         desc = "resync";
7773         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7774                 desc = "reshape";
7775         else
7776                 desc = "recovery";
7777
7778         mddev->last_sync_action = action ?: desc;
7779
7780         /* we overload curr_resync somewhat here.
7781          * 0 == not engaged in resync at all
7782          * 2 == checking that there is no conflict with another sync
7783          * 1 == like 2, but have yielded to allow conflicting resync to
7784          *              commense
7785          * other == active in resync - this many blocks
7786          *
7787          * Before starting a resync we must have set curr_resync to
7788          * 2, and then checked that every "conflicting" array has curr_resync
7789          * less than ours.  When we find one that is the same or higher
7790          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7791          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7792          * This will mean we have to start checking from the beginning again.
7793          *
7794          */
7795
7796         do {
7797                 mddev->curr_resync = 2;
7798
7799         try_again:
7800                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7801                         goto skip;
7802                 for_each_mddev(mddev2, tmp) {
7803                         if (mddev2 == mddev)
7804                                 continue;
7805                         if (!mddev->parallel_resync
7806                         &&  mddev2->curr_resync
7807                         &&  match_mddev_units(mddev, mddev2)) {
7808                                 DEFINE_WAIT(wq);
7809                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7810                                         /* arbitrarily yield */
7811                                         mddev->curr_resync = 1;
7812                                         wake_up(&resync_wait);
7813                                 }
7814                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7815                                         /* no need to wait here, we can wait the next
7816                                          * time 'round when curr_resync == 2
7817                                          */
7818                                         continue;
7819                                 /* We need to wait 'interruptible' so as not to
7820                                  * contribute to the load average, and not to
7821                                  * be caught by 'softlockup'
7822                                  */
7823                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7824                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7825                                     mddev2->curr_resync >= mddev->curr_resync) {
7826                                         printk(KERN_INFO "md: delaying %s of %s"
7827                                                " until %s has finished (they"
7828                                                " share one or more physical units)\n",
7829                                                desc, mdname(mddev), mdname(mddev2));
7830                                         mddev_put(mddev2);
7831                                         if (signal_pending(current))
7832                                                 flush_signals(current);
7833                                         schedule();
7834                                         finish_wait(&resync_wait, &wq);
7835                                         goto try_again;
7836                                 }
7837                                 finish_wait(&resync_wait, &wq);
7838                         }
7839                 }
7840         } while (mddev->curr_resync < 2);
7841
7842         j = 0;
7843         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7844                 /* resync follows the size requested by the personality,
7845                  * which defaults to physical size, but can be virtual size
7846                  */
7847                 max_sectors = mddev->resync_max_sectors;
7848                 atomic64_set(&mddev->resync_mismatches, 0);
7849                 /* we don't use the checkpoint if there's a bitmap */
7850                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7851                         j = mddev->resync_min;
7852                 else if (!mddev->bitmap)
7853                         j = mddev->recovery_cp;
7854
7855         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7856                 max_sectors = mddev->resync_max_sectors;
7857         else {
7858                 /* recovery follows the physical size of devices */
7859                 max_sectors = mddev->dev_sectors;
7860                 j = MaxSector;
7861                 rcu_read_lock();
7862                 rdev_for_each_rcu(rdev, mddev)
7863                         if (rdev->raid_disk >= 0 &&
7864                             !test_bit(Journal, &rdev->flags) &&
7865                             !test_bit(Faulty, &rdev->flags) &&
7866                             !test_bit(In_sync, &rdev->flags) &&
7867                             rdev->recovery_offset < j)
7868                                 j = rdev->recovery_offset;
7869                 rcu_read_unlock();
7870
7871                 /* If there is a bitmap, we need to make sure all
7872                  * writes that started before we added a spare
7873                  * complete before we start doing a recovery.
7874                  * Otherwise the write might complete and (via
7875                  * bitmap_endwrite) set a bit in the bitmap after the
7876                  * recovery has checked that bit and skipped that
7877                  * region.
7878                  */
7879                 if (mddev->bitmap) {
7880                         mddev->pers->quiesce(mddev, 1);
7881                         mddev->pers->quiesce(mddev, 0);
7882                 }
7883         }
7884
7885         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7886         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7887                 " %d KB/sec/disk.\n", speed_min(mddev));
7888         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7889                "(but not more than %d KB/sec) for %s.\n",
7890                speed_max(mddev), desc);
7891
7892         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7893
7894         io_sectors = 0;
7895         for (m = 0; m < SYNC_MARKS; m++) {
7896                 mark[m] = jiffies;
7897                 mark_cnt[m] = io_sectors;
7898         }
7899         last_mark = 0;
7900         mddev->resync_mark = mark[last_mark];
7901         mddev->resync_mark_cnt = mark_cnt[last_mark];
7902
7903         /*
7904          * Tune reconstruction:
7905          */
7906         window = 32*(PAGE_SIZE/512);
7907         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7908                 window/2, (unsigned long long)max_sectors/2);
7909
7910         atomic_set(&mddev->recovery_active, 0);
7911         last_check = 0;
7912
7913         if (j>2) {
7914                 printk(KERN_INFO
7915                        "md: resuming %s of %s from checkpoint.\n",
7916                        desc, mdname(mddev));
7917                 mddev->curr_resync = j;
7918         } else
7919                 mddev->curr_resync = 3; /* no longer delayed */
7920         mddev->curr_resync_completed = j;
7921         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7922         md_new_event(mddev);
7923         update_time = jiffies;
7924
7925         blk_start_plug(&plug);
7926         while (j < max_sectors) {
7927                 sector_t sectors;
7928
7929                 skipped = 0;
7930
7931                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7932                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7933                       (mddev->curr_resync - mddev->curr_resync_completed)
7934                       > (max_sectors >> 4)) ||
7935                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7936                      (j - mddev->curr_resync_completed)*2
7937                      >= mddev->resync_max - mddev->curr_resync_completed ||
7938                      mddev->curr_resync_completed > mddev->resync_max
7939                             )) {
7940                         /* time to update curr_resync_completed */
7941                         wait_event(mddev->recovery_wait,
7942                                    atomic_read(&mddev->recovery_active) == 0);
7943                         mddev->curr_resync_completed = j;
7944                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7945                             j > mddev->recovery_cp)
7946                                 mddev->recovery_cp = j;
7947                         update_time = jiffies;
7948                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7949                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7950                 }
7951
7952                 while (j >= mddev->resync_max &&
7953                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7954                         /* As this condition is controlled by user-space,
7955                          * we can block indefinitely, so use '_interruptible'
7956                          * to avoid triggering warnings.
7957                          */
7958                         flush_signals(current); /* just in case */
7959                         wait_event_interruptible(mddev->recovery_wait,
7960                                                  mddev->resync_max > j
7961                                                  || test_bit(MD_RECOVERY_INTR,
7962                                                              &mddev->recovery));
7963                 }
7964
7965                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7966                         break;
7967
7968                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7969                 if (sectors == 0) {
7970                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7971                         break;
7972                 }
7973
7974                 if (!skipped) { /* actual IO requested */
7975                         io_sectors += sectors;
7976                         atomic_add(sectors, &mddev->recovery_active);
7977                 }
7978
7979                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7980                         break;
7981
7982                 j += sectors;
7983                 if (j > max_sectors)
7984                         /* when skipping, extra large numbers can be returned. */
7985                         j = max_sectors;
7986                 if (j > 2)
7987                         mddev->curr_resync = j;
7988                 mddev->curr_mark_cnt = io_sectors;
7989                 if (last_check == 0)
7990                         /* this is the earliest that rebuild will be
7991                          * visible in /proc/mdstat
7992                          */
7993                         md_new_event(mddev);
7994
7995                 if (last_check + window > io_sectors || j == max_sectors)
7996                         continue;
7997
7998                 last_check = io_sectors;
7999         repeat:
8000                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8001                         /* step marks */
8002                         int next = (last_mark+1) % SYNC_MARKS;
8003
8004                         mddev->resync_mark = mark[next];
8005                         mddev->resync_mark_cnt = mark_cnt[next];
8006                         mark[next] = jiffies;
8007                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8008                         last_mark = next;
8009                 }
8010
8011                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8012                         break;
8013
8014                 /*
8015                  * this loop exits only if either when we are slower than
8016                  * the 'hard' speed limit, or the system was IO-idle for
8017                  * a jiffy.
8018                  * the system might be non-idle CPU-wise, but we only care
8019                  * about not overloading the IO subsystem. (things like an
8020                  * e2fsck being done on the RAID array should execute fast)
8021                  */
8022                 cond_resched();
8023
8024                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8025                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8026                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
8027
8028                 if (currspeed > speed_min(mddev)) {
8029                         if (currspeed > speed_max(mddev)) {
8030                                 msleep(500);
8031                                 goto repeat;
8032                         }
8033                         if (!is_mddev_idle(mddev, 0)) {
8034                                 /*
8035                                  * Give other IO more of a chance.
8036                                  * The faster the devices, the less we wait.
8037                                  */
8038                                 wait_event(mddev->recovery_wait,
8039                                            !atomic_read(&mddev->recovery_active));
8040                         }
8041                 }
8042         }
8043         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8044                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8045                ? "interrupted" : "done");
8046         /*
8047          * this also signals 'finished resyncing' to md_stop
8048          */
8049         blk_finish_plug(&plug);
8050         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8051
8052         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8053             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8054             mddev->curr_resync > 2) {
8055                 mddev->curr_resync_completed = mddev->curr_resync;
8056                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8057         }
8058         /* tell personality and other nodes that we are finished */
8059         if (mddev_is_clustered(mddev)) {
8060                 md_cluster_ops->resync_finish(mddev);
8061                 cluster_resync_finished = true;
8062         }
8063         mddev->pers->sync_request(mddev, max_sectors, &skipped);
8064
8065         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8066             mddev->curr_resync > 2) {
8067                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8068                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8069                                 if (mddev->curr_resync >= mddev->recovery_cp) {
8070                                         printk(KERN_INFO
8071                                                "md: checkpointing %s of %s.\n",
8072                                                desc, mdname(mddev));
8073                                         if (test_bit(MD_RECOVERY_ERROR,
8074                                                 &mddev->recovery))
8075                                                 mddev->recovery_cp =
8076                                                         mddev->curr_resync_completed;
8077                                         else
8078                                                 mddev->recovery_cp =
8079                                                         mddev->curr_resync;
8080                                 }
8081                         } else
8082                                 mddev->recovery_cp = MaxSector;
8083                 } else {
8084                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8085                                 mddev->curr_resync = MaxSector;
8086                         rcu_read_lock();
8087                         rdev_for_each_rcu(rdev, mddev)
8088                                 if (rdev->raid_disk >= 0 &&
8089                                     mddev->delta_disks >= 0 &&
8090                                     !test_bit(Journal, &rdev->flags) &&
8091                                     !test_bit(Faulty, &rdev->flags) &&
8092                                     !test_bit(In_sync, &rdev->flags) &&
8093                                     rdev->recovery_offset < mddev->curr_resync)
8094                                         rdev->recovery_offset = mddev->curr_resync;
8095                         rcu_read_unlock();
8096                 }
8097         }
8098  skip:
8099         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8100
8101         if (mddev_is_clustered(mddev) &&
8102             test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8103             !cluster_resync_finished)
8104                 md_cluster_ops->resync_finish(mddev);
8105
8106         spin_lock(&mddev->lock);
8107         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8108                 /* We completed so min/max setting can be forgotten if used. */
8109                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8110                         mddev->resync_min = 0;
8111                 mddev->resync_max = MaxSector;
8112         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8113                 mddev->resync_min = mddev->curr_resync_completed;
8114         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8115         mddev->curr_resync = 0;
8116         spin_unlock(&mddev->lock);
8117
8118         wake_up(&resync_wait);
8119         md_wakeup_thread(mddev->thread);
8120         return;
8121 }
8122 EXPORT_SYMBOL_GPL(md_do_sync);
8123
8124 static int remove_and_add_spares(struct mddev *mddev,
8125                                  struct md_rdev *this)
8126 {
8127         struct md_rdev *rdev;
8128         int spares = 0;
8129         int removed = 0;
8130
8131         rdev_for_each(rdev, mddev)
8132                 if ((this == NULL || rdev == this) &&
8133                     rdev->raid_disk >= 0 &&
8134                     !test_bit(Blocked, &rdev->flags) &&
8135                     (test_bit(Faulty, &rdev->flags) ||
8136                      (!test_bit(In_sync, &rdev->flags) &&
8137                       !test_bit(Journal, &rdev->flags))) &&
8138                     atomic_read(&rdev->nr_pending)==0) {
8139                         if (mddev->pers->hot_remove_disk(
8140                                     mddev, rdev) == 0) {
8141                                 sysfs_unlink_rdev(mddev, rdev);
8142                                 rdev->raid_disk = -1;
8143                                 removed++;
8144                         }
8145                 }
8146         if (removed && mddev->kobj.sd)
8147                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8148
8149         if (this && removed)
8150                 goto no_add;
8151
8152         rdev_for_each(rdev, mddev) {
8153                 if (this && this != rdev)
8154                         continue;
8155                 if (test_bit(Candidate, &rdev->flags))
8156                         continue;
8157                 if (rdev->raid_disk >= 0 &&
8158                     !test_bit(In_sync, &rdev->flags) &&
8159                     !test_bit(Journal, &rdev->flags) &&
8160                     !test_bit(Faulty, &rdev->flags))
8161                         spares++;
8162                 if (rdev->raid_disk >= 0)
8163                         continue;
8164                 if (test_bit(Faulty, &rdev->flags))
8165                         continue;
8166                 if (test_bit(Journal, &rdev->flags))
8167                         continue;
8168                 if (mddev->ro &&
8169                     ! (rdev->saved_raid_disk >= 0 &&
8170                        !test_bit(Bitmap_sync, &rdev->flags)))
8171                         continue;
8172
8173                 rdev->recovery_offset = 0;
8174                 if (mddev->pers->
8175                     hot_add_disk(mddev, rdev) == 0) {
8176                         if (sysfs_link_rdev(mddev, rdev))
8177                                 /* failure here is OK */;
8178                         spares++;
8179                         md_new_event(mddev);
8180                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8181                 }
8182         }
8183 no_add:
8184         if (removed)
8185                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8186         return spares;
8187 }
8188
8189 static void md_start_sync(struct work_struct *ws)
8190 {
8191         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8192         int ret = 0;
8193
8194         if (mddev_is_clustered(mddev)) {
8195                 ret = md_cluster_ops->resync_start(mddev);
8196                 if (ret) {
8197                         mddev->sync_thread = NULL;
8198                         goto out;
8199                 }
8200         }
8201
8202         mddev->sync_thread = md_register_thread(md_do_sync,
8203                                                 mddev,
8204                                                 "resync");
8205 out:
8206         if (!mddev->sync_thread) {
8207                 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8208                         printk(KERN_ERR "%s: could not start resync"
8209                                " thread...\n",
8210                                mdname(mddev));
8211                 /* leave the spares where they are, it shouldn't hurt */
8212                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8213                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8214                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8215                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8216                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8217                 wake_up(&resync_wait);
8218                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8219                                        &mddev->recovery))
8220                         if (mddev->sysfs_action)
8221                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8222         } else
8223                 md_wakeup_thread(mddev->sync_thread);
8224         sysfs_notify_dirent_safe(mddev->sysfs_action);
8225         md_new_event(mddev);
8226 }
8227
8228 /*
8229  * This routine is regularly called by all per-raid-array threads to
8230  * deal with generic issues like resync and super-block update.
8231  * Raid personalities that don't have a thread (linear/raid0) do not
8232  * need this as they never do any recovery or update the superblock.
8233  *
8234  * It does not do any resync itself, but rather "forks" off other threads
8235  * to do that as needed.
8236  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8237  * "->recovery" and create a thread at ->sync_thread.
8238  * When the thread finishes it sets MD_RECOVERY_DONE
8239  * and wakeups up this thread which will reap the thread and finish up.
8240  * This thread also removes any faulty devices (with nr_pending == 0).
8241  *
8242  * The overall approach is:
8243  *  1/ if the superblock needs updating, update it.
8244  *  2/ If a recovery thread is running, don't do anything else.
8245  *  3/ If recovery has finished, clean up, possibly marking spares active.
8246  *  4/ If there are any faulty devices, remove them.
8247  *  5/ If array is degraded, try to add spares devices
8248  *  6/ If array has spares or is not in-sync, start a resync thread.
8249  */
8250 void md_check_recovery(struct mddev *mddev)
8251 {
8252         if (mddev->suspended)
8253                 return;
8254
8255         if (mddev->bitmap)
8256                 bitmap_daemon_work(mddev);
8257
8258         if (signal_pending(current)) {
8259                 if (mddev->pers->sync_request && !mddev->external) {
8260                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8261                                mdname(mddev));
8262                         mddev->safemode = 2;
8263                 }
8264                 flush_signals(current);
8265         }
8266
8267         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8268                 return;
8269         if ( ! (
8270                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8271                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8272                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8273                 (mddev->external == 0 && mddev->safemode == 1) ||
8274                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8275                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8276                 ))
8277                 return;
8278
8279         if (mddev_trylock(mddev)) {
8280                 int spares = 0;
8281
8282                 if (mddev->ro) {
8283                         struct md_rdev *rdev;
8284                         if (!mddev->external && mddev->in_sync)
8285                                 /* 'Blocked' flag not needed as failed devices
8286                                  * will be recorded if array switched to read/write.
8287                                  * Leaving it set will prevent the device
8288                                  * from being removed.
8289                                  */
8290                                 rdev_for_each(rdev, mddev)
8291                                         clear_bit(Blocked, &rdev->flags);
8292                         /* On a read-only array we can:
8293                          * - remove failed devices
8294                          * - add already-in_sync devices if the array itself
8295                          *   is in-sync.
8296                          * As we only add devices that are already in-sync,
8297                          * we can activate the spares immediately.
8298                          */
8299                         remove_and_add_spares(mddev, NULL);
8300                         /* There is no thread, but we need to call
8301                          * ->spare_active and clear saved_raid_disk
8302                          */
8303                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8304                         md_reap_sync_thread(mddev);
8305                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8306                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8307                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8308                         goto unlock;
8309                 }
8310
8311                 if (!mddev->external) {
8312                         int did_change = 0;
8313                         spin_lock(&mddev->lock);
8314                         if (mddev->safemode &&
8315                             !atomic_read(&mddev->writes_pending) &&
8316                             !mddev->in_sync &&
8317                             mddev->recovery_cp == MaxSector) {
8318                                 mddev->in_sync = 1;
8319                                 did_change = 1;
8320                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8321                         }
8322                         if (mddev->safemode == 1)
8323                                 mddev->safemode = 0;
8324                         spin_unlock(&mddev->lock);
8325                         if (did_change)
8326                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8327                 }
8328
8329                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8330                         md_update_sb(mddev, 0);
8331
8332                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8333                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8334                         /* resync/recovery still happening */
8335                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8336                         goto unlock;
8337                 }
8338                 if (mddev->sync_thread) {
8339                         md_reap_sync_thread(mddev);
8340                         goto unlock;
8341                 }
8342                 /* Set RUNNING before clearing NEEDED to avoid
8343                  * any transients in the value of "sync_action".
8344                  */
8345                 mddev->curr_resync_completed = 0;
8346                 spin_lock(&mddev->lock);
8347                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8348                 spin_unlock(&mddev->lock);
8349                 /* Clear some bits that don't mean anything, but
8350                  * might be left set
8351                  */
8352                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8353                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8354
8355                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8356                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8357                         goto not_running;
8358                 /* no recovery is running.
8359                  * remove any failed drives, then
8360                  * add spares if possible.
8361                  * Spares are also removed and re-added, to allow
8362                  * the personality to fail the re-add.
8363                  */
8364
8365                 if (mddev->reshape_position != MaxSector) {
8366                         if (mddev->pers->check_reshape == NULL ||
8367                             mddev->pers->check_reshape(mddev) != 0)
8368                                 /* Cannot proceed */
8369                                 goto not_running;
8370                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8371                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8372                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8373                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8374                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8375                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8376                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8377                 } else if (mddev->recovery_cp < MaxSector) {
8378                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8379                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8380                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8381                         /* nothing to be done ... */
8382                         goto not_running;
8383
8384                 if (mddev->pers->sync_request) {
8385                         if (spares) {
8386                                 /* We are adding a device or devices to an array
8387                                  * which has the bitmap stored on all devices.
8388                                  * So make sure all bitmap pages get written
8389                                  */
8390                                 bitmap_write_all(mddev->bitmap);
8391                         }
8392                         INIT_WORK(&mddev->del_work, md_start_sync);
8393                         queue_work(md_misc_wq, &mddev->del_work);
8394                         goto unlock;
8395                 }
8396         not_running:
8397                 if (!mddev->sync_thread) {
8398                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8399                         wake_up(&resync_wait);
8400                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8401                                                &mddev->recovery))
8402                                 if (mddev->sysfs_action)
8403                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8404                 }
8405         unlock:
8406                 wake_up(&mddev->sb_wait);
8407                 mddev_unlock(mddev);
8408         }
8409 }
8410 EXPORT_SYMBOL(md_check_recovery);
8411
8412 void md_reap_sync_thread(struct mddev *mddev)
8413 {
8414         struct md_rdev *rdev;
8415
8416         /* resync has finished, collect result */
8417         md_unregister_thread(&mddev->sync_thread);
8418         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8419             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8420                 /* success...*/
8421                 /* activate any spares */
8422                 if (mddev->pers->spare_active(mddev)) {
8423                         sysfs_notify(&mddev->kobj, NULL,
8424                                      "degraded");
8425                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8426                 }
8427         }
8428         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8429             mddev->pers->finish_reshape)
8430                 mddev->pers->finish_reshape(mddev);
8431
8432         /* If array is no-longer degraded, then any saved_raid_disk
8433          * information must be scrapped.
8434          */
8435         if (!mddev->degraded)
8436                 rdev_for_each(rdev, mddev)
8437                         rdev->saved_raid_disk = -1;
8438
8439         md_update_sb(mddev, 1);
8440         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8441         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8442         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8443         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8444         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8445         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8446         wake_up(&resync_wait);
8447         /* flag recovery needed just to double check */
8448         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8449         sysfs_notify_dirent_safe(mddev->sysfs_action);
8450         md_new_event(mddev);
8451         if (mddev->event_work.func)
8452                 queue_work(md_misc_wq, &mddev->event_work);
8453 }
8454 EXPORT_SYMBOL(md_reap_sync_thread);
8455
8456 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8457 {
8458         sysfs_notify_dirent_safe(rdev->sysfs_state);
8459         wait_event_timeout(rdev->blocked_wait,
8460                            !test_bit(Blocked, &rdev->flags) &&
8461                            !test_bit(BlockedBadBlocks, &rdev->flags),
8462                            msecs_to_jiffies(5000));
8463         rdev_dec_pending(rdev, mddev);
8464 }
8465 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8466
8467 void md_finish_reshape(struct mddev *mddev)
8468 {
8469         /* called be personality module when reshape completes. */
8470         struct md_rdev *rdev;
8471
8472         rdev_for_each(rdev, mddev) {
8473                 if (rdev->data_offset > rdev->new_data_offset)
8474                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8475                 else
8476                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8477                 rdev->data_offset = rdev->new_data_offset;
8478         }
8479 }
8480 EXPORT_SYMBOL(md_finish_reshape);
8481
8482 /* Bad block management.
8483  * We can record which blocks on each device are 'bad' and so just
8484  * fail those blocks, or that stripe, rather than the whole device.
8485  * Entries in the bad-block table are 64bits wide.  This comprises:
8486  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8487  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8488  *  A 'shift' can be set so that larger blocks are tracked and
8489  *  consequently larger devices can be covered.
8490  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8491  *
8492  * Locking of the bad-block table uses a seqlock so md_is_badblock
8493  * might need to retry if it is very unlucky.
8494  * We will sometimes want to check for bad blocks in a bi_end_io function,
8495  * so we use the write_seqlock_irq variant.
8496  *
8497  * When looking for a bad block we specify a range and want to
8498  * know if any block in the range is bad.  So we binary-search
8499  * to the last range that starts at-or-before the given endpoint,
8500  * (or "before the sector after the target range")
8501  * then see if it ends after the given start.
8502  * We return
8503  *  0 if there are no known bad blocks in the range
8504  *  1 if there are known bad block which are all acknowledged
8505  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8506  * plus the start/length of the first bad section we overlap.
8507  */
8508 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8509                    sector_t *first_bad, int *bad_sectors)
8510 {
8511         int hi;
8512         int lo;
8513         u64 *p = bb->page;
8514         int rv;
8515         sector_t target = s + sectors;
8516         unsigned seq;
8517
8518         if (bb->shift > 0) {
8519                 /* round the start down, and the end up */
8520                 s >>= bb->shift;
8521                 target += (1<<bb->shift) - 1;
8522                 target >>= bb->shift;
8523                 sectors = target - s;
8524         }
8525         /* 'target' is now the first block after the bad range */
8526
8527 retry:
8528         seq = read_seqbegin(&bb->lock);
8529         lo = 0;
8530         rv = 0;
8531         hi = bb->count;
8532
8533         /* Binary search between lo and hi for 'target'
8534          * i.e. for the last range that starts before 'target'
8535          */
8536         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8537          * are known not to be the last range before target.
8538          * VARIANT: hi-lo is the number of possible
8539          * ranges, and decreases until it reaches 1
8540          */
8541         while (hi - lo > 1) {
8542                 int mid = (lo + hi) / 2;
8543                 sector_t a = BB_OFFSET(p[mid]);
8544                 if (a < target)
8545                         /* This could still be the one, earlier ranges
8546                          * could not. */
8547                         lo = mid;
8548                 else
8549                         /* This and later ranges are definitely out. */
8550                         hi = mid;
8551         }
8552         /* 'lo' might be the last that started before target, but 'hi' isn't */
8553         if (hi > lo) {
8554                 /* need to check all range that end after 's' to see if
8555                  * any are unacknowledged.
8556                  */
8557                 while (lo >= 0 &&
8558                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8559                         if (BB_OFFSET(p[lo]) < target) {
8560                                 /* starts before the end, and finishes after
8561                                  * the start, so they must overlap
8562                                  */
8563                                 if (rv != -1 && BB_ACK(p[lo]))
8564                                         rv = 1;
8565                                 else
8566                                         rv = -1;
8567                                 *first_bad = BB_OFFSET(p[lo]);
8568                                 *bad_sectors = BB_LEN(p[lo]);
8569                         }
8570                         lo--;
8571                 }
8572         }
8573
8574         if (read_seqretry(&bb->lock, seq))
8575                 goto retry;
8576
8577         return rv;
8578 }
8579 EXPORT_SYMBOL_GPL(md_is_badblock);
8580
8581 /*
8582  * Add a range of bad blocks to the table.
8583  * This might extend the table, or might contract it
8584  * if two adjacent ranges can be merged.
8585  * We binary-search to find the 'insertion' point, then
8586  * decide how best to handle it.
8587  */
8588 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8589                             int acknowledged)
8590 {
8591         u64 *p;
8592         int lo, hi;
8593         int rv = 1;
8594         unsigned long flags;
8595
8596         if (bb->shift < 0)
8597                 /* badblocks are disabled */
8598                 return 0;
8599
8600         if (bb->shift) {
8601                 /* round the start down, and the end up */
8602                 sector_t next = s + sectors;
8603                 s >>= bb->shift;
8604                 next += (1<<bb->shift) - 1;
8605                 next >>= bb->shift;
8606                 sectors = next - s;
8607         }
8608
8609         write_seqlock_irqsave(&bb->lock, flags);
8610
8611         p = bb->page;
8612         lo = 0;
8613         hi = bb->count;
8614         /* Find the last range that starts at-or-before 's' */
8615         while (hi - lo > 1) {
8616                 int mid = (lo + hi) / 2;
8617                 sector_t a = BB_OFFSET(p[mid]);
8618                 if (a <= s)
8619                         lo = mid;
8620                 else
8621                         hi = mid;
8622         }
8623         if (hi > lo && BB_OFFSET(p[lo]) > s)
8624                 hi = lo;
8625
8626         if (hi > lo) {
8627                 /* we found a range that might merge with the start
8628                  * of our new range
8629                  */
8630                 sector_t a = BB_OFFSET(p[lo]);
8631                 sector_t e = a + BB_LEN(p[lo]);
8632                 int ack = BB_ACK(p[lo]);
8633                 if (e >= s) {
8634                         /* Yes, we can merge with a previous range */
8635                         if (s == a && s + sectors >= e)
8636                                 /* new range covers old */
8637                                 ack = acknowledged;
8638                         else
8639                                 ack = ack && acknowledged;
8640
8641                         if (e < s + sectors)
8642                                 e = s + sectors;
8643                         if (e - a <= BB_MAX_LEN) {
8644                                 p[lo] = BB_MAKE(a, e-a, ack);
8645                                 s = e;
8646                         } else {
8647                                 /* does not all fit in one range,
8648                                  * make p[lo] maximal
8649                                  */
8650                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8651                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8652                                 s = a + BB_MAX_LEN;
8653                         }
8654                         sectors = e - s;
8655                 }
8656         }
8657         if (sectors && hi < bb->count) {
8658                 /* 'hi' points to the first range that starts after 's'.
8659                  * Maybe we can merge with the start of that range */
8660                 sector_t a = BB_OFFSET(p[hi]);
8661                 sector_t e = a + BB_LEN(p[hi]);
8662                 int ack = BB_ACK(p[hi]);
8663                 if (a <= s + sectors) {
8664                         /* merging is possible */
8665                         if (e <= s + sectors) {
8666                                 /* full overlap */
8667                                 e = s + sectors;
8668                                 ack = acknowledged;
8669                         } else
8670                                 ack = ack && acknowledged;
8671
8672                         a = s;
8673                         if (e - a <= BB_MAX_LEN) {
8674                                 p[hi] = BB_MAKE(a, e-a, ack);
8675                                 s = e;
8676                         } else {
8677                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8678                                 s = a + BB_MAX_LEN;
8679                         }
8680                         sectors = e - s;
8681                         lo = hi;
8682                         hi++;
8683                 }
8684         }
8685         if (sectors == 0 && hi < bb->count) {
8686                 /* we might be able to combine lo and hi */
8687                 /* Note: 's' is at the end of 'lo' */
8688                 sector_t a = BB_OFFSET(p[hi]);
8689                 int lolen = BB_LEN(p[lo]);
8690                 int hilen = BB_LEN(p[hi]);
8691                 int newlen = lolen + hilen - (s - a);
8692                 if (s >= a && newlen < BB_MAX_LEN) {
8693                         /* yes, we can combine them */
8694                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8695                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8696                         memmove(p + hi, p + hi + 1,
8697                                 (bb->count - hi - 1) * 8);
8698                         bb->count--;
8699                 }
8700         }
8701         while (sectors) {
8702                 /* didn't merge (it all).
8703                  * Need to add a range just before 'hi' */
8704                 if (bb->count >= MD_MAX_BADBLOCKS) {
8705                         /* No room for more */
8706                         rv = 0;
8707                         break;
8708                 } else {
8709                         int this_sectors = sectors;
8710                         memmove(p + hi + 1, p + hi,
8711                                 (bb->count - hi) * 8);
8712                         bb->count++;
8713
8714                         if (this_sectors > BB_MAX_LEN)
8715                                 this_sectors = BB_MAX_LEN;
8716                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8717                         sectors -= this_sectors;
8718                         s += this_sectors;
8719                 }
8720         }
8721
8722         bb->changed = 1;
8723         if (!acknowledged)
8724                 bb->unacked_exist = 1;
8725         write_sequnlock_irqrestore(&bb->lock, flags);
8726
8727         return rv;
8728 }
8729
8730 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8731                        int is_new)
8732 {
8733         int rv;
8734         if (is_new)
8735                 s += rdev->new_data_offset;
8736         else
8737                 s += rdev->data_offset;
8738         rv = md_set_badblocks(&rdev->badblocks,
8739                               s, sectors, 0);
8740         if (rv) {
8741                 /* Make sure they get written out promptly */
8742                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8743                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8744                 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8745                 md_wakeup_thread(rdev->mddev->thread);
8746         }
8747         return rv;
8748 }
8749 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8750
8751 /*
8752  * Remove a range of bad blocks from the table.
8753  * This may involve extending the table if we spilt a region,
8754  * but it must not fail.  So if the table becomes full, we just
8755  * drop the remove request.
8756  */
8757 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8758 {
8759         u64 *p;
8760         int lo, hi;
8761         sector_t target = s + sectors;
8762         int rv = 0;
8763
8764         if (bb->shift > 0) {
8765                 /* When clearing we round the start up and the end down.
8766                  * This should not matter as the shift should align with
8767                  * the block size and no rounding should ever be needed.
8768                  * However it is better the think a block is bad when it
8769                  * isn't than to think a block is not bad when it is.
8770                  */
8771                 s += (1<<bb->shift) - 1;
8772                 s >>= bb->shift;
8773                 target >>= bb->shift;
8774                 sectors = target - s;
8775         }
8776
8777         write_seqlock_irq(&bb->lock);
8778
8779         p = bb->page;
8780         lo = 0;
8781         hi = bb->count;
8782         /* Find the last range that starts before 'target' */
8783         while (hi - lo > 1) {
8784                 int mid = (lo + hi) / 2;
8785                 sector_t a = BB_OFFSET(p[mid]);
8786                 if (a < target)
8787                         lo = mid;
8788                 else
8789                         hi = mid;
8790         }
8791         if (hi > lo) {
8792                 /* p[lo] is the last range that could overlap the
8793                  * current range.  Earlier ranges could also overlap,
8794                  * but only this one can overlap the end of the range.
8795                  */
8796                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8797                         /* Partial overlap, leave the tail of this range */
8798                         int ack = BB_ACK(p[lo]);
8799                         sector_t a = BB_OFFSET(p[lo]);
8800                         sector_t end = a + BB_LEN(p[lo]);
8801
8802                         if (a < s) {
8803                                 /* we need to split this range */
8804                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8805                                         rv = -ENOSPC;
8806                                         goto out;
8807                                 }
8808                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8809                                 bb->count++;
8810                                 p[lo] = BB_MAKE(a, s-a, ack);
8811                                 lo++;
8812                         }
8813                         p[lo] = BB_MAKE(target, end - target, ack);
8814                         /* there is no longer an overlap */
8815                         hi = lo;
8816                         lo--;
8817                 }
8818                 while (lo >= 0 &&
8819                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8820                         /* This range does overlap */
8821                         if (BB_OFFSET(p[lo]) < s) {
8822                                 /* Keep the early parts of this range. */
8823                                 int ack = BB_ACK(p[lo]);
8824                                 sector_t start = BB_OFFSET(p[lo]);
8825                                 p[lo] = BB_MAKE(start, s - start, ack);
8826                                 /* now low doesn't overlap, so.. */
8827                                 break;
8828                         }
8829                         lo--;
8830                 }
8831                 /* 'lo' is strictly before, 'hi' is strictly after,
8832                  * anything between needs to be discarded
8833                  */
8834                 if (hi - lo > 1) {
8835                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8836                         bb->count -= (hi - lo - 1);
8837                 }
8838         }
8839
8840         bb->changed = 1;
8841 out:
8842         write_sequnlock_irq(&bb->lock);
8843         return rv;
8844 }
8845
8846 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8847                          int is_new)
8848 {
8849         if (is_new)
8850                 s += rdev->new_data_offset;
8851         else
8852                 s += rdev->data_offset;
8853         return md_clear_badblocks(&rdev->badblocks,
8854                                   s, sectors);
8855 }
8856 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8857
8858 /*
8859  * Acknowledge all bad blocks in a list.
8860  * This only succeeds if ->changed is clear.  It is used by
8861  * in-kernel metadata updates
8862  */
8863 void md_ack_all_badblocks(struct badblocks *bb)
8864 {
8865         if (bb->page == NULL || bb->changed)
8866                 /* no point even trying */
8867                 return;
8868         write_seqlock_irq(&bb->lock);
8869
8870         if (bb->changed == 0 && bb->unacked_exist) {
8871                 u64 *p = bb->page;
8872                 int i;
8873                 for (i = 0; i < bb->count ; i++) {
8874                         if (!BB_ACK(p[i])) {
8875                                 sector_t start = BB_OFFSET(p[i]);
8876                                 int len = BB_LEN(p[i]);
8877                                 p[i] = BB_MAKE(start, len, 1);
8878                         }
8879                 }
8880                 bb->unacked_exist = 0;
8881         }
8882         write_sequnlock_irq(&bb->lock);
8883 }
8884 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8885
8886 /* sysfs access to bad-blocks list.
8887  * We present two files.
8888  * 'bad-blocks' lists sector numbers and lengths of ranges that
8889  *    are recorded as bad.  The list is truncated to fit within
8890  *    the one-page limit of sysfs.
8891  *    Writing "sector length" to this file adds an acknowledged
8892  *    bad block list.
8893  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8894  *    been acknowledged.  Writing to this file adds bad blocks
8895  *    without acknowledging them.  This is largely for testing.
8896  */
8897
8898 static ssize_t
8899 badblocks_show(struct badblocks *bb, char *page, int unack)
8900 {
8901         size_t len;
8902         int i;
8903         u64 *p = bb->page;
8904         unsigned seq;
8905
8906         if (bb->shift < 0)
8907                 return 0;
8908
8909 retry:
8910         seq = read_seqbegin(&bb->lock);
8911
8912         len = 0;
8913         i = 0;
8914
8915         while (len < PAGE_SIZE && i < bb->count) {
8916                 sector_t s = BB_OFFSET(p[i]);
8917                 unsigned int length = BB_LEN(p[i]);
8918                 int ack = BB_ACK(p[i]);
8919                 i++;
8920
8921                 if (unack && ack)
8922                         continue;
8923
8924                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8925                                 (unsigned long long)s << bb->shift,
8926                                 length << bb->shift);
8927         }
8928         if (unack && len == 0)
8929                 bb->unacked_exist = 0;
8930
8931         if (read_seqretry(&bb->lock, seq))
8932                 goto retry;
8933
8934         return len;
8935 }
8936
8937 #define DO_DEBUG 1
8938
8939 static ssize_t
8940 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8941 {
8942         unsigned long long sector;
8943         int length;
8944         char newline;
8945 #ifdef DO_DEBUG
8946         /* Allow clearing via sysfs *only* for testing/debugging.
8947          * Normally only a successful write may clear a badblock
8948          */
8949         int clear = 0;
8950         if (page[0] == '-') {
8951                 clear = 1;
8952                 page++;
8953         }
8954 #endif /* DO_DEBUG */
8955
8956         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8957         case 3:
8958                 if (newline != '\n')
8959                         return -EINVAL;
8960         case 2:
8961                 if (length <= 0)
8962                         return -EINVAL;
8963                 break;
8964         default:
8965                 return -EINVAL;
8966         }
8967
8968 #ifdef DO_DEBUG
8969         if (clear) {
8970                 md_clear_badblocks(bb, sector, length);
8971                 return len;
8972         }
8973 #endif /* DO_DEBUG */
8974         if (md_set_badblocks(bb, sector, length, !unack))
8975                 return len;
8976         else
8977                 return -ENOSPC;
8978 }
8979
8980 static int md_notify_reboot(struct notifier_block *this,
8981                             unsigned long code, void *x)
8982 {
8983         struct list_head *tmp;
8984         struct mddev *mddev;
8985         int need_delay = 0;
8986
8987         for_each_mddev(mddev, tmp) {
8988                 if (mddev_trylock(mddev)) {
8989                         if (mddev->pers)
8990                                 __md_stop_writes(mddev);
8991                         if (mddev->persistent)
8992                                 mddev->safemode = 2;
8993                         mddev_unlock(mddev);
8994                 }
8995                 need_delay = 1;
8996         }
8997         /*
8998          * certain more exotic SCSI devices are known to be
8999          * volatile wrt too early system reboots. While the
9000          * right place to handle this issue is the given
9001          * driver, we do want to have a safe RAID driver ...
9002          */
9003         if (need_delay)
9004                 mdelay(1000*1);
9005
9006         return NOTIFY_DONE;
9007 }
9008
9009 static struct notifier_block md_notifier = {
9010         .notifier_call  = md_notify_reboot,
9011         .next           = NULL,
9012         .priority       = INT_MAX, /* before any real devices */
9013 };
9014
9015 static void md_geninit(void)
9016 {
9017         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9018
9019         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9020 }
9021
9022 static int __init md_init(void)
9023 {
9024         int ret = -ENOMEM;
9025
9026         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9027         if (!md_wq)
9028                 goto err_wq;
9029
9030         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9031         if (!md_misc_wq)
9032                 goto err_misc_wq;
9033
9034         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9035                 goto err_md;
9036
9037         if ((ret = register_blkdev(0, "mdp")) < 0)
9038                 goto err_mdp;
9039         mdp_major = ret;
9040
9041         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9042                             md_probe, NULL, NULL);
9043         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9044                             md_probe, NULL, NULL);
9045
9046         register_reboot_notifier(&md_notifier);
9047         raid_table_header = register_sysctl_table(raid_root_table);
9048
9049         md_geninit();
9050         return 0;
9051
9052 err_mdp:
9053         unregister_blkdev(MD_MAJOR, "md");
9054 err_md:
9055         destroy_workqueue(md_misc_wq);
9056 err_misc_wq:
9057         destroy_workqueue(md_wq);
9058 err_wq:
9059         return ret;
9060 }
9061
9062 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9063 {
9064         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9065         struct md_rdev *rdev2;
9066         int role, ret;
9067         char b[BDEVNAME_SIZE];
9068
9069         /* Check for change of roles in the active devices */
9070         rdev_for_each(rdev2, mddev) {
9071                 if (test_bit(Faulty, &rdev2->flags))
9072                         continue;
9073
9074                 /* Check if the roles changed */
9075                 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9076
9077                 if (test_bit(Candidate, &rdev2->flags)) {
9078                         if (role == 0xfffe) {
9079                                 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9080                                 md_kick_rdev_from_array(rdev2);
9081                                 continue;
9082                         }
9083                         else
9084                                 clear_bit(Candidate, &rdev2->flags);
9085                 }
9086
9087                 if (role != rdev2->raid_disk) {
9088                         /* got activated */
9089                         if (rdev2->raid_disk == -1 && role != 0xffff) {
9090                                 rdev2->saved_raid_disk = role;
9091                                 ret = remove_and_add_spares(mddev, rdev2);
9092                                 pr_info("Activated spare: %s\n",
9093                                                 bdevname(rdev2->bdev,b));
9094                                 continue;
9095                         }
9096                         /* device faulty
9097                          * We just want to do the minimum to mark the disk
9098                          * as faulty. The recovery is performed by the
9099                          * one who initiated the error.
9100                          */
9101                         if ((role == 0xfffe) || (role == 0xfffd)) {
9102                                 md_error(mddev, rdev2);
9103                                 clear_bit(Blocked, &rdev2->flags);
9104                         }
9105                 }
9106         }
9107
9108         if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9109                 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9110
9111         /* Finally set the event to be up to date */
9112         mddev->events = le64_to_cpu(sb->events);
9113 }
9114
9115 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9116 {
9117         int err;
9118         struct page *swapout = rdev->sb_page;
9119         struct mdp_superblock_1 *sb;
9120
9121         /* Store the sb page of the rdev in the swapout temporary
9122          * variable in case we err in the future
9123          */
9124         rdev->sb_page = NULL;
9125         alloc_disk_sb(rdev);
9126         ClearPageUptodate(rdev->sb_page);
9127         rdev->sb_loaded = 0;
9128         err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9129
9130         if (err < 0) {
9131                 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9132                                 __func__, __LINE__, rdev->desc_nr, err);
9133                 put_page(rdev->sb_page);
9134                 rdev->sb_page = swapout;
9135                 rdev->sb_loaded = 1;
9136                 return err;
9137         }
9138
9139         sb = page_address(rdev->sb_page);
9140         /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9141          * is not set
9142          */
9143
9144         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9145                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9146
9147         /* The other node finished recovery, call spare_active to set
9148          * device In_sync and mddev->degraded
9149          */
9150         if (rdev->recovery_offset == MaxSector &&
9151             !test_bit(In_sync, &rdev->flags) &&
9152             mddev->pers->spare_active(mddev))
9153                 sysfs_notify(&mddev->kobj, NULL, "degraded");
9154
9155         put_page(swapout);
9156         return 0;
9157 }
9158
9159 void md_reload_sb(struct mddev *mddev, int nr)
9160 {
9161         struct md_rdev *rdev;
9162         int err;
9163
9164         /* Find the rdev */
9165         rdev_for_each_rcu(rdev, mddev) {
9166                 if (rdev->desc_nr == nr)
9167                         break;
9168         }
9169
9170         if (!rdev || rdev->desc_nr != nr) {
9171                 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9172                 return;
9173         }
9174
9175         err = read_rdev(mddev, rdev);
9176         if (err < 0)
9177                 return;
9178
9179         check_sb_changes(mddev, rdev);
9180
9181         /* Read all rdev's to update recovery_offset */
9182         rdev_for_each_rcu(rdev, mddev)
9183                 read_rdev(mddev, rdev);
9184 }
9185 EXPORT_SYMBOL(md_reload_sb);
9186
9187 #ifndef MODULE
9188
9189 /*
9190  * Searches all registered partitions for autorun RAID arrays
9191  * at boot time.
9192  */
9193
9194 static LIST_HEAD(all_detected_devices);
9195 struct detected_devices_node {
9196         struct list_head list;
9197         dev_t dev;
9198 };
9199
9200 void md_autodetect_dev(dev_t dev)
9201 {
9202         struct detected_devices_node *node_detected_dev;
9203
9204         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9205         if (node_detected_dev) {
9206                 node_detected_dev->dev = dev;
9207                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9208         } else {
9209                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9210                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9211         }
9212 }
9213
9214 static void autostart_arrays(int part)
9215 {
9216         struct md_rdev *rdev;
9217         struct detected_devices_node *node_detected_dev;
9218         dev_t dev;
9219         int i_scanned, i_passed;
9220
9221         i_scanned = 0;
9222         i_passed = 0;
9223
9224         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9225
9226         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9227                 i_scanned++;
9228                 node_detected_dev = list_entry(all_detected_devices.next,
9229                                         struct detected_devices_node, list);
9230                 list_del(&node_detected_dev->list);
9231                 dev = node_detected_dev->dev;
9232                 kfree(node_detected_dev);
9233                 rdev = md_import_device(dev,0, 90);
9234                 if (IS_ERR(rdev))
9235                         continue;
9236
9237                 if (test_bit(Faulty, &rdev->flags))
9238                         continue;
9239
9240                 set_bit(AutoDetected, &rdev->flags);
9241                 list_add(&rdev->same_set, &pending_raid_disks);
9242                 i_passed++;
9243         }
9244
9245         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9246                                                 i_scanned, i_passed);
9247
9248         autorun_devices(part);
9249 }
9250
9251 #endif /* !MODULE */
9252
9253 static __exit void md_exit(void)
9254 {
9255         struct mddev *mddev;
9256         struct list_head *tmp;
9257         int delay = 1;
9258
9259         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9260         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9261
9262         unregister_blkdev(MD_MAJOR,"md");
9263         unregister_blkdev(mdp_major, "mdp");
9264         unregister_reboot_notifier(&md_notifier);
9265         unregister_sysctl_table(raid_table_header);
9266
9267         /* We cannot unload the modules while some process is
9268          * waiting for us in select() or poll() - wake them up
9269          */
9270         md_unloading = 1;
9271         while (waitqueue_active(&md_event_waiters)) {
9272                 /* not safe to leave yet */
9273                 wake_up(&md_event_waiters);
9274                 msleep(delay);
9275                 delay += delay;
9276         }
9277         remove_proc_entry("mdstat", NULL);
9278
9279         for_each_mddev(mddev, tmp) {
9280                 export_array(mddev);
9281                 mddev->hold_active = 0;
9282         }
9283         destroy_workqueue(md_misc_wq);
9284         destroy_workqueue(md_wq);
9285 }
9286
9287 subsys_initcall(md_init);
9288 module_exit(md_exit)
9289
9290 static int get_ro(char *buffer, struct kernel_param *kp)
9291 {
9292         return sprintf(buffer, "%d", start_readonly);
9293 }
9294 static int set_ro(const char *val, struct kernel_param *kp)
9295 {
9296         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9297 }
9298
9299 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9300 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9301 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9302
9303 MODULE_LICENSE("GPL");
9304 MODULE_DESCRIPTION("MD RAID framework");
9305 MODULE_ALIAS("md");
9306 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);