md: use wait_event() to simplify md_super_wait()
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200         atomic_inc(&md_event_count);
201         wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210         atomic_inc(&md_event_count);
211         wake_up(&md_event_waiters);
212 }
213
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)                                     \
230                                                                         \
231         for (({ spin_lock(&all_mddevs_lock);                            \
232                 _tmp = all_mddevs.next;                                 \
233                 _mddev = NULL;});                                       \
234              ({ if (_tmp != &all_mddevs)                                \
235                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236                 spin_unlock(&all_mddevs_lock);                          \
237                 if (_mddev) mddev_put(_mddev);                          \
238                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
239                 _tmp != &all_mddevs;});                                 \
240              ({ spin_lock(&all_mddevs_lock);                            \
241                 _tmp = _tmp->next;})                                    \
242                 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254         const int rw = bio_data_dir(bio);
255         struct mddev *mddev = q->queuedata;
256         int cpu;
257         unsigned int sectors;
258
259         if (mddev == NULL || mddev->pers == NULL
260             || !mddev->ready) {
261                 bio_io_error(bio);
262                 return;
263         }
264         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266                 return;
267         }
268         smp_rmb(); /* Ensure implications of  'active' are visible */
269         rcu_read_lock();
270         if (mddev->suspended) {
271                 DEFINE_WAIT(__wait);
272                 for (;;) {
273                         prepare_to_wait(&mddev->sb_wait, &__wait,
274                                         TASK_UNINTERRUPTIBLE);
275                         if (!mddev->suspended)
276                                 break;
277                         rcu_read_unlock();
278                         schedule();
279                         rcu_read_lock();
280                 }
281                 finish_wait(&mddev->sb_wait, &__wait);
282         }
283         atomic_inc(&mddev->active_io);
284         rcu_read_unlock();
285
286         /*
287          * save the sectors now since our bio can
288          * go away inside make_request
289          */
290         sectors = bio_sectors(bio);
291         mddev->pers->make_request(mddev, bio);
292
293         cpu = part_stat_lock();
294         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296         part_stat_unlock();
297
298         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299                 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310         BUG_ON(mddev->suspended);
311         mddev->suspended = 1;
312         synchronize_rcu();
313         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314         mddev->pers->quiesce(mddev, 1);
315
316         del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322         mddev->suspended = 0;
323         wake_up(&mddev->sb_wait);
324         mddev->pers->quiesce(mddev, 0);
325
326         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327         md_wakeup_thread(mddev->thread);
328         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334         return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339  * Generic flush handling for md
340  */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344         struct md_rdev *rdev = bio->bi_private;
345         struct mddev *mddev = rdev->mddev;
346
347         rdev_dec_pending(rdev, mddev);
348
349         if (atomic_dec_and_test(&mddev->flush_pending)) {
350                 /* The pre-request flush has finished */
351                 queue_work(md_wq, &mddev->flush_work);
352         }
353         bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361         struct md_rdev *rdev;
362
363         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364         atomic_set(&mddev->flush_pending, 1);
365         rcu_read_lock();
366         rdev_for_each_rcu(rdev, mddev)
367                 if (rdev->raid_disk >= 0 &&
368                     !test_bit(Faulty, &rdev->flags)) {
369                         /* Take two references, one is dropped
370                          * when request finishes, one after
371                          * we reclaim rcu_read_lock
372                          */
373                         struct bio *bi;
374                         atomic_inc(&rdev->nr_pending);
375                         atomic_inc(&rdev->nr_pending);
376                         rcu_read_unlock();
377                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378                         bi->bi_end_io = md_end_flush;
379                         bi->bi_private = rdev;
380                         bi->bi_bdev = rdev->bdev;
381                         atomic_inc(&mddev->flush_pending);
382                         submit_bio(WRITE_FLUSH, bi);
383                         rcu_read_lock();
384                         rdev_dec_pending(rdev, mddev);
385                 }
386         rcu_read_unlock();
387         if (atomic_dec_and_test(&mddev->flush_pending))
388                 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394         struct bio *bio = mddev->flush_bio;
395
396         if (bio->bi_iter.bi_size == 0)
397                 /* an empty barrier - all done */
398                 bio_endio(bio, 0);
399         else {
400                 bio->bi_rw &= ~REQ_FLUSH;
401                 mddev->pers->make_request(mddev, bio);
402         }
403
404         mddev->flush_bio = NULL;
405         wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410         spin_lock_irq(&mddev->write_lock);
411         wait_event_lock_irq(mddev->sb_wait,
412                             !mddev->flush_bio,
413                             mddev->write_lock);
414         mddev->flush_bio = bio;
415         spin_unlock_irq(&mddev->write_lock);
416
417         INIT_WORK(&mddev->flush_work, submit_flushes);
418         queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424         struct mddev *mddev = cb->data;
425         md_wakeup_thread(mddev->thread);
426         kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432         atomic_inc(&mddev->active);
433         return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440         struct bio_set *bs = NULL;
441
442         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443                 return;
444         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445             mddev->ctime == 0 && !mddev->hold_active) {
446                 /* Array is not configured at all, and not held active,
447                  * so destroy it */
448                 list_del_init(&mddev->all_mddevs);
449                 bs = mddev->bio_set;
450                 mddev->bio_set = NULL;
451                 if (mddev->gendisk) {
452                         /* We did a probe so need to clean up.  Call
453                          * queue_work inside the spinlock so that
454                          * flush_workqueue() after mddev_find will
455                          * succeed in waiting for the work to be done.
456                          */
457                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458                         queue_work(md_misc_wq, &mddev->del_work);
459                 } else
460                         kfree(mddev);
461         }
462         spin_unlock(&all_mddevs_lock);
463         if (bs)
464                 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469         mutex_init(&mddev->open_mutex);
470         mutex_init(&mddev->reconfig_mutex);
471         mutex_init(&mddev->bitmap_info.mutex);
472         INIT_LIST_HEAD(&mddev->disks);
473         INIT_LIST_HEAD(&mddev->all_mddevs);
474         init_timer(&mddev->safemode_timer);
475         atomic_set(&mddev->active, 1);
476         atomic_set(&mddev->openers, 0);
477         atomic_set(&mddev->active_io, 0);
478         spin_lock_init(&mddev->write_lock);
479         atomic_set(&mddev->flush_pending, 0);
480         init_waitqueue_head(&mddev->sb_wait);
481         init_waitqueue_head(&mddev->recovery_wait);
482         mddev->reshape_position = MaxSector;
483         mddev->reshape_backwards = 0;
484         mddev->last_sync_action = "none";
485         mddev->resync_min = 0;
486         mddev->resync_max = MaxSector;
487         mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493         struct mddev *mddev, *new = NULL;
494
495         if (unit && MAJOR(unit) != MD_MAJOR)
496                 unit &= ~((1<<MdpMinorShift)-1);
497
498  retry:
499         spin_lock(&all_mddevs_lock);
500
501         if (unit) {
502                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503                         if (mddev->unit == unit) {
504                                 mddev_get(mddev);
505                                 spin_unlock(&all_mddevs_lock);
506                                 kfree(new);
507                                 return mddev;
508                         }
509
510                 if (new) {
511                         list_add(&new->all_mddevs, &all_mddevs);
512                         spin_unlock(&all_mddevs_lock);
513                         new->hold_active = UNTIL_IOCTL;
514                         return new;
515                 }
516         } else if (new) {
517                 /* find an unused unit number */
518                 static int next_minor = 512;
519                 int start = next_minor;
520                 int is_free = 0;
521                 int dev = 0;
522                 while (!is_free) {
523                         dev = MKDEV(MD_MAJOR, next_minor);
524                         next_minor++;
525                         if (next_minor > MINORMASK)
526                                 next_minor = 0;
527                         if (next_minor == start) {
528                                 /* Oh dear, all in use. */
529                                 spin_unlock(&all_mddevs_lock);
530                                 kfree(new);
531                                 return NULL;
532                         }
533                                 
534                         is_free = 1;
535                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536                                 if (mddev->unit == dev) {
537                                         is_free = 0;
538                                         break;
539                                 }
540                 }
541                 new->unit = dev;
542                 new->md_minor = MINOR(dev);
543                 new->hold_active = UNTIL_STOP;
544                 list_add(&new->all_mddevs, &all_mddevs);
545                 spin_unlock(&all_mddevs_lock);
546                 return new;
547         }
548         spin_unlock(&all_mddevs_lock);
549
550         new = kzalloc(sizeof(*new), GFP_KERNEL);
551         if (!new)
552                 return NULL;
553
554         new->unit = unit;
555         if (MAJOR(unit) == MD_MAJOR)
556                 new->md_minor = MINOR(unit);
557         else
558                 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560         mddev_init(new);
561
562         goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567         return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571  * failure due to interrupts is not acceptable.
572  */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575         mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580         return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585         return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592         if (mddev->to_remove) {
593                 /* These cannot be removed under reconfig_mutex as
594                  * an access to the files will try to take reconfig_mutex
595                  * while holding the file unremovable, which leads to
596                  * a deadlock.
597                  * So hold set sysfs_active while the remove in happeing,
598                  * and anything else which might set ->to_remove or my
599                  * otherwise change the sysfs namespace will fail with
600                  * -EBUSY if sysfs_active is still set.
601                  * We set sysfs_active under reconfig_mutex and elsewhere
602                  * test it under the same mutex to ensure its correct value
603                  * is seen.
604                  */
605                 struct attribute_group *to_remove = mddev->to_remove;
606                 mddev->to_remove = NULL;
607                 mddev->sysfs_active = 1;
608                 mutex_unlock(&mddev->reconfig_mutex);
609
610                 if (mddev->kobj.sd) {
611                         if (to_remove != &md_redundancy_group)
612                                 sysfs_remove_group(&mddev->kobj, to_remove);
613                         if (mddev->pers == NULL ||
614                             mddev->pers->sync_request == NULL) {
615                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616                                 if (mddev->sysfs_action)
617                                         sysfs_put(mddev->sysfs_action);
618                                 mddev->sysfs_action = NULL;
619                         }
620                 }
621                 mddev->sysfs_active = 0;
622         } else
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625         /* As we've dropped the mutex we need a spinlock to
626          * make sure the thread doesn't disappear
627          */
628         spin_lock(&pers_lock);
629         md_wakeup_thread(mddev->thread);
630         spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646         struct md_rdev *rdev;
647
648         rdev_for_each_rcu(rdev, mddev)
649                 if (rdev->desc_nr == nr)
650                         return rdev;
651
652         return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657         struct md_rdev *rdev;
658
659         rdev_for_each(rdev, mddev)
660                 if (rdev->bdev->bd_dev == dev)
661                         return rdev;
662
663         return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each_rcu(rdev, mddev)
671                 if (rdev->bdev->bd_dev == dev)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679         struct md_personality *pers;
680         list_for_each_entry(pers, &pers_list, list) {
681                 if (level != LEVEL_NONE && pers->level == level)
682                         return pers;
683                 if (strcmp(pers->name, clevel)==0)
684                         return pers;
685         }
686         return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693         return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698         if (rdev->sb_page)
699                 MD_BUG();
700
701         rdev->sb_page = alloc_page(GFP_KERNEL);
702         if (!rdev->sb_page) {
703                 printk(KERN_ALERT "md: out of memory.\n");
704                 return -ENOMEM;
705         }
706
707         return 0;
708 }
709
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712         if (rdev->sb_page) {
713                 put_page(rdev->sb_page);
714                 rdev->sb_loaded = 0;
715                 rdev->sb_page = NULL;
716                 rdev->sb_start = 0;
717                 rdev->sectors = 0;
718         }
719         if (rdev->bb_page) {
720                 put_page(rdev->bb_page);
721                 rdev->bb_page = NULL;
722         }
723         kfree(rdev->badblocks.page);
724         rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727
728 static void super_written(struct bio *bio, int error)
729 {
730         struct md_rdev *rdev = bio->bi_private;
731         struct mddev *mddev = rdev->mddev;
732
733         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734                 printk("md: super_written gets error=%d, uptodate=%d\n",
735                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737                 md_error(mddev, rdev);
738         }
739
740         if (atomic_dec_and_test(&mddev->pending_writes))
741                 wake_up(&mddev->sb_wait);
742         bio_put(bio);
743 }
744
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746                    sector_t sector, int size, struct page *page)
747 {
748         /* write first size bytes of page to sector of rdev
749          * Increment mddev->pending_writes before returning
750          * and decrement it on completion, waking up sb_wait
751          * if zero is reached.
752          * If an error occurred, call md_error
753          */
754         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755
756         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757         bio->bi_iter.bi_sector = sector;
758         bio_add_page(bio, page, size, 0);
759         bio->bi_private = rdev;
760         bio->bi_end_io = super_written;
761
762         atomic_inc(&mddev->pending_writes);
763         submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765
766 void md_super_wait(struct mddev *mddev)
767 {
768         /* wait for all superblock writes that were scheduled to complete */
769         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
770 }
771
772 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
773                  struct page *page, int rw, bool metadata_op)
774 {
775         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
776         int ret;
777
778         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
779                 rdev->meta_bdev : rdev->bdev;
780         if (metadata_op)
781                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
782         else if (rdev->mddev->reshape_position != MaxSector &&
783                  (rdev->mddev->reshape_backwards ==
784                   (sector >= rdev->mddev->reshape_position)))
785                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
786         else
787                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
788         bio_add_page(bio, page, size, 0);
789         submit_bio_wait(rw, bio);
790
791         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
792         bio_put(bio);
793         return ret;
794 }
795 EXPORT_SYMBOL_GPL(sync_page_io);
796
797 static int read_disk_sb(struct md_rdev * rdev, int size)
798 {
799         char b[BDEVNAME_SIZE];
800         if (!rdev->sb_page) {
801                 MD_BUG();
802                 return -EINVAL;
803         }
804         if (rdev->sb_loaded)
805                 return 0;
806
807
808         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
809                 goto fail;
810         rdev->sb_loaded = 1;
811         return 0;
812
813 fail:
814         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
815                 bdevname(rdev->bdev,b));
816         return -EINVAL;
817 }
818
819 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
820 {
821         return  sb1->set_uuid0 == sb2->set_uuid0 &&
822                 sb1->set_uuid1 == sb2->set_uuid1 &&
823                 sb1->set_uuid2 == sb2->set_uuid2 &&
824                 sb1->set_uuid3 == sb2->set_uuid3;
825 }
826
827 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
828 {
829         int ret;
830         mdp_super_t *tmp1, *tmp2;
831
832         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
833         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
834
835         if (!tmp1 || !tmp2) {
836                 ret = 0;
837                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
838                 goto abort;
839         }
840
841         *tmp1 = *sb1;
842         *tmp2 = *sb2;
843
844         /*
845          * nr_disks is not constant
846          */
847         tmp1->nr_disks = 0;
848         tmp2->nr_disks = 0;
849
850         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
851 abort:
852         kfree(tmp1);
853         kfree(tmp2);
854         return ret;
855 }
856
857
858 static u32 md_csum_fold(u32 csum)
859 {
860         csum = (csum & 0xffff) + (csum >> 16);
861         return (csum & 0xffff) + (csum >> 16);
862 }
863
864 static unsigned int calc_sb_csum(mdp_super_t * sb)
865 {
866         u64 newcsum = 0;
867         u32 *sb32 = (u32*)sb;
868         int i;
869         unsigned int disk_csum, csum;
870
871         disk_csum = sb->sb_csum;
872         sb->sb_csum = 0;
873
874         for (i = 0; i < MD_SB_BYTES/4 ; i++)
875                 newcsum += sb32[i];
876         csum = (newcsum & 0xffffffff) + (newcsum>>32);
877
878
879 #ifdef CONFIG_ALPHA
880         /* This used to use csum_partial, which was wrong for several
881          * reasons including that different results are returned on
882          * different architectures.  It isn't critical that we get exactly
883          * the same return value as before (we always csum_fold before
884          * testing, and that removes any differences).  However as we
885          * know that csum_partial always returned a 16bit value on
886          * alphas, do a fold to maximise conformity to previous behaviour.
887          */
888         sb->sb_csum = md_csum_fold(disk_csum);
889 #else
890         sb->sb_csum = disk_csum;
891 #endif
892         return csum;
893 }
894
895
896 /*
897  * Handle superblock details.
898  * We want to be able to handle multiple superblock formats
899  * so we have a common interface to them all, and an array of
900  * different handlers.
901  * We rely on user-space to write the initial superblock, and support
902  * reading and updating of superblocks.
903  * Interface methods are:
904  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
905  *      loads and validates a superblock on dev.
906  *      if refdev != NULL, compare superblocks on both devices
907  *    Return:
908  *      0 - dev has a superblock that is compatible with refdev
909  *      1 - dev has a superblock that is compatible and newer than refdev
910  *          so dev should be used as the refdev in future
911  *     -EINVAL superblock incompatible or invalid
912  *     -othererror e.g. -EIO
913  *
914  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
915  *      Verify that dev is acceptable into mddev.
916  *       The first time, mddev->raid_disks will be 0, and data from
917  *       dev should be merged in.  Subsequent calls check that dev
918  *       is new enough.  Return 0 or -EINVAL
919  *
920  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
921  *     Update the superblock for rdev with data in mddev
922  *     This does not write to disc.
923  *
924  */
925
926 struct super_type  {
927         char                *name;
928         struct module       *owner;
929         int                 (*load_super)(struct md_rdev *rdev,
930                                           struct md_rdev *refdev,
931                                           int minor_version);
932         int                 (*validate_super)(struct mddev *mddev,
933                                               struct md_rdev *rdev);
934         void                (*sync_super)(struct mddev *mddev,
935                                           struct md_rdev *rdev);
936         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
937                                                 sector_t num_sectors);
938         int                 (*allow_new_offset)(struct md_rdev *rdev,
939                                                 unsigned long long new_offset);
940 };
941
942 /*
943  * Check that the given mddev has no bitmap.
944  *
945  * This function is called from the run method of all personalities that do not
946  * support bitmaps. It prints an error message and returns non-zero if mddev
947  * has a bitmap. Otherwise, it returns 0.
948  *
949  */
950 int md_check_no_bitmap(struct mddev *mddev)
951 {
952         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
953                 return 0;
954         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
955                 mdname(mddev), mddev->pers->name);
956         return 1;
957 }
958 EXPORT_SYMBOL(md_check_no_bitmap);
959
960 /*
961  * load_super for 0.90.0 
962  */
963 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
964 {
965         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
966         mdp_super_t *sb;
967         int ret;
968
969         /*
970          * Calculate the position of the superblock (512byte sectors),
971          * it's at the end of the disk.
972          *
973          * It also happens to be a multiple of 4Kb.
974          */
975         rdev->sb_start = calc_dev_sboffset(rdev);
976
977         ret = read_disk_sb(rdev, MD_SB_BYTES);
978         if (ret) return ret;
979
980         ret = -EINVAL;
981
982         bdevname(rdev->bdev, b);
983         sb = page_address(rdev->sb_page);
984
985         if (sb->md_magic != MD_SB_MAGIC) {
986                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
987                        b);
988                 goto abort;
989         }
990
991         if (sb->major_version != 0 ||
992             sb->minor_version < 90 ||
993             sb->minor_version > 91) {
994                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
995                         sb->major_version, sb->minor_version,
996                         b);
997                 goto abort;
998         }
999
1000         if (sb->raid_disks <= 0)
1001                 goto abort;
1002
1003         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1004                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1005                         b);
1006                 goto abort;
1007         }
1008
1009         rdev->preferred_minor = sb->md_minor;
1010         rdev->data_offset = 0;
1011         rdev->new_data_offset = 0;
1012         rdev->sb_size = MD_SB_BYTES;
1013         rdev->badblocks.shift = -1;
1014
1015         if (sb->level == LEVEL_MULTIPATH)
1016                 rdev->desc_nr = -1;
1017         else
1018                 rdev->desc_nr = sb->this_disk.number;
1019
1020         if (!refdev) {
1021                 ret = 1;
1022         } else {
1023                 __u64 ev1, ev2;
1024                 mdp_super_t *refsb = page_address(refdev->sb_page);
1025                 if (!uuid_equal(refsb, sb)) {
1026                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1027                                 b, bdevname(refdev->bdev,b2));
1028                         goto abort;
1029                 }
1030                 if (!sb_equal(refsb, sb)) {
1031                         printk(KERN_WARNING "md: %s has same UUID"
1032                                " but different superblock to %s\n",
1033                                b, bdevname(refdev->bdev, b2));
1034                         goto abort;
1035                 }
1036                 ev1 = md_event(sb);
1037                 ev2 = md_event(refsb);
1038                 if (ev1 > ev2)
1039                         ret = 1;
1040                 else 
1041                         ret = 0;
1042         }
1043         rdev->sectors = rdev->sb_start;
1044         /* Limit to 4TB as metadata cannot record more than that.
1045          * (not needed for Linear and RAID0 as metadata doesn't
1046          * record this size)
1047          */
1048         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1049                 rdev->sectors = (2ULL << 32) - 2;
1050
1051         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1052                 /* "this cannot possibly happen" ... */
1053                 ret = -EINVAL;
1054
1055  abort:
1056         return ret;
1057 }
1058
1059 /*
1060  * validate_super for 0.90.0
1061  */
1062 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1063 {
1064         mdp_disk_t *desc;
1065         mdp_super_t *sb = page_address(rdev->sb_page);
1066         __u64 ev1 = md_event(sb);
1067
1068         rdev->raid_disk = -1;
1069         clear_bit(Faulty, &rdev->flags);
1070         clear_bit(In_sync, &rdev->flags);
1071         clear_bit(Bitmap_sync, &rdev->flags);
1072         clear_bit(WriteMostly, &rdev->flags);
1073
1074         if (mddev->raid_disks == 0) {
1075                 mddev->major_version = 0;
1076                 mddev->minor_version = sb->minor_version;
1077                 mddev->patch_version = sb->patch_version;
1078                 mddev->external = 0;
1079                 mddev->chunk_sectors = sb->chunk_size >> 9;
1080                 mddev->ctime = sb->ctime;
1081                 mddev->utime = sb->utime;
1082                 mddev->level = sb->level;
1083                 mddev->clevel[0] = 0;
1084                 mddev->layout = sb->layout;
1085                 mddev->raid_disks = sb->raid_disks;
1086                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1087                 mddev->events = ev1;
1088                 mddev->bitmap_info.offset = 0;
1089                 mddev->bitmap_info.space = 0;
1090                 /* bitmap can use 60 K after the 4K superblocks */
1091                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1092                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1093                 mddev->reshape_backwards = 0;
1094
1095                 if (mddev->minor_version >= 91) {
1096                         mddev->reshape_position = sb->reshape_position;
1097                         mddev->delta_disks = sb->delta_disks;
1098                         mddev->new_level = sb->new_level;
1099                         mddev->new_layout = sb->new_layout;
1100                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1101                         if (mddev->delta_disks < 0)
1102                                 mddev->reshape_backwards = 1;
1103                 } else {
1104                         mddev->reshape_position = MaxSector;
1105                         mddev->delta_disks = 0;
1106                         mddev->new_level = mddev->level;
1107                         mddev->new_layout = mddev->layout;
1108                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1109                 }
1110
1111                 if (sb->state & (1<<MD_SB_CLEAN))
1112                         mddev->recovery_cp = MaxSector;
1113                 else {
1114                         if (sb->events_hi == sb->cp_events_hi && 
1115                                 sb->events_lo == sb->cp_events_lo) {
1116                                 mddev->recovery_cp = sb->recovery_cp;
1117                         } else
1118                                 mddev->recovery_cp = 0;
1119                 }
1120
1121                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1122                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1123                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1124                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1125
1126                 mddev->max_disks = MD_SB_DISKS;
1127
1128                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1129                     mddev->bitmap_info.file == NULL) {
1130                         mddev->bitmap_info.offset =
1131                                 mddev->bitmap_info.default_offset;
1132                         mddev->bitmap_info.space =
1133                                 mddev->bitmap_info.default_space;
1134                 }
1135
1136         } else if (mddev->pers == NULL) {
1137                 /* Insist on good event counter while assembling, except
1138                  * for spares (which don't need an event count) */
1139                 ++ev1;
1140                 if (sb->disks[rdev->desc_nr].state & (
1141                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1142                         if (ev1 < mddev->events) 
1143                                 return -EINVAL;
1144         } else if (mddev->bitmap) {
1145                 /* if adding to array with a bitmap, then we can accept an
1146                  * older device ... but not too old.
1147                  */
1148                 if (ev1 < mddev->bitmap->events_cleared)
1149                         return 0;
1150                 if (ev1 < mddev->events)
1151                         set_bit(Bitmap_sync, &rdev->flags);
1152         } else {
1153                 if (ev1 < mddev->events)
1154                         /* just a hot-add of a new device, leave raid_disk at -1 */
1155                         return 0;
1156         }
1157
1158         if (mddev->level != LEVEL_MULTIPATH) {
1159                 desc = sb->disks + rdev->desc_nr;
1160
1161                 if (desc->state & (1<<MD_DISK_FAULTY))
1162                         set_bit(Faulty, &rdev->flags);
1163                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1164                             desc->raid_disk < mddev->raid_disks */) {
1165                         set_bit(In_sync, &rdev->flags);
1166                         rdev->raid_disk = desc->raid_disk;
1167                         rdev->saved_raid_disk = desc->raid_disk;
1168                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1169                         /* active but not in sync implies recovery up to
1170                          * reshape position.  We don't know exactly where
1171                          * that is, so set to zero for now */
1172                         if (mddev->minor_version >= 91) {
1173                                 rdev->recovery_offset = 0;
1174                                 rdev->raid_disk = desc->raid_disk;
1175                         }
1176                 }
1177                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1178                         set_bit(WriteMostly, &rdev->flags);
1179         } else /* MULTIPATH are always insync */
1180                 set_bit(In_sync, &rdev->flags);
1181         return 0;
1182 }
1183
1184 /*
1185  * sync_super for 0.90.0
1186  */
1187 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1188 {
1189         mdp_super_t *sb;
1190         struct md_rdev *rdev2;
1191         int next_spare = mddev->raid_disks;
1192
1193
1194         /* make rdev->sb match mddev data..
1195          *
1196          * 1/ zero out disks
1197          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1198          * 3/ any empty disks < next_spare become removed
1199          *
1200          * disks[0] gets initialised to REMOVED because
1201          * we cannot be sure from other fields if it has
1202          * been initialised or not.
1203          */
1204         int i;
1205         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1206
1207         rdev->sb_size = MD_SB_BYTES;
1208
1209         sb = page_address(rdev->sb_page);
1210
1211         memset(sb, 0, sizeof(*sb));
1212
1213         sb->md_magic = MD_SB_MAGIC;
1214         sb->major_version = mddev->major_version;
1215         sb->patch_version = mddev->patch_version;
1216         sb->gvalid_words  = 0; /* ignored */
1217         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1218         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1219         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1220         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1221
1222         sb->ctime = mddev->ctime;
1223         sb->level = mddev->level;
1224         sb->size = mddev->dev_sectors / 2;
1225         sb->raid_disks = mddev->raid_disks;
1226         sb->md_minor = mddev->md_minor;
1227         sb->not_persistent = 0;
1228         sb->utime = mddev->utime;
1229         sb->state = 0;
1230         sb->events_hi = (mddev->events>>32);
1231         sb->events_lo = (u32)mddev->events;
1232
1233         if (mddev->reshape_position == MaxSector)
1234                 sb->minor_version = 90;
1235         else {
1236                 sb->minor_version = 91;
1237                 sb->reshape_position = mddev->reshape_position;
1238                 sb->new_level = mddev->new_level;
1239                 sb->delta_disks = mddev->delta_disks;
1240                 sb->new_layout = mddev->new_layout;
1241                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1242         }
1243         mddev->minor_version = sb->minor_version;
1244         if (mddev->in_sync)
1245         {
1246                 sb->recovery_cp = mddev->recovery_cp;
1247                 sb->cp_events_hi = (mddev->events>>32);
1248                 sb->cp_events_lo = (u32)mddev->events;
1249                 if (mddev->recovery_cp == MaxSector)
1250                         sb->state = (1<< MD_SB_CLEAN);
1251         } else
1252                 sb->recovery_cp = 0;
1253
1254         sb->layout = mddev->layout;
1255         sb->chunk_size = mddev->chunk_sectors << 9;
1256
1257         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1258                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1259
1260         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1261         rdev_for_each(rdev2, mddev) {
1262                 mdp_disk_t *d;
1263                 int desc_nr;
1264                 int is_active = test_bit(In_sync, &rdev2->flags);
1265
1266                 if (rdev2->raid_disk >= 0 &&
1267                     sb->minor_version >= 91)
1268                         /* we have nowhere to store the recovery_offset,
1269                          * but if it is not below the reshape_position,
1270                          * we can piggy-back on that.
1271                          */
1272                         is_active = 1;
1273                 if (rdev2->raid_disk < 0 ||
1274                     test_bit(Faulty, &rdev2->flags))
1275                         is_active = 0;
1276                 if (is_active)
1277                         desc_nr = rdev2->raid_disk;
1278                 else
1279                         desc_nr = next_spare++;
1280                 rdev2->desc_nr = desc_nr;
1281                 d = &sb->disks[rdev2->desc_nr];
1282                 nr_disks++;
1283                 d->number = rdev2->desc_nr;
1284                 d->major = MAJOR(rdev2->bdev->bd_dev);
1285                 d->minor = MINOR(rdev2->bdev->bd_dev);
1286                 if (is_active)
1287                         d->raid_disk = rdev2->raid_disk;
1288                 else
1289                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1290                 if (test_bit(Faulty, &rdev2->flags))
1291                         d->state = (1<<MD_DISK_FAULTY);
1292                 else if (is_active) {
1293                         d->state = (1<<MD_DISK_ACTIVE);
1294                         if (test_bit(In_sync, &rdev2->flags))
1295                                 d->state |= (1<<MD_DISK_SYNC);
1296                         active++;
1297                         working++;
1298                 } else {
1299                         d->state = 0;
1300                         spare++;
1301                         working++;
1302                 }
1303                 if (test_bit(WriteMostly, &rdev2->flags))
1304                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1305         }
1306         /* now set the "removed" and "faulty" bits on any missing devices */
1307         for (i=0 ; i < mddev->raid_disks ; i++) {
1308                 mdp_disk_t *d = &sb->disks[i];
1309                 if (d->state == 0 && d->number == 0) {
1310                         d->number = i;
1311                         d->raid_disk = i;
1312                         d->state = (1<<MD_DISK_REMOVED);
1313                         d->state |= (1<<MD_DISK_FAULTY);
1314                         failed++;
1315                 }
1316         }
1317         sb->nr_disks = nr_disks;
1318         sb->active_disks = active;
1319         sb->working_disks = working;
1320         sb->failed_disks = failed;
1321         sb->spare_disks = spare;
1322
1323         sb->this_disk = sb->disks[rdev->desc_nr];
1324         sb->sb_csum = calc_sb_csum(sb);
1325 }
1326
1327 /*
1328  * rdev_size_change for 0.90.0
1329  */
1330 static unsigned long long
1331 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1332 {
1333         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1334                 return 0; /* component must fit device */
1335         if (rdev->mddev->bitmap_info.offset)
1336                 return 0; /* can't move bitmap */
1337         rdev->sb_start = calc_dev_sboffset(rdev);
1338         if (!num_sectors || num_sectors > rdev->sb_start)
1339                 num_sectors = rdev->sb_start;
1340         /* Limit to 4TB as metadata cannot record more than that.
1341          * 4TB == 2^32 KB, or 2*2^32 sectors.
1342          */
1343         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1344                 num_sectors = (2ULL << 32) - 2;
1345         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1346                        rdev->sb_page);
1347         md_super_wait(rdev->mddev);
1348         return num_sectors;
1349 }
1350
1351 static int
1352 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1353 {
1354         /* non-zero offset changes not possible with v0.90 */
1355         return new_offset == 0;
1356 }
1357
1358 /*
1359  * version 1 superblock
1360  */
1361
1362 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1363 {
1364         __le32 disk_csum;
1365         u32 csum;
1366         unsigned long long newcsum;
1367         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1368         __le32 *isuper = (__le32*)sb;
1369
1370         disk_csum = sb->sb_csum;
1371         sb->sb_csum = 0;
1372         newcsum = 0;
1373         for (; size >= 4; size -= 4)
1374                 newcsum += le32_to_cpu(*isuper++);
1375
1376         if (size == 2)
1377                 newcsum += le16_to_cpu(*(__le16*) isuper);
1378
1379         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1380         sb->sb_csum = disk_csum;
1381         return cpu_to_le32(csum);
1382 }
1383
1384 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1385                             int acknowledged);
1386 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1387 {
1388         struct mdp_superblock_1 *sb;
1389         int ret;
1390         sector_t sb_start;
1391         sector_t sectors;
1392         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1393         int bmask;
1394
1395         /*
1396          * Calculate the position of the superblock in 512byte sectors.
1397          * It is always aligned to a 4K boundary and
1398          * depeding on minor_version, it can be:
1399          * 0: At least 8K, but less than 12K, from end of device
1400          * 1: At start of device
1401          * 2: 4K from start of device.
1402          */
1403         switch(minor_version) {
1404         case 0:
1405                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1406                 sb_start -= 8*2;
1407                 sb_start &= ~(sector_t)(4*2-1);
1408                 break;
1409         case 1:
1410                 sb_start = 0;
1411                 break;
1412         case 2:
1413                 sb_start = 8;
1414                 break;
1415         default:
1416                 return -EINVAL;
1417         }
1418         rdev->sb_start = sb_start;
1419
1420         /* superblock is rarely larger than 1K, but it can be larger,
1421          * and it is safe to read 4k, so we do that
1422          */
1423         ret = read_disk_sb(rdev, 4096);
1424         if (ret) return ret;
1425
1426
1427         sb = page_address(rdev->sb_page);
1428
1429         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1430             sb->major_version != cpu_to_le32(1) ||
1431             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1432             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1433             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1434                 return -EINVAL;
1435
1436         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1437                 printk("md: invalid superblock checksum on %s\n",
1438                         bdevname(rdev->bdev,b));
1439                 return -EINVAL;
1440         }
1441         if (le64_to_cpu(sb->data_size) < 10) {
1442                 printk("md: data_size too small on %s\n",
1443                        bdevname(rdev->bdev,b));
1444                 return -EINVAL;
1445         }
1446         if (sb->pad0 ||
1447             sb->pad3[0] ||
1448             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1449                 /* Some padding is non-zero, might be a new feature */
1450                 return -EINVAL;
1451
1452         rdev->preferred_minor = 0xffff;
1453         rdev->data_offset = le64_to_cpu(sb->data_offset);
1454         rdev->new_data_offset = rdev->data_offset;
1455         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1456             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1457                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1458         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1459
1460         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1461         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1462         if (rdev->sb_size & bmask)
1463                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1464
1465         if (minor_version
1466             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1467                 return -EINVAL;
1468         if (minor_version
1469             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1470                 return -EINVAL;
1471
1472         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1473                 rdev->desc_nr = -1;
1474         else
1475                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1476
1477         if (!rdev->bb_page) {
1478                 rdev->bb_page = alloc_page(GFP_KERNEL);
1479                 if (!rdev->bb_page)
1480                         return -ENOMEM;
1481         }
1482         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1483             rdev->badblocks.count == 0) {
1484                 /* need to load the bad block list.
1485                  * Currently we limit it to one page.
1486                  */
1487                 s32 offset;
1488                 sector_t bb_sector;
1489                 u64 *bbp;
1490                 int i;
1491                 int sectors = le16_to_cpu(sb->bblog_size);
1492                 if (sectors > (PAGE_SIZE / 512))
1493                         return -EINVAL;
1494                 offset = le32_to_cpu(sb->bblog_offset);
1495                 if (offset == 0)
1496                         return -EINVAL;
1497                 bb_sector = (long long)offset;
1498                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1499                                   rdev->bb_page, READ, true))
1500                         return -EIO;
1501                 bbp = (u64 *)page_address(rdev->bb_page);
1502                 rdev->badblocks.shift = sb->bblog_shift;
1503                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1504                         u64 bb = le64_to_cpu(*bbp);
1505                         int count = bb & (0x3ff);
1506                         u64 sector = bb >> 10;
1507                         sector <<= sb->bblog_shift;
1508                         count <<= sb->bblog_shift;
1509                         if (bb + 1 == 0)
1510                                 break;
1511                         if (md_set_badblocks(&rdev->badblocks,
1512                                              sector, count, 1) == 0)
1513                                 return -EINVAL;
1514                 }
1515         } else if (sb->bblog_offset != 0)
1516                 rdev->badblocks.shift = 0;
1517
1518         if (!refdev) {
1519                 ret = 1;
1520         } else {
1521                 __u64 ev1, ev2;
1522                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1523
1524                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1525                     sb->level != refsb->level ||
1526                     sb->layout != refsb->layout ||
1527                     sb->chunksize != refsb->chunksize) {
1528                         printk(KERN_WARNING "md: %s has strangely different"
1529                                 " superblock to %s\n",
1530                                 bdevname(rdev->bdev,b),
1531                                 bdevname(refdev->bdev,b2));
1532                         return -EINVAL;
1533                 }
1534                 ev1 = le64_to_cpu(sb->events);
1535                 ev2 = le64_to_cpu(refsb->events);
1536
1537                 if (ev1 > ev2)
1538                         ret = 1;
1539                 else
1540                         ret = 0;
1541         }
1542         if (minor_version) {
1543                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1544                 sectors -= rdev->data_offset;
1545         } else
1546                 sectors = rdev->sb_start;
1547         if (sectors < le64_to_cpu(sb->data_size))
1548                 return -EINVAL;
1549         rdev->sectors = le64_to_cpu(sb->data_size);
1550         return ret;
1551 }
1552
1553 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1554 {
1555         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1556         __u64 ev1 = le64_to_cpu(sb->events);
1557
1558         rdev->raid_disk = -1;
1559         clear_bit(Faulty, &rdev->flags);
1560         clear_bit(In_sync, &rdev->flags);
1561         clear_bit(Bitmap_sync, &rdev->flags);
1562         clear_bit(WriteMostly, &rdev->flags);
1563
1564         if (mddev->raid_disks == 0) {
1565                 mddev->major_version = 1;
1566                 mddev->patch_version = 0;
1567                 mddev->external = 0;
1568                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1569                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1570                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1571                 mddev->level = le32_to_cpu(sb->level);
1572                 mddev->clevel[0] = 0;
1573                 mddev->layout = le32_to_cpu(sb->layout);
1574                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1575                 mddev->dev_sectors = le64_to_cpu(sb->size);
1576                 mddev->events = ev1;
1577                 mddev->bitmap_info.offset = 0;
1578                 mddev->bitmap_info.space = 0;
1579                 /* Default location for bitmap is 1K after superblock
1580                  * using 3K - total of 4K
1581                  */
1582                 mddev->bitmap_info.default_offset = 1024 >> 9;
1583                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1584                 mddev->reshape_backwards = 0;
1585
1586                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1587                 memcpy(mddev->uuid, sb->set_uuid, 16);
1588
1589                 mddev->max_disks =  (4096-256)/2;
1590
1591                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1592                     mddev->bitmap_info.file == NULL) {
1593                         mddev->bitmap_info.offset =
1594                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1595                         /* Metadata doesn't record how much space is available.
1596                          * For 1.0, we assume we can use up to the superblock
1597                          * if before, else to 4K beyond superblock.
1598                          * For others, assume no change is possible.
1599                          */
1600                         if (mddev->minor_version > 0)
1601                                 mddev->bitmap_info.space = 0;
1602                         else if (mddev->bitmap_info.offset > 0)
1603                                 mddev->bitmap_info.space =
1604                                         8 - mddev->bitmap_info.offset;
1605                         else
1606                                 mddev->bitmap_info.space =
1607                                         -mddev->bitmap_info.offset;
1608                 }
1609
1610                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1611                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1612                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1613                         mddev->new_level = le32_to_cpu(sb->new_level);
1614                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1615                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1616                         if (mddev->delta_disks < 0 ||
1617                             (mddev->delta_disks == 0 &&
1618                              (le32_to_cpu(sb->feature_map)
1619                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1620                                 mddev->reshape_backwards = 1;
1621                 } else {
1622                         mddev->reshape_position = MaxSector;
1623                         mddev->delta_disks = 0;
1624                         mddev->new_level = mddev->level;
1625                         mddev->new_layout = mddev->layout;
1626                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1627                 }
1628
1629         } else if (mddev->pers == NULL) {
1630                 /* Insist of good event counter while assembling, except for
1631                  * spares (which don't need an event count) */
1632                 ++ev1;
1633                 if (rdev->desc_nr >= 0 &&
1634                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1635                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1636                         if (ev1 < mddev->events)
1637                                 return -EINVAL;
1638         } else if (mddev->bitmap) {
1639                 /* If adding to array with a bitmap, then we can accept an
1640                  * older device, but not too old.
1641                  */
1642                 if (ev1 < mddev->bitmap->events_cleared)
1643                         return 0;
1644                 if (ev1 < mddev->events)
1645                         set_bit(Bitmap_sync, &rdev->flags);
1646         } else {
1647                 if (ev1 < mddev->events)
1648                         /* just a hot-add of a new device, leave raid_disk at -1 */
1649                         return 0;
1650         }
1651         if (mddev->level != LEVEL_MULTIPATH) {
1652                 int role;
1653                 if (rdev->desc_nr < 0 ||
1654                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1655                         role = 0xffff;
1656                         rdev->desc_nr = -1;
1657                 } else
1658                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1659                 switch(role) {
1660                 case 0xffff: /* spare */
1661                         break;
1662                 case 0xfffe: /* faulty */
1663                         set_bit(Faulty, &rdev->flags);
1664                         break;
1665                 default:
1666                         rdev->saved_raid_disk = role;
1667                         if ((le32_to_cpu(sb->feature_map) &
1668                              MD_FEATURE_RECOVERY_OFFSET)) {
1669                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1670                                 if (!(le32_to_cpu(sb->feature_map) &
1671                                       MD_FEATURE_RECOVERY_BITMAP))
1672                                         rdev->saved_raid_disk = -1;
1673                         } else
1674                                 set_bit(In_sync, &rdev->flags);
1675                         rdev->raid_disk = role;
1676                         break;
1677                 }
1678                 if (sb->devflags & WriteMostly1)
1679                         set_bit(WriteMostly, &rdev->flags);
1680                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1681                         set_bit(Replacement, &rdev->flags);
1682         } else /* MULTIPATH are always insync */
1683                 set_bit(In_sync, &rdev->flags);
1684
1685         return 0;
1686 }
1687
1688 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1689 {
1690         struct mdp_superblock_1 *sb;
1691         struct md_rdev *rdev2;
1692         int max_dev, i;
1693         /* make rdev->sb match mddev and rdev data. */
1694
1695         sb = page_address(rdev->sb_page);
1696
1697         sb->feature_map = 0;
1698         sb->pad0 = 0;
1699         sb->recovery_offset = cpu_to_le64(0);
1700         memset(sb->pad3, 0, sizeof(sb->pad3));
1701
1702         sb->utime = cpu_to_le64((__u64)mddev->utime);
1703         sb->events = cpu_to_le64(mddev->events);
1704         if (mddev->in_sync)
1705                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1706         else
1707                 sb->resync_offset = cpu_to_le64(0);
1708
1709         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1710
1711         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1712         sb->size = cpu_to_le64(mddev->dev_sectors);
1713         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1714         sb->level = cpu_to_le32(mddev->level);
1715         sb->layout = cpu_to_le32(mddev->layout);
1716
1717         if (test_bit(WriteMostly, &rdev->flags))
1718                 sb->devflags |= WriteMostly1;
1719         else
1720                 sb->devflags &= ~WriteMostly1;
1721         sb->data_offset = cpu_to_le64(rdev->data_offset);
1722         sb->data_size = cpu_to_le64(rdev->sectors);
1723
1724         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1725                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1726                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1727         }
1728
1729         if (rdev->raid_disk >= 0 &&
1730             !test_bit(In_sync, &rdev->flags)) {
1731                 sb->feature_map |=
1732                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1733                 sb->recovery_offset =
1734                         cpu_to_le64(rdev->recovery_offset);
1735                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1736                         sb->feature_map |=
1737                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1738         }
1739         if (test_bit(Replacement, &rdev->flags))
1740                 sb->feature_map |=
1741                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1742
1743         if (mddev->reshape_position != MaxSector) {
1744                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1745                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1746                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1747                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1748                 sb->new_level = cpu_to_le32(mddev->new_level);
1749                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1750                 if (mddev->delta_disks == 0 &&
1751                     mddev->reshape_backwards)
1752                         sb->feature_map
1753                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1754                 if (rdev->new_data_offset != rdev->data_offset) {
1755                         sb->feature_map
1756                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1757                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1758                                                              - rdev->data_offset));
1759                 }
1760         }
1761
1762         if (rdev->badblocks.count == 0)
1763                 /* Nothing to do for bad blocks*/ ;
1764         else if (sb->bblog_offset == 0)
1765                 /* Cannot record bad blocks on this device */
1766                 md_error(mddev, rdev);
1767         else {
1768                 struct badblocks *bb = &rdev->badblocks;
1769                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1770                 u64 *p = bb->page;
1771                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1772                 if (bb->changed) {
1773                         unsigned seq;
1774
1775 retry:
1776                         seq = read_seqbegin(&bb->lock);
1777
1778                         memset(bbp, 0xff, PAGE_SIZE);
1779
1780                         for (i = 0 ; i < bb->count ; i++) {
1781                                 u64 internal_bb = p[i];
1782                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1783                                                 | BB_LEN(internal_bb));
1784                                 bbp[i] = cpu_to_le64(store_bb);
1785                         }
1786                         bb->changed = 0;
1787                         if (read_seqretry(&bb->lock, seq))
1788                                 goto retry;
1789
1790                         bb->sector = (rdev->sb_start +
1791                                       (int)le32_to_cpu(sb->bblog_offset));
1792                         bb->size = le16_to_cpu(sb->bblog_size);
1793                 }
1794         }
1795
1796         max_dev = 0;
1797         rdev_for_each(rdev2, mddev)
1798                 if (rdev2->desc_nr+1 > max_dev)
1799                         max_dev = rdev2->desc_nr+1;
1800
1801         if (max_dev > le32_to_cpu(sb->max_dev)) {
1802                 int bmask;
1803                 sb->max_dev = cpu_to_le32(max_dev);
1804                 rdev->sb_size = max_dev * 2 + 256;
1805                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1806                 if (rdev->sb_size & bmask)
1807                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1808         } else
1809                 max_dev = le32_to_cpu(sb->max_dev);
1810
1811         for (i=0; i<max_dev;i++)
1812                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1813         
1814         rdev_for_each(rdev2, mddev) {
1815                 i = rdev2->desc_nr;
1816                 if (test_bit(Faulty, &rdev2->flags))
1817                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1818                 else if (test_bit(In_sync, &rdev2->flags))
1819                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1820                 else if (rdev2->raid_disk >= 0)
1821                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1822                 else
1823                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1824         }
1825
1826         sb->sb_csum = calc_sb_1_csum(sb);
1827 }
1828
1829 static unsigned long long
1830 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1831 {
1832         struct mdp_superblock_1 *sb;
1833         sector_t max_sectors;
1834         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1835                 return 0; /* component must fit device */
1836         if (rdev->data_offset != rdev->new_data_offset)
1837                 return 0; /* too confusing */
1838         if (rdev->sb_start < rdev->data_offset) {
1839                 /* minor versions 1 and 2; superblock before data */
1840                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1841                 max_sectors -= rdev->data_offset;
1842                 if (!num_sectors || num_sectors > max_sectors)
1843                         num_sectors = max_sectors;
1844         } else if (rdev->mddev->bitmap_info.offset) {
1845                 /* minor version 0 with bitmap we can't move */
1846                 return 0;
1847         } else {
1848                 /* minor version 0; superblock after data */
1849                 sector_t sb_start;
1850                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1851                 sb_start &= ~(sector_t)(4*2 - 1);
1852                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1853                 if (!num_sectors || num_sectors > max_sectors)
1854                         num_sectors = max_sectors;
1855                 rdev->sb_start = sb_start;
1856         }
1857         sb = page_address(rdev->sb_page);
1858         sb->data_size = cpu_to_le64(num_sectors);
1859         sb->super_offset = rdev->sb_start;
1860         sb->sb_csum = calc_sb_1_csum(sb);
1861         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1862                        rdev->sb_page);
1863         md_super_wait(rdev->mddev);
1864         return num_sectors;
1865
1866 }
1867
1868 static int
1869 super_1_allow_new_offset(struct md_rdev *rdev,
1870                          unsigned long long new_offset)
1871 {
1872         /* All necessary checks on new >= old have been done */
1873         struct bitmap *bitmap;
1874         if (new_offset >= rdev->data_offset)
1875                 return 1;
1876
1877         /* with 1.0 metadata, there is no metadata to tread on
1878          * so we can always move back */
1879         if (rdev->mddev->minor_version == 0)
1880                 return 1;
1881
1882         /* otherwise we must be sure not to step on
1883          * any metadata, so stay:
1884          * 36K beyond start of superblock
1885          * beyond end of badblocks
1886          * beyond write-intent bitmap
1887          */
1888         if (rdev->sb_start + (32+4)*2 > new_offset)
1889                 return 0;
1890         bitmap = rdev->mddev->bitmap;
1891         if (bitmap && !rdev->mddev->bitmap_info.file &&
1892             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1893             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1894                 return 0;
1895         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1896                 return 0;
1897
1898         return 1;
1899 }
1900
1901 static struct super_type super_types[] = {
1902         [0] = {
1903                 .name   = "0.90.0",
1904                 .owner  = THIS_MODULE,
1905                 .load_super         = super_90_load,
1906                 .validate_super     = super_90_validate,
1907                 .sync_super         = super_90_sync,
1908                 .rdev_size_change   = super_90_rdev_size_change,
1909                 .allow_new_offset   = super_90_allow_new_offset,
1910         },
1911         [1] = {
1912                 .name   = "md-1",
1913                 .owner  = THIS_MODULE,
1914                 .load_super         = super_1_load,
1915                 .validate_super     = super_1_validate,
1916                 .sync_super         = super_1_sync,
1917                 .rdev_size_change   = super_1_rdev_size_change,
1918                 .allow_new_offset   = super_1_allow_new_offset,
1919         },
1920 };
1921
1922 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1923 {
1924         if (mddev->sync_super) {
1925                 mddev->sync_super(mddev, rdev);
1926                 return;
1927         }
1928
1929         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1930
1931         super_types[mddev->major_version].sync_super(mddev, rdev);
1932 }
1933
1934 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1935 {
1936         struct md_rdev *rdev, *rdev2;
1937
1938         rcu_read_lock();
1939         rdev_for_each_rcu(rdev, mddev1)
1940                 rdev_for_each_rcu(rdev2, mddev2)
1941                         if (rdev->bdev->bd_contains ==
1942                             rdev2->bdev->bd_contains) {
1943                                 rcu_read_unlock();
1944                                 return 1;
1945                         }
1946         rcu_read_unlock();
1947         return 0;
1948 }
1949
1950 static LIST_HEAD(pending_raid_disks);
1951
1952 /*
1953  * Try to register data integrity profile for an mddev
1954  *
1955  * This is called when an array is started and after a disk has been kicked
1956  * from the array. It only succeeds if all working and active component devices
1957  * are integrity capable with matching profiles.
1958  */
1959 int md_integrity_register(struct mddev *mddev)
1960 {
1961         struct md_rdev *rdev, *reference = NULL;
1962
1963         if (list_empty(&mddev->disks))
1964                 return 0; /* nothing to do */
1965         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1966                 return 0; /* shouldn't register, or already is */
1967         rdev_for_each(rdev, mddev) {
1968                 /* skip spares and non-functional disks */
1969                 if (test_bit(Faulty, &rdev->flags))
1970                         continue;
1971                 if (rdev->raid_disk < 0)
1972                         continue;
1973                 if (!reference) {
1974                         /* Use the first rdev as the reference */
1975                         reference = rdev;
1976                         continue;
1977                 }
1978                 /* does this rdev's profile match the reference profile? */
1979                 if (blk_integrity_compare(reference->bdev->bd_disk,
1980                                 rdev->bdev->bd_disk) < 0)
1981                         return -EINVAL;
1982         }
1983         if (!reference || !bdev_get_integrity(reference->bdev))
1984                 return 0;
1985         /*
1986          * All component devices are integrity capable and have matching
1987          * profiles, register the common profile for the md device.
1988          */
1989         if (blk_integrity_register(mddev->gendisk,
1990                         bdev_get_integrity(reference->bdev)) != 0) {
1991                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1992                         mdname(mddev));
1993                 return -EINVAL;
1994         }
1995         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1996         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1997                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1998                        mdname(mddev));
1999                 return -EINVAL;
2000         }
2001         return 0;
2002 }
2003 EXPORT_SYMBOL(md_integrity_register);
2004
2005 /* Disable data integrity if non-capable/non-matching disk is being added */
2006 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2007 {
2008         struct blk_integrity *bi_rdev;
2009         struct blk_integrity *bi_mddev;
2010
2011         if (!mddev->gendisk)
2012                 return;
2013
2014         bi_rdev = bdev_get_integrity(rdev->bdev);
2015         bi_mddev = blk_get_integrity(mddev->gendisk);
2016
2017         if (!bi_mddev) /* nothing to do */
2018                 return;
2019         if (rdev->raid_disk < 0) /* skip spares */
2020                 return;
2021         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2022                                              rdev->bdev->bd_disk) >= 0)
2023                 return;
2024         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2025         blk_integrity_unregister(mddev->gendisk);
2026 }
2027 EXPORT_SYMBOL(md_integrity_add_rdev);
2028
2029 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2030 {
2031         char b[BDEVNAME_SIZE];
2032         struct kobject *ko;
2033         char *s;
2034         int err;
2035
2036         if (rdev->mddev) {
2037                 MD_BUG();
2038                 return -EINVAL;
2039         }
2040
2041         /* prevent duplicates */
2042         if (find_rdev(mddev, rdev->bdev->bd_dev))
2043                 return -EEXIST;
2044
2045         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2046         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2047                         rdev->sectors < mddev->dev_sectors)) {
2048                 if (mddev->pers) {
2049                         /* Cannot change size, so fail
2050                          * If mddev->level <= 0, then we don't care
2051                          * about aligning sizes (e.g. linear)
2052                          */
2053                         if (mddev->level > 0)
2054                                 return -ENOSPC;
2055                 } else
2056                         mddev->dev_sectors = rdev->sectors;
2057         }
2058
2059         /* Verify rdev->desc_nr is unique.
2060          * If it is -1, assign a free number, else
2061          * check number is not in use
2062          */
2063         if (rdev->desc_nr < 0) {
2064                 int choice = 0;
2065                 if (mddev->pers) choice = mddev->raid_disks;
2066                 while (find_rdev_nr(mddev, choice))
2067                         choice++;
2068                 rdev->desc_nr = choice;
2069         } else {
2070                 if (find_rdev_nr(mddev, rdev->desc_nr))
2071                         return -EBUSY;
2072         }
2073         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2074                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2075                        mdname(mddev), mddev->max_disks);
2076                 return -EBUSY;
2077         }
2078         bdevname(rdev->bdev,b);
2079         while ( (s=strchr(b, '/')) != NULL)
2080                 *s = '!';
2081
2082         rdev->mddev = mddev;
2083         printk(KERN_INFO "md: bind<%s>\n", b);
2084
2085         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2086                 goto fail;
2087
2088         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2089         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2090                 /* failure here is OK */;
2091         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2092
2093         list_add_rcu(&rdev->same_set, &mddev->disks);
2094         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2095
2096         /* May as well allow recovery to be retried once */
2097         mddev->recovery_disabled++;
2098
2099         return 0;
2100
2101  fail:
2102         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2103                b, mdname(mddev));
2104         return err;
2105 }
2106
2107 static void md_delayed_delete(struct work_struct *ws)
2108 {
2109         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2110         kobject_del(&rdev->kobj);
2111         kobject_put(&rdev->kobj);
2112 }
2113
2114 static void unbind_rdev_from_array(struct md_rdev * rdev)
2115 {
2116         char b[BDEVNAME_SIZE];
2117         if (!rdev->mddev) {
2118                 MD_BUG();
2119                 return;
2120         }
2121         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2122         list_del_rcu(&rdev->same_set);
2123         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2124         rdev->mddev = NULL;
2125         sysfs_remove_link(&rdev->kobj, "block");
2126         sysfs_put(rdev->sysfs_state);
2127         rdev->sysfs_state = NULL;
2128         rdev->badblocks.count = 0;
2129         /* We need to delay this, otherwise we can deadlock when
2130          * writing to 'remove' to "dev/state".  We also need
2131          * to delay it due to rcu usage.
2132          */
2133         synchronize_rcu();
2134         INIT_WORK(&rdev->del_work, md_delayed_delete);
2135         kobject_get(&rdev->kobj);
2136         queue_work(md_misc_wq, &rdev->del_work);
2137 }
2138
2139 /*
2140  * prevent the device from being mounted, repartitioned or
2141  * otherwise reused by a RAID array (or any other kernel
2142  * subsystem), by bd_claiming the device.
2143  */
2144 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2145 {
2146         int err = 0;
2147         struct block_device *bdev;
2148         char b[BDEVNAME_SIZE];
2149
2150         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2151                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2152         if (IS_ERR(bdev)) {
2153                 printk(KERN_ERR "md: could not open %s.\n",
2154                         __bdevname(dev, b));
2155                 return PTR_ERR(bdev);
2156         }
2157         rdev->bdev = bdev;
2158         return err;
2159 }
2160
2161 static void unlock_rdev(struct md_rdev *rdev)
2162 {
2163         struct block_device *bdev = rdev->bdev;
2164         rdev->bdev = NULL;
2165         if (!bdev)
2166                 MD_BUG();
2167         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2168 }
2169
2170 void md_autodetect_dev(dev_t dev);
2171
2172 static void export_rdev(struct md_rdev * rdev)
2173 {
2174         char b[BDEVNAME_SIZE];
2175         printk(KERN_INFO "md: export_rdev(%s)\n",
2176                 bdevname(rdev->bdev,b));
2177         if (rdev->mddev)
2178                 MD_BUG();
2179         md_rdev_clear(rdev);
2180 #ifndef MODULE
2181         if (test_bit(AutoDetected, &rdev->flags))
2182                 md_autodetect_dev(rdev->bdev->bd_dev);
2183 #endif
2184         unlock_rdev(rdev);
2185         kobject_put(&rdev->kobj);
2186 }
2187
2188 static void kick_rdev_from_array(struct md_rdev * rdev)
2189 {
2190         unbind_rdev_from_array(rdev);
2191         export_rdev(rdev);
2192 }
2193
2194 static void export_array(struct mddev *mddev)
2195 {
2196         struct md_rdev *rdev, *tmp;
2197
2198         rdev_for_each_safe(rdev, tmp, mddev) {
2199                 if (!rdev->mddev) {
2200                         MD_BUG();
2201                         continue;
2202                 }
2203                 kick_rdev_from_array(rdev);
2204         }
2205         if (!list_empty(&mddev->disks))
2206                 MD_BUG();
2207         mddev->raid_disks = 0;
2208         mddev->major_version = 0;
2209 }
2210
2211 static void print_desc(mdp_disk_t *desc)
2212 {
2213         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2214                 desc->major,desc->minor,desc->raid_disk,desc->state);
2215 }
2216
2217 static void print_sb_90(mdp_super_t *sb)
2218 {
2219         int i;
2220
2221         printk(KERN_INFO 
2222                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2223                 sb->major_version, sb->minor_version, sb->patch_version,
2224                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2225                 sb->ctime);
2226         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2227                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2228                 sb->md_minor, sb->layout, sb->chunk_size);
2229         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2230                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2231                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2232                 sb->failed_disks, sb->spare_disks,
2233                 sb->sb_csum, (unsigned long)sb->events_lo);
2234
2235         printk(KERN_INFO);
2236         for (i = 0; i < MD_SB_DISKS; i++) {
2237                 mdp_disk_t *desc;
2238
2239                 desc = sb->disks + i;
2240                 if (desc->number || desc->major || desc->minor ||
2241                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2242                         printk("     D %2d: ", i);
2243                         print_desc(desc);
2244                 }
2245         }
2246         printk(KERN_INFO "md:     THIS: ");
2247         print_desc(&sb->this_disk);
2248 }
2249
2250 static void print_sb_1(struct mdp_superblock_1 *sb)
2251 {
2252         __u8 *uuid;
2253
2254         uuid = sb->set_uuid;
2255         printk(KERN_INFO
2256                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2257                "md:    Name: \"%s\" CT:%llu\n",
2258                 le32_to_cpu(sb->major_version),
2259                 le32_to_cpu(sb->feature_map),
2260                 uuid,
2261                 sb->set_name,
2262                 (unsigned long long)le64_to_cpu(sb->ctime)
2263                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2264
2265         uuid = sb->device_uuid;
2266         printk(KERN_INFO
2267                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2268                         " RO:%llu\n"
2269                "md:     Dev:%08x UUID: %pU\n"
2270                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2271                "md:         (MaxDev:%u) \n",
2272                 le32_to_cpu(sb->level),
2273                 (unsigned long long)le64_to_cpu(sb->size),
2274                 le32_to_cpu(sb->raid_disks),
2275                 le32_to_cpu(sb->layout),
2276                 le32_to_cpu(sb->chunksize),
2277                 (unsigned long long)le64_to_cpu(sb->data_offset),
2278                 (unsigned long long)le64_to_cpu(sb->data_size),
2279                 (unsigned long long)le64_to_cpu(sb->super_offset),
2280                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2281                 le32_to_cpu(sb->dev_number),
2282                 uuid,
2283                 sb->devflags,
2284                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2285                 (unsigned long long)le64_to_cpu(sb->events),
2286                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2287                 le32_to_cpu(sb->sb_csum),
2288                 le32_to_cpu(sb->max_dev)
2289                 );
2290 }
2291
2292 static void print_rdev(struct md_rdev *rdev, int major_version)
2293 {
2294         char b[BDEVNAME_SIZE];
2295         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2296                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2297                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2298                 rdev->desc_nr);
2299         if (rdev->sb_loaded) {
2300                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2301                 switch (major_version) {
2302                 case 0:
2303                         print_sb_90(page_address(rdev->sb_page));
2304                         break;
2305                 case 1:
2306                         print_sb_1(page_address(rdev->sb_page));
2307                         break;
2308                 }
2309         } else
2310                 printk(KERN_INFO "md: no rdev superblock!\n");
2311 }
2312
2313 static void md_print_devices(void)
2314 {
2315         struct list_head *tmp;
2316         struct md_rdev *rdev;
2317         struct mddev *mddev;
2318         char b[BDEVNAME_SIZE];
2319
2320         printk("\n");
2321         printk("md:     **********************************\n");
2322         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2323         printk("md:     **********************************\n");
2324         for_each_mddev(mddev, tmp) {
2325
2326                 if (mddev->bitmap)
2327                         bitmap_print_sb(mddev->bitmap);
2328                 else
2329                         printk("%s: ", mdname(mddev));
2330                 rdev_for_each(rdev, mddev)
2331                         printk("<%s>", bdevname(rdev->bdev,b));
2332                 printk("\n");
2333
2334                 rdev_for_each(rdev, mddev)
2335                         print_rdev(rdev, mddev->major_version);
2336         }
2337         printk("md:     **********************************\n");
2338         printk("\n");
2339 }
2340
2341
2342 static void sync_sbs(struct mddev * mddev, int nospares)
2343 {
2344         /* Update each superblock (in-memory image), but
2345          * if we are allowed to, skip spares which already
2346          * have the right event counter, or have one earlier
2347          * (which would mean they aren't being marked as dirty
2348          * with the rest of the array)
2349          */
2350         struct md_rdev *rdev;
2351         rdev_for_each(rdev, mddev) {
2352                 if (rdev->sb_events == mddev->events ||
2353                     (nospares &&
2354                      rdev->raid_disk < 0 &&
2355                      rdev->sb_events+1 == mddev->events)) {
2356                         /* Don't update this superblock */
2357                         rdev->sb_loaded = 2;
2358                 } else {
2359                         sync_super(mddev, rdev);
2360                         rdev->sb_loaded = 1;
2361                 }
2362         }
2363 }
2364
2365 static void md_update_sb(struct mddev * mddev, int force_change)
2366 {
2367         struct md_rdev *rdev;
2368         int sync_req;
2369         int nospares = 0;
2370         int any_badblocks_changed = 0;
2371
2372         if (mddev->ro) {
2373                 if (force_change)
2374                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2375                 return;
2376         }
2377 repeat:
2378         /* First make sure individual recovery_offsets are correct */
2379         rdev_for_each(rdev, mddev) {
2380                 if (rdev->raid_disk >= 0 &&
2381                     mddev->delta_disks >= 0 &&
2382                     !test_bit(In_sync, &rdev->flags) &&
2383                     mddev->curr_resync_completed > rdev->recovery_offset)
2384                                 rdev->recovery_offset = mddev->curr_resync_completed;
2385
2386         }       
2387         if (!mddev->persistent) {
2388                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2389                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2390                 if (!mddev->external) {
2391                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2392                         rdev_for_each(rdev, mddev) {
2393                                 if (rdev->badblocks.changed) {
2394                                         rdev->badblocks.changed = 0;
2395                                         md_ack_all_badblocks(&rdev->badblocks);
2396                                         md_error(mddev, rdev);
2397                                 }
2398                                 clear_bit(Blocked, &rdev->flags);
2399                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2400                                 wake_up(&rdev->blocked_wait);
2401                         }
2402                 }
2403                 wake_up(&mddev->sb_wait);
2404                 return;
2405         }
2406
2407         spin_lock_irq(&mddev->write_lock);
2408
2409         mddev->utime = get_seconds();
2410
2411         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2412                 force_change = 1;
2413         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2414                 /* just a clean<-> dirty transition, possibly leave spares alone,
2415                  * though if events isn't the right even/odd, we will have to do
2416                  * spares after all
2417                  */
2418                 nospares = 1;
2419         if (force_change)
2420                 nospares = 0;
2421         if (mddev->degraded)
2422                 /* If the array is degraded, then skipping spares is both
2423                  * dangerous and fairly pointless.
2424                  * Dangerous because a device that was removed from the array
2425                  * might have a event_count that still looks up-to-date,
2426                  * so it can be re-added without a resync.
2427                  * Pointless because if there are any spares to skip,
2428                  * then a recovery will happen and soon that array won't
2429                  * be degraded any more and the spare can go back to sleep then.
2430                  */
2431                 nospares = 0;
2432
2433         sync_req = mddev->in_sync;
2434
2435         /* If this is just a dirty<->clean transition, and the array is clean
2436          * and 'events' is odd, we can roll back to the previous clean state */
2437         if (nospares
2438             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2439             && mddev->can_decrease_events
2440             && mddev->events != 1) {
2441                 mddev->events--;
2442                 mddev->can_decrease_events = 0;
2443         } else {
2444                 /* otherwise we have to go forward and ... */
2445                 mddev->events ++;
2446                 mddev->can_decrease_events = nospares;
2447         }
2448
2449         if (!mddev->events) {
2450                 /*
2451                  * oops, this 64-bit counter should never wrap.
2452                  * Either we are in around ~1 trillion A.C., assuming
2453                  * 1 reboot per second, or we have a bug:
2454                  */
2455                 MD_BUG();
2456                 mddev->events --;
2457         }
2458
2459         rdev_for_each(rdev, mddev) {
2460                 if (rdev->badblocks.changed)
2461                         any_badblocks_changed++;
2462                 if (test_bit(Faulty, &rdev->flags))
2463                         set_bit(FaultRecorded, &rdev->flags);
2464         }
2465
2466         sync_sbs(mddev, nospares);
2467         spin_unlock_irq(&mddev->write_lock);
2468
2469         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2470                  mdname(mddev), mddev->in_sync);
2471
2472         bitmap_update_sb(mddev->bitmap);
2473         rdev_for_each(rdev, mddev) {
2474                 char b[BDEVNAME_SIZE];
2475
2476                 if (rdev->sb_loaded != 1)
2477                         continue; /* no noise on spare devices */
2478
2479                 if (!test_bit(Faulty, &rdev->flags)) {
2480                         md_super_write(mddev,rdev,
2481                                        rdev->sb_start, rdev->sb_size,
2482                                        rdev->sb_page);
2483                         pr_debug("md: (write) %s's sb offset: %llu\n",
2484                                  bdevname(rdev->bdev, b),
2485                                  (unsigned long long)rdev->sb_start);
2486                         rdev->sb_events = mddev->events;
2487                         if (rdev->badblocks.size) {
2488                                 md_super_write(mddev, rdev,
2489                                                rdev->badblocks.sector,
2490                                                rdev->badblocks.size << 9,
2491                                                rdev->bb_page);
2492                                 rdev->badblocks.size = 0;
2493                         }
2494
2495                 } else
2496                         pr_debug("md: %s (skipping faulty)\n",
2497                                  bdevname(rdev->bdev, b));
2498
2499                 if (mddev->level == LEVEL_MULTIPATH)
2500                         /* only need to write one superblock... */
2501                         break;
2502         }
2503         md_super_wait(mddev);
2504         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2505
2506         spin_lock_irq(&mddev->write_lock);
2507         if (mddev->in_sync != sync_req ||
2508             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2509                 /* have to write it out again */
2510                 spin_unlock_irq(&mddev->write_lock);
2511                 goto repeat;
2512         }
2513         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2514         spin_unlock_irq(&mddev->write_lock);
2515         wake_up(&mddev->sb_wait);
2516         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2517                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2518
2519         rdev_for_each(rdev, mddev) {
2520                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2521                         clear_bit(Blocked, &rdev->flags);
2522
2523                 if (any_badblocks_changed)
2524                         md_ack_all_badblocks(&rdev->badblocks);
2525                 clear_bit(BlockedBadBlocks, &rdev->flags);
2526                 wake_up(&rdev->blocked_wait);
2527         }
2528 }
2529
2530 /* words written to sysfs files may, or may not, be \n terminated.
2531  * We want to accept with case. For this we use cmd_match.
2532  */
2533 static int cmd_match(const char *cmd, const char *str)
2534 {
2535         /* See if cmd, written into a sysfs file, matches
2536          * str.  They must either be the same, or cmd can
2537          * have a trailing newline
2538          */
2539         while (*cmd && *str && *cmd == *str) {
2540                 cmd++;
2541                 str++;
2542         }
2543         if (*cmd == '\n')
2544                 cmd++;
2545         if (*str || *cmd)
2546                 return 0;
2547         return 1;
2548 }
2549
2550 struct rdev_sysfs_entry {
2551         struct attribute attr;
2552         ssize_t (*show)(struct md_rdev *, char *);
2553         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2554 };
2555
2556 static ssize_t
2557 state_show(struct md_rdev *rdev, char *page)
2558 {
2559         char *sep = "";
2560         size_t len = 0;
2561
2562         if (test_bit(Faulty, &rdev->flags) ||
2563             rdev->badblocks.unacked_exist) {
2564                 len+= sprintf(page+len, "%sfaulty",sep);
2565                 sep = ",";
2566         }
2567         if (test_bit(In_sync, &rdev->flags)) {
2568                 len += sprintf(page+len, "%sin_sync",sep);
2569                 sep = ",";
2570         }
2571         if (test_bit(WriteMostly, &rdev->flags)) {
2572                 len += sprintf(page+len, "%swrite_mostly",sep);
2573                 sep = ",";
2574         }
2575         if (test_bit(Blocked, &rdev->flags) ||
2576             (rdev->badblocks.unacked_exist
2577              && !test_bit(Faulty, &rdev->flags))) {
2578                 len += sprintf(page+len, "%sblocked", sep);
2579                 sep = ",";
2580         }
2581         if (!test_bit(Faulty, &rdev->flags) &&
2582             !test_bit(In_sync, &rdev->flags)) {
2583                 len += sprintf(page+len, "%sspare", sep);
2584                 sep = ",";
2585         }
2586         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2587                 len += sprintf(page+len, "%swrite_error", sep);
2588                 sep = ",";
2589         }
2590         if (test_bit(WantReplacement, &rdev->flags)) {
2591                 len += sprintf(page+len, "%swant_replacement", sep);
2592                 sep = ",";
2593         }
2594         if (test_bit(Replacement, &rdev->flags)) {
2595                 len += sprintf(page+len, "%sreplacement", sep);
2596                 sep = ",";
2597         }
2598
2599         return len+sprintf(page+len, "\n");
2600 }
2601
2602 static ssize_t
2603 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2604 {
2605         /* can write
2606          *  faulty  - simulates an error
2607          *  remove  - disconnects the device
2608          *  writemostly - sets write_mostly
2609          *  -writemostly - clears write_mostly
2610          *  blocked - sets the Blocked flags
2611          *  -blocked - clears the Blocked and possibly simulates an error
2612          *  insync - sets Insync providing device isn't active
2613          *  -insync - clear Insync for a device with a slot assigned,
2614          *            so that it gets rebuilt based on bitmap
2615          *  write_error - sets WriteErrorSeen
2616          *  -write_error - clears WriteErrorSeen
2617          */
2618         int err = -EINVAL;
2619         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2620                 md_error(rdev->mddev, rdev);
2621                 if (test_bit(Faulty, &rdev->flags))
2622                         err = 0;
2623                 else
2624                         err = -EBUSY;
2625         } else if (cmd_match(buf, "remove")) {
2626                 if (rdev->raid_disk >= 0)
2627                         err = -EBUSY;
2628                 else {
2629                         struct mddev *mddev = rdev->mddev;
2630                         kick_rdev_from_array(rdev);
2631                         if (mddev->pers)
2632                                 md_update_sb(mddev, 1);
2633                         md_new_event(mddev);
2634                         err = 0;
2635                 }
2636         } else if (cmd_match(buf, "writemostly")) {
2637                 set_bit(WriteMostly, &rdev->flags);
2638                 err = 0;
2639         } else if (cmd_match(buf, "-writemostly")) {
2640                 clear_bit(WriteMostly, &rdev->flags);
2641                 err = 0;
2642         } else if (cmd_match(buf, "blocked")) {
2643                 set_bit(Blocked, &rdev->flags);
2644                 err = 0;
2645         } else if (cmd_match(buf, "-blocked")) {
2646                 if (!test_bit(Faulty, &rdev->flags) &&
2647                     rdev->badblocks.unacked_exist) {
2648                         /* metadata handler doesn't understand badblocks,
2649                          * so we need to fail the device
2650                          */
2651                         md_error(rdev->mddev, rdev);
2652                 }
2653                 clear_bit(Blocked, &rdev->flags);
2654                 clear_bit(BlockedBadBlocks, &rdev->flags);
2655                 wake_up(&rdev->blocked_wait);
2656                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2657                 md_wakeup_thread(rdev->mddev->thread);
2658
2659                 err = 0;
2660         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2661                 set_bit(In_sync, &rdev->flags);
2662                 err = 0;
2663         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2664                 clear_bit(In_sync, &rdev->flags);
2665                 rdev->saved_raid_disk = rdev->raid_disk;
2666                 rdev->raid_disk = -1;
2667                 err = 0;
2668         } else if (cmd_match(buf, "write_error")) {
2669                 set_bit(WriteErrorSeen, &rdev->flags);
2670                 err = 0;
2671         } else if (cmd_match(buf, "-write_error")) {
2672                 clear_bit(WriteErrorSeen, &rdev->flags);
2673                 err = 0;
2674         } else if (cmd_match(buf, "want_replacement")) {
2675                 /* Any non-spare device that is not a replacement can
2676                  * become want_replacement at any time, but we then need to
2677                  * check if recovery is needed.
2678                  */
2679                 if (rdev->raid_disk >= 0 &&
2680                     !test_bit(Replacement, &rdev->flags))
2681                         set_bit(WantReplacement, &rdev->flags);
2682                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683                 md_wakeup_thread(rdev->mddev->thread);
2684                 err = 0;
2685         } else if (cmd_match(buf, "-want_replacement")) {
2686                 /* Clearing 'want_replacement' is always allowed.
2687                  * Once replacements starts it is too late though.
2688                  */
2689                 err = 0;
2690                 clear_bit(WantReplacement, &rdev->flags);
2691         } else if (cmd_match(buf, "replacement")) {
2692                 /* Can only set a device as a replacement when array has not
2693                  * yet been started.  Once running, replacement is automatic
2694                  * from spares, or by assigning 'slot'.
2695                  */
2696                 if (rdev->mddev->pers)
2697                         err = -EBUSY;
2698                 else {
2699                         set_bit(Replacement, &rdev->flags);
2700                         err = 0;
2701                 }
2702         } else if (cmd_match(buf, "-replacement")) {
2703                 /* Similarly, can only clear Replacement before start */
2704                 if (rdev->mddev->pers)
2705                         err = -EBUSY;
2706                 else {
2707                         clear_bit(Replacement, &rdev->flags);
2708                         err = 0;
2709                 }
2710         }
2711         if (!err)
2712                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2713         return err ? err : len;
2714 }
2715 static struct rdev_sysfs_entry rdev_state =
2716 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2717
2718 static ssize_t
2719 errors_show(struct md_rdev *rdev, char *page)
2720 {
2721         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2722 }
2723
2724 static ssize_t
2725 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2726 {
2727         char *e;
2728         unsigned long n = simple_strtoul(buf, &e, 10);
2729         if (*buf && (*e == 0 || *e == '\n')) {
2730                 atomic_set(&rdev->corrected_errors, n);
2731                 return len;
2732         }
2733         return -EINVAL;
2734 }
2735 static struct rdev_sysfs_entry rdev_errors =
2736 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2737
2738 static ssize_t
2739 slot_show(struct md_rdev *rdev, char *page)
2740 {
2741         if (rdev->raid_disk < 0)
2742                 return sprintf(page, "none\n");
2743         else
2744                 return sprintf(page, "%d\n", rdev->raid_disk);
2745 }
2746
2747 static ssize_t
2748 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2749 {
2750         char *e;
2751         int err;
2752         int slot = simple_strtoul(buf, &e, 10);
2753         if (strncmp(buf, "none", 4)==0)
2754                 slot = -1;
2755         else if (e==buf || (*e && *e!= '\n'))
2756                 return -EINVAL;
2757         if (rdev->mddev->pers && slot == -1) {
2758                 /* Setting 'slot' on an active array requires also
2759                  * updating the 'rd%d' link, and communicating
2760                  * with the personality with ->hot_*_disk.
2761                  * For now we only support removing
2762                  * failed/spare devices.  This normally happens automatically,
2763                  * but not when the metadata is externally managed.
2764                  */
2765                 if (rdev->raid_disk == -1)
2766                         return -EEXIST;
2767                 /* personality does all needed checks */
2768                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2769                         return -EINVAL;
2770                 clear_bit(Blocked, &rdev->flags);
2771                 remove_and_add_spares(rdev->mddev, rdev);
2772                 if (rdev->raid_disk >= 0)
2773                         return -EBUSY;
2774                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2775                 md_wakeup_thread(rdev->mddev->thread);
2776         } else if (rdev->mddev->pers) {
2777                 /* Activating a spare .. or possibly reactivating
2778                  * if we ever get bitmaps working here.
2779                  */
2780
2781                 if (rdev->raid_disk != -1)
2782                         return -EBUSY;
2783
2784                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2785                         return -EBUSY;
2786
2787                 if (rdev->mddev->pers->hot_add_disk == NULL)
2788                         return -EINVAL;
2789
2790                 if (slot >= rdev->mddev->raid_disks &&
2791                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2792                         return -ENOSPC;
2793
2794                 rdev->raid_disk = slot;
2795                 if (test_bit(In_sync, &rdev->flags))
2796                         rdev->saved_raid_disk = slot;
2797                 else
2798                         rdev->saved_raid_disk = -1;
2799                 clear_bit(In_sync, &rdev->flags);
2800                 clear_bit(Bitmap_sync, &rdev->flags);
2801                 err = rdev->mddev->pers->
2802                         hot_add_disk(rdev->mddev, rdev);
2803                 if (err) {
2804                         rdev->raid_disk = -1;
2805                         return err;
2806                 } else
2807                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2808                 if (sysfs_link_rdev(rdev->mddev, rdev))
2809                         /* failure here is OK */;
2810                 /* don't wakeup anyone, leave that to userspace. */
2811         } else {
2812                 if (slot >= rdev->mddev->raid_disks &&
2813                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2814                         return -ENOSPC;
2815                 rdev->raid_disk = slot;
2816                 /* assume it is working */
2817                 clear_bit(Faulty, &rdev->flags);
2818                 clear_bit(WriteMostly, &rdev->flags);
2819                 set_bit(In_sync, &rdev->flags);
2820                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2821         }
2822         return len;
2823 }
2824
2825
2826 static struct rdev_sysfs_entry rdev_slot =
2827 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2828
2829 static ssize_t
2830 offset_show(struct md_rdev *rdev, char *page)
2831 {
2832         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2833 }
2834
2835 static ssize_t
2836 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2837 {
2838         unsigned long long offset;
2839         if (kstrtoull(buf, 10, &offset) < 0)
2840                 return -EINVAL;
2841         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2842                 return -EBUSY;
2843         if (rdev->sectors && rdev->mddev->external)
2844                 /* Must set offset before size, so overlap checks
2845                  * can be sane */
2846                 return -EBUSY;
2847         rdev->data_offset = offset;
2848         rdev->new_data_offset = offset;
2849         return len;
2850 }
2851
2852 static struct rdev_sysfs_entry rdev_offset =
2853 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2854
2855 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2856 {
2857         return sprintf(page, "%llu\n",
2858                        (unsigned long long)rdev->new_data_offset);
2859 }
2860
2861 static ssize_t new_offset_store(struct md_rdev *rdev,
2862                                 const char *buf, size_t len)
2863 {
2864         unsigned long long new_offset;
2865         struct mddev *mddev = rdev->mddev;
2866
2867         if (kstrtoull(buf, 10, &new_offset) < 0)
2868                 return -EINVAL;
2869
2870         if (mddev->sync_thread)
2871                 return -EBUSY;
2872         if (new_offset == rdev->data_offset)
2873                 /* reset is always permitted */
2874                 ;
2875         else if (new_offset > rdev->data_offset) {
2876                 /* must not push array size beyond rdev_sectors */
2877                 if (new_offset - rdev->data_offset
2878                     + mddev->dev_sectors > rdev->sectors)
2879                                 return -E2BIG;
2880         }
2881         /* Metadata worries about other space details. */
2882
2883         /* decreasing the offset is inconsistent with a backwards
2884          * reshape.
2885          */
2886         if (new_offset < rdev->data_offset &&
2887             mddev->reshape_backwards)
2888                 return -EINVAL;
2889         /* Increasing offset is inconsistent with forwards
2890          * reshape.  reshape_direction should be set to
2891          * 'backwards' first.
2892          */
2893         if (new_offset > rdev->data_offset &&
2894             !mddev->reshape_backwards)
2895                 return -EINVAL;
2896
2897         if (mddev->pers && mddev->persistent &&
2898             !super_types[mddev->major_version]
2899             .allow_new_offset(rdev, new_offset))
2900                 return -E2BIG;
2901         rdev->new_data_offset = new_offset;
2902         if (new_offset > rdev->data_offset)
2903                 mddev->reshape_backwards = 1;
2904         else if (new_offset < rdev->data_offset)
2905                 mddev->reshape_backwards = 0;
2906
2907         return len;
2908 }
2909 static struct rdev_sysfs_entry rdev_new_offset =
2910 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2911
2912 static ssize_t
2913 rdev_size_show(struct md_rdev *rdev, char *page)
2914 {
2915         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2916 }
2917
2918 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2919 {
2920         /* check if two start/length pairs overlap */
2921         if (s1+l1 <= s2)
2922                 return 0;
2923         if (s2+l2 <= s1)
2924                 return 0;
2925         return 1;
2926 }
2927
2928 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2929 {
2930         unsigned long long blocks;
2931         sector_t new;
2932
2933         if (kstrtoull(buf, 10, &blocks) < 0)
2934                 return -EINVAL;
2935
2936         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2937                 return -EINVAL; /* sector conversion overflow */
2938
2939         new = blocks * 2;
2940         if (new != blocks * 2)
2941                 return -EINVAL; /* unsigned long long to sector_t overflow */
2942
2943         *sectors = new;
2944         return 0;
2945 }
2946
2947 static ssize_t
2948 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2949 {
2950         struct mddev *my_mddev = rdev->mddev;
2951         sector_t oldsectors = rdev->sectors;
2952         sector_t sectors;
2953
2954         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2955                 return -EINVAL;
2956         if (rdev->data_offset != rdev->new_data_offset)
2957                 return -EINVAL; /* too confusing */
2958         if (my_mddev->pers && rdev->raid_disk >= 0) {
2959                 if (my_mddev->persistent) {
2960                         sectors = super_types[my_mddev->major_version].
2961                                 rdev_size_change(rdev, sectors);
2962                         if (!sectors)
2963                                 return -EBUSY;
2964                 } else if (!sectors)
2965                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2966                                 rdev->data_offset;
2967                 if (!my_mddev->pers->resize)
2968                         /* Cannot change size for RAID0 or Linear etc */
2969                         return -EINVAL;
2970         }
2971         if (sectors < my_mddev->dev_sectors)
2972                 return -EINVAL; /* component must fit device */
2973
2974         rdev->sectors = sectors;
2975         if (sectors > oldsectors && my_mddev->external) {
2976                 /* need to check that all other rdevs with the same ->bdev
2977                  * do not overlap.  We need to unlock the mddev to avoid
2978                  * a deadlock.  We have already changed rdev->sectors, and if
2979                  * we have to change it back, we will have the lock again.
2980                  */
2981                 struct mddev *mddev;
2982                 int overlap = 0;
2983                 struct list_head *tmp;
2984
2985                 mddev_unlock(my_mddev);
2986                 for_each_mddev(mddev, tmp) {
2987                         struct md_rdev *rdev2;
2988
2989                         mddev_lock_nointr(mddev);
2990                         rdev_for_each(rdev2, mddev)
2991                                 if (rdev->bdev == rdev2->bdev &&
2992                                     rdev != rdev2 &&
2993                                     overlaps(rdev->data_offset, rdev->sectors,
2994                                              rdev2->data_offset,
2995                                              rdev2->sectors)) {
2996                                         overlap = 1;
2997                                         break;
2998                                 }
2999                         mddev_unlock(mddev);
3000                         if (overlap) {
3001                                 mddev_put(mddev);
3002                                 break;
3003                         }
3004                 }
3005                 mddev_lock_nointr(my_mddev);
3006                 if (overlap) {
3007                         /* Someone else could have slipped in a size
3008                          * change here, but doing so is just silly.
3009                          * We put oldsectors back because we *know* it is
3010                          * safe, and trust userspace not to race with
3011                          * itself
3012                          */
3013                         rdev->sectors = oldsectors;
3014                         return -EBUSY;
3015                 }
3016         }
3017         return len;
3018 }
3019
3020 static struct rdev_sysfs_entry rdev_size =
3021 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3022
3023
3024 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3025 {
3026         unsigned long long recovery_start = rdev->recovery_offset;
3027
3028         if (test_bit(In_sync, &rdev->flags) ||
3029             recovery_start == MaxSector)
3030                 return sprintf(page, "none\n");
3031
3032         return sprintf(page, "%llu\n", recovery_start);
3033 }
3034
3035 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3036 {
3037         unsigned long long recovery_start;
3038
3039         if (cmd_match(buf, "none"))
3040                 recovery_start = MaxSector;
3041         else if (kstrtoull(buf, 10, &recovery_start))
3042                 return -EINVAL;
3043
3044         if (rdev->mddev->pers &&
3045             rdev->raid_disk >= 0)
3046                 return -EBUSY;
3047
3048         rdev->recovery_offset = recovery_start;
3049         if (recovery_start == MaxSector)
3050                 set_bit(In_sync, &rdev->flags);
3051         else
3052                 clear_bit(In_sync, &rdev->flags);
3053         return len;
3054 }
3055
3056 static struct rdev_sysfs_entry rdev_recovery_start =
3057 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3058
3059
3060 static ssize_t
3061 badblocks_show(struct badblocks *bb, char *page, int unack);
3062 static ssize_t
3063 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3064
3065 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3066 {
3067         return badblocks_show(&rdev->badblocks, page, 0);
3068 }
3069 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3070 {
3071         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3072         /* Maybe that ack was all we needed */
3073         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3074                 wake_up(&rdev->blocked_wait);
3075         return rv;
3076 }
3077 static struct rdev_sysfs_entry rdev_bad_blocks =
3078 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3079
3080
3081 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3082 {
3083         return badblocks_show(&rdev->badblocks, page, 1);
3084 }
3085 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3086 {
3087         return badblocks_store(&rdev->badblocks, page, len, 1);
3088 }
3089 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3090 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3091
3092 static struct attribute *rdev_default_attrs[] = {
3093         &rdev_state.attr,
3094         &rdev_errors.attr,
3095         &rdev_slot.attr,
3096         &rdev_offset.attr,
3097         &rdev_new_offset.attr,
3098         &rdev_size.attr,
3099         &rdev_recovery_start.attr,
3100         &rdev_bad_blocks.attr,
3101         &rdev_unack_bad_blocks.attr,
3102         NULL,
3103 };
3104 static ssize_t
3105 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3106 {
3107         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3108         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3109         struct mddev *mddev = rdev->mddev;
3110         ssize_t rv;
3111
3112         if (!entry->show)
3113                 return -EIO;
3114
3115         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3116         if (!rv) {
3117                 if (rdev->mddev == NULL)
3118                         rv = -EBUSY;
3119                 else
3120                         rv = entry->show(rdev, page);
3121                 mddev_unlock(mddev);
3122         }
3123         return rv;
3124 }
3125
3126 static ssize_t
3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3128               const char *page, size_t length)
3129 {
3130         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3131         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3132         ssize_t rv;
3133         struct mddev *mddev = rdev->mddev;
3134
3135         if (!entry->store)
3136                 return -EIO;
3137         if (!capable(CAP_SYS_ADMIN))
3138                 return -EACCES;
3139         rv = mddev ? mddev_lock(mddev): -EBUSY;
3140         if (!rv) {
3141                 if (rdev->mddev == NULL)
3142                         rv = -EBUSY;
3143                 else
3144                         rv = entry->store(rdev, page, length);
3145                 mddev_unlock(mddev);
3146         }
3147         return rv;
3148 }
3149
3150 static void rdev_free(struct kobject *ko)
3151 {
3152         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3153         kfree(rdev);
3154 }
3155 static const struct sysfs_ops rdev_sysfs_ops = {
3156         .show           = rdev_attr_show,
3157         .store          = rdev_attr_store,
3158 };
3159 static struct kobj_type rdev_ktype = {
3160         .release        = rdev_free,
3161         .sysfs_ops      = &rdev_sysfs_ops,
3162         .default_attrs  = rdev_default_attrs,
3163 };
3164
3165 int md_rdev_init(struct md_rdev *rdev)
3166 {
3167         rdev->desc_nr = -1;
3168         rdev->saved_raid_disk = -1;
3169         rdev->raid_disk = -1;
3170         rdev->flags = 0;
3171         rdev->data_offset = 0;
3172         rdev->new_data_offset = 0;
3173         rdev->sb_events = 0;
3174         rdev->last_read_error.tv_sec  = 0;
3175         rdev->last_read_error.tv_nsec = 0;
3176         rdev->sb_loaded = 0;
3177         rdev->bb_page = NULL;
3178         atomic_set(&rdev->nr_pending, 0);
3179         atomic_set(&rdev->read_errors, 0);
3180         atomic_set(&rdev->corrected_errors, 0);
3181
3182         INIT_LIST_HEAD(&rdev->same_set);
3183         init_waitqueue_head(&rdev->blocked_wait);
3184
3185         /* Add space to store bad block list.
3186          * This reserves the space even on arrays where it cannot
3187          * be used - I wonder if that matters
3188          */
3189         rdev->badblocks.count = 0;
3190         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3191         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3192         seqlock_init(&rdev->badblocks.lock);
3193         if (rdev->badblocks.page == NULL)
3194                 return -ENOMEM;
3195
3196         return 0;
3197 }
3198 EXPORT_SYMBOL_GPL(md_rdev_init);
3199 /*
3200  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3201  *
3202  * mark the device faulty if:
3203  *
3204  *   - the device is nonexistent (zero size)
3205  *   - the device has no valid superblock
3206  *
3207  * a faulty rdev _never_ has rdev->sb set.
3208  */
3209 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3210 {
3211         char b[BDEVNAME_SIZE];
3212         int err;
3213         struct md_rdev *rdev;
3214         sector_t size;
3215
3216         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3217         if (!rdev) {
3218                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3219                 return ERR_PTR(-ENOMEM);
3220         }
3221
3222         err = md_rdev_init(rdev);
3223         if (err)
3224                 goto abort_free;
3225         err = alloc_disk_sb(rdev);
3226         if (err)
3227                 goto abort_free;
3228
3229         err = lock_rdev(rdev, newdev, super_format == -2);
3230         if (err)
3231                 goto abort_free;
3232
3233         kobject_init(&rdev->kobj, &rdev_ktype);
3234
3235         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3236         if (!size) {
3237                 printk(KERN_WARNING 
3238                         "md: %s has zero or unknown size, marking faulty!\n",
3239                         bdevname(rdev->bdev,b));
3240                 err = -EINVAL;
3241                 goto abort_free;
3242         }
3243
3244         if (super_format >= 0) {
3245                 err = super_types[super_format].
3246                         load_super(rdev, NULL, super_minor);
3247                 if (err == -EINVAL) {
3248                         printk(KERN_WARNING
3249                                 "md: %s does not have a valid v%d.%d "
3250                                "superblock, not importing!\n",
3251                                 bdevname(rdev->bdev,b),
3252                                super_format, super_minor);
3253                         goto abort_free;
3254                 }
3255                 if (err < 0) {
3256                         printk(KERN_WARNING 
3257                                 "md: could not read %s's sb, not importing!\n",
3258                                 bdevname(rdev->bdev,b));
3259                         goto abort_free;
3260                 }
3261         }
3262
3263         return rdev;
3264
3265 abort_free:
3266         if (rdev->bdev)
3267                 unlock_rdev(rdev);
3268         md_rdev_clear(rdev);
3269         kfree(rdev);
3270         return ERR_PTR(err);
3271 }
3272
3273 /*
3274  * Check a full RAID array for plausibility
3275  */
3276
3277
3278 static void analyze_sbs(struct mddev * mddev)
3279 {
3280         int i;
3281         struct md_rdev *rdev, *freshest, *tmp;
3282         char b[BDEVNAME_SIZE];
3283
3284         freshest = NULL;
3285         rdev_for_each_safe(rdev, tmp, mddev)
3286                 switch (super_types[mddev->major_version].
3287                         load_super(rdev, freshest, mddev->minor_version)) {
3288                 case 1:
3289                         freshest = rdev;
3290                         break;
3291                 case 0:
3292                         break;
3293                 default:
3294                         printk( KERN_ERR \
3295                                 "md: fatal superblock inconsistency in %s"
3296                                 " -- removing from array\n", 
3297                                 bdevname(rdev->bdev,b));
3298                         kick_rdev_from_array(rdev);
3299                 }
3300
3301
3302         super_types[mddev->major_version].
3303                 validate_super(mddev, freshest);
3304
3305         i = 0;
3306         rdev_for_each_safe(rdev, tmp, mddev) {
3307                 if (mddev->max_disks &&
3308                     (rdev->desc_nr >= mddev->max_disks ||
3309                      i > mddev->max_disks)) {
3310                         printk(KERN_WARNING
3311                                "md: %s: %s: only %d devices permitted\n",
3312                                mdname(mddev), bdevname(rdev->bdev, b),
3313                                mddev->max_disks);
3314                         kick_rdev_from_array(rdev);
3315                         continue;
3316                 }
3317                 if (rdev != freshest)
3318                         if (super_types[mddev->major_version].
3319                             validate_super(mddev, rdev)) {
3320                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3321                                         " from array!\n",
3322                                         bdevname(rdev->bdev,b));
3323                                 kick_rdev_from_array(rdev);
3324                                 continue;
3325                         }
3326                 if (mddev->level == LEVEL_MULTIPATH) {
3327                         rdev->desc_nr = i++;
3328                         rdev->raid_disk = rdev->desc_nr;
3329                         set_bit(In_sync, &rdev->flags);
3330                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3331                         rdev->raid_disk = -1;
3332                         clear_bit(In_sync, &rdev->flags);
3333                 }
3334         }
3335 }
3336
3337 /* Read a fixed-point number.
3338  * Numbers in sysfs attributes should be in "standard" units where
3339  * possible, so time should be in seconds.
3340  * However we internally use a a much smaller unit such as 
3341  * milliseconds or jiffies.
3342  * This function takes a decimal number with a possible fractional
3343  * component, and produces an integer which is the result of
3344  * multiplying that number by 10^'scale'.
3345  * all without any floating-point arithmetic.
3346  */
3347 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3348 {
3349         unsigned long result = 0;
3350         long decimals = -1;
3351         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3352                 if (*cp == '.')
3353                         decimals = 0;
3354                 else if (decimals < scale) {
3355                         unsigned int value;
3356                         value = *cp - '0';
3357                         result = result * 10 + value;
3358                         if (decimals >= 0)
3359                                 decimals++;
3360                 }
3361                 cp++;
3362         }
3363         if (*cp == '\n')
3364                 cp++;
3365         if (*cp)
3366                 return -EINVAL;
3367         if (decimals < 0)
3368                 decimals = 0;
3369         while (decimals < scale) {
3370                 result *= 10;
3371                 decimals ++;
3372         }
3373         *res = result;
3374         return 0;
3375 }
3376
3377
3378 static void md_safemode_timeout(unsigned long data);
3379
3380 static ssize_t
3381 safe_delay_show(struct mddev *mddev, char *page)
3382 {
3383         int msec = (mddev->safemode_delay*1000)/HZ;
3384         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3385 }
3386 static ssize_t
3387 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3388 {
3389         unsigned long msec;
3390
3391         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3392                 return -EINVAL;
3393         if (msec == 0)
3394                 mddev->safemode_delay = 0;
3395         else {
3396                 unsigned long old_delay = mddev->safemode_delay;
3397                 mddev->safemode_delay = (msec*HZ)/1000;
3398                 if (mddev->safemode_delay == 0)
3399                         mddev->safemode_delay = 1;
3400                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3401                         md_safemode_timeout((unsigned long)mddev);
3402         }
3403         return len;
3404 }
3405 static struct md_sysfs_entry md_safe_delay =
3406 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3407
3408 static ssize_t
3409 level_show(struct mddev *mddev, char *page)
3410 {
3411         struct md_personality *p = mddev->pers;
3412         if (p)
3413                 return sprintf(page, "%s\n", p->name);
3414         else if (mddev->clevel[0])
3415                 return sprintf(page, "%s\n", mddev->clevel);
3416         else if (mddev->level != LEVEL_NONE)
3417                 return sprintf(page, "%d\n", mddev->level);
3418         else
3419                 return 0;
3420 }
3421
3422 static ssize_t
3423 level_store(struct mddev *mddev, const char *buf, size_t len)
3424 {
3425         char clevel[16];
3426         ssize_t rv = len;
3427         struct md_personality *pers;
3428         long level;
3429         void *priv;
3430         struct md_rdev *rdev;
3431
3432         if (mddev->pers == NULL) {
3433                 if (len == 0)
3434                         return 0;
3435                 if (len >= sizeof(mddev->clevel))
3436                         return -ENOSPC;
3437                 strncpy(mddev->clevel, buf, len);
3438                 if (mddev->clevel[len-1] == '\n')
3439                         len--;
3440                 mddev->clevel[len] = 0;
3441                 mddev->level = LEVEL_NONE;
3442                 return rv;
3443         }
3444         if (mddev->ro)
3445                 return  -EROFS;
3446
3447         /* request to change the personality.  Need to ensure:
3448          *  - array is not engaged in resync/recovery/reshape
3449          *  - old personality can be suspended
3450          *  - new personality will access other array.
3451          */
3452
3453         if (mddev->sync_thread ||
3454             mddev->reshape_position != MaxSector ||
3455             mddev->sysfs_active)
3456                 return -EBUSY;
3457
3458         if (!mddev->pers->quiesce) {
3459                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3460                        mdname(mddev), mddev->pers->name);
3461                 return -EINVAL;
3462         }
3463
3464         /* Now find the new personality */
3465         if (len == 0 || len >= sizeof(clevel))
3466                 return -EINVAL;
3467         strncpy(clevel, buf, len);
3468         if (clevel[len-1] == '\n')
3469                 len--;
3470         clevel[len] = 0;
3471         if (kstrtol(clevel, 10, &level))
3472                 level = LEVEL_NONE;
3473
3474         if (request_module("md-%s", clevel) != 0)
3475                 request_module("md-level-%s", clevel);
3476         spin_lock(&pers_lock);
3477         pers = find_pers(level, clevel);
3478         if (!pers || !try_module_get(pers->owner)) {
3479                 spin_unlock(&pers_lock);
3480                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3481                 return -EINVAL;
3482         }
3483         spin_unlock(&pers_lock);
3484
3485         if (pers == mddev->pers) {
3486                 /* Nothing to do! */
3487                 module_put(pers->owner);
3488                 return rv;
3489         }
3490         if (!pers->takeover) {
3491                 module_put(pers->owner);
3492                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3493                        mdname(mddev), clevel);
3494                 return -EINVAL;
3495         }
3496
3497         rdev_for_each(rdev, mddev)
3498                 rdev->new_raid_disk = rdev->raid_disk;
3499
3500         /* ->takeover must set new_* and/or delta_disks
3501          * if it succeeds, and may set them when it fails.
3502          */
3503         priv = pers->takeover(mddev);
3504         if (IS_ERR(priv)) {
3505                 mddev->new_level = mddev->level;
3506                 mddev->new_layout = mddev->layout;
3507                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3508                 mddev->raid_disks -= mddev->delta_disks;
3509                 mddev->delta_disks = 0;
3510                 mddev->reshape_backwards = 0;
3511                 module_put(pers->owner);
3512                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3513                        mdname(mddev), clevel);
3514                 return PTR_ERR(priv);
3515         }
3516
3517         /* Looks like we have a winner */
3518         mddev_suspend(mddev);
3519         mddev->pers->stop(mddev);
3520         
3521         if (mddev->pers->sync_request == NULL &&
3522             pers->sync_request != NULL) {
3523                 /* need to add the md_redundancy_group */
3524                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3525                         printk(KERN_WARNING
3526                                "md: cannot register extra attributes for %s\n",
3527                                mdname(mddev));
3528                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3529         }               
3530         if (mddev->pers->sync_request != NULL &&
3531             pers->sync_request == NULL) {
3532                 /* need to remove the md_redundancy_group */
3533                 if (mddev->to_remove == NULL)
3534                         mddev->to_remove = &md_redundancy_group;
3535         }
3536
3537         if (mddev->pers->sync_request == NULL &&
3538             mddev->external) {
3539                 /* We are converting from a no-redundancy array
3540                  * to a redundancy array and metadata is managed
3541                  * externally so we need to be sure that writes
3542                  * won't block due to a need to transition
3543                  *      clean->dirty
3544                  * until external management is started.
3545                  */
3546                 mddev->in_sync = 0;
3547                 mddev->safemode_delay = 0;
3548                 mddev->safemode = 0;
3549         }
3550
3551         rdev_for_each(rdev, mddev) {
3552                 if (rdev->raid_disk < 0)
3553                         continue;
3554                 if (rdev->new_raid_disk >= mddev->raid_disks)
3555                         rdev->new_raid_disk = -1;
3556                 if (rdev->new_raid_disk == rdev->raid_disk)
3557                         continue;
3558                 sysfs_unlink_rdev(mddev, rdev);
3559         }
3560         rdev_for_each(rdev, mddev) {
3561                 if (rdev->raid_disk < 0)
3562                         continue;
3563                 if (rdev->new_raid_disk == rdev->raid_disk)
3564                         continue;
3565                 rdev->raid_disk = rdev->new_raid_disk;
3566                 if (rdev->raid_disk < 0)
3567                         clear_bit(In_sync, &rdev->flags);
3568                 else {
3569                         if (sysfs_link_rdev(mddev, rdev))
3570                                 printk(KERN_WARNING "md: cannot register rd%d"
3571                                        " for %s after level change\n",
3572                                        rdev->raid_disk, mdname(mddev));
3573                 }
3574         }
3575
3576         module_put(mddev->pers->owner);
3577         mddev->pers = pers;
3578         mddev->private = priv;
3579         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3580         mddev->level = mddev->new_level;
3581         mddev->layout = mddev->new_layout;
3582         mddev->chunk_sectors = mddev->new_chunk_sectors;
3583         mddev->delta_disks = 0;
3584         mddev->reshape_backwards = 0;
3585         mddev->degraded = 0;
3586         if (mddev->pers->sync_request == NULL) {
3587                 /* this is now an array without redundancy, so
3588                  * it must always be in_sync
3589                  */
3590                 mddev->in_sync = 1;
3591                 del_timer_sync(&mddev->safemode_timer);
3592         }
3593         blk_set_stacking_limits(&mddev->queue->limits);
3594         pers->run(mddev);
3595         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3596         mddev_resume(mddev);
3597         if (!mddev->thread)
3598                 md_update_sb(mddev, 1);
3599         sysfs_notify(&mddev->kobj, NULL, "level");
3600         md_new_event(mddev);
3601         return rv;
3602 }
3603
3604 static struct md_sysfs_entry md_level =
3605 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3606
3607
3608 static ssize_t
3609 layout_show(struct mddev *mddev, char *page)
3610 {
3611         /* just a number, not meaningful for all levels */
3612         if (mddev->reshape_position != MaxSector &&
3613             mddev->layout != mddev->new_layout)
3614                 return sprintf(page, "%d (%d)\n",
3615                                mddev->new_layout, mddev->layout);
3616         return sprintf(page, "%d\n", mddev->layout);
3617 }
3618
3619 static ssize_t
3620 layout_store(struct mddev *mddev, const char *buf, size_t len)
3621 {
3622         char *e;
3623         unsigned long n = simple_strtoul(buf, &e, 10);
3624
3625         if (!*buf || (*e && *e != '\n'))
3626                 return -EINVAL;
3627
3628         if (mddev->pers) {
3629                 int err;
3630                 if (mddev->pers->check_reshape == NULL)
3631                         return -EBUSY;
3632                 if (mddev->ro)
3633                         return -EROFS;
3634                 mddev->new_layout = n;
3635                 err = mddev->pers->check_reshape(mddev);
3636                 if (err) {
3637                         mddev->new_layout = mddev->layout;
3638                         return err;
3639                 }
3640         } else {
3641                 mddev->new_layout = n;
3642                 if (mddev->reshape_position == MaxSector)
3643                         mddev->layout = n;
3644         }
3645         return len;
3646 }
3647 static struct md_sysfs_entry md_layout =
3648 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3649
3650
3651 static ssize_t
3652 raid_disks_show(struct mddev *mddev, char *page)
3653 {
3654         if (mddev->raid_disks == 0)
3655                 return 0;
3656         if (mddev->reshape_position != MaxSector &&
3657             mddev->delta_disks != 0)
3658                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3659                                mddev->raid_disks - mddev->delta_disks);
3660         return sprintf(page, "%d\n", mddev->raid_disks);
3661 }
3662
3663 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3664
3665 static ssize_t
3666 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3667 {
3668         char *e;
3669         int rv = 0;
3670         unsigned long n = simple_strtoul(buf, &e, 10);
3671
3672         if (!*buf || (*e && *e != '\n'))
3673                 return -EINVAL;
3674
3675         if (mddev->pers)
3676                 rv = update_raid_disks(mddev, n);
3677         else if (mddev->reshape_position != MaxSector) {
3678                 struct md_rdev *rdev;
3679                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3680
3681                 rdev_for_each(rdev, mddev) {
3682                         if (olddisks < n &&
3683                             rdev->data_offset < rdev->new_data_offset)
3684                                 return -EINVAL;
3685                         if (olddisks > n &&
3686                             rdev->data_offset > rdev->new_data_offset)
3687                                 return -EINVAL;
3688                 }
3689                 mddev->delta_disks = n - olddisks;
3690                 mddev->raid_disks = n;
3691                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3692         } else
3693                 mddev->raid_disks = n;
3694         return rv ? rv : len;
3695 }
3696 static struct md_sysfs_entry md_raid_disks =
3697 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3698
3699 static ssize_t
3700 chunk_size_show(struct mddev *mddev, char *page)
3701 {
3702         if (mddev->reshape_position != MaxSector &&
3703             mddev->chunk_sectors != mddev->new_chunk_sectors)
3704                 return sprintf(page, "%d (%d)\n",
3705                                mddev->new_chunk_sectors << 9,
3706                                mddev->chunk_sectors << 9);
3707         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3708 }
3709
3710 static ssize_t
3711 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3712 {
3713         char *e;
3714         unsigned long n = simple_strtoul(buf, &e, 10);
3715
3716         if (!*buf || (*e && *e != '\n'))
3717                 return -EINVAL;
3718
3719         if (mddev->pers) {
3720                 int err;
3721                 if (mddev->pers->check_reshape == NULL)
3722                         return -EBUSY;
3723                 if (mddev->ro)
3724                         return -EROFS;
3725                 mddev->new_chunk_sectors = n >> 9;
3726                 err = mddev->pers->check_reshape(mddev);
3727                 if (err) {
3728                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3729                         return err;
3730                 }
3731         } else {
3732                 mddev->new_chunk_sectors = n >> 9;
3733                 if (mddev->reshape_position == MaxSector)
3734                         mddev->chunk_sectors = n >> 9;
3735         }
3736         return len;
3737 }
3738 static struct md_sysfs_entry md_chunk_size =
3739 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3740
3741 static ssize_t
3742 resync_start_show(struct mddev *mddev, char *page)
3743 {
3744         if (mddev->recovery_cp == MaxSector)
3745                 return sprintf(page, "none\n");
3746         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3747 }
3748
3749 static ssize_t
3750 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3751 {
3752         char *e;
3753         unsigned long long n = simple_strtoull(buf, &e, 10);
3754
3755         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3756                 return -EBUSY;
3757         if (cmd_match(buf, "none"))
3758                 n = MaxSector;
3759         else if (!*buf || (*e && *e != '\n'))
3760                 return -EINVAL;
3761
3762         mddev->recovery_cp = n;
3763         if (mddev->pers)
3764                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3765         return len;
3766 }
3767 static struct md_sysfs_entry md_resync_start =
3768 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3769
3770 /*
3771  * The array state can be:
3772  *
3773  * clear
3774  *     No devices, no size, no level
3775  *     Equivalent to STOP_ARRAY ioctl
3776  * inactive
3777  *     May have some settings, but array is not active
3778  *        all IO results in error
3779  *     When written, doesn't tear down array, but just stops it
3780  * suspended (not supported yet)
3781  *     All IO requests will block. The array can be reconfigured.
3782  *     Writing this, if accepted, will block until array is quiescent
3783  * readonly
3784  *     no resync can happen.  no superblocks get written.
3785  *     write requests fail
3786  * read-auto
3787  *     like readonly, but behaves like 'clean' on a write request.
3788  *
3789  * clean - no pending writes, but otherwise active.
3790  *     When written to inactive array, starts without resync
3791  *     If a write request arrives then
3792  *       if metadata is known, mark 'dirty' and switch to 'active'.
3793  *       if not known, block and switch to write-pending
3794  *     If written to an active array that has pending writes, then fails.
3795  * active
3796  *     fully active: IO and resync can be happening.
3797  *     When written to inactive array, starts with resync
3798  *
3799  * write-pending
3800  *     clean, but writes are blocked waiting for 'active' to be written.
3801  *
3802  * active-idle
3803  *     like active, but no writes have been seen for a while (100msec).
3804  *
3805  */
3806 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3807                    write_pending, active_idle, bad_word};
3808 static char *array_states[] = {
3809         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3810         "write-pending", "active-idle", NULL };
3811
3812 static int match_word(const char *word, char **list)
3813 {
3814         int n;
3815         for (n=0; list[n]; n++)
3816                 if (cmd_match(word, list[n]))
3817                         break;
3818         return n;
3819 }
3820
3821 static ssize_t
3822 array_state_show(struct mddev *mddev, char *page)
3823 {
3824         enum array_state st = inactive;
3825
3826         if (mddev->pers)
3827                 switch(mddev->ro) {
3828                 case 1:
3829                         st = readonly;
3830                         break;
3831                 case 2:
3832                         st = read_auto;
3833                         break;
3834                 case 0:
3835                         if (mddev->in_sync)
3836                                 st = clean;
3837                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3838                                 st = write_pending;
3839                         else if (mddev->safemode)
3840                                 st = active_idle;
3841                         else
3842                                 st = active;
3843                 }
3844         else {
3845                 if (list_empty(&mddev->disks) &&
3846                     mddev->raid_disks == 0 &&
3847                     mddev->dev_sectors == 0)
3848                         st = clear;
3849                 else
3850                         st = inactive;
3851         }
3852         return sprintf(page, "%s\n", array_states[st]);
3853 }
3854
3855 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3856 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3857 static int do_md_run(struct mddev * mddev);
3858 static int restart_array(struct mddev *mddev);
3859
3860 static ssize_t
3861 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3862 {
3863         int err = -EINVAL;
3864         enum array_state st = match_word(buf, array_states);
3865         switch(st) {
3866         case bad_word:
3867                 break;
3868         case clear:
3869                 /* stopping an active array */
3870                 err = do_md_stop(mddev, 0, NULL);
3871                 break;
3872         case inactive:
3873                 /* stopping an active array */
3874                 if (mddev->pers)
3875                         err = do_md_stop(mddev, 2, NULL);
3876                 else
3877                         err = 0; /* already inactive */
3878                 break;
3879         case suspended:
3880                 break; /* not supported yet */
3881         case readonly:
3882                 if (mddev->pers)
3883                         err = md_set_readonly(mddev, NULL);
3884                 else {
3885                         mddev->ro = 1;
3886                         set_disk_ro(mddev->gendisk, 1);
3887                         err = do_md_run(mddev);
3888                 }
3889                 break;
3890         case read_auto:
3891                 if (mddev->pers) {
3892                         if (mddev->ro == 0)
3893                                 err = md_set_readonly(mddev, NULL);
3894                         else if (mddev->ro == 1)
3895                                 err = restart_array(mddev);
3896                         if (err == 0) {
3897                                 mddev->ro = 2;
3898                                 set_disk_ro(mddev->gendisk, 0);
3899                         }
3900                 } else {
3901                         mddev->ro = 2;
3902                         err = do_md_run(mddev);
3903                 }
3904                 break;
3905         case clean:
3906                 if (mddev->pers) {
3907                         restart_array(mddev);
3908                         spin_lock_irq(&mddev->write_lock);
3909                         if (atomic_read(&mddev->writes_pending) == 0) {
3910                                 if (mddev->in_sync == 0) {
3911                                         mddev->in_sync = 1;
3912                                         if (mddev->safemode == 1)
3913                                                 mddev->safemode = 0;
3914                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3915                                 }
3916                                 err = 0;
3917                         } else
3918                                 err = -EBUSY;
3919                         spin_unlock_irq(&mddev->write_lock);
3920                 } else
3921                         err = -EINVAL;
3922                 break;
3923         case active:
3924                 if (mddev->pers) {
3925                         restart_array(mddev);
3926                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3927                         wake_up(&mddev->sb_wait);
3928                         err = 0;
3929                 } else {
3930                         mddev->ro = 0;
3931                         set_disk_ro(mddev->gendisk, 0);
3932                         err = do_md_run(mddev);
3933                 }
3934                 break;
3935         case write_pending:
3936         case active_idle:
3937                 /* these cannot be set */
3938                 break;
3939         }
3940         if (err)
3941                 return err;
3942         else {
3943                 if (mddev->hold_active == UNTIL_IOCTL)
3944                         mddev->hold_active = 0;
3945                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3946                 return len;
3947         }
3948 }
3949 static struct md_sysfs_entry md_array_state =
3950 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3951
3952 static ssize_t
3953 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3954         return sprintf(page, "%d\n",
3955                        atomic_read(&mddev->max_corr_read_errors));
3956 }
3957
3958 static ssize_t
3959 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3960 {
3961         char *e;
3962         unsigned long n = simple_strtoul(buf, &e, 10);
3963
3964         if (*buf && (*e == 0 || *e == '\n')) {
3965                 atomic_set(&mddev->max_corr_read_errors, n);
3966                 return len;
3967         }
3968         return -EINVAL;
3969 }
3970
3971 static struct md_sysfs_entry max_corr_read_errors =
3972 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3973         max_corrected_read_errors_store);
3974
3975 static ssize_t
3976 null_show(struct mddev *mddev, char *page)
3977 {
3978         return -EINVAL;
3979 }
3980
3981 static ssize_t
3982 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3983 {
3984         /* buf must be %d:%d\n? giving major and minor numbers */
3985         /* The new device is added to the array.
3986          * If the array has a persistent superblock, we read the
3987          * superblock to initialise info and check validity.
3988          * Otherwise, only checking done is that in bind_rdev_to_array,
3989          * which mainly checks size.
3990          */
3991         char *e;
3992         int major = simple_strtoul(buf, &e, 10);
3993         int minor;
3994         dev_t dev;
3995         struct md_rdev *rdev;
3996         int err;
3997
3998         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3999                 return -EINVAL;
4000         minor = simple_strtoul(e+1, &e, 10);
4001         if (*e && *e != '\n')
4002                 return -EINVAL;
4003         dev = MKDEV(major, minor);
4004         if (major != MAJOR(dev) ||
4005             minor != MINOR(dev))
4006                 return -EOVERFLOW;
4007
4008
4009         if (mddev->persistent) {
4010                 rdev = md_import_device(dev, mddev->major_version,
4011                                         mddev->minor_version);
4012                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4013                         struct md_rdev *rdev0
4014                                 = list_entry(mddev->disks.next,
4015                                              struct md_rdev, same_set);
4016                         err = super_types[mddev->major_version]
4017                                 .load_super(rdev, rdev0, mddev->minor_version);
4018                         if (err < 0)
4019                                 goto out;
4020                 }
4021         } else if (mddev->external)
4022                 rdev = md_import_device(dev, -2, -1);
4023         else
4024                 rdev = md_import_device(dev, -1, -1);
4025
4026         if (IS_ERR(rdev))
4027                 return PTR_ERR(rdev);
4028         err = bind_rdev_to_array(rdev, mddev);
4029  out:
4030         if (err)
4031                 export_rdev(rdev);
4032         return err ? err : len;
4033 }
4034
4035 static struct md_sysfs_entry md_new_device =
4036 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4037
4038 static ssize_t
4039 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4040 {
4041         char *end;
4042         unsigned long chunk, end_chunk;
4043
4044         if (!mddev->bitmap)
4045                 goto out;
4046         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4047         while (*buf) {
4048                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4049                 if (buf == end) break;
4050                 if (*end == '-') { /* range */
4051                         buf = end + 1;
4052                         end_chunk = simple_strtoul(buf, &end, 0);
4053                         if (buf == end) break;
4054                 }
4055                 if (*end && !isspace(*end)) break;
4056                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4057                 buf = skip_spaces(end);
4058         }
4059         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4060 out:
4061         return len;
4062 }
4063
4064 static struct md_sysfs_entry md_bitmap =
4065 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4066
4067 static ssize_t
4068 size_show(struct mddev *mddev, char *page)
4069 {
4070         return sprintf(page, "%llu\n",
4071                 (unsigned long long)mddev->dev_sectors / 2);
4072 }
4073
4074 static int update_size(struct mddev *mddev, sector_t num_sectors);
4075
4076 static ssize_t
4077 size_store(struct mddev *mddev, const char *buf, size_t len)
4078 {
4079         /* If array is inactive, we can reduce the component size, but
4080          * not increase it (except from 0).
4081          * If array is active, we can try an on-line resize
4082          */
4083         sector_t sectors;
4084         int err = strict_blocks_to_sectors(buf, &sectors);
4085
4086         if (err < 0)
4087                 return err;
4088         if (mddev->pers) {
4089                 err = update_size(mddev, sectors);
4090                 md_update_sb(mddev, 1);
4091         } else {
4092                 if (mddev->dev_sectors == 0 ||
4093                     mddev->dev_sectors > sectors)
4094                         mddev->dev_sectors = sectors;
4095                 else
4096                         err = -ENOSPC;
4097         }
4098         return err ? err : len;
4099 }
4100
4101 static struct md_sysfs_entry md_size =
4102 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4103
4104
4105 /* Metadata version.
4106  * This is one of
4107  *   'none' for arrays with no metadata (good luck...)
4108  *   'external' for arrays with externally managed metadata,
4109  * or N.M for internally known formats
4110  */
4111 static ssize_t
4112 metadata_show(struct mddev *mddev, char *page)
4113 {
4114         if (mddev->persistent)
4115                 return sprintf(page, "%d.%d\n",
4116                                mddev->major_version, mddev->minor_version);
4117         else if (mddev->external)
4118                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4119         else
4120                 return sprintf(page, "none\n");
4121 }
4122
4123 static ssize_t
4124 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126         int major, minor;
4127         char *e;
4128         /* Changing the details of 'external' metadata is
4129          * always permitted.  Otherwise there must be
4130          * no devices attached to the array.
4131          */
4132         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4133                 ;
4134         else if (!list_empty(&mddev->disks))
4135                 return -EBUSY;
4136
4137         if (cmd_match(buf, "none")) {
4138                 mddev->persistent = 0;
4139                 mddev->external = 0;
4140                 mddev->major_version = 0;
4141                 mddev->minor_version = 90;
4142                 return len;
4143         }
4144         if (strncmp(buf, "external:", 9) == 0) {
4145                 size_t namelen = len-9;
4146                 if (namelen >= sizeof(mddev->metadata_type))
4147                         namelen = sizeof(mddev->metadata_type)-1;
4148                 strncpy(mddev->metadata_type, buf+9, namelen);
4149                 mddev->metadata_type[namelen] = 0;
4150                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4151                         mddev->metadata_type[--namelen] = 0;
4152                 mddev->persistent = 0;
4153                 mddev->external = 1;
4154                 mddev->major_version = 0;
4155                 mddev->minor_version = 90;
4156                 return len;
4157         }
4158         major = simple_strtoul(buf, &e, 10);
4159         if (e==buf || *e != '.')
4160                 return -EINVAL;
4161         buf = e+1;
4162         minor = simple_strtoul(buf, &e, 10);
4163         if (e==buf || (*e && *e != '\n') )
4164                 return -EINVAL;
4165         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4166                 return -ENOENT;
4167         mddev->major_version = major;
4168         mddev->minor_version = minor;
4169         mddev->persistent = 1;
4170         mddev->external = 0;
4171         return len;
4172 }
4173
4174 static struct md_sysfs_entry md_metadata =
4175 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4176
4177 static ssize_t
4178 action_show(struct mddev *mddev, char *page)
4179 {
4180         char *type = "idle";
4181         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4182                 type = "frozen";
4183         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4184             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4185                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4186                         type = "reshape";
4187                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4188                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4189                                 type = "resync";
4190                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4191                                 type = "check";
4192                         else
4193                                 type = "repair";
4194                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4195                         type = "recover";
4196         }
4197         return sprintf(page, "%s\n", type);
4198 }
4199
4200 static ssize_t
4201 action_store(struct mddev *mddev, const char *page, size_t len)
4202 {
4203         if (!mddev->pers || !mddev->pers->sync_request)
4204                 return -EINVAL;
4205
4206         if (cmd_match(page, "frozen"))
4207                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4208         else
4209                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4210
4211         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4212                 if (mddev->sync_thread) {
4213                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4214                         md_reap_sync_thread(mddev);
4215                 }
4216         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4217                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4218                 return -EBUSY;
4219         else if (cmd_match(page, "resync"))
4220                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4221         else if (cmd_match(page, "recover")) {
4222                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4223                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4224         } else if (cmd_match(page, "reshape")) {
4225                 int err;
4226                 if (mddev->pers->start_reshape == NULL)
4227                         return -EINVAL;
4228                 err = mddev->pers->start_reshape(mddev);
4229                 if (err)
4230                         return err;
4231                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4232         } else {
4233                 if (cmd_match(page, "check"))
4234                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4235                 else if (!cmd_match(page, "repair"))
4236                         return -EINVAL;
4237                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4238                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4239         }
4240         if (mddev->ro == 2) {
4241                 /* A write to sync_action is enough to justify
4242                  * canceling read-auto mode
4243                  */
4244                 mddev->ro = 0;
4245                 md_wakeup_thread(mddev->sync_thread);
4246         }
4247         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248         md_wakeup_thread(mddev->thread);
4249         sysfs_notify_dirent_safe(mddev->sysfs_action);
4250         return len;
4251 }
4252
4253 static struct md_sysfs_entry md_scan_mode =
4254 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4255
4256 static ssize_t
4257 last_sync_action_show(struct mddev *mddev, char *page)
4258 {
4259         return sprintf(page, "%s\n", mddev->last_sync_action);
4260 }
4261
4262 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4263
4264 static ssize_t
4265 mismatch_cnt_show(struct mddev *mddev, char *page)
4266 {
4267         return sprintf(page, "%llu\n",
4268                        (unsigned long long)
4269                        atomic64_read(&mddev->resync_mismatches));
4270 }
4271
4272 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4273
4274 static ssize_t
4275 sync_min_show(struct mddev *mddev, char *page)
4276 {
4277         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4278                        mddev->sync_speed_min ? "local": "system");
4279 }
4280
4281 static ssize_t
4282 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4283 {
4284         int min;
4285         char *e;
4286         if (strncmp(buf, "system", 6)==0) {
4287                 mddev->sync_speed_min = 0;
4288                 return len;
4289         }
4290         min = simple_strtoul(buf, &e, 10);
4291         if (buf == e || (*e && *e != '\n') || min <= 0)
4292                 return -EINVAL;
4293         mddev->sync_speed_min = min;
4294         return len;
4295 }
4296
4297 static struct md_sysfs_entry md_sync_min =
4298 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4299
4300 static ssize_t
4301 sync_max_show(struct mddev *mddev, char *page)
4302 {
4303         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4304                        mddev->sync_speed_max ? "local": "system");
4305 }
4306
4307 static ssize_t
4308 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4309 {
4310         int max;
4311         char *e;
4312         if (strncmp(buf, "system", 6)==0) {
4313                 mddev->sync_speed_max = 0;
4314                 return len;
4315         }
4316         max = simple_strtoul(buf, &e, 10);
4317         if (buf == e || (*e && *e != '\n') || max <= 0)
4318                 return -EINVAL;
4319         mddev->sync_speed_max = max;
4320         return len;
4321 }
4322
4323 static struct md_sysfs_entry md_sync_max =
4324 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4325
4326 static ssize_t
4327 degraded_show(struct mddev *mddev, char *page)
4328 {
4329         return sprintf(page, "%d\n", mddev->degraded);
4330 }
4331 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4332
4333 static ssize_t
4334 sync_force_parallel_show(struct mddev *mddev, char *page)
4335 {
4336         return sprintf(page, "%d\n", mddev->parallel_resync);
4337 }
4338
4339 static ssize_t
4340 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4341 {
4342         long n;
4343
4344         if (kstrtol(buf, 10, &n))
4345                 return -EINVAL;
4346
4347         if (n != 0 && n != 1)
4348                 return -EINVAL;
4349
4350         mddev->parallel_resync = n;
4351
4352         if (mddev->sync_thread)
4353                 wake_up(&resync_wait);
4354
4355         return len;
4356 }
4357
4358 /* force parallel resync, even with shared block devices */
4359 static struct md_sysfs_entry md_sync_force_parallel =
4360 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4361        sync_force_parallel_show, sync_force_parallel_store);
4362
4363 static ssize_t
4364 sync_speed_show(struct mddev *mddev, char *page)
4365 {
4366         unsigned long resync, dt, db;
4367         if (mddev->curr_resync == 0)
4368                 return sprintf(page, "none\n");
4369         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4370         dt = (jiffies - mddev->resync_mark) / HZ;
4371         if (!dt) dt++;
4372         db = resync - mddev->resync_mark_cnt;
4373         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4374 }
4375
4376 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4377
4378 static ssize_t
4379 sync_completed_show(struct mddev *mddev, char *page)
4380 {
4381         unsigned long long max_sectors, resync;
4382
4383         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4384                 return sprintf(page, "none\n");
4385
4386         if (mddev->curr_resync == 1 ||
4387             mddev->curr_resync == 2)
4388                 return sprintf(page, "delayed\n");
4389
4390         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4391             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4392                 max_sectors = mddev->resync_max_sectors;
4393         else
4394                 max_sectors = mddev->dev_sectors;
4395
4396         resync = mddev->curr_resync_completed;
4397         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4398 }
4399
4400 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4401
4402 static ssize_t
4403 min_sync_show(struct mddev *mddev, char *page)
4404 {
4405         return sprintf(page, "%llu\n",
4406                        (unsigned long long)mddev->resync_min);
4407 }
4408 static ssize_t
4409 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4410 {
4411         unsigned long long min;
4412         if (kstrtoull(buf, 10, &min))
4413                 return -EINVAL;
4414         if (min > mddev->resync_max)
4415                 return -EINVAL;
4416         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4417                 return -EBUSY;
4418
4419         /* Must be a multiple of chunk_size */
4420         if (mddev->chunk_sectors) {
4421                 sector_t temp = min;
4422                 if (sector_div(temp, mddev->chunk_sectors))
4423                         return -EINVAL;
4424         }
4425         mddev->resync_min = min;
4426
4427         return len;
4428 }
4429
4430 static struct md_sysfs_entry md_min_sync =
4431 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4432
4433 static ssize_t
4434 max_sync_show(struct mddev *mddev, char *page)
4435 {
4436         if (mddev->resync_max == MaxSector)
4437                 return sprintf(page, "max\n");
4438         else
4439                 return sprintf(page, "%llu\n",
4440                                (unsigned long long)mddev->resync_max);
4441 }
4442 static ssize_t
4443 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4444 {
4445         if (strncmp(buf, "max", 3) == 0)
4446                 mddev->resync_max = MaxSector;
4447         else {
4448                 unsigned long long max;
4449                 if (kstrtoull(buf, 10, &max))
4450                         return -EINVAL;
4451                 if (max < mddev->resync_min)
4452                         return -EINVAL;
4453                 if (max < mddev->resync_max &&
4454                     mddev->ro == 0 &&
4455                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4456                         return -EBUSY;
4457
4458                 /* Must be a multiple of chunk_size */
4459                 if (mddev->chunk_sectors) {
4460                         sector_t temp = max;
4461                         if (sector_div(temp, mddev->chunk_sectors))
4462                                 return -EINVAL;
4463                 }
4464                 mddev->resync_max = max;
4465         }
4466         wake_up(&mddev->recovery_wait);
4467         return len;
4468 }
4469
4470 static struct md_sysfs_entry md_max_sync =
4471 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4472
4473 static ssize_t
4474 suspend_lo_show(struct mddev *mddev, char *page)
4475 {
4476         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4477 }
4478
4479 static ssize_t
4480 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4481 {
4482         char *e;
4483         unsigned long long new = simple_strtoull(buf, &e, 10);
4484         unsigned long long old = mddev->suspend_lo;
4485
4486         if (mddev->pers == NULL || 
4487             mddev->pers->quiesce == NULL)
4488                 return -EINVAL;
4489         if (buf == e || (*e && *e != '\n'))
4490                 return -EINVAL;
4491
4492         mddev->suspend_lo = new;
4493         if (new >= old)
4494                 /* Shrinking suspended region */
4495                 mddev->pers->quiesce(mddev, 2);
4496         else {
4497                 /* Expanding suspended region - need to wait */
4498                 mddev->pers->quiesce(mddev, 1);
4499                 mddev->pers->quiesce(mddev, 0);
4500         }
4501         return len;
4502 }
4503 static struct md_sysfs_entry md_suspend_lo =
4504 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4505
4506
4507 static ssize_t
4508 suspend_hi_show(struct mddev *mddev, char *page)
4509 {
4510         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4511 }
4512
4513 static ssize_t
4514 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4515 {
4516         char *e;
4517         unsigned long long new = simple_strtoull(buf, &e, 10);
4518         unsigned long long old = mddev->suspend_hi;
4519
4520         if (mddev->pers == NULL ||
4521             mddev->pers->quiesce == NULL)
4522                 return -EINVAL;
4523         if (buf == e || (*e && *e != '\n'))
4524                 return -EINVAL;
4525
4526         mddev->suspend_hi = new;
4527         if (new <= old)
4528                 /* Shrinking suspended region */
4529                 mddev->pers->quiesce(mddev, 2);
4530         else {
4531                 /* Expanding suspended region - need to wait */
4532                 mddev->pers->quiesce(mddev, 1);
4533                 mddev->pers->quiesce(mddev, 0);
4534         }
4535         return len;
4536 }
4537 static struct md_sysfs_entry md_suspend_hi =
4538 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4539
4540 static ssize_t
4541 reshape_position_show(struct mddev *mddev, char *page)
4542 {
4543         if (mddev->reshape_position != MaxSector)
4544                 return sprintf(page, "%llu\n",
4545                                (unsigned long long)mddev->reshape_position);
4546         strcpy(page, "none\n");
4547         return 5;
4548 }
4549
4550 static ssize_t
4551 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4552 {
4553         struct md_rdev *rdev;
4554         char *e;
4555         unsigned long long new = simple_strtoull(buf, &e, 10);
4556         if (mddev->pers)
4557                 return -EBUSY;
4558         if (buf == e || (*e && *e != '\n'))
4559                 return -EINVAL;
4560         mddev->reshape_position = new;
4561         mddev->delta_disks = 0;
4562         mddev->reshape_backwards = 0;
4563         mddev->new_level = mddev->level;
4564         mddev->new_layout = mddev->layout;
4565         mddev->new_chunk_sectors = mddev->chunk_sectors;
4566         rdev_for_each(rdev, mddev)
4567                 rdev->new_data_offset = rdev->data_offset;
4568         return len;
4569 }
4570
4571 static struct md_sysfs_entry md_reshape_position =
4572 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4573        reshape_position_store);
4574
4575 static ssize_t
4576 reshape_direction_show(struct mddev *mddev, char *page)
4577 {
4578         return sprintf(page, "%s\n",
4579                        mddev->reshape_backwards ? "backwards" : "forwards");
4580 }
4581
4582 static ssize_t
4583 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4584 {
4585         int backwards = 0;
4586         if (cmd_match(buf, "forwards"))
4587                 backwards = 0;
4588         else if (cmd_match(buf, "backwards"))
4589                 backwards = 1;
4590         else
4591                 return -EINVAL;
4592         if (mddev->reshape_backwards == backwards)
4593                 return len;
4594
4595         /* check if we are allowed to change */
4596         if (mddev->delta_disks)
4597                 return -EBUSY;
4598
4599         if (mddev->persistent &&
4600             mddev->major_version == 0)
4601                 return -EINVAL;
4602
4603         mddev->reshape_backwards = backwards;
4604         return len;
4605 }
4606
4607 static struct md_sysfs_entry md_reshape_direction =
4608 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4609        reshape_direction_store);
4610
4611 static ssize_t
4612 array_size_show(struct mddev *mddev, char *page)
4613 {
4614         if (mddev->external_size)
4615                 return sprintf(page, "%llu\n",
4616                                (unsigned long long)mddev->array_sectors/2);
4617         else
4618                 return sprintf(page, "default\n");
4619 }
4620
4621 static ssize_t
4622 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4623 {
4624         sector_t sectors;
4625
4626         if (strncmp(buf, "default", 7) == 0) {
4627                 if (mddev->pers)
4628                         sectors = mddev->pers->size(mddev, 0, 0);
4629                 else
4630                         sectors = mddev->array_sectors;
4631
4632                 mddev->external_size = 0;
4633         } else {
4634                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4635                         return -EINVAL;
4636                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4637                         return -E2BIG;
4638
4639                 mddev->external_size = 1;
4640         }
4641
4642         mddev->array_sectors = sectors;
4643         if (mddev->pers) {
4644                 set_capacity(mddev->gendisk, mddev->array_sectors);
4645                 revalidate_disk(mddev->gendisk);
4646         }
4647         return len;
4648 }
4649
4650 static struct md_sysfs_entry md_array_size =
4651 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4652        array_size_store);
4653
4654 static struct attribute *md_default_attrs[] = {
4655         &md_level.attr,
4656         &md_layout.attr,
4657         &md_raid_disks.attr,
4658         &md_chunk_size.attr,
4659         &md_size.attr,
4660         &md_resync_start.attr,
4661         &md_metadata.attr,
4662         &md_new_device.attr,
4663         &md_safe_delay.attr,
4664         &md_array_state.attr,
4665         &md_reshape_position.attr,
4666         &md_reshape_direction.attr,
4667         &md_array_size.attr,
4668         &max_corr_read_errors.attr,
4669         NULL,
4670 };
4671
4672 static struct attribute *md_redundancy_attrs[] = {
4673         &md_scan_mode.attr,
4674         &md_last_scan_mode.attr,
4675         &md_mismatches.attr,
4676         &md_sync_min.attr,
4677         &md_sync_max.attr,
4678         &md_sync_speed.attr,
4679         &md_sync_force_parallel.attr,
4680         &md_sync_completed.attr,
4681         &md_min_sync.attr,
4682         &md_max_sync.attr,
4683         &md_suspend_lo.attr,
4684         &md_suspend_hi.attr,
4685         &md_bitmap.attr,
4686         &md_degraded.attr,
4687         NULL,
4688 };
4689 static struct attribute_group md_redundancy_group = {
4690         .name = NULL,
4691         .attrs = md_redundancy_attrs,
4692 };
4693
4694
4695 static ssize_t
4696 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4697 {
4698         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4699         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4700         ssize_t rv;
4701
4702         if (!entry->show)
4703                 return -EIO;
4704         spin_lock(&all_mddevs_lock);
4705         if (list_empty(&mddev->all_mddevs)) {
4706                 spin_unlock(&all_mddevs_lock);
4707                 return -EBUSY;
4708         }
4709         mddev_get(mddev);
4710         spin_unlock(&all_mddevs_lock);
4711
4712         rv = mddev_lock(mddev);
4713         if (!rv) {
4714                 rv = entry->show(mddev, page);
4715                 mddev_unlock(mddev);
4716         }
4717         mddev_put(mddev);
4718         return rv;
4719 }
4720
4721 static ssize_t
4722 md_attr_store(struct kobject *kobj, struct attribute *attr,
4723               const char *page, size_t length)
4724 {
4725         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4726         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4727         ssize_t rv;
4728
4729         if (!entry->store)
4730                 return -EIO;
4731         if (!capable(CAP_SYS_ADMIN))
4732                 return -EACCES;
4733         spin_lock(&all_mddevs_lock);
4734         if (list_empty(&mddev->all_mddevs)) {
4735                 spin_unlock(&all_mddevs_lock);
4736                 return -EBUSY;
4737         }
4738         mddev_get(mddev);
4739         spin_unlock(&all_mddevs_lock);
4740         if (entry->store == new_dev_store)
4741                 flush_workqueue(md_misc_wq);
4742         rv = mddev_lock(mddev);
4743         if (!rv) {
4744                 rv = entry->store(mddev, page, length);
4745                 mddev_unlock(mddev);
4746         }
4747         mddev_put(mddev);
4748         return rv;
4749 }
4750
4751 static void md_free(struct kobject *ko)
4752 {
4753         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4754
4755         if (mddev->sysfs_state)
4756                 sysfs_put(mddev->sysfs_state);
4757
4758         if (mddev->gendisk) {
4759                 del_gendisk(mddev->gendisk);
4760                 put_disk(mddev->gendisk);
4761         }
4762         if (mddev->queue)
4763                 blk_cleanup_queue(mddev->queue);
4764
4765         kfree(mddev);
4766 }
4767
4768 static const struct sysfs_ops md_sysfs_ops = {
4769         .show   = md_attr_show,
4770         .store  = md_attr_store,
4771 };
4772 static struct kobj_type md_ktype = {
4773         .release        = md_free,
4774         .sysfs_ops      = &md_sysfs_ops,
4775         .default_attrs  = md_default_attrs,
4776 };
4777
4778 int mdp_major = 0;
4779
4780 static void mddev_delayed_delete(struct work_struct *ws)
4781 {
4782         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4783
4784         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4785         kobject_del(&mddev->kobj);
4786         kobject_put(&mddev->kobj);
4787 }
4788
4789 static int md_alloc(dev_t dev, char *name)
4790 {
4791         static DEFINE_MUTEX(disks_mutex);
4792         struct mddev *mddev = mddev_find(dev);
4793         struct gendisk *disk;
4794         int partitioned;
4795         int shift;
4796         int unit;
4797         int error;
4798
4799         if (!mddev)
4800                 return -ENODEV;
4801
4802         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4803         shift = partitioned ? MdpMinorShift : 0;
4804         unit = MINOR(mddev->unit) >> shift;
4805
4806         /* wait for any previous instance of this device to be
4807          * completely removed (mddev_delayed_delete).
4808          */
4809         flush_workqueue(md_misc_wq);
4810
4811         mutex_lock(&disks_mutex);
4812         error = -EEXIST;
4813         if (mddev->gendisk)
4814                 goto abort;
4815
4816         if (name) {
4817                 /* Need to ensure that 'name' is not a duplicate.
4818                  */
4819                 struct mddev *mddev2;
4820                 spin_lock(&all_mddevs_lock);
4821
4822                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4823                         if (mddev2->gendisk &&
4824                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4825                                 spin_unlock(&all_mddevs_lock);
4826                                 goto abort;
4827                         }
4828                 spin_unlock(&all_mddevs_lock);
4829         }
4830
4831         error = -ENOMEM;
4832         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4833         if (!mddev->queue)
4834                 goto abort;
4835         mddev->queue->queuedata = mddev;
4836
4837         blk_queue_make_request(mddev->queue, md_make_request);
4838         blk_set_stacking_limits(&mddev->queue->limits);
4839
4840         disk = alloc_disk(1 << shift);
4841         if (!disk) {
4842                 blk_cleanup_queue(mddev->queue);
4843                 mddev->queue = NULL;
4844                 goto abort;
4845         }
4846         disk->major = MAJOR(mddev->unit);
4847         disk->first_minor = unit << shift;
4848         if (name)
4849                 strcpy(disk->disk_name, name);
4850         else if (partitioned)
4851                 sprintf(disk->disk_name, "md_d%d", unit);
4852         else
4853                 sprintf(disk->disk_name, "md%d", unit);
4854         disk->fops = &md_fops;
4855         disk->private_data = mddev;
4856         disk->queue = mddev->queue;
4857         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4858         /* Allow extended partitions.  This makes the
4859          * 'mdp' device redundant, but we can't really
4860          * remove it now.
4861          */
4862         disk->flags |= GENHD_FL_EXT_DEVT;
4863         mddev->gendisk = disk;
4864         /* As soon as we call add_disk(), another thread could get
4865          * through to md_open, so make sure it doesn't get too far
4866          */
4867         mutex_lock(&mddev->open_mutex);
4868         add_disk(disk);
4869
4870         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4871                                      &disk_to_dev(disk)->kobj, "%s", "md");
4872         if (error) {
4873                 /* This isn't possible, but as kobject_init_and_add is marked
4874                  * __must_check, we must do something with the result
4875                  */
4876                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4877                        disk->disk_name);
4878                 error = 0;
4879         }
4880         if (mddev->kobj.sd &&
4881             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4882                 printk(KERN_DEBUG "pointless warning\n");
4883         mutex_unlock(&mddev->open_mutex);
4884  abort:
4885         mutex_unlock(&disks_mutex);
4886         if (!error && mddev->kobj.sd) {
4887                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4888                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4889         }
4890         mddev_put(mddev);
4891         return error;
4892 }
4893
4894 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4895 {
4896         md_alloc(dev, NULL);
4897         return NULL;
4898 }
4899
4900 static int add_named_array(const char *val, struct kernel_param *kp)
4901 {
4902         /* val must be "md_*" where * is not all digits.
4903          * We allocate an array with a large free minor number, and
4904          * set the name to val.  val must not already be an active name.
4905          */
4906         int len = strlen(val);
4907         char buf[DISK_NAME_LEN];
4908
4909         while (len && val[len-1] == '\n')
4910                 len--;
4911         if (len >= DISK_NAME_LEN)
4912                 return -E2BIG;
4913         strlcpy(buf, val, len+1);
4914         if (strncmp(buf, "md_", 3) != 0)
4915                 return -EINVAL;
4916         return md_alloc(0, buf);
4917 }
4918
4919 static void md_safemode_timeout(unsigned long data)
4920 {
4921         struct mddev *mddev = (struct mddev *) data;
4922
4923         if (!atomic_read(&mddev->writes_pending)) {
4924                 mddev->safemode = 1;
4925                 if (mddev->external)
4926                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4927         }
4928         md_wakeup_thread(mddev->thread);
4929 }
4930
4931 static int start_dirty_degraded;
4932
4933 int md_run(struct mddev *mddev)
4934 {
4935         int err;
4936         struct md_rdev *rdev;
4937         struct md_personality *pers;
4938
4939         if (list_empty(&mddev->disks))
4940                 /* cannot run an array with no devices.. */
4941                 return -EINVAL;
4942
4943         if (mddev->pers)
4944                 return -EBUSY;
4945         /* Cannot run until previous stop completes properly */
4946         if (mddev->sysfs_active)
4947                 return -EBUSY;
4948
4949         /*
4950          * Analyze all RAID superblock(s)
4951          */
4952         if (!mddev->raid_disks) {
4953                 if (!mddev->persistent)
4954                         return -EINVAL;
4955                 analyze_sbs(mddev);
4956         }
4957
4958         if (mddev->level != LEVEL_NONE)
4959                 request_module("md-level-%d", mddev->level);
4960         else if (mddev->clevel[0])
4961                 request_module("md-%s", mddev->clevel);
4962
4963         /*
4964          * Drop all container device buffers, from now on
4965          * the only valid external interface is through the md
4966          * device.
4967          */
4968         rdev_for_each(rdev, mddev) {
4969                 if (test_bit(Faulty, &rdev->flags))
4970                         continue;
4971                 sync_blockdev(rdev->bdev);
4972                 invalidate_bdev(rdev->bdev);
4973
4974                 /* perform some consistency tests on the device.
4975                  * We don't want the data to overlap the metadata,
4976                  * Internal Bitmap issues have been handled elsewhere.
4977                  */
4978                 if (rdev->meta_bdev) {
4979                         /* Nothing to check */;
4980                 } else if (rdev->data_offset < rdev->sb_start) {
4981                         if (mddev->dev_sectors &&
4982                             rdev->data_offset + mddev->dev_sectors
4983                             > rdev->sb_start) {
4984                                 printk("md: %s: data overlaps metadata\n",
4985                                        mdname(mddev));
4986                                 return -EINVAL;
4987                         }
4988                 } else {
4989                         if (rdev->sb_start + rdev->sb_size/512
4990                             > rdev->data_offset) {
4991                                 printk("md: %s: metadata overlaps data\n",
4992                                        mdname(mddev));
4993                                 return -EINVAL;
4994                         }
4995                 }
4996                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4997         }
4998
4999         if (mddev->bio_set == NULL)
5000                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5001
5002         spin_lock(&pers_lock);
5003         pers = find_pers(mddev->level, mddev->clevel);
5004         if (!pers || !try_module_get(pers->owner)) {
5005                 spin_unlock(&pers_lock);
5006                 if (mddev->level != LEVEL_NONE)
5007                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5008                                mddev->level);
5009                 else
5010                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5011                                mddev->clevel);
5012                 return -EINVAL;
5013         }
5014         mddev->pers = pers;
5015         spin_unlock(&pers_lock);
5016         if (mddev->level != pers->level) {
5017                 mddev->level = pers->level;
5018                 mddev->new_level = pers->level;
5019         }
5020         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5021
5022         if (mddev->reshape_position != MaxSector &&
5023             pers->start_reshape == NULL) {
5024                 /* This personality cannot handle reshaping... */
5025                 mddev->pers = NULL;
5026                 module_put(pers->owner);
5027                 return -EINVAL;
5028         }
5029
5030         if (pers->sync_request) {
5031                 /* Warn if this is a potentially silly
5032                  * configuration.
5033                  */
5034                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5035                 struct md_rdev *rdev2;
5036                 int warned = 0;
5037
5038                 rdev_for_each(rdev, mddev)
5039                         rdev_for_each(rdev2, mddev) {
5040                                 if (rdev < rdev2 &&
5041                                     rdev->bdev->bd_contains ==
5042                                     rdev2->bdev->bd_contains) {
5043                                         printk(KERN_WARNING
5044                                                "%s: WARNING: %s appears to be"
5045                                                " on the same physical disk as"
5046                                                " %s.\n",
5047                                                mdname(mddev),
5048                                                bdevname(rdev->bdev,b),
5049                                                bdevname(rdev2->bdev,b2));
5050                                         warned = 1;
5051                                 }
5052                         }
5053
5054                 if (warned)
5055                         printk(KERN_WARNING
5056                                "True protection against single-disk"
5057                                " failure might be compromised.\n");
5058         }
5059
5060         mddev->recovery = 0;
5061         /* may be over-ridden by personality */
5062         mddev->resync_max_sectors = mddev->dev_sectors;
5063
5064         mddev->ok_start_degraded = start_dirty_degraded;
5065
5066         if (start_readonly && mddev->ro == 0)
5067                 mddev->ro = 2; /* read-only, but switch on first write */
5068
5069         err = mddev->pers->run(mddev);
5070         if (err)
5071                 printk(KERN_ERR "md: pers->run() failed ...\n");
5072         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5073                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5074                           " but 'external_size' not in effect?\n", __func__);
5075                 printk(KERN_ERR
5076                        "md: invalid array_size %llu > default size %llu\n",
5077                        (unsigned long long)mddev->array_sectors / 2,
5078                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5079                 err = -EINVAL;
5080                 mddev->pers->stop(mddev);
5081         }
5082         if (err == 0 && mddev->pers->sync_request &&
5083             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5084                 err = bitmap_create(mddev);
5085                 if (err) {
5086                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5087                                mdname(mddev), err);
5088                         mddev->pers->stop(mddev);
5089                 }
5090         }
5091         if (err) {
5092                 module_put(mddev->pers->owner);
5093                 mddev->pers = NULL;
5094                 bitmap_destroy(mddev);
5095                 return err;
5096         }
5097         if (mddev->pers->sync_request) {
5098                 if (mddev->kobj.sd &&
5099                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5100                         printk(KERN_WARNING
5101                                "md: cannot register extra attributes for %s\n",
5102                                mdname(mddev));
5103                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5104         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5105                 mddev->ro = 0;
5106
5107         atomic_set(&mddev->writes_pending,0);
5108         atomic_set(&mddev->max_corr_read_errors,
5109                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5110         mddev->safemode = 0;
5111         mddev->safemode_timer.function = md_safemode_timeout;
5112         mddev->safemode_timer.data = (unsigned long) mddev;
5113         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5114         mddev->in_sync = 1;
5115         smp_wmb();
5116         mddev->ready = 1;
5117         rdev_for_each(rdev, mddev)
5118                 if (rdev->raid_disk >= 0)
5119                         if (sysfs_link_rdev(mddev, rdev))
5120                                 /* failure here is OK */;
5121         
5122         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5123         
5124         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5125                 md_update_sb(mddev, 0);
5126
5127         md_new_event(mddev);
5128         sysfs_notify_dirent_safe(mddev->sysfs_state);
5129         sysfs_notify_dirent_safe(mddev->sysfs_action);
5130         sysfs_notify(&mddev->kobj, NULL, "degraded");
5131         return 0;
5132 }
5133 EXPORT_SYMBOL_GPL(md_run);
5134
5135 static int do_md_run(struct mddev *mddev)
5136 {
5137         int err;
5138
5139         err = md_run(mddev);
5140         if (err)
5141                 goto out;
5142         err = bitmap_load(mddev);
5143         if (err) {
5144                 bitmap_destroy(mddev);
5145                 goto out;
5146         }
5147
5148         md_wakeup_thread(mddev->thread);
5149         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5150
5151         set_capacity(mddev->gendisk, mddev->array_sectors);
5152         revalidate_disk(mddev->gendisk);
5153         mddev->changed = 1;
5154         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5155 out:
5156         return err;
5157 }
5158
5159 static int restart_array(struct mddev *mddev)
5160 {
5161         struct gendisk *disk = mddev->gendisk;
5162
5163         /* Complain if it has no devices */
5164         if (list_empty(&mddev->disks))
5165                 return -ENXIO;
5166         if (!mddev->pers)
5167                 return -EINVAL;
5168         if (!mddev->ro)
5169                 return -EBUSY;
5170         mddev->safemode = 0;
5171         mddev->ro = 0;
5172         set_disk_ro(disk, 0);
5173         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5174                 mdname(mddev));
5175         /* Kick recovery or resync if necessary */
5176         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177         md_wakeup_thread(mddev->thread);
5178         md_wakeup_thread(mddev->sync_thread);
5179         sysfs_notify_dirent_safe(mddev->sysfs_state);
5180         return 0;
5181 }
5182
5183 static void md_clean(struct mddev *mddev)
5184 {
5185         mddev->array_sectors = 0;
5186         mddev->external_size = 0;
5187         mddev->dev_sectors = 0;
5188         mddev->raid_disks = 0;
5189         mddev->recovery_cp = 0;
5190         mddev->resync_min = 0;
5191         mddev->resync_max = MaxSector;
5192         mddev->reshape_position = MaxSector;
5193         mddev->external = 0;
5194         mddev->persistent = 0;
5195         mddev->level = LEVEL_NONE;
5196         mddev->clevel[0] = 0;
5197         mddev->flags = 0;
5198         mddev->ro = 0;
5199         mddev->metadata_type[0] = 0;
5200         mddev->chunk_sectors = 0;
5201         mddev->ctime = mddev->utime = 0;
5202         mddev->layout = 0;
5203         mddev->max_disks = 0;
5204         mddev->events = 0;
5205         mddev->can_decrease_events = 0;
5206         mddev->delta_disks = 0;
5207         mddev->reshape_backwards = 0;
5208         mddev->new_level = LEVEL_NONE;
5209         mddev->new_layout = 0;
5210         mddev->new_chunk_sectors = 0;
5211         mddev->curr_resync = 0;
5212         atomic64_set(&mddev->resync_mismatches, 0);
5213         mddev->suspend_lo = mddev->suspend_hi = 0;
5214         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5215         mddev->recovery = 0;
5216         mddev->in_sync = 0;
5217         mddev->changed = 0;
5218         mddev->degraded = 0;
5219         mddev->safemode = 0;
5220         mddev->merge_check_needed = 0;
5221         mddev->bitmap_info.offset = 0;
5222         mddev->bitmap_info.default_offset = 0;
5223         mddev->bitmap_info.default_space = 0;
5224         mddev->bitmap_info.chunksize = 0;
5225         mddev->bitmap_info.daemon_sleep = 0;
5226         mddev->bitmap_info.max_write_behind = 0;
5227 }
5228
5229 static void __md_stop_writes(struct mddev *mddev)
5230 {
5231         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5232         if (mddev->sync_thread) {
5233                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5234                 md_reap_sync_thread(mddev);
5235         }
5236
5237         del_timer_sync(&mddev->safemode_timer);
5238
5239         bitmap_flush(mddev);
5240         md_super_wait(mddev);
5241
5242         if (mddev->ro == 0 &&
5243             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5244                 /* mark array as shutdown cleanly */
5245                 mddev->in_sync = 1;
5246                 md_update_sb(mddev, 1);
5247         }
5248 }
5249
5250 void md_stop_writes(struct mddev *mddev)
5251 {
5252         mddev_lock_nointr(mddev);
5253         __md_stop_writes(mddev);
5254         mddev_unlock(mddev);
5255 }
5256 EXPORT_SYMBOL_GPL(md_stop_writes);
5257
5258 static void __md_stop(struct mddev *mddev)
5259 {
5260         mddev->ready = 0;
5261         mddev->pers->stop(mddev);
5262         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5263                 mddev->to_remove = &md_redundancy_group;
5264         module_put(mddev->pers->owner);
5265         mddev->pers = NULL;
5266         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5267 }
5268
5269 void md_stop(struct mddev *mddev)
5270 {
5271         /* stop the array and free an attached data structures.
5272          * This is called from dm-raid
5273          */
5274         __md_stop(mddev);
5275         bitmap_destroy(mddev);
5276         if (mddev->bio_set)
5277                 bioset_free(mddev->bio_set);
5278 }
5279
5280 EXPORT_SYMBOL_GPL(md_stop);
5281
5282 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5283 {
5284         int err = 0;
5285         int did_freeze = 0;
5286
5287         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5288                 did_freeze = 1;
5289                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5290                 md_wakeup_thread(mddev->thread);
5291         }
5292         if (mddev->sync_thread) {
5293                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5294                 /* Thread might be blocked waiting for metadata update
5295                  * which will now never happen */
5296                 wake_up_process(mddev->sync_thread->tsk);
5297         }
5298         mddev_unlock(mddev);
5299         wait_event(resync_wait, mddev->sync_thread == NULL);
5300         mddev_lock_nointr(mddev);
5301
5302         mutex_lock(&mddev->open_mutex);
5303         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5304             mddev->sync_thread ||
5305             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5306                 printk("md: %s still in use.\n",mdname(mddev));
5307                 if (did_freeze) {
5308                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5309                         md_wakeup_thread(mddev->thread);
5310                 }
5311                 err = -EBUSY;
5312                 goto out;
5313         }
5314         if (mddev->pers) {
5315                 __md_stop_writes(mddev);
5316
5317                 err  = -ENXIO;
5318                 if (mddev->ro==1)
5319                         goto out;
5320                 mddev->ro = 1;
5321                 set_disk_ro(mddev->gendisk, 1);
5322                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5323                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5324                 err = 0;
5325         }
5326 out:
5327         mutex_unlock(&mddev->open_mutex);
5328         return err;
5329 }
5330
5331 /* mode:
5332  *   0 - completely stop and dis-assemble array
5333  *   2 - stop but do not disassemble array
5334  */
5335 static int do_md_stop(struct mddev * mddev, int mode,
5336                       struct block_device *bdev)
5337 {
5338         struct gendisk *disk = mddev->gendisk;
5339         struct md_rdev *rdev;
5340         int did_freeze = 0;
5341
5342         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5343                 did_freeze = 1;
5344                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5345                 md_wakeup_thread(mddev->thread);
5346         }
5347         if (mddev->sync_thread) {
5348                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5349                 /* Thread might be blocked waiting for metadata update
5350                  * which will now never happen */
5351                 wake_up_process(mddev->sync_thread->tsk);
5352         }
5353         mddev_unlock(mddev);
5354         wait_event(resync_wait, mddev->sync_thread == NULL);
5355         mddev_lock_nointr(mddev);
5356
5357         mutex_lock(&mddev->open_mutex);
5358         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5359             mddev->sysfs_active ||
5360             mddev->sync_thread ||
5361             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5362                 printk("md: %s still in use.\n",mdname(mddev));
5363                 mutex_unlock(&mddev->open_mutex);
5364                 if (did_freeze) {
5365                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5366                         md_wakeup_thread(mddev->thread);
5367                 }
5368                 return -EBUSY;
5369         }
5370         if (mddev->pers) {
5371                 if (mddev->ro)
5372                         set_disk_ro(disk, 0);
5373
5374                 __md_stop_writes(mddev);
5375                 __md_stop(mddev);
5376                 mddev->queue->merge_bvec_fn = NULL;
5377                 mddev->queue->backing_dev_info.congested_fn = NULL;
5378
5379                 /* tell userspace to handle 'inactive' */
5380                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5381
5382                 rdev_for_each(rdev, mddev)
5383                         if (rdev->raid_disk >= 0)
5384                                 sysfs_unlink_rdev(mddev, rdev);
5385
5386                 set_capacity(disk, 0);
5387                 mutex_unlock(&mddev->open_mutex);
5388                 mddev->changed = 1;
5389                 revalidate_disk(disk);
5390
5391                 if (mddev->ro)
5392                         mddev->ro = 0;
5393         } else
5394                 mutex_unlock(&mddev->open_mutex);
5395         /*
5396          * Free resources if final stop
5397          */
5398         if (mode == 0) {
5399                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5400
5401                 bitmap_destroy(mddev);
5402                 if (mddev->bitmap_info.file) {
5403                         fput(mddev->bitmap_info.file);
5404                         mddev->bitmap_info.file = NULL;
5405                 }
5406                 mddev->bitmap_info.offset = 0;
5407
5408                 export_array(mddev);
5409
5410                 md_clean(mddev);
5411                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5412                 if (mddev->hold_active == UNTIL_STOP)
5413                         mddev->hold_active = 0;
5414         }
5415         blk_integrity_unregister(disk);
5416         md_new_event(mddev);
5417         sysfs_notify_dirent_safe(mddev->sysfs_state);
5418         return 0;
5419 }
5420
5421 #ifndef MODULE
5422 static void autorun_array(struct mddev *mddev)
5423 {
5424         struct md_rdev *rdev;
5425         int err;
5426
5427         if (list_empty(&mddev->disks))
5428                 return;
5429
5430         printk(KERN_INFO "md: running: ");
5431
5432         rdev_for_each(rdev, mddev) {
5433                 char b[BDEVNAME_SIZE];
5434                 printk("<%s>", bdevname(rdev->bdev,b));
5435         }
5436         printk("\n");
5437
5438         err = do_md_run(mddev);
5439         if (err) {
5440                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5441                 do_md_stop(mddev, 0, NULL);
5442         }
5443 }
5444
5445 /*
5446  * lets try to run arrays based on all disks that have arrived
5447  * until now. (those are in pending_raid_disks)
5448  *
5449  * the method: pick the first pending disk, collect all disks with
5450  * the same UUID, remove all from the pending list and put them into
5451  * the 'same_array' list. Then order this list based on superblock
5452  * update time (freshest comes first), kick out 'old' disks and
5453  * compare superblocks. If everything's fine then run it.
5454  *
5455  * If "unit" is allocated, then bump its reference count
5456  */
5457 static void autorun_devices(int part)
5458 {
5459         struct md_rdev *rdev0, *rdev, *tmp;
5460         struct mddev *mddev;
5461         char b[BDEVNAME_SIZE];
5462
5463         printk(KERN_INFO "md: autorun ...\n");
5464         while (!list_empty(&pending_raid_disks)) {
5465                 int unit;
5466                 dev_t dev;
5467                 LIST_HEAD(candidates);
5468                 rdev0 = list_entry(pending_raid_disks.next,
5469                                          struct md_rdev, same_set);
5470
5471                 printk(KERN_INFO "md: considering %s ...\n",
5472                         bdevname(rdev0->bdev,b));
5473                 INIT_LIST_HEAD(&candidates);
5474                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5475                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5476                                 printk(KERN_INFO "md:  adding %s ...\n",
5477                                         bdevname(rdev->bdev,b));
5478                                 list_move(&rdev->same_set, &candidates);
5479                         }
5480                 /*
5481                  * now we have a set of devices, with all of them having
5482                  * mostly sane superblocks. It's time to allocate the
5483                  * mddev.
5484                  */
5485                 if (part) {
5486                         dev = MKDEV(mdp_major,
5487                                     rdev0->preferred_minor << MdpMinorShift);
5488                         unit = MINOR(dev) >> MdpMinorShift;
5489                 } else {
5490                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5491                         unit = MINOR(dev);
5492                 }
5493                 if (rdev0->preferred_minor != unit) {
5494                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5495                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5496                         break;
5497                 }
5498
5499                 md_probe(dev, NULL, NULL);
5500                 mddev = mddev_find(dev);
5501                 if (!mddev || !mddev->gendisk) {
5502                         if (mddev)
5503                                 mddev_put(mddev);
5504                         printk(KERN_ERR
5505                                 "md: cannot allocate memory for md drive.\n");
5506                         break;
5507                 }
5508                 if (mddev_lock(mddev)) 
5509                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5510                                mdname(mddev));
5511                 else if (mddev->raid_disks || mddev->major_version
5512                          || !list_empty(&mddev->disks)) {
5513                         printk(KERN_WARNING 
5514                                 "md: %s already running, cannot run %s\n",
5515                                 mdname(mddev), bdevname(rdev0->bdev,b));
5516                         mddev_unlock(mddev);
5517                 } else {
5518                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5519                         mddev->persistent = 1;
5520                         rdev_for_each_list(rdev, tmp, &candidates) {
5521                                 list_del_init(&rdev->same_set);
5522                                 if (bind_rdev_to_array(rdev, mddev))
5523                                         export_rdev(rdev);
5524                         }
5525                         autorun_array(mddev);
5526                         mddev_unlock(mddev);
5527                 }
5528                 /* on success, candidates will be empty, on error
5529                  * it won't...
5530                  */
5531                 rdev_for_each_list(rdev, tmp, &candidates) {
5532                         list_del_init(&rdev->same_set);
5533                         export_rdev(rdev);
5534                 }
5535                 mddev_put(mddev);
5536         }
5537         printk(KERN_INFO "md: ... autorun DONE.\n");
5538 }
5539 #endif /* !MODULE */
5540
5541 static int get_version(void __user * arg)
5542 {
5543         mdu_version_t ver;
5544
5545         ver.major = MD_MAJOR_VERSION;
5546         ver.minor = MD_MINOR_VERSION;
5547         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5548
5549         if (copy_to_user(arg, &ver, sizeof(ver)))
5550                 return -EFAULT;
5551
5552         return 0;
5553 }
5554
5555 static int get_array_info(struct mddev * mddev, void __user * arg)
5556 {
5557         mdu_array_info_t info;
5558         int nr,working,insync,failed,spare;
5559         struct md_rdev *rdev;
5560
5561         nr = working = insync = failed = spare = 0;
5562         rcu_read_lock();
5563         rdev_for_each_rcu(rdev, mddev) {
5564                 nr++;
5565                 if (test_bit(Faulty, &rdev->flags))
5566                         failed++;
5567                 else {
5568                         working++;
5569                         if (test_bit(In_sync, &rdev->flags))
5570                                 insync++;       
5571                         else
5572                                 spare++;
5573                 }
5574         }
5575         rcu_read_unlock();
5576
5577         info.major_version = mddev->major_version;
5578         info.minor_version = mddev->minor_version;
5579         info.patch_version = MD_PATCHLEVEL_VERSION;
5580         info.ctime         = mddev->ctime;
5581         info.level         = mddev->level;
5582         info.size          = mddev->dev_sectors / 2;
5583         if (info.size != mddev->dev_sectors / 2) /* overflow */
5584                 info.size = -1;
5585         info.nr_disks      = nr;
5586         info.raid_disks    = mddev->raid_disks;
5587         info.md_minor      = mddev->md_minor;
5588         info.not_persistent= !mddev->persistent;
5589
5590         info.utime         = mddev->utime;
5591         info.state         = 0;
5592         if (mddev->in_sync)
5593                 info.state = (1<<MD_SB_CLEAN);
5594         if (mddev->bitmap && mddev->bitmap_info.offset)
5595                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5596         info.active_disks  = insync;
5597         info.working_disks = working;
5598         info.failed_disks  = failed;
5599         info.spare_disks   = spare;
5600
5601         info.layout        = mddev->layout;
5602         info.chunk_size    = mddev->chunk_sectors << 9;
5603
5604         if (copy_to_user(arg, &info, sizeof(info)))
5605                 return -EFAULT;
5606
5607         return 0;
5608 }
5609
5610 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5611 {
5612         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5613         char *ptr, *buf = NULL;
5614         int err = -ENOMEM;
5615
5616         file = kmalloc(sizeof(*file), GFP_NOIO);
5617
5618         if (!file)
5619                 goto out;
5620
5621         /* bitmap disabled, zero the first byte and copy out */
5622         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5623                 file->pathname[0] = '\0';
5624                 goto copy_out;
5625         }
5626
5627         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5628         if (!buf)
5629                 goto out;
5630
5631         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5632                      buf, sizeof(file->pathname));
5633         if (IS_ERR(ptr))
5634                 goto out;
5635
5636         strcpy(file->pathname, ptr);
5637
5638 copy_out:
5639         err = 0;
5640         if (copy_to_user(arg, file, sizeof(*file)))
5641                 err = -EFAULT;
5642 out:
5643         kfree(buf);
5644         kfree(file);
5645         return err;
5646 }
5647
5648 static int get_disk_info(struct mddev * mddev, void __user * arg)
5649 {
5650         mdu_disk_info_t info;
5651         struct md_rdev *rdev;
5652
5653         if (copy_from_user(&info, arg, sizeof(info)))
5654                 return -EFAULT;
5655
5656         rcu_read_lock();
5657         rdev = find_rdev_nr_rcu(mddev, info.number);
5658         if (rdev) {
5659                 info.major = MAJOR(rdev->bdev->bd_dev);
5660                 info.minor = MINOR(rdev->bdev->bd_dev);
5661                 info.raid_disk = rdev->raid_disk;
5662                 info.state = 0;
5663                 if (test_bit(Faulty, &rdev->flags))
5664                         info.state |= (1<<MD_DISK_FAULTY);
5665                 else if (test_bit(In_sync, &rdev->flags)) {
5666                         info.state |= (1<<MD_DISK_ACTIVE);
5667                         info.state |= (1<<MD_DISK_SYNC);
5668                 }
5669                 if (test_bit(WriteMostly, &rdev->flags))
5670                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5671         } else {
5672                 info.major = info.minor = 0;
5673                 info.raid_disk = -1;
5674                 info.state = (1<<MD_DISK_REMOVED);
5675         }
5676         rcu_read_unlock();
5677
5678         if (copy_to_user(arg, &info, sizeof(info)))
5679                 return -EFAULT;
5680
5681         return 0;
5682 }
5683
5684 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5685 {
5686         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5687         struct md_rdev *rdev;
5688         dev_t dev = MKDEV(info->major,info->minor);
5689
5690         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5691                 return -EOVERFLOW;
5692
5693         if (!mddev->raid_disks) {
5694                 int err;
5695                 /* expecting a device which has a superblock */
5696                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5697                 if (IS_ERR(rdev)) {
5698                         printk(KERN_WARNING 
5699                                 "md: md_import_device returned %ld\n",
5700                                 PTR_ERR(rdev));
5701                         return PTR_ERR(rdev);
5702                 }
5703                 if (!list_empty(&mddev->disks)) {
5704                         struct md_rdev *rdev0
5705                                 = list_entry(mddev->disks.next,
5706                                              struct md_rdev, same_set);
5707                         err = super_types[mddev->major_version]
5708                                 .load_super(rdev, rdev0, mddev->minor_version);
5709                         if (err < 0) {
5710                                 printk(KERN_WARNING 
5711                                         "md: %s has different UUID to %s\n",
5712                                         bdevname(rdev->bdev,b), 
5713                                         bdevname(rdev0->bdev,b2));
5714                                 export_rdev(rdev);
5715                                 return -EINVAL;
5716                         }
5717                 }
5718                 err = bind_rdev_to_array(rdev, mddev);
5719                 if (err)
5720                         export_rdev(rdev);
5721                 return err;
5722         }
5723
5724         /*
5725          * add_new_disk can be used once the array is assembled
5726          * to add "hot spares".  They must already have a superblock
5727          * written
5728          */
5729         if (mddev->pers) {
5730                 int err;
5731                 if (!mddev->pers->hot_add_disk) {
5732                         printk(KERN_WARNING 
5733                                 "%s: personality does not support diskops!\n",
5734                                mdname(mddev));
5735                         return -EINVAL;
5736                 }
5737                 if (mddev->persistent)
5738                         rdev = md_import_device(dev, mddev->major_version,
5739                                                 mddev->minor_version);
5740                 else
5741                         rdev = md_import_device(dev, -1, -1);
5742                 if (IS_ERR(rdev)) {
5743                         printk(KERN_WARNING 
5744                                 "md: md_import_device returned %ld\n",
5745                                 PTR_ERR(rdev));
5746                         return PTR_ERR(rdev);
5747                 }
5748                 /* set saved_raid_disk if appropriate */
5749                 if (!mddev->persistent) {
5750                         if (info->state & (1<<MD_DISK_SYNC)  &&
5751                             info->raid_disk < mddev->raid_disks) {
5752                                 rdev->raid_disk = info->raid_disk;
5753                                 set_bit(In_sync, &rdev->flags);
5754                                 clear_bit(Bitmap_sync, &rdev->flags);
5755                         } else
5756                                 rdev->raid_disk = -1;
5757                         rdev->saved_raid_disk = rdev->raid_disk;
5758                 } else
5759                         super_types[mddev->major_version].
5760                                 validate_super(mddev, rdev);
5761                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5762                      rdev->raid_disk != info->raid_disk) {
5763                         /* This was a hot-add request, but events doesn't
5764                          * match, so reject it.
5765                          */
5766                         export_rdev(rdev);
5767                         return -EINVAL;
5768                 }
5769
5770                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5771                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5772                         set_bit(WriteMostly, &rdev->flags);
5773                 else
5774                         clear_bit(WriteMostly, &rdev->flags);
5775
5776                 rdev->raid_disk = -1;
5777                 err = bind_rdev_to_array(rdev, mddev);
5778                 if (!err && !mddev->pers->hot_remove_disk) {
5779                         /* If there is hot_add_disk but no hot_remove_disk
5780                          * then added disks for geometry changes,
5781                          * and should be added immediately.
5782                          */
5783                         super_types[mddev->major_version].
5784                                 validate_super(mddev, rdev);
5785                         err = mddev->pers->hot_add_disk(mddev, rdev);
5786                         if (err)
5787                                 unbind_rdev_from_array(rdev);
5788                 }
5789                 if (err)
5790                         export_rdev(rdev);
5791                 else
5792                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5793
5794                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5795                 if (mddev->degraded)
5796                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5797                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5798                 if (!err)
5799                         md_new_event(mddev);
5800                 md_wakeup_thread(mddev->thread);
5801                 return err;
5802         }
5803
5804         /* otherwise, add_new_disk is only allowed
5805          * for major_version==0 superblocks
5806          */
5807         if (mddev->major_version != 0) {
5808                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5809                        mdname(mddev));
5810                 return -EINVAL;
5811         }
5812
5813         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5814                 int err;
5815                 rdev = md_import_device(dev, -1, 0);
5816                 if (IS_ERR(rdev)) {
5817                         printk(KERN_WARNING 
5818                                 "md: error, md_import_device() returned %ld\n",
5819                                 PTR_ERR(rdev));
5820                         return PTR_ERR(rdev);
5821                 }
5822                 rdev->desc_nr = info->number;
5823                 if (info->raid_disk < mddev->raid_disks)
5824                         rdev->raid_disk = info->raid_disk;
5825                 else
5826                         rdev->raid_disk = -1;
5827
5828                 if (rdev->raid_disk < mddev->raid_disks)
5829                         if (info->state & (1<<MD_DISK_SYNC))
5830                                 set_bit(In_sync, &rdev->flags);
5831
5832                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5833                         set_bit(WriteMostly, &rdev->flags);
5834
5835                 if (!mddev->persistent) {
5836                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5837                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5838                 } else
5839                         rdev->sb_start = calc_dev_sboffset(rdev);
5840                 rdev->sectors = rdev->sb_start;
5841
5842                 err = bind_rdev_to_array(rdev, mddev);
5843                 if (err) {
5844                         export_rdev(rdev);
5845                         return err;
5846                 }
5847         }
5848
5849         return 0;
5850 }
5851
5852 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5853 {
5854         char b[BDEVNAME_SIZE];
5855         struct md_rdev *rdev;
5856
5857         rdev = find_rdev(mddev, dev);
5858         if (!rdev)
5859                 return -ENXIO;
5860
5861         clear_bit(Blocked, &rdev->flags);
5862         remove_and_add_spares(mddev, rdev);
5863
5864         if (rdev->raid_disk >= 0)
5865                 goto busy;
5866
5867         kick_rdev_from_array(rdev);
5868         md_update_sb(mddev, 1);
5869         md_new_event(mddev);
5870
5871         return 0;
5872 busy:
5873         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5874                 bdevname(rdev->bdev,b), mdname(mddev));
5875         return -EBUSY;
5876 }
5877
5878 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5879 {
5880         char b[BDEVNAME_SIZE];
5881         int err;
5882         struct md_rdev *rdev;
5883
5884         if (!mddev->pers)
5885                 return -ENODEV;
5886
5887         if (mddev->major_version != 0) {
5888                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5889                         " version-0 superblocks.\n",
5890                         mdname(mddev));
5891                 return -EINVAL;
5892         }
5893         if (!mddev->pers->hot_add_disk) {
5894                 printk(KERN_WARNING 
5895                         "%s: personality does not support diskops!\n",
5896                         mdname(mddev));
5897                 return -EINVAL;
5898         }
5899
5900         rdev = md_import_device(dev, -1, 0);
5901         if (IS_ERR(rdev)) {
5902                 printk(KERN_WARNING 
5903                         "md: error, md_import_device() returned %ld\n",
5904                         PTR_ERR(rdev));
5905                 return -EINVAL;
5906         }
5907
5908         if (mddev->persistent)
5909                 rdev->sb_start = calc_dev_sboffset(rdev);
5910         else
5911                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5912
5913         rdev->sectors = rdev->sb_start;
5914
5915         if (test_bit(Faulty, &rdev->flags)) {
5916                 printk(KERN_WARNING 
5917                         "md: can not hot-add faulty %s disk to %s!\n",
5918                         bdevname(rdev->bdev,b), mdname(mddev));
5919                 err = -EINVAL;
5920                 goto abort_export;
5921         }
5922         clear_bit(In_sync, &rdev->flags);
5923         rdev->desc_nr = -1;
5924         rdev->saved_raid_disk = -1;
5925         err = bind_rdev_to_array(rdev, mddev);
5926         if (err)
5927                 goto abort_export;
5928
5929         /*
5930          * The rest should better be atomic, we can have disk failures
5931          * noticed in interrupt contexts ...
5932          */
5933
5934         rdev->raid_disk = -1;
5935
5936         md_update_sb(mddev, 1);
5937
5938         /*
5939          * Kick recovery, maybe this spare has to be added to the
5940          * array immediately.
5941          */
5942         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5943         md_wakeup_thread(mddev->thread);
5944         md_new_event(mddev);
5945         return 0;
5946
5947 abort_export:
5948         export_rdev(rdev);
5949         return err;
5950 }
5951
5952 static int set_bitmap_file(struct mddev *mddev, int fd)
5953 {
5954         int err = 0;
5955
5956         if (mddev->pers) {
5957                 if (!mddev->pers->quiesce || !mddev->thread)
5958                         return -EBUSY;
5959                 if (mddev->recovery || mddev->sync_thread)
5960                         return -EBUSY;
5961                 /* we should be able to change the bitmap.. */
5962         }
5963
5964
5965         if (fd >= 0) {
5966                 struct inode *inode;
5967                 if (mddev->bitmap)
5968                         return -EEXIST; /* cannot add when bitmap is present */
5969                 mddev->bitmap_info.file = fget(fd);
5970
5971                 if (mddev->bitmap_info.file == NULL) {
5972                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5973                                mdname(mddev));
5974                         return -EBADF;
5975                 }
5976
5977                 inode = mddev->bitmap_info.file->f_mapping->host;
5978                 if (!S_ISREG(inode->i_mode)) {
5979                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5980                                mdname(mddev));
5981                         err = -EBADF;
5982                 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5983                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5984                                mdname(mddev));
5985                         err = -EBADF;
5986                 } else if (atomic_read(&inode->i_writecount) != 1) {
5987                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5988                                mdname(mddev));
5989                         err = -EBUSY;
5990                 }
5991                 if (err) {
5992                         fput(mddev->bitmap_info.file);
5993                         mddev->bitmap_info.file = NULL;
5994                         return err;
5995                 }
5996                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5997         } else if (mddev->bitmap == NULL)
5998                 return -ENOENT; /* cannot remove what isn't there */
5999         err = 0;
6000         if (mddev->pers) {
6001                 mddev->pers->quiesce(mddev, 1);
6002                 if (fd >= 0) {
6003                         err = bitmap_create(mddev);
6004                         if (!err)
6005                                 err = bitmap_load(mddev);
6006                 }
6007                 if (fd < 0 || err) {
6008                         bitmap_destroy(mddev);
6009                         fd = -1; /* make sure to put the file */
6010                 }
6011                 mddev->pers->quiesce(mddev, 0);
6012         }
6013         if (fd < 0) {
6014                 if (mddev->bitmap_info.file)
6015                         fput(mddev->bitmap_info.file);
6016                 mddev->bitmap_info.file = NULL;
6017         }
6018
6019         return err;
6020 }
6021
6022 /*
6023  * set_array_info is used two different ways
6024  * The original usage is when creating a new array.
6025  * In this usage, raid_disks is > 0 and it together with
6026  *  level, size, not_persistent,layout,chunksize determine the
6027  *  shape of the array.
6028  *  This will always create an array with a type-0.90.0 superblock.
6029  * The newer usage is when assembling an array.
6030  *  In this case raid_disks will be 0, and the major_version field is
6031  *  use to determine which style super-blocks are to be found on the devices.
6032  *  The minor and patch _version numbers are also kept incase the
6033  *  super_block handler wishes to interpret them.
6034  */
6035 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6036 {
6037
6038         if (info->raid_disks == 0) {
6039                 /* just setting version number for superblock loading */
6040                 if (info->major_version < 0 ||
6041                     info->major_version >= ARRAY_SIZE(super_types) ||
6042                     super_types[info->major_version].name == NULL) {
6043                         /* maybe try to auto-load a module? */
6044                         printk(KERN_INFO 
6045                                 "md: superblock version %d not known\n",
6046                                 info->major_version);
6047                         return -EINVAL;
6048                 }
6049                 mddev->major_version = info->major_version;
6050                 mddev->minor_version = info->minor_version;
6051                 mddev->patch_version = info->patch_version;
6052                 mddev->persistent = !info->not_persistent;
6053                 /* ensure mddev_put doesn't delete this now that there
6054                  * is some minimal configuration.
6055                  */
6056                 mddev->ctime         = get_seconds();
6057                 return 0;
6058         }
6059         mddev->major_version = MD_MAJOR_VERSION;
6060         mddev->minor_version = MD_MINOR_VERSION;
6061         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6062         mddev->ctime         = get_seconds();
6063
6064         mddev->level         = info->level;
6065         mddev->clevel[0]     = 0;
6066         mddev->dev_sectors   = 2 * (sector_t)info->size;
6067         mddev->raid_disks    = info->raid_disks;
6068         /* don't set md_minor, it is determined by which /dev/md* was
6069          * openned
6070          */
6071         if (info->state & (1<<MD_SB_CLEAN))
6072                 mddev->recovery_cp = MaxSector;
6073         else
6074                 mddev->recovery_cp = 0;
6075         mddev->persistent    = ! info->not_persistent;
6076         mddev->external      = 0;
6077
6078         mddev->layout        = info->layout;
6079         mddev->chunk_sectors = info->chunk_size >> 9;
6080
6081         mddev->max_disks     = MD_SB_DISKS;
6082
6083         if (mddev->persistent)
6084                 mddev->flags         = 0;
6085         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6086
6087         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6088         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6089         mddev->bitmap_info.offset = 0;
6090
6091         mddev->reshape_position = MaxSector;
6092
6093         /*
6094          * Generate a 128 bit UUID
6095          */
6096         get_random_bytes(mddev->uuid, 16);
6097
6098         mddev->new_level = mddev->level;
6099         mddev->new_chunk_sectors = mddev->chunk_sectors;
6100         mddev->new_layout = mddev->layout;
6101         mddev->delta_disks = 0;
6102         mddev->reshape_backwards = 0;
6103
6104         return 0;
6105 }
6106
6107 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6108 {
6109         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6110
6111         if (mddev->external_size)
6112                 return;
6113
6114         mddev->array_sectors = array_sectors;
6115 }
6116 EXPORT_SYMBOL(md_set_array_sectors);
6117
6118 static int update_size(struct mddev *mddev, sector_t num_sectors)
6119 {
6120         struct md_rdev *rdev;
6121         int rv;
6122         int fit = (num_sectors == 0);
6123
6124         if (mddev->pers->resize == NULL)
6125                 return -EINVAL;
6126         /* The "num_sectors" is the number of sectors of each device that
6127          * is used.  This can only make sense for arrays with redundancy.
6128          * linear and raid0 always use whatever space is available. We can only
6129          * consider changing this number if no resync or reconstruction is
6130          * happening, and if the new size is acceptable. It must fit before the
6131          * sb_start or, if that is <data_offset, it must fit before the size
6132          * of each device.  If num_sectors is zero, we find the largest size
6133          * that fits.
6134          */
6135         if (mddev->sync_thread)
6136                 return -EBUSY;
6137         if (mddev->ro)
6138                 return -EROFS;
6139
6140         rdev_for_each(rdev, mddev) {
6141                 sector_t avail = rdev->sectors;
6142
6143                 if (fit && (num_sectors == 0 || num_sectors > avail))
6144                         num_sectors = avail;
6145                 if (avail < num_sectors)
6146                         return -ENOSPC;
6147         }
6148         rv = mddev->pers->resize(mddev, num_sectors);
6149         if (!rv)
6150                 revalidate_disk(mddev->gendisk);
6151         return rv;
6152 }
6153
6154 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6155 {
6156         int rv;
6157         struct md_rdev *rdev;
6158         /* change the number of raid disks */
6159         if (mddev->pers->check_reshape == NULL)
6160                 return -EINVAL;
6161         if (mddev->ro)
6162                 return -EROFS;
6163         if (raid_disks <= 0 ||
6164             (mddev->max_disks && raid_disks >= mddev->max_disks))
6165                 return -EINVAL;
6166         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6167                 return -EBUSY;
6168
6169         rdev_for_each(rdev, mddev) {
6170                 if (mddev->raid_disks < raid_disks &&
6171                     rdev->data_offset < rdev->new_data_offset)
6172                         return -EINVAL;
6173                 if (mddev->raid_disks > raid_disks &&
6174                     rdev->data_offset > rdev->new_data_offset)
6175                         return -EINVAL;
6176         }
6177
6178         mddev->delta_disks = raid_disks - mddev->raid_disks;
6179         if (mddev->delta_disks < 0)
6180                 mddev->reshape_backwards = 1;
6181         else if (mddev->delta_disks > 0)
6182                 mddev->reshape_backwards = 0;
6183
6184         rv = mddev->pers->check_reshape(mddev);
6185         if (rv < 0) {
6186                 mddev->delta_disks = 0;
6187                 mddev->reshape_backwards = 0;
6188         }
6189         return rv;
6190 }
6191
6192
6193 /*
6194  * update_array_info is used to change the configuration of an
6195  * on-line array.
6196  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6197  * fields in the info are checked against the array.
6198  * Any differences that cannot be handled will cause an error.
6199  * Normally, only one change can be managed at a time.
6200  */
6201 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6202 {
6203         int rv = 0;
6204         int cnt = 0;
6205         int state = 0;
6206
6207         /* calculate expected state,ignoring low bits */
6208         if (mddev->bitmap && mddev->bitmap_info.offset)
6209                 state |= (1 << MD_SB_BITMAP_PRESENT);
6210
6211         if (mddev->major_version != info->major_version ||
6212             mddev->minor_version != info->minor_version ||
6213 /*          mddev->patch_version != info->patch_version || */
6214             mddev->ctime         != info->ctime         ||
6215             mddev->level         != info->level         ||
6216 /*          mddev->layout        != info->layout        || */
6217             !mddev->persistent   != info->not_persistent||
6218             mddev->chunk_sectors != info->chunk_size >> 9 ||
6219             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6220             ((state^info->state) & 0xfffffe00)
6221                 )
6222                 return -EINVAL;
6223         /* Check there is only one change */
6224         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6225                 cnt++;
6226         if (mddev->raid_disks != info->raid_disks)
6227                 cnt++;
6228         if (mddev->layout != info->layout)
6229                 cnt++;
6230         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6231                 cnt++;
6232         if (cnt == 0)
6233                 return 0;
6234         if (cnt > 1)
6235                 return -EINVAL;
6236
6237         if (mddev->layout != info->layout) {
6238                 /* Change layout
6239                  * we don't need to do anything at the md level, the
6240                  * personality will take care of it all.
6241                  */
6242                 if (mddev->pers->check_reshape == NULL)
6243                         return -EINVAL;
6244                 else {
6245                         mddev->new_layout = info->layout;
6246                         rv = mddev->pers->check_reshape(mddev);
6247                         if (rv)
6248                                 mddev->new_layout = mddev->layout;
6249                         return rv;
6250                 }
6251         }
6252         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6253                 rv = update_size(mddev, (sector_t)info->size * 2);
6254
6255         if (mddev->raid_disks    != info->raid_disks)
6256                 rv = update_raid_disks(mddev, info->raid_disks);
6257
6258         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6259                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6260                         return -EINVAL;
6261                 if (mddev->recovery || mddev->sync_thread)
6262                         return -EBUSY;
6263                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6264                         /* add the bitmap */
6265                         if (mddev->bitmap)
6266                                 return -EEXIST;
6267                         if (mddev->bitmap_info.default_offset == 0)
6268                                 return -EINVAL;
6269                         mddev->bitmap_info.offset =
6270                                 mddev->bitmap_info.default_offset;
6271                         mddev->bitmap_info.space =
6272                                 mddev->bitmap_info.default_space;
6273                         mddev->pers->quiesce(mddev, 1);
6274                         rv = bitmap_create(mddev);
6275                         if (!rv)
6276                                 rv = bitmap_load(mddev);
6277                         if (rv)
6278                                 bitmap_destroy(mddev);
6279                         mddev->pers->quiesce(mddev, 0);
6280                 } else {
6281                         /* remove the bitmap */
6282                         if (!mddev->bitmap)
6283                                 return -ENOENT;
6284                         if (mddev->bitmap->storage.file)
6285                                 return -EINVAL;
6286                         mddev->pers->quiesce(mddev, 1);
6287                         bitmap_destroy(mddev);
6288                         mddev->pers->quiesce(mddev, 0);
6289                         mddev->bitmap_info.offset = 0;
6290                 }
6291         }
6292         md_update_sb(mddev, 1);
6293         return rv;
6294 }
6295
6296 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6297 {
6298         struct md_rdev *rdev;
6299         int err = 0;
6300
6301         if (mddev->pers == NULL)
6302                 return -ENODEV;
6303
6304         rcu_read_lock();
6305         rdev = find_rdev_rcu(mddev, dev);
6306         if (!rdev)
6307                 err =  -ENODEV;
6308         else {
6309                 md_error(mddev, rdev);
6310                 if (!test_bit(Faulty, &rdev->flags))
6311                         err = -EBUSY;
6312         }
6313         rcu_read_unlock();
6314         return err;
6315 }
6316
6317 /*
6318  * We have a problem here : there is no easy way to give a CHS
6319  * virtual geometry. We currently pretend that we have a 2 heads
6320  * 4 sectors (with a BIG number of cylinders...). This drives
6321  * dosfs just mad... ;-)
6322  */
6323 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6324 {
6325         struct mddev *mddev = bdev->bd_disk->private_data;
6326
6327         geo->heads = 2;
6328         geo->sectors = 4;
6329         geo->cylinders = mddev->array_sectors / 8;
6330         return 0;
6331 }
6332
6333 static inline bool md_ioctl_valid(unsigned int cmd)
6334 {
6335         switch (cmd) {
6336         case ADD_NEW_DISK:
6337         case BLKROSET:
6338         case GET_ARRAY_INFO:
6339         case GET_BITMAP_FILE:
6340         case GET_DISK_INFO:
6341         case HOT_ADD_DISK:
6342         case HOT_REMOVE_DISK:
6343         case PRINT_RAID_DEBUG:
6344         case RAID_AUTORUN:
6345         case RAID_VERSION:
6346         case RESTART_ARRAY_RW:
6347         case RUN_ARRAY:
6348         case SET_ARRAY_INFO:
6349         case SET_BITMAP_FILE:
6350         case SET_DISK_FAULTY:
6351         case STOP_ARRAY:
6352         case STOP_ARRAY_RO:
6353                 return true;
6354         default:
6355                 return false;
6356         }
6357 }
6358
6359 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6360                         unsigned int cmd, unsigned long arg)
6361 {
6362         int err = 0;
6363         void __user *argp = (void __user *)arg;
6364         struct mddev *mddev = NULL;
6365         int ro;
6366
6367         if (!md_ioctl_valid(cmd))
6368                 return -ENOTTY;
6369
6370         switch (cmd) {
6371         case RAID_VERSION:
6372         case GET_ARRAY_INFO:
6373         case GET_DISK_INFO:
6374                 break;
6375         default:
6376                 if (!capable(CAP_SYS_ADMIN))
6377                         return -EACCES;
6378         }
6379
6380         /*
6381          * Commands dealing with the RAID driver but not any
6382          * particular array:
6383          */
6384         switch (cmd) {
6385         case RAID_VERSION:
6386                 err = get_version(argp);
6387                 goto done;
6388
6389         case PRINT_RAID_DEBUG:
6390                 err = 0;
6391                 md_print_devices();
6392                 goto done;
6393
6394 #ifndef MODULE
6395         case RAID_AUTORUN:
6396                 err = 0;
6397                 autostart_arrays(arg);
6398                 goto done;
6399 #endif
6400         default:;
6401         }
6402
6403         /*
6404          * Commands creating/starting a new array:
6405          */
6406
6407         mddev = bdev->bd_disk->private_data;
6408
6409         if (!mddev) {
6410                 BUG();
6411                 goto abort;
6412         }
6413
6414         /* Some actions do not requires the mutex */
6415         switch (cmd) {
6416         case GET_ARRAY_INFO:
6417                 if (!mddev->raid_disks && !mddev->external)
6418                         err = -ENODEV;
6419                 else
6420                         err = get_array_info(mddev, argp);
6421                 goto abort;
6422
6423         case GET_DISK_INFO:
6424                 if (!mddev->raid_disks && !mddev->external)
6425                         err = -ENODEV;
6426                 else
6427                         err = get_disk_info(mddev, argp);
6428                 goto abort;
6429
6430         case SET_DISK_FAULTY:
6431                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6432                 goto abort;
6433         }
6434
6435         if (cmd == ADD_NEW_DISK)
6436                 /* need to ensure md_delayed_delete() has completed */
6437                 flush_workqueue(md_misc_wq);
6438
6439         if (cmd == HOT_REMOVE_DISK)
6440                 /* need to ensure recovery thread has run */
6441                 wait_event_interruptible_timeout(mddev->sb_wait,
6442                                                  !test_bit(MD_RECOVERY_NEEDED,
6443                                                            &mddev->flags),
6444                                                  msecs_to_jiffies(5000));
6445         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6446                 /* Need to flush page cache, and ensure no-one else opens
6447                  * and writes
6448                  */
6449                 mutex_lock(&mddev->open_mutex);
6450                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6451                         mutex_unlock(&mddev->open_mutex);
6452                         err = -EBUSY;
6453                         goto abort;
6454                 }
6455                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6456                 mutex_unlock(&mddev->open_mutex);
6457                 sync_blockdev(bdev);
6458         }
6459         err = mddev_lock(mddev);
6460         if (err) {
6461                 printk(KERN_INFO 
6462                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6463                         err, cmd);
6464                 goto abort;
6465         }
6466
6467         if (cmd == SET_ARRAY_INFO) {
6468                 mdu_array_info_t info;
6469                 if (!arg)
6470                         memset(&info, 0, sizeof(info));
6471                 else if (copy_from_user(&info, argp, sizeof(info))) {
6472                         err = -EFAULT;
6473                         goto abort_unlock;
6474                 }
6475                 if (mddev->pers) {
6476                         err = update_array_info(mddev, &info);
6477                         if (err) {
6478                                 printk(KERN_WARNING "md: couldn't update"
6479                                        " array info. %d\n", err);
6480                                 goto abort_unlock;
6481                         }
6482                         goto done_unlock;
6483                 }
6484                 if (!list_empty(&mddev->disks)) {
6485                         printk(KERN_WARNING
6486                                "md: array %s already has disks!\n",
6487                                mdname(mddev));
6488                         err = -EBUSY;
6489                         goto abort_unlock;
6490                 }
6491                 if (mddev->raid_disks) {
6492                         printk(KERN_WARNING
6493                                "md: array %s already initialised!\n",
6494                                mdname(mddev));
6495                         err = -EBUSY;
6496                         goto abort_unlock;
6497                 }
6498                 err = set_array_info(mddev, &info);
6499                 if (err) {
6500                         printk(KERN_WARNING "md: couldn't set"
6501                                " array info. %d\n", err);
6502                         goto abort_unlock;
6503                 }
6504                 goto done_unlock;
6505         }
6506
6507         /*
6508          * Commands querying/configuring an existing array:
6509          */
6510         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6511          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6512         if ((!mddev->raid_disks && !mddev->external)
6513             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6514             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6515             && cmd != GET_BITMAP_FILE) {
6516                 err = -ENODEV;
6517                 goto abort_unlock;
6518         }
6519
6520         /*
6521          * Commands even a read-only array can execute:
6522          */
6523         switch (cmd) {
6524         case GET_BITMAP_FILE:
6525                 err = get_bitmap_file(mddev, argp);
6526                 goto done_unlock;
6527
6528         case RESTART_ARRAY_RW:
6529                 err = restart_array(mddev);
6530                 goto done_unlock;
6531
6532         case STOP_ARRAY:
6533                 err = do_md_stop(mddev, 0, bdev);
6534                 goto done_unlock;
6535
6536         case STOP_ARRAY_RO:
6537                 err = md_set_readonly(mddev, bdev);
6538                 goto done_unlock;
6539
6540         case HOT_REMOVE_DISK:
6541                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6542                 goto done_unlock;
6543
6544         case ADD_NEW_DISK:
6545                 /* We can support ADD_NEW_DISK on read-only arrays
6546                  * on if we are re-adding a preexisting device.
6547                  * So require mddev->pers and MD_DISK_SYNC.
6548                  */
6549                 if (mddev->pers) {
6550                         mdu_disk_info_t info;
6551                         if (copy_from_user(&info, argp, sizeof(info)))
6552                                 err = -EFAULT;
6553                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6554                                 /* Need to clear read-only for this */
6555                                 break;
6556                         else
6557                                 err = add_new_disk(mddev, &info);
6558                         goto done_unlock;
6559                 }
6560                 break;
6561
6562         case BLKROSET:
6563                 if (get_user(ro, (int __user *)(arg))) {
6564                         err = -EFAULT;
6565                         goto done_unlock;
6566                 }
6567                 err = -EINVAL;
6568
6569                 /* if the bdev is going readonly the value of mddev->ro
6570                  * does not matter, no writes are coming
6571                  */
6572                 if (ro)
6573                         goto done_unlock;
6574
6575                 /* are we are already prepared for writes? */
6576                 if (mddev->ro != 1)
6577                         goto done_unlock;
6578
6579                 /* transitioning to readauto need only happen for
6580                  * arrays that call md_write_start
6581                  */
6582                 if (mddev->pers) {
6583                         err = restart_array(mddev);
6584                         if (err == 0) {
6585                                 mddev->ro = 2;
6586                                 set_disk_ro(mddev->gendisk, 0);
6587                         }
6588                 }
6589                 goto done_unlock;
6590         }
6591
6592         /*
6593          * The remaining ioctls are changing the state of the
6594          * superblock, so we do not allow them on read-only arrays.
6595          * However non-MD ioctls (e.g. get-size) will still come through
6596          * here and hit the 'default' below, so only disallow
6597          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6598          */
6599         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6600                 if (mddev->ro == 2) {
6601                         mddev->ro = 0;
6602                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6603                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6604                         /* mddev_unlock will wake thread */
6605                         /* If a device failed while we were read-only, we
6606                          * need to make sure the metadata is updated now.
6607                          */
6608                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6609                                 mddev_unlock(mddev);
6610                                 wait_event(mddev->sb_wait,
6611                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6612                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6613                                 mddev_lock_nointr(mddev);
6614                         }
6615                 } else {
6616                         err = -EROFS;
6617                         goto abort_unlock;
6618                 }
6619         }
6620
6621         switch (cmd) {
6622         case ADD_NEW_DISK:
6623         {
6624                 mdu_disk_info_t info;
6625                 if (copy_from_user(&info, argp, sizeof(info)))
6626                         err = -EFAULT;
6627                 else
6628                         err = add_new_disk(mddev, &info);
6629                 goto done_unlock;
6630         }
6631
6632         case HOT_ADD_DISK:
6633                 err = hot_add_disk(mddev, new_decode_dev(arg));
6634                 goto done_unlock;
6635
6636         case RUN_ARRAY:
6637                 err = do_md_run(mddev);
6638                 goto done_unlock;
6639
6640         case SET_BITMAP_FILE:
6641                 err = set_bitmap_file(mddev, (int)arg);
6642                 goto done_unlock;
6643
6644         default:
6645                 err = -EINVAL;
6646                 goto abort_unlock;
6647         }
6648
6649 done_unlock:
6650 abort_unlock:
6651         if (mddev->hold_active == UNTIL_IOCTL &&
6652             err != -EINVAL)
6653                 mddev->hold_active = 0;
6654         mddev_unlock(mddev);
6655
6656         return err;
6657 done:
6658         if (err)
6659                 MD_BUG();
6660 abort:
6661         return err;
6662 }
6663 #ifdef CONFIG_COMPAT
6664 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6665                     unsigned int cmd, unsigned long arg)
6666 {
6667         switch (cmd) {
6668         case HOT_REMOVE_DISK:
6669         case HOT_ADD_DISK:
6670         case SET_DISK_FAULTY:
6671         case SET_BITMAP_FILE:
6672                 /* These take in integer arg, do not convert */
6673                 break;
6674         default:
6675                 arg = (unsigned long)compat_ptr(arg);
6676                 break;
6677         }
6678
6679         return md_ioctl(bdev, mode, cmd, arg);
6680 }
6681 #endif /* CONFIG_COMPAT */
6682
6683 static int md_open(struct block_device *bdev, fmode_t mode)
6684 {
6685         /*
6686          * Succeed if we can lock the mddev, which confirms that
6687          * it isn't being stopped right now.
6688          */
6689         struct mddev *mddev = mddev_find(bdev->bd_dev);
6690         int err;
6691
6692         if (!mddev)
6693                 return -ENODEV;
6694
6695         if (mddev->gendisk != bdev->bd_disk) {
6696                 /* we are racing with mddev_put which is discarding this
6697                  * bd_disk.
6698                  */
6699                 mddev_put(mddev);
6700                 /* Wait until bdev->bd_disk is definitely gone */
6701                 flush_workqueue(md_misc_wq);
6702                 /* Then retry the open from the top */
6703                 return -ERESTARTSYS;
6704         }
6705         BUG_ON(mddev != bdev->bd_disk->private_data);
6706
6707         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6708                 goto out;
6709
6710         err = 0;
6711         atomic_inc(&mddev->openers);
6712         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6713         mutex_unlock(&mddev->open_mutex);
6714
6715         check_disk_change(bdev);
6716  out:
6717         return err;
6718 }
6719
6720 static void md_release(struct gendisk *disk, fmode_t mode)
6721 {
6722         struct mddev *mddev = disk->private_data;
6723
6724         BUG_ON(!mddev);
6725         atomic_dec(&mddev->openers);
6726         mddev_put(mddev);
6727 }
6728
6729 static int md_media_changed(struct gendisk *disk)
6730 {
6731         struct mddev *mddev = disk->private_data;
6732
6733         return mddev->changed;
6734 }
6735
6736 static int md_revalidate(struct gendisk *disk)
6737 {
6738         struct mddev *mddev = disk->private_data;
6739
6740         mddev->changed = 0;
6741         return 0;
6742 }
6743 static const struct block_device_operations md_fops =
6744 {
6745         .owner          = THIS_MODULE,
6746         .open           = md_open,
6747         .release        = md_release,
6748         .ioctl          = md_ioctl,
6749 #ifdef CONFIG_COMPAT
6750         .compat_ioctl   = md_compat_ioctl,
6751 #endif
6752         .getgeo         = md_getgeo,
6753         .media_changed  = md_media_changed,
6754         .revalidate_disk= md_revalidate,
6755 };
6756
6757 static int md_thread(void * arg)
6758 {
6759         struct md_thread *thread = arg;
6760
6761         /*
6762          * md_thread is a 'system-thread', it's priority should be very
6763          * high. We avoid resource deadlocks individually in each
6764          * raid personality. (RAID5 does preallocation) We also use RR and
6765          * the very same RT priority as kswapd, thus we will never get
6766          * into a priority inversion deadlock.
6767          *
6768          * we definitely have to have equal or higher priority than
6769          * bdflush, otherwise bdflush will deadlock if there are too
6770          * many dirty RAID5 blocks.
6771          */
6772
6773         allow_signal(SIGKILL);
6774         while (!kthread_should_stop()) {
6775
6776                 /* We need to wait INTERRUPTIBLE so that
6777                  * we don't add to the load-average.
6778                  * That means we need to be sure no signals are
6779                  * pending
6780                  */
6781                 if (signal_pending(current))
6782                         flush_signals(current);
6783
6784                 wait_event_interruptible_timeout
6785                         (thread->wqueue,
6786                          test_bit(THREAD_WAKEUP, &thread->flags)
6787                          || kthread_should_stop(),
6788                          thread->timeout);
6789
6790                 clear_bit(THREAD_WAKEUP, &thread->flags);
6791                 if (!kthread_should_stop())
6792                         thread->run(thread);
6793         }
6794
6795         return 0;
6796 }
6797
6798 void md_wakeup_thread(struct md_thread *thread)
6799 {
6800         if (thread) {
6801                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6802                 set_bit(THREAD_WAKEUP, &thread->flags);
6803                 wake_up(&thread->wqueue);
6804         }
6805 }
6806
6807 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6808                 struct mddev *mddev, const char *name)
6809 {
6810         struct md_thread *thread;
6811
6812         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6813         if (!thread)
6814                 return NULL;
6815
6816         init_waitqueue_head(&thread->wqueue);
6817
6818         thread->run = run;
6819         thread->mddev = mddev;
6820         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6821         thread->tsk = kthread_run(md_thread, thread,
6822                                   "%s_%s",
6823                                   mdname(thread->mddev),
6824                                   name);
6825         if (IS_ERR(thread->tsk)) {
6826                 kfree(thread);
6827                 return NULL;
6828         }
6829         return thread;
6830 }
6831
6832 void md_unregister_thread(struct md_thread **threadp)
6833 {
6834         struct md_thread *thread = *threadp;
6835         if (!thread)
6836                 return;
6837         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6838         /* Locking ensures that mddev_unlock does not wake_up a
6839          * non-existent thread
6840          */
6841         spin_lock(&pers_lock);
6842         *threadp = NULL;
6843         spin_unlock(&pers_lock);
6844
6845         kthread_stop(thread->tsk);
6846         kfree(thread);
6847 }
6848
6849 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6850 {
6851         if (!mddev) {
6852                 MD_BUG();
6853                 return;
6854         }
6855
6856         if (!rdev || test_bit(Faulty, &rdev->flags))
6857                 return;
6858
6859         if (!mddev->pers || !mddev->pers->error_handler)
6860                 return;
6861         mddev->pers->error_handler(mddev,rdev);
6862         if (mddev->degraded)
6863                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6864         sysfs_notify_dirent_safe(rdev->sysfs_state);
6865         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6866         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6867         md_wakeup_thread(mddev->thread);
6868         if (mddev->event_work.func)
6869                 queue_work(md_misc_wq, &mddev->event_work);
6870         md_new_event_inintr(mddev);
6871 }
6872
6873 /* seq_file implementation /proc/mdstat */
6874
6875 static void status_unused(struct seq_file *seq)
6876 {
6877         int i = 0;
6878         struct md_rdev *rdev;
6879
6880         seq_printf(seq, "unused devices: ");
6881
6882         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6883                 char b[BDEVNAME_SIZE];
6884                 i++;
6885                 seq_printf(seq, "%s ",
6886                               bdevname(rdev->bdev,b));
6887         }
6888         if (!i)
6889                 seq_printf(seq, "<none>");
6890
6891         seq_printf(seq, "\n");
6892 }
6893
6894
6895 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6896 {
6897         sector_t max_sectors, resync, res;
6898         unsigned long dt, db;
6899         sector_t rt;
6900         int scale;
6901         unsigned int per_milli;
6902
6903         if (mddev->curr_resync <= 3)
6904                 resync = 0;
6905         else
6906                 resync = mddev->curr_resync
6907                         - atomic_read(&mddev->recovery_active);
6908
6909         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6910             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6911                 max_sectors = mddev->resync_max_sectors;
6912         else
6913                 max_sectors = mddev->dev_sectors;
6914
6915         /*
6916          * Should not happen.
6917          */
6918         if (!max_sectors) {
6919                 MD_BUG();
6920                 return;
6921         }
6922         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6923          * in a sector_t, and (max_sectors>>scale) will fit in a
6924          * u32, as those are the requirements for sector_div.
6925          * Thus 'scale' must be at least 10
6926          */
6927         scale = 10;
6928         if (sizeof(sector_t) > sizeof(unsigned long)) {
6929                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6930                         scale++;
6931         }
6932         res = (resync>>scale)*1000;
6933         sector_div(res, (u32)((max_sectors>>scale)+1));
6934
6935         per_milli = res;
6936         {
6937                 int i, x = per_milli/50, y = 20-x;
6938                 seq_printf(seq, "[");
6939                 for (i = 0; i < x; i++)
6940                         seq_printf(seq, "=");
6941                 seq_printf(seq, ">");
6942                 for (i = 0; i < y; i++)
6943                         seq_printf(seq, ".");
6944                 seq_printf(seq, "] ");
6945         }
6946         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6947                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6948                     "reshape" :
6949                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6950                      "check" :
6951                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6952                       "resync" : "recovery"))),
6953                    per_milli/10, per_milli % 10,
6954                    (unsigned long long) resync/2,
6955                    (unsigned long long) max_sectors/2);
6956
6957         /*
6958          * dt: time from mark until now
6959          * db: blocks written from mark until now
6960          * rt: remaining time
6961          *
6962          * rt is a sector_t, so could be 32bit or 64bit.
6963          * So we divide before multiply in case it is 32bit and close
6964          * to the limit.
6965          * We scale the divisor (db) by 32 to avoid losing precision
6966          * near the end of resync when the number of remaining sectors
6967          * is close to 'db'.
6968          * We then divide rt by 32 after multiplying by db to compensate.
6969          * The '+1' avoids division by zero if db is very small.
6970          */
6971         dt = ((jiffies - mddev->resync_mark) / HZ);
6972         if (!dt) dt++;
6973         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6974                 - mddev->resync_mark_cnt;
6975
6976         rt = max_sectors - resync;    /* number of remaining sectors */
6977         sector_div(rt, db/32+1);
6978         rt *= dt;
6979         rt >>= 5;
6980
6981         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6982                    ((unsigned long)rt % 60)/6);
6983
6984         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6985 }
6986
6987 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6988 {
6989         struct list_head *tmp;
6990         loff_t l = *pos;
6991         struct mddev *mddev;
6992
6993         if (l >= 0x10000)
6994                 return NULL;
6995         if (!l--)
6996                 /* header */
6997                 return (void*)1;
6998
6999         spin_lock(&all_mddevs_lock);
7000         list_for_each(tmp,&all_mddevs)
7001                 if (!l--) {
7002                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7003                         mddev_get(mddev);
7004                         spin_unlock(&all_mddevs_lock);
7005                         return mddev;
7006                 }
7007         spin_unlock(&all_mddevs_lock);
7008         if (!l--)
7009                 return (void*)2;/* tail */
7010         return NULL;
7011 }
7012
7013 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7014 {
7015         struct list_head *tmp;
7016         struct mddev *next_mddev, *mddev = v;
7017         
7018         ++*pos;
7019         if (v == (void*)2)
7020                 return NULL;
7021
7022         spin_lock(&all_mddevs_lock);
7023         if (v == (void*)1)
7024                 tmp = all_mddevs.next;
7025         else
7026                 tmp = mddev->all_mddevs.next;
7027         if (tmp != &all_mddevs)
7028                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7029         else {
7030                 next_mddev = (void*)2;
7031                 *pos = 0x10000;
7032         }               
7033         spin_unlock(&all_mddevs_lock);
7034
7035         if (v != (void*)1)
7036                 mddev_put(mddev);
7037         return next_mddev;
7038
7039 }
7040
7041 static void md_seq_stop(struct seq_file *seq, void *v)
7042 {
7043         struct mddev *mddev = v;
7044
7045         if (mddev && v != (void*)1 && v != (void*)2)
7046                 mddev_put(mddev);
7047 }
7048
7049 static int md_seq_show(struct seq_file *seq, void *v)
7050 {
7051         struct mddev *mddev = v;
7052         sector_t sectors;
7053         struct md_rdev *rdev;
7054
7055         if (v == (void*)1) {
7056                 struct md_personality *pers;
7057                 seq_printf(seq, "Personalities : ");
7058                 spin_lock(&pers_lock);
7059                 list_for_each_entry(pers, &pers_list, list)
7060                         seq_printf(seq, "[%s] ", pers->name);
7061
7062                 spin_unlock(&pers_lock);
7063                 seq_printf(seq, "\n");
7064                 seq->poll_event = atomic_read(&md_event_count);
7065                 return 0;
7066         }
7067         if (v == (void*)2) {
7068                 status_unused(seq);
7069                 return 0;
7070         }
7071
7072         if (mddev_lock(mddev) < 0)
7073                 return -EINTR;
7074
7075         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7076                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7077                                                 mddev->pers ? "" : "in");
7078                 if (mddev->pers) {
7079                         if (mddev->ro==1)
7080                                 seq_printf(seq, " (read-only)");
7081                         if (mddev->ro==2)
7082                                 seq_printf(seq, " (auto-read-only)");
7083                         seq_printf(seq, " %s", mddev->pers->name);
7084                 }
7085
7086                 sectors = 0;
7087                 rdev_for_each(rdev, mddev) {
7088                         char b[BDEVNAME_SIZE];
7089                         seq_printf(seq, " %s[%d]",
7090                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7091                         if (test_bit(WriteMostly, &rdev->flags))
7092                                 seq_printf(seq, "(W)");
7093                         if (test_bit(Faulty, &rdev->flags)) {
7094                                 seq_printf(seq, "(F)");
7095                                 continue;
7096                         }
7097                         if (rdev->raid_disk < 0)
7098                                 seq_printf(seq, "(S)"); /* spare */
7099                         if (test_bit(Replacement, &rdev->flags))
7100                                 seq_printf(seq, "(R)");
7101                         sectors += rdev->sectors;
7102                 }
7103
7104                 if (!list_empty(&mddev->disks)) {
7105                         if (mddev->pers)
7106                                 seq_printf(seq, "\n      %llu blocks",
7107                                            (unsigned long long)
7108                                            mddev->array_sectors / 2);
7109                         else
7110                                 seq_printf(seq, "\n      %llu blocks",
7111                                            (unsigned long long)sectors / 2);
7112                 }
7113                 if (mddev->persistent) {
7114                         if (mddev->major_version != 0 ||
7115                             mddev->minor_version != 90) {
7116                                 seq_printf(seq," super %d.%d",
7117                                            mddev->major_version,
7118                                            mddev->minor_version);
7119                         }
7120                 } else if (mddev->external)
7121                         seq_printf(seq, " super external:%s",
7122                                    mddev->metadata_type);
7123                 else
7124                         seq_printf(seq, " super non-persistent");
7125
7126                 if (mddev->pers) {
7127                         mddev->pers->status(seq, mddev);
7128                         seq_printf(seq, "\n      ");
7129                         if (mddev->pers->sync_request) {
7130                                 if (mddev->curr_resync > 2) {
7131                                         status_resync(seq, mddev);
7132                                         seq_printf(seq, "\n      ");
7133                                 } else if (mddev->curr_resync >= 1)
7134                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7135                                 else if (mddev->recovery_cp < MaxSector)
7136                                         seq_printf(seq, "\tresync=PENDING\n      ");
7137                         }
7138                 } else
7139                         seq_printf(seq, "\n       ");
7140
7141                 bitmap_status(seq, mddev->bitmap);
7142
7143                 seq_printf(seq, "\n");
7144         }
7145         mddev_unlock(mddev);
7146         
7147         return 0;
7148 }
7149
7150 static const struct seq_operations md_seq_ops = {
7151         .start  = md_seq_start,
7152         .next   = md_seq_next,
7153         .stop   = md_seq_stop,
7154         .show   = md_seq_show,
7155 };
7156
7157 static int md_seq_open(struct inode *inode, struct file *file)
7158 {
7159         struct seq_file *seq;
7160         int error;
7161
7162         error = seq_open(file, &md_seq_ops);
7163         if (error)
7164                 return error;
7165
7166         seq = file->private_data;
7167         seq->poll_event = atomic_read(&md_event_count);
7168         return error;
7169 }
7170
7171 static int md_unloading;
7172 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7173 {
7174         struct seq_file *seq = filp->private_data;
7175         int mask;
7176
7177         if (md_unloading)
7178                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
7179         poll_wait(filp, &md_event_waiters, wait);
7180
7181         /* always allow read */
7182         mask = POLLIN | POLLRDNORM;
7183
7184         if (seq->poll_event != atomic_read(&md_event_count))
7185                 mask |= POLLERR | POLLPRI;
7186         return mask;
7187 }
7188
7189 static const struct file_operations md_seq_fops = {
7190         .owner          = THIS_MODULE,
7191         .open           = md_seq_open,
7192         .read           = seq_read,
7193         .llseek         = seq_lseek,
7194         .release        = seq_release_private,
7195         .poll           = mdstat_poll,
7196 };
7197
7198 int register_md_personality(struct md_personality *p)
7199 {
7200         spin_lock(&pers_lock);
7201         list_add_tail(&p->list, &pers_list);
7202         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7203         spin_unlock(&pers_lock);
7204         return 0;
7205 }
7206
7207 int unregister_md_personality(struct md_personality *p)
7208 {
7209         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7210         spin_lock(&pers_lock);
7211         list_del_init(&p->list);
7212         spin_unlock(&pers_lock);
7213         return 0;
7214 }
7215
7216 static int is_mddev_idle(struct mddev *mddev, int init)
7217 {
7218         struct md_rdev * rdev;
7219         int idle;
7220         int curr_events;
7221
7222         idle = 1;
7223         rcu_read_lock();
7224         rdev_for_each_rcu(rdev, mddev) {
7225                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7226                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7227                               (int)part_stat_read(&disk->part0, sectors[1]) -
7228                               atomic_read(&disk->sync_io);
7229                 /* sync IO will cause sync_io to increase before the disk_stats
7230                  * as sync_io is counted when a request starts, and
7231                  * disk_stats is counted when it completes.
7232                  * So resync activity will cause curr_events to be smaller than
7233                  * when there was no such activity.
7234                  * non-sync IO will cause disk_stat to increase without
7235                  * increasing sync_io so curr_events will (eventually)
7236                  * be larger than it was before.  Once it becomes
7237                  * substantially larger, the test below will cause
7238                  * the array to appear non-idle, and resync will slow
7239                  * down.
7240                  * If there is a lot of outstanding resync activity when
7241                  * we set last_event to curr_events, then all that activity
7242                  * completing might cause the array to appear non-idle
7243                  * and resync will be slowed down even though there might
7244                  * not have been non-resync activity.  This will only
7245                  * happen once though.  'last_events' will soon reflect
7246                  * the state where there is little or no outstanding
7247                  * resync requests, and further resync activity will
7248                  * always make curr_events less than last_events.
7249                  *
7250                  */
7251                 if (init || curr_events - rdev->last_events > 64) {
7252                         rdev->last_events = curr_events;
7253                         idle = 0;
7254                 }
7255         }
7256         rcu_read_unlock();
7257         return idle;
7258 }
7259
7260 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7261 {
7262         /* another "blocks" (512byte) blocks have been synced */
7263         atomic_sub(blocks, &mddev->recovery_active);
7264         wake_up(&mddev->recovery_wait);
7265         if (!ok) {
7266                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7267                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7268                 md_wakeup_thread(mddev->thread);
7269                 // stop recovery, signal do_sync ....
7270         }
7271 }
7272
7273
7274 /* md_write_start(mddev, bi)
7275  * If we need to update some array metadata (e.g. 'active' flag
7276  * in superblock) before writing, schedule a superblock update
7277  * and wait for it to complete.
7278  */
7279 void md_write_start(struct mddev *mddev, struct bio *bi)
7280 {
7281         int did_change = 0;
7282         if (bio_data_dir(bi) != WRITE)
7283                 return;
7284
7285         BUG_ON(mddev->ro == 1);
7286         if (mddev->ro == 2) {
7287                 /* need to switch to read/write */
7288                 mddev->ro = 0;
7289                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7290                 md_wakeup_thread(mddev->thread);
7291                 md_wakeup_thread(mddev->sync_thread);
7292                 did_change = 1;
7293         }
7294         atomic_inc(&mddev->writes_pending);
7295         if (mddev->safemode == 1)
7296                 mddev->safemode = 0;
7297         if (mddev->in_sync) {
7298                 spin_lock_irq(&mddev->write_lock);
7299                 if (mddev->in_sync) {
7300                         mddev->in_sync = 0;
7301                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7302                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7303                         md_wakeup_thread(mddev->thread);
7304                         did_change = 1;
7305                 }
7306                 spin_unlock_irq(&mddev->write_lock);
7307         }
7308         if (did_change)
7309                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7310         wait_event(mddev->sb_wait,
7311                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7312 }
7313
7314 void md_write_end(struct mddev *mddev)
7315 {
7316         if (atomic_dec_and_test(&mddev->writes_pending)) {
7317                 if (mddev->safemode == 2)
7318                         md_wakeup_thread(mddev->thread);
7319                 else if (mddev->safemode_delay)
7320                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7321         }
7322 }
7323
7324 /* md_allow_write(mddev)
7325  * Calling this ensures that the array is marked 'active' so that writes
7326  * may proceed without blocking.  It is important to call this before
7327  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7328  * Must be called with mddev_lock held.
7329  *
7330  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7331  * is dropped, so return -EAGAIN after notifying userspace.
7332  */
7333 int md_allow_write(struct mddev *mddev)
7334 {
7335         if (!mddev->pers)
7336                 return 0;
7337         if (mddev->ro)
7338                 return 0;
7339         if (!mddev->pers->sync_request)
7340                 return 0;
7341
7342         spin_lock_irq(&mddev->write_lock);
7343         if (mddev->in_sync) {
7344                 mddev->in_sync = 0;
7345                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7346                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7347                 if (mddev->safemode_delay &&
7348                     mddev->safemode == 0)
7349                         mddev->safemode = 1;
7350                 spin_unlock_irq(&mddev->write_lock);
7351                 md_update_sb(mddev, 0);
7352                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7353         } else
7354                 spin_unlock_irq(&mddev->write_lock);
7355
7356         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7357                 return -EAGAIN;
7358         else
7359                 return 0;
7360 }
7361 EXPORT_SYMBOL_GPL(md_allow_write);
7362
7363 #define SYNC_MARKS      10
7364 #define SYNC_MARK_STEP  (3*HZ)
7365 #define UPDATE_FREQUENCY (5*60*HZ)
7366 void md_do_sync(struct md_thread *thread)
7367 {
7368         struct mddev *mddev = thread->mddev;
7369         struct mddev *mddev2;
7370         unsigned int currspeed = 0,
7371                  window;
7372         sector_t max_sectors,j, io_sectors, recovery_done;
7373         unsigned long mark[SYNC_MARKS];
7374         unsigned long update_time;
7375         sector_t mark_cnt[SYNC_MARKS];
7376         int last_mark,m;
7377         struct list_head *tmp;
7378         sector_t last_check;
7379         int skipped = 0;
7380         struct md_rdev *rdev;
7381         char *desc, *action = NULL;
7382         struct blk_plug plug;
7383
7384         /* just incase thread restarts... */
7385         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7386                 return;
7387         if (mddev->ro) {/* never try to sync a read-only array */
7388                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7389                 return;
7390         }
7391
7392         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7393                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7394                         desc = "data-check";
7395                         action = "check";
7396                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7397                         desc = "requested-resync";
7398                         action = "repair";
7399                 } else
7400                         desc = "resync";
7401         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7402                 desc = "reshape";
7403         else
7404                 desc = "recovery";
7405
7406         mddev->last_sync_action = action ?: desc;
7407
7408         /* we overload curr_resync somewhat here.
7409          * 0 == not engaged in resync at all
7410          * 2 == checking that there is no conflict with another sync
7411          * 1 == like 2, but have yielded to allow conflicting resync to
7412          *              commense
7413          * other == active in resync - this many blocks
7414          *
7415          * Before starting a resync we must have set curr_resync to
7416          * 2, and then checked that every "conflicting" array has curr_resync
7417          * less than ours.  When we find one that is the same or higher
7418          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7419          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7420          * This will mean we have to start checking from the beginning again.
7421          *
7422          */
7423
7424         do {
7425                 mddev->curr_resync = 2;
7426
7427         try_again:
7428                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7429                         goto skip;
7430                 for_each_mddev(mddev2, tmp) {
7431                         if (mddev2 == mddev)
7432                                 continue;
7433                         if (!mddev->parallel_resync
7434                         &&  mddev2->curr_resync
7435                         &&  match_mddev_units(mddev, mddev2)) {
7436                                 DEFINE_WAIT(wq);
7437                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7438                                         /* arbitrarily yield */
7439                                         mddev->curr_resync = 1;
7440                                         wake_up(&resync_wait);
7441                                 }
7442                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7443                                         /* no need to wait here, we can wait the next
7444                                          * time 'round when curr_resync == 2
7445                                          */
7446                                         continue;
7447                                 /* We need to wait 'interruptible' so as not to
7448                                  * contribute to the load average, and not to
7449                                  * be caught by 'softlockup'
7450                                  */
7451                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7452                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7453                                     mddev2->curr_resync >= mddev->curr_resync) {
7454                                         printk(KERN_INFO "md: delaying %s of %s"
7455                                                " until %s has finished (they"
7456                                                " share one or more physical units)\n",
7457                                                desc, mdname(mddev), mdname(mddev2));
7458                                         mddev_put(mddev2);
7459                                         if (signal_pending(current))
7460                                                 flush_signals(current);
7461                                         schedule();
7462                                         finish_wait(&resync_wait, &wq);
7463                                         goto try_again;
7464                                 }
7465                                 finish_wait(&resync_wait, &wq);
7466                         }
7467                 }
7468         } while (mddev->curr_resync < 2);
7469
7470         j = 0;
7471         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7472                 /* resync follows the size requested by the personality,
7473                  * which defaults to physical size, but can be virtual size
7474                  */
7475                 max_sectors = mddev->resync_max_sectors;
7476                 atomic64_set(&mddev->resync_mismatches, 0);
7477                 /* we don't use the checkpoint if there's a bitmap */
7478                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7479                         j = mddev->resync_min;
7480                 else if (!mddev->bitmap)
7481                         j = mddev->recovery_cp;
7482
7483         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7484                 max_sectors = mddev->resync_max_sectors;
7485         else {
7486                 /* recovery follows the physical size of devices */
7487                 max_sectors = mddev->dev_sectors;
7488                 j = MaxSector;
7489                 rcu_read_lock();
7490                 rdev_for_each_rcu(rdev, mddev)
7491                         if (rdev->raid_disk >= 0 &&
7492                             !test_bit(Faulty, &rdev->flags) &&
7493                             !test_bit(In_sync, &rdev->flags) &&
7494                             rdev->recovery_offset < j)
7495                                 j = rdev->recovery_offset;
7496                 rcu_read_unlock();
7497
7498                 /* If there is a bitmap, we need to make sure all
7499                  * writes that started before we added a spare
7500                  * complete before we start doing a recovery.
7501                  * Otherwise the write might complete and (via
7502                  * bitmap_endwrite) set a bit in the bitmap after the
7503                  * recovery has checked that bit and skipped that
7504                  * region.
7505                  */
7506                 if (mddev->bitmap) {
7507                         mddev->pers->quiesce(mddev, 1);
7508                         mddev->pers->quiesce(mddev, 0);
7509                 }
7510         }
7511
7512         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7513         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7514                 " %d KB/sec/disk.\n", speed_min(mddev));
7515         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7516                "(but not more than %d KB/sec) for %s.\n",
7517                speed_max(mddev), desc);
7518
7519         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7520
7521         io_sectors = 0;
7522         for (m = 0; m < SYNC_MARKS; m++) {
7523                 mark[m] = jiffies;
7524                 mark_cnt[m] = io_sectors;
7525         }
7526         last_mark = 0;
7527         mddev->resync_mark = mark[last_mark];
7528         mddev->resync_mark_cnt = mark_cnt[last_mark];
7529
7530         /*
7531          * Tune reconstruction:
7532          */
7533         window = 32*(PAGE_SIZE/512);
7534         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7535                 window/2, (unsigned long long)max_sectors/2);
7536
7537         atomic_set(&mddev->recovery_active, 0);
7538         last_check = 0;
7539
7540         if (j>2) {
7541                 printk(KERN_INFO
7542                        "md: resuming %s of %s from checkpoint.\n",
7543                        desc, mdname(mddev));
7544                 mddev->curr_resync = j;
7545         } else
7546                 mddev->curr_resync = 3; /* no longer delayed */
7547         mddev->curr_resync_completed = j;
7548         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7549         md_new_event(mddev);
7550         update_time = jiffies;
7551
7552         blk_start_plug(&plug);
7553         while (j < max_sectors) {
7554                 sector_t sectors;
7555
7556                 skipped = 0;
7557
7558                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7559                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7560                       (mddev->curr_resync - mddev->curr_resync_completed)
7561                       > (max_sectors >> 4)) ||
7562                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7563                      (j - mddev->curr_resync_completed)*2
7564                      >= mddev->resync_max - mddev->curr_resync_completed
7565                             )) {
7566                         /* time to update curr_resync_completed */
7567                         wait_event(mddev->recovery_wait,
7568                                    atomic_read(&mddev->recovery_active) == 0);
7569                         mddev->curr_resync_completed = j;
7570                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7571                             j > mddev->recovery_cp)
7572                                 mddev->recovery_cp = j;
7573                         update_time = jiffies;
7574                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7575                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7576                 }
7577
7578                 while (j >= mddev->resync_max &&
7579                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7580                         /* As this condition is controlled by user-space,
7581                          * we can block indefinitely, so use '_interruptible'
7582                          * to avoid triggering warnings.
7583                          */
7584                         flush_signals(current); /* just in case */
7585                         wait_event_interruptible(mddev->recovery_wait,
7586                                                  mddev->resync_max > j
7587                                                  || test_bit(MD_RECOVERY_INTR,
7588                                                              &mddev->recovery));
7589                 }
7590
7591                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7592                         break;
7593
7594                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7595                                                   currspeed < speed_min(mddev));
7596                 if (sectors == 0) {
7597                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7598                         break;
7599                 }
7600
7601                 if (!skipped) { /* actual IO requested */
7602                         io_sectors += sectors;
7603                         atomic_add(sectors, &mddev->recovery_active);
7604                 }
7605
7606                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7607                         break;
7608
7609                 j += sectors;
7610                 if (j > 2)
7611                         mddev->curr_resync = j;
7612                 mddev->curr_mark_cnt = io_sectors;
7613                 if (last_check == 0)
7614                         /* this is the earliest that rebuild will be
7615                          * visible in /proc/mdstat
7616                          */
7617                         md_new_event(mddev);
7618
7619                 if (last_check + window > io_sectors || j == max_sectors)
7620                         continue;
7621
7622                 last_check = io_sectors;
7623         repeat:
7624                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7625                         /* step marks */
7626                         int next = (last_mark+1) % SYNC_MARKS;
7627
7628                         mddev->resync_mark = mark[next];
7629                         mddev->resync_mark_cnt = mark_cnt[next];
7630                         mark[next] = jiffies;
7631                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7632                         last_mark = next;
7633                 }
7634
7635                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7636                         break;
7637
7638                 /*
7639                  * this loop exits only if either when we are slower than
7640                  * the 'hard' speed limit, or the system was IO-idle for
7641                  * a jiffy.
7642                  * the system might be non-idle CPU-wise, but we only care
7643                  * about not overloading the IO subsystem. (things like an
7644                  * e2fsck being done on the RAID array should execute fast)
7645                  */
7646                 cond_resched();
7647
7648                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7649                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7650                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7651
7652                 if (currspeed > speed_min(mddev)) {
7653                         if ((currspeed > speed_max(mddev)) ||
7654                                         !is_mddev_idle(mddev, 0)) {
7655                                 msleep(500);
7656                                 goto repeat;
7657                         }
7658                 }
7659         }
7660         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7661                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7662                ? "interrupted" : "done");
7663         /*
7664          * this also signals 'finished resyncing' to md_stop
7665          */
7666         blk_finish_plug(&plug);
7667         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7668
7669         /* tell personality that we are finished */
7670         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7671
7672         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7673             mddev->curr_resync > 2) {
7674                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7675                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7676                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7677                                         printk(KERN_INFO
7678                                                "md: checkpointing %s of %s.\n",
7679                                                desc, mdname(mddev));
7680                                         if (test_bit(MD_RECOVERY_ERROR,
7681                                                 &mddev->recovery))
7682                                                 mddev->recovery_cp =
7683                                                         mddev->curr_resync_completed;
7684                                         else
7685                                                 mddev->recovery_cp =
7686                                                         mddev->curr_resync;
7687                                 }
7688                         } else
7689                                 mddev->recovery_cp = MaxSector;
7690                 } else {
7691                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7692                                 mddev->curr_resync = MaxSector;
7693                         rcu_read_lock();
7694                         rdev_for_each_rcu(rdev, mddev)
7695                                 if (rdev->raid_disk >= 0 &&
7696                                     mddev->delta_disks >= 0 &&
7697                                     !test_bit(Faulty, &rdev->flags) &&
7698                                     !test_bit(In_sync, &rdev->flags) &&
7699                                     rdev->recovery_offset < mddev->curr_resync)
7700                                         rdev->recovery_offset = mddev->curr_resync;
7701                         rcu_read_unlock();
7702                 }
7703         }
7704  skip:
7705         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7706
7707         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7708                 /* We completed so min/max setting can be forgotten if used. */
7709                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7710                         mddev->resync_min = 0;
7711                 mddev->resync_max = MaxSector;
7712         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7713                 mddev->resync_min = mddev->curr_resync_completed;
7714         mddev->curr_resync = 0;
7715         wake_up(&resync_wait);
7716         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7717         md_wakeup_thread(mddev->thread);
7718         return;
7719 }
7720 EXPORT_SYMBOL_GPL(md_do_sync);
7721
7722 static int remove_and_add_spares(struct mddev *mddev,
7723                                  struct md_rdev *this)
7724 {
7725         struct md_rdev *rdev;
7726         int spares = 0;
7727         int removed = 0;
7728
7729         rdev_for_each(rdev, mddev)
7730                 if ((this == NULL || rdev == this) &&
7731                     rdev->raid_disk >= 0 &&
7732                     !test_bit(Blocked, &rdev->flags) &&
7733                     (test_bit(Faulty, &rdev->flags) ||
7734                      ! test_bit(In_sync, &rdev->flags)) &&
7735                     atomic_read(&rdev->nr_pending)==0) {
7736                         if (mddev->pers->hot_remove_disk(
7737                                     mddev, rdev) == 0) {
7738                                 sysfs_unlink_rdev(mddev, rdev);
7739                                 rdev->raid_disk = -1;
7740                                 removed++;
7741                         }
7742                 }
7743         if (removed && mddev->kobj.sd)
7744                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7745
7746         if (this)
7747                 goto no_add;
7748
7749         rdev_for_each(rdev, mddev) {
7750                 if (rdev->raid_disk >= 0 &&
7751                     !test_bit(In_sync, &rdev->flags) &&
7752                     !test_bit(Faulty, &rdev->flags))
7753                         spares++;
7754                 if (rdev->raid_disk >= 0)
7755                         continue;
7756                 if (test_bit(Faulty, &rdev->flags))
7757                         continue;
7758                 if (mddev->ro &&
7759                     ! (rdev->saved_raid_disk >= 0 &&
7760                        !test_bit(Bitmap_sync, &rdev->flags)))
7761                         continue;
7762
7763                 if (rdev->saved_raid_disk < 0)
7764                         rdev->recovery_offset = 0;
7765                 if (mddev->pers->
7766                     hot_add_disk(mddev, rdev) == 0) {
7767                         if (sysfs_link_rdev(mddev, rdev))
7768                                 /* failure here is OK */;
7769                         spares++;
7770                         md_new_event(mddev);
7771                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7772                 }
7773         }
7774 no_add:
7775         if (removed)
7776                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7777         return spares;
7778 }
7779
7780 /*
7781  * This routine is regularly called by all per-raid-array threads to
7782  * deal with generic issues like resync and super-block update.
7783  * Raid personalities that don't have a thread (linear/raid0) do not
7784  * need this as they never do any recovery or update the superblock.
7785  *
7786  * It does not do any resync itself, but rather "forks" off other threads
7787  * to do that as needed.
7788  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7789  * "->recovery" and create a thread at ->sync_thread.
7790  * When the thread finishes it sets MD_RECOVERY_DONE
7791  * and wakeups up this thread which will reap the thread and finish up.
7792  * This thread also removes any faulty devices (with nr_pending == 0).
7793  *
7794  * The overall approach is:
7795  *  1/ if the superblock needs updating, update it.
7796  *  2/ If a recovery thread is running, don't do anything else.
7797  *  3/ If recovery has finished, clean up, possibly marking spares active.
7798  *  4/ If there are any faulty devices, remove them.
7799  *  5/ If array is degraded, try to add spares devices
7800  *  6/ If array has spares or is not in-sync, start a resync thread.
7801  */
7802 void md_check_recovery(struct mddev *mddev)
7803 {
7804         if (mddev->suspended)
7805                 return;
7806
7807         if (mddev->bitmap)
7808                 bitmap_daemon_work(mddev);
7809
7810         if (signal_pending(current)) {
7811                 if (mddev->pers->sync_request && !mddev->external) {
7812                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7813                                mdname(mddev));
7814                         mddev->safemode = 2;
7815                 }
7816                 flush_signals(current);
7817         }
7818
7819         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7820                 return;
7821         if ( ! (
7822                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7823                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7824                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7825                 (mddev->external == 0 && mddev->safemode == 1) ||
7826                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7827                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7828                 ))
7829                 return;
7830
7831         if (mddev_trylock(mddev)) {
7832                 int spares = 0;
7833
7834                 if (mddev->ro) {
7835                         /* On a read-only array we can:
7836                          * - remove failed devices
7837                          * - add already-in_sync devices if the array itself
7838                          *   is in-sync.
7839                          * As we only add devices that are already in-sync,
7840                          * we can activate the spares immediately.
7841                          */
7842                         remove_and_add_spares(mddev, NULL);
7843                         /* There is no thread, but we need to call
7844                          * ->spare_active and clear saved_raid_disk
7845                          */
7846                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7847                         md_reap_sync_thread(mddev);
7848                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7849                         goto unlock;
7850                 }
7851
7852                 if (!mddev->external) {
7853                         int did_change = 0;
7854                         spin_lock_irq(&mddev->write_lock);
7855                         if (mddev->safemode &&
7856                             !atomic_read(&mddev->writes_pending) &&
7857                             !mddev->in_sync &&
7858                             mddev->recovery_cp == MaxSector) {
7859                                 mddev->in_sync = 1;
7860                                 did_change = 1;
7861                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7862                         }
7863                         if (mddev->safemode == 1)
7864                                 mddev->safemode = 0;
7865                         spin_unlock_irq(&mddev->write_lock);
7866                         if (did_change)
7867                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7868                 }
7869
7870                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7871                         md_update_sb(mddev, 0);
7872
7873                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7874                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7875                         /* resync/recovery still happening */
7876                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7877                         goto unlock;
7878                 }
7879                 if (mddev->sync_thread) {
7880                         md_reap_sync_thread(mddev);
7881                         goto unlock;
7882                 }
7883                 /* Set RUNNING before clearing NEEDED to avoid
7884                  * any transients in the value of "sync_action".
7885                  */
7886                 mddev->curr_resync_completed = 0;
7887                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7888                 /* Clear some bits that don't mean anything, but
7889                  * might be left set
7890                  */
7891                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7892                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7893
7894                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7895                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7896                         goto unlock;
7897                 /* no recovery is running.
7898                  * remove any failed drives, then
7899                  * add spares if possible.
7900                  * Spares are also removed and re-added, to allow
7901                  * the personality to fail the re-add.
7902                  */
7903
7904                 if (mddev->reshape_position != MaxSector) {
7905                         if (mddev->pers->check_reshape == NULL ||
7906                             mddev->pers->check_reshape(mddev) != 0)
7907                                 /* Cannot proceed */
7908                                 goto unlock;
7909                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7910                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7911                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7912                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7913                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7914                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7915                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7916                 } else if (mddev->recovery_cp < MaxSector) {
7917                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7918                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7919                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7920                         /* nothing to be done ... */
7921                         goto unlock;
7922
7923                 if (mddev->pers->sync_request) {
7924                         if (spares) {
7925                                 /* We are adding a device or devices to an array
7926                                  * which has the bitmap stored on all devices.
7927                                  * So make sure all bitmap pages get written
7928                                  */
7929                                 bitmap_write_all(mddev->bitmap);
7930                         }
7931                         mddev->sync_thread = md_register_thread(md_do_sync,
7932                                                                 mddev,
7933                                                                 "resync");
7934                         if (!mddev->sync_thread) {
7935                                 printk(KERN_ERR "%s: could not start resync"
7936                                         " thread...\n", 
7937                                         mdname(mddev));
7938                                 /* leave the spares where they are, it shouldn't hurt */
7939                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7940                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7941                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7942                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7943                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7944                         } else
7945                                 md_wakeup_thread(mddev->sync_thread);
7946                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7947                         md_new_event(mddev);
7948                 }
7949         unlock:
7950                 wake_up(&mddev->sb_wait);
7951
7952                 if (!mddev->sync_thread) {
7953                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7954                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7955                                                &mddev->recovery))
7956                                 if (mddev->sysfs_action)
7957                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7958                 }
7959                 mddev_unlock(mddev);
7960         }
7961 }
7962
7963 void md_reap_sync_thread(struct mddev *mddev)
7964 {
7965         struct md_rdev *rdev;
7966
7967         /* resync has finished, collect result */
7968         md_unregister_thread(&mddev->sync_thread);
7969         wake_up(&resync_wait);
7970         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7971             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7972                 /* success...*/
7973                 /* activate any spares */
7974                 if (mddev->pers->spare_active(mddev)) {
7975                         sysfs_notify(&mddev->kobj, NULL,
7976                                      "degraded");
7977                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7978                 }
7979         }
7980         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7981             mddev->pers->finish_reshape)
7982                 mddev->pers->finish_reshape(mddev);
7983
7984         /* If array is no-longer degraded, then any saved_raid_disk
7985          * information must be scrapped.
7986          */
7987         if (!mddev->degraded)
7988                 rdev_for_each(rdev, mddev)
7989                         rdev->saved_raid_disk = -1;
7990
7991         md_update_sb(mddev, 1);
7992         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7993         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7994         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7995         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7996         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7997         /* flag recovery needed just to double check */
7998         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7999         sysfs_notify_dirent_safe(mddev->sysfs_action);
8000         md_new_event(mddev);
8001         if (mddev->event_work.func)
8002                 queue_work(md_misc_wq, &mddev->event_work);
8003 }
8004
8005 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8006 {
8007         sysfs_notify_dirent_safe(rdev->sysfs_state);
8008         wait_event_timeout(rdev->blocked_wait,
8009                            !test_bit(Blocked, &rdev->flags) &&
8010                            !test_bit(BlockedBadBlocks, &rdev->flags),
8011                            msecs_to_jiffies(5000));
8012         rdev_dec_pending(rdev, mddev);
8013 }
8014 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8015
8016 void md_finish_reshape(struct mddev *mddev)
8017 {
8018         /* called be personality module when reshape completes. */
8019         struct md_rdev *rdev;
8020
8021         rdev_for_each(rdev, mddev) {
8022                 if (rdev->data_offset > rdev->new_data_offset)
8023                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8024                 else
8025                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8026                 rdev->data_offset = rdev->new_data_offset;
8027         }
8028 }
8029 EXPORT_SYMBOL(md_finish_reshape);
8030
8031 /* Bad block management.
8032  * We can record which blocks on each device are 'bad' and so just
8033  * fail those blocks, or that stripe, rather than the whole device.
8034  * Entries in the bad-block table are 64bits wide.  This comprises:
8035  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8036  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8037  *  A 'shift' can be set so that larger blocks are tracked and
8038  *  consequently larger devices can be covered.
8039  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8040  *
8041  * Locking of the bad-block table uses a seqlock so md_is_badblock
8042  * might need to retry if it is very unlucky.
8043  * We will sometimes want to check for bad blocks in a bi_end_io function,
8044  * so we use the write_seqlock_irq variant.
8045  *
8046  * When looking for a bad block we specify a range and want to
8047  * know if any block in the range is bad.  So we binary-search
8048  * to the last range that starts at-or-before the given endpoint,
8049  * (or "before the sector after the target range")
8050  * then see if it ends after the given start.
8051  * We return
8052  *  0 if there are no known bad blocks in the range
8053  *  1 if there are known bad block which are all acknowledged
8054  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8055  * plus the start/length of the first bad section we overlap.
8056  */
8057 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8058                    sector_t *first_bad, int *bad_sectors)
8059 {
8060         int hi;
8061         int lo;
8062         u64 *p = bb->page;
8063         int rv;
8064         sector_t target = s + sectors;
8065         unsigned seq;
8066
8067         if (bb->shift > 0) {
8068                 /* round the start down, and the end up */
8069                 s >>= bb->shift;
8070                 target += (1<<bb->shift) - 1;
8071                 target >>= bb->shift;
8072                 sectors = target - s;
8073         }
8074         /* 'target' is now the first block after the bad range */
8075
8076 retry:
8077         seq = read_seqbegin(&bb->lock);
8078         lo = 0;
8079         rv = 0;
8080         hi = bb->count;
8081
8082         /* Binary search between lo and hi for 'target'
8083          * i.e. for the last range that starts before 'target'
8084          */
8085         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8086          * are known not to be the last range before target.
8087          * VARIANT: hi-lo is the number of possible
8088          * ranges, and decreases until it reaches 1
8089          */
8090         while (hi - lo > 1) {
8091                 int mid = (lo + hi) / 2;
8092                 sector_t a = BB_OFFSET(p[mid]);
8093                 if (a < target)
8094                         /* This could still be the one, earlier ranges
8095                          * could not. */
8096                         lo = mid;
8097                 else
8098                         /* This and later ranges are definitely out. */
8099                         hi = mid;
8100         }
8101         /* 'lo' might be the last that started before target, but 'hi' isn't */
8102         if (hi > lo) {
8103                 /* need to check all range that end after 's' to see if
8104                  * any are unacknowledged.
8105                  */
8106                 while (lo >= 0 &&
8107                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8108                         if (BB_OFFSET(p[lo]) < target) {
8109                                 /* starts before the end, and finishes after
8110                                  * the start, so they must overlap
8111                                  */
8112                                 if (rv != -1 && BB_ACK(p[lo]))
8113                                         rv = 1;
8114                                 else
8115                                         rv = -1;
8116                                 *first_bad = BB_OFFSET(p[lo]);
8117                                 *bad_sectors = BB_LEN(p[lo]);
8118                         }
8119                         lo--;
8120                 }
8121         }
8122
8123         if (read_seqretry(&bb->lock, seq))
8124                 goto retry;
8125
8126         return rv;
8127 }
8128 EXPORT_SYMBOL_GPL(md_is_badblock);
8129
8130 /*
8131  * Add a range of bad blocks to the table.
8132  * This might extend the table, or might contract it
8133  * if two adjacent ranges can be merged.
8134  * We binary-search to find the 'insertion' point, then
8135  * decide how best to handle it.
8136  */
8137 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8138                             int acknowledged)
8139 {
8140         u64 *p;
8141         int lo, hi;
8142         int rv = 1;
8143         unsigned long flags;
8144
8145         if (bb->shift < 0)
8146                 /* badblocks are disabled */
8147                 return 0;
8148
8149         if (bb->shift) {
8150                 /* round the start down, and the end up */
8151                 sector_t next = s + sectors;
8152                 s >>= bb->shift;
8153                 next += (1<<bb->shift) - 1;
8154                 next >>= bb->shift;
8155                 sectors = next - s;
8156         }
8157
8158         write_seqlock_irqsave(&bb->lock, flags);
8159
8160         p = bb->page;
8161         lo = 0;
8162         hi = bb->count;
8163         /* Find the last range that starts at-or-before 's' */
8164         while (hi - lo > 1) {
8165                 int mid = (lo + hi) / 2;
8166                 sector_t a = BB_OFFSET(p[mid]);
8167                 if (a <= s)
8168                         lo = mid;
8169                 else
8170                         hi = mid;
8171         }
8172         if (hi > lo && BB_OFFSET(p[lo]) > s)
8173                 hi = lo;
8174
8175         if (hi > lo) {
8176                 /* we found a range that might merge with the start
8177                  * of our new range
8178                  */
8179                 sector_t a = BB_OFFSET(p[lo]);
8180                 sector_t e = a + BB_LEN(p[lo]);
8181                 int ack = BB_ACK(p[lo]);
8182                 if (e >= s) {
8183                         /* Yes, we can merge with a previous range */
8184                         if (s == a && s + sectors >= e)
8185                                 /* new range covers old */
8186                                 ack = acknowledged;
8187                         else
8188                                 ack = ack && acknowledged;
8189
8190                         if (e < s + sectors)
8191                                 e = s + sectors;
8192                         if (e - a <= BB_MAX_LEN) {
8193                                 p[lo] = BB_MAKE(a, e-a, ack);
8194                                 s = e;
8195                         } else {
8196                                 /* does not all fit in one range,
8197                                  * make p[lo] maximal
8198                                  */
8199                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8200                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8201                                 s = a + BB_MAX_LEN;
8202                         }
8203                         sectors = e - s;
8204                 }
8205         }
8206         if (sectors && hi < bb->count) {
8207                 /* 'hi' points to the first range that starts after 's'.
8208                  * Maybe we can merge with the start of that range */
8209                 sector_t a = BB_OFFSET(p[hi]);
8210                 sector_t e = a + BB_LEN(p[hi]);
8211                 int ack = BB_ACK(p[hi]);
8212                 if (a <= s + sectors) {
8213                         /* merging is possible */
8214                         if (e <= s + sectors) {
8215                                 /* full overlap */
8216                                 e = s + sectors;
8217                                 ack = acknowledged;
8218                         } else
8219                                 ack = ack && acknowledged;
8220
8221                         a = s;
8222                         if (e - a <= BB_MAX_LEN) {
8223                                 p[hi] = BB_MAKE(a, e-a, ack);
8224                                 s = e;
8225                         } else {
8226                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8227                                 s = a + BB_MAX_LEN;
8228                         }
8229                         sectors = e - s;
8230                         lo = hi;
8231                         hi++;
8232                 }
8233         }
8234         if (sectors == 0 && hi < bb->count) {
8235                 /* we might be able to combine lo and hi */
8236                 /* Note: 's' is at the end of 'lo' */
8237                 sector_t a = BB_OFFSET(p[hi]);
8238                 int lolen = BB_LEN(p[lo]);
8239                 int hilen = BB_LEN(p[hi]);
8240                 int newlen = lolen + hilen - (s - a);
8241                 if (s >= a && newlen < BB_MAX_LEN) {
8242                         /* yes, we can combine them */
8243                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8244                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8245                         memmove(p + hi, p + hi + 1,
8246                                 (bb->count - hi - 1) * 8);
8247                         bb->count--;
8248                 }
8249         }
8250         while (sectors) {
8251                 /* didn't merge (it all).
8252                  * Need to add a range just before 'hi' */
8253                 if (bb->count >= MD_MAX_BADBLOCKS) {
8254                         /* No room for more */
8255                         rv = 0;
8256                         break;
8257                 } else {
8258                         int this_sectors = sectors;
8259                         memmove(p + hi + 1, p + hi,
8260                                 (bb->count - hi) * 8);
8261                         bb->count++;
8262
8263                         if (this_sectors > BB_MAX_LEN)
8264                                 this_sectors = BB_MAX_LEN;
8265                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8266                         sectors -= this_sectors;
8267                         s += this_sectors;
8268                 }
8269         }
8270
8271         bb->changed = 1;
8272         if (!acknowledged)
8273                 bb->unacked_exist = 1;
8274         write_sequnlock_irqrestore(&bb->lock, flags);
8275
8276         return rv;
8277 }
8278
8279 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8280                        int is_new)
8281 {
8282         int rv;
8283         if (is_new)
8284                 s += rdev->new_data_offset;
8285         else
8286                 s += rdev->data_offset;
8287         rv = md_set_badblocks(&rdev->badblocks,
8288                               s, sectors, 0);
8289         if (rv) {
8290                 /* Make sure they get written out promptly */
8291                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8292                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8293                 md_wakeup_thread(rdev->mddev->thread);
8294         }
8295         return rv;
8296 }
8297 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8298
8299 /*
8300  * Remove a range of bad blocks from the table.
8301  * This may involve extending the table if we spilt a region,
8302  * but it must not fail.  So if the table becomes full, we just
8303  * drop the remove request.
8304  */
8305 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8306 {
8307         u64 *p;
8308         int lo, hi;
8309         sector_t target = s + sectors;
8310         int rv = 0;
8311
8312         if (bb->shift > 0) {
8313                 /* When clearing we round the start up and the end down.
8314                  * This should not matter as the shift should align with
8315                  * the block size and no rounding should ever be needed.
8316                  * However it is better the think a block is bad when it
8317                  * isn't than to think a block is not bad when it is.
8318                  */
8319                 s += (1<<bb->shift) - 1;
8320                 s >>= bb->shift;
8321                 target >>= bb->shift;
8322                 sectors = target - s;
8323         }
8324
8325         write_seqlock_irq(&bb->lock);
8326
8327         p = bb->page;
8328         lo = 0;
8329         hi = bb->count;
8330         /* Find the last range that starts before 'target' */
8331         while (hi - lo > 1) {
8332                 int mid = (lo + hi) / 2;
8333                 sector_t a = BB_OFFSET(p[mid]);
8334                 if (a < target)
8335                         lo = mid;
8336                 else
8337                         hi = mid;
8338         }
8339         if (hi > lo) {
8340                 /* p[lo] is the last range that could overlap the
8341                  * current range.  Earlier ranges could also overlap,
8342                  * but only this one can overlap the end of the range.
8343                  */
8344                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8345                         /* Partial overlap, leave the tail of this range */
8346                         int ack = BB_ACK(p[lo]);
8347                         sector_t a = BB_OFFSET(p[lo]);
8348                         sector_t end = a + BB_LEN(p[lo]);
8349
8350                         if (a < s) {
8351                                 /* we need to split this range */
8352                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8353                                         rv = -ENOSPC;
8354                                         goto out;
8355                                 }
8356                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8357                                 bb->count++;
8358                                 p[lo] = BB_MAKE(a, s-a, ack);
8359                                 lo++;
8360                         }
8361                         p[lo] = BB_MAKE(target, end - target, ack);
8362                         /* there is no longer an overlap */
8363                         hi = lo;
8364                         lo--;
8365                 }
8366                 while (lo >= 0 &&
8367                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8368                         /* This range does overlap */
8369                         if (BB_OFFSET(p[lo]) < s) {
8370                                 /* Keep the early parts of this range. */
8371                                 int ack = BB_ACK(p[lo]);
8372                                 sector_t start = BB_OFFSET(p[lo]);
8373                                 p[lo] = BB_MAKE(start, s - start, ack);
8374                                 /* now low doesn't overlap, so.. */
8375                                 break;
8376                         }
8377                         lo--;
8378                 }
8379                 /* 'lo' is strictly before, 'hi' is strictly after,
8380                  * anything between needs to be discarded
8381                  */
8382                 if (hi - lo > 1) {
8383                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8384                         bb->count -= (hi - lo - 1);
8385                 }
8386         }
8387
8388         bb->changed = 1;
8389 out:
8390         write_sequnlock_irq(&bb->lock);
8391         return rv;
8392 }
8393
8394 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8395                          int is_new)
8396 {
8397         if (is_new)
8398                 s += rdev->new_data_offset;
8399         else
8400                 s += rdev->data_offset;
8401         return md_clear_badblocks(&rdev->badblocks,
8402                                   s, sectors);
8403 }
8404 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8405
8406 /*
8407  * Acknowledge all bad blocks in a list.
8408  * This only succeeds if ->changed is clear.  It is used by
8409  * in-kernel metadata updates
8410  */
8411 void md_ack_all_badblocks(struct badblocks *bb)
8412 {
8413         if (bb->page == NULL || bb->changed)
8414                 /* no point even trying */
8415                 return;
8416         write_seqlock_irq(&bb->lock);
8417
8418         if (bb->changed == 0 && bb->unacked_exist) {
8419                 u64 *p = bb->page;
8420                 int i;
8421                 for (i = 0; i < bb->count ; i++) {
8422                         if (!BB_ACK(p[i])) {
8423                                 sector_t start = BB_OFFSET(p[i]);
8424                                 int len = BB_LEN(p[i]);
8425                                 p[i] = BB_MAKE(start, len, 1);
8426                         }
8427                 }
8428                 bb->unacked_exist = 0;
8429         }
8430         write_sequnlock_irq(&bb->lock);
8431 }
8432 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8433
8434 /* sysfs access to bad-blocks list.
8435  * We present two files.
8436  * 'bad-blocks' lists sector numbers and lengths of ranges that
8437  *    are recorded as bad.  The list is truncated to fit within
8438  *    the one-page limit of sysfs.
8439  *    Writing "sector length" to this file adds an acknowledged
8440  *    bad block list.
8441  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8442  *    been acknowledged.  Writing to this file adds bad blocks
8443  *    without acknowledging them.  This is largely for testing.
8444  */
8445
8446 static ssize_t
8447 badblocks_show(struct badblocks *bb, char *page, int unack)
8448 {
8449         size_t len;
8450         int i;
8451         u64 *p = bb->page;
8452         unsigned seq;
8453
8454         if (bb->shift < 0)
8455                 return 0;
8456
8457 retry:
8458         seq = read_seqbegin(&bb->lock);
8459
8460         len = 0;
8461         i = 0;
8462
8463         while (len < PAGE_SIZE && i < bb->count) {
8464                 sector_t s = BB_OFFSET(p[i]);
8465                 unsigned int length = BB_LEN(p[i]);
8466                 int ack = BB_ACK(p[i]);
8467                 i++;
8468
8469                 if (unack && ack)
8470                         continue;
8471
8472                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8473                                 (unsigned long long)s << bb->shift,
8474                                 length << bb->shift);
8475         }
8476         if (unack && len == 0)
8477                 bb->unacked_exist = 0;
8478
8479         if (read_seqretry(&bb->lock, seq))
8480                 goto retry;
8481
8482         return len;
8483 }
8484
8485 #define DO_DEBUG 1
8486
8487 static ssize_t
8488 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8489 {
8490         unsigned long long sector;
8491         int length;
8492         char newline;
8493 #ifdef DO_DEBUG
8494         /* Allow clearing via sysfs *only* for testing/debugging.
8495          * Normally only a successful write may clear a badblock
8496          */
8497         int clear = 0;
8498         if (page[0] == '-') {
8499                 clear = 1;
8500                 page++;
8501         }
8502 #endif /* DO_DEBUG */
8503
8504         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8505         case 3:
8506                 if (newline != '\n')
8507                         return -EINVAL;
8508         case 2:
8509                 if (length <= 0)
8510                         return -EINVAL;
8511                 break;
8512         default:
8513                 return -EINVAL;
8514         }
8515
8516 #ifdef DO_DEBUG
8517         if (clear) {
8518                 md_clear_badblocks(bb, sector, length);
8519                 return len;
8520         }
8521 #endif /* DO_DEBUG */
8522         if (md_set_badblocks(bb, sector, length, !unack))
8523                 return len;
8524         else
8525                 return -ENOSPC;
8526 }
8527
8528 static int md_notify_reboot(struct notifier_block *this,
8529                             unsigned long code, void *x)
8530 {
8531         struct list_head *tmp;
8532         struct mddev *mddev;
8533         int need_delay = 0;
8534
8535         for_each_mddev(mddev, tmp) {
8536                 if (mddev_trylock(mddev)) {
8537                         if (mddev->pers)
8538                                 __md_stop_writes(mddev);
8539                         if (mddev->persistent)
8540                                 mddev->safemode = 2;
8541                         mddev_unlock(mddev);
8542                 }
8543                 need_delay = 1;
8544         }
8545         /*
8546          * certain more exotic SCSI devices are known to be
8547          * volatile wrt too early system reboots. While the
8548          * right place to handle this issue is the given
8549          * driver, we do want to have a safe RAID driver ...
8550          */
8551         if (need_delay)
8552                 mdelay(1000*1);
8553
8554         return NOTIFY_DONE;
8555 }
8556
8557 static struct notifier_block md_notifier = {
8558         .notifier_call  = md_notify_reboot,
8559         .next           = NULL,
8560         .priority       = INT_MAX, /* before any real devices */
8561 };
8562
8563 static void md_geninit(void)
8564 {
8565         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8566
8567         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8568 }
8569
8570 static int __init md_init(void)
8571 {
8572         int ret = -ENOMEM;
8573
8574         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8575         if (!md_wq)
8576                 goto err_wq;
8577
8578         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8579         if (!md_misc_wq)
8580                 goto err_misc_wq;
8581
8582         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8583                 goto err_md;
8584
8585         if ((ret = register_blkdev(0, "mdp")) < 0)
8586                 goto err_mdp;
8587         mdp_major = ret;
8588
8589         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8590                             md_probe, NULL, NULL);
8591         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8592                             md_probe, NULL, NULL);
8593
8594         register_reboot_notifier(&md_notifier);
8595         raid_table_header = register_sysctl_table(raid_root_table);
8596
8597         md_geninit();
8598         return 0;
8599
8600 err_mdp:
8601         unregister_blkdev(MD_MAJOR, "md");
8602 err_md:
8603         destroy_workqueue(md_misc_wq);
8604 err_misc_wq:
8605         destroy_workqueue(md_wq);
8606 err_wq:
8607         return ret;
8608 }
8609
8610 #ifndef MODULE
8611
8612 /*
8613  * Searches all registered partitions for autorun RAID arrays
8614  * at boot time.
8615  */
8616
8617 static LIST_HEAD(all_detected_devices);
8618 struct detected_devices_node {
8619         struct list_head list;
8620         dev_t dev;
8621 };
8622
8623 void md_autodetect_dev(dev_t dev)
8624 {
8625         struct detected_devices_node *node_detected_dev;
8626
8627         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8628         if (node_detected_dev) {
8629                 node_detected_dev->dev = dev;
8630                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8631         } else {
8632                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8633                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8634         }
8635 }
8636
8637
8638 static void autostart_arrays(int part)
8639 {
8640         struct md_rdev *rdev;
8641         struct detected_devices_node *node_detected_dev;
8642         dev_t dev;
8643         int i_scanned, i_passed;
8644
8645         i_scanned = 0;
8646         i_passed = 0;
8647
8648         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8649
8650         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8651                 i_scanned++;
8652                 node_detected_dev = list_entry(all_detected_devices.next,
8653                                         struct detected_devices_node, list);
8654                 list_del(&node_detected_dev->list);
8655                 dev = node_detected_dev->dev;
8656                 kfree(node_detected_dev);
8657                 rdev = md_import_device(dev,0, 90);
8658                 if (IS_ERR(rdev))
8659                         continue;
8660
8661                 if (test_bit(Faulty, &rdev->flags)) {
8662                         MD_BUG();
8663                         continue;
8664                 }
8665                 set_bit(AutoDetected, &rdev->flags);
8666                 list_add(&rdev->same_set, &pending_raid_disks);
8667                 i_passed++;
8668         }
8669
8670         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8671                                                 i_scanned, i_passed);
8672
8673         autorun_devices(part);
8674 }
8675
8676 #endif /* !MODULE */
8677
8678 static __exit void md_exit(void)
8679 {
8680         struct mddev *mddev;
8681         struct list_head *tmp;
8682         int delay = 1;
8683
8684         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8685         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8686
8687         unregister_blkdev(MD_MAJOR,"md");
8688         unregister_blkdev(mdp_major, "mdp");
8689         unregister_reboot_notifier(&md_notifier);
8690         unregister_sysctl_table(raid_table_header);
8691
8692         /* We cannot unload the modules while some process is
8693          * waiting for us in select() or poll() - wake them up
8694          */
8695         md_unloading = 1;
8696         while (waitqueue_active(&md_event_waiters)) {
8697                 /* not safe to leave yet */
8698                 wake_up(&md_event_waiters);
8699                 msleep(delay);
8700                 delay += delay;
8701         }
8702         remove_proc_entry("mdstat", NULL);
8703
8704         for_each_mddev(mddev, tmp) {
8705                 export_array(mddev);
8706                 mddev->hold_active = 0;
8707         }
8708         destroy_workqueue(md_misc_wq);
8709         destroy_workqueue(md_wq);
8710 }
8711
8712 subsys_initcall(md_init);
8713 module_exit(md_exit)
8714
8715 static int get_ro(char *buffer, struct kernel_param *kp)
8716 {
8717         return sprintf(buffer, "%d", start_readonly);
8718 }
8719 static int set_ro(const char *val, struct kernel_param *kp)
8720 {
8721         char *e;
8722         int num = simple_strtoul(val, &e, 10);
8723         if (*val && (*e == '\0' || *e == '\n')) {
8724                 start_readonly = num;
8725                 return 0;
8726         }
8727         return -EINVAL;
8728 }
8729
8730 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8731 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8732
8733 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8734
8735 EXPORT_SYMBOL(register_md_personality);
8736 EXPORT_SYMBOL(unregister_md_personality);
8737 EXPORT_SYMBOL(md_error);
8738 EXPORT_SYMBOL(md_done_sync);
8739 EXPORT_SYMBOL(md_write_start);
8740 EXPORT_SYMBOL(md_write_end);
8741 EXPORT_SYMBOL(md_register_thread);
8742 EXPORT_SYMBOL(md_unregister_thread);
8743 EXPORT_SYMBOL(md_wakeup_thread);
8744 EXPORT_SYMBOL(md_check_recovery);
8745 EXPORT_SYMBOL(md_reap_sync_thread);
8746 MODULE_LICENSE("GPL");
8747 MODULE_DESCRIPTION("MD RAID framework");
8748 MODULE_ALIAS("md");
8749 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);