md: protect against crash upon fsync on ro array
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         bio->bi_sector += offset;
198         bio->bi_size = size;
199         offset <<= 9;
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         while (bio->bi_idx < bio->bi_vcnt &&
203                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204                 /* remove this whole bio_vec */
205                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206                 bio->bi_idx++;
207         }
208         if (bio->bi_idx < bio->bi_vcnt) {
209                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211         }
212         /* avoid any complications with bi_idx being non-zero*/
213         if (bio->bi_idx) {
214                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216                 bio->bi_vcnt -= bio->bi_idx;
217                 bio->bi_idx = 0;
218         }
219         /* Make sure vcnt and last bv are not too big */
220         bio_for_each_segment(bvec, bio, i) {
221                 if (sofar + bvec->bv_len > size)
222                         bvec->bv_len = size - sofar;
223                 if (bvec->bv_len == 0) {
224                         bio->bi_vcnt = i;
225                         break;
226                 }
227                 sofar += bvec->bv_len;
228         }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246         atomic_inc(&md_event_count);
247         wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256         atomic_inc(&md_event_count);
257         wake_up(&md_event_waiters);
258 }
259
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)                                     \
276                                                                         \
277         for (({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = all_mddevs.next;                                 \
279                 _mddev = NULL;});                                       \
280              ({ if (_tmp != &all_mddevs)                                \
281                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282                 spin_unlock(&all_mddevs_lock);                          \
283                 if (_mddev) mddev_put(_mddev);                          \
284                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
285                 _tmp != &all_mddevs;});                                 \
286              ({ spin_lock(&all_mddevs_lock);                            \
287                 _tmp = _tmp->next;})                                    \
288                 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300         const int rw = bio_data_dir(bio);
301         struct mddev *mddev = q->queuedata;
302         int cpu;
303         unsigned int sectors;
304
305         if (mddev == NULL || mddev->pers == NULL
306             || !mddev->ready) {
307                 bio_io_error(bio);
308                 return;
309         }
310         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
311                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
312                 return;
313         }
314         smp_rmb(); /* Ensure implications of  'active' are visible */
315         rcu_read_lock();
316         if (mddev->suspended) {
317                 DEFINE_WAIT(__wait);
318                 for (;;) {
319                         prepare_to_wait(&mddev->sb_wait, &__wait,
320                                         TASK_UNINTERRUPTIBLE);
321                         if (!mddev->suspended)
322                                 break;
323                         rcu_read_unlock();
324                         schedule();
325                         rcu_read_lock();
326                 }
327                 finish_wait(&mddev->sb_wait, &__wait);
328         }
329         atomic_inc(&mddev->active_io);
330         rcu_read_unlock();
331
332         /*
333          * save the sectors now since our bio can
334          * go away inside make_request
335          */
336         sectors = bio_sectors(bio);
337         mddev->pers->make_request(mddev, bio);
338
339         cpu = part_stat_lock();
340         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
341         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
342         part_stat_unlock();
343
344         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
345                 wake_up(&mddev->sb_wait);
346 }
347
348 /* mddev_suspend makes sure no new requests are submitted
349  * to the device, and that any requests that have been submitted
350  * are completely handled.
351  * Once ->stop is called and completes, the module will be completely
352  * unused.
353  */
354 void mddev_suspend(struct mddev *mddev)
355 {
356         BUG_ON(mddev->suspended);
357         mddev->suspended = 1;
358         synchronize_rcu();
359         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
360         mddev->pers->quiesce(mddev, 1);
361
362         del_timer_sync(&mddev->safemode_timer);
363 }
364 EXPORT_SYMBOL_GPL(mddev_suspend);
365
366 void mddev_resume(struct mddev *mddev)
367 {
368         mddev->suspended = 0;
369         wake_up(&mddev->sb_wait);
370         mddev->pers->quiesce(mddev, 0);
371
372         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
373         md_wakeup_thread(mddev->thread);
374         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
375 }
376 EXPORT_SYMBOL_GPL(mddev_resume);
377
378 int mddev_congested(struct mddev *mddev, int bits)
379 {
380         return mddev->suspended;
381 }
382 EXPORT_SYMBOL(mddev_congested);
383
384 /*
385  * Generic flush handling for md
386  */
387
388 static void md_end_flush(struct bio *bio, int err)
389 {
390         struct md_rdev *rdev = bio->bi_private;
391         struct mddev *mddev = rdev->mddev;
392
393         rdev_dec_pending(rdev, mddev);
394
395         if (atomic_dec_and_test(&mddev->flush_pending)) {
396                 /* The pre-request flush has finished */
397                 queue_work(md_wq, &mddev->flush_work);
398         }
399         bio_put(bio);
400 }
401
402 static void md_submit_flush_data(struct work_struct *ws);
403
404 static void submit_flushes(struct work_struct *ws)
405 {
406         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
407         struct md_rdev *rdev;
408
409         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
410         atomic_set(&mddev->flush_pending, 1);
411         rcu_read_lock();
412         rdev_for_each_rcu(rdev, mddev)
413                 if (rdev->raid_disk >= 0 &&
414                     !test_bit(Faulty, &rdev->flags)) {
415                         /* Take two references, one is dropped
416                          * when request finishes, one after
417                          * we reclaim rcu_read_lock
418                          */
419                         struct bio *bi;
420                         atomic_inc(&rdev->nr_pending);
421                         atomic_inc(&rdev->nr_pending);
422                         rcu_read_unlock();
423                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
424                         bi->bi_end_io = md_end_flush;
425                         bi->bi_private = rdev;
426                         bi->bi_bdev = rdev->bdev;
427                         atomic_inc(&mddev->flush_pending);
428                         submit_bio(WRITE_FLUSH, bi);
429                         rcu_read_lock();
430                         rdev_dec_pending(rdev, mddev);
431                 }
432         rcu_read_unlock();
433         if (atomic_dec_and_test(&mddev->flush_pending))
434                 queue_work(md_wq, &mddev->flush_work);
435 }
436
437 static void md_submit_flush_data(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct bio *bio = mddev->flush_bio;
441
442         if (bio->bi_size == 0)
443                 /* an empty barrier - all done */
444                 bio_endio(bio, 0);
445         else {
446                 bio->bi_rw &= ~REQ_FLUSH;
447                 mddev->pers->make_request(mddev, bio);
448         }
449
450         mddev->flush_bio = NULL;
451         wake_up(&mddev->sb_wait);
452 }
453
454 void md_flush_request(struct mddev *mddev, struct bio *bio)
455 {
456         spin_lock_irq(&mddev->write_lock);
457         wait_event_lock_irq(mddev->sb_wait,
458                             !mddev->flush_bio,
459                             mddev->write_lock);
460         mddev->flush_bio = bio;
461         spin_unlock_irq(&mddev->write_lock);
462
463         INIT_WORK(&mddev->flush_work, submit_flushes);
464         queue_work(md_wq, &mddev->flush_work);
465 }
466 EXPORT_SYMBOL(md_flush_request);
467
468 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
469 {
470         struct mddev *mddev = cb->data;
471         md_wakeup_thread(mddev->thread);
472         kfree(cb);
473 }
474 EXPORT_SYMBOL(md_unplug);
475
476 static inline struct mddev *mddev_get(struct mddev *mddev)
477 {
478         atomic_inc(&mddev->active);
479         return mddev;
480 }
481
482 static void mddev_delayed_delete(struct work_struct *ws);
483
484 static void mddev_put(struct mddev *mddev)
485 {
486         struct bio_set *bs = NULL;
487
488         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
489                 return;
490         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
491             mddev->ctime == 0 && !mddev->hold_active) {
492                 /* Array is not configured at all, and not held active,
493                  * so destroy it */
494                 list_del_init(&mddev->all_mddevs);
495                 bs = mddev->bio_set;
496                 mddev->bio_set = NULL;
497                 if (mddev->gendisk) {
498                         /* We did a probe so need to clean up.  Call
499                          * queue_work inside the spinlock so that
500                          * flush_workqueue() after mddev_find will
501                          * succeed in waiting for the work to be done.
502                          */
503                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
504                         queue_work(md_misc_wq, &mddev->del_work);
505                 } else
506                         kfree(mddev);
507         }
508         spin_unlock(&all_mddevs_lock);
509         if (bs)
510                 bioset_free(bs);
511 }
512
513 void mddev_init(struct mddev *mddev)
514 {
515         mutex_init(&mddev->open_mutex);
516         mutex_init(&mddev->reconfig_mutex);
517         mutex_init(&mddev->bitmap_info.mutex);
518         INIT_LIST_HEAD(&mddev->disks);
519         INIT_LIST_HEAD(&mddev->all_mddevs);
520         init_timer(&mddev->safemode_timer);
521         atomic_set(&mddev->active, 1);
522         atomic_set(&mddev->openers, 0);
523         atomic_set(&mddev->active_io, 0);
524         spin_lock_init(&mddev->write_lock);
525         atomic_set(&mddev->flush_pending, 0);
526         init_waitqueue_head(&mddev->sb_wait);
527         init_waitqueue_head(&mddev->recovery_wait);
528         mddev->reshape_position = MaxSector;
529         mddev->reshape_backwards = 0;
530         mddev->resync_min = 0;
531         mddev->resync_max = MaxSector;
532         mddev->level = LEVEL_NONE;
533 }
534 EXPORT_SYMBOL_GPL(mddev_init);
535
536 static struct mddev * mddev_find(dev_t unit)
537 {
538         struct mddev *mddev, *new = NULL;
539
540         if (unit && MAJOR(unit) != MD_MAJOR)
541                 unit &= ~((1<<MdpMinorShift)-1);
542
543  retry:
544         spin_lock(&all_mddevs_lock);
545
546         if (unit) {
547                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
548                         if (mddev->unit == unit) {
549                                 mddev_get(mddev);
550                                 spin_unlock(&all_mddevs_lock);
551                                 kfree(new);
552                                 return mddev;
553                         }
554
555                 if (new) {
556                         list_add(&new->all_mddevs, &all_mddevs);
557                         spin_unlock(&all_mddevs_lock);
558                         new->hold_active = UNTIL_IOCTL;
559                         return new;
560                 }
561         } else if (new) {
562                 /* find an unused unit number */
563                 static int next_minor = 512;
564                 int start = next_minor;
565                 int is_free = 0;
566                 int dev = 0;
567                 while (!is_free) {
568                         dev = MKDEV(MD_MAJOR, next_minor);
569                         next_minor++;
570                         if (next_minor > MINORMASK)
571                                 next_minor = 0;
572                         if (next_minor == start) {
573                                 /* Oh dear, all in use. */
574                                 spin_unlock(&all_mddevs_lock);
575                                 kfree(new);
576                                 return NULL;
577                         }
578                                 
579                         is_free = 1;
580                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581                                 if (mddev->unit == dev) {
582                                         is_free = 0;
583                                         break;
584                                 }
585                 }
586                 new->unit = dev;
587                 new->md_minor = MINOR(dev);
588                 new->hold_active = UNTIL_STOP;
589                 list_add(&new->all_mddevs, &all_mddevs);
590                 spin_unlock(&all_mddevs_lock);
591                 return new;
592         }
593         spin_unlock(&all_mddevs_lock);
594
595         new = kzalloc(sizeof(*new), GFP_KERNEL);
596         if (!new)
597                 return NULL;
598
599         new->unit = unit;
600         if (MAJOR(unit) == MD_MAJOR)
601                 new->md_minor = MINOR(unit);
602         else
603                 new->md_minor = MINOR(unit) >> MdpMinorShift;
604
605         mddev_init(new);
606
607         goto retry;
608 }
609
610 static inline int mddev_lock(struct mddev * mddev)
611 {
612         return mutex_lock_interruptible(&mddev->reconfig_mutex);
613 }
614
615 static inline int mddev_is_locked(struct mddev *mddev)
616 {
617         return mutex_is_locked(&mddev->reconfig_mutex);
618 }
619
620 static inline int mddev_trylock(struct mddev * mddev)
621 {
622         return mutex_trylock(&mddev->reconfig_mutex);
623 }
624
625 static struct attribute_group md_redundancy_group;
626
627 static void mddev_unlock(struct mddev * mddev)
628 {
629         if (mddev->to_remove) {
630                 /* These cannot be removed under reconfig_mutex as
631                  * an access to the files will try to take reconfig_mutex
632                  * while holding the file unremovable, which leads to
633                  * a deadlock.
634                  * So hold set sysfs_active while the remove in happeing,
635                  * and anything else which might set ->to_remove or my
636                  * otherwise change the sysfs namespace will fail with
637                  * -EBUSY if sysfs_active is still set.
638                  * We set sysfs_active under reconfig_mutex and elsewhere
639                  * test it under the same mutex to ensure its correct value
640                  * is seen.
641                  */
642                 struct attribute_group *to_remove = mddev->to_remove;
643                 mddev->to_remove = NULL;
644                 mddev->sysfs_active = 1;
645                 mutex_unlock(&mddev->reconfig_mutex);
646
647                 if (mddev->kobj.sd) {
648                         if (to_remove != &md_redundancy_group)
649                                 sysfs_remove_group(&mddev->kobj, to_remove);
650                         if (mddev->pers == NULL ||
651                             mddev->pers->sync_request == NULL) {
652                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
653                                 if (mddev->sysfs_action)
654                                         sysfs_put(mddev->sysfs_action);
655                                 mddev->sysfs_action = NULL;
656                         }
657                 }
658                 mddev->sysfs_active = 0;
659         } else
660                 mutex_unlock(&mddev->reconfig_mutex);
661
662         /* As we've dropped the mutex we need a spinlock to
663          * make sure the thread doesn't disappear
664          */
665         spin_lock(&pers_lock);
666         md_wakeup_thread(mddev->thread);
667         spin_unlock(&pers_lock);
668 }
669
670 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
671 {
672         struct md_rdev *rdev;
673
674         rdev_for_each(rdev, mddev)
675                 if (rdev->desc_nr == nr)
676                         return rdev;
677
678         return NULL;
679 }
680
681 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
682 {
683         struct md_rdev *rdev;
684
685         rdev_for_each_rcu(rdev, mddev)
686                 if (rdev->desc_nr == nr)
687                         return rdev;
688
689         return NULL;
690 }
691
692 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
693 {
694         struct md_rdev *rdev;
695
696         rdev_for_each(rdev, mddev)
697                 if (rdev->bdev->bd_dev == dev)
698                         return rdev;
699
700         return NULL;
701 }
702
703 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
704 {
705         struct md_rdev *rdev;
706
707         rdev_for_each_rcu(rdev, mddev)
708                 if (rdev->bdev->bd_dev == dev)
709                         return rdev;
710
711         return NULL;
712 }
713
714 static struct md_personality *find_pers(int level, char *clevel)
715 {
716         struct md_personality *pers;
717         list_for_each_entry(pers, &pers_list, list) {
718                 if (level != LEVEL_NONE && pers->level == level)
719                         return pers;
720                 if (strcmp(pers->name, clevel)==0)
721                         return pers;
722         }
723         return NULL;
724 }
725
726 /* return the offset of the super block in 512byte sectors */
727 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
728 {
729         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
730         return MD_NEW_SIZE_SECTORS(num_sectors);
731 }
732
733 static int alloc_disk_sb(struct md_rdev * rdev)
734 {
735         if (rdev->sb_page)
736                 MD_BUG();
737
738         rdev->sb_page = alloc_page(GFP_KERNEL);
739         if (!rdev->sb_page) {
740                 printk(KERN_ALERT "md: out of memory.\n");
741                 return -ENOMEM;
742         }
743
744         return 0;
745 }
746
747 void md_rdev_clear(struct md_rdev *rdev)
748 {
749         if (rdev->sb_page) {
750                 put_page(rdev->sb_page);
751                 rdev->sb_loaded = 0;
752                 rdev->sb_page = NULL;
753                 rdev->sb_start = 0;
754                 rdev->sectors = 0;
755         }
756         if (rdev->bb_page) {
757                 put_page(rdev->bb_page);
758                 rdev->bb_page = NULL;
759         }
760         kfree(rdev->badblocks.page);
761         rdev->badblocks.page = NULL;
762 }
763 EXPORT_SYMBOL_GPL(md_rdev_clear);
764
765 static void super_written(struct bio *bio, int error)
766 {
767         struct md_rdev *rdev = bio->bi_private;
768         struct mddev *mddev = rdev->mddev;
769
770         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
771                 printk("md: super_written gets error=%d, uptodate=%d\n",
772                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
773                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
774                 md_error(mddev, rdev);
775         }
776
777         if (atomic_dec_and_test(&mddev->pending_writes))
778                 wake_up(&mddev->sb_wait);
779         bio_put(bio);
780 }
781
782 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
783                    sector_t sector, int size, struct page *page)
784 {
785         /* write first size bytes of page to sector of rdev
786          * Increment mddev->pending_writes before returning
787          * and decrement it on completion, waking up sb_wait
788          * if zero is reached.
789          * If an error occurred, call md_error
790          */
791         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
792
793         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
794         bio->bi_sector = sector;
795         bio_add_page(bio, page, size, 0);
796         bio->bi_private = rdev;
797         bio->bi_end_io = super_written;
798
799         atomic_inc(&mddev->pending_writes);
800         submit_bio(WRITE_FLUSH_FUA, bio);
801 }
802
803 void md_super_wait(struct mddev *mddev)
804 {
805         /* wait for all superblock writes that were scheduled to complete */
806         DEFINE_WAIT(wq);
807         for(;;) {
808                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
809                 if (atomic_read(&mddev->pending_writes)==0)
810                         break;
811                 schedule();
812         }
813         finish_wait(&mddev->sb_wait, &wq);
814 }
815
816 static void bi_complete(struct bio *bio, int error)
817 {
818         complete((struct completion*)bio->bi_private);
819 }
820
821 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
822                  struct page *page, int rw, bool metadata_op)
823 {
824         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
825         struct completion event;
826         int ret;
827
828         rw |= REQ_SYNC;
829
830         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
831                 rdev->meta_bdev : rdev->bdev;
832         if (metadata_op)
833                 bio->bi_sector = sector + rdev->sb_start;
834         else if (rdev->mddev->reshape_position != MaxSector &&
835                  (rdev->mddev->reshape_backwards ==
836                   (sector >= rdev->mddev->reshape_position)))
837                 bio->bi_sector = sector + rdev->new_data_offset;
838         else
839                 bio->bi_sector = sector + rdev->data_offset;
840         bio_add_page(bio, page, size, 0);
841         init_completion(&event);
842         bio->bi_private = &event;
843         bio->bi_end_io = bi_complete;
844         submit_bio(rw, bio);
845         wait_for_completion(&event);
846
847         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
848         bio_put(bio);
849         return ret;
850 }
851 EXPORT_SYMBOL_GPL(sync_page_io);
852
853 static int read_disk_sb(struct md_rdev * rdev, int size)
854 {
855         char b[BDEVNAME_SIZE];
856         if (!rdev->sb_page) {
857                 MD_BUG();
858                 return -EINVAL;
859         }
860         if (rdev->sb_loaded)
861                 return 0;
862
863
864         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
865                 goto fail;
866         rdev->sb_loaded = 1;
867         return 0;
868
869 fail:
870         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
871                 bdevname(rdev->bdev,b));
872         return -EINVAL;
873 }
874
875 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
876 {
877         return  sb1->set_uuid0 == sb2->set_uuid0 &&
878                 sb1->set_uuid1 == sb2->set_uuid1 &&
879                 sb1->set_uuid2 == sb2->set_uuid2 &&
880                 sb1->set_uuid3 == sb2->set_uuid3;
881 }
882
883 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
884 {
885         int ret;
886         mdp_super_t *tmp1, *tmp2;
887
888         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
889         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
890
891         if (!tmp1 || !tmp2) {
892                 ret = 0;
893                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
894                 goto abort;
895         }
896
897         *tmp1 = *sb1;
898         *tmp2 = *sb2;
899
900         /*
901          * nr_disks is not constant
902          */
903         tmp1->nr_disks = 0;
904         tmp2->nr_disks = 0;
905
906         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
907 abort:
908         kfree(tmp1);
909         kfree(tmp2);
910         return ret;
911 }
912
913
914 static u32 md_csum_fold(u32 csum)
915 {
916         csum = (csum & 0xffff) + (csum >> 16);
917         return (csum & 0xffff) + (csum >> 16);
918 }
919
920 static unsigned int calc_sb_csum(mdp_super_t * sb)
921 {
922         u64 newcsum = 0;
923         u32 *sb32 = (u32*)sb;
924         int i;
925         unsigned int disk_csum, csum;
926
927         disk_csum = sb->sb_csum;
928         sb->sb_csum = 0;
929
930         for (i = 0; i < MD_SB_BYTES/4 ; i++)
931                 newcsum += sb32[i];
932         csum = (newcsum & 0xffffffff) + (newcsum>>32);
933
934
935 #ifdef CONFIG_ALPHA
936         /* This used to use csum_partial, which was wrong for several
937          * reasons including that different results are returned on
938          * different architectures.  It isn't critical that we get exactly
939          * the same return value as before (we always csum_fold before
940          * testing, and that removes any differences).  However as we
941          * know that csum_partial always returned a 16bit value on
942          * alphas, do a fold to maximise conformity to previous behaviour.
943          */
944         sb->sb_csum = md_csum_fold(disk_csum);
945 #else
946         sb->sb_csum = disk_csum;
947 #endif
948         return csum;
949 }
950
951
952 /*
953  * Handle superblock details.
954  * We want to be able to handle multiple superblock formats
955  * so we have a common interface to them all, and an array of
956  * different handlers.
957  * We rely on user-space to write the initial superblock, and support
958  * reading and updating of superblocks.
959  * Interface methods are:
960  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
961  *      loads and validates a superblock on dev.
962  *      if refdev != NULL, compare superblocks on both devices
963  *    Return:
964  *      0 - dev has a superblock that is compatible with refdev
965  *      1 - dev has a superblock that is compatible and newer than refdev
966  *          so dev should be used as the refdev in future
967  *     -EINVAL superblock incompatible or invalid
968  *     -othererror e.g. -EIO
969  *
970  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
971  *      Verify that dev is acceptable into mddev.
972  *       The first time, mddev->raid_disks will be 0, and data from
973  *       dev should be merged in.  Subsequent calls check that dev
974  *       is new enough.  Return 0 or -EINVAL
975  *
976  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
977  *     Update the superblock for rdev with data in mddev
978  *     This does not write to disc.
979  *
980  */
981
982 struct super_type  {
983         char                *name;
984         struct module       *owner;
985         int                 (*load_super)(struct md_rdev *rdev,
986                                           struct md_rdev *refdev,
987                                           int minor_version);
988         int                 (*validate_super)(struct mddev *mddev,
989                                               struct md_rdev *rdev);
990         void                (*sync_super)(struct mddev *mddev,
991                                           struct md_rdev *rdev);
992         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
993                                                 sector_t num_sectors);
994         int                 (*allow_new_offset)(struct md_rdev *rdev,
995                                                 unsigned long long new_offset);
996 };
997
998 /*
999  * Check that the given mddev has no bitmap.
1000  *
1001  * This function is called from the run method of all personalities that do not
1002  * support bitmaps. It prints an error message and returns non-zero if mddev
1003  * has a bitmap. Otherwise, it returns 0.
1004  *
1005  */
1006 int md_check_no_bitmap(struct mddev *mddev)
1007 {
1008         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1009                 return 0;
1010         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1011                 mdname(mddev), mddev->pers->name);
1012         return 1;
1013 }
1014 EXPORT_SYMBOL(md_check_no_bitmap);
1015
1016 /*
1017  * load_super for 0.90.0 
1018  */
1019 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1020 {
1021         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1022         mdp_super_t *sb;
1023         int ret;
1024
1025         /*
1026          * Calculate the position of the superblock (512byte sectors),
1027          * it's at the end of the disk.
1028          *
1029          * It also happens to be a multiple of 4Kb.
1030          */
1031         rdev->sb_start = calc_dev_sboffset(rdev);
1032
1033         ret = read_disk_sb(rdev, MD_SB_BYTES);
1034         if (ret) return ret;
1035
1036         ret = -EINVAL;
1037
1038         bdevname(rdev->bdev, b);
1039         sb = page_address(rdev->sb_page);
1040
1041         if (sb->md_magic != MD_SB_MAGIC) {
1042                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1043                        b);
1044                 goto abort;
1045         }
1046
1047         if (sb->major_version != 0 ||
1048             sb->minor_version < 90 ||
1049             sb->minor_version > 91) {
1050                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1051                         sb->major_version, sb->minor_version,
1052                         b);
1053                 goto abort;
1054         }
1055
1056         if (sb->raid_disks <= 0)
1057                 goto abort;
1058
1059         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1060                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1061                         b);
1062                 goto abort;
1063         }
1064
1065         rdev->preferred_minor = sb->md_minor;
1066         rdev->data_offset = 0;
1067         rdev->new_data_offset = 0;
1068         rdev->sb_size = MD_SB_BYTES;
1069         rdev->badblocks.shift = -1;
1070
1071         if (sb->level == LEVEL_MULTIPATH)
1072                 rdev->desc_nr = -1;
1073         else
1074                 rdev->desc_nr = sb->this_disk.number;
1075
1076         if (!refdev) {
1077                 ret = 1;
1078         } else {
1079                 __u64 ev1, ev2;
1080                 mdp_super_t *refsb = page_address(refdev->sb_page);
1081                 if (!uuid_equal(refsb, sb)) {
1082                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1083                                 b, bdevname(refdev->bdev,b2));
1084                         goto abort;
1085                 }
1086                 if (!sb_equal(refsb, sb)) {
1087                         printk(KERN_WARNING "md: %s has same UUID"
1088                                " but different superblock to %s\n",
1089                                b, bdevname(refdev->bdev, b2));
1090                         goto abort;
1091                 }
1092                 ev1 = md_event(sb);
1093                 ev2 = md_event(refsb);
1094                 if (ev1 > ev2)
1095                         ret = 1;
1096                 else 
1097                         ret = 0;
1098         }
1099         rdev->sectors = rdev->sb_start;
1100         /* Limit to 4TB as metadata cannot record more than that.
1101          * (not needed for Linear and RAID0 as metadata doesn't
1102          * record this size)
1103          */
1104         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1105                 rdev->sectors = (2ULL << 32) - 2;
1106
1107         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1108                 /* "this cannot possibly happen" ... */
1109                 ret = -EINVAL;
1110
1111  abort:
1112         return ret;
1113 }
1114
1115 /*
1116  * validate_super for 0.90.0
1117  */
1118 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1119 {
1120         mdp_disk_t *desc;
1121         mdp_super_t *sb = page_address(rdev->sb_page);
1122         __u64 ev1 = md_event(sb);
1123
1124         rdev->raid_disk = -1;
1125         clear_bit(Faulty, &rdev->flags);
1126         clear_bit(In_sync, &rdev->flags);
1127         clear_bit(WriteMostly, &rdev->flags);
1128
1129         if (mddev->raid_disks == 0) {
1130                 mddev->major_version = 0;
1131                 mddev->minor_version = sb->minor_version;
1132                 mddev->patch_version = sb->patch_version;
1133                 mddev->external = 0;
1134                 mddev->chunk_sectors = sb->chunk_size >> 9;
1135                 mddev->ctime = sb->ctime;
1136                 mddev->utime = sb->utime;
1137                 mddev->level = sb->level;
1138                 mddev->clevel[0] = 0;
1139                 mddev->layout = sb->layout;
1140                 mddev->raid_disks = sb->raid_disks;
1141                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1142                 mddev->events = ev1;
1143                 mddev->bitmap_info.offset = 0;
1144                 mddev->bitmap_info.space = 0;
1145                 /* bitmap can use 60 K after the 4K superblocks */
1146                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1147                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1148                 mddev->reshape_backwards = 0;
1149
1150                 if (mddev->minor_version >= 91) {
1151                         mddev->reshape_position = sb->reshape_position;
1152                         mddev->delta_disks = sb->delta_disks;
1153                         mddev->new_level = sb->new_level;
1154                         mddev->new_layout = sb->new_layout;
1155                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1156                         if (mddev->delta_disks < 0)
1157                                 mddev->reshape_backwards = 1;
1158                 } else {
1159                         mddev->reshape_position = MaxSector;
1160                         mddev->delta_disks = 0;
1161                         mddev->new_level = mddev->level;
1162                         mddev->new_layout = mddev->layout;
1163                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1164                 }
1165
1166                 if (sb->state & (1<<MD_SB_CLEAN))
1167                         mddev->recovery_cp = MaxSector;
1168                 else {
1169                         if (sb->events_hi == sb->cp_events_hi && 
1170                                 sb->events_lo == sb->cp_events_lo) {
1171                                 mddev->recovery_cp = sb->recovery_cp;
1172                         } else
1173                                 mddev->recovery_cp = 0;
1174                 }
1175
1176                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1177                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1178                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1179                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1180
1181                 mddev->max_disks = MD_SB_DISKS;
1182
1183                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1184                     mddev->bitmap_info.file == NULL) {
1185                         mddev->bitmap_info.offset =
1186                                 mddev->bitmap_info.default_offset;
1187                         mddev->bitmap_info.space =
1188                                 mddev->bitmap_info.space;
1189                 }
1190
1191         } else if (mddev->pers == NULL) {
1192                 /* Insist on good event counter while assembling, except
1193                  * for spares (which don't need an event count) */
1194                 ++ev1;
1195                 if (sb->disks[rdev->desc_nr].state & (
1196                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1197                         if (ev1 < mddev->events) 
1198                                 return -EINVAL;
1199         } else if (mddev->bitmap) {
1200                 /* if adding to array with a bitmap, then we can accept an
1201                  * older device ... but not too old.
1202                  */
1203                 if (ev1 < mddev->bitmap->events_cleared)
1204                         return 0;
1205         } else {
1206                 if (ev1 < mddev->events)
1207                         /* just a hot-add of a new device, leave raid_disk at -1 */
1208                         return 0;
1209         }
1210
1211         if (mddev->level != LEVEL_MULTIPATH) {
1212                 desc = sb->disks + rdev->desc_nr;
1213
1214                 if (desc->state & (1<<MD_DISK_FAULTY))
1215                         set_bit(Faulty, &rdev->flags);
1216                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1217                             desc->raid_disk < mddev->raid_disks */) {
1218                         set_bit(In_sync, &rdev->flags);
1219                         rdev->raid_disk = desc->raid_disk;
1220                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1221                         /* active but not in sync implies recovery up to
1222                          * reshape position.  We don't know exactly where
1223                          * that is, so set to zero for now */
1224                         if (mddev->minor_version >= 91) {
1225                                 rdev->recovery_offset = 0;
1226                                 rdev->raid_disk = desc->raid_disk;
1227                         }
1228                 }
1229                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1230                         set_bit(WriteMostly, &rdev->flags);
1231         } else /* MULTIPATH are always insync */
1232                 set_bit(In_sync, &rdev->flags);
1233         return 0;
1234 }
1235
1236 /*
1237  * sync_super for 0.90.0
1238  */
1239 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1240 {
1241         mdp_super_t *sb;
1242         struct md_rdev *rdev2;
1243         int next_spare = mddev->raid_disks;
1244
1245
1246         /* make rdev->sb match mddev data..
1247          *
1248          * 1/ zero out disks
1249          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1250          * 3/ any empty disks < next_spare become removed
1251          *
1252          * disks[0] gets initialised to REMOVED because
1253          * we cannot be sure from other fields if it has
1254          * been initialised or not.
1255          */
1256         int i;
1257         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1258
1259         rdev->sb_size = MD_SB_BYTES;
1260
1261         sb = page_address(rdev->sb_page);
1262
1263         memset(sb, 0, sizeof(*sb));
1264
1265         sb->md_magic = MD_SB_MAGIC;
1266         sb->major_version = mddev->major_version;
1267         sb->patch_version = mddev->patch_version;
1268         sb->gvalid_words  = 0; /* ignored */
1269         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1270         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1271         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1272         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1273
1274         sb->ctime = mddev->ctime;
1275         sb->level = mddev->level;
1276         sb->size = mddev->dev_sectors / 2;
1277         sb->raid_disks = mddev->raid_disks;
1278         sb->md_minor = mddev->md_minor;
1279         sb->not_persistent = 0;
1280         sb->utime = mddev->utime;
1281         sb->state = 0;
1282         sb->events_hi = (mddev->events>>32);
1283         sb->events_lo = (u32)mddev->events;
1284
1285         if (mddev->reshape_position == MaxSector)
1286                 sb->minor_version = 90;
1287         else {
1288                 sb->minor_version = 91;
1289                 sb->reshape_position = mddev->reshape_position;
1290                 sb->new_level = mddev->new_level;
1291                 sb->delta_disks = mddev->delta_disks;
1292                 sb->new_layout = mddev->new_layout;
1293                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1294         }
1295         mddev->minor_version = sb->minor_version;
1296         if (mddev->in_sync)
1297         {
1298                 sb->recovery_cp = mddev->recovery_cp;
1299                 sb->cp_events_hi = (mddev->events>>32);
1300                 sb->cp_events_lo = (u32)mddev->events;
1301                 if (mddev->recovery_cp == MaxSector)
1302                         sb->state = (1<< MD_SB_CLEAN);
1303         } else
1304                 sb->recovery_cp = 0;
1305
1306         sb->layout = mddev->layout;
1307         sb->chunk_size = mddev->chunk_sectors << 9;
1308
1309         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1310                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1311
1312         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1313         rdev_for_each(rdev2, mddev) {
1314                 mdp_disk_t *d;
1315                 int desc_nr;
1316                 int is_active = test_bit(In_sync, &rdev2->flags);
1317
1318                 if (rdev2->raid_disk >= 0 &&
1319                     sb->minor_version >= 91)
1320                         /* we have nowhere to store the recovery_offset,
1321                          * but if it is not below the reshape_position,
1322                          * we can piggy-back on that.
1323                          */
1324                         is_active = 1;
1325                 if (rdev2->raid_disk < 0 ||
1326                     test_bit(Faulty, &rdev2->flags))
1327                         is_active = 0;
1328                 if (is_active)
1329                         desc_nr = rdev2->raid_disk;
1330                 else
1331                         desc_nr = next_spare++;
1332                 rdev2->desc_nr = desc_nr;
1333                 d = &sb->disks[rdev2->desc_nr];
1334                 nr_disks++;
1335                 d->number = rdev2->desc_nr;
1336                 d->major = MAJOR(rdev2->bdev->bd_dev);
1337                 d->minor = MINOR(rdev2->bdev->bd_dev);
1338                 if (is_active)
1339                         d->raid_disk = rdev2->raid_disk;
1340                 else
1341                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1342                 if (test_bit(Faulty, &rdev2->flags))
1343                         d->state = (1<<MD_DISK_FAULTY);
1344                 else if (is_active) {
1345                         d->state = (1<<MD_DISK_ACTIVE);
1346                         if (test_bit(In_sync, &rdev2->flags))
1347                                 d->state |= (1<<MD_DISK_SYNC);
1348                         active++;
1349                         working++;
1350                 } else {
1351                         d->state = 0;
1352                         spare++;
1353                         working++;
1354                 }
1355                 if (test_bit(WriteMostly, &rdev2->flags))
1356                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1357         }
1358         /* now set the "removed" and "faulty" bits on any missing devices */
1359         for (i=0 ; i < mddev->raid_disks ; i++) {
1360                 mdp_disk_t *d = &sb->disks[i];
1361                 if (d->state == 0 && d->number == 0) {
1362                         d->number = i;
1363                         d->raid_disk = i;
1364                         d->state = (1<<MD_DISK_REMOVED);
1365                         d->state |= (1<<MD_DISK_FAULTY);
1366                         failed++;
1367                 }
1368         }
1369         sb->nr_disks = nr_disks;
1370         sb->active_disks = active;
1371         sb->working_disks = working;
1372         sb->failed_disks = failed;
1373         sb->spare_disks = spare;
1374
1375         sb->this_disk = sb->disks[rdev->desc_nr];
1376         sb->sb_csum = calc_sb_csum(sb);
1377 }
1378
1379 /*
1380  * rdev_size_change for 0.90.0
1381  */
1382 static unsigned long long
1383 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1384 {
1385         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1386                 return 0; /* component must fit device */
1387         if (rdev->mddev->bitmap_info.offset)
1388                 return 0; /* can't move bitmap */
1389         rdev->sb_start = calc_dev_sboffset(rdev);
1390         if (!num_sectors || num_sectors > rdev->sb_start)
1391                 num_sectors = rdev->sb_start;
1392         /* Limit to 4TB as metadata cannot record more than that.
1393          * 4TB == 2^32 KB, or 2*2^32 sectors.
1394          */
1395         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1396                 num_sectors = (2ULL << 32) - 2;
1397         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1398                        rdev->sb_page);
1399         md_super_wait(rdev->mddev);
1400         return num_sectors;
1401 }
1402
1403 static int
1404 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1405 {
1406         /* non-zero offset changes not possible with v0.90 */
1407         return new_offset == 0;
1408 }
1409
1410 /*
1411  * version 1 superblock
1412  */
1413
1414 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1415 {
1416         __le32 disk_csum;
1417         u32 csum;
1418         unsigned long long newcsum;
1419         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1420         __le32 *isuper = (__le32*)sb;
1421
1422         disk_csum = sb->sb_csum;
1423         sb->sb_csum = 0;
1424         newcsum = 0;
1425         for (; size >= 4; size -= 4)
1426                 newcsum += le32_to_cpu(*isuper++);
1427
1428         if (size == 2)
1429                 newcsum += le16_to_cpu(*(__le16*) isuper);
1430
1431         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1432         sb->sb_csum = disk_csum;
1433         return cpu_to_le32(csum);
1434 }
1435
1436 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1437                             int acknowledged);
1438 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1439 {
1440         struct mdp_superblock_1 *sb;
1441         int ret;
1442         sector_t sb_start;
1443         sector_t sectors;
1444         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1445         int bmask;
1446
1447         /*
1448          * Calculate the position of the superblock in 512byte sectors.
1449          * It is always aligned to a 4K boundary and
1450          * depeding on minor_version, it can be:
1451          * 0: At least 8K, but less than 12K, from end of device
1452          * 1: At start of device
1453          * 2: 4K from start of device.
1454          */
1455         switch(minor_version) {
1456         case 0:
1457                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1458                 sb_start -= 8*2;
1459                 sb_start &= ~(sector_t)(4*2-1);
1460                 break;
1461         case 1:
1462                 sb_start = 0;
1463                 break;
1464         case 2:
1465                 sb_start = 8;
1466                 break;
1467         default:
1468                 return -EINVAL;
1469         }
1470         rdev->sb_start = sb_start;
1471
1472         /* superblock is rarely larger than 1K, but it can be larger,
1473          * and it is safe to read 4k, so we do that
1474          */
1475         ret = read_disk_sb(rdev, 4096);
1476         if (ret) return ret;
1477
1478
1479         sb = page_address(rdev->sb_page);
1480
1481         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1482             sb->major_version != cpu_to_le32(1) ||
1483             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1484             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1485             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1486                 return -EINVAL;
1487
1488         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1489                 printk("md: invalid superblock checksum on %s\n",
1490                         bdevname(rdev->bdev,b));
1491                 return -EINVAL;
1492         }
1493         if (le64_to_cpu(sb->data_size) < 10) {
1494                 printk("md: data_size too small on %s\n",
1495                        bdevname(rdev->bdev,b));
1496                 return -EINVAL;
1497         }
1498         if (sb->pad0 ||
1499             sb->pad3[0] ||
1500             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1501                 /* Some padding is non-zero, might be a new feature */
1502                 return -EINVAL;
1503
1504         rdev->preferred_minor = 0xffff;
1505         rdev->data_offset = le64_to_cpu(sb->data_offset);
1506         rdev->new_data_offset = rdev->data_offset;
1507         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1508             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1509                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1510         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1511
1512         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1513         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1514         if (rdev->sb_size & bmask)
1515                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1516
1517         if (minor_version
1518             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1519                 return -EINVAL;
1520         if (minor_version
1521             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1522                 return -EINVAL;
1523
1524         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1525                 rdev->desc_nr = -1;
1526         else
1527                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1528
1529         if (!rdev->bb_page) {
1530                 rdev->bb_page = alloc_page(GFP_KERNEL);
1531                 if (!rdev->bb_page)
1532                         return -ENOMEM;
1533         }
1534         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1535             rdev->badblocks.count == 0) {
1536                 /* need to load the bad block list.
1537                  * Currently we limit it to one page.
1538                  */
1539                 s32 offset;
1540                 sector_t bb_sector;
1541                 u64 *bbp;
1542                 int i;
1543                 int sectors = le16_to_cpu(sb->bblog_size);
1544                 if (sectors > (PAGE_SIZE / 512))
1545                         return -EINVAL;
1546                 offset = le32_to_cpu(sb->bblog_offset);
1547                 if (offset == 0)
1548                         return -EINVAL;
1549                 bb_sector = (long long)offset;
1550                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1551                                   rdev->bb_page, READ, true))
1552                         return -EIO;
1553                 bbp = (u64 *)page_address(rdev->bb_page);
1554                 rdev->badblocks.shift = sb->bblog_shift;
1555                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1556                         u64 bb = le64_to_cpu(*bbp);
1557                         int count = bb & (0x3ff);
1558                         u64 sector = bb >> 10;
1559                         sector <<= sb->bblog_shift;
1560                         count <<= sb->bblog_shift;
1561                         if (bb + 1 == 0)
1562                                 break;
1563                         if (md_set_badblocks(&rdev->badblocks,
1564                                              sector, count, 1) == 0)
1565                                 return -EINVAL;
1566                 }
1567         } else if (sb->bblog_offset == 0)
1568                 rdev->badblocks.shift = -1;
1569
1570         if (!refdev) {
1571                 ret = 1;
1572         } else {
1573                 __u64 ev1, ev2;
1574                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1575
1576                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1577                     sb->level != refsb->level ||
1578                     sb->layout != refsb->layout ||
1579                     sb->chunksize != refsb->chunksize) {
1580                         printk(KERN_WARNING "md: %s has strangely different"
1581                                 " superblock to %s\n",
1582                                 bdevname(rdev->bdev,b),
1583                                 bdevname(refdev->bdev,b2));
1584                         return -EINVAL;
1585                 }
1586                 ev1 = le64_to_cpu(sb->events);
1587                 ev2 = le64_to_cpu(refsb->events);
1588
1589                 if (ev1 > ev2)
1590                         ret = 1;
1591                 else
1592                         ret = 0;
1593         }
1594         if (minor_version) {
1595                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1596                 sectors -= rdev->data_offset;
1597         } else
1598                 sectors = rdev->sb_start;
1599         if (sectors < le64_to_cpu(sb->data_size))
1600                 return -EINVAL;
1601         rdev->sectors = le64_to_cpu(sb->data_size);
1602         return ret;
1603 }
1604
1605 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1606 {
1607         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1608         __u64 ev1 = le64_to_cpu(sb->events);
1609
1610         rdev->raid_disk = -1;
1611         clear_bit(Faulty, &rdev->flags);
1612         clear_bit(In_sync, &rdev->flags);
1613         clear_bit(WriteMostly, &rdev->flags);
1614
1615         if (mddev->raid_disks == 0) {
1616                 mddev->major_version = 1;
1617                 mddev->patch_version = 0;
1618                 mddev->external = 0;
1619                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1620                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1621                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1622                 mddev->level = le32_to_cpu(sb->level);
1623                 mddev->clevel[0] = 0;
1624                 mddev->layout = le32_to_cpu(sb->layout);
1625                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1626                 mddev->dev_sectors = le64_to_cpu(sb->size);
1627                 mddev->events = ev1;
1628                 mddev->bitmap_info.offset = 0;
1629                 mddev->bitmap_info.space = 0;
1630                 /* Default location for bitmap is 1K after superblock
1631                  * using 3K - total of 4K
1632                  */
1633                 mddev->bitmap_info.default_offset = 1024 >> 9;
1634                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1635                 mddev->reshape_backwards = 0;
1636
1637                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1638                 memcpy(mddev->uuid, sb->set_uuid, 16);
1639
1640                 mddev->max_disks =  (4096-256)/2;
1641
1642                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1643                     mddev->bitmap_info.file == NULL) {
1644                         mddev->bitmap_info.offset =
1645                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1646                         /* Metadata doesn't record how much space is available.
1647                          * For 1.0, we assume we can use up to the superblock
1648                          * if before, else to 4K beyond superblock.
1649                          * For others, assume no change is possible.
1650                          */
1651                         if (mddev->minor_version > 0)
1652                                 mddev->bitmap_info.space = 0;
1653                         else if (mddev->bitmap_info.offset > 0)
1654                                 mddev->bitmap_info.space =
1655                                         8 - mddev->bitmap_info.offset;
1656                         else
1657                                 mddev->bitmap_info.space =
1658                                         -mddev->bitmap_info.offset;
1659                 }
1660
1661                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664                         mddev->new_level = le32_to_cpu(sb->new_level);
1665                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1666                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667                         if (mddev->delta_disks < 0 ||
1668                             (mddev->delta_disks == 0 &&
1669                              (le32_to_cpu(sb->feature_map)
1670                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1671                                 mddev->reshape_backwards = 1;
1672                 } else {
1673                         mddev->reshape_position = MaxSector;
1674                         mddev->delta_disks = 0;
1675                         mddev->new_level = mddev->level;
1676                         mddev->new_layout = mddev->layout;
1677                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1678                 }
1679
1680         } else if (mddev->pers == NULL) {
1681                 /* Insist of good event counter while assembling, except for
1682                  * spares (which don't need an event count) */
1683                 ++ev1;
1684                 if (rdev->desc_nr >= 0 &&
1685                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1686                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1687                         if (ev1 < mddev->events)
1688                                 return -EINVAL;
1689         } else if (mddev->bitmap) {
1690                 /* If adding to array with a bitmap, then we can accept an
1691                  * older device, but not too old.
1692                  */
1693                 if (ev1 < mddev->bitmap->events_cleared)
1694                         return 0;
1695         } else {
1696                 if (ev1 < mddev->events)
1697                         /* just a hot-add of a new device, leave raid_disk at -1 */
1698                         return 0;
1699         }
1700         if (mddev->level != LEVEL_MULTIPATH) {
1701                 int role;
1702                 if (rdev->desc_nr < 0 ||
1703                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704                         role = 0xffff;
1705                         rdev->desc_nr = -1;
1706                 } else
1707                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708                 switch(role) {
1709                 case 0xffff: /* spare */
1710                         break;
1711                 case 0xfffe: /* faulty */
1712                         set_bit(Faulty, &rdev->flags);
1713                         break;
1714                 default:
1715                         if ((le32_to_cpu(sb->feature_map) &
1716                              MD_FEATURE_RECOVERY_OFFSET))
1717                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718                         else
1719                                 set_bit(In_sync, &rdev->flags);
1720                         rdev->raid_disk = role;
1721                         break;
1722                 }
1723                 if (sb->devflags & WriteMostly1)
1724                         set_bit(WriteMostly, &rdev->flags);
1725                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726                         set_bit(Replacement, &rdev->flags);
1727         } else /* MULTIPATH are always insync */
1728                 set_bit(In_sync, &rdev->flags);
1729
1730         return 0;
1731 }
1732
1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735         struct mdp_superblock_1 *sb;
1736         struct md_rdev *rdev2;
1737         int max_dev, i;
1738         /* make rdev->sb match mddev and rdev data. */
1739
1740         sb = page_address(rdev->sb_page);
1741
1742         sb->feature_map = 0;
1743         sb->pad0 = 0;
1744         sb->recovery_offset = cpu_to_le64(0);
1745         memset(sb->pad3, 0, sizeof(sb->pad3));
1746
1747         sb->utime = cpu_to_le64((__u64)mddev->utime);
1748         sb->events = cpu_to_le64(mddev->events);
1749         if (mddev->in_sync)
1750                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1751         else
1752                 sb->resync_offset = cpu_to_le64(0);
1753
1754         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1755
1756         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1757         sb->size = cpu_to_le64(mddev->dev_sectors);
1758         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1759         sb->level = cpu_to_le32(mddev->level);
1760         sb->layout = cpu_to_le32(mddev->layout);
1761
1762         if (test_bit(WriteMostly, &rdev->flags))
1763                 sb->devflags |= WriteMostly1;
1764         else
1765                 sb->devflags &= ~WriteMostly1;
1766         sb->data_offset = cpu_to_le64(rdev->data_offset);
1767         sb->data_size = cpu_to_le64(rdev->sectors);
1768
1769         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1770                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1771                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1772         }
1773
1774         if (rdev->raid_disk >= 0 &&
1775             !test_bit(In_sync, &rdev->flags)) {
1776                 sb->feature_map |=
1777                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1778                 sb->recovery_offset =
1779                         cpu_to_le64(rdev->recovery_offset);
1780         }
1781         if (test_bit(Replacement, &rdev->flags))
1782                 sb->feature_map |=
1783                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1784
1785         if (mddev->reshape_position != MaxSector) {
1786                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1787                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1788                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1789                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1790                 sb->new_level = cpu_to_le32(mddev->new_level);
1791                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1792                 if (mddev->delta_disks == 0 &&
1793                     mddev->reshape_backwards)
1794                         sb->feature_map
1795                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1796                 if (rdev->new_data_offset != rdev->data_offset) {
1797                         sb->feature_map
1798                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1799                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1800                                                              - rdev->data_offset));
1801                 }
1802         }
1803
1804         if (rdev->badblocks.count == 0)
1805                 /* Nothing to do for bad blocks*/ ;
1806         else if (sb->bblog_offset == 0)
1807                 /* Cannot record bad blocks on this device */
1808                 md_error(mddev, rdev);
1809         else {
1810                 struct badblocks *bb = &rdev->badblocks;
1811                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1812                 u64 *p = bb->page;
1813                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1814                 if (bb->changed) {
1815                         unsigned seq;
1816
1817 retry:
1818                         seq = read_seqbegin(&bb->lock);
1819
1820                         memset(bbp, 0xff, PAGE_SIZE);
1821
1822                         for (i = 0 ; i < bb->count ; i++) {
1823                                 u64 internal_bb = p[i];
1824                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1825                                                 | BB_LEN(internal_bb));
1826                                 bbp[i] = cpu_to_le64(store_bb);
1827                         }
1828                         bb->changed = 0;
1829                         if (read_seqretry(&bb->lock, seq))
1830                                 goto retry;
1831
1832                         bb->sector = (rdev->sb_start +
1833                                       (int)le32_to_cpu(sb->bblog_offset));
1834                         bb->size = le16_to_cpu(sb->bblog_size);
1835                 }
1836         }
1837
1838         max_dev = 0;
1839         rdev_for_each(rdev2, mddev)
1840                 if (rdev2->desc_nr+1 > max_dev)
1841                         max_dev = rdev2->desc_nr+1;
1842
1843         if (max_dev > le32_to_cpu(sb->max_dev)) {
1844                 int bmask;
1845                 sb->max_dev = cpu_to_le32(max_dev);
1846                 rdev->sb_size = max_dev * 2 + 256;
1847                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1848                 if (rdev->sb_size & bmask)
1849                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1850         } else
1851                 max_dev = le32_to_cpu(sb->max_dev);
1852
1853         for (i=0; i<max_dev;i++)
1854                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855         
1856         rdev_for_each(rdev2, mddev) {
1857                 i = rdev2->desc_nr;
1858                 if (test_bit(Faulty, &rdev2->flags))
1859                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1860                 else if (test_bit(In_sync, &rdev2->flags))
1861                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1862                 else if (rdev2->raid_disk >= 0)
1863                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1864                 else
1865                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1866         }
1867
1868         sb->sb_csum = calc_sb_1_csum(sb);
1869 }
1870
1871 static unsigned long long
1872 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1873 {
1874         struct mdp_superblock_1 *sb;
1875         sector_t max_sectors;
1876         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1877                 return 0; /* component must fit device */
1878         if (rdev->data_offset != rdev->new_data_offset)
1879                 return 0; /* too confusing */
1880         if (rdev->sb_start < rdev->data_offset) {
1881                 /* minor versions 1 and 2; superblock before data */
1882                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1883                 max_sectors -= rdev->data_offset;
1884                 if (!num_sectors || num_sectors > max_sectors)
1885                         num_sectors = max_sectors;
1886         } else if (rdev->mddev->bitmap_info.offset) {
1887                 /* minor version 0 with bitmap we can't move */
1888                 return 0;
1889         } else {
1890                 /* minor version 0; superblock after data */
1891                 sector_t sb_start;
1892                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1893                 sb_start &= ~(sector_t)(4*2 - 1);
1894                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1895                 if (!num_sectors || num_sectors > max_sectors)
1896                         num_sectors = max_sectors;
1897                 rdev->sb_start = sb_start;
1898         }
1899         sb = page_address(rdev->sb_page);
1900         sb->data_size = cpu_to_le64(num_sectors);
1901         sb->super_offset = rdev->sb_start;
1902         sb->sb_csum = calc_sb_1_csum(sb);
1903         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1904                        rdev->sb_page);
1905         md_super_wait(rdev->mddev);
1906         return num_sectors;
1907
1908 }
1909
1910 static int
1911 super_1_allow_new_offset(struct md_rdev *rdev,
1912                          unsigned long long new_offset)
1913 {
1914         /* All necessary checks on new >= old have been done */
1915         struct bitmap *bitmap;
1916         if (new_offset >= rdev->data_offset)
1917                 return 1;
1918
1919         /* with 1.0 metadata, there is no metadata to tread on
1920          * so we can always move back */
1921         if (rdev->mddev->minor_version == 0)
1922                 return 1;
1923
1924         /* otherwise we must be sure not to step on
1925          * any metadata, so stay:
1926          * 36K beyond start of superblock
1927          * beyond end of badblocks
1928          * beyond write-intent bitmap
1929          */
1930         if (rdev->sb_start + (32+4)*2 > new_offset)
1931                 return 0;
1932         bitmap = rdev->mddev->bitmap;
1933         if (bitmap && !rdev->mddev->bitmap_info.file &&
1934             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1935             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1936                 return 0;
1937         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1938                 return 0;
1939
1940         return 1;
1941 }
1942
1943 static struct super_type super_types[] = {
1944         [0] = {
1945                 .name   = "0.90.0",
1946                 .owner  = THIS_MODULE,
1947                 .load_super         = super_90_load,
1948                 .validate_super     = super_90_validate,
1949                 .sync_super         = super_90_sync,
1950                 .rdev_size_change   = super_90_rdev_size_change,
1951                 .allow_new_offset   = super_90_allow_new_offset,
1952         },
1953         [1] = {
1954                 .name   = "md-1",
1955                 .owner  = THIS_MODULE,
1956                 .load_super         = super_1_load,
1957                 .validate_super     = super_1_validate,
1958                 .sync_super         = super_1_sync,
1959                 .rdev_size_change   = super_1_rdev_size_change,
1960                 .allow_new_offset   = super_1_allow_new_offset,
1961         },
1962 };
1963
1964 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1965 {
1966         if (mddev->sync_super) {
1967                 mddev->sync_super(mddev, rdev);
1968                 return;
1969         }
1970
1971         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1972
1973         super_types[mddev->major_version].sync_super(mddev, rdev);
1974 }
1975
1976 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1977 {
1978         struct md_rdev *rdev, *rdev2;
1979
1980         rcu_read_lock();
1981         rdev_for_each_rcu(rdev, mddev1)
1982                 rdev_for_each_rcu(rdev2, mddev2)
1983                         if (rdev->bdev->bd_contains ==
1984                             rdev2->bdev->bd_contains) {
1985                                 rcu_read_unlock();
1986                                 return 1;
1987                         }
1988         rcu_read_unlock();
1989         return 0;
1990 }
1991
1992 static LIST_HEAD(pending_raid_disks);
1993
1994 /*
1995  * Try to register data integrity profile for an mddev
1996  *
1997  * This is called when an array is started and after a disk has been kicked
1998  * from the array. It only succeeds if all working and active component devices
1999  * are integrity capable with matching profiles.
2000  */
2001 int md_integrity_register(struct mddev *mddev)
2002 {
2003         struct md_rdev *rdev, *reference = NULL;
2004
2005         if (list_empty(&mddev->disks))
2006                 return 0; /* nothing to do */
2007         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2008                 return 0; /* shouldn't register, or already is */
2009         rdev_for_each(rdev, mddev) {
2010                 /* skip spares and non-functional disks */
2011                 if (test_bit(Faulty, &rdev->flags))
2012                         continue;
2013                 if (rdev->raid_disk < 0)
2014                         continue;
2015                 if (!reference) {
2016                         /* Use the first rdev as the reference */
2017                         reference = rdev;
2018                         continue;
2019                 }
2020                 /* does this rdev's profile match the reference profile? */
2021                 if (blk_integrity_compare(reference->bdev->bd_disk,
2022                                 rdev->bdev->bd_disk) < 0)
2023                         return -EINVAL;
2024         }
2025         if (!reference || !bdev_get_integrity(reference->bdev))
2026                 return 0;
2027         /*
2028          * All component devices are integrity capable and have matching
2029          * profiles, register the common profile for the md device.
2030          */
2031         if (blk_integrity_register(mddev->gendisk,
2032                         bdev_get_integrity(reference->bdev)) != 0) {
2033                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2034                         mdname(mddev));
2035                 return -EINVAL;
2036         }
2037         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2038         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2039                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2040                        mdname(mddev));
2041                 return -EINVAL;
2042         }
2043         return 0;
2044 }
2045 EXPORT_SYMBOL(md_integrity_register);
2046
2047 /* Disable data integrity if non-capable/non-matching disk is being added */
2048 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2049 {
2050         struct blk_integrity *bi_rdev;
2051         struct blk_integrity *bi_mddev;
2052
2053         if (!mddev->gendisk)
2054                 return;
2055
2056         bi_rdev = bdev_get_integrity(rdev->bdev);
2057         bi_mddev = blk_get_integrity(mddev->gendisk);
2058
2059         if (!bi_mddev) /* nothing to do */
2060                 return;
2061         if (rdev->raid_disk < 0) /* skip spares */
2062                 return;
2063         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2064                                              rdev->bdev->bd_disk) >= 0)
2065                 return;
2066         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2067         blk_integrity_unregister(mddev->gendisk);
2068 }
2069 EXPORT_SYMBOL(md_integrity_add_rdev);
2070
2071 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2072 {
2073         char b[BDEVNAME_SIZE];
2074         struct kobject *ko;
2075         char *s;
2076         int err;
2077
2078         if (rdev->mddev) {
2079                 MD_BUG();
2080                 return -EINVAL;
2081         }
2082
2083         /* prevent duplicates */
2084         if (find_rdev(mddev, rdev->bdev->bd_dev))
2085                 return -EEXIST;
2086
2087         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2088         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2089                         rdev->sectors < mddev->dev_sectors)) {
2090                 if (mddev->pers) {
2091                         /* Cannot change size, so fail
2092                          * If mddev->level <= 0, then we don't care
2093                          * about aligning sizes (e.g. linear)
2094                          */
2095                         if (mddev->level > 0)
2096                                 return -ENOSPC;
2097                 } else
2098                         mddev->dev_sectors = rdev->sectors;
2099         }
2100
2101         /* Verify rdev->desc_nr is unique.
2102          * If it is -1, assign a free number, else
2103          * check number is not in use
2104          */
2105         if (rdev->desc_nr < 0) {
2106                 int choice = 0;
2107                 if (mddev->pers) choice = mddev->raid_disks;
2108                 while (find_rdev_nr(mddev, choice))
2109                         choice++;
2110                 rdev->desc_nr = choice;
2111         } else {
2112                 if (find_rdev_nr(mddev, rdev->desc_nr))
2113                         return -EBUSY;
2114         }
2115         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2116                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2117                        mdname(mddev), mddev->max_disks);
2118                 return -EBUSY;
2119         }
2120         bdevname(rdev->bdev,b);
2121         while ( (s=strchr(b, '/')) != NULL)
2122                 *s = '!';
2123
2124         rdev->mddev = mddev;
2125         printk(KERN_INFO "md: bind<%s>\n", b);
2126
2127         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2128                 goto fail;
2129
2130         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2131         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2132                 /* failure here is OK */;
2133         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2134
2135         list_add_rcu(&rdev->same_set, &mddev->disks);
2136         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2137
2138         /* May as well allow recovery to be retried once */
2139         mddev->recovery_disabled++;
2140
2141         return 0;
2142
2143  fail:
2144         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2145                b, mdname(mddev));
2146         return err;
2147 }
2148
2149 static void md_delayed_delete(struct work_struct *ws)
2150 {
2151         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2152         kobject_del(&rdev->kobj);
2153         kobject_put(&rdev->kobj);
2154 }
2155
2156 static void unbind_rdev_from_array(struct md_rdev * rdev)
2157 {
2158         char b[BDEVNAME_SIZE];
2159         if (!rdev->mddev) {
2160                 MD_BUG();
2161                 return;
2162         }
2163         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2164         list_del_rcu(&rdev->same_set);
2165         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2166         rdev->mddev = NULL;
2167         sysfs_remove_link(&rdev->kobj, "block");
2168         sysfs_put(rdev->sysfs_state);
2169         rdev->sysfs_state = NULL;
2170         rdev->badblocks.count = 0;
2171         /* We need to delay this, otherwise we can deadlock when
2172          * writing to 'remove' to "dev/state".  We also need
2173          * to delay it due to rcu usage.
2174          */
2175         synchronize_rcu();
2176         INIT_WORK(&rdev->del_work, md_delayed_delete);
2177         kobject_get(&rdev->kobj);
2178         queue_work(md_misc_wq, &rdev->del_work);
2179 }
2180
2181 /*
2182  * prevent the device from being mounted, repartitioned or
2183  * otherwise reused by a RAID array (or any other kernel
2184  * subsystem), by bd_claiming the device.
2185  */
2186 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2187 {
2188         int err = 0;
2189         struct block_device *bdev;
2190         char b[BDEVNAME_SIZE];
2191
2192         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2193                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2194         if (IS_ERR(bdev)) {
2195                 printk(KERN_ERR "md: could not open %s.\n",
2196                         __bdevname(dev, b));
2197                 return PTR_ERR(bdev);
2198         }
2199         rdev->bdev = bdev;
2200         return err;
2201 }
2202
2203 static void unlock_rdev(struct md_rdev *rdev)
2204 {
2205         struct block_device *bdev = rdev->bdev;
2206         rdev->bdev = NULL;
2207         if (!bdev)
2208                 MD_BUG();
2209         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2210 }
2211
2212 void md_autodetect_dev(dev_t dev);
2213
2214 static void export_rdev(struct md_rdev * rdev)
2215 {
2216         char b[BDEVNAME_SIZE];
2217         printk(KERN_INFO "md: export_rdev(%s)\n",
2218                 bdevname(rdev->bdev,b));
2219         if (rdev->mddev)
2220                 MD_BUG();
2221         md_rdev_clear(rdev);
2222 #ifndef MODULE
2223         if (test_bit(AutoDetected, &rdev->flags))
2224                 md_autodetect_dev(rdev->bdev->bd_dev);
2225 #endif
2226         unlock_rdev(rdev);
2227         kobject_put(&rdev->kobj);
2228 }
2229
2230 static void kick_rdev_from_array(struct md_rdev * rdev)
2231 {
2232         unbind_rdev_from_array(rdev);
2233         export_rdev(rdev);
2234 }
2235
2236 static void export_array(struct mddev *mddev)
2237 {
2238         struct md_rdev *rdev, *tmp;
2239
2240         rdev_for_each_safe(rdev, tmp, mddev) {
2241                 if (!rdev->mddev) {
2242                         MD_BUG();
2243                         continue;
2244                 }
2245                 kick_rdev_from_array(rdev);
2246         }
2247         if (!list_empty(&mddev->disks))
2248                 MD_BUG();
2249         mddev->raid_disks = 0;
2250         mddev->major_version = 0;
2251 }
2252
2253 static void print_desc(mdp_disk_t *desc)
2254 {
2255         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2256                 desc->major,desc->minor,desc->raid_disk,desc->state);
2257 }
2258
2259 static void print_sb_90(mdp_super_t *sb)
2260 {
2261         int i;
2262
2263         printk(KERN_INFO 
2264                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2265                 sb->major_version, sb->minor_version, sb->patch_version,
2266                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2267                 sb->ctime);
2268         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2269                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2270                 sb->md_minor, sb->layout, sb->chunk_size);
2271         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2272                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2273                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2274                 sb->failed_disks, sb->spare_disks,
2275                 sb->sb_csum, (unsigned long)sb->events_lo);
2276
2277         printk(KERN_INFO);
2278         for (i = 0; i < MD_SB_DISKS; i++) {
2279                 mdp_disk_t *desc;
2280
2281                 desc = sb->disks + i;
2282                 if (desc->number || desc->major || desc->minor ||
2283                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2284                         printk("     D %2d: ", i);
2285                         print_desc(desc);
2286                 }
2287         }
2288         printk(KERN_INFO "md:     THIS: ");
2289         print_desc(&sb->this_disk);
2290 }
2291
2292 static void print_sb_1(struct mdp_superblock_1 *sb)
2293 {
2294         __u8 *uuid;
2295
2296         uuid = sb->set_uuid;
2297         printk(KERN_INFO
2298                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2299                "md:    Name: \"%s\" CT:%llu\n",
2300                 le32_to_cpu(sb->major_version),
2301                 le32_to_cpu(sb->feature_map),
2302                 uuid,
2303                 sb->set_name,
2304                 (unsigned long long)le64_to_cpu(sb->ctime)
2305                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2306
2307         uuid = sb->device_uuid;
2308         printk(KERN_INFO
2309                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2310                         " RO:%llu\n"
2311                "md:     Dev:%08x UUID: %pU\n"
2312                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2313                "md:         (MaxDev:%u) \n",
2314                 le32_to_cpu(sb->level),
2315                 (unsigned long long)le64_to_cpu(sb->size),
2316                 le32_to_cpu(sb->raid_disks),
2317                 le32_to_cpu(sb->layout),
2318                 le32_to_cpu(sb->chunksize),
2319                 (unsigned long long)le64_to_cpu(sb->data_offset),
2320                 (unsigned long long)le64_to_cpu(sb->data_size),
2321                 (unsigned long long)le64_to_cpu(sb->super_offset),
2322                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2323                 le32_to_cpu(sb->dev_number),
2324                 uuid,
2325                 sb->devflags,
2326                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2327                 (unsigned long long)le64_to_cpu(sb->events),
2328                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2329                 le32_to_cpu(sb->sb_csum),
2330                 le32_to_cpu(sb->max_dev)
2331                 );
2332 }
2333
2334 static void print_rdev(struct md_rdev *rdev, int major_version)
2335 {
2336         char b[BDEVNAME_SIZE];
2337         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2338                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2339                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2340                 rdev->desc_nr);
2341         if (rdev->sb_loaded) {
2342                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2343                 switch (major_version) {
2344                 case 0:
2345                         print_sb_90(page_address(rdev->sb_page));
2346                         break;
2347                 case 1:
2348                         print_sb_1(page_address(rdev->sb_page));
2349                         break;
2350                 }
2351         } else
2352                 printk(KERN_INFO "md: no rdev superblock!\n");
2353 }
2354
2355 static void md_print_devices(void)
2356 {
2357         struct list_head *tmp;
2358         struct md_rdev *rdev;
2359         struct mddev *mddev;
2360         char b[BDEVNAME_SIZE];
2361
2362         printk("\n");
2363         printk("md:     **********************************\n");
2364         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2365         printk("md:     **********************************\n");
2366         for_each_mddev(mddev, tmp) {
2367
2368                 if (mddev->bitmap)
2369                         bitmap_print_sb(mddev->bitmap);
2370                 else
2371                         printk("%s: ", mdname(mddev));
2372                 rdev_for_each(rdev, mddev)
2373                         printk("<%s>", bdevname(rdev->bdev,b));
2374                 printk("\n");
2375
2376                 rdev_for_each(rdev, mddev)
2377                         print_rdev(rdev, mddev->major_version);
2378         }
2379         printk("md:     **********************************\n");
2380         printk("\n");
2381 }
2382
2383
2384 static void sync_sbs(struct mddev * mddev, int nospares)
2385 {
2386         /* Update each superblock (in-memory image), but
2387          * if we are allowed to, skip spares which already
2388          * have the right event counter, or have one earlier
2389          * (which would mean they aren't being marked as dirty
2390          * with the rest of the array)
2391          */
2392         struct md_rdev *rdev;
2393         rdev_for_each(rdev, mddev) {
2394                 if (rdev->sb_events == mddev->events ||
2395                     (nospares &&
2396                      rdev->raid_disk < 0 &&
2397                      rdev->sb_events+1 == mddev->events)) {
2398                         /* Don't update this superblock */
2399                         rdev->sb_loaded = 2;
2400                 } else {
2401                         sync_super(mddev, rdev);
2402                         rdev->sb_loaded = 1;
2403                 }
2404         }
2405 }
2406
2407 static void md_update_sb(struct mddev * mddev, int force_change)
2408 {
2409         struct md_rdev *rdev;
2410         int sync_req;
2411         int nospares = 0;
2412         int any_badblocks_changed = 0;
2413
2414 repeat:
2415         /* First make sure individual recovery_offsets are correct */
2416         rdev_for_each(rdev, mddev) {
2417                 if (rdev->raid_disk >= 0 &&
2418                     mddev->delta_disks >= 0 &&
2419                     !test_bit(In_sync, &rdev->flags) &&
2420                     mddev->curr_resync_completed > rdev->recovery_offset)
2421                                 rdev->recovery_offset = mddev->curr_resync_completed;
2422
2423         }       
2424         if (!mddev->persistent) {
2425                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2426                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2427                 if (!mddev->external) {
2428                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2429                         rdev_for_each(rdev, mddev) {
2430                                 if (rdev->badblocks.changed) {
2431                                         rdev->badblocks.changed = 0;
2432                                         md_ack_all_badblocks(&rdev->badblocks);
2433                                         md_error(mddev, rdev);
2434                                 }
2435                                 clear_bit(Blocked, &rdev->flags);
2436                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2437                                 wake_up(&rdev->blocked_wait);
2438                         }
2439                 }
2440                 wake_up(&mddev->sb_wait);
2441                 return;
2442         }
2443
2444         spin_lock_irq(&mddev->write_lock);
2445
2446         mddev->utime = get_seconds();
2447
2448         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449                 force_change = 1;
2450         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2451                 /* just a clean<-> dirty transition, possibly leave spares alone,
2452                  * though if events isn't the right even/odd, we will have to do
2453                  * spares after all
2454                  */
2455                 nospares = 1;
2456         if (force_change)
2457                 nospares = 0;
2458         if (mddev->degraded)
2459                 /* If the array is degraded, then skipping spares is both
2460                  * dangerous and fairly pointless.
2461                  * Dangerous because a device that was removed from the array
2462                  * might have a event_count that still looks up-to-date,
2463                  * so it can be re-added without a resync.
2464                  * Pointless because if there are any spares to skip,
2465                  * then a recovery will happen and soon that array won't
2466                  * be degraded any more and the spare can go back to sleep then.
2467                  */
2468                 nospares = 0;
2469
2470         sync_req = mddev->in_sync;
2471
2472         /* If this is just a dirty<->clean transition, and the array is clean
2473          * and 'events' is odd, we can roll back to the previous clean state */
2474         if (nospares
2475             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2476             && mddev->can_decrease_events
2477             && mddev->events != 1) {
2478                 mddev->events--;
2479                 mddev->can_decrease_events = 0;
2480         } else {
2481                 /* otherwise we have to go forward and ... */
2482                 mddev->events ++;
2483                 mddev->can_decrease_events = nospares;
2484         }
2485
2486         if (!mddev->events) {
2487                 /*
2488                  * oops, this 64-bit counter should never wrap.
2489                  * Either we are in around ~1 trillion A.C., assuming
2490                  * 1 reboot per second, or we have a bug:
2491                  */
2492                 MD_BUG();
2493                 mddev->events --;
2494         }
2495
2496         rdev_for_each(rdev, mddev) {
2497                 if (rdev->badblocks.changed)
2498                         any_badblocks_changed++;
2499                 if (test_bit(Faulty, &rdev->flags))
2500                         set_bit(FaultRecorded, &rdev->flags);
2501         }
2502
2503         sync_sbs(mddev, nospares);
2504         spin_unlock_irq(&mddev->write_lock);
2505
2506         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2507                  mdname(mddev), mddev->in_sync);
2508
2509         bitmap_update_sb(mddev->bitmap);
2510         rdev_for_each(rdev, mddev) {
2511                 char b[BDEVNAME_SIZE];
2512
2513                 if (rdev->sb_loaded != 1)
2514                         continue; /* no noise on spare devices */
2515
2516                 if (!test_bit(Faulty, &rdev->flags) &&
2517                     rdev->saved_raid_disk == -1) {
2518                         md_super_write(mddev,rdev,
2519                                        rdev->sb_start, rdev->sb_size,
2520                                        rdev->sb_page);
2521                         pr_debug("md: (write) %s's sb offset: %llu\n",
2522                                  bdevname(rdev->bdev, b),
2523                                  (unsigned long long)rdev->sb_start);
2524                         rdev->sb_events = mddev->events;
2525                         if (rdev->badblocks.size) {
2526                                 md_super_write(mddev, rdev,
2527                                                rdev->badblocks.sector,
2528                                                rdev->badblocks.size << 9,
2529                                                rdev->bb_page);
2530                                 rdev->badblocks.size = 0;
2531                         }
2532
2533                 } else if (test_bit(Faulty, &rdev->flags))
2534                         pr_debug("md: %s (skipping faulty)\n",
2535                                  bdevname(rdev->bdev, b));
2536                 else
2537                         pr_debug("(skipping incremental s/r ");
2538
2539                 if (mddev->level == LEVEL_MULTIPATH)
2540                         /* only need to write one superblock... */
2541                         break;
2542         }
2543         md_super_wait(mddev);
2544         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545
2546         spin_lock_irq(&mddev->write_lock);
2547         if (mddev->in_sync != sync_req ||
2548             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2549                 /* have to write it out again */
2550                 spin_unlock_irq(&mddev->write_lock);
2551                 goto repeat;
2552         }
2553         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2554         spin_unlock_irq(&mddev->write_lock);
2555         wake_up(&mddev->sb_wait);
2556         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2557                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558
2559         rdev_for_each(rdev, mddev) {
2560                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2561                         clear_bit(Blocked, &rdev->flags);
2562
2563                 if (any_badblocks_changed)
2564                         md_ack_all_badblocks(&rdev->badblocks);
2565                 clear_bit(BlockedBadBlocks, &rdev->flags);
2566                 wake_up(&rdev->blocked_wait);
2567         }
2568 }
2569
2570 /* words written to sysfs files may, or may not, be \n terminated.
2571  * We want to accept with case. For this we use cmd_match.
2572  */
2573 static int cmd_match(const char *cmd, const char *str)
2574 {
2575         /* See if cmd, written into a sysfs file, matches
2576          * str.  They must either be the same, or cmd can
2577          * have a trailing newline
2578          */
2579         while (*cmd && *str && *cmd == *str) {
2580                 cmd++;
2581                 str++;
2582         }
2583         if (*cmd == '\n')
2584                 cmd++;
2585         if (*str || *cmd)
2586                 return 0;
2587         return 1;
2588 }
2589
2590 struct rdev_sysfs_entry {
2591         struct attribute attr;
2592         ssize_t (*show)(struct md_rdev *, char *);
2593         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2594 };
2595
2596 static ssize_t
2597 state_show(struct md_rdev *rdev, char *page)
2598 {
2599         char *sep = "";
2600         size_t len = 0;
2601
2602         if (test_bit(Faulty, &rdev->flags) ||
2603             rdev->badblocks.unacked_exist) {
2604                 len+= sprintf(page+len, "%sfaulty",sep);
2605                 sep = ",";
2606         }
2607         if (test_bit(In_sync, &rdev->flags)) {
2608                 len += sprintf(page+len, "%sin_sync",sep);
2609                 sep = ",";
2610         }
2611         if (test_bit(WriteMostly, &rdev->flags)) {
2612                 len += sprintf(page+len, "%swrite_mostly",sep);
2613                 sep = ",";
2614         }
2615         if (test_bit(Blocked, &rdev->flags) ||
2616             (rdev->badblocks.unacked_exist
2617              && !test_bit(Faulty, &rdev->flags))) {
2618                 len += sprintf(page+len, "%sblocked", sep);
2619                 sep = ",";
2620         }
2621         if (!test_bit(Faulty, &rdev->flags) &&
2622             !test_bit(In_sync, &rdev->flags)) {
2623                 len += sprintf(page+len, "%sspare", sep);
2624                 sep = ",";
2625         }
2626         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2627                 len += sprintf(page+len, "%swrite_error", sep);
2628                 sep = ",";
2629         }
2630         if (test_bit(WantReplacement, &rdev->flags)) {
2631                 len += sprintf(page+len, "%swant_replacement", sep);
2632                 sep = ",";
2633         }
2634         if (test_bit(Replacement, &rdev->flags)) {
2635                 len += sprintf(page+len, "%sreplacement", sep);
2636                 sep = ",";
2637         }
2638
2639         return len+sprintf(page+len, "\n");
2640 }
2641
2642 static ssize_t
2643 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2644 {
2645         /* can write
2646          *  faulty  - simulates an error
2647          *  remove  - disconnects the device
2648          *  writemostly - sets write_mostly
2649          *  -writemostly - clears write_mostly
2650          *  blocked - sets the Blocked flags
2651          *  -blocked - clears the Blocked and possibly simulates an error
2652          *  insync - sets Insync providing device isn't active
2653          *  write_error - sets WriteErrorSeen
2654          *  -write_error - clears WriteErrorSeen
2655          */
2656         int err = -EINVAL;
2657         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2658                 md_error(rdev->mddev, rdev);
2659                 if (test_bit(Faulty, &rdev->flags))
2660                         err = 0;
2661                 else
2662                         err = -EBUSY;
2663         } else if (cmd_match(buf, "remove")) {
2664                 if (rdev->raid_disk >= 0)
2665                         err = -EBUSY;
2666                 else {
2667                         struct mddev *mddev = rdev->mddev;
2668                         kick_rdev_from_array(rdev);
2669                         if (mddev->pers)
2670                                 md_update_sb(mddev, 1);
2671                         md_new_event(mddev);
2672                         err = 0;
2673                 }
2674         } else if (cmd_match(buf, "writemostly")) {
2675                 set_bit(WriteMostly, &rdev->flags);
2676                 err = 0;
2677         } else if (cmd_match(buf, "-writemostly")) {
2678                 clear_bit(WriteMostly, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "blocked")) {
2681                 set_bit(Blocked, &rdev->flags);
2682                 err = 0;
2683         } else if (cmd_match(buf, "-blocked")) {
2684                 if (!test_bit(Faulty, &rdev->flags) &&
2685                     rdev->badblocks.unacked_exist) {
2686                         /* metadata handler doesn't understand badblocks,
2687                          * so we need to fail the device
2688                          */
2689                         md_error(rdev->mddev, rdev);
2690                 }
2691                 clear_bit(Blocked, &rdev->flags);
2692                 clear_bit(BlockedBadBlocks, &rdev->flags);
2693                 wake_up(&rdev->blocked_wait);
2694                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2695                 md_wakeup_thread(rdev->mddev->thread);
2696
2697                 err = 0;
2698         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2699                 set_bit(In_sync, &rdev->flags);
2700                 err = 0;
2701         } else if (cmd_match(buf, "write_error")) {
2702                 set_bit(WriteErrorSeen, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "-write_error")) {
2705                 clear_bit(WriteErrorSeen, &rdev->flags);
2706                 err = 0;
2707         } else if (cmd_match(buf, "want_replacement")) {
2708                 /* Any non-spare device that is not a replacement can
2709                  * become want_replacement at any time, but we then need to
2710                  * check if recovery is needed.
2711                  */
2712                 if (rdev->raid_disk >= 0 &&
2713                     !test_bit(Replacement, &rdev->flags))
2714                         set_bit(WantReplacement, &rdev->flags);
2715                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2716                 md_wakeup_thread(rdev->mddev->thread);
2717                 err = 0;
2718         } else if (cmd_match(buf, "-want_replacement")) {
2719                 /* Clearing 'want_replacement' is always allowed.
2720                  * Once replacements starts it is too late though.
2721                  */
2722                 err = 0;
2723                 clear_bit(WantReplacement, &rdev->flags);
2724         } else if (cmd_match(buf, "replacement")) {
2725                 /* Can only set a device as a replacement when array has not
2726                  * yet been started.  Once running, replacement is automatic
2727                  * from spares, or by assigning 'slot'.
2728                  */
2729                 if (rdev->mddev->pers)
2730                         err = -EBUSY;
2731                 else {
2732                         set_bit(Replacement, &rdev->flags);
2733                         err = 0;
2734                 }
2735         } else if (cmd_match(buf, "-replacement")) {
2736                 /* Similarly, can only clear Replacement before start */
2737                 if (rdev->mddev->pers)
2738                         err = -EBUSY;
2739                 else {
2740                         clear_bit(Replacement, &rdev->flags);
2741                         err = 0;
2742                 }
2743         }
2744         if (!err)
2745                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2746         return err ? err : len;
2747 }
2748 static struct rdev_sysfs_entry rdev_state =
2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2750
2751 static ssize_t
2752 errors_show(struct md_rdev *rdev, char *page)
2753 {
2754         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2755 }
2756
2757 static ssize_t
2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760         char *e;
2761         unsigned long n = simple_strtoul(buf, &e, 10);
2762         if (*buf && (*e == 0 || *e == '\n')) {
2763                 atomic_set(&rdev->corrected_errors, n);
2764                 return len;
2765         }
2766         return -EINVAL;
2767 }
2768 static struct rdev_sysfs_entry rdev_errors =
2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2770
2771 static ssize_t
2772 slot_show(struct md_rdev *rdev, char *page)
2773 {
2774         if (rdev->raid_disk < 0)
2775                 return sprintf(page, "none\n");
2776         else
2777                 return sprintf(page, "%d\n", rdev->raid_disk);
2778 }
2779
2780 static ssize_t
2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2782 {
2783         char *e;
2784         int err;
2785         int slot = simple_strtoul(buf, &e, 10);
2786         if (strncmp(buf, "none", 4)==0)
2787                 slot = -1;
2788         else if (e==buf || (*e && *e!= '\n'))
2789                 return -EINVAL;
2790         if (rdev->mddev->pers && slot == -1) {
2791                 /* Setting 'slot' on an active array requires also
2792                  * updating the 'rd%d' link, and communicating
2793                  * with the personality with ->hot_*_disk.
2794                  * For now we only support removing
2795                  * failed/spare devices.  This normally happens automatically,
2796                  * but not when the metadata is externally managed.
2797                  */
2798                 if (rdev->raid_disk == -1)
2799                         return -EEXIST;
2800                 /* personality does all needed checks */
2801                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2802                         return -EINVAL;
2803                 err = rdev->mddev->pers->
2804                         hot_remove_disk(rdev->mddev, rdev);
2805                 if (err)
2806                         return err;
2807                 sysfs_unlink_rdev(rdev->mddev, rdev);
2808                 rdev->raid_disk = -1;
2809                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2810                 md_wakeup_thread(rdev->mddev->thread);
2811         } else if (rdev->mddev->pers) {
2812                 /* Activating a spare .. or possibly reactivating
2813                  * if we ever get bitmaps working here.
2814                  */
2815
2816                 if (rdev->raid_disk != -1)
2817                         return -EBUSY;
2818
2819                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2820                         return -EBUSY;
2821
2822                 if (rdev->mddev->pers->hot_add_disk == NULL)
2823                         return -EINVAL;
2824
2825                 if (slot >= rdev->mddev->raid_disks &&
2826                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2827                         return -ENOSPC;
2828
2829                 rdev->raid_disk = slot;
2830                 if (test_bit(In_sync, &rdev->flags))
2831                         rdev->saved_raid_disk = slot;
2832                 else
2833                         rdev->saved_raid_disk = -1;
2834                 clear_bit(In_sync, &rdev->flags);
2835                 err = rdev->mddev->pers->
2836                         hot_add_disk(rdev->mddev, rdev);
2837                 if (err) {
2838                         rdev->raid_disk = -1;
2839                         return err;
2840                 } else
2841                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2842                 if (sysfs_link_rdev(rdev->mddev, rdev))
2843                         /* failure here is OK */;
2844                 /* don't wakeup anyone, leave that to userspace. */
2845         } else {
2846                 if (slot >= rdev->mddev->raid_disks &&
2847                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2848                         return -ENOSPC;
2849                 rdev->raid_disk = slot;
2850                 /* assume it is working */
2851                 clear_bit(Faulty, &rdev->flags);
2852                 clear_bit(WriteMostly, &rdev->flags);
2853                 set_bit(In_sync, &rdev->flags);
2854                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2855         }
2856         return len;
2857 }
2858
2859
2860 static struct rdev_sysfs_entry rdev_slot =
2861 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2862
2863 static ssize_t
2864 offset_show(struct md_rdev *rdev, char *page)
2865 {
2866         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2867 }
2868
2869 static ssize_t
2870 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2871 {
2872         unsigned long long offset;
2873         if (strict_strtoull(buf, 10, &offset) < 0)
2874                 return -EINVAL;
2875         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2876                 return -EBUSY;
2877         if (rdev->sectors && rdev->mddev->external)
2878                 /* Must set offset before size, so overlap checks
2879                  * can be sane */
2880                 return -EBUSY;
2881         rdev->data_offset = offset;
2882         rdev->new_data_offset = offset;
2883         return len;
2884 }
2885
2886 static struct rdev_sysfs_entry rdev_offset =
2887 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2888
2889 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2890 {
2891         return sprintf(page, "%llu\n",
2892                        (unsigned long long)rdev->new_data_offset);
2893 }
2894
2895 static ssize_t new_offset_store(struct md_rdev *rdev,
2896                                 const char *buf, size_t len)
2897 {
2898         unsigned long long new_offset;
2899         struct mddev *mddev = rdev->mddev;
2900
2901         if (strict_strtoull(buf, 10, &new_offset) < 0)
2902                 return -EINVAL;
2903
2904         if (mddev->sync_thread)
2905                 return -EBUSY;
2906         if (new_offset == rdev->data_offset)
2907                 /* reset is always permitted */
2908                 ;
2909         else if (new_offset > rdev->data_offset) {
2910                 /* must not push array size beyond rdev_sectors */
2911                 if (new_offset - rdev->data_offset
2912                     + mddev->dev_sectors > rdev->sectors)
2913                                 return -E2BIG;
2914         }
2915         /* Metadata worries about other space details. */
2916
2917         /* decreasing the offset is inconsistent with a backwards
2918          * reshape.
2919          */
2920         if (new_offset < rdev->data_offset &&
2921             mddev->reshape_backwards)
2922                 return -EINVAL;
2923         /* Increasing offset is inconsistent with forwards
2924          * reshape.  reshape_direction should be set to
2925          * 'backwards' first.
2926          */
2927         if (new_offset > rdev->data_offset &&
2928             !mddev->reshape_backwards)
2929                 return -EINVAL;
2930
2931         if (mddev->pers && mddev->persistent &&
2932             !super_types[mddev->major_version]
2933             .allow_new_offset(rdev, new_offset))
2934                 return -E2BIG;
2935         rdev->new_data_offset = new_offset;
2936         if (new_offset > rdev->data_offset)
2937                 mddev->reshape_backwards = 1;
2938         else if (new_offset < rdev->data_offset)
2939                 mddev->reshape_backwards = 0;
2940
2941         return len;
2942 }
2943 static struct rdev_sysfs_entry rdev_new_offset =
2944 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2945
2946 static ssize_t
2947 rdev_size_show(struct md_rdev *rdev, char *page)
2948 {
2949         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2950 }
2951
2952 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2953 {
2954         /* check if two start/length pairs overlap */
2955         if (s1+l1 <= s2)
2956                 return 0;
2957         if (s2+l2 <= s1)
2958                 return 0;
2959         return 1;
2960 }
2961
2962 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2963 {
2964         unsigned long long blocks;
2965         sector_t new;
2966
2967         if (strict_strtoull(buf, 10, &blocks) < 0)
2968                 return -EINVAL;
2969
2970         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2971                 return -EINVAL; /* sector conversion overflow */
2972
2973         new = blocks * 2;
2974         if (new != blocks * 2)
2975                 return -EINVAL; /* unsigned long long to sector_t overflow */
2976
2977         *sectors = new;
2978         return 0;
2979 }
2980
2981 static ssize_t
2982 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2983 {
2984         struct mddev *my_mddev = rdev->mddev;
2985         sector_t oldsectors = rdev->sectors;
2986         sector_t sectors;
2987
2988         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2989                 return -EINVAL;
2990         if (rdev->data_offset != rdev->new_data_offset)
2991                 return -EINVAL; /* too confusing */
2992         if (my_mddev->pers && rdev->raid_disk >= 0) {
2993                 if (my_mddev->persistent) {
2994                         sectors = super_types[my_mddev->major_version].
2995                                 rdev_size_change(rdev, sectors);
2996                         if (!sectors)
2997                                 return -EBUSY;
2998                 } else if (!sectors)
2999                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3000                                 rdev->data_offset;
3001         }
3002         if (sectors < my_mddev->dev_sectors)
3003                 return -EINVAL; /* component must fit device */
3004
3005         rdev->sectors = sectors;
3006         if (sectors > oldsectors && my_mddev->external) {
3007                 /* need to check that all other rdevs with the same ->bdev
3008                  * do not overlap.  We need to unlock the mddev to avoid
3009                  * a deadlock.  We have already changed rdev->sectors, and if
3010                  * we have to change it back, we will have the lock again.
3011                  */
3012                 struct mddev *mddev;
3013                 int overlap = 0;
3014                 struct list_head *tmp;
3015
3016                 mddev_unlock(my_mddev);
3017                 for_each_mddev(mddev, tmp) {
3018                         struct md_rdev *rdev2;
3019
3020                         mddev_lock(mddev);
3021                         rdev_for_each(rdev2, mddev)
3022                                 if (rdev->bdev == rdev2->bdev &&
3023                                     rdev != rdev2 &&
3024                                     overlaps(rdev->data_offset, rdev->sectors,
3025                                              rdev2->data_offset,
3026                                              rdev2->sectors)) {
3027                                         overlap = 1;
3028                                         break;
3029                                 }
3030                         mddev_unlock(mddev);
3031                         if (overlap) {
3032                                 mddev_put(mddev);
3033                                 break;
3034                         }
3035                 }
3036                 mddev_lock(my_mddev);
3037                 if (overlap) {
3038                         /* Someone else could have slipped in a size
3039                          * change here, but doing so is just silly.
3040                          * We put oldsectors back because we *know* it is
3041                          * safe, and trust userspace not to race with
3042                          * itself
3043                          */
3044                         rdev->sectors = oldsectors;
3045                         return -EBUSY;
3046                 }
3047         }
3048         return len;
3049 }
3050
3051 static struct rdev_sysfs_entry rdev_size =
3052 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3053
3054
3055 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3056 {
3057         unsigned long long recovery_start = rdev->recovery_offset;
3058
3059         if (test_bit(In_sync, &rdev->flags) ||
3060             recovery_start == MaxSector)
3061                 return sprintf(page, "none\n");
3062
3063         return sprintf(page, "%llu\n", recovery_start);
3064 }
3065
3066 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3067 {
3068         unsigned long long recovery_start;
3069
3070         if (cmd_match(buf, "none"))
3071                 recovery_start = MaxSector;
3072         else if (strict_strtoull(buf, 10, &recovery_start))
3073                 return -EINVAL;
3074
3075         if (rdev->mddev->pers &&
3076             rdev->raid_disk >= 0)
3077                 return -EBUSY;
3078
3079         rdev->recovery_offset = recovery_start;
3080         if (recovery_start == MaxSector)
3081                 set_bit(In_sync, &rdev->flags);
3082         else
3083                 clear_bit(In_sync, &rdev->flags);
3084         return len;
3085 }
3086
3087 static struct rdev_sysfs_entry rdev_recovery_start =
3088 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3089
3090
3091 static ssize_t
3092 badblocks_show(struct badblocks *bb, char *page, int unack);
3093 static ssize_t
3094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3095
3096 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3097 {
3098         return badblocks_show(&rdev->badblocks, page, 0);
3099 }
3100 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3101 {
3102         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3103         /* Maybe that ack was all we needed */
3104         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3105                 wake_up(&rdev->blocked_wait);
3106         return rv;
3107 }
3108 static struct rdev_sysfs_entry rdev_bad_blocks =
3109 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3110
3111
3112 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3113 {
3114         return badblocks_show(&rdev->badblocks, page, 1);
3115 }
3116 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3117 {
3118         return badblocks_store(&rdev->badblocks, page, len, 1);
3119 }
3120 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3121 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3122
3123 static struct attribute *rdev_default_attrs[] = {
3124         &rdev_state.attr,
3125         &rdev_errors.attr,
3126         &rdev_slot.attr,
3127         &rdev_offset.attr,
3128         &rdev_new_offset.attr,
3129         &rdev_size.attr,
3130         &rdev_recovery_start.attr,
3131         &rdev_bad_blocks.attr,
3132         &rdev_unack_bad_blocks.attr,
3133         NULL,
3134 };
3135 static ssize_t
3136 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3137 {
3138         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3139         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3140         struct mddev *mddev = rdev->mddev;
3141         ssize_t rv;
3142
3143         if (!entry->show)
3144                 return -EIO;
3145
3146         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3147         if (!rv) {
3148                 if (rdev->mddev == NULL)
3149                         rv = -EBUSY;
3150                 else
3151                         rv = entry->show(rdev, page);
3152                 mddev_unlock(mddev);
3153         }
3154         return rv;
3155 }
3156
3157 static ssize_t
3158 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3159               const char *page, size_t length)
3160 {
3161         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3162         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3163         ssize_t rv;
3164         struct mddev *mddev = rdev->mddev;
3165
3166         if (!entry->store)
3167                 return -EIO;
3168         if (!capable(CAP_SYS_ADMIN))
3169                 return -EACCES;
3170         rv = mddev ? mddev_lock(mddev): -EBUSY;
3171         if (!rv) {
3172                 if (rdev->mddev == NULL)
3173                         rv = -EBUSY;
3174                 else
3175                         rv = entry->store(rdev, page, length);
3176                 mddev_unlock(mddev);
3177         }
3178         return rv;
3179 }
3180
3181 static void rdev_free(struct kobject *ko)
3182 {
3183         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3184         kfree(rdev);
3185 }
3186 static const struct sysfs_ops rdev_sysfs_ops = {
3187         .show           = rdev_attr_show,
3188         .store          = rdev_attr_store,
3189 };
3190 static struct kobj_type rdev_ktype = {
3191         .release        = rdev_free,
3192         .sysfs_ops      = &rdev_sysfs_ops,
3193         .default_attrs  = rdev_default_attrs,
3194 };
3195
3196 int md_rdev_init(struct md_rdev *rdev)
3197 {
3198         rdev->desc_nr = -1;
3199         rdev->saved_raid_disk = -1;
3200         rdev->raid_disk = -1;
3201         rdev->flags = 0;
3202         rdev->data_offset = 0;
3203         rdev->new_data_offset = 0;
3204         rdev->sb_events = 0;
3205         rdev->last_read_error.tv_sec  = 0;
3206         rdev->last_read_error.tv_nsec = 0;
3207         rdev->sb_loaded = 0;
3208         rdev->bb_page = NULL;
3209         atomic_set(&rdev->nr_pending, 0);
3210         atomic_set(&rdev->read_errors, 0);
3211         atomic_set(&rdev->corrected_errors, 0);
3212
3213         INIT_LIST_HEAD(&rdev->same_set);
3214         init_waitqueue_head(&rdev->blocked_wait);
3215
3216         /* Add space to store bad block list.
3217          * This reserves the space even on arrays where it cannot
3218          * be used - I wonder if that matters
3219          */
3220         rdev->badblocks.count = 0;
3221         rdev->badblocks.shift = 0;
3222         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3223         seqlock_init(&rdev->badblocks.lock);
3224         if (rdev->badblocks.page == NULL)
3225                 return -ENOMEM;
3226
3227         return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(md_rdev_init);
3230 /*
3231  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3232  *
3233  * mark the device faulty if:
3234  *
3235  *   - the device is nonexistent (zero size)
3236  *   - the device has no valid superblock
3237  *
3238  * a faulty rdev _never_ has rdev->sb set.
3239  */
3240 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3241 {
3242         char b[BDEVNAME_SIZE];
3243         int err;
3244         struct md_rdev *rdev;
3245         sector_t size;
3246
3247         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3248         if (!rdev) {
3249                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3250                 return ERR_PTR(-ENOMEM);
3251         }
3252
3253         err = md_rdev_init(rdev);
3254         if (err)
3255                 goto abort_free;
3256         err = alloc_disk_sb(rdev);
3257         if (err)
3258                 goto abort_free;
3259
3260         err = lock_rdev(rdev, newdev, super_format == -2);
3261         if (err)
3262                 goto abort_free;
3263
3264         kobject_init(&rdev->kobj, &rdev_ktype);
3265
3266         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3267         if (!size) {
3268                 printk(KERN_WARNING 
3269                         "md: %s has zero or unknown size, marking faulty!\n",
3270                         bdevname(rdev->bdev,b));
3271                 err = -EINVAL;
3272                 goto abort_free;
3273         }
3274
3275         if (super_format >= 0) {
3276                 err = super_types[super_format].
3277                         load_super(rdev, NULL, super_minor);
3278                 if (err == -EINVAL) {
3279                         printk(KERN_WARNING
3280                                 "md: %s does not have a valid v%d.%d "
3281                                "superblock, not importing!\n",
3282                                 bdevname(rdev->bdev,b),
3283                                super_format, super_minor);
3284                         goto abort_free;
3285                 }
3286                 if (err < 0) {
3287                         printk(KERN_WARNING 
3288                                 "md: could not read %s's sb, not importing!\n",
3289                                 bdevname(rdev->bdev,b));
3290                         goto abort_free;
3291                 }
3292         }
3293         if (super_format == -1)
3294                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3295                 rdev->badblocks.shift = -1;
3296
3297         return rdev;
3298
3299 abort_free:
3300         if (rdev->bdev)
3301                 unlock_rdev(rdev);
3302         md_rdev_clear(rdev);
3303         kfree(rdev);
3304         return ERR_PTR(err);
3305 }
3306
3307 /*
3308  * Check a full RAID array for plausibility
3309  */
3310
3311
3312 static void analyze_sbs(struct mddev * mddev)
3313 {
3314         int i;
3315         struct md_rdev *rdev, *freshest, *tmp;
3316         char b[BDEVNAME_SIZE];
3317
3318         freshest = NULL;
3319         rdev_for_each_safe(rdev, tmp, mddev)
3320                 switch (super_types[mddev->major_version].
3321                         load_super(rdev, freshest, mddev->minor_version)) {
3322                 case 1:
3323                         freshest = rdev;
3324                         break;
3325                 case 0:
3326                         break;
3327                 default:
3328                         printk( KERN_ERR \
3329                                 "md: fatal superblock inconsistency in %s"
3330                                 " -- removing from array\n", 
3331                                 bdevname(rdev->bdev,b));
3332                         kick_rdev_from_array(rdev);
3333                 }
3334
3335
3336         super_types[mddev->major_version].
3337                 validate_super(mddev, freshest);
3338
3339         i = 0;
3340         rdev_for_each_safe(rdev, tmp, mddev) {
3341                 if (mddev->max_disks &&
3342                     (rdev->desc_nr >= mddev->max_disks ||
3343                      i > mddev->max_disks)) {
3344                         printk(KERN_WARNING
3345                                "md: %s: %s: only %d devices permitted\n",
3346                                mdname(mddev), bdevname(rdev->bdev, b),
3347                                mddev->max_disks);
3348                         kick_rdev_from_array(rdev);
3349                         continue;
3350                 }
3351                 if (rdev != freshest)
3352                         if (super_types[mddev->major_version].
3353                             validate_super(mddev, rdev)) {
3354                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3355                                         " from array!\n",
3356                                         bdevname(rdev->bdev,b));
3357                                 kick_rdev_from_array(rdev);
3358                                 continue;
3359                         }
3360                 if (mddev->level == LEVEL_MULTIPATH) {
3361                         rdev->desc_nr = i++;
3362                         rdev->raid_disk = rdev->desc_nr;
3363                         set_bit(In_sync, &rdev->flags);
3364                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3365                         rdev->raid_disk = -1;
3366                         clear_bit(In_sync, &rdev->flags);
3367                 }
3368         }
3369 }
3370
3371 /* Read a fixed-point number.
3372  * Numbers in sysfs attributes should be in "standard" units where
3373  * possible, so time should be in seconds.
3374  * However we internally use a a much smaller unit such as 
3375  * milliseconds or jiffies.
3376  * This function takes a decimal number with a possible fractional
3377  * component, and produces an integer which is the result of
3378  * multiplying that number by 10^'scale'.
3379  * all without any floating-point arithmetic.
3380  */
3381 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3382 {
3383         unsigned long result = 0;
3384         long decimals = -1;
3385         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3386                 if (*cp == '.')
3387                         decimals = 0;
3388                 else if (decimals < scale) {
3389                         unsigned int value;
3390                         value = *cp - '0';
3391                         result = result * 10 + value;
3392                         if (decimals >= 0)
3393                                 decimals++;
3394                 }
3395                 cp++;
3396         }
3397         if (*cp == '\n')
3398                 cp++;
3399         if (*cp)
3400                 return -EINVAL;
3401         if (decimals < 0)
3402                 decimals = 0;
3403         while (decimals < scale) {
3404                 result *= 10;
3405                 decimals ++;
3406         }
3407         *res = result;
3408         return 0;
3409 }
3410
3411
3412 static void md_safemode_timeout(unsigned long data);
3413
3414 static ssize_t
3415 safe_delay_show(struct mddev *mddev, char *page)
3416 {
3417         int msec = (mddev->safemode_delay*1000)/HZ;
3418         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3419 }
3420 static ssize_t
3421 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3422 {
3423         unsigned long msec;
3424
3425         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3426                 return -EINVAL;
3427         if (msec == 0)
3428                 mddev->safemode_delay = 0;
3429         else {
3430                 unsigned long old_delay = mddev->safemode_delay;
3431                 mddev->safemode_delay = (msec*HZ)/1000;
3432                 if (mddev->safemode_delay == 0)
3433                         mddev->safemode_delay = 1;
3434                 if (mddev->safemode_delay < old_delay)
3435                         md_safemode_timeout((unsigned long)mddev);
3436         }
3437         return len;
3438 }
3439 static struct md_sysfs_entry md_safe_delay =
3440 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3441
3442 static ssize_t
3443 level_show(struct mddev *mddev, char *page)
3444 {
3445         struct md_personality *p = mddev->pers;
3446         if (p)
3447                 return sprintf(page, "%s\n", p->name);
3448         else if (mddev->clevel[0])
3449                 return sprintf(page, "%s\n", mddev->clevel);
3450         else if (mddev->level != LEVEL_NONE)
3451                 return sprintf(page, "%d\n", mddev->level);
3452         else
3453                 return 0;
3454 }
3455
3456 static ssize_t
3457 level_store(struct mddev *mddev, const char *buf, size_t len)
3458 {
3459         char clevel[16];
3460         ssize_t rv = len;
3461         struct md_personality *pers;
3462         long level;
3463         void *priv;
3464         struct md_rdev *rdev;
3465
3466         if (mddev->pers == NULL) {
3467                 if (len == 0)
3468                         return 0;
3469                 if (len >= sizeof(mddev->clevel))
3470                         return -ENOSPC;
3471                 strncpy(mddev->clevel, buf, len);
3472                 if (mddev->clevel[len-1] == '\n')
3473                         len--;
3474                 mddev->clevel[len] = 0;
3475                 mddev->level = LEVEL_NONE;
3476                 return rv;
3477         }
3478
3479         /* request to change the personality.  Need to ensure:
3480          *  - array is not engaged in resync/recovery/reshape
3481          *  - old personality can be suspended
3482          *  - new personality will access other array.
3483          */
3484
3485         if (mddev->sync_thread ||
3486             mddev->reshape_position != MaxSector ||
3487             mddev->sysfs_active)
3488                 return -EBUSY;
3489
3490         if (!mddev->pers->quiesce) {
3491                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3492                        mdname(mddev), mddev->pers->name);
3493                 return -EINVAL;
3494         }
3495
3496         /* Now find the new personality */
3497         if (len == 0 || len >= sizeof(clevel))
3498                 return -EINVAL;
3499         strncpy(clevel, buf, len);
3500         if (clevel[len-1] == '\n')
3501                 len--;
3502         clevel[len] = 0;
3503         if (strict_strtol(clevel, 10, &level))
3504                 level = LEVEL_NONE;
3505
3506         if (request_module("md-%s", clevel) != 0)
3507                 request_module("md-level-%s", clevel);
3508         spin_lock(&pers_lock);
3509         pers = find_pers(level, clevel);
3510         if (!pers || !try_module_get(pers->owner)) {
3511                 spin_unlock(&pers_lock);
3512                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3513                 return -EINVAL;
3514         }
3515         spin_unlock(&pers_lock);
3516
3517         if (pers == mddev->pers) {
3518                 /* Nothing to do! */
3519                 module_put(pers->owner);
3520                 return rv;
3521         }
3522         if (!pers->takeover) {
3523                 module_put(pers->owner);
3524                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3525                        mdname(mddev), clevel);
3526                 return -EINVAL;
3527         }
3528
3529         rdev_for_each(rdev, mddev)
3530                 rdev->new_raid_disk = rdev->raid_disk;
3531
3532         /* ->takeover must set new_* and/or delta_disks
3533          * if it succeeds, and may set them when it fails.
3534          */
3535         priv = pers->takeover(mddev);
3536         if (IS_ERR(priv)) {
3537                 mddev->new_level = mddev->level;
3538                 mddev->new_layout = mddev->layout;
3539                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3540                 mddev->raid_disks -= mddev->delta_disks;
3541                 mddev->delta_disks = 0;
3542                 mddev->reshape_backwards = 0;
3543                 module_put(pers->owner);
3544                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3545                        mdname(mddev), clevel);
3546                 return PTR_ERR(priv);
3547         }
3548
3549         /* Looks like we have a winner */
3550         mddev_suspend(mddev);
3551         mddev->pers->stop(mddev);
3552         
3553         if (mddev->pers->sync_request == NULL &&
3554             pers->sync_request != NULL) {
3555                 /* need to add the md_redundancy_group */
3556                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3557                         printk(KERN_WARNING
3558                                "md: cannot register extra attributes for %s\n",
3559                                mdname(mddev));
3560                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3561         }               
3562         if (mddev->pers->sync_request != NULL &&
3563             pers->sync_request == NULL) {
3564                 /* need to remove the md_redundancy_group */
3565                 if (mddev->to_remove == NULL)
3566                         mddev->to_remove = &md_redundancy_group;
3567         }
3568
3569         if (mddev->pers->sync_request == NULL &&
3570             mddev->external) {
3571                 /* We are converting from a no-redundancy array
3572                  * to a redundancy array and metadata is managed
3573                  * externally so we need to be sure that writes
3574                  * won't block due to a need to transition
3575                  *      clean->dirty
3576                  * until external management is started.
3577                  */
3578                 mddev->in_sync = 0;
3579                 mddev->safemode_delay = 0;
3580                 mddev->safemode = 0;
3581         }
3582
3583         rdev_for_each(rdev, mddev) {
3584                 if (rdev->raid_disk < 0)
3585                         continue;
3586                 if (rdev->new_raid_disk >= mddev->raid_disks)
3587                         rdev->new_raid_disk = -1;
3588                 if (rdev->new_raid_disk == rdev->raid_disk)
3589                         continue;
3590                 sysfs_unlink_rdev(mddev, rdev);
3591         }
3592         rdev_for_each(rdev, mddev) {
3593                 if (rdev->raid_disk < 0)
3594                         continue;
3595                 if (rdev->new_raid_disk == rdev->raid_disk)
3596                         continue;
3597                 rdev->raid_disk = rdev->new_raid_disk;
3598                 if (rdev->raid_disk < 0)
3599                         clear_bit(In_sync, &rdev->flags);
3600                 else {
3601                         if (sysfs_link_rdev(mddev, rdev))
3602                                 printk(KERN_WARNING "md: cannot register rd%d"
3603                                        " for %s after level change\n",
3604                                        rdev->raid_disk, mdname(mddev));
3605                 }
3606         }
3607
3608         module_put(mddev->pers->owner);
3609         mddev->pers = pers;
3610         mddev->private = priv;
3611         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3612         mddev->level = mddev->new_level;
3613         mddev->layout = mddev->new_layout;
3614         mddev->chunk_sectors = mddev->new_chunk_sectors;
3615         mddev->delta_disks = 0;
3616         mddev->reshape_backwards = 0;
3617         mddev->degraded = 0;
3618         if (mddev->pers->sync_request == NULL) {
3619                 /* this is now an array without redundancy, so
3620                  * it must always be in_sync
3621                  */
3622                 mddev->in_sync = 1;
3623                 del_timer_sync(&mddev->safemode_timer);
3624         }
3625         pers->run(mddev);
3626         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3627         mddev_resume(mddev);
3628         sysfs_notify(&mddev->kobj, NULL, "level");
3629         md_new_event(mddev);
3630         return rv;
3631 }
3632
3633 static struct md_sysfs_entry md_level =
3634 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3635
3636
3637 static ssize_t
3638 layout_show(struct mddev *mddev, char *page)
3639 {
3640         /* just a number, not meaningful for all levels */
3641         if (mddev->reshape_position != MaxSector &&
3642             mddev->layout != mddev->new_layout)
3643                 return sprintf(page, "%d (%d)\n",
3644                                mddev->new_layout, mddev->layout);
3645         return sprintf(page, "%d\n", mddev->layout);
3646 }
3647
3648 static ssize_t
3649 layout_store(struct mddev *mddev, const char *buf, size_t len)
3650 {
3651         char *e;
3652         unsigned long n = simple_strtoul(buf, &e, 10);
3653
3654         if (!*buf || (*e && *e != '\n'))
3655                 return -EINVAL;
3656
3657         if (mddev->pers) {
3658                 int err;
3659                 if (mddev->pers->check_reshape == NULL)
3660                         return -EBUSY;
3661                 mddev->new_layout = n;
3662                 err = mddev->pers->check_reshape(mddev);
3663                 if (err) {
3664                         mddev->new_layout = mddev->layout;
3665                         return err;
3666                 }
3667         } else {
3668                 mddev->new_layout = n;
3669                 if (mddev->reshape_position == MaxSector)
3670                         mddev->layout = n;
3671         }
3672         return len;
3673 }
3674 static struct md_sysfs_entry md_layout =
3675 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3676
3677
3678 static ssize_t
3679 raid_disks_show(struct mddev *mddev, char *page)
3680 {
3681         if (mddev->raid_disks == 0)
3682                 return 0;
3683         if (mddev->reshape_position != MaxSector &&
3684             mddev->delta_disks != 0)
3685                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3686                                mddev->raid_disks - mddev->delta_disks);
3687         return sprintf(page, "%d\n", mddev->raid_disks);
3688 }
3689
3690 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3691
3692 static ssize_t
3693 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3694 {
3695         char *e;
3696         int rv = 0;
3697         unsigned long n = simple_strtoul(buf, &e, 10);
3698
3699         if (!*buf || (*e && *e != '\n'))
3700                 return -EINVAL;
3701
3702         if (mddev->pers)
3703                 rv = update_raid_disks(mddev, n);
3704         else if (mddev->reshape_position != MaxSector) {
3705                 struct md_rdev *rdev;
3706                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3707
3708                 rdev_for_each(rdev, mddev) {
3709                         if (olddisks < n &&
3710                             rdev->data_offset < rdev->new_data_offset)
3711                                 return -EINVAL;
3712                         if (olddisks > n &&
3713                             rdev->data_offset > rdev->new_data_offset)
3714                                 return -EINVAL;
3715                 }
3716                 mddev->delta_disks = n - olddisks;
3717                 mddev->raid_disks = n;
3718                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3719         } else
3720                 mddev->raid_disks = n;
3721         return rv ? rv : len;
3722 }
3723 static struct md_sysfs_entry md_raid_disks =
3724 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3725
3726 static ssize_t
3727 chunk_size_show(struct mddev *mddev, char *page)
3728 {
3729         if (mddev->reshape_position != MaxSector &&
3730             mddev->chunk_sectors != mddev->new_chunk_sectors)
3731                 return sprintf(page, "%d (%d)\n",
3732                                mddev->new_chunk_sectors << 9,
3733                                mddev->chunk_sectors << 9);
3734         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3735 }
3736
3737 static ssize_t
3738 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3739 {
3740         char *e;
3741         unsigned long n = simple_strtoul(buf, &e, 10);
3742
3743         if (!*buf || (*e && *e != '\n'))
3744                 return -EINVAL;
3745
3746         if (mddev->pers) {
3747                 int err;
3748                 if (mddev->pers->check_reshape == NULL)
3749                         return -EBUSY;
3750                 mddev->new_chunk_sectors = n >> 9;
3751                 err = mddev->pers->check_reshape(mddev);
3752                 if (err) {
3753                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3754                         return err;
3755                 }
3756         } else {
3757                 mddev->new_chunk_sectors = n >> 9;
3758                 if (mddev->reshape_position == MaxSector)
3759                         mddev->chunk_sectors = n >> 9;
3760         }
3761         return len;
3762 }
3763 static struct md_sysfs_entry md_chunk_size =
3764 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3765
3766 static ssize_t
3767 resync_start_show(struct mddev *mddev, char *page)
3768 {
3769         if (mddev->recovery_cp == MaxSector)
3770                 return sprintf(page, "none\n");
3771         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3772 }
3773
3774 static ssize_t
3775 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3776 {
3777         char *e;
3778         unsigned long long n = simple_strtoull(buf, &e, 10);
3779
3780         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3781                 return -EBUSY;
3782         if (cmd_match(buf, "none"))
3783                 n = MaxSector;
3784         else if (!*buf || (*e && *e != '\n'))
3785                 return -EINVAL;
3786
3787         mddev->recovery_cp = n;
3788         if (mddev->pers)
3789                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3790         return len;
3791 }
3792 static struct md_sysfs_entry md_resync_start =
3793 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3794
3795 /*
3796  * The array state can be:
3797  *
3798  * clear
3799  *     No devices, no size, no level
3800  *     Equivalent to STOP_ARRAY ioctl
3801  * inactive
3802  *     May have some settings, but array is not active
3803  *        all IO results in error
3804  *     When written, doesn't tear down array, but just stops it
3805  * suspended (not supported yet)
3806  *     All IO requests will block. The array can be reconfigured.
3807  *     Writing this, if accepted, will block until array is quiescent
3808  * readonly
3809  *     no resync can happen.  no superblocks get written.
3810  *     write requests fail
3811  * read-auto
3812  *     like readonly, but behaves like 'clean' on a write request.
3813  *
3814  * clean - no pending writes, but otherwise active.
3815  *     When written to inactive array, starts without resync
3816  *     If a write request arrives then
3817  *       if metadata is known, mark 'dirty' and switch to 'active'.
3818  *       if not known, block and switch to write-pending
3819  *     If written to an active array that has pending writes, then fails.
3820  * active
3821  *     fully active: IO and resync can be happening.
3822  *     When written to inactive array, starts with resync
3823  *
3824  * write-pending
3825  *     clean, but writes are blocked waiting for 'active' to be written.
3826  *
3827  * active-idle
3828  *     like active, but no writes have been seen for a while (100msec).
3829  *
3830  */
3831 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3832                    write_pending, active_idle, bad_word};
3833 static char *array_states[] = {
3834         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3835         "write-pending", "active-idle", NULL };
3836
3837 static int match_word(const char *word, char **list)
3838 {
3839         int n;
3840         for (n=0; list[n]; n++)
3841                 if (cmd_match(word, list[n]))
3842                         break;
3843         return n;
3844 }
3845
3846 static ssize_t
3847 array_state_show(struct mddev *mddev, char *page)
3848 {
3849         enum array_state st = inactive;
3850
3851         if (mddev->pers)
3852                 switch(mddev->ro) {
3853                 case 1:
3854                         st = readonly;
3855                         break;
3856                 case 2:
3857                         st = read_auto;
3858                         break;
3859                 case 0:
3860                         if (mddev->in_sync)
3861                                 st = clean;
3862                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3863                                 st = write_pending;
3864                         else if (mddev->safemode)
3865                                 st = active_idle;
3866                         else
3867                                 st = active;
3868                 }
3869         else {
3870                 if (list_empty(&mddev->disks) &&
3871                     mddev->raid_disks == 0 &&
3872                     mddev->dev_sectors == 0)
3873                         st = clear;
3874                 else
3875                         st = inactive;
3876         }
3877         return sprintf(page, "%s\n", array_states[st]);
3878 }
3879
3880 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3881 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3882 static int do_md_run(struct mddev * mddev);
3883 static int restart_array(struct mddev *mddev);
3884
3885 static ssize_t
3886 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3887 {
3888         int err = -EINVAL;
3889         enum array_state st = match_word(buf, array_states);
3890         switch(st) {
3891         case bad_word:
3892                 break;
3893         case clear:
3894                 /* stopping an active array */
3895                 err = do_md_stop(mddev, 0, NULL);
3896                 break;
3897         case inactive:
3898                 /* stopping an active array */
3899                 if (mddev->pers)
3900                         err = do_md_stop(mddev, 2, NULL);
3901                 else
3902                         err = 0; /* already inactive */
3903                 break;
3904         case suspended:
3905                 break; /* not supported yet */
3906         case readonly:
3907                 if (mddev->pers)
3908                         err = md_set_readonly(mddev, NULL);
3909                 else {
3910                         mddev->ro = 1;
3911                         set_disk_ro(mddev->gendisk, 1);
3912                         err = do_md_run(mddev);
3913                 }
3914                 break;
3915         case read_auto:
3916                 if (mddev->pers) {
3917                         if (mddev->ro == 0)
3918                                 err = md_set_readonly(mddev, NULL);
3919                         else if (mddev->ro == 1)
3920                                 err = restart_array(mddev);
3921                         if (err == 0) {
3922                                 mddev->ro = 2;
3923                                 set_disk_ro(mddev->gendisk, 0);
3924                         }
3925                 } else {
3926                         mddev->ro = 2;
3927                         err = do_md_run(mddev);
3928                 }
3929                 break;
3930         case clean:
3931                 if (mddev->pers) {
3932                         restart_array(mddev);
3933                         spin_lock_irq(&mddev->write_lock);
3934                         if (atomic_read(&mddev->writes_pending) == 0) {
3935                                 if (mddev->in_sync == 0) {
3936                                         mddev->in_sync = 1;
3937                                         if (mddev->safemode == 1)
3938                                                 mddev->safemode = 0;
3939                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3940                                 }
3941                                 err = 0;
3942                         } else
3943                                 err = -EBUSY;
3944                         spin_unlock_irq(&mddev->write_lock);
3945                 } else
3946                         err = -EINVAL;
3947                 break;
3948         case active:
3949                 if (mddev->pers) {
3950                         restart_array(mddev);
3951                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3952                         wake_up(&mddev->sb_wait);
3953                         err = 0;
3954                 } else {
3955                         mddev->ro = 0;
3956                         set_disk_ro(mddev->gendisk, 0);
3957                         err = do_md_run(mddev);
3958                 }
3959                 break;
3960         case write_pending:
3961         case active_idle:
3962                 /* these cannot be set */
3963                 break;
3964         }
3965         if (err)
3966                 return err;
3967         else {
3968                 if (mddev->hold_active == UNTIL_IOCTL)
3969                         mddev->hold_active = 0;
3970                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3971                 return len;
3972         }
3973 }
3974 static struct md_sysfs_entry md_array_state =
3975 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3976
3977 static ssize_t
3978 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3979         return sprintf(page, "%d\n",
3980                        atomic_read(&mddev->max_corr_read_errors));
3981 }
3982
3983 static ssize_t
3984 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3985 {
3986         char *e;
3987         unsigned long n = simple_strtoul(buf, &e, 10);
3988
3989         if (*buf && (*e == 0 || *e == '\n')) {
3990                 atomic_set(&mddev->max_corr_read_errors, n);
3991                 return len;
3992         }
3993         return -EINVAL;
3994 }
3995
3996 static struct md_sysfs_entry max_corr_read_errors =
3997 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3998         max_corrected_read_errors_store);
3999
4000 static ssize_t
4001 null_show(struct mddev *mddev, char *page)
4002 {
4003         return -EINVAL;
4004 }
4005
4006 static ssize_t
4007 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4008 {
4009         /* buf must be %d:%d\n? giving major and minor numbers */
4010         /* The new device is added to the array.
4011          * If the array has a persistent superblock, we read the
4012          * superblock to initialise info and check validity.
4013          * Otherwise, only checking done is that in bind_rdev_to_array,
4014          * which mainly checks size.
4015          */
4016         char *e;
4017         int major = simple_strtoul(buf, &e, 10);
4018         int minor;
4019         dev_t dev;
4020         struct md_rdev *rdev;
4021         int err;
4022
4023         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4024                 return -EINVAL;
4025         minor = simple_strtoul(e+1, &e, 10);
4026         if (*e && *e != '\n')
4027                 return -EINVAL;
4028         dev = MKDEV(major, minor);
4029         if (major != MAJOR(dev) ||
4030             minor != MINOR(dev))
4031                 return -EOVERFLOW;
4032
4033
4034         if (mddev->persistent) {
4035                 rdev = md_import_device(dev, mddev->major_version,
4036                                         mddev->minor_version);
4037                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4038                         struct md_rdev *rdev0
4039                                 = list_entry(mddev->disks.next,
4040                                              struct md_rdev, same_set);
4041                         err = super_types[mddev->major_version]
4042                                 .load_super(rdev, rdev0, mddev->minor_version);
4043                         if (err < 0)
4044                                 goto out;
4045                 }
4046         } else if (mddev->external)
4047                 rdev = md_import_device(dev, -2, -1);
4048         else
4049                 rdev = md_import_device(dev, -1, -1);
4050
4051         if (IS_ERR(rdev))
4052                 return PTR_ERR(rdev);
4053         err = bind_rdev_to_array(rdev, mddev);
4054  out:
4055         if (err)
4056                 export_rdev(rdev);
4057         return err ? err : len;
4058 }
4059
4060 static struct md_sysfs_entry md_new_device =
4061 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4062
4063 static ssize_t
4064 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4065 {
4066         char *end;
4067         unsigned long chunk, end_chunk;
4068
4069         if (!mddev->bitmap)
4070                 goto out;
4071         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4072         while (*buf) {
4073                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4074                 if (buf == end) break;
4075                 if (*end == '-') { /* range */
4076                         buf = end + 1;
4077                         end_chunk = simple_strtoul(buf, &end, 0);
4078                         if (buf == end) break;
4079                 }
4080                 if (*end && !isspace(*end)) break;
4081                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4082                 buf = skip_spaces(end);
4083         }
4084         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4085 out:
4086         return len;
4087 }
4088
4089 static struct md_sysfs_entry md_bitmap =
4090 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4091
4092 static ssize_t
4093 size_show(struct mddev *mddev, char *page)
4094 {
4095         return sprintf(page, "%llu\n",
4096                 (unsigned long long)mddev->dev_sectors / 2);
4097 }
4098
4099 static int update_size(struct mddev *mddev, sector_t num_sectors);
4100
4101 static ssize_t
4102 size_store(struct mddev *mddev, const char *buf, size_t len)
4103 {
4104         /* If array is inactive, we can reduce the component size, but
4105          * not increase it (except from 0).
4106          * If array is active, we can try an on-line resize
4107          */
4108         sector_t sectors;
4109         int err = strict_blocks_to_sectors(buf, &sectors);
4110
4111         if (err < 0)
4112                 return err;
4113         if (mddev->pers) {
4114                 err = update_size(mddev, sectors);
4115                 md_update_sb(mddev, 1);
4116         } else {
4117                 if (mddev->dev_sectors == 0 ||
4118                     mddev->dev_sectors > sectors)
4119                         mddev->dev_sectors = sectors;
4120                 else
4121                         err = -ENOSPC;
4122         }
4123         return err ? err : len;
4124 }
4125
4126 static struct md_sysfs_entry md_size =
4127 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4128
4129
4130 /* Metadata version.
4131  * This is one of
4132  *   'none' for arrays with no metadata (good luck...)
4133  *   'external' for arrays with externally managed metadata,
4134  * or N.M for internally known formats
4135  */
4136 static ssize_t
4137 metadata_show(struct mddev *mddev, char *page)
4138 {
4139         if (mddev->persistent)
4140                 return sprintf(page, "%d.%d\n",
4141                                mddev->major_version, mddev->minor_version);
4142         else if (mddev->external)
4143                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4144         else
4145                 return sprintf(page, "none\n");
4146 }
4147
4148 static ssize_t
4149 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4150 {
4151         int major, minor;
4152         char *e;
4153         /* Changing the details of 'external' metadata is
4154          * always permitted.  Otherwise there must be
4155          * no devices attached to the array.
4156          */
4157         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4158                 ;
4159         else if (!list_empty(&mddev->disks))
4160                 return -EBUSY;
4161
4162         if (cmd_match(buf, "none")) {
4163                 mddev->persistent = 0;
4164                 mddev->external = 0;
4165                 mddev->major_version = 0;
4166                 mddev->minor_version = 90;
4167                 return len;
4168         }
4169         if (strncmp(buf, "external:", 9) == 0) {
4170                 size_t namelen = len-9;
4171                 if (namelen >= sizeof(mddev->metadata_type))
4172                         namelen = sizeof(mddev->metadata_type)-1;
4173                 strncpy(mddev->metadata_type, buf+9, namelen);
4174                 mddev->metadata_type[namelen] = 0;
4175                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4176                         mddev->metadata_type[--namelen] = 0;
4177                 mddev->persistent = 0;
4178                 mddev->external = 1;
4179                 mddev->major_version = 0;
4180                 mddev->minor_version = 90;
4181                 return len;
4182         }
4183         major = simple_strtoul(buf, &e, 10);
4184         if (e==buf || *e != '.')
4185                 return -EINVAL;
4186         buf = e+1;
4187         minor = simple_strtoul(buf, &e, 10);
4188         if (e==buf || (*e && *e != '\n') )
4189                 return -EINVAL;
4190         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4191                 return -ENOENT;
4192         mddev->major_version = major;
4193         mddev->minor_version = minor;
4194         mddev->persistent = 1;
4195         mddev->external = 0;
4196         return len;
4197 }
4198
4199 static struct md_sysfs_entry md_metadata =
4200 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4201
4202 static ssize_t
4203 action_show(struct mddev *mddev, char *page)
4204 {
4205         char *type = "idle";
4206         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4207                 type = "frozen";
4208         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4209             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4210                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4211                         type = "reshape";
4212                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4213                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4214                                 type = "resync";
4215                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4216                                 type = "check";
4217                         else
4218                                 type = "repair";
4219                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4220                         type = "recover";
4221         }
4222         return sprintf(page, "%s\n", type);
4223 }
4224
4225 static void reap_sync_thread(struct mddev *mddev);
4226
4227 static ssize_t
4228 action_store(struct mddev *mddev, const char *page, size_t len)
4229 {
4230         if (!mddev->pers || !mddev->pers->sync_request)
4231                 return -EINVAL;
4232
4233         if (cmd_match(page, "frozen"))
4234                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4235         else
4236                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4237
4238         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4239                 if (mddev->sync_thread) {
4240                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4241                         reap_sync_thread(mddev);
4242                 }
4243         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4244                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4245                 return -EBUSY;
4246         else if (cmd_match(page, "resync"))
4247                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248         else if (cmd_match(page, "recover")) {
4249                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4250                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4251         } else if (cmd_match(page, "reshape")) {
4252                 int err;
4253                 if (mddev->pers->start_reshape == NULL)
4254                         return -EINVAL;
4255                 err = mddev->pers->start_reshape(mddev);
4256                 if (err)
4257                         return err;
4258                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4259         } else {
4260                 if (cmd_match(page, "check"))
4261                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4262                 else if (!cmd_match(page, "repair"))
4263                         return -EINVAL;
4264                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4265                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4266         }
4267         if (mddev->ro == 2) {
4268                 /* A write to sync_action is enough to justify
4269                  * canceling read-auto mode
4270                  */
4271                 mddev->ro = 0;
4272                 md_wakeup_thread(mddev->sync_thread);
4273         }
4274         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4275         md_wakeup_thread(mddev->thread);
4276         sysfs_notify_dirent_safe(mddev->sysfs_action);
4277         return len;
4278 }
4279
4280 static ssize_t
4281 mismatch_cnt_show(struct mddev *mddev, char *page)
4282 {
4283         return sprintf(page, "%llu\n",
4284                        (unsigned long long)
4285                        atomic64_read(&mddev->resync_mismatches));
4286 }
4287
4288 static struct md_sysfs_entry md_scan_mode =
4289 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4290
4291
4292 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4293
4294 static ssize_t
4295 sync_min_show(struct mddev *mddev, char *page)
4296 {
4297         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4298                        mddev->sync_speed_min ? "local": "system");
4299 }
4300
4301 static ssize_t
4302 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4303 {
4304         int min;
4305         char *e;
4306         if (strncmp(buf, "system", 6)==0) {
4307                 mddev->sync_speed_min = 0;
4308                 return len;
4309         }
4310         min = simple_strtoul(buf, &e, 10);
4311         if (buf == e || (*e && *e != '\n') || min <= 0)
4312                 return -EINVAL;
4313         mddev->sync_speed_min = min;
4314         return len;
4315 }
4316
4317 static struct md_sysfs_entry md_sync_min =
4318 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4319
4320 static ssize_t
4321 sync_max_show(struct mddev *mddev, char *page)
4322 {
4323         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4324                        mddev->sync_speed_max ? "local": "system");
4325 }
4326
4327 static ssize_t
4328 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4329 {
4330         int max;
4331         char *e;
4332         if (strncmp(buf, "system", 6)==0) {
4333                 mddev->sync_speed_max = 0;
4334                 return len;
4335         }
4336         max = simple_strtoul(buf, &e, 10);
4337         if (buf == e || (*e && *e != '\n') || max <= 0)
4338                 return -EINVAL;
4339         mddev->sync_speed_max = max;
4340         return len;
4341 }
4342
4343 static struct md_sysfs_entry md_sync_max =
4344 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4345
4346 static ssize_t
4347 degraded_show(struct mddev *mddev, char *page)
4348 {
4349         return sprintf(page, "%d\n", mddev->degraded);
4350 }
4351 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4352
4353 static ssize_t
4354 sync_force_parallel_show(struct mddev *mddev, char *page)
4355 {
4356         return sprintf(page, "%d\n", mddev->parallel_resync);
4357 }
4358
4359 static ssize_t
4360 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4361 {
4362         long n;
4363
4364         if (strict_strtol(buf, 10, &n))
4365                 return -EINVAL;
4366
4367         if (n != 0 && n != 1)
4368                 return -EINVAL;
4369
4370         mddev->parallel_resync = n;
4371
4372         if (mddev->sync_thread)
4373                 wake_up(&resync_wait);
4374
4375         return len;
4376 }
4377
4378 /* force parallel resync, even with shared block devices */
4379 static struct md_sysfs_entry md_sync_force_parallel =
4380 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4381        sync_force_parallel_show, sync_force_parallel_store);
4382
4383 static ssize_t
4384 sync_speed_show(struct mddev *mddev, char *page)
4385 {
4386         unsigned long resync, dt, db;
4387         if (mddev->curr_resync == 0)
4388                 return sprintf(page, "none\n");
4389         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4390         dt = (jiffies - mddev->resync_mark) / HZ;
4391         if (!dt) dt++;
4392         db = resync - mddev->resync_mark_cnt;
4393         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4394 }
4395
4396 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4397
4398 static ssize_t
4399 sync_completed_show(struct mddev *mddev, char *page)
4400 {
4401         unsigned long long max_sectors, resync;
4402
4403         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4404                 return sprintf(page, "none\n");
4405
4406         if (mddev->curr_resync == 1 ||
4407             mddev->curr_resync == 2)
4408                 return sprintf(page, "delayed\n");
4409
4410         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4411             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4412                 max_sectors = mddev->resync_max_sectors;
4413         else
4414                 max_sectors = mddev->dev_sectors;
4415
4416         resync = mddev->curr_resync_completed;
4417         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4418 }
4419
4420 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4421
4422 static ssize_t
4423 min_sync_show(struct mddev *mddev, char *page)
4424 {
4425         return sprintf(page, "%llu\n",
4426                        (unsigned long long)mddev->resync_min);
4427 }
4428 static ssize_t
4429 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4430 {
4431         unsigned long long min;
4432         if (strict_strtoull(buf, 10, &min))
4433                 return -EINVAL;
4434         if (min > mddev->resync_max)
4435                 return -EINVAL;
4436         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4437                 return -EBUSY;
4438
4439         /* Must be a multiple of chunk_size */
4440         if (mddev->chunk_sectors) {
4441                 sector_t temp = min;
4442                 if (sector_div(temp, mddev->chunk_sectors))
4443                         return -EINVAL;
4444         }
4445         mddev->resync_min = min;
4446
4447         return len;
4448 }
4449
4450 static struct md_sysfs_entry md_min_sync =
4451 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4452
4453 static ssize_t
4454 max_sync_show(struct mddev *mddev, char *page)
4455 {
4456         if (mddev->resync_max == MaxSector)
4457                 return sprintf(page, "max\n");
4458         else
4459                 return sprintf(page, "%llu\n",
4460                                (unsigned long long)mddev->resync_max);
4461 }
4462 static ssize_t
4463 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4464 {
4465         if (strncmp(buf, "max", 3) == 0)
4466                 mddev->resync_max = MaxSector;
4467         else {
4468                 unsigned long long max;
4469                 if (strict_strtoull(buf, 10, &max))
4470                         return -EINVAL;
4471                 if (max < mddev->resync_min)
4472                         return -EINVAL;
4473                 if (max < mddev->resync_max &&
4474                     mddev->ro == 0 &&
4475                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4476                         return -EBUSY;
4477
4478                 /* Must be a multiple of chunk_size */
4479                 if (mddev->chunk_sectors) {
4480                         sector_t temp = max;
4481                         if (sector_div(temp, mddev->chunk_sectors))
4482                                 return -EINVAL;
4483                 }
4484                 mddev->resync_max = max;
4485         }
4486         wake_up(&mddev->recovery_wait);
4487         return len;
4488 }
4489
4490 static struct md_sysfs_entry md_max_sync =
4491 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4492
4493 static ssize_t
4494 suspend_lo_show(struct mddev *mddev, char *page)
4495 {
4496         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4497 }
4498
4499 static ssize_t
4500 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4501 {
4502         char *e;
4503         unsigned long long new = simple_strtoull(buf, &e, 10);
4504         unsigned long long old = mddev->suspend_lo;
4505
4506         if (mddev->pers == NULL || 
4507             mddev->pers->quiesce == NULL)
4508                 return -EINVAL;
4509         if (buf == e || (*e && *e != '\n'))
4510                 return -EINVAL;
4511
4512         mddev->suspend_lo = new;
4513         if (new >= old)
4514                 /* Shrinking suspended region */
4515                 mddev->pers->quiesce(mddev, 2);
4516         else {
4517                 /* Expanding suspended region - need to wait */
4518                 mddev->pers->quiesce(mddev, 1);
4519                 mddev->pers->quiesce(mddev, 0);
4520         }
4521         return len;
4522 }
4523 static struct md_sysfs_entry md_suspend_lo =
4524 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4525
4526
4527 static ssize_t
4528 suspend_hi_show(struct mddev *mddev, char *page)
4529 {
4530         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4531 }
4532
4533 static ssize_t
4534 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4535 {
4536         char *e;
4537         unsigned long long new = simple_strtoull(buf, &e, 10);
4538         unsigned long long old = mddev->suspend_hi;
4539
4540         if (mddev->pers == NULL ||
4541             mddev->pers->quiesce == NULL)
4542                 return -EINVAL;
4543         if (buf == e || (*e && *e != '\n'))
4544                 return -EINVAL;
4545
4546         mddev->suspend_hi = new;
4547         if (new <= old)
4548                 /* Shrinking suspended region */
4549                 mddev->pers->quiesce(mddev, 2);
4550         else {
4551                 /* Expanding suspended region - need to wait */
4552                 mddev->pers->quiesce(mddev, 1);
4553                 mddev->pers->quiesce(mddev, 0);
4554         }
4555         return len;
4556 }
4557 static struct md_sysfs_entry md_suspend_hi =
4558 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4559
4560 static ssize_t
4561 reshape_position_show(struct mddev *mddev, char *page)
4562 {
4563         if (mddev->reshape_position != MaxSector)
4564                 return sprintf(page, "%llu\n",
4565                                (unsigned long long)mddev->reshape_position);
4566         strcpy(page, "none\n");
4567         return 5;
4568 }
4569
4570 static ssize_t
4571 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4572 {
4573         struct md_rdev *rdev;
4574         char *e;
4575         unsigned long long new = simple_strtoull(buf, &e, 10);
4576         if (mddev->pers)
4577                 return -EBUSY;
4578         if (buf == e || (*e && *e != '\n'))
4579                 return -EINVAL;
4580         mddev->reshape_position = new;
4581         mddev->delta_disks = 0;
4582         mddev->reshape_backwards = 0;
4583         mddev->new_level = mddev->level;
4584         mddev->new_layout = mddev->layout;
4585         mddev->new_chunk_sectors = mddev->chunk_sectors;
4586         rdev_for_each(rdev, mddev)
4587                 rdev->new_data_offset = rdev->data_offset;
4588         return len;
4589 }
4590
4591 static struct md_sysfs_entry md_reshape_position =
4592 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4593        reshape_position_store);
4594
4595 static ssize_t
4596 reshape_direction_show(struct mddev *mddev, char *page)
4597 {
4598         return sprintf(page, "%s\n",
4599                        mddev->reshape_backwards ? "backwards" : "forwards");
4600 }
4601
4602 static ssize_t
4603 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4604 {
4605         int backwards = 0;
4606         if (cmd_match(buf, "forwards"))
4607                 backwards = 0;
4608         else if (cmd_match(buf, "backwards"))
4609                 backwards = 1;
4610         else
4611                 return -EINVAL;
4612         if (mddev->reshape_backwards == backwards)
4613                 return len;
4614
4615         /* check if we are allowed to change */
4616         if (mddev->delta_disks)
4617                 return -EBUSY;
4618
4619         if (mddev->persistent &&
4620             mddev->major_version == 0)
4621                 return -EINVAL;
4622
4623         mddev->reshape_backwards = backwards;
4624         return len;
4625 }
4626
4627 static struct md_sysfs_entry md_reshape_direction =
4628 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4629        reshape_direction_store);
4630
4631 static ssize_t
4632 array_size_show(struct mddev *mddev, char *page)
4633 {
4634         if (mddev->external_size)
4635                 return sprintf(page, "%llu\n",
4636                                (unsigned long long)mddev->array_sectors/2);
4637         else
4638                 return sprintf(page, "default\n");
4639 }
4640
4641 static ssize_t
4642 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4643 {
4644         sector_t sectors;
4645
4646         if (strncmp(buf, "default", 7) == 0) {
4647                 if (mddev->pers)
4648                         sectors = mddev->pers->size(mddev, 0, 0);
4649                 else
4650                         sectors = mddev->array_sectors;
4651
4652                 mddev->external_size = 0;
4653         } else {
4654                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4655                         return -EINVAL;
4656                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4657                         return -E2BIG;
4658
4659                 mddev->external_size = 1;
4660         }
4661
4662         mddev->array_sectors = sectors;
4663         if (mddev->pers) {
4664                 set_capacity(mddev->gendisk, mddev->array_sectors);
4665                 revalidate_disk(mddev->gendisk);
4666         }
4667         return len;
4668 }
4669
4670 static struct md_sysfs_entry md_array_size =
4671 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4672        array_size_store);
4673
4674 static struct attribute *md_default_attrs[] = {
4675         &md_level.attr,
4676         &md_layout.attr,
4677         &md_raid_disks.attr,
4678         &md_chunk_size.attr,
4679         &md_size.attr,
4680         &md_resync_start.attr,
4681         &md_metadata.attr,
4682         &md_new_device.attr,
4683         &md_safe_delay.attr,
4684         &md_array_state.attr,
4685         &md_reshape_position.attr,
4686         &md_reshape_direction.attr,
4687         &md_array_size.attr,
4688         &max_corr_read_errors.attr,
4689         NULL,
4690 };
4691
4692 static struct attribute *md_redundancy_attrs[] = {
4693         &md_scan_mode.attr,
4694         &md_mismatches.attr,
4695         &md_sync_min.attr,
4696         &md_sync_max.attr,
4697         &md_sync_speed.attr,
4698         &md_sync_force_parallel.attr,
4699         &md_sync_completed.attr,
4700         &md_min_sync.attr,
4701         &md_max_sync.attr,
4702         &md_suspend_lo.attr,
4703         &md_suspend_hi.attr,
4704         &md_bitmap.attr,
4705         &md_degraded.attr,
4706         NULL,
4707 };
4708 static struct attribute_group md_redundancy_group = {
4709         .name = NULL,
4710         .attrs = md_redundancy_attrs,
4711 };
4712
4713
4714 static ssize_t
4715 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4716 {
4717         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4718         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4719         ssize_t rv;
4720
4721         if (!entry->show)
4722                 return -EIO;
4723         spin_lock(&all_mddevs_lock);
4724         if (list_empty(&mddev->all_mddevs)) {
4725                 spin_unlock(&all_mddevs_lock);
4726                 return -EBUSY;
4727         }
4728         mddev_get(mddev);
4729         spin_unlock(&all_mddevs_lock);
4730
4731         rv = mddev_lock(mddev);
4732         if (!rv) {
4733                 rv = entry->show(mddev, page);
4734                 mddev_unlock(mddev);
4735         }
4736         mddev_put(mddev);
4737         return rv;
4738 }
4739
4740 static ssize_t
4741 md_attr_store(struct kobject *kobj, struct attribute *attr,
4742               const char *page, size_t length)
4743 {
4744         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4745         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4746         ssize_t rv;
4747
4748         if (!entry->store)
4749                 return -EIO;
4750         if (!capable(CAP_SYS_ADMIN))
4751                 return -EACCES;
4752         spin_lock(&all_mddevs_lock);
4753         if (list_empty(&mddev->all_mddevs)) {
4754                 spin_unlock(&all_mddevs_lock);
4755                 return -EBUSY;
4756         }
4757         mddev_get(mddev);
4758         spin_unlock(&all_mddevs_lock);
4759         if (entry->store == new_dev_store)
4760                 flush_workqueue(md_misc_wq);
4761         rv = mddev_lock(mddev);
4762         if (!rv) {
4763                 rv = entry->store(mddev, page, length);
4764                 mddev_unlock(mddev);
4765         }
4766         mddev_put(mddev);
4767         return rv;
4768 }
4769
4770 static void md_free(struct kobject *ko)
4771 {
4772         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4773
4774         if (mddev->sysfs_state)
4775                 sysfs_put(mddev->sysfs_state);
4776
4777         if (mddev->gendisk) {
4778                 del_gendisk(mddev->gendisk);
4779                 put_disk(mddev->gendisk);
4780         }
4781         if (mddev->queue)
4782                 blk_cleanup_queue(mddev->queue);
4783
4784         kfree(mddev);
4785 }
4786
4787 static const struct sysfs_ops md_sysfs_ops = {
4788         .show   = md_attr_show,
4789         .store  = md_attr_store,
4790 };
4791 static struct kobj_type md_ktype = {
4792         .release        = md_free,
4793         .sysfs_ops      = &md_sysfs_ops,
4794         .default_attrs  = md_default_attrs,
4795 };
4796
4797 int mdp_major = 0;
4798
4799 static void mddev_delayed_delete(struct work_struct *ws)
4800 {
4801         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4802
4803         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4804         kobject_del(&mddev->kobj);
4805         kobject_put(&mddev->kobj);
4806 }
4807
4808 static int md_alloc(dev_t dev, char *name)
4809 {
4810         static DEFINE_MUTEX(disks_mutex);
4811         struct mddev *mddev = mddev_find(dev);
4812         struct gendisk *disk;
4813         int partitioned;
4814         int shift;
4815         int unit;
4816         int error;
4817
4818         if (!mddev)
4819                 return -ENODEV;
4820
4821         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4822         shift = partitioned ? MdpMinorShift : 0;
4823         unit = MINOR(mddev->unit) >> shift;
4824
4825         /* wait for any previous instance of this device to be
4826          * completely removed (mddev_delayed_delete).
4827          */
4828         flush_workqueue(md_misc_wq);
4829
4830         mutex_lock(&disks_mutex);
4831         error = -EEXIST;
4832         if (mddev->gendisk)
4833                 goto abort;
4834
4835         if (name) {
4836                 /* Need to ensure that 'name' is not a duplicate.
4837                  */
4838                 struct mddev *mddev2;
4839                 spin_lock(&all_mddevs_lock);
4840
4841                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4842                         if (mddev2->gendisk &&
4843                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4844                                 spin_unlock(&all_mddevs_lock);
4845                                 goto abort;
4846                         }
4847                 spin_unlock(&all_mddevs_lock);
4848         }
4849
4850         error = -ENOMEM;
4851         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4852         if (!mddev->queue)
4853                 goto abort;
4854         mddev->queue->queuedata = mddev;
4855
4856         blk_queue_make_request(mddev->queue, md_make_request);
4857         blk_set_stacking_limits(&mddev->queue->limits);
4858
4859         disk = alloc_disk(1 << shift);
4860         if (!disk) {
4861                 blk_cleanup_queue(mddev->queue);
4862                 mddev->queue = NULL;
4863                 goto abort;
4864         }
4865         disk->major = MAJOR(mddev->unit);
4866         disk->first_minor = unit << shift;
4867         if (name)
4868                 strcpy(disk->disk_name, name);
4869         else if (partitioned)
4870                 sprintf(disk->disk_name, "md_d%d", unit);
4871         else
4872                 sprintf(disk->disk_name, "md%d", unit);
4873         disk->fops = &md_fops;
4874         disk->private_data = mddev;
4875         disk->queue = mddev->queue;
4876         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4877         /* Allow extended partitions.  This makes the
4878          * 'mdp' device redundant, but we can't really
4879          * remove it now.
4880          */
4881         disk->flags |= GENHD_FL_EXT_DEVT;
4882         mddev->gendisk = disk;
4883         /* As soon as we call add_disk(), another thread could get
4884          * through to md_open, so make sure it doesn't get too far
4885          */
4886         mutex_lock(&mddev->open_mutex);
4887         add_disk(disk);
4888
4889         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4890                                      &disk_to_dev(disk)->kobj, "%s", "md");
4891         if (error) {
4892                 /* This isn't possible, but as kobject_init_and_add is marked
4893                  * __must_check, we must do something with the result
4894                  */
4895                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4896                        disk->disk_name);
4897                 error = 0;
4898         }
4899         if (mddev->kobj.sd &&
4900             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4901                 printk(KERN_DEBUG "pointless warning\n");
4902         mutex_unlock(&mddev->open_mutex);
4903  abort:
4904         mutex_unlock(&disks_mutex);
4905         if (!error && mddev->kobj.sd) {
4906                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4907                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4908         }
4909         mddev_put(mddev);
4910         return error;
4911 }
4912
4913 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4914 {
4915         md_alloc(dev, NULL);
4916         return NULL;
4917 }
4918
4919 static int add_named_array(const char *val, struct kernel_param *kp)
4920 {
4921         /* val must be "md_*" where * is not all digits.
4922          * We allocate an array with a large free minor number, and
4923          * set the name to val.  val must not already be an active name.
4924          */
4925         int len = strlen(val);
4926         char buf[DISK_NAME_LEN];
4927
4928         while (len && val[len-1] == '\n')
4929                 len--;
4930         if (len >= DISK_NAME_LEN)
4931                 return -E2BIG;
4932         strlcpy(buf, val, len+1);
4933         if (strncmp(buf, "md_", 3) != 0)
4934                 return -EINVAL;
4935         return md_alloc(0, buf);
4936 }
4937
4938 static void md_safemode_timeout(unsigned long data)
4939 {
4940         struct mddev *mddev = (struct mddev *) data;
4941
4942         if (!atomic_read(&mddev->writes_pending)) {
4943                 mddev->safemode = 1;
4944                 if (mddev->external)
4945                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4946         }
4947         md_wakeup_thread(mddev->thread);
4948 }
4949
4950 static int start_dirty_degraded;
4951
4952 int md_run(struct mddev *mddev)
4953 {
4954         int err;
4955         struct md_rdev *rdev;
4956         struct md_personality *pers;
4957
4958         if (list_empty(&mddev->disks))
4959                 /* cannot run an array with no devices.. */
4960                 return -EINVAL;
4961
4962         if (mddev->pers)
4963                 return -EBUSY;
4964         /* Cannot run until previous stop completes properly */
4965         if (mddev->sysfs_active)
4966                 return -EBUSY;
4967
4968         /*
4969          * Analyze all RAID superblock(s)
4970          */
4971         if (!mddev->raid_disks) {
4972                 if (!mddev->persistent)
4973                         return -EINVAL;
4974                 analyze_sbs(mddev);
4975         }
4976
4977         if (mddev->level != LEVEL_NONE)
4978                 request_module("md-level-%d", mddev->level);
4979         else if (mddev->clevel[0])
4980                 request_module("md-%s", mddev->clevel);
4981
4982         /*
4983          * Drop all container device buffers, from now on
4984          * the only valid external interface is through the md
4985          * device.
4986          */
4987         rdev_for_each(rdev, mddev) {
4988                 if (test_bit(Faulty, &rdev->flags))
4989                         continue;
4990                 sync_blockdev(rdev->bdev);
4991                 invalidate_bdev(rdev->bdev);
4992
4993                 /* perform some consistency tests on the device.
4994                  * We don't want the data to overlap the metadata,
4995                  * Internal Bitmap issues have been handled elsewhere.
4996                  */
4997                 if (rdev->meta_bdev) {
4998                         /* Nothing to check */;
4999                 } else if (rdev->data_offset < rdev->sb_start) {
5000                         if (mddev->dev_sectors &&
5001                             rdev->data_offset + mddev->dev_sectors
5002                             > rdev->sb_start) {
5003                                 printk("md: %s: data overlaps metadata\n",
5004                                        mdname(mddev));
5005                                 return -EINVAL;
5006                         }
5007                 } else {
5008                         if (rdev->sb_start + rdev->sb_size/512
5009                             > rdev->data_offset) {
5010                                 printk("md: %s: metadata overlaps data\n",
5011                                        mdname(mddev));
5012                                 return -EINVAL;
5013                         }
5014                 }
5015                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5016         }
5017
5018         if (mddev->bio_set == NULL)
5019                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5020
5021         spin_lock(&pers_lock);
5022         pers = find_pers(mddev->level, mddev->clevel);
5023         if (!pers || !try_module_get(pers->owner)) {
5024                 spin_unlock(&pers_lock);
5025                 if (mddev->level != LEVEL_NONE)
5026                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5027                                mddev->level);
5028                 else
5029                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5030                                mddev->clevel);
5031                 return -EINVAL;
5032         }
5033         mddev->pers = pers;
5034         spin_unlock(&pers_lock);
5035         if (mddev->level != pers->level) {
5036                 mddev->level = pers->level;
5037                 mddev->new_level = pers->level;
5038         }
5039         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5040
5041         if (mddev->reshape_position != MaxSector &&
5042             pers->start_reshape == NULL) {
5043                 /* This personality cannot handle reshaping... */
5044                 mddev->pers = NULL;
5045                 module_put(pers->owner);
5046                 return -EINVAL;
5047         }
5048
5049         if (pers->sync_request) {
5050                 /* Warn if this is a potentially silly
5051                  * configuration.
5052                  */
5053                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5054                 struct md_rdev *rdev2;
5055                 int warned = 0;
5056
5057                 rdev_for_each(rdev, mddev)
5058                         rdev_for_each(rdev2, mddev) {
5059                                 if (rdev < rdev2 &&
5060                                     rdev->bdev->bd_contains ==
5061                                     rdev2->bdev->bd_contains) {
5062                                         printk(KERN_WARNING
5063                                                "%s: WARNING: %s appears to be"
5064                                                " on the same physical disk as"
5065                                                " %s.\n",
5066                                                mdname(mddev),
5067                                                bdevname(rdev->bdev,b),
5068                                                bdevname(rdev2->bdev,b2));
5069                                         warned = 1;
5070                                 }
5071                         }
5072
5073                 if (warned)
5074                         printk(KERN_WARNING
5075                                "True protection against single-disk"
5076                                " failure might be compromised.\n");
5077         }
5078
5079         mddev->recovery = 0;
5080         /* may be over-ridden by personality */
5081         mddev->resync_max_sectors = mddev->dev_sectors;
5082
5083         mddev->ok_start_degraded = start_dirty_degraded;
5084
5085         if (start_readonly && mddev->ro == 0)
5086                 mddev->ro = 2; /* read-only, but switch on first write */
5087
5088         err = mddev->pers->run(mddev);
5089         if (err)
5090                 printk(KERN_ERR "md: pers->run() failed ...\n");
5091         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5092                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5093                           " but 'external_size' not in effect?\n", __func__);
5094                 printk(KERN_ERR
5095                        "md: invalid array_size %llu > default size %llu\n",
5096                        (unsigned long long)mddev->array_sectors / 2,
5097                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5098                 err = -EINVAL;
5099                 mddev->pers->stop(mddev);
5100         }
5101         if (err == 0 && mddev->pers->sync_request &&
5102             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5103                 err = bitmap_create(mddev);
5104                 if (err) {
5105                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5106                                mdname(mddev), err);
5107                         mddev->pers->stop(mddev);
5108                 }
5109         }
5110         if (err) {
5111                 module_put(mddev->pers->owner);
5112                 mddev->pers = NULL;
5113                 bitmap_destroy(mddev);
5114                 return err;
5115         }
5116         if (mddev->pers->sync_request) {
5117                 if (mddev->kobj.sd &&
5118                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5119                         printk(KERN_WARNING
5120                                "md: cannot register extra attributes for %s\n",
5121                                mdname(mddev));
5122                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5123         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5124                 mddev->ro = 0;
5125
5126         atomic_set(&mddev->writes_pending,0);
5127         atomic_set(&mddev->max_corr_read_errors,
5128                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5129         mddev->safemode = 0;
5130         mddev->safemode_timer.function = md_safemode_timeout;
5131         mddev->safemode_timer.data = (unsigned long) mddev;
5132         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5133         mddev->in_sync = 1;
5134         smp_wmb();
5135         mddev->ready = 1;
5136         rdev_for_each(rdev, mddev)
5137                 if (rdev->raid_disk >= 0)
5138                         if (sysfs_link_rdev(mddev, rdev))
5139                                 /* failure here is OK */;
5140         
5141         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5142         
5143         if (mddev->flags)
5144                 md_update_sb(mddev, 0);
5145
5146         md_new_event(mddev);
5147         sysfs_notify_dirent_safe(mddev->sysfs_state);
5148         sysfs_notify_dirent_safe(mddev->sysfs_action);
5149         sysfs_notify(&mddev->kobj, NULL, "degraded");
5150         return 0;
5151 }
5152 EXPORT_SYMBOL_GPL(md_run);
5153
5154 static int do_md_run(struct mddev *mddev)
5155 {
5156         int err;
5157
5158         err = md_run(mddev);
5159         if (err)
5160                 goto out;
5161         err = bitmap_load(mddev);
5162         if (err) {
5163                 bitmap_destroy(mddev);
5164                 goto out;
5165         }
5166
5167         md_wakeup_thread(mddev->thread);
5168         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5169
5170         set_capacity(mddev->gendisk, mddev->array_sectors);
5171         revalidate_disk(mddev->gendisk);
5172         mddev->changed = 1;
5173         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5174 out:
5175         return err;
5176 }
5177
5178 static int restart_array(struct mddev *mddev)
5179 {
5180         struct gendisk *disk = mddev->gendisk;
5181
5182         /* Complain if it has no devices */
5183         if (list_empty(&mddev->disks))
5184                 return -ENXIO;
5185         if (!mddev->pers)
5186                 return -EINVAL;
5187         if (!mddev->ro)
5188                 return -EBUSY;
5189         mddev->safemode = 0;
5190         mddev->ro = 0;
5191         set_disk_ro(disk, 0);
5192         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5193                 mdname(mddev));
5194         /* Kick recovery or resync if necessary */
5195         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5196         md_wakeup_thread(mddev->thread);
5197         md_wakeup_thread(mddev->sync_thread);
5198         sysfs_notify_dirent_safe(mddev->sysfs_state);
5199         return 0;
5200 }
5201
5202 /* similar to deny_write_access, but accounts for our holding a reference
5203  * to the file ourselves */
5204 static int deny_bitmap_write_access(struct file * file)
5205 {
5206         struct inode *inode = file->f_mapping->host;
5207
5208         spin_lock(&inode->i_lock);
5209         if (atomic_read(&inode->i_writecount) > 1) {
5210                 spin_unlock(&inode->i_lock);
5211                 return -ETXTBSY;
5212         }
5213         atomic_set(&inode->i_writecount, -1);
5214         spin_unlock(&inode->i_lock);
5215
5216         return 0;
5217 }
5218
5219 void restore_bitmap_write_access(struct file *file)
5220 {
5221         struct inode *inode = file->f_mapping->host;
5222
5223         spin_lock(&inode->i_lock);
5224         atomic_set(&inode->i_writecount, 1);
5225         spin_unlock(&inode->i_lock);
5226 }
5227
5228 static void md_clean(struct mddev *mddev)
5229 {
5230         mddev->array_sectors = 0;
5231         mddev->external_size = 0;
5232         mddev->dev_sectors = 0;
5233         mddev->raid_disks = 0;
5234         mddev->recovery_cp = 0;
5235         mddev->resync_min = 0;
5236         mddev->resync_max = MaxSector;
5237         mddev->reshape_position = MaxSector;
5238         mddev->external = 0;
5239         mddev->persistent = 0;
5240         mddev->level = LEVEL_NONE;
5241         mddev->clevel[0] = 0;
5242         mddev->flags = 0;
5243         mddev->ro = 0;
5244         mddev->metadata_type[0] = 0;
5245         mddev->chunk_sectors = 0;
5246         mddev->ctime = mddev->utime = 0;
5247         mddev->layout = 0;
5248         mddev->max_disks = 0;
5249         mddev->events = 0;
5250         mddev->can_decrease_events = 0;
5251         mddev->delta_disks = 0;
5252         mddev->reshape_backwards = 0;
5253         mddev->new_level = LEVEL_NONE;
5254         mddev->new_layout = 0;
5255         mddev->new_chunk_sectors = 0;
5256         mddev->curr_resync = 0;
5257         atomic64_set(&mddev->resync_mismatches, 0);
5258         mddev->suspend_lo = mddev->suspend_hi = 0;
5259         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5260         mddev->recovery = 0;
5261         mddev->in_sync = 0;
5262         mddev->changed = 0;
5263         mddev->degraded = 0;
5264         mddev->safemode = 0;
5265         mddev->merge_check_needed = 0;
5266         mddev->bitmap_info.offset = 0;
5267         mddev->bitmap_info.default_offset = 0;
5268         mddev->bitmap_info.default_space = 0;
5269         mddev->bitmap_info.chunksize = 0;
5270         mddev->bitmap_info.daemon_sleep = 0;
5271         mddev->bitmap_info.max_write_behind = 0;
5272 }
5273
5274 static void __md_stop_writes(struct mddev *mddev)
5275 {
5276         if (mddev->sync_thread) {
5277                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5278                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5279                 reap_sync_thread(mddev);
5280         }
5281
5282         del_timer_sync(&mddev->safemode_timer);
5283
5284         bitmap_flush(mddev);
5285         md_super_wait(mddev);
5286
5287         if (!mddev->in_sync || mddev->flags) {
5288                 /* mark array as shutdown cleanly */
5289                 mddev->in_sync = 1;
5290                 md_update_sb(mddev, 1);
5291         }
5292 }
5293
5294 void md_stop_writes(struct mddev *mddev)
5295 {
5296         mddev_lock(mddev);
5297         __md_stop_writes(mddev);
5298         mddev_unlock(mddev);
5299 }
5300 EXPORT_SYMBOL_GPL(md_stop_writes);
5301
5302 static void __md_stop(struct mddev *mddev)
5303 {
5304         mddev->ready = 0;
5305         mddev->pers->stop(mddev);
5306         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5307                 mddev->to_remove = &md_redundancy_group;
5308         module_put(mddev->pers->owner);
5309         mddev->pers = NULL;
5310         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5311 }
5312
5313 void md_stop(struct mddev *mddev)
5314 {
5315         /* stop the array and free an attached data structures.
5316          * This is called from dm-raid
5317          */
5318         __md_stop(mddev);
5319         bitmap_destroy(mddev);
5320         if (mddev->bio_set)
5321                 bioset_free(mddev->bio_set);
5322 }
5323
5324 EXPORT_SYMBOL_GPL(md_stop);
5325
5326 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5327 {
5328         int err = 0;
5329         mutex_lock(&mddev->open_mutex);
5330         if (atomic_read(&mddev->openers) > !!bdev) {
5331                 printk("md: %s still in use.\n",mdname(mddev));
5332                 err = -EBUSY;
5333                 goto out;
5334         }
5335         if (bdev)
5336                 sync_blockdev(bdev);
5337         if (mddev->pers) {
5338                 __md_stop_writes(mddev);
5339
5340                 err  = -ENXIO;
5341                 if (mddev->ro==1)
5342                         goto out;
5343                 mddev->ro = 1;
5344                 set_disk_ro(mddev->gendisk, 1);
5345                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5346                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5347                 err = 0;        
5348         }
5349 out:
5350         mutex_unlock(&mddev->open_mutex);
5351         return err;
5352 }
5353
5354 /* mode:
5355  *   0 - completely stop and dis-assemble array
5356  *   2 - stop but do not disassemble array
5357  */
5358 static int do_md_stop(struct mddev * mddev, int mode,
5359                       struct block_device *bdev)
5360 {
5361         struct gendisk *disk = mddev->gendisk;
5362         struct md_rdev *rdev;
5363
5364         mutex_lock(&mddev->open_mutex);
5365         if (atomic_read(&mddev->openers) > !!bdev ||
5366             mddev->sysfs_active) {
5367                 printk("md: %s still in use.\n",mdname(mddev));
5368                 mutex_unlock(&mddev->open_mutex);
5369                 return -EBUSY;
5370         }
5371         if (bdev)
5372                 /* It is possible IO was issued on some other
5373                  * open file which was closed before we took ->open_mutex.
5374                  * As that was not the last close __blkdev_put will not
5375                  * have called sync_blockdev, so we must.
5376                  */
5377                 sync_blockdev(bdev);
5378
5379         if (mddev->pers) {
5380                 if (mddev->ro)
5381                         set_disk_ro(disk, 0);
5382
5383                 __md_stop_writes(mddev);
5384                 __md_stop(mddev);
5385                 mddev->queue->merge_bvec_fn = NULL;
5386                 mddev->queue->backing_dev_info.congested_fn = NULL;
5387
5388                 /* tell userspace to handle 'inactive' */
5389                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5390
5391                 rdev_for_each(rdev, mddev)
5392                         if (rdev->raid_disk >= 0)
5393                                 sysfs_unlink_rdev(mddev, rdev);
5394
5395                 set_capacity(disk, 0);
5396                 mutex_unlock(&mddev->open_mutex);
5397                 mddev->changed = 1;
5398                 revalidate_disk(disk);
5399
5400                 if (mddev->ro)
5401                         mddev->ro = 0;
5402         } else
5403                 mutex_unlock(&mddev->open_mutex);
5404         /*
5405          * Free resources if final stop
5406          */
5407         if (mode == 0) {
5408                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5409
5410                 bitmap_destroy(mddev);
5411                 if (mddev->bitmap_info.file) {
5412                         restore_bitmap_write_access(mddev->bitmap_info.file);
5413                         fput(mddev->bitmap_info.file);
5414                         mddev->bitmap_info.file = NULL;
5415                 }
5416                 mddev->bitmap_info.offset = 0;
5417
5418                 export_array(mddev);
5419
5420                 md_clean(mddev);
5421                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5422                 if (mddev->hold_active == UNTIL_STOP)
5423                         mddev->hold_active = 0;
5424         }
5425         blk_integrity_unregister(disk);
5426         md_new_event(mddev);
5427         sysfs_notify_dirent_safe(mddev->sysfs_state);
5428         return 0;
5429 }
5430
5431 #ifndef MODULE
5432 static void autorun_array(struct mddev *mddev)
5433 {
5434         struct md_rdev *rdev;
5435         int err;
5436
5437         if (list_empty(&mddev->disks))
5438                 return;
5439
5440         printk(KERN_INFO "md: running: ");
5441
5442         rdev_for_each(rdev, mddev) {
5443                 char b[BDEVNAME_SIZE];
5444                 printk("<%s>", bdevname(rdev->bdev,b));
5445         }
5446         printk("\n");
5447
5448         err = do_md_run(mddev);
5449         if (err) {
5450                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5451                 do_md_stop(mddev, 0, NULL);
5452         }
5453 }
5454
5455 /*
5456  * lets try to run arrays based on all disks that have arrived
5457  * until now. (those are in pending_raid_disks)
5458  *
5459  * the method: pick the first pending disk, collect all disks with
5460  * the same UUID, remove all from the pending list and put them into
5461  * the 'same_array' list. Then order this list based on superblock
5462  * update time (freshest comes first), kick out 'old' disks and
5463  * compare superblocks. If everything's fine then run it.
5464  *
5465  * If "unit" is allocated, then bump its reference count
5466  */
5467 static void autorun_devices(int part)
5468 {
5469         struct md_rdev *rdev0, *rdev, *tmp;
5470         struct mddev *mddev;
5471         char b[BDEVNAME_SIZE];
5472
5473         printk(KERN_INFO "md: autorun ...\n");
5474         while (!list_empty(&pending_raid_disks)) {
5475                 int unit;
5476                 dev_t dev;
5477                 LIST_HEAD(candidates);
5478                 rdev0 = list_entry(pending_raid_disks.next,
5479                                          struct md_rdev, same_set);
5480
5481                 printk(KERN_INFO "md: considering %s ...\n",
5482                         bdevname(rdev0->bdev,b));
5483                 INIT_LIST_HEAD(&candidates);
5484                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5485                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5486                                 printk(KERN_INFO "md:  adding %s ...\n",
5487                                         bdevname(rdev->bdev,b));
5488                                 list_move(&rdev->same_set, &candidates);
5489                         }
5490                 /*
5491                  * now we have a set of devices, with all of them having
5492                  * mostly sane superblocks. It's time to allocate the
5493                  * mddev.
5494                  */
5495                 if (part) {
5496                         dev = MKDEV(mdp_major,
5497                                     rdev0->preferred_minor << MdpMinorShift);
5498                         unit = MINOR(dev) >> MdpMinorShift;
5499                 } else {
5500                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5501                         unit = MINOR(dev);
5502                 }
5503                 if (rdev0->preferred_minor != unit) {
5504                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5505                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5506                         break;
5507                 }
5508
5509                 md_probe(dev, NULL, NULL);
5510                 mddev = mddev_find(dev);
5511                 if (!mddev || !mddev->gendisk) {
5512                         if (mddev)
5513                                 mddev_put(mddev);
5514                         printk(KERN_ERR
5515                                 "md: cannot allocate memory for md drive.\n");
5516                         break;
5517                 }
5518                 if (mddev_lock(mddev)) 
5519                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5520                                mdname(mddev));
5521                 else if (mddev->raid_disks || mddev->major_version
5522                          || !list_empty(&mddev->disks)) {
5523                         printk(KERN_WARNING 
5524                                 "md: %s already running, cannot run %s\n",
5525                                 mdname(mddev), bdevname(rdev0->bdev,b));
5526                         mddev_unlock(mddev);
5527                 } else {
5528                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5529                         mddev->persistent = 1;
5530                         rdev_for_each_list(rdev, tmp, &candidates) {
5531                                 list_del_init(&rdev->same_set);
5532                                 if (bind_rdev_to_array(rdev, mddev))
5533                                         export_rdev(rdev);
5534                         }
5535                         autorun_array(mddev);
5536                         mddev_unlock(mddev);
5537                 }
5538                 /* on success, candidates will be empty, on error
5539                  * it won't...
5540                  */
5541                 rdev_for_each_list(rdev, tmp, &candidates) {
5542                         list_del_init(&rdev->same_set);
5543                         export_rdev(rdev);
5544                 }
5545                 mddev_put(mddev);
5546         }
5547         printk(KERN_INFO "md: ... autorun DONE.\n");
5548 }
5549 #endif /* !MODULE */
5550
5551 static int get_version(void __user * arg)
5552 {
5553         mdu_version_t ver;
5554
5555         ver.major = MD_MAJOR_VERSION;
5556         ver.minor = MD_MINOR_VERSION;
5557         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5558
5559         if (copy_to_user(arg, &ver, sizeof(ver)))
5560                 return -EFAULT;
5561
5562         return 0;
5563 }
5564
5565 static int get_array_info(struct mddev * mddev, void __user * arg)
5566 {
5567         mdu_array_info_t info;
5568         int nr,working,insync,failed,spare;
5569         struct md_rdev *rdev;
5570
5571         nr = working = insync = failed = spare = 0;
5572         rcu_read_lock();
5573         rdev_for_each_rcu(rdev, mddev) {
5574                 nr++;
5575                 if (test_bit(Faulty, &rdev->flags))
5576                         failed++;
5577                 else {
5578                         working++;
5579                         if (test_bit(In_sync, &rdev->flags))
5580                                 insync++;       
5581                         else
5582                                 spare++;
5583                 }
5584         }
5585         rcu_read_unlock();
5586
5587         info.major_version = mddev->major_version;
5588         info.minor_version = mddev->minor_version;
5589         info.patch_version = MD_PATCHLEVEL_VERSION;
5590         info.ctime         = mddev->ctime;
5591         info.level         = mddev->level;
5592         info.size          = mddev->dev_sectors / 2;
5593         if (info.size != mddev->dev_sectors / 2) /* overflow */
5594                 info.size = -1;
5595         info.nr_disks      = nr;
5596         info.raid_disks    = mddev->raid_disks;
5597         info.md_minor      = mddev->md_minor;
5598         info.not_persistent= !mddev->persistent;
5599
5600         info.utime         = mddev->utime;
5601         info.state         = 0;
5602         if (mddev->in_sync)
5603                 info.state = (1<<MD_SB_CLEAN);
5604         if (mddev->bitmap && mddev->bitmap_info.offset)
5605                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5606         info.active_disks  = insync;
5607         info.working_disks = working;
5608         info.failed_disks  = failed;
5609         info.spare_disks   = spare;
5610
5611         info.layout        = mddev->layout;
5612         info.chunk_size    = mddev->chunk_sectors << 9;
5613
5614         if (copy_to_user(arg, &info, sizeof(info)))
5615                 return -EFAULT;
5616
5617         return 0;
5618 }
5619
5620 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5621 {
5622         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5623         char *ptr, *buf = NULL;
5624         int err = -ENOMEM;
5625
5626         if (md_allow_write(mddev))
5627                 file = kmalloc(sizeof(*file), GFP_NOIO);
5628         else
5629                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5630
5631         if (!file)
5632                 goto out;
5633
5634         /* bitmap disabled, zero the first byte and copy out */
5635         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5636                 file->pathname[0] = '\0';
5637                 goto copy_out;
5638         }
5639
5640         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5641         if (!buf)
5642                 goto out;
5643
5644         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5645                      buf, sizeof(file->pathname));
5646         if (IS_ERR(ptr))
5647                 goto out;
5648
5649         strcpy(file->pathname, ptr);
5650
5651 copy_out:
5652         err = 0;
5653         if (copy_to_user(arg, file, sizeof(*file)))
5654                 err = -EFAULT;
5655 out:
5656         kfree(buf);
5657         kfree(file);
5658         return err;
5659 }
5660
5661 static int get_disk_info(struct mddev * mddev, void __user * arg)
5662 {
5663         mdu_disk_info_t info;
5664         struct md_rdev *rdev;
5665
5666         if (copy_from_user(&info, arg, sizeof(info)))
5667                 return -EFAULT;
5668
5669         rcu_read_lock();
5670         rdev = find_rdev_nr_rcu(mddev, info.number);
5671         if (rdev) {
5672                 info.major = MAJOR(rdev->bdev->bd_dev);
5673                 info.minor = MINOR(rdev->bdev->bd_dev);
5674                 info.raid_disk = rdev->raid_disk;
5675                 info.state = 0;
5676                 if (test_bit(Faulty, &rdev->flags))
5677                         info.state |= (1<<MD_DISK_FAULTY);
5678                 else if (test_bit(In_sync, &rdev->flags)) {
5679                         info.state |= (1<<MD_DISK_ACTIVE);
5680                         info.state |= (1<<MD_DISK_SYNC);
5681                 }
5682                 if (test_bit(WriteMostly, &rdev->flags))
5683                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5684         } else {
5685                 info.major = info.minor = 0;
5686                 info.raid_disk = -1;
5687                 info.state = (1<<MD_DISK_REMOVED);
5688         }
5689         rcu_read_unlock();
5690
5691         if (copy_to_user(arg, &info, sizeof(info)))
5692                 return -EFAULT;
5693
5694         return 0;
5695 }
5696
5697 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5698 {
5699         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5700         struct md_rdev *rdev;
5701         dev_t dev = MKDEV(info->major,info->minor);
5702
5703         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5704                 return -EOVERFLOW;
5705
5706         if (!mddev->raid_disks) {
5707                 int err;
5708                 /* expecting a device which has a superblock */
5709                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5710                 if (IS_ERR(rdev)) {
5711                         printk(KERN_WARNING 
5712                                 "md: md_import_device returned %ld\n",
5713                                 PTR_ERR(rdev));
5714                         return PTR_ERR(rdev);
5715                 }
5716                 if (!list_empty(&mddev->disks)) {
5717                         struct md_rdev *rdev0
5718                                 = list_entry(mddev->disks.next,
5719                                              struct md_rdev, same_set);
5720                         err = super_types[mddev->major_version]
5721                                 .load_super(rdev, rdev0, mddev->minor_version);
5722                         if (err < 0) {
5723                                 printk(KERN_WARNING 
5724                                         "md: %s has different UUID to %s\n",
5725                                         bdevname(rdev->bdev,b), 
5726                                         bdevname(rdev0->bdev,b2));
5727                                 export_rdev(rdev);
5728                                 return -EINVAL;
5729                         }
5730                 }
5731                 err = bind_rdev_to_array(rdev, mddev);
5732                 if (err)
5733                         export_rdev(rdev);
5734                 return err;
5735         }
5736
5737         /*
5738          * add_new_disk can be used once the array is assembled
5739          * to add "hot spares".  They must already have a superblock
5740          * written
5741          */
5742         if (mddev->pers) {
5743                 int err;
5744                 if (!mddev->pers->hot_add_disk) {
5745                         printk(KERN_WARNING 
5746                                 "%s: personality does not support diskops!\n",
5747                                mdname(mddev));
5748                         return -EINVAL;
5749                 }
5750                 if (mddev->persistent)
5751                         rdev = md_import_device(dev, mddev->major_version,
5752                                                 mddev->minor_version);
5753                 else
5754                         rdev = md_import_device(dev, -1, -1);
5755                 if (IS_ERR(rdev)) {
5756                         printk(KERN_WARNING 
5757                                 "md: md_import_device returned %ld\n",
5758                                 PTR_ERR(rdev));
5759                         return PTR_ERR(rdev);
5760                 }
5761                 /* set saved_raid_disk if appropriate */
5762                 if (!mddev->persistent) {
5763                         if (info->state & (1<<MD_DISK_SYNC)  &&
5764                             info->raid_disk < mddev->raid_disks) {
5765                                 rdev->raid_disk = info->raid_disk;
5766                                 set_bit(In_sync, &rdev->flags);
5767                         } else
5768                                 rdev->raid_disk = -1;
5769                 } else
5770                         super_types[mddev->major_version].
5771                                 validate_super(mddev, rdev);
5772                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5773                      rdev->raid_disk != info->raid_disk) {
5774                         /* This was a hot-add request, but events doesn't
5775                          * match, so reject it.
5776                          */
5777                         export_rdev(rdev);
5778                         return -EINVAL;
5779                 }
5780
5781                 if (test_bit(In_sync, &rdev->flags))
5782                         rdev->saved_raid_disk = rdev->raid_disk;
5783                 else
5784                         rdev->saved_raid_disk = -1;
5785
5786                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5787                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5788                         set_bit(WriteMostly, &rdev->flags);
5789                 else
5790                         clear_bit(WriteMostly, &rdev->flags);
5791
5792                 rdev->raid_disk = -1;
5793                 err = bind_rdev_to_array(rdev, mddev);
5794                 if (!err && !mddev->pers->hot_remove_disk) {
5795                         /* If there is hot_add_disk but no hot_remove_disk
5796                          * then added disks for geometry changes,
5797                          * and should be added immediately.
5798                          */
5799                         super_types[mddev->major_version].
5800                                 validate_super(mddev, rdev);
5801                         err = mddev->pers->hot_add_disk(mddev, rdev);
5802                         if (err)
5803                                 unbind_rdev_from_array(rdev);
5804                 }
5805                 if (err)
5806                         export_rdev(rdev);
5807                 else
5808                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5809
5810                 md_update_sb(mddev, 1);
5811                 if (mddev->degraded)
5812                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5813                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5814                 if (!err)
5815                         md_new_event(mddev);
5816                 md_wakeup_thread(mddev->thread);
5817                 return err;
5818         }
5819
5820         /* otherwise, add_new_disk is only allowed
5821          * for major_version==0 superblocks
5822          */
5823         if (mddev->major_version != 0) {
5824                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5825                        mdname(mddev));
5826                 return -EINVAL;
5827         }
5828
5829         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5830                 int err;
5831                 rdev = md_import_device(dev, -1, 0);
5832                 if (IS_ERR(rdev)) {
5833                         printk(KERN_WARNING 
5834                                 "md: error, md_import_device() returned %ld\n",
5835                                 PTR_ERR(rdev));
5836                         return PTR_ERR(rdev);
5837                 }
5838                 rdev->desc_nr = info->number;
5839                 if (info->raid_disk < mddev->raid_disks)
5840                         rdev->raid_disk = info->raid_disk;
5841                 else
5842                         rdev->raid_disk = -1;
5843
5844                 if (rdev->raid_disk < mddev->raid_disks)
5845                         if (info->state & (1<<MD_DISK_SYNC))
5846                                 set_bit(In_sync, &rdev->flags);
5847
5848                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5849                         set_bit(WriteMostly, &rdev->flags);
5850
5851                 if (!mddev->persistent) {
5852                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5853                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5854                 } else
5855                         rdev->sb_start = calc_dev_sboffset(rdev);
5856                 rdev->sectors = rdev->sb_start;
5857
5858                 err = bind_rdev_to_array(rdev, mddev);
5859                 if (err) {
5860                         export_rdev(rdev);
5861                         return err;
5862                 }
5863         }
5864
5865         return 0;
5866 }
5867
5868 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5869 {
5870         char b[BDEVNAME_SIZE];
5871         struct md_rdev *rdev;
5872
5873         rdev = find_rdev(mddev, dev);
5874         if (!rdev)
5875                 return -ENXIO;
5876
5877         if (rdev->raid_disk >= 0)
5878                 goto busy;
5879
5880         kick_rdev_from_array(rdev);
5881         md_update_sb(mddev, 1);
5882         md_new_event(mddev);
5883
5884         return 0;
5885 busy:
5886         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5887                 bdevname(rdev->bdev,b), mdname(mddev));
5888         return -EBUSY;
5889 }
5890
5891 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5892 {
5893         char b[BDEVNAME_SIZE];
5894         int err;
5895         struct md_rdev *rdev;
5896
5897         if (!mddev->pers)
5898                 return -ENODEV;
5899
5900         if (mddev->major_version != 0) {
5901                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5902                         " version-0 superblocks.\n",
5903                         mdname(mddev));
5904                 return -EINVAL;
5905         }
5906         if (!mddev->pers->hot_add_disk) {
5907                 printk(KERN_WARNING 
5908                         "%s: personality does not support diskops!\n",
5909                         mdname(mddev));
5910                 return -EINVAL;
5911         }
5912
5913         rdev = md_import_device(dev, -1, 0);
5914         if (IS_ERR(rdev)) {
5915                 printk(KERN_WARNING 
5916                         "md: error, md_import_device() returned %ld\n",
5917                         PTR_ERR(rdev));
5918                 return -EINVAL;
5919         }
5920
5921         if (mddev->persistent)
5922                 rdev->sb_start = calc_dev_sboffset(rdev);
5923         else
5924                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5925
5926         rdev->sectors = rdev->sb_start;
5927
5928         if (test_bit(Faulty, &rdev->flags)) {
5929                 printk(KERN_WARNING 
5930                         "md: can not hot-add faulty %s disk to %s!\n",
5931                         bdevname(rdev->bdev,b), mdname(mddev));
5932                 err = -EINVAL;
5933                 goto abort_export;
5934         }
5935         clear_bit(In_sync, &rdev->flags);
5936         rdev->desc_nr = -1;
5937         rdev->saved_raid_disk = -1;
5938         err = bind_rdev_to_array(rdev, mddev);
5939         if (err)
5940                 goto abort_export;
5941
5942         /*
5943          * The rest should better be atomic, we can have disk failures
5944          * noticed in interrupt contexts ...
5945          */
5946
5947         rdev->raid_disk = -1;
5948
5949         md_update_sb(mddev, 1);
5950
5951         /*
5952          * Kick recovery, maybe this spare has to be added to the
5953          * array immediately.
5954          */
5955         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5956         md_wakeup_thread(mddev->thread);
5957         md_new_event(mddev);
5958         return 0;
5959
5960 abort_export:
5961         export_rdev(rdev);
5962         return err;
5963 }
5964
5965 static int set_bitmap_file(struct mddev *mddev, int fd)
5966 {
5967         int err;
5968
5969         if (mddev->pers) {
5970                 if (!mddev->pers->quiesce)
5971                         return -EBUSY;
5972                 if (mddev->recovery || mddev->sync_thread)
5973                         return -EBUSY;
5974                 /* we should be able to change the bitmap.. */
5975         }
5976
5977
5978         if (fd >= 0) {
5979                 if (mddev->bitmap)
5980                         return -EEXIST; /* cannot add when bitmap is present */
5981                 mddev->bitmap_info.file = fget(fd);
5982
5983                 if (mddev->bitmap_info.file == NULL) {
5984                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5985                                mdname(mddev));
5986                         return -EBADF;
5987                 }
5988
5989                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5990                 if (err) {
5991                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5992                                mdname(mddev));
5993                         fput(mddev->bitmap_info.file);
5994                         mddev->bitmap_info.file = NULL;
5995                         return err;
5996                 }
5997                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5998         } else if (mddev->bitmap == NULL)
5999                 return -ENOENT; /* cannot remove what isn't there */
6000         err = 0;
6001         if (mddev->pers) {
6002                 mddev->pers->quiesce(mddev, 1);
6003                 if (fd >= 0) {
6004                         err = bitmap_create(mddev);
6005                         if (!err)
6006                                 err = bitmap_load(mddev);
6007                 }
6008                 if (fd < 0 || err) {
6009                         bitmap_destroy(mddev);
6010                         fd = -1; /* make sure to put the file */
6011                 }
6012                 mddev->pers->quiesce(mddev, 0);
6013         }
6014         if (fd < 0) {
6015                 if (mddev->bitmap_info.file) {
6016                         restore_bitmap_write_access(mddev->bitmap_info.file);
6017                         fput(mddev->bitmap_info.file);
6018                 }
6019                 mddev->bitmap_info.file = NULL;
6020         }
6021
6022         return err;
6023 }
6024
6025 /*
6026  * set_array_info is used two different ways
6027  * The original usage is when creating a new array.
6028  * In this usage, raid_disks is > 0 and it together with
6029  *  level, size, not_persistent,layout,chunksize determine the
6030  *  shape of the array.
6031  *  This will always create an array with a type-0.90.0 superblock.
6032  * The newer usage is when assembling an array.
6033  *  In this case raid_disks will be 0, and the major_version field is
6034  *  use to determine which style super-blocks are to be found on the devices.
6035  *  The minor and patch _version numbers are also kept incase the
6036  *  super_block handler wishes to interpret them.
6037  */
6038 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6039 {
6040
6041         if (info->raid_disks == 0) {
6042                 /* just setting version number for superblock loading */
6043                 if (info->major_version < 0 ||
6044                     info->major_version >= ARRAY_SIZE(super_types) ||
6045                     super_types[info->major_version].name == NULL) {
6046                         /* maybe try to auto-load a module? */
6047                         printk(KERN_INFO 
6048                                 "md: superblock version %d not known\n",
6049                                 info->major_version);
6050                         return -EINVAL;
6051                 }
6052                 mddev->major_version = info->major_version;
6053                 mddev->minor_version = info->minor_version;
6054                 mddev->patch_version = info->patch_version;
6055                 mddev->persistent = !info->not_persistent;
6056                 /* ensure mddev_put doesn't delete this now that there
6057                  * is some minimal configuration.
6058                  */
6059                 mddev->ctime         = get_seconds();
6060                 return 0;
6061         }
6062         mddev->major_version = MD_MAJOR_VERSION;
6063         mddev->minor_version = MD_MINOR_VERSION;
6064         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6065         mddev->ctime         = get_seconds();
6066
6067         mddev->level         = info->level;
6068         mddev->clevel[0]     = 0;
6069         mddev->dev_sectors   = 2 * (sector_t)info->size;
6070         mddev->raid_disks    = info->raid_disks;
6071         /* don't set md_minor, it is determined by which /dev/md* was
6072          * openned
6073          */
6074         if (info->state & (1<<MD_SB_CLEAN))
6075                 mddev->recovery_cp = MaxSector;
6076         else
6077                 mddev->recovery_cp = 0;
6078         mddev->persistent    = ! info->not_persistent;
6079         mddev->external      = 0;
6080
6081         mddev->layout        = info->layout;
6082         mddev->chunk_sectors = info->chunk_size >> 9;
6083
6084         mddev->max_disks     = MD_SB_DISKS;
6085
6086         if (mddev->persistent)
6087                 mddev->flags         = 0;
6088         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6089
6090         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6091         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6092         mddev->bitmap_info.offset = 0;
6093
6094         mddev->reshape_position = MaxSector;
6095
6096         /*
6097          * Generate a 128 bit UUID
6098          */
6099         get_random_bytes(mddev->uuid, 16);
6100
6101         mddev->new_level = mddev->level;
6102         mddev->new_chunk_sectors = mddev->chunk_sectors;
6103         mddev->new_layout = mddev->layout;
6104         mddev->delta_disks = 0;
6105         mddev->reshape_backwards = 0;
6106
6107         return 0;
6108 }
6109
6110 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6111 {
6112         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6113
6114         if (mddev->external_size)
6115                 return;
6116
6117         mddev->array_sectors = array_sectors;
6118 }
6119 EXPORT_SYMBOL(md_set_array_sectors);
6120
6121 static int update_size(struct mddev *mddev, sector_t num_sectors)
6122 {
6123         struct md_rdev *rdev;
6124         int rv;
6125         int fit = (num_sectors == 0);
6126
6127         if (mddev->pers->resize == NULL)
6128                 return -EINVAL;
6129         /* The "num_sectors" is the number of sectors of each device that
6130          * is used.  This can only make sense for arrays with redundancy.
6131          * linear and raid0 always use whatever space is available. We can only
6132          * consider changing this number if no resync or reconstruction is
6133          * happening, and if the new size is acceptable. It must fit before the
6134          * sb_start or, if that is <data_offset, it must fit before the size
6135          * of each device.  If num_sectors is zero, we find the largest size
6136          * that fits.
6137          */
6138         if (mddev->sync_thread)
6139                 return -EBUSY;
6140
6141         rdev_for_each(rdev, mddev) {
6142                 sector_t avail = rdev->sectors;
6143
6144                 if (fit && (num_sectors == 0 || num_sectors > avail))
6145                         num_sectors = avail;
6146                 if (avail < num_sectors)
6147                         return -ENOSPC;
6148         }
6149         rv = mddev->pers->resize(mddev, num_sectors);
6150         if (!rv)
6151                 revalidate_disk(mddev->gendisk);
6152         return rv;
6153 }
6154
6155 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6156 {
6157         int rv;
6158         struct md_rdev *rdev;
6159         /* change the number of raid disks */
6160         if (mddev->pers->check_reshape == NULL)
6161                 return -EINVAL;
6162         if (raid_disks <= 0 ||
6163             (mddev->max_disks && raid_disks >= mddev->max_disks))
6164                 return -EINVAL;
6165         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6166                 return -EBUSY;
6167
6168         rdev_for_each(rdev, mddev) {
6169                 if (mddev->raid_disks < raid_disks &&
6170                     rdev->data_offset < rdev->new_data_offset)
6171                         return -EINVAL;
6172                 if (mddev->raid_disks > raid_disks &&
6173                     rdev->data_offset > rdev->new_data_offset)
6174                         return -EINVAL;
6175         }
6176
6177         mddev->delta_disks = raid_disks - mddev->raid_disks;
6178         if (mddev->delta_disks < 0)
6179                 mddev->reshape_backwards = 1;
6180         else if (mddev->delta_disks > 0)
6181                 mddev->reshape_backwards = 0;
6182
6183         rv = mddev->pers->check_reshape(mddev);
6184         if (rv < 0) {
6185                 mddev->delta_disks = 0;
6186                 mddev->reshape_backwards = 0;
6187         }
6188         return rv;
6189 }
6190
6191
6192 /*
6193  * update_array_info is used to change the configuration of an
6194  * on-line array.
6195  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6196  * fields in the info are checked against the array.
6197  * Any differences that cannot be handled will cause an error.
6198  * Normally, only one change can be managed at a time.
6199  */
6200 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6201 {
6202         int rv = 0;
6203         int cnt = 0;
6204         int state = 0;
6205
6206         /* calculate expected state,ignoring low bits */
6207         if (mddev->bitmap && mddev->bitmap_info.offset)
6208                 state |= (1 << MD_SB_BITMAP_PRESENT);
6209
6210         if (mddev->major_version != info->major_version ||
6211             mddev->minor_version != info->minor_version ||
6212 /*          mddev->patch_version != info->patch_version || */
6213             mddev->ctime         != info->ctime         ||
6214             mddev->level         != info->level         ||
6215 /*          mddev->layout        != info->layout        || */
6216             !mddev->persistent   != info->not_persistent||
6217             mddev->chunk_sectors != info->chunk_size >> 9 ||
6218             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6219             ((state^info->state) & 0xfffffe00)
6220                 )
6221                 return -EINVAL;
6222         /* Check there is only one change */
6223         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6224                 cnt++;
6225         if (mddev->raid_disks != info->raid_disks)
6226                 cnt++;
6227         if (mddev->layout != info->layout)
6228                 cnt++;
6229         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6230                 cnt++;
6231         if (cnt == 0)
6232                 return 0;
6233         if (cnt > 1)
6234                 return -EINVAL;
6235
6236         if (mddev->layout != info->layout) {
6237                 /* Change layout
6238                  * we don't need to do anything at the md level, the
6239                  * personality will take care of it all.
6240                  */
6241                 if (mddev->pers->check_reshape == NULL)
6242                         return -EINVAL;
6243                 else {
6244                         mddev->new_layout = info->layout;
6245                         rv = mddev->pers->check_reshape(mddev);
6246                         if (rv)
6247                                 mddev->new_layout = mddev->layout;
6248                         return rv;
6249                 }
6250         }
6251         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6252                 rv = update_size(mddev, (sector_t)info->size * 2);
6253
6254         if (mddev->raid_disks    != info->raid_disks)
6255                 rv = update_raid_disks(mddev, info->raid_disks);
6256
6257         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6258                 if (mddev->pers->quiesce == NULL)
6259                         return -EINVAL;
6260                 if (mddev->recovery || mddev->sync_thread)
6261                         return -EBUSY;
6262                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6263                         /* add the bitmap */
6264                         if (mddev->bitmap)
6265                                 return -EEXIST;
6266                         if (mddev->bitmap_info.default_offset == 0)
6267                                 return -EINVAL;
6268                         mddev->bitmap_info.offset =
6269                                 mddev->bitmap_info.default_offset;
6270                         mddev->bitmap_info.space =
6271                                 mddev->bitmap_info.default_space;
6272                         mddev->pers->quiesce(mddev, 1);
6273                         rv = bitmap_create(mddev);
6274                         if (!rv)
6275                                 rv = bitmap_load(mddev);
6276                         if (rv)
6277                                 bitmap_destroy(mddev);
6278                         mddev->pers->quiesce(mddev, 0);
6279                 } else {
6280                         /* remove the bitmap */
6281                         if (!mddev->bitmap)
6282                                 return -ENOENT;
6283                         if (mddev->bitmap->storage.file)
6284                                 return -EINVAL;
6285                         mddev->pers->quiesce(mddev, 1);
6286                         bitmap_destroy(mddev);
6287                         mddev->pers->quiesce(mddev, 0);
6288                         mddev->bitmap_info.offset = 0;
6289                 }
6290         }
6291         md_update_sb(mddev, 1);
6292         return rv;
6293 }
6294
6295 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6296 {
6297         struct md_rdev *rdev;
6298         int err = 0;
6299
6300         if (mddev->pers == NULL)
6301                 return -ENODEV;
6302
6303         rcu_read_lock();
6304         rdev = find_rdev_rcu(mddev, dev);
6305         if (!rdev)
6306                 err =  -ENODEV;
6307         else {
6308                 md_error(mddev, rdev);
6309                 if (!test_bit(Faulty, &rdev->flags))
6310                         err = -EBUSY;
6311         }
6312         rcu_read_unlock();
6313         return err;
6314 }
6315
6316 /*
6317  * We have a problem here : there is no easy way to give a CHS
6318  * virtual geometry. We currently pretend that we have a 2 heads
6319  * 4 sectors (with a BIG number of cylinders...). This drives
6320  * dosfs just mad... ;-)
6321  */
6322 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6323 {
6324         struct mddev *mddev = bdev->bd_disk->private_data;
6325
6326         geo->heads = 2;
6327         geo->sectors = 4;
6328         geo->cylinders = mddev->array_sectors / 8;
6329         return 0;
6330 }
6331
6332 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6333                         unsigned int cmd, unsigned long arg)
6334 {
6335         int err = 0;
6336         void __user *argp = (void __user *)arg;
6337         struct mddev *mddev = NULL;
6338         int ro;
6339
6340         switch (cmd) {
6341         case RAID_VERSION:
6342         case GET_ARRAY_INFO:
6343         case GET_DISK_INFO:
6344                 break;
6345         default:
6346                 if (!capable(CAP_SYS_ADMIN))
6347                         return -EACCES;
6348         }
6349
6350         /*
6351          * Commands dealing with the RAID driver but not any
6352          * particular array:
6353          */
6354         switch (cmd) {
6355         case RAID_VERSION:
6356                 err = get_version(argp);
6357                 goto done;
6358
6359         case PRINT_RAID_DEBUG:
6360                 err = 0;
6361                 md_print_devices();
6362                 goto done;
6363
6364 #ifndef MODULE
6365         case RAID_AUTORUN:
6366                 err = 0;
6367                 autostart_arrays(arg);
6368                 goto done;
6369 #endif
6370         default:;
6371         }
6372
6373         /*
6374          * Commands creating/starting a new array:
6375          */
6376
6377         mddev = bdev->bd_disk->private_data;
6378
6379         if (!mddev) {
6380                 BUG();
6381                 goto abort;
6382         }
6383
6384         /* Some actions do not requires the mutex */
6385         switch (cmd) {
6386         case GET_ARRAY_INFO:
6387                 if (!mddev->raid_disks && !mddev->external)
6388                         err = -ENODEV;
6389                 else
6390                         err = get_array_info(mddev, argp);
6391                 goto abort;
6392
6393         case GET_DISK_INFO:
6394                 if (!mddev->raid_disks && !mddev->external)
6395                         err = -ENODEV;
6396                 else
6397                         err = get_disk_info(mddev, argp);
6398                 goto abort;
6399
6400         case SET_DISK_FAULTY:
6401                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6402                 goto abort;
6403         }
6404
6405         if (cmd == ADD_NEW_DISK)
6406                 /* need to ensure md_delayed_delete() has completed */
6407                 flush_workqueue(md_misc_wq);
6408
6409         err = mddev_lock(mddev);
6410         if (err) {
6411                 printk(KERN_INFO 
6412                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6413                         err, cmd);
6414                 goto abort;
6415         }
6416
6417         if (cmd == SET_ARRAY_INFO) {
6418                 mdu_array_info_t info;
6419                 if (!arg)
6420                         memset(&info, 0, sizeof(info));
6421                 else if (copy_from_user(&info, argp, sizeof(info))) {
6422                         err = -EFAULT;
6423                         goto abort_unlock;
6424                 }
6425                 if (mddev->pers) {
6426                         err = update_array_info(mddev, &info);
6427                         if (err) {
6428                                 printk(KERN_WARNING "md: couldn't update"
6429                                        " array info. %d\n", err);
6430                                 goto abort_unlock;
6431                         }
6432                         goto done_unlock;
6433                 }
6434                 if (!list_empty(&mddev->disks)) {
6435                         printk(KERN_WARNING
6436                                "md: array %s already has disks!\n",
6437                                mdname(mddev));
6438                         err = -EBUSY;
6439                         goto abort_unlock;
6440                 }
6441                 if (mddev->raid_disks) {
6442                         printk(KERN_WARNING
6443                                "md: array %s already initialised!\n",
6444                                mdname(mddev));
6445                         err = -EBUSY;
6446                         goto abort_unlock;
6447                 }
6448                 err = set_array_info(mddev, &info);
6449                 if (err) {
6450                         printk(KERN_WARNING "md: couldn't set"
6451                                " array info. %d\n", err);
6452                         goto abort_unlock;
6453                 }
6454                 goto done_unlock;
6455         }
6456
6457         /*
6458          * Commands querying/configuring an existing array:
6459          */
6460         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6461          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6462         if ((!mddev->raid_disks && !mddev->external)
6463             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6464             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6465             && cmd != GET_BITMAP_FILE) {
6466                 err = -ENODEV;
6467                 goto abort_unlock;
6468         }
6469
6470         /*
6471          * Commands even a read-only array can execute:
6472          */
6473         switch (cmd) {
6474         case GET_BITMAP_FILE:
6475                 err = get_bitmap_file(mddev, argp);
6476                 goto done_unlock;
6477
6478         case RESTART_ARRAY_RW:
6479                 err = restart_array(mddev);
6480                 goto done_unlock;
6481
6482         case STOP_ARRAY:
6483                 err = do_md_stop(mddev, 0, bdev);
6484                 goto done_unlock;
6485
6486         case STOP_ARRAY_RO:
6487                 err = md_set_readonly(mddev, bdev);
6488                 goto done_unlock;
6489
6490         case BLKROSET:
6491                 if (get_user(ro, (int __user *)(arg))) {
6492                         err = -EFAULT;
6493                         goto done_unlock;
6494                 }
6495                 err = -EINVAL;
6496
6497                 /* if the bdev is going readonly the value of mddev->ro
6498                  * does not matter, no writes are coming
6499                  */
6500                 if (ro)
6501                         goto done_unlock;
6502
6503                 /* are we are already prepared for writes? */
6504                 if (mddev->ro != 1)
6505                         goto done_unlock;
6506
6507                 /* transitioning to readauto need only happen for
6508                  * arrays that call md_write_start
6509                  */
6510                 if (mddev->pers) {
6511                         err = restart_array(mddev);
6512                         if (err == 0) {
6513                                 mddev->ro = 2;
6514                                 set_disk_ro(mddev->gendisk, 0);
6515                         }
6516                 }
6517                 goto done_unlock;
6518         }
6519
6520         /*
6521          * The remaining ioctls are changing the state of the
6522          * superblock, so we do not allow them on read-only arrays.
6523          * However non-MD ioctls (e.g. get-size) will still come through
6524          * here and hit the 'default' below, so only disallow
6525          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6526          */
6527         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6528                 if (mddev->ro == 2) {
6529                         mddev->ro = 0;
6530                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6531                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6532                         md_wakeup_thread(mddev->thread);
6533                 } else {
6534                         err = -EROFS;
6535                         goto abort_unlock;
6536                 }
6537         }
6538
6539         switch (cmd) {
6540         case ADD_NEW_DISK:
6541         {
6542                 mdu_disk_info_t info;
6543                 if (copy_from_user(&info, argp, sizeof(info)))
6544                         err = -EFAULT;
6545                 else
6546                         err = add_new_disk(mddev, &info);
6547                 goto done_unlock;
6548         }
6549
6550         case HOT_REMOVE_DISK:
6551                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6552                 goto done_unlock;
6553
6554         case HOT_ADD_DISK:
6555                 err = hot_add_disk(mddev, new_decode_dev(arg));
6556                 goto done_unlock;
6557
6558         case RUN_ARRAY:
6559                 err = do_md_run(mddev);
6560                 goto done_unlock;
6561
6562         case SET_BITMAP_FILE:
6563                 err = set_bitmap_file(mddev, (int)arg);
6564                 goto done_unlock;
6565
6566         default:
6567                 err = -EINVAL;
6568                 goto abort_unlock;
6569         }
6570
6571 done_unlock:
6572 abort_unlock:
6573         if (mddev->hold_active == UNTIL_IOCTL &&
6574             err != -EINVAL)
6575                 mddev->hold_active = 0;
6576         mddev_unlock(mddev);
6577
6578         return err;
6579 done:
6580         if (err)
6581                 MD_BUG();
6582 abort:
6583         return err;
6584 }
6585 #ifdef CONFIG_COMPAT
6586 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6587                     unsigned int cmd, unsigned long arg)
6588 {
6589         switch (cmd) {
6590         case HOT_REMOVE_DISK:
6591         case HOT_ADD_DISK:
6592         case SET_DISK_FAULTY:
6593         case SET_BITMAP_FILE:
6594                 /* These take in integer arg, do not convert */
6595                 break;
6596         default:
6597                 arg = (unsigned long)compat_ptr(arg);
6598                 break;
6599         }
6600
6601         return md_ioctl(bdev, mode, cmd, arg);
6602 }
6603 #endif /* CONFIG_COMPAT */
6604
6605 static int md_open(struct block_device *bdev, fmode_t mode)
6606 {
6607         /*
6608          * Succeed if we can lock the mddev, which confirms that
6609          * it isn't being stopped right now.
6610          */
6611         struct mddev *mddev = mddev_find(bdev->bd_dev);
6612         int err;
6613
6614         if (!mddev)
6615                 return -ENODEV;
6616
6617         if (mddev->gendisk != bdev->bd_disk) {
6618                 /* we are racing with mddev_put which is discarding this
6619                  * bd_disk.
6620                  */
6621                 mddev_put(mddev);
6622                 /* Wait until bdev->bd_disk is definitely gone */
6623                 flush_workqueue(md_misc_wq);
6624                 /* Then retry the open from the top */
6625                 return -ERESTARTSYS;
6626         }
6627         BUG_ON(mddev != bdev->bd_disk->private_data);
6628
6629         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6630                 goto out;
6631
6632         err = 0;
6633         atomic_inc(&mddev->openers);
6634         mutex_unlock(&mddev->open_mutex);
6635
6636         check_disk_change(bdev);
6637  out:
6638         return err;
6639 }
6640
6641 static int md_release(struct gendisk *disk, fmode_t mode)
6642 {
6643         struct mddev *mddev = disk->private_data;
6644
6645         BUG_ON(!mddev);
6646         atomic_dec(&mddev->openers);
6647         mddev_put(mddev);
6648
6649         return 0;
6650 }
6651
6652 static int md_media_changed(struct gendisk *disk)
6653 {
6654         struct mddev *mddev = disk->private_data;
6655
6656         return mddev->changed;
6657 }
6658
6659 static int md_revalidate(struct gendisk *disk)
6660 {
6661         struct mddev *mddev = disk->private_data;
6662
6663         mddev->changed = 0;
6664         return 0;
6665 }
6666 static const struct block_device_operations md_fops =
6667 {
6668         .owner          = THIS_MODULE,
6669         .open           = md_open,
6670         .release        = md_release,
6671         .ioctl          = md_ioctl,
6672 #ifdef CONFIG_COMPAT
6673         .compat_ioctl   = md_compat_ioctl,
6674 #endif
6675         .getgeo         = md_getgeo,
6676         .media_changed  = md_media_changed,
6677         .revalidate_disk= md_revalidate,
6678 };
6679
6680 static int md_thread(void * arg)
6681 {
6682         struct md_thread *thread = arg;
6683
6684         /*
6685          * md_thread is a 'system-thread', it's priority should be very
6686          * high. We avoid resource deadlocks individually in each
6687          * raid personality. (RAID5 does preallocation) We also use RR and
6688          * the very same RT priority as kswapd, thus we will never get
6689          * into a priority inversion deadlock.
6690          *
6691          * we definitely have to have equal or higher priority than
6692          * bdflush, otherwise bdflush will deadlock if there are too
6693          * many dirty RAID5 blocks.
6694          */
6695
6696         allow_signal(SIGKILL);
6697         while (!kthread_should_stop()) {
6698
6699                 /* We need to wait INTERRUPTIBLE so that
6700                  * we don't add to the load-average.
6701                  * That means we need to be sure no signals are
6702                  * pending
6703                  */
6704                 if (signal_pending(current))
6705                         flush_signals(current);
6706
6707                 wait_event_interruptible_timeout
6708                         (thread->wqueue,
6709                          test_bit(THREAD_WAKEUP, &thread->flags)
6710                          || kthread_should_stop(),
6711                          thread->timeout);
6712
6713                 clear_bit(THREAD_WAKEUP, &thread->flags);
6714                 if (!kthread_should_stop())
6715                         thread->run(thread);
6716         }
6717
6718         return 0;
6719 }
6720
6721 void md_wakeup_thread(struct md_thread *thread)
6722 {
6723         if (thread) {
6724                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6725                 set_bit(THREAD_WAKEUP, &thread->flags);
6726                 wake_up(&thread->wqueue);
6727         }
6728 }
6729
6730 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6731                 struct mddev *mddev, const char *name)
6732 {
6733         struct md_thread *thread;
6734
6735         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6736         if (!thread)
6737                 return NULL;
6738
6739         init_waitqueue_head(&thread->wqueue);
6740
6741         thread->run = run;
6742         thread->mddev = mddev;
6743         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6744         thread->tsk = kthread_run(md_thread, thread,
6745                                   "%s_%s",
6746                                   mdname(thread->mddev),
6747                                   name);
6748         if (IS_ERR(thread->tsk)) {
6749                 kfree(thread);
6750                 return NULL;
6751         }
6752         return thread;
6753 }
6754
6755 void md_unregister_thread(struct md_thread **threadp)
6756 {
6757         struct md_thread *thread = *threadp;
6758         if (!thread)
6759                 return;
6760         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6761         /* Locking ensures that mddev_unlock does not wake_up a
6762          * non-existent thread
6763          */
6764         spin_lock(&pers_lock);
6765         *threadp = NULL;
6766         spin_unlock(&pers_lock);
6767
6768         kthread_stop(thread->tsk);
6769         kfree(thread);
6770 }
6771
6772 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6773 {
6774         if (!mddev) {
6775                 MD_BUG();
6776                 return;
6777         }
6778
6779         if (!rdev || test_bit(Faulty, &rdev->flags))
6780                 return;
6781
6782         if (!mddev->pers || !mddev->pers->error_handler)
6783                 return;
6784         mddev->pers->error_handler(mddev,rdev);
6785         if (mddev->degraded)
6786                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6787         sysfs_notify_dirent_safe(rdev->sysfs_state);
6788         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6789         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6790         md_wakeup_thread(mddev->thread);
6791         if (mddev->event_work.func)
6792                 queue_work(md_misc_wq, &mddev->event_work);
6793         md_new_event_inintr(mddev);
6794 }
6795
6796 /* seq_file implementation /proc/mdstat */
6797
6798 static void status_unused(struct seq_file *seq)
6799 {
6800         int i = 0;
6801         struct md_rdev *rdev;
6802
6803         seq_printf(seq, "unused devices: ");
6804
6805         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6806                 char b[BDEVNAME_SIZE];
6807                 i++;
6808                 seq_printf(seq, "%s ",
6809                               bdevname(rdev->bdev,b));
6810         }
6811         if (!i)
6812                 seq_printf(seq, "<none>");
6813
6814         seq_printf(seq, "\n");
6815 }
6816
6817
6818 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6819 {
6820         sector_t max_sectors, resync, res;
6821         unsigned long dt, db;
6822         sector_t rt;
6823         int scale;
6824         unsigned int per_milli;
6825
6826         if (mddev->curr_resync <= 3)
6827                 resync = 0;
6828         else
6829                 resync = mddev->curr_resync
6830                         - atomic_read(&mddev->recovery_active);
6831
6832         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6833             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6834                 max_sectors = mddev->resync_max_sectors;
6835         else
6836                 max_sectors = mddev->dev_sectors;
6837
6838         /*
6839          * Should not happen.
6840          */
6841         if (!max_sectors) {
6842                 MD_BUG();
6843                 return;
6844         }
6845         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6846          * in a sector_t, and (max_sectors>>scale) will fit in a
6847          * u32, as those are the requirements for sector_div.
6848          * Thus 'scale' must be at least 10
6849          */
6850         scale = 10;
6851         if (sizeof(sector_t) > sizeof(unsigned long)) {
6852                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6853                         scale++;
6854         }
6855         res = (resync>>scale)*1000;
6856         sector_div(res, (u32)((max_sectors>>scale)+1));
6857
6858         per_milli = res;
6859         {
6860                 int i, x = per_milli/50, y = 20-x;
6861                 seq_printf(seq, "[");
6862                 for (i = 0; i < x; i++)
6863                         seq_printf(seq, "=");
6864                 seq_printf(seq, ">");
6865                 for (i = 0; i < y; i++)
6866                         seq_printf(seq, ".");
6867                 seq_printf(seq, "] ");
6868         }
6869         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6870                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6871                     "reshape" :
6872                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6873                      "check" :
6874                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6875                       "resync" : "recovery"))),
6876                    per_milli/10, per_milli % 10,
6877                    (unsigned long long) resync/2,
6878                    (unsigned long long) max_sectors/2);
6879
6880         /*
6881          * dt: time from mark until now
6882          * db: blocks written from mark until now
6883          * rt: remaining time
6884          *
6885          * rt is a sector_t, so could be 32bit or 64bit.
6886          * So we divide before multiply in case it is 32bit and close
6887          * to the limit.
6888          * We scale the divisor (db) by 32 to avoid losing precision
6889          * near the end of resync when the number of remaining sectors
6890          * is close to 'db'.
6891          * We then divide rt by 32 after multiplying by db to compensate.
6892          * The '+1' avoids division by zero if db is very small.
6893          */
6894         dt = ((jiffies - mddev->resync_mark) / HZ);
6895         if (!dt) dt++;
6896         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6897                 - mddev->resync_mark_cnt;
6898
6899         rt = max_sectors - resync;    /* number of remaining sectors */
6900         sector_div(rt, db/32+1);
6901         rt *= dt;
6902         rt >>= 5;
6903
6904         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6905                    ((unsigned long)rt % 60)/6);
6906
6907         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6908 }
6909
6910 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6911 {
6912         struct list_head *tmp;
6913         loff_t l = *pos;
6914         struct mddev *mddev;
6915
6916         if (l >= 0x10000)
6917                 return NULL;
6918         if (!l--)
6919                 /* header */
6920                 return (void*)1;
6921
6922         spin_lock(&all_mddevs_lock);
6923         list_for_each(tmp,&all_mddevs)
6924                 if (!l--) {
6925                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6926                         mddev_get(mddev);
6927                         spin_unlock(&all_mddevs_lock);
6928                         return mddev;
6929                 }
6930         spin_unlock(&all_mddevs_lock);
6931         if (!l--)
6932                 return (void*)2;/* tail */
6933         return NULL;
6934 }
6935
6936 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6937 {
6938         struct list_head *tmp;
6939         struct mddev *next_mddev, *mddev = v;
6940         
6941         ++*pos;
6942         if (v == (void*)2)
6943                 return NULL;
6944
6945         spin_lock(&all_mddevs_lock);
6946         if (v == (void*)1)
6947                 tmp = all_mddevs.next;
6948         else
6949                 tmp = mddev->all_mddevs.next;
6950         if (tmp != &all_mddevs)
6951                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6952         else {
6953                 next_mddev = (void*)2;
6954                 *pos = 0x10000;
6955         }               
6956         spin_unlock(&all_mddevs_lock);
6957
6958         if (v != (void*)1)
6959                 mddev_put(mddev);
6960         return next_mddev;
6961
6962 }
6963
6964 static void md_seq_stop(struct seq_file *seq, void *v)
6965 {
6966         struct mddev *mddev = v;
6967
6968         if (mddev && v != (void*)1 && v != (void*)2)
6969                 mddev_put(mddev);
6970 }
6971
6972 static int md_seq_show(struct seq_file *seq, void *v)
6973 {
6974         struct mddev *mddev = v;
6975         sector_t sectors;
6976         struct md_rdev *rdev;
6977
6978         if (v == (void*)1) {
6979                 struct md_personality *pers;
6980                 seq_printf(seq, "Personalities : ");
6981                 spin_lock(&pers_lock);
6982                 list_for_each_entry(pers, &pers_list, list)
6983                         seq_printf(seq, "[%s] ", pers->name);
6984
6985                 spin_unlock(&pers_lock);
6986                 seq_printf(seq, "\n");
6987                 seq->poll_event = atomic_read(&md_event_count);
6988                 return 0;
6989         }
6990         if (v == (void*)2) {
6991                 status_unused(seq);
6992                 return 0;
6993         }
6994
6995         if (mddev_lock(mddev) < 0)
6996                 return -EINTR;
6997
6998         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6999                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7000                                                 mddev->pers ? "" : "in");
7001                 if (mddev->pers) {
7002                         if (mddev->ro==1)
7003                                 seq_printf(seq, " (read-only)");
7004                         if (mddev->ro==2)
7005                                 seq_printf(seq, " (auto-read-only)");
7006                         seq_printf(seq, " %s", mddev->pers->name);
7007                 }
7008
7009                 sectors = 0;
7010                 rdev_for_each(rdev, mddev) {
7011                         char b[BDEVNAME_SIZE];
7012                         seq_printf(seq, " %s[%d]",
7013                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7014                         if (test_bit(WriteMostly, &rdev->flags))
7015                                 seq_printf(seq, "(W)");
7016                         if (test_bit(Faulty, &rdev->flags)) {
7017                                 seq_printf(seq, "(F)");
7018                                 continue;
7019                         }
7020                         if (rdev->raid_disk < 0)
7021                                 seq_printf(seq, "(S)"); /* spare */
7022                         if (test_bit(Replacement, &rdev->flags))
7023                                 seq_printf(seq, "(R)");
7024                         sectors += rdev->sectors;
7025                 }
7026
7027                 if (!list_empty(&mddev->disks)) {
7028                         if (mddev->pers)
7029                                 seq_printf(seq, "\n      %llu blocks",
7030                                            (unsigned long long)
7031                                            mddev->array_sectors / 2);
7032                         else
7033                                 seq_printf(seq, "\n      %llu blocks",
7034                                            (unsigned long long)sectors / 2);
7035                 }
7036                 if (mddev->persistent) {
7037                         if (mddev->major_version != 0 ||
7038                             mddev->minor_version != 90) {
7039                                 seq_printf(seq," super %d.%d",
7040                                            mddev->major_version,
7041                                            mddev->minor_version);
7042                         }
7043                 } else if (mddev->external)
7044                         seq_printf(seq, " super external:%s",
7045                                    mddev->metadata_type);
7046                 else
7047                         seq_printf(seq, " super non-persistent");
7048
7049                 if (mddev->pers) {
7050                         mddev->pers->status(seq, mddev);
7051                         seq_printf(seq, "\n      ");
7052                         if (mddev->pers->sync_request) {
7053                                 if (mddev->curr_resync > 2) {
7054                                         status_resync(seq, mddev);
7055                                         seq_printf(seq, "\n      ");
7056                                 } else if (mddev->curr_resync >= 1)
7057                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7058                                 else if (mddev->recovery_cp < MaxSector)
7059                                         seq_printf(seq, "\tresync=PENDING\n      ");
7060                         }
7061                 } else
7062                         seq_printf(seq, "\n       ");
7063
7064                 bitmap_status(seq, mddev->bitmap);
7065
7066                 seq_printf(seq, "\n");
7067         }
7068         mddev_unlock(mddev);
7069         
7070         return 0;
7071 }
7072
7073 static const struct seq_operations md_seq_ops = {
7074         .start  = md_seq_start,
7075         .next   = md_seq_next,
7076         .stop   = md_seq_stop,
7077         .show   = md_seq_show,
7078 };
7079
7080 static int md_seq_open(struct inode *inode, struct file *file)
7081 {
7082         struct seq_file *seq;
7083         int error;
7084
7085         error = seq_open(file, &md_seq_ops);
7086         if (error)
7087                 return error;
7088
7089         seq = file->private_data;
7090         seq->poll_event = atomic_read(&md_event_count);
7091         return error;
7092 }
7093
7094 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7095 {
7096         struct seq_file *seq = filp->private_data;
7097         int mask;
7098
7099         poll_wait(filp, &md_event_waiters, wait);
7100
7101         /* always allow read */
7102         mask = POLLIN | POLLRDNORM;
7103
7104         if (seq->poll_event != atomic_read(&md_event_count))
7105                 mask |= POLLERR | POLLPRI;
7106         return mask;
7107 }
7108
7109 static const struct file_operations md_seq_fops = {
7110         .owner          = THIS_MODULE,
7111         .open           = md_seq_open,
7112         .read           = seq_read,
7113         .llseek         = seq_lseek,
7114         .release        = seq_release_private,
7115         .poll           = mdstat_poll,
7116 };
7117
7118 int register_md_personality(struct md_personality *p)
7119 {
7120         spin_lock(&pers_lock);
7121         list_add_tail(&p->list, &pers_list);
7122         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7123         spin_unlock(&pers_lock);
7124         return 0;
7125 }
7126
7127 int unregister_md_personality(struct md_personality *p)
7128 {
7129         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7130         spin_lock(&pers_lock);
7131         list_del_init(&p->list);
7132         spin_unlock(&pers_lock);
7133         return 0;
7134 }
7135
7136 static int is_mddev_idle(struct mddev *mddev, int init)
7137 {
7138         struct md_rdev * rdev;
7139         int idle;
7140         int curr_events;
7141
7142         idle = 1;
7143         rcu_read_lock();
7144         rdev_for_each_rcu(rdev, mddev) {
7145                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7146                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7147                               (int)part_stat_read(&disk->part0, sectors[1]) -
7148                               atomic_read(&disk->sync_io);
7149                 /* sync IO will cause sync_io to increase before the disk_stats
7150                  * as sync_io is counted when a request starts, and
7151                  * disk_stats is counted when it completes.
7152                  * So resync activity will cause curr_events to be smaller than
7153                  * when there was no such activity.
7154                  * non-sync IO will cause disk_stat to increase without
7155                  * increasing sync_io so curr_events will (eventually)
7156                  * be larger than it was before.  Once it becomes
7157                  * substantially larger, the test below will cause
7158                  * the array to appear non-idle, and resync will slow
7159                  * down.
7160                  * If there is a lot of outstanding resync activity when
7161                  * we set last_event to curr_events, then all that activity
7162                  * completing might cause the array to appear non-idle
7163                  * and resync will be slowed down even though there might
7164                  * not have been non-resync activity.  This will only
7165                  * happen once though.  'last_events' will soon reflect
7166                  * the state where there is little or no outstanding
7167                  * resync requests, and further resync activity will
7168                  * always make curr_events less than last_events.
7169                  *
7170                  */
7171                 if (init || curr_events - rdev->last_events > 64) {
7172                         rdev->last_events = curr_events;
7173                         idle = 0;
7174                 }
7175         }
7176         rcu_read_unlock();
7177         return idle;
7178 }
7179
7180 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7181 {
7182         /* another "blocks" (512byte) blocks have been synced */
7183         atomic_sub(blocks, &mddev->recovery_active);
7184         wake_up(&mddev->recovery_wait);
7185         if (!ok) {
7186                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7187                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7188                 md_wakeup_thread(mddev->thread);
7189                 // stop recovery, signal do_sync ....
7190         }
7191 }
7192
7193
7194 /* md_write_start(mddev, bi)
7195  * If we need to update some array metadata (e.g. 'active' flag
7196  * in superblock) before writing, schedule a superblock update
7197  * and wait for it to complete.
7198  */
7199 void md_write_start(struct mddev *mddev, struct bio *bi)
7200 {
7201         int did_change = 0;
7202         if (bio_data_dir(bi) != WRITE)
7203                 return;
7204
7205         BUG_ON(mddev->ro == 1);
7206         if (mddev->ro == 2) {
7207                 /* need to switch to read/write */
7208                 mddev->ro = 0;
7209                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7210                 md_wakeup_thread(mddev->thread);
7211                 md_wakeup_thread(mddev->sync_thread);
7212                 did_change = 1;
7213         }
7214         atomic_inc(&mddev->writes_pending);
7215         if (mddev->safemode == 1)
7216                 mddev->safemode = 0;
7217         if (mddev->in_sync) {
7218                 spin_lock_irq(&mddev->write_lock);
7219                 if (mddev->in_sync) {
7220                         mddev->in_sync = 0;
7221                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7222                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7223                         md_wakeup_thread(mddev->thread);
7224                         did_change = 1;
7225                 }
7226                 spin_unlock_irq(&mddev->write_lock);
7227         }
7228         if (did_change)
7229                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7230         wait_event(mddev->sb_wait,
7231                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7232 }
7233
7234 void md_write_end(struct mddev *mddev)
7235 {
7236         if (atomic_dec_and_test(&mddev->writes_pending)) {
7237                 if (mddev->safemode == 2)
7238                         md_wakeup_thread(mddev->thread);
7239                 else if (mddev->safemode_delay)
7240                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7241         }
7242 }
7243
7244 /* md_allow_write(mddev)
7245  * Calling this ensures that the array is marked 'active' so that writes
7246  * may proceed without blocking.  It is important to call this before
7247  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7248  * Must be called with mddev_lock held.
7249  *
7250  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7251  * is dropped, so return -EAGAIN after notifying userspace.
7252  */
7253 int md_allow_write(struct mddev *mddev)
7254 {
7255         if (!mddev->pers)
7256                 return 0;
7257         if (mddev->ro)
7258                 return 0;
7259         if (!mddev->pers->sync_request)
7260                 return 0;
7261
7262         spin_lock_irq(&mddev->write_lock);
7263         if (mddev->in_sync) {
7264                 mddev->in_sync = 0;
7265                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7266                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7267                 if (mddev->safemode_delay &&
7268                     mddev->safemode == 0)
7269                         mddev->safemode = 1;
7270                 spin_unlock_irq(&mddev->write_lock);
7271                 md_update_sb(mddev, 0);
7272                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7273         } else
7274                 spin_unlock_irq(&mddev->write_lock);
7275
7276         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7277                 return -EAGAIN;
7278         else
7279                 return 0;
7280 }
7281 EXPORT_SYMBOL_GPL(md_allow_write);
7282
7283 #define SYNC_MARKS      10
7284 #define SYNC_MARK_STEP  (3*HZ)
7285 #define UPDATE_FREQUENCY (5*60*HZ)
7286 void md_do_sync(struct md_thread *thread)
7287 {
7288         struct mddev *mddev = thread->mddev;
7289         struct mddev *mddev2;
7290         unsigned int currspeed = 0,
7291                  window;
7292         sector_t max_sectors,j, io_sectors;
7293         unsigned long mark[SYNC_MARKS];
7294         unsigned long update_time;
7295         sector_t mark_cnt[SYNC_MARKS];
7296         int last_mark,m;
7297         struct list_head *tmp;
7298         sector_t last_check;
7299         int skipped = 0;
7300         struct md_rdev *rdev;
7301         char *desc;
7302         struct blk_plug plug;
7303
7304         /* just incase thread restarts... */
7305         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7306                 return;
7307         if (mddev->ro) /* never try to sync a read-only array */
7308                 return;
7309
7310         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7311                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7312                         desc = "data-check";
7313                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7314                         desc = "requested-resync";
7315                 else
7316                         desc = "resync";
7317         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7318                 desc = "reshape";
7319         else
7320                 desc = "recovery";
7321
7322         /* we overload curr_resync somewhat here.
7323          * 0 == not engaged in resync at all
7324          * 2 == checking that there is no conflict with another sync
7325          * 1 == like 2, but have yielded to allow conflicting resync to
7326          *              commense
7327          * other == active in resync - this many blocks
7328          *
7329          * Before starting a resync we must have set curr_resync to
7330          * 2, and then checked that every "conflicting" array has curr_resync
7331          * less than ours.  When we find one that is the same or higher
7332          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7333          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7334          * This will mean we have to start checking from the beginning again.
7335          *
7336          */
7337
7338         do {
7339                 mddev->curr_resync = 2;
7340
7341         try_again:
7342                 if (kthread_should_stop())
7343                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7344
7345                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7346                         goto skip;
7347                 for_each_mddev(mddev2, tmp) {
7348                         if (mddev2 == mddev)
7349                                 continue;
7350                         if (!mddev->parallel_resync
7351                         &&  mddev2->curr_resync
7352                         &&  match_mddev_units(mddev, mddev2)) {
7353                                 DEFINE_WAIT(wq);
7354                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7355                                         /* arbitrarily yield */
7356                                         mddev->curr_resync = 1;
7357                                         wake_up(&resync_wait);
7358                                 }
7359                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7360                                         /* no need to wait here, we can wait the next
7361                                          * time 'round when curr_resync == 2
7362                                          */
7363                                         continue;
7364                                 /* We need to wait 'interruptible' so as not to
7365                                  * contribute to the load average, and not to
7366                                  * be caught by 'softlockup'
7367                                  */
7368                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7369                                 if (!kthread_should_stop() &&
7370                                     mddev2->curr_resync >= mddev->curr_resync) {
7371                                         printk(KERN_INFO "md: delaying %s of %s"
7372                                                " until %s has finished (they"
7373                                                " share one or more physical units)\n",
7374                                                desc, mdname(mddev), mdname(mddev2));
7375                                         mddev_put(mddev2);
7376                                         if (signal_pending(current))
7377                                                 flush_signals(current);
7378                                         schedule();
7379                                         finish_wait(&resync_wait, &wq);
7380                                         goto try_again;
7381                                 }
7382                                 finish_wait(&resync_wait, &wq);
7383                         }
7384                 }
7385         } while (mddev->curr_resync < 2);
7386
7387         j = 0;
7388         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7389                 /* resync follows the size requested by the personality,
7390                  * which defaults to physical size, but can be virtual size
7391                  */
7392                 max_sectors = mddev->resync_max_sectors;
7393                 atomic64_set(&mddev->resync_mismatches, 0);
7394                 /* we don't use the checkpoint if there's a bitmap */
7395                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7396                         j = mddev->resync_min;
7397                 else if (!mddev->bitmap)
7398                         j = mddev->recovery_cp;
7399
7400         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7401                 max_sectors = mddev->resync_max_sectors;
7402         else {
7403                 /* recovery follows the physical size of devices */
7404                 max_sectors = mddev->dev_sectors;
7405                 j = MaxSector;
7406                 rcu_read_lock();
7407                 rdev_for_each_rcu(rdev, mddev)
7408                         if (rdev->raid_disk >= 0 &&
7409                             !test_bit(Faulty, &rdev->flags) &&
7410                             !test_bit(In_sync, &rdev->flags) &&
7411                             rdev->recovery_offset < j)
7412                                 j = rdev->recovery_offset;
7413                 rcu_read_unlock();
7414         }
7415
7416         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7417         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7418                 " %d KB/sec/disk.\n", speed_min(mddev));
7419         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7420                "(but not more than %d KB/sec) for %s.\n",
7421                speed_max(mddev), desc);
7422
7423         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7424
7425         io_sectors = 0;
7426         for (m = 0; m < SYNC_MARKS; m++) {
7427                 mark[m] = jiffies;
7428                 mark_cnt[m] = io_sectors;
7429         }
7430         last_mark = 0;
7431         mddev->resync_mark = mark[last_mark];
7432         mddev->resync_mark_cnt = mark_cnt[last_mark];
7433
7434         /*
7435          * Tune reconstruction:
7436          */
7437         window = 32*(PAGE_SIZE/512);
7438         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7439                 window/2, (unsigned long long)max_sectors/2);
7440
7441         atomic_set(&mddev->recovery_active, 0);
7442         last_check = 0;
7443
7444         if (j>2) {
7445                 printk(KERN_INFO 
7446                        "md: resuming %s of %s from checkpoint.\n",
7447                        desc, mdname(mddev));
7448                 mddev->curr_resync = j;
7449         } else
7450                 mddev->curr_resync = 3; /* no longer delayed */
7451         mddev->curr_resync_completed = j;
7452         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7453         md_new_event(mddev);
7454         update_time = jiffies;
7455
7456         blk_start_plug(&plug);
7457         while (j < max_sectors) {
7458                 sector_t sectors;
7459
7460                 skipped = 0;
7461
7462                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7463                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7464                       (mddev->curr_resync - mddev->curr_resync_completed)
7465                       > (max_sectors >> 4)) ||
7466                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7467                      (j - mddev->curr_resync_completed)*2
7468                      >= mddev->resync_max - mddev->curr_resync_completed
7469                             )) {
7470                         /* time to update curr_resync_completed */
7471                         wait_event(mddev->recovery_wait,
7472                                    atomic_read(&mddev->recovery_active) == 0);
7473                         mddev->curr_resync_completed = j;
7474                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7475                             j > mddev->recovery_cp)
7476                                 mddev->recovery_cp = j;
7477                         update_time = jiffies;
7478                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7479                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7480                 }
7481
7482                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7483                         /* As this condition is controlled by user-space,
7484                          * we can block indefinitely, so use '_interruptible'
7485                          * to avoid triggering warnings.
7486                          */
7487                         flush_signals(current); /* just in case */
7488                         wait_event_interruptible(mddev->recovery_wait,
7489                                                  mddev->resync_max > j
7490                                                  || kthread_should_stop());
7491                 }
7492
7493                 if (kthread_should_stop())
7494                         goto interrupted;
7495
7496                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7497                                                   currspeed < speed_min(mddev));
7498                 if (sectors == 0) {
7499                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7500                         goto out;
7501                 }
7502
7503                 if (!skipped) { /* actual IO requested */
7504                         io_sectors += sectors;
7505                         atomic_add(sectors, &mddev->recovery_active);
7506                 }
7507
7508                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7509                         break;
7510
7511                 j += sectors;
7512                 if (j > 2)
7513                         mddev->curr_resync = j;
7514                 mddev->curr_mark_cnt = io_sectors;
7515                 if (last_check == 0)
7516                         /* this is the earliest that rebuild will be
7517                          * visible in /proc/mdstat
7518                          */
7519                         md_new_event(mddev);
7520
7521                 if (last_check + window > io_sectors || j == max_sectors)
7522                         continue;
7523
7524                 last_check = io_sectors;
7525         repeat:
7526                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7527                         /* step marks */
7528                         int next = (last_mark+1) % SYNC_MARKS;
7529
7530                         mddev->resync_mark = mark[next];
7531                         mddev->resync_mark_cnt = mark_cnt[next];
7532                         mark[next] = jiffies;
7533                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7534                         last_mark = next;
7535                 }
7536
7537
7538                 if (kthread_should_stop())
7539                         goto interrupted;
7540
7541
7542                 /*
7543                  * this loop exits only if either when we are slower than
7544                  * the 'hard' speed limit, or the system was IO-idle for
7545                  * a jiffy.
7546                  * the system might be non-idle CPU-wise, but we only care
7547                  * about not overloading the IO subsystem. (things like an
7548                  * e2fsck being done on the RAID array should execute fast)
7549                  */
7550                 cond_resched();
7551
7552                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7553                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7554
7555                 if (currspeed > speed_min(mddev)) {
7556                         if ((currspeed > speed_max(mddev)) ||
7557                                         !is_mddev_idle(mddev, 0)) {
7558                                 msleep(500);
7559                                 goto repeat;
7560                         }
7561                 }
7562         }
7563         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7564         /*
7565          * this also signals 'finished resyncing' to md_stop
7566          */
7567  out:
7568         blk_finish_plug(&plug);
7569         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7570
7571         /* tell personality that we are finished */
7572         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7573
7574         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7575             mddev->curr_resync > 2) {
7576                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7577                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7578                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7579                                         printk(KERN_INFO
7580                                                "md: checkpointing %s of %s.\n",
7581                                                desc, mdname(mddev));
7582                                         if (test_bit(MD_RECOVERY_ERROR,
7583                                                 &mddev->recovery))
7584                                                 mddev->recovery_cp =
7585                                                         mddev->curr_resync_completed;
7586                                         else
7587                                                 mddev->recovery_cp =
7588                                                         mddev->curr_resync;
7589                                 }
7590                         } else
7591                                 mddev->recovery_cp = MaxSector;
7592                 } else {
7593                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7594                                 mddev->curr_resync = MaxSector;
7595                         rcu_read_lock();
7596                         rdev_for_each_rcu(rdev, mddev)
7597                                 if (rdev->raid_disk >= 0 &&
7598                                     mddev->delta_disks >= 0 &&
7599                                     !test_bit(Faulty, &rdev->flags) &&
7600                                     !test_bit(In_sync, &rdev->flags) &&
7601                                     rdev->recovery_offset < mddev->curr_resync)
7602                                         rdev->recovery_offset = mddev->curr_resync;
7603                         rcu_read_unlock();
7604                 }
7605         }
7606  skip:
7607         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7608
7609         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7610                 /* We completed so min/max setting can be forgotten if used. */
7611                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7612                         mddev->resync_min = 0;
7613                 mddev->resync_max = MaxSector;
7614         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7615                 mddev->resync_min = mddev->curr_resync_completed;
7616         mddev->curr_resync = 0;
7617         wake_up(&resync_wait);
7618         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7619         md_wakeup_thread(mddev->thread);
7620         return;
7621
7622  interrupted:
7623         /*
7624          * got a signal, exit.
7625          */
7626         printk(KERN_INFO
7627                "md: md_do_sync() got signal ... exiting\n");
7628         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7629         goto out;
7630
7631 }
7632 EXPORT_SYMBOL_GPL(md_do_sync);
7633
7634 static int remove_and_add_spares(struct mddev *mddev)
7635 {
7636         struct md_rdev *rdev;
7637         int spares = 0;
7638         int removed = 0;
7639
7640         rdev_for_each(rdev, mddev)
7641                 if (rdev->raid_disk >= 0 &&
7642                     !test_bit(Blocked, &rdev->flags) &&
7643                     (test_bit(Faulty, &rdev->flags) ||
7644                      ! test_bit(In_sync, &rdev->flags)) &&
7645                     atomic_read(&rdev->nr_pending)==0) {
7646                         if (mddev->pers->hot_remove_disk(
7647                                     mddev, rdev) == 0) {
7648                                 sysfs_unlink_rdev(mddev, rdev);
7649                                 rdev->raid_disk = -1;
7650                                 removed++;
7651                         }
7652                 }
7653         if (removed)
7654                 sysfs_notify(&mddev->kobj, NULL,
7655                              "degraded");
7656
7657
7658         rdev_for_each(rdev, mddev) {
7659                 if (rdev->raid_disk >= 0 &&
7660                     !test_bit(In_sync, &rdev->flags) &&
7661                     !test_bit(Faulty, &rdev->flags))
7662                         spares++;
7663                 if (rdev->raid_disk < 0
7664                     && !test_bit(Faulty, &rdev->flags)) {
7665                         rdev->recovery_offset = 0;
7666                         if (mddev->pers->
7667                             hot_add_disk(mddev, rdev) == 0) {
7668                                 if (sysfs_link_rdev(mddev, rdev))
7669                                         /* failure here is OK */;
7670                                 spares++;
7671                                 md_new_event(mddev);
7672                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7673                         }
7674                 }
7675         }
7676         if (removed)
7677                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7678         return spares;
7679 }
7680
7681 static void reap_sync_thread(struct mddev *mddev)
7682 {
7683         struct md_rdev *rdev;
7684
7685         /* resync has finished, collect result */
7686         md_unregister_thread(&mddev->sync_thread);
7687         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7688             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7689                 /* success...*/
7690                 /* activate any spares */
7691                 if (mddev->pers->spare_active(mddev)) {
7692                         sysfs_notify(&mddev->kobj, NULL,
7693                                      "degraded");
7694                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7695                 }
7696         }
7697         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7698             mddev->pers->finish_reshape)
7699                 mddev->pers->finish_reshape(mddev);
7700
7701         /* If array is no-longer degraded, then any saved_raid_disk
7702          * information must be scrapped.  Also if any device is now
7703          * In_sync we must scrape the saved_raid_disk for that device
7704          * do the superblock for an incrementally recovered device
7705          * written out.
7706          */
7707         rdev_for_each(rdev, mddev)
7708                 if (!mddev->degraded ||
7709                     test_bit(In_sync, &rdev->flags))
7710                         rdev->saved_raid_disk = -1;
7711
7712         md_update_sb(mddev, 1);
7713         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7714         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7715         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7716         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7717         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7718         /* flag recovery needed just to double check */
7719         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7720         sysfs_notify_dirent_safe(mddev->sysfs_action);
7721         md_new_event(mddev);
7722         if (mddev->event_work.func)
7723                 queue_work(md_misc_wq, &mddev->event_work);
7724 }
7725
7726 /*
7727  * This routine is regularly called by all per-raid-array threads to
7728  * deal with generic issues like resync and super-block update.
7729  * Raid personalities that don't have a thread (linear/raid0) do not
7730  * need this as they never do any recovery or update the superblock.
7731  *
7732  * It does not do any resync itself, but rather "forks" off other threads
7733  * to do that as needed.
7734  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7735  * "->recovery" and create a thread at ->sync_thread.
7736  * When the thread finishes it sets MD_RECOVERY_DONE
7737  * and wakeups up this thread which will reap the thread and finish up.
7738  * This thread also removes any faulty devices (with nr_pending == 0).
7739  *
7740  * The overall approach is:
7741  *  1/ if the superblock needs updating, update it.
7742  *  2/ If a recovery thread is running, don't do anything else.
7743  *  3/ If recovery has finished, clean up, possibly marking spares active.
7744  *  4/ If there are any faulty devices, remove them.
7745  *  5/ If array is degraded, try to add spares devices
7746  *  6/ If array has spares or is not in-sync, start a resync thread.
7747  */
7748 void md_check_recovery(struct mddev *mddev)
7749 {
7750         if (mddev->suspended)
7751                 return;
7752
7753         if (mddev->bitmap)
7754                 bitmap_daemon_work(mddev);
7755
7756         if (signal_pending(current)) {
7757                 if (mddev->pers->sync_request && !mddev->external) {
7758                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7759                                mdname(mddev));
7760                         mddev->safemode = 2;
7761                 }
7762                 flush_signals(current);
7763         }
7764
7765         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7766                 return;
7767         if ( ! (
7768                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7769                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7770                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7771                 (mddev->external == 0 && mddev->safemode == 1) ||
7772                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7773                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7774                 ))
7775                 return;
7776
7777         if (mddev_trylock(mddev)) {
7778                 int spares = 0;
7779
7780                 if (mddev->ro) {
7781                         /* Only thing we do on a ro array is remove
7782                          * failed devices.
7783                          */
7784                         struct md_rdev *rdev;
7785                         rdev_for_each(rdev, mddev)
7786                                 if (rdev->raid_disk >= 0 &&
7787                                     !test_bit(Blocked, &rdev->flags) &&
7788                                     test_bit(Faulty, &rdev->flags) &&
7789                                     atomic_read(&rdev->nr_pending)==0) {
7790                                         if (mddev->pers->hot_remove_disk(
7791                                                     mddev, rdev) == 0) {
7792                                                 sysfs_unlink_rdev(mddev, rdev);
7793                                                 rdev->raid_disk = -1;
7794                                         }
7795                                 }
7796                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7797                         goto unlock;
7798                 }
7799
7800                 if (!mddev->external) {
7801                         int did_change = 0;
7802                         spin_lock_irq(&mddev->write_lock);
7803                         if (mddev->safemode &&
7804                             !atomic_read(&mddev->writes_pending) &&
7805                             !mddev->in_sync &&
7806                             mddev->recovery_cp == MaxSector) {
7807                                 mddev->in_sync = 1;
7808                                 did_change = 1;
7809                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7810                         }
7811                         if (mddev->safemode == 1)
7812                                 mddev->safemode = 0;
7813                         spin_unlock_irq(&mddev->write_lock);
7814                         if (did_change)
7815                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7816                 }
7817
7818                 if (mddev->flags)
7819                         md_update_sb(mddev, 0);
7820
7821                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7822                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7823                         /* resync/recovery still happening */
7824                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7825                         goto unlock;
7826                 }
7827                 if (mddev->sync_thread) {
7828                         reap_sync_thread(mddev);
7829                         goto unlock;
7830                 }
7831                 /* Set RUNNING before clearing NEEDED to avoid
7832                  * any transients in the value of "sync_action".
7833                  */
7834                 mddev->curr_resync_completed = 0;
7835                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7836                 /* Clear some bits that don't mean anything, but
7837                  * might be left set
7838                  */
7839                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7840                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7841
7842                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7843                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7844                         goto unlock;
7845                 /* no recovery is running.
7846                  * remove any failed drives, then
7847                  * add spares if possible.
7848                  * Spares are also removed and re-added, to allow
7849                  * the personality to fail the re-add.
7850                  */
7851
7852                 if (mddev->reshape_position != MaxSector) {
7853                         if (mddev->pers->check_reshape == NULL ||
7854                             mddev->pers->check_reshape(mddev) != 0)
7855                                 /* Cannot proceed */
7856                                 goto unlock;
7857                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7858                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7859                 } else if ((spares = remove_and_add_spares(mddev))) {
7860                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7861                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7862                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7863                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7864                 } else if (mddev->recovery_cp < MaxSector) {
7865                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7866                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7867                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7868                         /* nothing to be done ... */
7869                         goto unlock;
7870
7871                 if (mddev->pers->sync_request) {
7872                         if (spares) {
7873                                 /* We are adding a device or devices to an array
7874                                  * which has the bitmap stored on all devices.
7875                                  * So make sure all bitmap pages get written
7876                                  */
7877                                 bitmap_write_all(mddev->bitmap);
7878                         }
7879                         mddev->sync_thread = md_register_thread(md_do_sync,
7880                                                                 mddev,
7881                                                                 "resync");
7882                         if (!mddev->sync_thread) {
7883                                 printk(KERN_ERR "%s: could not start resync"
7884                                         " thread...\n", 
7885                                         mdname(mddev));
7886                                 /* leave the spares where they are, it shouldn't hurt */
7887                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7888                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7889                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7890                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7891                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7892                         } else
7893                                 md_wakeup_thread(mddev->sync_thread);
7894                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7895                         md_new_event(mddev);
7896                 }
7897         unlock:
7898                 if (!mddev->sync_thread) {
7899                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7900                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7901                                                &mddev->recovery))
7902                                 if (mddev->sysfs_action)
7903                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7904                 }
7905                 mddev_unlock(mddev);
7906         }
7907 }
7908
7909 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7910 {
7911         sysfs_notify_dirent_safe(rdev->sysfs_state);
7912         wait_event_timeout(rdev->blocked_wait,
7913                            !test_bit(Blocked, &rdev->flags) &&
7914                            !test_bit(BlockedBadBlocks, &rdev->flags),
7915                            msecs_to_jiffies(5000));
7916         rdev_dec_pending(rdev, mddev);
7917 }
7918 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7919
7920 void md_finish_reshape(struct mddev *mddev)
7921 {
7922         /* called be personality module when reshape completes. */
7923         struct md_rdev *rdev;
7924
7925         rdev_for_each(rdev, mddev) {
7926                 if (rdev->data_offset > rdev->new_data_offset)
7927                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7928                 else
7929                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7930                 rdev->data_offset = rdev->new_data_offset;
7931         }
7932 }
7933 EXPORT_SYMBOL(md_finish_reshape);
7934
7935 /* Bad block management.
7936  * We can record which blocks on each device are 'bad' and so just
7937  * fail those blocks, or that stripe, rather than the whole device.
7938  * Entries in the bad-block table are 64bits wide.  This comprises:
7939  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7940  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7941  *  A 'shift' can be set so that larger blocks are tracked and
7942  *  consequently larger devices can be covered.
7943  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7944  *
7945  * Locking of the bad-block table uses a seqlock so md_is_badblock
7946  * might need to retry if it is very unlucky.
7947  * We will sometimes want to check for bad blocks in a bi_end_io function,
7948  * so we use the write_seqlock_irq variant.
7949  *
7950  * When looking for a bad block we specify a range and want to
7951  * know if any block in the range is bad.  So we binary-search
7952  * to the last range that starts at-or-before the given endpoint,
7953  * (or "before the sector after the target range")
7954  * then see if it ends after the given start.
7955  * We return
7956  *  0 if there are no known bad blocks in the range
7957  *  1 if there are known bad block which are all acknowledged
7958  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7959  * plus the start/length of the first bad section we overlap.
7960  */
7961 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7962                    sector_t *first_bad, int *bad_sectors)
7963 {
7964         int hi;
7965         int lo;
7966         u64 *p = bb->page;
7967         int rv;
7968         sector_t target = s + sectors;
7969         unsigned seq;
7970
7971         if (bb->shift > 0) {
7972                 /* round the start down, and the end up */
7973                 s >>= bb->shift;
7974                 target += (1<<bb->shift) - 1;
7975                 target >>= bb->shift;
7976                 sectors = target - s;
7977         }
7978         /* 'target' is now the first block after the bad range */
7979
7980 retry:
7981         seq = read_seqbegin(&bb->lock);
7982         lo = 0;
7983         rv = 0;
7984         hi = bb->count;
7985
7986         /* Binary search between lo and hi for 'target'
7987          * i.e. for the last range that starts before 'target'
7988          */
7989         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7990          * are known not to be the last range before target.
7991          * VARIANT: hi-lo is the number of possible
7992          * ranges, and decreases until it reaches 1
7993          */
7994         while (hi - lo > 1) {
7995                 int mid = (lo + hi) / 2;
7996                 sector_t a = BB_OFFSET(p[mid]);
7997                 if (a < target)
7998                         /* This could still be the one, earlier ranges
7999                          * could not. */
8000                         lo = mid;
8001                 else
8002                         /* This and later ranges are definitely out. */
8003                         hi = mid;
8004         }
8005         /* 'lo' might be the last that started before target, but 'hi' isn't */
8006         if (hi > lo) {
8007                 /* need to check all range that end after 's' to see if
8008                  * any are unacknowledged.
8009                  */
8010                 while (lo >= 0 &&
8011                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8012                         if (BB_OFFSET(p[lo]) < target) {
8013                                 /* starts before the end, and finishes after
8014                                  * the start, so they must overlap
8015                                  */
8016                                 if (rv != -1 && BB_ACK(p[lo]))
8017                                         rv = 1;
8018                                 else
8019                                         rv = -1;
8020                                 *first_bad = BB_OFFSET(p[lo]);
8021                                 *bad_sectors = BB_LEN(p[lo]);
8022                         }
8023                         lo--;
8024                 }
8025         }
8026
8027         if (read_seqretry(&bb->lock, seq))
8028                 goto retry;
8029
8030         return rv;
8031 }
8032 EXPORT_SYMBOL_GPL(md_is_badblock);
8033
8034 /*
8035  * Add a range of bad blocks to the table.
8036  * This might extend the table, or might contract it
8037  * if two adjacent ranges can be merged.
8038  * We binary-search to find the 'insertion' point, then
8039  * decide how best to handle it.
8040  */
8041 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8042                             int acknowledged)
8043 {
8044         u64 *p;
8045         int lo, hi;
8046         int rv = 1;
8047
8048         if (bb->shift < 0)
8049                 /* badblocks are disabled */
8050                 return 0;
8051
8052         if (bb->shift) {
8053                 /* round the start down, and the end up */
8054                 sector_t next = s + sectors;
8055                 s >>= bb->shift;
8056                 next += (1<<bb->shift) - 1;
8057                 next >>= bb->shift;
8058                 sectors = next - s;
8059         }
8060
8061         write_seqlock_irq(&bb->lock);
8062
8063         p = bb->page;
8064         lo = 0;
8065         hi = bb->count;
8066         /* Find the last range that starts at-or-before 's' */
8067         while (hi - lo > 1) {
8068                 int mid = (lo + hi) / 2;
8069                 sector_t a = BB_OFFSET(p[mid]);
8070                 if (a <= s)
8071                         lo = mid;
8072                 else
8073                         hi = mid;
8074         }
8075         if (hi > lo && BB_OFFSET(p[lo]) > s)
8076                 hi = lo;
8077
8078         if (hi > lo) {
8079                 /* we found a range that might merge with the start
8080                  * of our new range
8081                  */
8082                 sector_t a = BB_OFFSET(p[lo]);
8083                 sector_t e = a + BB_LEN(p[lo]);
8084                 int ack = BB_ACK(p[lo]);
8085                 if (e >= s) {
8086                         /* Yes, we can merge with a previous range */
8087                         if (s == a && s + sectors >= e)
8088                                 /* new range covers old */
8089                                 ack = acknowledged;
8090                         else
8091                                 ack = ack && acknowledged;
8092
8093                         if (e < s + sectors)
8094                                 e = s + sectors;
8095                         if (e - a <= BB_MAX_LEN) {
8096                                 p[lo] = BB_MAKE(a, e-a, ack);
8097                                 s = e;
8098                         } else {
8099                                 /* does not all fit in one range,
8100                                  * make p[lo] maximal
8101                                  */
8102                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8103                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8104                                 s = a + BB_MAX_LEN;
8105                         }
8106                         sectors = e - s;
8107                 }
8108         }
8109         if (sectors && hi < bb->count) {
8110                 /* 'hi' points to the first range that starts after 's'.
8111                  * Maybe we can merge with the start of that range */
8112                 sector_t a = BB_OFFSET(p[hi]);
8113                 sector_t e = a + BB_LEN(p[hi]);
8114                 int ack = BB_ACK(p[hi]);
8115                 if (a <= s + sectors) {
8116                         /* merging is possible */
8117                         if (e <= s + sectors) {
8118                                 /* full overlap */
8119                                 e = s + sectors;
8120                                 ack = acknowledged;
8121                         } else
8122                                 ack = ack && acknowledged;
8123
8124                         a = s;
8125                         if (e - a <= BB_MAX_LEN) {
8126                                 p[hi] = BB_MAKE(a, e-a, ack);
8127                                 s = e;
8128                         } else {
8129                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8130                                 s = a + BB_MAX_LEN;
8131                         }
8132                         sectors = e - s;
8133                         lo = hi;
8134                         hi++;
8135                 }
8136         }
8137         if (sectors == 0 && hi < bb->count) {
8138                 /* we might be able to combine lo and hi */
8139                 /* Note: 's' is at the end of 'lo' */
8140                 sector_t a = BB_OFFSET(p[hi]);
8141                 int lolen = BB_LEN(p[lo]);
8142                 int hilen = BB_LEN(p[hi]);
8143                 int newlen = lolen + hilen - (s - a);
8144                 if (s >= a && newlen < BB_MAX_LEN) {
8145                         /* yes, we can combine them */
8146                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8147                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8148                         memmove(p + hi, p + hi + 1,
8149                                 (bb->count - hi - 1) * 8);
8150                         bb->count--;
8151                 }
8152         }
8153         while (sectors) {
8154                 /* didn't merge (it all).
8155                  * Need to add a range just before 'hi' */
8156                 if (bb->count >= MD_MAX_BADBLOCKS) {
8157                         /* No room for more */
8158                         rv = 0;
8159                         break;
8160                 } else {
8161                         int this_sectors = sectors;
8162                         memmove(p + hi + 1, p + hi,
8163                                 (bb->count - hi) * 8);
8164                         bb->count++;
8165
8166                         if (this_sectors > BB_MAX_LEN)
8167                                 this_sectors = BB_MAX_LEN;
8168                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8169                         sectors -= this_sectors;
8170                         s += this_sectors;
8171                 }
8172         }
8173
8174         bb->changed = 1;
8175         if (!acknowledged)
8176                 bb->unacked_exist = 1;
8177         write_sequnlock_irq(&bb->lock);
8178
8179         return rv;
8180 }
8181
8182 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8183                        int is_new)
8184 {
8185         int rv;
8186         if (is_new)
8187                 s += rdev->new_data_offset;
8188         else
8189                 s += rdev->data_offset;
8190         rv = md_set_badblocks(&rdev->badblocks,
8191                               s, sectors, 0);
8192         if (rv) {
8193                 /* Make sure they get written out promptly */
8194                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8195                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8196                 md_wakeup_thread(rdev->mddev->thread);
8197         }
8198         return rv;
8199 }
8200 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8201
8202 /*
8203  * Remove a range of bad blocks from the table.
8204  * This may involve extending the table if we spilt a region,
8205  * but it must not fail.  So if the table becomes full, we just
8206  * drop the remove request.
8207  */
8208 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8209 {
8210         u64 *p;
8211         int lo, hi;
8212         sector_t target = s + sectors;
8213         int rv = 0;
8214
8215         if (bb->shift > 0) {
8216                 /* When clearing we round the start up and the end down.
8217                  * This should not matter as the shift should align with
8218                  * the block size and no rounding should ever be needed.
8219                  * However it is better the think a block is bad when it
8220                  * isn't than to think a block is not bad when it is.
8221                  */
8222                 s += (1<<bb->shift) - 1;
8223                 s >>= bb->shift;
8224                 target >>= bb->shift;
8225                 sectors = target - s;
8226         }
8227
8228         write_seqlock_irq(&bb->lock);
8229
8230         p = bb->page;
8231         lo = 0;
8232         hi = bb->count;
8233         /* Find the last range that starts before 'target' */
8234         while (hi - lo > 1) {
8235                 int mid = (lo + hi) / 2;
8236                 sector_t a = BB_OFFSET(p[mid]);
8237                 if (a < target)
8238                         lo = mid;
8239                 else
8240                         hi = mid;
8241         }
8242         if (hi > lo) {
8243                 /* p[lo] is the last range that could overlap the
8244                  * current range.  Earlier ranges could also overlap,
8245                  * but only this one can overlap the end of the range.
8246                  */
8247                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8248                         /* Partial overlap, leave the tail of this range */
8249                         int ack = BB_ACK(p[lo]);
8250                         sector_t a = BB_OFFSET(p[lo]);
8251                         sector_t end = a + BB_LEN(p[lo]);
8252
8253                         if (a < s) {
8254                                 /* we need to split this range */
8255                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8256                                         rv = 0;
8257                                         goto out;
8258                                 }
8259                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8260                                 bb->count++;
8261                                 p[lo] = BB_MAKE(a, s-a, ack);
8262                                 lo++;
8263                         }
8264                         p[lo] = BB_MAKE(target, end - target, ack);
8265                         /* there is no longer an overlap */
8266                         hi = lo;
8267                         lo--;
8268                 }
8269                 while (lo >= 0 &&
8270                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8271                         /* This range does overlap */
8272                         if (BB_OFFSET(p[lo]) < s) {
8273                                 /* Keep the early parts of this range. */
8274                                 int ack = BB_ACK(p[lo]);
8275                                 sector_t start = BB_OFFSET(p[lo]);
8276                                 p[lo] = BB_MAKE(start, s - start, ack);
8277                                 /* now low doesn't overlap, so.. */
8278                                 break;
8279                         }
8280                         lo--;
8281                 }
8282                 /* 'lo' is strictly before, 'hi' is strictly after,
8283                  * anything between needs to be discarded
8284                  */
8285                 if (hi - lo > 1) {
8286                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8287                         bb->count -= (hi - lo - 1);
8288                 }
8289         }
8290
8291         bb->changed = 1;
8292 out:
8293         write_sequnlock_irq(&bb->lock);
8294         return rv;
8295 }
8296
8297 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8298                          int is_new)
8299 {
8300         if (is_new)
8301                 s += rdev->new_data_offset;
8302         else
8303                 s += rdev->data_offset;
8304         return md_clear_badblocks(&rdev->badblocks,
8305                                   s, sectors);
8306 }
8307 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8308
8309 /*
8310  * Acknowledge all bad blocks in a list.
8311  * This only succeeds if ->changed is clear.  It is used by
8312  * in-kernel metadata updates
8313  */
8314 void md_ack_all_badblocks(struct badblocks *bb)
8315 {
8316         if (bb->page == NULL || bb->changed)
8317                 /* no point even trying */
8318                 return;
8319         write_seqlock_irq(&bb->lock);
8320
8321         if (bb->changed == 0 && bb->unacked_exist) {
8322                 u64 *p = bb->page;
8323                 int i;
8324                 for (i = 0; i < bb->count ; i++) {
8325                         if (!BB_ACK(p[i])) {
8326                                 sector_t start = BB_OFFSET(p[i]);
8327                                 int len = BB_LEN(p[i]);
8328                                 p[i] = BB_MAKE(start, len, 1);
8329                         }
8330                 }
8331                 bb->unacked_exist = 0;
8332         }
8333         write_sequnlock_irq(&bb->lock);
8334 }
8335 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8336
8337 /* sysfs access to bad-blocks list.
8338  * We present two files.
8339  * 'bad-blocks' lists sector numbers and lengths of ranges that
8340  *    are recorded as bad.  The list is truncated to fit within
8341  *    the one-page limit of sysfs.
8342  *    Writing "sector length" to this file adds an acknowledged
8343  *    bad block list.
8344  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8345  *    been acknowledged.  Writing to this file adds bad blocks
8346  *    without acknowledging them.  This is largely for testing.
8347  */
8348
8349 static ssize_t
8350 badblocks_show(struct badblocks *bb, char *page, int unack)
8351 {
8352         size_t len;
8353         int i;
8354         u64 *p = bb->page;
8355         unsigned seq;
8356
8357         if (bb->shift < 0)
8358                 return 0;
8359
8360 retry:
8361         seq = read_seqbegin(&bb->lock);
8362
8363         len = 0;
8364         i = 0;
8365
8366         while (len < PAGE_SIZE && i < bb->count) {
8367                 sector_t s = BB_OFFSET(p[i]);
8368                 unsigned int length = BB_LEN(p[i]);
8369                 int ack = BB_ACK(p[i]);
8370                 i++;
8371
8372                 if (unack && ack)
8373                         continue;
8374
8375                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8376                                 (unsigned long long)s << bb->shift,
8377                                 length << bb->shift);
8378         }
8379         if (unack && len == 0)
8380                 bb->unacked_exist = 0;
8381
8382         if (read_seqretry(&bb->lock, seq))
8383                 goto retry;
8384
8385         return len;
8386 }
8387
8388 #define DO_DEBUG 1
8389
8390 static ssize_t
8391 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8392 {
8393         unsigned long long sector;
8394         int length;
8395         char newline;
8396 #ifdef DO_DEBUG
8397         /* Allow clearing via sysfs *only* for testing/debugging.
8398          * Normally only a successful write may clear a badblock
8399          */
8400         int clear = 0;
8401         if (page[0] == '-') {
8402                 clear = 1;
8403                 page++;
8404         }
8405 #endif /* DO_DEBUG */
8406
8407         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8408         case 3:
8409                 if (newline != '\n')
8410                         return -EINVAL;
8411         case 2:
8412                 if (length <= 0)
8413                         return -EINVAL;
8414                 break;
8415         default:
8416                 return -EINVAL;
8417         }
8418
8419 #ifdef DO_DEBUG
8420         if (clear) {
8421                 md_clear_badblocks(bb, sector, length);
8422                 return len;
8423         }
8424 #endif /* DO_DEBUG */
8425         if (md_set_badblocks(bb, sector, length, !unack))
8426                 return len;
8427         else
8428                 return -ENOSPC;
8429 }
8430
8431 static int md_notify_reboot(struct notifier_block *this,
8432                             unsigned long code, void *x)
8433 {
8434         struct list_head *tmp;
8435         struct mddev *mddev;
8436         int need_delay = 0;
8437
8438         for_each_mddev(mddev, tmp) {
8439                 if (mddev_trylock(mddev)) {
8440                         if (mddev->pers)
8441                                 __md_stop_writes(mddev);
8442                         mddev->safemode = 2;
8443                         mddev_unlock(mddev);
8444                 }
8445                 need_delay = 1;
8446         }
8447         /*
8448          * certain more exotic SCSI devices are known to be
8449          * volatile wrt too early system reboots. While the
8450          * right place to handle this issue is the given
8451          * driver, we do want to have a safe RAID driver ...
8452          */
8453         if (need_delay)
8454                 mdelay(1000*1);
8455
8456         return NOTIFY_DONE;
8457 }
8458
8459 static struct notifier_block md_notifier = {
8460         .notifier_call  = md_notify_reboot,
8461         .next           = NULL,
8462         .priority       = INT_MAX, /* before any real devices */
8463 };
8464
8465 static void md_geninit(void)
8466 {
8467         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8468
8469         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8470 }
8471
8472 static int __init md_init(void)
8473 {
8474         int ret = -ENOMEM;
8475
8476         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8477         if (!md_wq)
8478                 goto err_wq;
8479
8480         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8481         if (!md_misc_wq)
8482                 goto err_misc_wq;
8483
8484         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8485                 goto err_md;
8486
8487         if ((ret = register_blkdev(0, "mdp")) < 0)
8488                 goto err_mdp;
8489         mdp_major = ret;
8490
8491         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8492                             md_probe, NULL, NULL);
8493         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8494                             md_probe, NULL, NULL);
8495
8496         register_reboot_notifier(&md_notifier);
8497         raid_table_header = register_sysctl_table(raid_root_table);
8498
8499         md_geninit();
8500         return 0;
8501
8502 err_mdp:
8503         unregister_blkdev(MD_MAJOR, "md");
8504 err_md:
8505         destroy_workqueue(md_misc_wq);
8506 err_misc_wq:
8507         destroy_workqueue(md_wq);
8508 err_wq:
8509         return ret;
8510 }
8511
8512 #ifndef MODULE
8513
8514 /*
8515  * Searches all registered partitions for autorun RAID arrays
8516  * at boot time.
8517  */
8518
8519 static LIST_HEAD(all_detected_devices);
8520 struct detected_devices_node {
8521         struct list_head list;
8522         dev_t dev;
8523 };
8524
8525 void md_autodetect_dev(dev_t dev)
8526 {
8527         struct detected_devices_node *node_detected_dev;
8528
8529         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8530         if (node_detected_dev) {
8531                 node_detected_dev->dev = dev;
8532                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8533         } else {
8534                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8535                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8536         }
8537 }
8538
8539
8540 static void autostart_arrays(int part)
8541 {
8542         struct md_rdev *rdev;
8543         struct detected_devices_node *node_detected_dev;
8544         dev_t dev;
8545         int i_scanned, i_passed;
8546
8547         i_scanned = 0;
8548         i_passed = 0;
8549
8550         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8551
8552         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8553                 i_scanned++;
8554                 node_detected_dev = list_entry(all_detected_devices.next,
8555                                         struct detected_devices_node, list);
8556                 list_del(&node_detected_dev->list);
8557                 dev = node_detected_dev->dev;
8558                 kfree(node_detected_dev);
8559                 rdev = md_import_device(dev,0, 90);
8560                 if (IS_ERR(rdev))
8561                         continue;
8562
8563                 if (test_bit(Faulty, &rdev->flags)) {
8564                         MD_BUG();
8565                         continue;
8566                 }
8567                 set_bit(AutoDetected, &rdev->flags);
8568                 list_add(&rdev->same_set, &pending_raid_disks);
8569                 i_passed++;
8570         }
8571
8572         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8573                                                 i_scanned, i_passed);
8574
8575         autorun_devices(part);
8576 }
8577
8578 #endif /* !MODULE */
8579
8580 static __exit void md_exit(void)
8581 {
8582         struct mddev *mddev;
8583         struct list_head *tmp;
8584
8585         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8586         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8587
8588         unregister_blkdev(MD_MAJOR,"md");
8589         unregister_blkdev(mdp_major, "mdp");
8590         unregister_reboot_notifier(&md_notifier);
8591         unregister_sysctl_table(raid_table_header);
8592         remove_proc_entry("mdstat", NULL);
8593         for_each_mddev(mddev, tmp) {
8594                 export_array(mddev);
8595                 mddev->hold_active = 0;
8596         }
8597         destroy_workqueue(md_misc_wq);
8598         destroy_workqueue(md_wq);
8599 }
8600
8601 subsys_initcall(md_init);
8602 module_exit(md_exit)
8603
8604 static int get_ro(char *buffer, struct kernel_param *kp)
8605 {
8606         return sprintf(buffer, "%d", start_readonly);
8607 }
8608 static int set_ro(const char *val, struct kernel_param *kp)
8609 {
8610         char *e;
8611         int num = simple_strtoul(val, &e, 10);
8612         if (*val && (*e == '\0' || *e == '\n')) {
8613                 start_readonly = num;
8614                 return 0;
8615         }
8616         return -EINVAL;
8617 }
8618
8619 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8620 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8621
8622 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8623
8624 EXPORT_SYMBOL(register_md_personality);
8625 EXPORT_SYMBOL(unregister_md_personality);
8626 EXPORT_SYMBOL(md_error);
8627 EXPORT_SYMBOL(md_done_sync);
8628 EXPORT_SYMBOL(md_write_start);
8629 EXPORT_SYMBOL(md_write_end);
8630 EXPORT_SYMBOL(md_register_thread);
8631 EXPORT_SYMBOL(md_unregister_thread);
8632 EXPORT_SYMBOL(md_wakeup_thread);
8633 EXPORT_SYMBOL(md_check_recovery);
8634 MODULE_LICENSE("GPL");
8635 MODULE_DESCRIPTION("MD RAID framework");
8636 MODULE_ALIAS("md");
8637 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);