[PATCH] md: make /proc/mdstat pollable
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46
47 #include <linux/init.h>
48
49 #include <linux/file.h>
50
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54
55 #include <asm/unaligned.h>
56
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65
66
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70
71 static mdk_personality_t *pers[MAX_PERSONALITY];
72 static DEFINE_SPINLOCK(pers_lock);
73
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88
89 static struct ctl_table_header *raid_table_header;
90
91 static ctl_table raid_table[] = {
92         {
93                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
94                 .procname       = "speed_limit_min",
95                 .data           = &sysctl_speed_limit_min,
96                 .maxlen         = sizeof(int),
97                 .mode           = 0644,
98                 .proc_handler   = &proc_dointvec,
99         },
100         {
101                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
102                 .procname       = "speed_limit_max",
103                 .data           = &sysctl_speed_limit_max,
104                 .maxlen         = sizeof(int),
105                 .mode           = 0644,
106                 .proc_handler   = &proc_dointvec,
107         },
108         { .ctl_name = 0 }
109 };
110
111 static ctl_table raid_dir_table[] = {
112         {
113                 .ctl_name       = DEV_RAID,
114                 .procname       = "raid",
115                 .maxlen         = 0,
116                 .mode           = 0555,
117                 .child          = raid_table,
118         },
119         { .ctl_name = 0 }
120 };
121
122 static ctl_table raid_root_table[] = {
123         {
124                 .ctl_name       = CTL_DEV,
125                 .procname       = "dev",
126                 .maxlen         = 0,
127                 .mode           = 0555,
128                 .child          = raid_dir_table,
129         },
130         { .ctl_name = 0 }
131 };
132
133 static struct block_device_operations md_fops;
134
135 static int start_readonly;
136
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 void md_new_event(mddev_t *mddev)
150 {
151         atomic_inc(&md_event_count);
152         wake_up(&md_event_waiters);
153 }
154
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161
162
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)                                        \
171                                                                         \
172         for (({ spin_lock(&all_mddevs_lock);                            \
173                 tmp = all_mddevs.next;                                  \
174                 mddev = NULL;});                                        \
175              ({ if (tmp != &all_mddevs)                                 \
176                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177                 spin_unlock(&all_mddevs_lock);                          \
178                 if (mddev) mddev_put(mddev);                            \
179                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
180                 tmp != &all_mddevs;});                                  \
181              ({ spin_lock(&all_mddevs_lock);                            \
182                 tmp = tmp->next;})                                      \
183                 )
184
185
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188         bio_io_error(bio, bio->bi_size);
189         return 0;
190 }
191
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194         atomic_inc(&mddev->active);
195         return mddev;
196 }
197
198 static void mddev_put(mddev_t *mddev)
199 {
200         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201                 return;
202         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203                 list_del(&mddev->all_mddevs);
204                 blk_put_queue(mddev->queue);
205                 kobject_unregister(&mddev->kobj);
206         }
207         spin_unlock(&all_mddevs_lock);
208 }
209
210 static mddev_t * mddev_find(dev_t unit)
211 {
212         mddev_t *mddev, *new = NULL;
213
214  retry:
215         spin_lock(&all_mddevs_lock);
216         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217                 if (mddev->unit == unit) {
218                         mddev_get(mddev);
219                         spin_unlock(&all_mddevs_lock);
220                         kfree(new);
221                         return mddev;
222                 }
223
224         if (new) {
225                 list_add(&new->all_mddevs, &all_mddevs);
226                 spin_unlock(&all_mddevs_lock);
227                 return new;
228         }
229         spin_unlock(&all_mddevs_lock);
230
231         new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
232         if (!new)
233                 return NULL;
234
235         memset(new, 0, sizeof(*new));
236
237         new->unit = unit;
238         if (MAJOR(unit) == MD_MAJOR)
239                 new->md_minor = MINOR(unit);
240         else
241                 new->md_minor = MINOR(unit) >> MdpMinorShift;
242
243         init_MUTEX(&new->reconfig_sem);
244         INIT_LIST_HEAD(&new->disks);
245         INIT_LIST_HEAD(&new->all_mddevs);
246         init_timer(&new->safemode_timer);
247         atomic_set(&new->active, 1);
248         spin_lock_init(&new->write_lock);
249         init_waitqueue_head(&new->sb_wait);
250
251         new->queue = blk_alloc_queue(GFP_KERNEL);
252         if (!new->queue) {
253                 kfree(new);
254                 return NULL;
255         }
256
257         blk_queue_make_request(new->queue, md_fail_request);
258
259         goto retry;
260 }
261
262 static inline int mddev_lock(mddev_t * mddev)
263 {
264         return down_interruptible(&mddev->reconfig_sem);
265 }
266
267 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
268 {
269         down(&mddev->reconfig_sem);
270 }
271
272 static inline int mddev_trylock(mddev_t * mddev)
273 {
274         return down_trylock(&mddev->reconfig_sem);
275 }
276
277 static inline void mddev_unlock(mddev_t * mddev)
278 {
279         up(&mddev->reconfig_sem);
280
281         md_wakeup_thread(mddev->thread);
282 }
283
284 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
285 {
286         mdk_rdev_t * rdev;
287         struct list_head *tmp;
288
289         ITERATE_RDEV(mddev,rdev,tmp) {
290                 if (rdev->desc_nr == nr)
291                         return rdev;
292         }
293         return NULL;
294 }
295
296 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
297 {
298         struct list_head *tmp;
299         mdk_rdev_t *rdev;
300
301         ITERATE_RDEV(mddev,rdev,tmp) {
302                 if (rdev->bdev->bd_dev == dev)
303                         return rdev;
304         }
305         return NULL;
306 }
307
308 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
309 {
310         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
311         return MD_NEW_SIZE_BLOCKS(size);
312 }
313
314 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
315 {
316         sector_t size;
317
318         size = rdev->sb_offset;
319
320         if (chunk_size)
321                 size &= ~((sector_t)chunk_size/1024 - 1);
322         return size;
323 }
324
325 static int alloc_disk_sb(mdk_rdev_t * rdev)
326 {
327         if (rdev->sb_page)
328                 MD_BUG();
329
330         rdev->sb_page = alloc_page(GFP_KERNEL);
331         if (!rdev->sb_page) {
332                 printk(KERN_ALERT "md: out of memory.\n");
333                 return -EINVAL;
334         }
335
336         return 0;
337 }
338
339 static void free_disk_sb(mdk_rdev_t * rdev)
340 {
341         if (rdev->sb_page) {
342                 page_cache_release(rdev->sb_page);
343                 rdev->sb_loaded = 0;
344                 rdev->sb_page = NULL;
345                 rdev->sb_offset = 0;
346                 rdev->size = 0;
347         }
348 }
349
350
351 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
352 {
353         mdk_rdev_t *rdev = bio->bi_private;
354         mddev_t *mddev = rdev->mddev;
355         if (bio->bi_size)
356                 return 1;
357
358         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
359                 md_error(mddev, rdev);
360
361         if (atomic_dec_and_test(&mddev->pending_writes))
362                 wake_up(&mddev->sb_wait);
363         bio_put(bio);
364         return 0;
365 }
366
367 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
368 {
369         struct bio *bio2 = bio->bi_private;
370         mdk_rdev_t *rdev = bio2->bi_private;
371         mddev_t *mddev = rdev->mddev;
372         if (bio->bi_size)
373                 return 1;
374
375         if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
376             error == -EOPNOTSUPP) {
377                 unsigned long flags;
378                 /* barriers don't appear to be supported :-( */
379                 set_bit(BarriersNotsupp, &rdev->flags);
380                 mddev->barriers_work = 0;
381                 spin_lock_irqsave(&mddev->write_lock, flags);
382                 bio2->bi_next = mddev->biolist;
383                 mddev->biolist = bio2;
384                 spin_unlock_irqrestore(&mddev->write_lock, flags);
385                 wake_up(&mddev->sb_wait);
386                 bio_put(bio);
387                 return 0;
388         }
389         bio_put(bio2);
390         bio->bi_private = rdev;
391         return super_written(bio, bytes_done, error);
392 }
393
394 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
395                    sector_t sector, int size, struct page *page)
396 {
397         /* write first size bytes of page to sector of rdev
398          * Increment mddev->pending_writes before returning
399          * and decrement it on completion, waking up sb_wait
400          * if zero is reached.
401          * If an error occurred, call md_error
402          *
403          * As we might need to resubmit the request if BIO_RW_BARRIER
404          * causes ENOTSUPP, we allocate a spare bio...
405          */
406         struct bio *bio = bio_alloc(GFP_NOIO, 1);
407         int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
408
409         bio->bi_bdev = rdev->bdev;
410         bio->bi_sector = sector;
411         bio_add_page(bio, page, size, 0);
412         bio->bi_private = rdev;
413         bio->bi_end_io = super_written;
414         bio->bi_rw = rw;
415
416         atomic_inc(&mddev->pending_writes);
417         if (!test_bit(BarriersNotsupp, &rdev->flags)) {
418                 struct bio *rbio;
419                 rw |= (1<<BIO_RW_BARRIER);
420                 rbio = bio_clone(bio, GFP_NOIO);
421                 rbio->bi_private = bio;
422                 rbio->bi_end_io = super_written_barrier;
423                 submit_bio(rw, rbio);
424         } else
425                 submit_bio(rw, bio);
426 }
427
428 void md_super_wait(mddev_t *mddev)
429 {
430         /* wait for all superblock writes that were scheduled to complete.
431          * if any had to be retried (due to BARRIER problems), retry them
432          */
433         DEFINE_WAIT(wq);
434         for(;;) {
435                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
436                 if (atomic_read(&mddev->pending_writes)==0)
437                         break;
438                 while (mddev->biolist) {
439                         struct bio *bio;
440                         spin_lock_irq(&mddev->write_lock);
441                         bio = mddev->biolist;
442                         mddev->biolist = bio->bi_next ;
443                         bio->bi_next = NULL;
444                         spin_unlock_irq(&mddev->write_lock);
445                         submit_bio(bio->bi_rw, bio);
446                 }
447                 schedule();
448         }
449         finish_wait(&mddev->sb_wait, &wq);
450 }
451
452 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
453 {
454         if (bio->bi_size)
455                 return 1;
456
457         complete((struct completion*)bio->bi_private);
458         return 0;
459 }
460
461 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
462                    struct page *page, int rw)
463 {
464         struct bio *bio = bio_alloc(GFP_NOIO, 1);
465         struct completion event;
466         int ret;
467
468         rw |= (1 << BIO_RW_SYNC);
469
470         bio->bi_bdev = bdev;
471         bio->bi_sector = sector;
472         bio_add_page(bio, page, size, 0);
473         init_completion(&event);
474         bio->bi_private = &event;
475         bio->bi_end_io = bi_complete;
476         submit_bio(rw, bio);
477         wait_for_completion(&event);
478
479         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
480         bio_put(bio);
481         return ret;
482 }
483 EXPORT_SYMBOL(sync_page_io);
484
485 static int read_disk_sb(mdk_rdev_t * rdev, int size)
486 {
487         char b[BDEVNAME_SIZE];
488         if (!rdev->sb_page) {
489                 MD_BUG();
490                 return -EINVAL;
491         }
492         if (rdev->sb_loaded)
493                 return 0;
494
495
496         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
497                 goto fail;
498         rdev->sb_loaded = 1;
499         return 0;
500
501 fail:
502         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
503                 bdevname(rdev->bdev,b));
504         return -EINVAL;
505 }
506
507 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
508 {
509         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
510                 (sb1->set_uuid1 == sb2->set_uuid1) &&
511                 (sb1->set_uuid2 == sb2->set_uuid2) &&
512                 (sb1->set_uuid3 == sb2->set_uuid3))
513
514                 return 1;
515
516         return 0;
517 }
518
519
520 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
521 {
522         int ret;
523         mdp_super_t *tmp1, *tmp2;
524
525         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
526         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
527
528         if (!tmp1 || !tmp2) {
529                 ret = 0;
530                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
531                 goto abort;
532         }
533
534         *tmp1 = *sb1;
535         *tmp2 = *sb2;
536
537         /*
538          * nr_disks is not constant
539          */
540         tmp1->nr_disks = 0;
541         tmp2->nr_disks = 0;
542
543         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
544                 ret = 0;
545         else
546                 ret = 1;
547
548 abort:
549         kfree(tmp1);
550         kfree(tmp2);
551         return ret;
552 }
553
554 static unsigned int calc_sb_csum(mdp_super_t * sb)
555 {
556         unsigned int disk_csum, csum;
557
558         disk_csum = sb->sb_csum;
559         sb->sb_csum = 0;
560         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
561         sb->sb_csum = disk_csum;
562         return csum;
563 }
564
565
566 /*
567  * Handle superblock details.
568  * We want to be able to handle multiple superblock formats
569  * so we have a common interface to them all, and an array of
570  * different handlers.
571  * We rely on user-space to write the initial superblock, and support
572  * reading and updating of superblocks.
573  * Interface methods are:
574  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
575  *      loads and validates a superblock on dev.
576  *      if refdev != NULL, compare superblocks on both devices
577  *    Return:
578  *      0 - dev has a superblock that is compatible with refdev
579  *      1 - dev has a superblock that is compatible and newer than refdev
580  *          so dev should be used as the refdev in future
581  *     -EINVAL superblock incompatible or invalid
582  *     -othererror e.g. -EIO
583  *
584  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
585  *      Verify that dev is acceptable into mddev.
586  *       The first time, mddev->raid_disks will be 0, and data from
587  *       dev should be merged in.  Subsequent calls check that dev
588  *       is new enough.  Return 0 or -EINVAL
589  *
590  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
591  *     Update the superblock for rdev with data in mddev
592  *     This does not write to disc.
593  *
594  */
595
596 struct super_type  {
597         char            *name;
598         struct module   *owner;
599         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
600         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
601         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
602 };
603
604 /*
605  * load_super for 0.90.0 
606  */
607 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
608 {
609         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
610         mdp_super_t *sb;
611         int ret;
612         sector_t sb_offset;
613
614         /*
615          * Calculate the position of the superblock,
616          * it's at the end of the disk.
617          *
618          * It also happens to be a multiple of 4Kb.
619          */
620         sb_offset = calc_dev_sboffset(rdev->bdev);
621         rdev->sb_offset = sb_offset;
622
623         ret = read_disk_sb(rdev, MD_SB_BYTES);
624         if (ret) return ret;
625
626         ret = -EINVAL;
627
628         bdevname(rdev->bdev, b);
629         sb = (mdp_super_t*)page_address(rdev->sb_page);
630
631         if (sb->md_magic != MD_SB_MAGIC) {
632                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
633                        b);
634                 goto abort;
635         }
636
637         if (sb->major_version != 0 ||
638             sb->minor_version != 90) {
639                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
640                         sb->major_version, sb->minor_version,
641                         b);
642                 goto abort;
643         }
644
645         if (sb->raid_disks <= 0)
646                 goto abort;
647
648         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
649                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
650                         b);
651                 goto abort;
652         }
653
654         rdev->preferred_minor = sb->md_minor;
655         rdev->data_offset = 0;
656         rdev->sb_size = MD_SB_BYTES;
657
658         if (sb->level == LEVEL_MULTIPATH)
659                 rdev->desc_nr = -1;
660         else
661                 rdev->desc_nr = sb->this_disk.number;
662
663         if (refdev == 0)
664                 ret = 1;
665         else {
666                 __u64 ev1, ev2;
667                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
668                 if (!uuid_equal(refsb, sb)) {
669                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
670                                 b, bdevname(refdev->bdev,b2));
671                         goto abort;
672                 }
673                 if (!sb_equal(refsb, sb)) {
674                         printk(KERN_WARNING "md: %s has same UUID"
675                                " but different superblock to %s\n",
676                                b, bdevname(refdev->bdev, b2));
677                         goto abort;
678                 }
679                 ev1 = md_event(sb);
680                 ev2 = md_event(refsb);
681                 if (ev1 > ev2)
682                         ret = 1;
683                 else 
684                         ret = 0;
685         }
686         rdev->size = calc_dev_size(rdev, sb->chunk_size);
687
688  abort:
689         return ret;
690 }
691
692 /*
693  * validate_super for 0.90.0
694  */
695 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
696 {
697         mdp_disk_t *desc;
698         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
699
700         rdev->raid_disk = -1;
701         rdev->flags = 0;
702         if (mddev->raid_disks == 0) {
703                 mddev->major_version = 0;
704                 mddev->minor_version = sb->minor_version;
705                 mddev->patch_version = sb->patch_version;
706                 mddev->persistent = ! sb->not_persistent;
707                 mddev->chunk_size = sb->chunk_size;
708                 mddev->ctime = sb->ctime;
709                 mddev->utime = sb->utime;
710                 mddev->level = sb->level;
711                 mddev->layout = sb->layout;
712                 mddev->raid_disks = sb->raid_disks;
713                 mddev->size = sb->size;
714                 mddev->events = md_event(sb);
715                 mddev->bitmap_offset = 0;
716                 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
717
718                 if (sb->state & (1<<MD_SB_CLEAN))
719                         mddev->recovery_cp = MaxSector;
720                 else {
721                         if (sb->events_hi == sb->cp_events_hi && 
722                                 sb->events_lo == sb->cp_events_lo) {
723                                 mddev->recovery_cp = sb->recovery_cp;
724                         } else
725                                 mddev->recovery_cp = 0;
726                 }
727
728                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
729                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
730                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
731                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
732
733                 mddev->max_disks = MD_SB_DISKS;
734
735                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
736                     mddev->bitmap_file == NULL) {
737                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
738                             && mddev->level != 10) {
739                                 /* FIXME use a better test */
740                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
741                                 return -EINVAL;
742                         }
743                         mddev->bitmap_offset = mddev->default_bitmap_offset;
744                 }
745
746         } else if (mddev->pers == NULL) {
747                 /* Insist on good event counter while assembling */
748                 __u64 ev1 = md_event(sb);
749                 ++ev1;
750                 if (ev1 < mddev->events) 
751                         return -EINVAL;
752         } else if (mddev->bitmap) {
753                 /* if adding to array with a bitmap, then we can accept an
754                  * older device ... but not too old.
755                  */
756                 __u64 ev1 = md_event(sb);
757                 if (ev1 < mddev->bitmap->events_cleared)
758                         return 0;
759         } else /* just a hot-add of a new device, leave raid_disk at -1 */
760                 return 0;
761
762         if (mddev->level != LEVEL_MULTIPATH) {
763                 desc = sb->disks + rdev->desc_nr;
764
765                 if (desc->state & (1<<MD_DISK_FAULTY))
766                         set_bit(Faulty, &rdev->flags);
767                 else if (desc->state & (1<<MD_DISK_SYNC) &&
768                          desc->raid_disk < mddev->raid_disks) {
769                         set_bit(In_sync, &rdev->flags);
770                         rdev->raid_disk = desc->raid_disk;
771                 }
772                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
773                         set_bit(WriteMostly, &rdev->flags);
774         } else /* MULTIPATH are always insync */
775                 set_bit(In_sync, &rdev->flags);
776         return 0;
777 }
778
779 /*
780  * sync_super for 0.90.0
781  */
782 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
783 {
784         mdp_super_t *sb;
785         struct list_head *tmp;
786         mdk_rdev_t *rdev2;
787         int next_spare = mddev->raid_disks;
788
789
790         /* make rdev->sb match mddev data..
791          *
792          * 1/ zero out disks
793          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
794          * 3/ any empty disks < next_spare become removed
795          *
796          * disks[0] gets initialised to REMOVED because
797          * we cannot be sure from other fields if it has
798          * been initialised or not.
799          */
800         int i;
801         int active=0, working=0,failed=0,spare=0,nr_disks=0;
802
803         rdev->sb_size = MD_SB_BYTES;
804
805         sb = (mdp_super_t*)page_address(rdev->sb_page);
806
807         memset(sb, 0, sizeof(*sb));
808
809         sb->md_magic = MD_SB_MAGIC;
810         sb->major_version = mddev->major_version;
811         sb->minor_version = mddev->minor_version;
812         sb->patch_version = mddev->patch_version;
813         sb->gvalid_words  = 0; /* ignored */
814         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
815         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
816         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
817         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
818
819         sb->ctime = mddev->ctime;
820         sb->level = mddev->level;
821         sb->size  = mddev->size;
822         sb->raid_disks = mddev->raid_disks;
823         sb->md_minor = mddev->md_minor;
824         sb->not_persistent = !mddev->persistent;
825         sb->utime = mddev->utime;
826         sb->state = 0;
827         sb->events_hi = (mddev->events>>32);
828         sb->events_lo = (u32)mddev->events;
829
830         if (mddev->in_sync)
831         {
832                 sb->recovery_cp = mddev->recovery_cp;
833                 sb->cp_events_hi = (mddev->events>>32);
834                 sb->cp_events_lo = (u32)mddev->events;
835                 if (mddev->recovery_cp == MaxSector)
836                         sb->state = (1<< MD_SB_CLEAN);
837         } else
838                 sb->recovery_cp = 0;
839
840         sb->layout = mddev->layout;
841         sb->chunk_size = mddev->chunk_size;
842
843         if (mddev->bitmap && mddev->bitmap_file == NULL)
844                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
845
846         sb->disks[0].state = (1<<MD_DISK_REMOVED);
847         ITERATE_RDEV(mddev,rdev2,tmp) {
848                 mdp_disk_t *d;
849                 int desc_nr;
850                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
851                     && !test_bit(Faulty, &rdev2->flags))
852                         desc_nr = rdev2->raid_disk;
853                 else
854                         desc_nr = next_spare++;
855                 rdev2->desc_nr = desc_nr;
856                 d = &sb->disks[rdev2->desc_nr];
857                 nr_disks++;
858                 d->number = rdev2->desc_nr;
859                 d->major = MAJOR(rdev2->bdev->bd_dev);
860                 d->minor = MINOR(rdev2->bdev->bd_dev);
861                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
862                     && !test_bit(Faulty, &rdev2->flags))
863                         d->raid_disk = rdev2->raid_disk;
864                 else
865                         d->raid_disk = rdev2->desc_nr; /* compatibility */
866                 if (test_bit(Faulty, &rdev2->flags)) {
867                         d->state = (1<<MD_DISK_FAULTY);
868                         failed++;
869                 } else if (test_bit(In_sync, &rdev2->flags)) {
870                         d->state = (1<<MD_DISK_ACTIVE);
871                         d->state |= (1<<MD_DISK_SYNC);
872                         active++;
873                         working++;
874                 } else {
875                         d->state = 0;
876                         spare++;
877                         working++;
878                 }
879                 if (test_bit(WriteMostly, &rdev2->flags))
880                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
881         }
882         /* now set the "removed" and "faulty" bits on any missing devices */
883         for (i=0 ; i < mddev->raid_disks ; i++) {
884                 mdp_disk_t *d = &sb->disks[i];
885                 if (d->state == 0 && d->number == 0) {
886                         d->number = i;
887                         d->raid_disk = i;
888                         d->state = (1<<MD_DISK_REMOVED);
889                         d->state |= (1<<MD_DISK_FAULTY);
890                         failed++;
891                 }
892         }
893         sb->nr_disks = nr_disks;
894         sb->active_disks = active;
895         sb->working_disks = working;
896         sb->failed_disks = failed;
897         sb->spare_disks = spare;
898
899         sb->this_disk = sb->disks[rdev->desc_nr];
900         sb->sb_csum = calc_sb_csum(sb);
901 }
902
903 /*
904  * version 1 superblock
905  */
906
907 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
908 {
909         unsigned int disk_csum, csum;
910         unsigned long long newcsum;
911         int size = 256 + le32_to_cpu(sb->max_dev)*2;
912         unsigned int *isuper = (unsigned int*)sb;
913         int i;
914
915         disk_csum = sb->sb_csum;
916         sb->sb_csum = 0;
917         newcsum = 0;
918         for (i=0; size>=4; size -= 4 )
919                 newcsum += le32_to_cpu(*isuper++);
920
921         if (size == 2)
922                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
923
924         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
925         sb->sb_csum = disk_csum;
926         return cpu_to_le32(csum);
927 }
928
929 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
930 {
931         struct mdp_superblock_1 *sb;
932         int ret;
933         sector_t sb_offset;
934         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
935         int bmask;
936
937         /*
938          * Calculate the position of the superblock.
939          * It is always aligned to a 4K boundary and
940          * depeding on minor_version, it can be:
941          * 0: At least 8K, but less than 12K, from end of device
942          * 1: At start of device
943          * 2: 4K from start of device.
944          */
945         switch(minor_version) {
946         case 0:
947                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
948                 sb_offset -= 8*2;
949                 sb_offset &= ~(sector_t)(4*2-1);
950                 /* convert from sectors to K */
951                 sb_offset /= 2;
952                 break;
953         case 1:
954                 sb_offset = 0;
955                 break;
956         case 2:
957                 sb_offset = 4;
958                 break;
959         default:
960                 return -EINVAL;
961         }
962         rdev->sb_offset = sb_offset;
963
964         /* superblock is rarely larger than 1K, but it can be larger,
965          * and it is safe to read 4k, so we do that
966          */
967         ret = read_disk_sb(rdev, 4096);
968         if (ret) return ret;
969
970
971         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
972
973         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
974             sb->major_version != cpu_to_le32(1) ||
975             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
976             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
977             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
978                 return -EINVAL;
979
980         if (calc_sb_1_csum(sb) != sb->sb_csum) {
981                 printk("md: invalid superblock checksum on %s\n",
982                         bdevname(rdev->bdev,b));
983                 return -EINVAL;
984         }
985         if (le64_to_cpu(sb->data_size) < 10) {
986                 printk("md: data_size too small on %s\n",
987                        bdevname(rdev->bdev,b));
988                 return -EINVAL;
989         }
990         rdev->preferred_minor = 0xffff;
991         rdev->data_offset = le64_to_cpu(sb->data_offset);
992
993         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
994         bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
995         if (rdev->sb_size & bmask)
996                 rdev-> sb_size = (rdev->sb_size | bmask)+1;
997
998         if (refdev == 0)
999                 return 1;
1000         else {
1001                 __u64 ev1, ev2;
1002                 struct mdp_superblock_1 *refsb = 
1003                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
1004
1005                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1006                     sb->level != refsb->level ||
1007                     sb->layout != refsb->layout ||
1008                     sb->chunksize != refsb->chunksize) {
1009                         printk(KERN_WARNING "md: %s has strangely different"
1010                                 " superblock to %s\n",
1011                                 bdevname(rdev->bdev,b),
1012                                 bdevname(refdev->bdev,b2));
1013                         return -EINVAL;
1014                 }
1015                 ev1 = le64_to_cpu(sb->events);
1016                 ev2 = le64_to_cpu(refsb->events);
1017
1018                 if (ev1 > ev2)
1019                         return 1;
1020         }
1021         if (minor_version) 
1022                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1023         else
1024                 rdev->size = rdev->sb_offset;
1025         if (rdev->size < le64_to_cpu(sb->data_size)/2)
1026                 return -EINVAL;
1027         rdev->size = le64_to_cpu(sb->data_size)/2;
1028         if (le32_to_cpu(sb->chunksize))
1029                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1030         return 0;
1031 }
1032
1033 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1034 {
1035         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1036
1037         rdev->raid_disk = -1;
1038         rdev->flags = 0;
1039         if (mddev->raid_disks == 0) {
1040                 mddev->major_version = 1;
1041                 mddev->patch_version = 0;
1042                 mddev->persistent = 1;
1043                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1044                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1045                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1046                 mddev->level = le32_to_cpu(sb->level);
1047                 mddev->layout = le32_to_cpu(sb->layout);
1048                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1049                 mddev->size = le64_to_cpu(sb->size)/2;
1050                 mddev->events = le64_to_cpu(sb->events);
1051                 mddev->bitmap_offset = 0;
1052                 mddev->default_bitmap_offset = 1024;
1053                 
1054                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1055                 memcpy(mddev->uuid, sb->set_uuid, 16);
1056
1057                 mddev->max_disks =  (4096-256)/2;
1058
1059                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1060                     mddev->bitmap_file == NULL ) {
1061                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1062                             && mddev->level != 10) {
1063                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1064                                 return -EINVAL;
1065                         }
1066                         mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1067                 }
1068         } else if (mddev->pers == NULL) {
1069                 /* Insist of good event counter while assembling */
1070                 __u64 ev1 = le64_to_cpu(sb->events);
1071                 ++ev1;
1072                 if (ev1 < mddev->events)
1073                         return -EINVAL;
1074         } else if (mddev->bitmap) {
1075                 /* If adding to array with a bitmap, then we can accept an
1076                  * older device, but not too old.
1077                  */
1078                 __u64 ev1 = le64_to_cpu(sb->events);
1079                 if (ev1 < mddev->bitmap->events_cleared)
1080                         return 0;
1081         } else /* just a hot-add of a new device, leave raid_disk at -1 */
1082                 return 0;
1083
1084         if (mddev->level != LEVEL_MULTIPATH) {
1085                 int role;
1086                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1087                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1088                 switch(role) {
1089                 case 0xffff: /* spare */
1090                         break;
1091                 case 0xfffe: /* faulty */
1092                         set_bit(Faulty, &rdev->flags);
1093                         break;
1094                 default:
1095                         set_bit(In_sync, &rdev->flags);
1096                         rdev->raid_disk = role;
1097                         break;
1098                 }
1099                 if (sb->devflags & WriteMostly1)
1100                         set_bit(WriteMostly, &rdev->flags);
1101         } else /* MULTIPATH are always insync */
1102                 set_bit(In_sync, &rdev->flags);
1103
1104         return 0;
1105 }
1106
1107 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1108 {
1109         struct mdp_superblock_1 *sb;
1110         struct list_head *tmp;
1111         mdk_rdev_t *rdev2;
1112         int max_dev, i;
1113         /* make rdev->sb match mddev and rdev data. */
1114
1115         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1116
1117         sb->feature_map = 0;
1118         sb->pad0 = 0;
1119         memset(sb->pad1, 0, sizeof(sb->pad1));
1120         memset(sb->pad2, 0, sizeof(sb->pad2));
1121         memset(sb->pad3, 0, sizeof(sb->pad3));
1122
1123         sb->utime = cpu_to_le64((__u64)mddev->utime);
1124         sb->events = cpu_to_le64(mddev->events);
1125         if (mddev->in_sync)
1126                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1127         else
1128                 sb->resync_offset = cpu_to_le64(0);
1129
1130         if (mddev->bitmap && mddev->bitmap_file == NULL) {
1131                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1132                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1133         }
1134
1135         max_dev = 0;
1136         ITERATE_RDEV(mddev,rdev2,tmp)
1137                 if (rdev2->desc_nr+1 > max_dev)
1138                         max_dev = rdev2->desc_nr+1;
1139         
1140         sb->max_dev = cpu_to_le32(max_dev);
1141         for (i=0; i<max_dev;i++)
1142                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1143         
1144         ITERATE_RDEV(mddev,rdev2,tmp) {
1145                 i = rdev2->desc_nr;
1146                 if (test_bit(Faulty, &rdev2->flags))
1147                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1148                 else if (test_bit(In_sync, &rdev2->flags))
1149                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1150                 else
1151                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1152         }
1153
1154         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1155         sb->sb_csum = calc_sb_1_csum(sb);
1156 }
1157
1158
1159 static struct super_type super_types[] = {
1160         [0] = {
1161                 .name   = "0.90.0",
1162                 .owner  = THIS_MODULE,
1163                 .load_super     = super_90_load,
1164                 .validate_super = super_90_validate,
1165                 .sync_super     = super_90_sync,
1166         },
1167         [1] = {
1168                 .name   = "md-1",
1169                 .owner  = THIS_MODULE,
1170                 .load_super     = super_1_load,
1171                 .validate_super = super_1_validate,
1172                 .sync_super     = super_1_sync,
1173         },
1174 };
1175         
1176 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1177 {
1178         struct list_head *tmp;
1179         mdk_rdev_t *rdev;
1180
1181         ITERATE_RDEV(mddev,rdev,tmp)
1182                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1183                         return rdev;
1184
1185         return NULL;
1186 }
1187
1188 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1189 {
1190         struct list_head *tmp;
1191         mdk_rdev_t *rdev;
1192
1193         ITERATE_RDEV(mddev1,rdev,tmp)
1194                 if (match_dev_unit(mddev2, rdev))
1195                         return 1;
1196
1197         return 0;
1198 }
1199
1200 static LIST_HEAD(pending_raid_disks);
1201
1202 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1203 {
1204         mdk_rdev_t *same_pdev;
1205         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1206         struct kobject *ko;
1207
1208         if (rdev->mddev) {
1209                 MD_BUG();
1210                 return -EINVAL;
1211         }
1212         same_pdev = match_dev_unit(mddev, rdev);
1213         if (same_pdev)
1214                 printk(KERN_WARNING
1215                         "%s: WARNING: %s appears to be on the same physical"
1216                         " disk as %s. True\n     protection against single-disk"
1217                         " failure might be compromised.\n",
1218                         mdname(mddev), bdevname(rdev->bdev,b),
1219                         bdevname(same_pdev->bdev,b2));
1220
1221         /* Verify rdev->desc_nr is unique.
1222          * If it is -1, assign a free number, else
1223          * check number is not in use
1224          */
1225         if (rdev->desc_nr < 0) {
1226                 int choice = 0;
1227                 if (mddev->pers) choice = mddev->raid_disks;
1228                 while (find_rdev_nr(mddev, choice))
1229                         choice++;
1230                 rdev->desc_nr = choice;
1231         } else {
1232                 if (find_rdev_nr(mddev, rdev->desc_nr))
1233                         return -EBUSY;
1234         }
1235         bdevname(rdev->bdev,b);
1236         if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1237                 return -ENOMEM;
1238                         
1239         list_add(&rdev->same_set, &mddev->disks);
1240         rdev->mddev = mddev;
1241         printk(KERN_INFO "md: bind<%s>\n", b);
1242
1243         rdev->kobj.parent = &mddev->kobj;
1244         kobject_add(&rdev->kobj);
1245
1246         if (rdev->bdev->bd_part)
1247                 ko = &rdev->bdev->bd_part->kobj;
1248         else
1249                 ko = &rdev->bdev->bd_disk->kobj;
1250         sysfs_create_link(&rdev->kobj, ko, "block");
1251         return 0;
1252 }
1253
1254 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1255 {
1256         char b[BDEVNAME_SIZE];
1257         if (!rdev->mddev) {
1258                 MD_BUG();
1259                 return;
1260         }
1261         list_del_init(&rdev->same_set);
1262         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1263         rdev->mddev = NULL;
1264         sysfs_remove_link(&rdev->kobj, "block");
1265         kobject_del(&rdev->kobj);
1266 }
1267
1268 /*
1269  * prevent the device from being mounted, repartitioned or
1270  * otherwise reused by a RAID array (or any other kernel
1271  * subsystem), by bd_claiming the device.
1272  */
1273 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1274 {
1275         int err = 0;
1276         struct block_device *bdev;
1277         char b[BDEVNAME_SIZE];
1278
1279         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1280         if (IS_ERR(bdev)) {
1281                 printk(KERN_ERR "md: could not open %s.\n",
1282                         __bdevname(dev, b));
1283                 return PTR_ERR(bdev);
1284         }
1285         err = bd_claim(bdev, rdev);
1286         if (err) {
1287                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1288                         bdevname(bdev, b));
1289                 blkdev_put(bdev);
1290                 return err;
1291         }
1292         rdev->bdev = bdev;
1293         return err;
1294 }
1295
1296 static void unlock_rdev(mdk_rdev_t *rdev)
1297 {
1298         struct block_device *bdev = rdev->bdev;
1299         rdev->bdev = NULL;
1300         if (!bdev)
1301                 MD_BUG();
1302         bd_release(bdev);
1303         blkdev_put(bdev);
1304 }
1305
1306 void md_autodetect_dev(dev_t dev);
1307
1308 static void export_rdev(mdk_rdev_t * rdev)
1309 {
1310         char b[BDEVNAME_SIZE];
1311         printk(KERN_INFO "md: export_rdev(%s)\n",
1312                 bdevname(rdev->bdev,b));
1313         if (rdev->mddev)
1314                 MD_BUG();
1315         free_disk_sb(rdev);
1316         list_del_init(&rdev->same_set);
1317 #ifndef MODULE
1318         md_autodetect_dev(rdev->bdev->bd_dev);
1319 #endif
1320         unlock_rdev(rdev);
1321         kobject_put(&rdev->kobj);
1322 }
1323
1324 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1325 {
1326         unbind_rdev_from_array(rdev);
1327         export_rdev(rdev);
1328 }
1329
1330 static void export_array(mddev_t *mddev)
1331 {
1332         struct list_head *tmp;
1333         mdk_rdev_t *rdev;
1334
1335         ITERATE_RDEV(mddev,rdev,tmp) {
1336                 if (!rdev->mddev) {
1337                         MD_BUG();
1338                         continue;
1339                 }
1340                 kick_rdev_from_array(rdev);
1341         }
1342         if (!list_empty(&mddev->disks))
1343                 MD_BUG();
1344         mddev->raid_disks = 0;
1345         mddev->major_version = 0;
1346 }
1347
1348 static void print_desc(mdp_disk_t *desc)
1349 {
1350         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1351                 desc->major,desc->minor,desc->raid_disk,desc->state);
1352 }
1353
1354 static void print_sb(mdp_super_t *sb)
1355 {
1356         int i;
1357
1358         printk(KERN_INFO 
1359                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1360                 sb->major_version, sb->minor_version, sb->patch_version,
1361                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1362                 sb->ctime);
1363         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1364                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1365                 sb->md_minor, sb->layout, sb->chunk_size);
1366         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1367                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1368                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1369                 sb->failed_disks, sb->spare_disks,
1370                 sb->sb_csum, (unsigned long)sb->events_lo);
1371
1372         printk(KERN_INFO);
1373         for (i = 0; i < MD_SB_DISKS; i++) {
1374                 mdp_disk_t *desc;
1375
1376                 desc = sb->disks + i;
1377                 if (desc->number || desc->major || desc->minor ||
1378                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1379                         printk("     D %2d: ", i);
1380                         print_desc(desc);
1381                 }
1382         }
1383         printk(KERN_INFO "md:     THIS: ");
1384         print_desc(&sb->this_disk);
1385
1386 }
1387
1388 static void print_rdev(mdk_rdev_t *rdev)
1389 {
1390         char b[BDEVNAME_SIZE];
1391         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1392                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1393                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1394                 rdev->desc_nr);
1395         if (rdev->sb_loaded) {
1396                 printk(KERN_INFO "md: rdev superblock:\n");
1397                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1398         } else
1399                 printk(KERN_INFO "md: no rdev superblock!\n");
1400 }
1401
1402 void md_print_devices(void)
1403 {
1404         struct list_head *tmp, *tmp2;
1405         mdk_rdev_t *rdev;
1406         mddev_t *mddev;
1407         char b[BDEVNAME_SIZE];
1408
1409         printk("\n");
1410         printk("md:     **********************************\n");
1411         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1412         printk("md:     **********************************\n");
1413         ITERATE_MDDEV(mddev,tmp) {
1414
1415                 if (mddev->bitmap)
1416                         bitmap_print_sb(mddev->bitmap);
1417                 else
1418                         printk("%s: ", mdname(mddev));
1419                 ITERATE_RDEV(mddev,rdev,tmp2)
1420                         printk("<%s>", bdevname(rdev->bdev,b));
1421                 printk("\n");
1422
1423                 ITERATE_RDEV(mddev,rdev,tmp2)
1424                         print_rdev(rdev);
1425         }
1426         printk("md:     **********************************\n");
1427         printk("\n");
1428 }
1429
1430
1431 static void sync_sbs(mddev_t * mddev)
1432 {
1433         mdk_rdev_t *rdev;
1434         struct list_head *tmp;
1435
1436         ITERATE_RDEV(mddev,rdev,tmp) {
1437                 super_types[mddev->major_version].
1438                         sync_super(mddev, rdev);
1439                 rdev->sb_loaded = 1;
1440         }
1441 }
1442
1443 static void md_update_sb(mddev_t * mddev)
1444 {
1445         int err;
1446         struct list_head *tmp;
1447         mdk_rdev_t *rdev;
1448         int sync_req;
1449
1450 repeat:
1451         spin_lock_irq(&mddev->write_lock);
1452         sync_req = mddev->in_sync;
1453         mddev->utime = get_seconds();
1454         mddev->events ++;
1455
1456         if (!mddev->events) {
1457                 /*
1458                  * oops, this 64-bit counter should never wrap.
1459                  * Either we are in around ~1 trillion A.C., assuming
1460                  * 1 reboot per second, or we have a bug:
1461                  */
1462                 MD_BUG();
1463                 mddev->events --;
1464         }
1465         mddev->sb_dirty = 2;
1466         sync_sbs(mddev);
1467
1468         /*
1469          * do not write anything to disk if using
1470          * nonpersistent superblocks
1471          */
1472         if (!mddev->persistent) {
1473                 mddev->sb_dirty = 0;
1474                 spin_unlock_irq(&mddev->write_lock);
1475                 wake_up(&mddev->sb_wait);
1476                 return;
1477         }
1478         spin_unlock_irq(&mddev->write_lock);
1479
1480         dprintk(KERN_INFO 
1481                 "md: updating %s RAID superblock on device (in sync %d)\n",
1482                 mdname(mddev),mddev->in_sync);
1483
1484         err = bitmap_update_sb(mddev->bitmap);
1485         ITERATE_RDEV(mddev,rdev,tmp) {
1486                 char b[BDEVNAME_SIZE];
1487                 dprintk(KERN_INFO "md: ");
1488                 if (test_bit(Faulty, &rdev->flags))
1489                         dprintk("(skipping faulty ");
1490
1491                 dprintk("%s ", bdevname(rdev->bdev,b));
1492                 if (!test_bit(Faulty, &rdev->flags)) {
1493                         md_super_write(mddev,rdev,
1494                                        rdev->sb_offset<<1, rdev->sb_size,
1495                                        rdev->sb_page);
1496                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1497                                 bdevname(rdev->bdev,b),
1498                                 (unsigned long long)rdev->sb_offset);
1499
1500                 } else
1501                         dprintk(")\n");
1502                 if (mddev->level == LEVEL_MULTIPATH)
1503                         /* only need to write one superblock... */
1504                         break;
1505         }
1506         md_super_wait(mddev);
1507         /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1508
1509         spin_lock_irq(&mddev->write_lock);
1510         if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1511                 /* have to write it out again */
1512                 spin_unlock_irq(&mddev->write_lock);
1513                 goto repeat;
1514         }
1515         mddev->sb_dirty = 0;
1516         spin_unlock_irq(&mddev->write_lock);
1517         wake_up(&mddev->sb_wait);
1518
1519 }
1520
1521 struct rdev_sysfs_entry {
1522         struct attribute attr;
1523         ssize_t (*show)(mdk_rdev_t *, char *);
1524         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1525 };
1526
1527 static ssize_t
1528 state_show(mdk_rdev_t *rdev, char *page)
1529 {
1530         char *sep = "";
1531         int len=0;
1532
1533         if (test_bit(Faulty, &rdev->flags)) {
1534                 len+= sprintf(page+len, "%sfaulty",sep);
1535                 sep = ",";
1536         }
1537         if (test_bit(In_sync, &rdev->flags)) {
1538                 len += sprintf(page+len, "%sin_sync",sep);
1539                 sep = ",";
1540         }
1541         if (!test_bit(Faulty, &rdev->flags) &&
1542             !test_bit(In_sync, &rdev->flags)) {
1543                 len += sprintf(page+len, "%sspare", sep);
1544                 sep = ",";
1545         }
1546         return len+sprintf(page+len, "\n");
1547 }
1548
1549 static struct rdev_sysfs_entry
1550 rdev_state = __ATTR_RO(state);
1551
1552 static ssize_t
1553 super_show(mdk_rdev_t *rdev, char *page)
1554 {
1555         if (rdev->sb_loaded && rdev->sb_size) {
1556                 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1557                 return rdev->sb_size;
1558         } else
1559                 return 0;
1560 }
1561 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1562
1563 static struct attribute *rdev_default_attrs[] = {
1564         &rdev_state.attr,
1565         &rdev_super.attr,
1566         NULL,
1567 };
1568 static ssize_t
1569 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1570 {
1571         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1572         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1573
1574         if (!entry->show)
1575                 return -EIO;
1576         return entry->show(rdev, page);
1577 }
1578
1579 static ssize_t
1580 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1581               const char *page, size_t length)
1582 {
1583         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1584         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1585
1586         if (!entry->store)
1587                 return -EIO;
1588         return entry->store(rdev, page, length);
1589 }
1590
1591 static void rdev_free(struct kobject *ko)
1592 {
1593         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1594         kfree(rdev);
1595 }
1596 static struct sysfs_ops rdev_sysfs_ops = {
1597         .show           = rdev_attr_show,
1598         .store          = rdev_attr_store,
1599 };
1600 static struct kobj_type rdev_ktype = {
1601         .release        = rdev_free,
1602         .sysfs_ops      = &rdev_sysfs_ops,
1603         .default_attrs  = rdev_default_attrs,
1604 };
1605
1606 /*
1607  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1608  *
1609  * mark the device faulty if:
1610  *
1611  *   - the device is nonexistent (zero size)
1612  *   - the device has no valid superblock
1613  *
1614  * a faulty rdev _never_ has rdev->sb set.
1615  */
1616 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1617 {
1618         char b[BDEVNAME_SIZE];
1619         int err;
1620         mdk_rdev_t *rdev;
1621         sector_t size;
1622
1623         rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1624         if (!rdev) {
1625                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1626                 return ERR_PTR(-ENOMEM);
1627         }
1628         memset(rdev, 0, sizeof(*rdev));
1629
1630         if ((err = alloc_disk_sb(rdev)))
1631                 goto abort_free;
1632
1633         err = lock_rdev(rdev, newdev);
1634         if (err)
1635                 goto abort_free;
1636
1637         rdev->kobj.parent = NULL;
1638         rdev->kobj.ktype = &rdev_ktype;
1639         kobject_init(&rdev->kobj);
1640
1641         rdev->desc_nr = -1;
1642         rdev->flags = 0;
1643         rdev->data_offset = 0;
1644         atomic_set(&rdev->nr_pending, 0);
1645         atomic_set(&rdev->read_errors, 0);
1646
1647         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1648         if (!size) {
1649                 printk(KERN_WARNING 
1650                         "md: %s has zero or unknown size, marking faulty!\n",
1651                         bdevname(rdev->bdev,b));
1652                 err = -EINVAL;
1653                 goto abort_free;
1654         }
1655
1656         if (super_format >= 0) {
1657                 err = super_types[super_format].
1658                         load_super(rdev, NULL, super_minor);
1659                 if (err == -EINVAL) {
1660                         printk(KERN_WARNING 
1661                                 "md: %s has invalid sb, not importing!\n",
1662                                 bdevname(rdev->bdev,b));
1663                         goto abort_free;
1664                 }
1665                 if (err < 0) {
1666                         printk(KERN_WARNING 
1667                                 "md: could not read %s's sb, not importing!\n",
1668                                 bdevname(rdev->bdev,b));
1669                         goto abort_free;
1670                 }
1671         }
1672         INIT_LIST_HEAD(&rdev->same_set);
1673
1674         return rdev;
1675
1676 abort_free:
1677         if (rdev->sb_page) {
1678                 if (rdev->bdev)
1679                         unlock_rdev(rdev);
1680                 free_disk_sb(rdev);
1681         }
1682         kfree(rdev);
1683         return ERR_PTR(err);
1684 }
1685
1686 /*
1687  * Check a full RAID array for plausibility
1688  */
1689
1690
1691 static void analyze_sbs(mddev_t * mddev)
1692 {
1693         int i;
1694         struct list_head *tmp;
1695         mdk_rdev_t *rdev, *freshest;
1696         char b[BDEVNAME_SIZE];
1697
1698         freshest = NULL;
1699         ITERATE_RDEV(mddev,rdev,tmp)
1700                 switch (super_types[mddev->major_version].
1701                         load_super(rdev, freshest, mddev->minor_version)) {
1702                 case 1:
1703                         freshest = rdev;
1704                         break;
1705                 case 0:
1706                         break;
1707                 default:
1708                         printk( KERN_ERR \
1709                                 "md: fatal superblock inconsistency in %s"
1710                                 " -- removing from array\n", 
1711                                 bdevname(rdev->bdev,b));
1712                         kick_rdev_from_array(rdev);
1713                 }
1714
1715
1716         super_types[mddev->major_version].
1717                 validate_super(mddev, freshest);
1718
1719         i = 0;
1720         ITERATE_RDEV(mddev,rdev,tmp) {
1721                 if (rdev != freshest)
1722                         if (super_types[mddev->major_version].
1723                             validate_super(mddev, rdev)) {
1724                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1725                                         " from array!\n",
1726                                         bdevname(rdev->bdev,b));
1727                                 kick_rdev_from_array(rdev);
1728                                 continue;
1729                         }
1730                 if (mddev->level == LEVEL_MULTIPATH) {
1731                         rdev->desc_nr = i++;
1732                         rdev->raid_disk = rdev->desc_nr;
1733                         set_bit(In_sync, &rdev->flags);
1734                 }
1735         }
1736
1737
1738
1739         if (mddev->recovery_cp != MaxSector &&
1740             mddev->level >= 1)
1741                 printk(KERN_ERR "md: %s: raid array is not clean"
1742                        " -- starting background reconstruction\n",
1743                        mdname(mddev));
1744
1745 }
1746
1747 static ssize_t
1748 level_show(mddev_t *mddev, char *page)
1749 {
1750         mdk_personality_t *p = mddev->pers;
1751         if (p == NULL && mddev->raid_disks == 0)
1752                 return 0;
1753         if (mddev->level >= 0)
1754                 return sprintf(page, "raid%d\n", mddev->level);
1755         else
1756                 return sprintf(page, "%s\n", p->name);
1757 }
1758
1759 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1760
1761 static ssize_t
1762 raid_disks_show(mddev_t *mddev, char *page)
1763 {
1764         if (mddev->raid_disks == 0)
1765                 return 0;
1766         return sprintf(page, "%d\n", mddev->raid_disks);
1767 }
1768
1769 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1770
1771 static ssize_t
1772 action_show(mddev_t *mddev, char *page)
1773 {
1774         char *type = "idle";
1775         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1776             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1777                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1778                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1779                                 type = "resync";
1780                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1781                                 type = "check";
1782                         else
1783                                 type = "repair";
1784                 } else
1785                         type = "recover";
1786         }
1787         return sprintf(page, "%s\n", type);
1788 }
1789
1790 static ssize_t
1791 action_store(mddev_t *mddev, const char *page, size_t len)
1792 {
1793         if (!mddev->pers || !mddev->pers->sync_request)
1794                 return -EINVAL;
1795
1796         if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
1797                 if (mddev->sync_thread) {
1798                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1799                         md_unregister_thread(mddev->sync_thread);
1800                         mddev->sync_thread = NULL;
1801                         mddev->recovery = 0;
1802                 }
1803                 return len;
1804         }
1805
1806         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1807             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1808                 return -EBUSY;
1809         if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
1810             strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
1811                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1812         else {
1813                 if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1814                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1815                 else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1816                         return -EINVAL;
1817                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1818                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1819                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1820         }
1821         md_wakeup_thread(mddev->thread);
1822         return len;
1823 }
1824
1825 static ssize_t
1826 mismatch_cnt_show(mddev_t *mddev, char *page)
1827 {
1828         return sprintf(page, "%llu\n",
1829                        (unsigned long long) mddev->resync_mismatches);
1830 }
1831
1832 static struct md_sysfs_entry
1833 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1834
1835
1836 static struct md_sysfs_entry
1837 md_mismatches = __ATTR_RO(mismatch_cnt);
1838
1839 static struct attribute *md_default_attrs[] = {
1840         &md_level.attr,
1841         &md_raid_disks.attr,
1842         NULL,
1843 };
1844
1845 static struct attribute *md_redundancy_attrs[] = {
1846         &md_scan_mode.attr,
1847         &md_mismatches.attr,
1848         NULL,
1849 };
1850 static struct attribute_group md_redundancy_group = {
1851         .name = NULL,
1852         .attrs = md_redundancy_attrs,
1853 };
1854
1855
1856 static ssize_t
1857 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1858 {
1859         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1860         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1861         ssize_t rv;
1862
1863         if (!entry->show)
1864                 return -EIO;
1865         mddev_lock(mddev);
1866         rv = entry->show(mddev, page);
1867         mddev_unlock(mddev);
1868         return rv;
1869 }
1870
1871 static ssize_t
1872 md_attr_store(struct kobject *kobj, struct attribute *attr,
1873               const char *page, size_t length)
1874 {
1875         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1876         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1877         ssize_t rv;
1878
1879         if (!entry->store)
1880                 return -EIO;
1881         mddev_lock(mddev);
1882         rv = entry->store(mddev, page, length);
1883         mddev_unlock(mddev);
1884         return rv;
1885 }
1886
1887 static void md_free(struct kobject *ko)
1888 {
1889         mddev_t *mddev = container_of(ko, mddev_t, kobj);
1890         kfree(mddev);
1891 }
1892
1893 static struct sysfs_ops md_sysfs_ops = {
1894         .show   = md_attr_show,
1895         .store  = md_attr_store,
1896 };
1897 static struct kobj_type md_ktype = {
1898         .release        = md_free,
1899         .sysfs_ops      = &md_sysfs_ops,
1900         .default_attrs  = md_default_attrs,
1901 };
1902
1903 int mdp_major = 0;
1904
1905 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1906 {
1907         static DECLARE_MUTEX(disks_sem);
1908         mddev_t *mddev = mddev_find(dev);
1909         struct gendisk *disk;
1910         int partitioned = (MAJOR(dev) != MD_MAJOR);
1911         int shift = partitioned ? MdpMinorShift : 0;
1912         int unit = MINOR(dev) >> shift;
1913
1914         if (!mddev)
1915                 return NULL;
1916
1917         down(&disks_sem);
1918         if (mddev->gendisk) {
1919                 up(&disks_sem);
1920                 mddev_put(mddev);
1921                 return NULL;
1922         }
1923         disk = alloc_disk(1 << shift);
1924         if (!disk) {
1925                 up(&disks_sem);
1926                 mddev_put(mddev);
1927                 return NULL;
1928         }
1929         disk->major = MAJOR(dev);
1930         disk->first_minor = unit << shift;
1931         if (partitioned) {
1932                 sprintf(disk->disk_name, "md_d%d", unit);
1933                 sprintf(disk->devfs_name, "md/d%d", unit);
1934         } else {
1935                 sprintf(disk->disk_name, "md%d", unit);
1936                 sprintf(disk->devfs_name, "md/%d", unit);
1937         }
1938         disk->fops = &md_fops;
1939         disk->private_data = mddev;
1940         disk->queue = mddev->queue;
1941         add_disk(disk);
1942         mddev->gendisk = disk;
1943         up(&disks_sem);
1944         mddev->kobj.parent = &disk->kobj;
1945         mddev->kobj.k_name = NULL;
1946         snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1947         mddev->kobj.ktype = &md_ktype;
1948         kobject_register(&mddev->kobj);
1949         return NULL;
1950 }
1951
1952 void md_wakeup_thread(mdk_thread_t *thread);
1953
1954 static void md_safemode_timeout(unsigned long data)
1955 {
1956         mddev_t *mddev = (mddev_t *) data;
1957
1958         mddev->safemode = 1;
1959         md_wakeup_thread(mddev->thread);
1960 }
1961
1962 static int start_dirty_degraded;
1963
1964 static int do_md_run(mddev_t * mddev)
1965 {
1966         int pnum, err;
1967         int chunk_size;
1968         struct list_head *tmp;
1969         mdk_rdev_t *rdev;
1970         struct gendisk *disk;
1971         char b[BDEVNAME_SIZE];
1972
1973         if (list_empty(&mddev->disks))
1974                 /* cannot run an array with no devices.. */
1975                 return -EINVAL;
1976
1977         if (mddev->pers)
1978                 return -EBUSY;
1979
1980         /*
1981          * Analyze all RAID superblock(s)
1982          */
1983         if (!mddev->raid_disks)
1984                 analyze_sbs(mddev);
1985
1986         chunk_size = mddev->chunk_size;
1987         pnum = level_to_pers(mddev->level);
1988
1989         if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1990                 if (!chunk_size) {
1991                         /*
1992                          * 'default chunksize' in the old md code used to
1993                          * be PAGE_SIZE, baaad.
1994                          * we abort here to be on the safe side. We don't
1995                          * want to continue the bad practice.
1996                          */
1997                         printk(KERN_ERR 
1998                                 "no chunksize specified, see 'man raidtab'\n");
1999                         return -EINVAL;
2000                 }
2001                 if (chunk_size > MAX_CHUNK_SIZE) {
2002                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
2003                                 chunk_size, MAX_CHUNK_SIZE);
2004                         return -EINVAL;
2005                 }
2006                 /*
2007                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2008                  */
2009                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2010                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2011                         return -EINVAL;
2012                 }
2013                 if (chunk_size < PAGE_SIZE) {
2014                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2015                                 chunk_size, PAGE_SIZE);
2016                         return -EINVAL;
2017                 }
2018
2019                 /* devices must have minimum size of one chunk */
2020                 ITERATE_RDEV(mddev,rdev,tmp) {
2021                         if (test_bit(Faulty, &rdev->flags))
2022                                 continue;
2023                         if (rdev->size < chunk_size / 1024) {
2024                                 printk(KERN_WARNING
2025                                         "md: Dev %s smaller than chunk_size:"
2026                                         " %lluk < %dk\n",
2027                                         bdevname(rdev->bdev,b),
2028                                         (unsigned long long)rdev->size,
2029                                         chunk_size / 1024);
2030                                 return -EINVAL;
2031                         }
2032                 }
2033         }
2034
2035 #ifdef CONFIG_KMOD
2036         if (!pers[pnum])
2037         {
2038                 request_module("md-personality-%d", pnum);
2039         }
2040 #endif
2041
2042         /*
2043          * Drop all container device buffers, from now on
2044          * the only valid external interface is through the md
2045          * device.
2046          * Also find largest hardsector size
2047          */
2048         ITERATE_RDEV(mddev,rdev,tmp) {
2049                 if (test_bit(Faulty, &rdev->flags))
2050                         continue;
2051                 sync_blockdev(rdev->bdev);
2052                 invalidate_bdev(rdev->bdev, 0);
2053         }
2054
2055         md_probe(mddev->unit, NULL, NULL);
2056         disk = mddev->gendisk;
2057         if (!disk)
2058                 return -ENOMEM;
2059
2060         spin_lock(&pers_lock);
2061         if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2062                 spin_unlock(&pers_lock);
2063                 printk(KERN_WARNING "md: personality %d is not loaded!\n",
2064                        pnum);
2065                 return -EINVAL;
2066         }
2067
2068         mddev->pers = pers[pnum];
2069         spin_unlock(&pers_lock);
2070
2071         mddev->recovery = 0;
2072         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2073         mddev->barriers_work = 1;
2074         mddev->ok_start_degraded = start_dirty_degraded;
2075
2076         if (start_readonly)
2077                 mddev->ro = 2; /* read-only, but switch on first write */
2078
2079         err = mddev->pers->run(mddev);
2080         if (!err && mddev->pers->sync_request) {
2081                 err = bitmap_create(mddev);
2082                 if (err) {
2083                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2084                                mdname(mddev), err);
2085                         mddev->pers->stop(mddev);
2086                 }
2087         }
2088         if (err) {
2089                 printk(KERN_ERR "md: pers->run() failed ...\n");
2090                 module_put(mddev->pers->owner);
2091                 mddev->pers = NULL;
2092                 bitmap_destroy(mddev);
2093                 return err;
2094         }
2095         if (mddev->pers->sync_request)
2096                 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2097         else if (mddev->ro == 2) /* auto-readonly not meaningful */
2098                 mddev->ro = 0;
2099
2100         atomic_set(&mddev->writes_pending,0);
2101         mddev->safemode = 0;
2102         mddev->safemode_timer.function = md_safemode_timeout;
2103         mddev->safemode_timer.data = (unsigned long) mddev;
2104         mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2105         mddev->in_sync = 1;
2106
2107         ITERATE_RDEV(mddev,rdev,tmp)
2108                 if (rdev->raid_disk >= 0) {
2109                         char nm[20];
2110                         sprintf(nm, "rd%d", rdev->raid_disk);
2111                         sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2112                 }
2113         
2114         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2115         md_wakeup_thread(mddev->thread);
2116         
2117         if (mddev->sb_dirty)
2118                 md_update_sb(mddev);
2119
2120         set_capacity(disk, mddev->array_size<<1);
2121
2122         /* If we call blk_queue_make_request here, it will
2123          * re-initialise max_sectors etc which may have been
2124          * refined inside -> run.  So just set the bits we need to set.
2125          * Most initialisation happended when we called
2126          * blk_queue_make_request(..., md_fail_request)
2127          * earlier.
2128          */
2129         mddev->queue->queuedata = mddev;
2130         mddev->queue->make_request_fn = mddev->pers->make_request;
2131
2132         mddev->changed = 1;
2133         md_new_event(mddev);
2134         return 0;
2135 }
2136
2137 static int restart_array(mddev_t *mddev)
2138 {
2139         struct gendisk *disk = mddev->gendisk;
2140         int err;
2141
2142         /*
2143          * Complain if it has no devices
2144          */
2145         err = -ENXIO;
2146         if (list_empty(&mddev->disks))
2147                 goto out;
2148
2149         if (mddev->pers) {
2150                 err = -EBUSY;
2151                 if (!mddev->ro)
2152                         goto out;
2153
2154                 mddev->safemode = 0;
2155                 mddev->ro = 0;
2156                 set_disk_ro(disk, 0);
2157
2158                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2159                         mdname(mddev));
2160                 /*
2161                  * Kick recovery or resync if necessary
2162                  */
2163                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2164                 md_wakeup_thread(mddev->thread);
2165                 err = 0;
2166         } else {
2167                 printk(KERN_ERR "md: %s has no personality assigned.\n",
2168                         mdname(mddev));
2169                 err = -EINVAL;
2170         }
2171
2172 out:
2173         return err;
2174 }
2175
2176 static int do_md_stop(mddev_t * mddev, int ro)
2177 {
2178         int err = 0;
2179         struct gendisk *disk = mddev->gendisk;
2180
2181         if (mddev->pers) {
2182                 if (atomic_read(&mddev->active)>2) {
2183                         printk("md: %s still in use.\n",mdname(mddev));
2184                         return -EBUSY;
2185                 }
2186
2187                 if (mddev->sync_thread) {
2188                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189                         md_unregister_thread(mddev->sync_thread);
2190                         mddev->sync_thread = NULL;
2191                 }
2192
2193                 del_timer_sync(&mddev->safemode_timer);
2194
2195                 invalidate_partition(disk, 0);
2196
2197                 if (ro) {
2198                         err  = -ENXIO;
2199                         if (mddev->ro==1)
2200                                 goto out;
2201                         mddev->ro = 1;
2202                 } else {
2203                         bitmap_flush(mddev);
2204                         md_super_wait(mddev);
2205                         if (mddev->ro)
2206                                 set_disk_ro(disk, 0);
2207                         blk_queue_make_request(mddev->queue, md_fail_request);
2208                         mddev->pers->stop(mddev);
2209                         if (mddev->pers->sync_request)
2210                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2211
2212                         module_put(mddev->pers->owner);
2213                         mddev->pers = NULL;
2214                         if (mddev->ro)
2215                                 mddev->ro = 0;
2216                 }
2217                 if (!mddev->in_sync) {
2218                         /* mark array as shutdown cleanly */
2219                         mddev->in_sync = 1;
2220                         md_update_sb(mddev);
2221                 }
2222                 if (ro)
2223                         set_disk_ro(disk, 1);
2224         }
2225
2226         bitmap_destroy(mddev);
2227         if (mddev->bitmap_file) {
2228                 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2229                 fput(mddev->bitmap_file);
2230                 mddev->bitmap_file = NULL;
2231         }
2232         mddev->bitmap_offset = 0;
2233
2234         /*
2235          * Free resources if final stop
2236          */
2237         if (!ro) {
2238                 mdk_rdev_t *rdev;
2239                 struct list_head *tmp;
2240                 struct gendisk *disk;
2241                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2242
2243                 ITERATE_RDEV(mddev,rdev,tmp)
2244                         if (rdev->raid_disk >= 0) {
2245                                 char nm[20];
2246                                 sprintf(nm, "rd%d", rdev->raid_disk);
2247                                 sysfs_remove_link(&mddev->kobj, nm);
2248                         }
2249
2250                 export_array(mddev);
2251
2252                 mddev->array_size = 0;
2253                 disk = mddev->gendisk;
2254                 if (disk)
2255                         set_capacity(disk, 0);
2256                 mddev->changed = 1;
2257         } else
2258                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2259                         mdname(mddev));
2260         err = 0;
2261         md_new_event(mddev);
2262 out:
2263         return err;
2264 }
2265
2266 static void autorun_array(mddev_t *mddev)
2267 {
2268         mdk_rdev_t *rdev;
2269         struct list_head *tmp;
2270         int err;
2271
2272         if (list_empty(&mddev->disks))
2273                 return;
2274
2275         printk(KERN_INFO "md: running: ");
2276
2277         ITERATE_RDEV(mddev,rdev,tmp) {
2278                 char b[BDEVNAME_SIZE];
2279                 printk("<%s>", bdevname(rdev->bdev,b));
2280         }
2281         printk("\n");
2282
2283         err = do_md_run (mddev);
2284         if (err) {
2285                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2286                 do_md_stop (mddev, 0);
2287         }
2288 }
2289
2290 /*
2291  * lets try to run arrays based on all disks that have arrived
2292  * until now. (those are in pending_raid_disks)
2293  *
2294  * the method: pick the first pending disk, collect all disks with
2295  * the same UUID, remove all from the pending list and put them into
2296  * the 'same_array' list. Then order this list based on superblock
2297  * update time (freshest comes first), kick out 'old' disks and
2298  * compare superblocks. If everything's fine then run it.
2299  *
2300  * If "unit" is allocated, then bump its reference count
2301  */
2302 static void autorun_devices(int part)
2303 {
2304         struct list_head candidates;
2305         struct list_head *tmp;
2306         mdk_rdev_t *rdev0, *rdev;
2307         mddev_t *mddev;
2308         char b[BDEVNAME_SIZE];
2309
2310         printk(KERN_INFO "md: autorun ...\n");
2311         while (!list_empty(&pending_raid_disks)) {
2312                 dev_t dev;
2313                 rdev0 = list_entry(pending_raid_disks.next,
2314                                          mdk_rdev_t, same_set);
2315
2316                 printk(KERN_INFO "md: considering %s ...\n",
2317                         bdevname(rdev0->bdev,b));
2318                 INIT_LIST_HEAD(&candidates);
2319                 ITERATE_RDEV_PENDING(rdev,tmp)
2320                         if (super_90_load(rdev, rdev0, 0) >= 0) {
2321                                 printk(KERN_INFO "md:  adding %s ...\n",
2322                                         bdevname(rdev->bdev,b));
2323                                 list_move(&rdev->same_set, &candidates);
2324                         }
2325                 /*
2326                  * now we have a set of devices, with all of them having
2327                  * mostly sane superblocks. It's time to allocate the
2328                  * mddev.
2329                  */
2330                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2331                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2332                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2333                         break;
2334                 }
2335                 if (part)
2336                         dev = MKDEV(mdp_major,
2337                                     rdev0->preferred_minor << MdpMinorShift);
2338                 else
2339                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2340
2341                 md_probe(dev, NULL, NULL);
2342                 mddev = mddev_find(dev);
2343                 if (!mddev) {
2344                         printk(KERN_ERR 
2345                                 "md: cannot allocate memory for md drive.\n");
2346                         break;
2347                 }
2348                 if (mddev_lock(mddev)) 
2349                         printk(KERN_WARNING "md: %s locked, cannot run\n",
2350                                mdname(mddev));
2351                 else if (mddev->raid_disks || mddev->major_version
2352                          || !list_empty(&mddev->disks)) {
2353                         printk(KERN_WARNING 
2354                                 "md: %s already running, cannot run %s\n",
2355                                 mdname(mddev), bdevname(rdev0->bdev,b));
2356                         mddev_unlock(mddev);
2357                 } else {
2358                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
2359                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2360                                 list_del_init(&rdev->same_set);
2361                                 if (bind_rdev_to_array(rdev, mddev))
2362                                         export_rdev(rdev);
2363                         }
2364                         autorun_array(mddev);
2365                         mddev_unlock(mddev);
2366                 }
2367                 /* on success, candidates will be empty, on error
2368                  * it won't...
2369                  */
2370                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2371                         export_rdev(rdev);
2372                 mddev_put(mddev);
2373         }
2374         printk(KERN_INFO "md: ... autorun DONE.\n");
2375 }
2376
2377 /*
2378  * import RAID devices based on one partition
2379  * if possible, the array gets run as well.
2380  */
2381
2382 static int autostart_array(dev_t startdev)
2383 {
2384         char b[BDEVNAME_SIZE];
2385         int err = -EINVAL, i;
2386         mdp_super_t *sb = NULL;
2387         mdk_rdev_t *start_rdev = NULL, *rdev;
2388
2389         start_rdev = md_import_device(startdev, 0, 0);
2390         if (IS_ERR(start_rdev))
2391                 return err;
2392
2393
2394         /* NOTE: this can only work for 0.90.0 superblocks */
2395         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2396         if (sb->major_version != 0 ||
2397             sb->minor_version != 90 ) {
2398                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2399                 export_rdev(start_rdev);
2400                 return err;
2401         }
2402
2403         if (test_bit(Faulty, &start_rdev->flags)) {
2404                 printk(KERN_WARNING 
2405                         "md: can not autostart based on faulty %s!\n",
2406                         bdevname(start_rdev->bdev,b));
2407                 export_rdev(start_rdev);
2408                 return err;
2409         }
2410         list_add(&start_rdev->same_set, &pending_raid_disks);
2411
2412         for (i = 0; i < MD_SB_DISKS; i++) {
2413                 mdp_disk_t *desc = sb->disks + i;
2414                 dev_t dev = MKDEV(desc->major, desc->minor);
2415
2416                 if (!dev)
2417                         continue;
2418                 if (dev == startdev)
2419                         continue;
2420                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2421                         continue;
2422                 rdev = md_import_device(dev, 0, 0);
2423                 if (IS_ERR(rdev))
2424                         continue;
2425
2426                 list_add(&rdev->same_set, &pending_raid_disks);
2427         }
2428
2429         /*
2430          * possibly return codes
2431          */
2432         autorun_devices(0);
2433         return 0;
2434
2435 }
2436
2437
2438 static int get_version(void __user * arg)
2439 {
2440         mdu_version_t ver;
2441
2442         ver.major = MD_MAJOR_VERSION;
2443         ver.minor = MD_MINOR_VERSION;
2444         ver.patchlevel = MD_PATCHLEVEL_VERSION;
2445
2446         if (copy_to_user(arg, &ver, sizeof(ver)))
2447                 return -EFAULT;
2448
2449         return 0;
2450 }
2451
2452 static int get_array_info(mddev_t * mddev, void __user * arg)
2453 {
2454         mdu_array_info_t info;
2455         int nr,working,active,failed,spare;
2456         mdk_rdev_t *rdev;
2457         struct list_head *tmp;
2458
2459         nr=working=active=failed=spare=0;
2460         ITERATE_RDEV(mddev,rdev,tmp) {
2461                 nr++;
2462                 if (test_bit(Faulty, &rdev->flags))
2463                         failed++;
2464                 else {
2465                         working++;
2466                         if (test_bit(In_sync, &rdev->flags))
2467                                 active++;       
2468                         else
2469                                 spare++;
2470                 }
2471         }
2472
2473         info.major_version = mddev->major_version;
2474         info.minor_version = mddev->minor_version;
2475         info.patch_version = MD_PATCHLEVEL_VERSION;
2476         info.ctime         = mddev->ctime;
2477         info.level         = mddev->level;
2478         info.size          = mddev->size;
2479         info.nr_disks      = nr;
2480         info.raid_disks    = mddev->raid_disks;
2481         info.md_minor      = mddev->md_minor;
2482         info.not_persistent= !mddev->persistent;
2483
2484         info.utime         = mddev->utime;
2485         info.state         = 0;
2486         if (mddev->in_sync)
2487                 info.state = (1<<MD_SB_CLEAN);
2488         if (mddev->bitmap && mddev->bitmap_offset)
2489                 info.state = (1<<MD_SB_BITMAP_PRESENT);
2490         info.active_disks  = active;
2491         info.working_disks = working;
2492         info.failed_disks  = failed;
2493         info.spare_disks   = spare;
2494
2495         info.layout        = mddev->layout;
2496         info.chunk_size    = mddev->chunk_size;
2497
2498         if (copy_to_user(arg, &info, sizeof(info)))
2499                 return -EFAULT;
2500
2501         return 0;
2502 }
2503
2504 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2505 {
2506         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2507         char *ptr, *buf = NULL;
2508         int err = -ENOMEM;
2509
2510         file = kmalloc(sizeof(*file), GFP_KERNEL);
2511         if (!file)
2512                 goto out;
2513
2514         /* bitmap disabled, zero the first byte and copy out */
2515         if (!mddev->bitmap || !mddev->bitmap->file) {
2516                 file->pathname[0] = '\0';
2517                 goto copy_out;
2518         }
2519
2520         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2521         if (!buf)
2522                 goto out;
2523
2524         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2525         if (!ptr)
2526                 goto out;
2527
2528         strcpy(file->pathname, ptr);
2529
2530 copy_out:
2531         err = 0;
2532         if (copy_to_user(arg, file, sizeof(*file)))
2533                 err = -EFAULT;
2534 out:
2535         kfree(buf);
2536         kfree(file);
2537         return err;
2538 }
2539
2540 static int get_disk_info(mddev_t * mddev, void __user * arg)
2541 {
2542         mdu_disk_info_t info;
2543         unsigned int nr;
2544         mdk_rdev_t *rdev;
2545
2546         if (copy_from_user(&info, arg, sizeof(info)))
2547                 return -EFAULT;
2548
2549         nr = info.number;
2550
2551         rdev = find_rdev_nr(mddev, nr);
2552         if (rdev) {
2553                 info.major = MAJOR(rdev->bdev->bd_dev);
2554                 info.minor = MINOR(rdev->bdev->bd_dev);
2555                 info.raid_disk = rdev->raid_disk;
2556                 info.state = 0;
2557                 if (test_bit(Faulty, &rdev->flags))
2558                         info.state |= (1<<MD_DISK_FAULTY);
2559                 else if (test_bit(In_sync, &rdev->flags)) {
2560                         info.state |= (1<<MD_DISK_ACTIVE);
2561                         info.state |= (1<<MD_DISK_SYNC);
2562                 }
2563                 if (test_bit(WriteMostly, &rdev->flags))
2564                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
2565         } else {
2566                 info.major = info.minor = 0;
2567                 info.raid_disk = -1;
2568                 info.state = (1<<MD_DISK_REMOVED);
2569         }
2570
2571         if (copy_to_user(arg, &info, sizeof(info)))
2572                 return -EFAULT;
2573
2574         return 0;
2575 }
2576
2577 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2578 {
2579         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2580         mdk_rdev_t *rdev;
2581         dev_t dev = MKDEV(info->major,info->minor);
2582
2583         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2584                 return -EOVERFLOW;
2585
2586         if (!mddev->raid_disks) {
2587                 int err;
2588                 /* expecting a device which has a superblock */
2589                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2590                 if (IS_ERR(rdev)) {
2591                         printk(KERN_WARNING 
2592                                 "md: md_import_device returned %ld\n",
2593                                 PTR_ERR(rdev));
2594                         return PTR_ERR(rdev);
2595                 }
2596                 if (!list_empty(&mddev->disks)) {
2597                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2598                                                         mdk_rdev_t, same_set);
2599                         int err = super_types[mddev->major_version]
2600                                 .load_super(rdev, rdev0, mddev->minor_version);
2601                         if (err < 0) {
2602                                 printk(KERN_WARNING 
2603                                         "md: %s has different UUID to %s\n",
2604                                         bdevname(rdev->bdev,b), 
2605                                         bdevname(rdev0->bdev,b2));
2606                                 export_rdev(rdev);
2607                                 return -EINVAL;
2608                         }
2609                 }
2610                 err = bind_rdev_to_array(rdev, mddev);
2611                 if (err)
2612                         export_rdev(rdev);
2613                 return err;
2614         }
2615
2616         /*
2617          * add_new_disk can be used once the array is assembled
2618          * to add "hot spares".  They must already have a superblock
2619          * written
2620          */
2621         if (mddev->pers) {
2622                 int err;
2623                 if (!mddev->pers->hot_add_disk) {
2624                         printk(KERN_WARNING 
2625                                 "%s: personality does not support diskops!\n",
2626                                mdname(mddev));
2627                         return -EINVAL;
2628                 }
2629                 if (mddev->persistent)
2630                         rdev = md_import_device(dev, mddev->major_version,
2631                                                 mddev->minor_version);
2632                 else
2633                         rdev = md_import_device(dev, -1, -1);
2634                 if (IS_ERR(rdev)) {
2635                         printk(KERN_WARNING 
2636                                 "md: md_import_device returned %ld\n",
2637                                 PTR_ERR(rdev));
2638                         return PTR_ERR(rdev);
2639                 }
2640                 /* set save_raid_disk if appropriate */
2641                 if (!mddev->persistent) {
2642                         if (info->state & (1<<MD_DISK_SYNC)  &&
2643                             info->raid_disk < mddev->raid_disks)
2644                                 rdev->raid_disk = info->raid_disk;
2645                         else
2646                                 rdev->raid_disk = -1;
2647                 } else
2648                         super_types[mddev->major_version].
2649                                 validate_super(mddev, rdev);
2650                 rdev->saved_raid_disk = rdev->raid_disk;
2651
2652                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
2653                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2654                         set_bit(WriteMostly, &rdev->flags);
2655
2656                 rdev->raid_disk = -1;
2657                 err = bind_rdev_to_array(rdev, mddev);
2658                 if (err)
2659                         export_rdev(rdev);
2660
2661                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2662                 md_wakeup_thread(mddev->thread);
2663                 return err;
2664         }
2665
2666         /* otherwise, add_new_disk is only allowed
2667          * for major_version==0 superblocks
2668          */
2669         if (mddev->major_version != 0) {
2670                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2671                        mdname(mddev));
2672                 return -EINVAL;
2673         }
2674
2675         if (!(info->state & (1<<MD_DISK_FAULTY))) {
2676                 int err;
2677                 rdev = md_import_device (dev, -1, 0);
2678                 if (IS_ERR(rdev)) {
2679                         printk(KERN_WARNING 
2680                                 "md: error, md_import_device() returned %ld\n",
2681                                 PTR_ERR(rdev));
2682                         return PTR_ERR(rdev);
2683                 }
2684                 rdev->desc_nr = info->number;
2685                 if (info->raid_disk < mddev->raid_disks)
2686                         rdev->raid_disk = info->raid_disk;
2687                 else
2688                         rdev->raid_disk = -1;
2689
2690                 rdev->flags = 0;
2691
2692                 if (rdev->raid_disk < mddev->raid_disks)
2693                         if (info->state & (1<<MD_DISK_SYNC))
2694                                 set_bit(In_sync, &rdev->flags);
2695
2696                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2697                         set_bit(WriteMostly, &rdev->flags);
2698
2699                 err = bind_rdev_to_array(rdev, mddev);
2700                 if (err) {
2701                         export_rdev(rdev);
2702                         return err;
2703                 }
2704
2705                 if (!mddev->persistent) {
2706                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
2707                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2708                 } else 
2709                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2710                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2711
2712                 if (!mddev->size || (mddev->size > rdev->size))
2713                         mddev->size = rdev->size;
2714         }
2715
2716         return 0;
2717 }
2718
2719 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2720 {
2721         char b[BDEVNAME_SIZE];
2722         mdk_rdev_t *rdev;
2723
2724         if (!mddev->pers)
2725                 return -ENODEV;
2726
2727         rdev = find_rdev(mddev, dev);
2728         if (!rdev)
2729                 return -ENXIO;
2730
2731         if (rdev->raid_disk >= 0)
2732                 goto busy;
2733
2734         kick_rdev_from_array(rdev);
2735         md_update_sb(mddev);
2736         md_new_event(mddev);
2737
2738         return 0;
2739 busy:
2740         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2741                 bdevname(rdev->bdev,b), mdname(mddev));
2742         return -EBUSY;
2743 }
2744
2745 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2746 {
2747         char b[BDEVNAME_SIZE];
2748         int err;
2749         unsigned int size;
2750         mdk_rdev_t *rdev;
2751
2752         if (!mddev->pers)
2753                 return -ENODEV;
2754
2755         if (mddev->major_version != 0) {
2756                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2757                         " version-0 superblocks.\n",
2758                         mdname(mddev));
2759                 return -EINVAL;
2760         }
2761         if (!mddev->pers->hot_add_disk) {
2762                 printk(KERN_WARNING 
2763                         "%s: personality does not support diskops!\n",
2764                         mdname(mddev));
2765                 return -EINVAL;
2766         }
2767
2768         rdev = md_import_device (dev, -1, 0);
2769         if (IS_ERR(rdev)) {
2770                 printk(KERN_WARNING 
2771                         "md: error, md_import_device() returned %ld\n",
2772                         PTR_ERR(rdev));
2773                 return -EINVAL;
2774         }
2775
2776         if (mddev->persistent)
2777                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2778         else
2779                 rdev->sb_offset =
2780                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2781
2782         size = calc_dev_size(rdev, mddev->chunk_size);
2783         rdev->size = size;
2784
2785         if (size < mddev->size) {
2786                 printk(KERN_WARNING 
2787                         "%s: disk size %llu blocks < array size %llu\n",
2788                         mdname(mddev), (unsigned long long)size,
2789                         (unsigned long long)mddev->size);
2790                 err = -ENOSPC;
2791                 goto abort_export;
2792         }
2793
2794         if (test_bit(Faulty, &rdev->flags)) {
2795                 printk(KERN_WARNING 
2796                         "md: can not hot-add faulty %s disk to %s!\n",
2797                         bdevname(rdev->bdev,b), mdname(mddev));
2798                 err = -EINVAL;
2799                 goto abort_export;
2800         }
2801         clear_bit(In_sync, &rdev->flags);
2802         rdev->desc_nr = -1;
2803         bind_rdev_to_array(rdev, mddev);
2804
2805         /*
2806          * The rest should better be atomic, we can have disk failures
2807          * noticed in interrupt contexts ...
2808          */
2809
2810         if (rdev->desc_nr == mddev->max_disks) {
2811                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2812                         mdname(mddev));
2813                 err = -EBUSY;
2814                 goto abort_unbind_export;
2815         }
2816
2817         rdev->raid_disk = -1;
2818
2819         md_update_sb(mddev);
2820
2821         /*
2822          * Kick recovery, maybe this spare has to be added to the
2823          * array immediately.
2824          */
2825         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2826         md_wakeup_thread(mddev->thread);
2827         md_new_event(mddev);
2828         return 0;
2829
2830 abort_unbind_export:
2831         unbind_rdev_from_array(rdev);
2832
2833 abort_export:
2834         export_rdev(rdev);
2835         return err;
2836 }
2837
2838 /* similar to deny_write_access, but accounts for our holding a reference
2839  * to the file ourselves */
2840 static int deny_bitmap_write_access(struct file * file)
2841 {
2842         struct inode *inode = file->f_mapping->host;
2843
2844         spin_lock(&inode->i_lock);
2845         if (atomic_read(&inode->i_writecount) > 1) {
2846                 spin_unlock(&inode->i_lock);
2847                 return -ETXTBSY;
2848         }
2849         atomic_set(&inode->i_writecount, -1);
2850         spin_unlock(&inode->i_lock);
2851
2852         return 0;
2853 }
2854
2855 static int set_bitmap_file(mddev_t *mddev, int fd)
2856 {
2857         int err;
2858
2859         if (mddev->pers) {
2860                 if (!mddev->pers->quiesce)
2861                         return -EBUSY;
2862                 if (mddev->recovery || mddev->sync_thread)
2863                         return -EBUSY;
2864                 /* we should be able to change the bitmap.. */
2865         }
2866
2867
2868         if (fd >= 0) {
2869                 if (mddev->bitmap)
2870                         return -EEXIST; /* cannot add when bitmap is present */
2871                 mddev->bitmap_file = fget(fd);
2872
2873                 if (mddev->bitmap_file == NULL) {
2874                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2875                                mdname(mddev));
2876                         return -EBADF;
2877                 }
2878
2879                 err = deny_bitmap_write_access(mddev->bitmap_file);
2880                 if (err) {
2881                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2882                                mdname(mddev));
2883                         fput(mddev->bitmap_file);
2884                         mddev->bitmap_file = NULL;
2885                         return err;
2886                 }
2887                 mddev->bitmap_offset = 0; /* file overrides offset */
2888         } else if (mddev->bitmap == NULL)
2889                 return -ENOENT; /* cannot remove what isn't there */
2890         err = 0;
2891         if (mddev->pers) {
2892                 mddev->pers->quiesce(mddev, 1);
2893                 if (fd >= 0)
2894                         err = bitmap_create(mddev);
2895                 if (fd < 0 || err)
2896                         bitmap_destroy(mddev);
2897                 mddev->pers->quiesce(mddev, 0);
2898         } else if (fd < 0) {
2899                 if (mddev->bitmap_file)
2900                         fput(mddev->bitmap_file);
2901                 mddev->bitmap_file = NULL;
2902         }
2903
2904         return err;
2905 }
2906
2907 /*
2908  * set_array_info is used two different ways
2909  * The original usage is when creating a new array.
2910  * In this usage, raid_disks is > 0 and it together with
2911  *  level, size, not_persistent,layout,chunksize determine the
2912  *  shape of the array.
2913  *  This will always create an array with a type-0.90.0 superblock.
2914  * The newer usage is when assembling an array.
2915  *  In this case raid_disks will be 0, and the major_version field is
2916  *  use to determine which style super-blocks are to be found on the devices.
2917  *  The minor and patch _version numbers are also kept incase the
2918  *  super_block handler wishes to interpret them.
2919  */
2920 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2921 {
2922
2923         if (info->raid_disks == 0) {
2924                 /* just setting version number for superblock loading */
2925                 if (info->major_version < 0 ||
2926                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2927                     super_types[info->major_version].name == NULL) {
2928                         /* maybe try to auto-load a module? */
2929                         printk(KERN_INFO 
2930                                 "md: superblock version %d not known\n",
2931                                 info->major_version);
2932                         return -EINVAL;
2933                 }
2934                 mddev->major_version = info->major_version;
2935                 mddev->minor_version = info->minor_version;
2936                 mddev->patch_version = info->patch_version;
2937                 return 0;
2938         }
2939         mddev->major_version = MD_MAJOR_VERSION;
2940         mddev->minor_version = MD_MINOR_VERSION;
2941         mddev->patch_version = MD_PATCHLEVEL_VERSION;
2942         mddev->ctime         = get_seconds();
2943
2944         mddev->level         = info->level;
2945         mddev->size          = info->size;
2946         mddev->raid_disks    = info->raid_disks;
2947         /* don't set md_minor, it is determined by which /dev/md* was
2948          * openned
2949          */
2950         if (info->state & (1<<MD_SB_CLEAN))
2951                 mddev->recovery_cp = MaxSector;
2952         else
2953                 mddev->recovery_cp = 0;
2954         mddev->persistent    = ! info->not_persistent;
2955
2956         mddev->layout        = info->layout;
2957         mddev->chunk_size    = info->chunk_size;
2958
2959         mddev->max_disks     = MD_SB_DISKS;
2960
2961         mddev->sb_dirty      = 1;
2962
2963         mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
2964         mddev->bitmap_offset = 0;
2965
2966         /*
2967          * Generate a 128 bit UUID
2968          */
2969         get_random_bytes(mddev->uuid, 16);
2970
2971         return 0;
2972 }
2973
2974 /*
2975  * update_array_info is used to change the configuration of an
2976  * on-line array.
2977  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2978  * fields in the info are checked against the array.
2979  * Any differences that cannot be handled will cause an error.
2980  * Normally, only one change can be managed at a time.
2981  */
2982 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2983 {
2984         int rv = 0;
2985         int cnt = 0;
2986         int state = 0;
2987
2988         /* calculate expected state,ignoring low bits */
2989         if (mddev->bitmap && mddev->bitmap_offset)
2990                 state |= (1 << MD_SB_BITMAP_PRESENT);
2991
2992         if (mddev->major_version != info->major_version ||
2993             mddev->minor_version != info->minor_version ||
2994 /*          mddev->patch_version != info->patch_version || */
2995             mddev->ctime         != info->ctime         ||
2996             mddev->level         != info->level         ||
2997 /*          mddev->layout        != info->layout        || */
2998             !mddev->persistent   != info->not_persistent||
2999             mddev->chunk_size    != info->chunk_size    ||
3000             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3001             ((state^info->state) & 0xfffffe00)
3002                 )
3003                 return -EINVAL;
3004         /* Check there is only one change */
3005         if (mddev->size != info->size) cnt++;
3006         if (mddev->raid_disks != info->raid_disks) cnt++;
3007         if (mddev->layout != info->layout) cnt++;
3008         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3009         if (cnt == 0) return 0;
3010         if (cnt > 1) return -EINVAL;
3011
3012         if (mddev->layout != info->layout) {
3013                 /* Change layout
3014                  * we don't need to do anything at the md level, the
3015                  * personality will take care of it all.
3016                  */
3017                 if (mddev->pers->reconfig == NULL)
3018                         return -EINVAL;
3019                 else
3020                         return mddev->pers->reconfig(mddev, info->layout, -1);
3021         }
3022         if (mddev->size != info->size) {
3023                 mdk_rdev_t * rdev;
3024                 struct list_head *tmp;
3025                 if (mddev->pers->resize == NULL)
3026                         return -EINVAL;
3027                 /* The "size" is the amount of each device that is used.
3028                  * This can only make sense for arrays with redundancy.
3029                  * linear and raid0 always use whatever space is available
3030                  * We can only consider changing the size if no resync
3031                  * or reconstruction is happening, and if the new size
3032                  * is acceptable. It must fit before the sb_offset or,
3033                  * if that is <data_offset, it must fit before the
3034                  * size of each device.
3035                  * If size is zero, we find the largest size that fits.
3036                  */
3037                 if (mddev->sync_thread)
3038                         return -EBUSY;
3039                 ITERATE_RDEV(mddev,rdev,tmp) {
3040                         sector_t avail;
3041                         int fit = (info->size == 0);
3042                         if (rdev->sb_offset > rdev->data_offset)
3043                                 avail = (rdev->sb_offset*2) - rdev->data_offset;
3044                         else
3045                                 avail = get_capacity(rdev->bdev->bd_disk)
3046                                         - rdev->data_offset;
3047                         if (fit && (info->size == 0 || info->size > avail/2))
3048                                 info->size = avail/2;
3049                         if (avail < ((sector_t)info->size << 1))
3050                                 return -ENOSPC;
3051                 }
3052                 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3053                 if (!rv) {
3054                         struct block_device *bdev;
3055
3056                         bdev = bdget_disk(mddev->gendisk, 0);
3057                         if (bdev) {
3058                                 down(&bdev->bd_inode->i_sem);
3059                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
3060                                 up(&bdev->bd_inode->i_sem);
3061                                 bdput(bdev);
3062                         }
3063                 }
3064         }
3065         if (mddev->raid_disks    != info->raid_disks) {
3066                 /* change the number of raid disks */
3067                 if (mddev->pers->reshape == NULL)
3068                         return -EINVAL;
3069                 if (info->raid_disks <= 0 ||
3070                     info->raid_disks >= mddev->max_disks)
3071                         return -EINVAL;
3072                 if (mddev->sync_thread)
3073                         return -EBUSY;
3074                 rv = mddev->pers->reshape(mddev, info->raid_disks);
3075                 if (!rv) {
3076                         struct block_device *bdev;
3077
3078                         bdev = bdget_disk(mddev->gendisk, 0);
3079                         if (bdev) {
3080                                 down(&bdev->bd_inode->i_sem);
3081                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
3082                                 up(&bdev->bd_inode->i_sem);
3083                                 bdput(bdev);
3084                         }
3085                 }
3086         }
3087         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3088                 if (mddev->pers->quiesce == NULL)
3089                         return -EINVAL;
3090                 if (mddev->recovery || mddev->sync_thread)
3091                         return -EBUSY;
3092                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3093                         /* add the bitmap */
3094                         if (mddev->bitmap)
3095                                 return -EEXIST;
3096                         if (mddev->default_bitmap_offset == 0)
3097                                 return -EINVAL;
3098                         mddev->bitmap_offset = mddev->default_bitmap_offset;
3099                         mddev->pers->quiesce(mddev, 1);
3100                         rv = bitmap_create(mddev);
3101                         if (rv)
3102                                 bitmap_destroy(mddev);
3103                         mddev->pers->quiesce(mddev, 0);
3104                 } else {
3105                         /* remove the bitmap */
3106                         if (!mddev->bitmap)
3107                                 return -ENOENT;
3108                         if (mddev->bitmap->file)
3109                                 return -EINVAL;
3110                         mddev->pers->quiesce(mddev, 1);
3111                         bitmap_destroy(mddev);
3112                         mddev->pers->quiesce(mddev, 0);
3113                         mddev->bitmap_offset = 0;
3114                 }
3115         }
3116         md_update_sb(mddev);
3117         return rv;
3118 }
3119
3120 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3121 {
3122         mdk_rdev_t *rdev;
3123
3124         if (mddev->pers == NULL)
3125                 return -ENODEV;
3126
3127         rdev = find_rdev(mddev, dev);
3128         if (!rdev)
3129                 return -ENODEV;
3130
3131         md_error(mddev, rdev);
3132         return 0;
3133 }
3134
3135 static int md_ioctl(struct inode *inode, struct file *file,
3136                         unsigned int cmd, unsigned long arg)
3137 {
3138         int err = 0;
3139         void __user *argp = (void __user *)arg;
3140         struct hd_geometry __user *loc = argp;
3141         mddev_t *mddev = NULL;
3142
3143         if (!capable(CAP_SYS_ADMIN))
3144                 return -EACCES;
3145
3146         /*
3147          * Commands dealing with the RAID driver but not any
3148          * particular array:
3149          */
3150         switch (cmd)
3151         {
3152                 case RAID_VERSION:
3153                         err = get_version(argp);
3154                         goto done;
3155
3156                 case PRINT_RAID_DEBUG:
3157                         err = 0;
3158                         md_print_devices();
3159                         goto done;
3160
3161 #ifndef MODULE
3162                 case RAID_AUTORUN:
3163                         err = 0;
3164                         autostart_arrays(arg);
3165                         goto done;
3166 #endif
3167                 default:;
3168         }
3169
3170         /*
3171          * Commands creating/starting a new array:
3172          */
3173
3174         mddev = inode->i_bdev->bd_disk->private_data;
3175
3176         if (!mddev) {
3177                 BUG();
3178                 goto abort;
3179         }
3180
3181
3182         if (cmd == START_ARRAY) {
3183                 /* START_ARRAY doesn't need to lock the array as autostart_array
3184                  * does the locking, and it could even be a different array
3185                  */
3186                 static int cnt = 3;
3187                 if (cnt > 0 ) {
3188                         printk(KERN_WARNING
3189                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3190                                "This will not be supported beyond July 2006\n",
3191                                current->comm, current->pid);
3192                         cnt--;
3193                 }
3194                 err = autostart_array(new_decode_dev(arg));
3195                 if (err) {
3196                         printk(KERN_WARNING "md: autostart failed!\n");
3197                         goto abort;
3198                 }
3199                 goto done;
3200         }
3201
3202         err = mddev_lock(mddev);
3203         if (err) {
3204                 printk(KERN_INFO 
3205                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
3206                         err, cmd);
3207                 goto abort;
3208         }
3209
3210         switch (cmd)
3211         {
3212                 case SET_ARRAY_INFO:
3213                         {
3214                                 mdu_array_info_t info;
3215                                 if (!arg)
3216                                         memset(&info, 0, sizeof(info));
3217                                 else if (copy_from_user(&info, argp, sizeof(info))) {
3218                                         err = -EFAULT;
3219                                         goto abort_unlock;
3220                                 }
3221                                 if (mddev->pers) {
3222                                         err = update_array_info(mddev, &info);
3223                                         if (err) {
3224                                                 printk(KERN_WARNING "md: couldn't update"
3225                                                        " array info. %d\n", err);
3226                                                 goto abort_unlock;
3227                                         }
3228                                         goto done_unlock;
3229                                 }
3230                                 if (!list_empty(&mddev->disks)) {
3231                                         printk(KERN_WARNING
3232                                                "md: array %s already has disks!\n",
3233                                                mdname(mddev));
3234                                         err = -EBUSY;
3235                                         goto abort_unlock;
3236                                 }
3237                                 if (mddev->raid_disks) {
3238                                         printk(KERN_WARNING
3239                                                "md: array %s already initialised!\n",
3240                                                mdname(mddev));
3241                                         err = -EBUSY;
3242                                         goto abort_unlock;
3243                                 }
3244                                 err = set_array_info(mddev, &info);
3245                                 if (err) {
3246                                         printk(KERN_WARNING "md: couldn't set"
3247                                                " array info. %d\n", err);
3248                                         goto abort_unlock;
3249                                 }
3250                         }
3251                         goto done_unlock;
3252
3253                 default:;
3254         }
3255
3256         /*
3257          * Commands querying/configuring an existing array:
3258          */
3259         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3260          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3261         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3262                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3263                 err = -ENODEV;
3264                 goto abort_unlock;
3265         }
3266
3267         /*
3268          * Commands even a read-only array can execute:
3269          */
3270         switch (cmd)
3271         {
3272                 case GET_ARRAY_INFO:
3273                         err = get_array_info(mddev, argp);
3274                         goto done_unlock;
3275
3276                 case GET_BITMAP_FILE:
3277                         err = get_bitmap_file(mddev, argp);
3278                         goto done_unlock;
3279
3280                 case GET_DISK_INFO:
3281                         err = get_disk_info(mddev, argp);
3282                         goto done_unlock;
3283
3284                 case RESTART_ARRAY_RW:
3285                         err = restart_array(mddev);
3286                         goto done_unlock;
3287
3288                 case STOP_ARRAY:
3289                         err = do_md_stop (mddev, 0);
3290                         goto done_unlock;
3291
3292                 case STOP_ARRAY_RO:
3293                         err = do_md_stop (mddev, 1);
3294                         goto done_unlock;
3295
3296         /*
3297          * We have a problem here : there is no easy way to give a CHS
3298          * virtual geometry. We currently pretend that we have a 2 heads
3299          * 4 sectors (with a BIG number of cylinders...). This drives
3300          * dosfs just mad... ;-)
3301          */
3302                 case HDIO_GETGEO:
3303                         if (!loc) {
3304                                 err = -EINVAL;
3305                                 goto abort_unlock;
3306                         }
3307                         err = put_user (2, (char __user *) &loc->heads);
3308                         if (err)
3309                                 goto abort_unlock;
3310                         err = put_user (4, (char __user *) &loc->sectors);
3311                         if (err)
3312                                 goto abort_unlock;
3313                         err = put_user(get_capacity(mddev->gendisk)/8,
3314                                         (short __user *) &loc->cylinders);
3315                         if (err)
3316                                 goto abort_unlock;
3317                         err = put_user (get_start_sect(inode->i_bdev),
3318                                                 (long __user *) &loc->start);
3319                         goto done_unlock;
3320         }
3321
3322         /*
3323          * The remaining ioctls are changing the state of the
3324          * superblock, so we do not allow them on read-only arrays.
3325          * However non-MD ioctls (e.g. get-size) will still come through
3326          * here and hit the 'default' below, so only disallow
3327          * 'md' ioctls, and switch to rw mode if started auto-readonly.
3328          */
3329         if (_IOC_TYPE(cmd) == MD_MAJOR &&
3330             mddev->ro && mddev->pers) {
3331                 if (mddev->ro == 2) {
3332                         mddev->ro = 0;
3333                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3334                 md_wakeup_thread(mddev->thread);
3335
3336                 } else {
3337                         err = -EROFS;
3338                         goto abort_unlock;
3339                 }
3340         }
3341
3342         switch (cmd)
3343         {
3344                 case ADD_NEW_DISK:
3345                 {
3346                         mdu_disk_info_t info;
3347                         if (copy_from_user(&info, argp, sizeof(info)))
3348                                 err = -EFAULT;
3349                         else
3350                                 err = add_new_disk(mddev, &info);
3351                         goto done_unlock;
3352                 }
3353
3354                 case HOT_REMOVE_DISK:
3355                         err = hot_remove_disk(mddev, new_decode_dev(arg));
3356                         goto done_unlock;
3357
3358                 case HOT_ADD_DISK:
3359                         err = hot_add_disk(mddev, new_decode_dev(arg));
3360                         goto done_unlock;
3361
3362                 case SET_DISK_FAULTY:
3363                         err = set_disk_faulty(mddev, new_decode_dev(arg));
3364                         goto done_unlock;
3365
3366                 case RUN_ARRAY:
3367                         err = do_md_run (mddev);
3368                         goto done_unlock;
3369
3370                 case SET_BITMAP_FILE:
3371                         err = set_bitmap_file(mddev, (int)arg);
3372                         goto done_unlock;
3373
3374                 default:
3375                         if (_IOC_TYPE(cmd) == MD_MAJOR)
3376                                 printk(KERN_WARNING "md: %s(pid %d) used"
3377                                         " obsolete MD ioctl, upgrade your"
3378                                         " software to use new ictls.\n",
3379                                         current->comm, current->pid);
3380                         err = -EINVAL;
3381                         goto abort_unlock;
3382         }
3383
3384 done_unlock:
3385 abort_unlock:
3386         mddev_unlock(mddev);
3387
3388         return err;
3389 done:
3390         if (err)
3391                 MD_BUG();
3392 abort:
3393         return err;
3394 }
3395
3396 static int md_open(struct inode *inode, struct file *file)
3397 {
3398         /*
3399          * Succeed if we can lock the mddev, which confirms that
3400          * it isn't being stopped right now.
3401          */
3402         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3403         int err;
3404
3405         if ((err = mddev_lock(mddev)))
3406                 goto out;
3407
3408         err = 0;
3409         mddev_get(mddev);
3410         mddev_unlock(mddev);
3411
3412         check_disk_change(inode->i_bdev);
3413  out:
3414         return err;
3415 }
3416
3417 static int md_release(struct inode *inode, struct file * file)
3418 {
3419         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3420
3421         if (!mddev)
3422                 BUG();
3423         mddev_put(mddev);
3424
3425         return 0;
3426 }
3427
3428 static int md_media_changed(struct gendisk *disk)
3429 {
3430         mddev_t *mddev = disk->private_data;
3431
3432         return mddev->changed;
3433 }
3434
3435 static int md_revalidate(struct gendisk *disk)
3436 {
3437         mddev_t *mddev = disk->private_data;
3438
3439         mddev->changed = 0;
3440         return 0;
3441 }
3442 static struct block_device_operations md_fops =
3443 {
3444         .owner          = THIS_MODULE,
3445         .open           = md_open,
3446         .release        = md_release,
3447         .ioctl          = md_ioctl,
3448         .media_changed  = md_media_changed,
3449         .revalidate_disk= md_revalidate,
3450 };
3451
3452 static int md_thread(void * arg)
3453 {
3454         mdk_thread_t *thread = arg;
3455
3456         /*
3457          * md_thread is a 'system-thread', it's priority should be very
3458          * high. We avoid resource deadlocks individually in each
3459          * raid personality. (RAID5 does preallocation) We also use RR and
3460          * the very same RT priority as kswapd, thus we will never get
3461          * into a priority inversion deadlock.
3462          *
3463          * we definitely have to have equal or higher priority than
3464          * bdflush, otherwise bdflush will deadlock if there are too
3465          * many dirty RAID5 blocks.
3466          */
3467
3468         allow_signal(SIGKILL);
3469         while (!kthread_should_stop()) {
3470
3471                 /* We need to wait INTERRUPTIBLE so that
3472                  * we don't add to the load-average.
3473                  * That means we need to be sure no signals are
3474                  * pending
3475                  */
3476                 if (signal_pending(current))
3477                         flush_signals(current);
3478
3479                 wait_event_interruptible_timeout
3480                         (thread->wqueue,
3481                          test_bit(THREAD_WAKEUP, &thread->flags)
3482                          || kthread_should_stop(),
3483                          thread->timeout);
3484                 try_to_freeze();
3485
3486                 clear_bit(THREAD_WAKEUP, &thread->flags);
3487
3488                 thread->run(thread->mddev);
3489         }
3490
3491         return 0;
3492 }
3493
3494 void md_wakeup_thread(mdk_thread_t *thread)
3495 {
3496         if (thread) {
3497                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3498                 set_bit(THREAD_WAKEUP, &thread->flags);
3499                 wake_up(&thread->wqueue);
3500         }
3501 }
3502
3503 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3504                                  const char *name)
3505 {
3506         mdk_thread_t *thread;
3507
3508         thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3509         if (!thread)
3510                 return NULL;
3511
3512         memset(thread, 0, sizeof(mdk_thread_t));
3513         init_waitqueue_head(&thread->wqueue);
3514
3515         thread->run = run;
3516         thread->mddev = mddev;
3517         thread->timeout = MAX_SCHEDULE_TIMEOUT;
3518         thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3519         if (IS_ERR(thread->tsk)) {
3520                 kfree(thread);
3521                 return NULL;
3522         }
3523         return thread;
3524 }
3525
3526 void md_unregister_thread(mdk_thread_t *thread)
3527 {
3528         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3529
3530         kthread_stop(thread->tsk);
3531         kfree(thread);
3532 }
3533
3534 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3535 {
3536         if (!mddev) {
3537                 MD_BUG();
3538                 return;
3539         }
3540
3541         if (!rdev || test_bit(Faulty, &rdev->flags))
3542                 return;
3543 /*
3544         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3545                 mdname(mddev),
3546                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3547                 __builtin_return_address(0),__builtin_return_address(1),
3548                 __builtin_return_address(2),__builtin_return_address(3));
3549 */
3550         if (!mddev->pers->error_handler)
3551                 return;
3552         mddev->pers->error_handler(mddev,rdev);
3553         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3554         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3555         md_wakeup_thread(mddev->thread);
3556         md_new_event(mddev);
3557 }
3558
3559 /* seq_file implementation /proc/mdstat */
3560
3561 static void status_unused(struct seq_file *seq)
3562 {
3563         int i = 0;
3564         mdk_rdev_t *rdev;
3565         struct list_head *tmp;
3566
3567         seq_printf(seq, "unused devices: ");
3568
3569         ITERATE_RDEV_PENDING(rdev,tmp) {
3570                 char b[BDEVNAME_SIZE];
3571                 i++;
3572                 seq_printf(seq, "%s ",
3573                               bdevname(rdev->bdev,b));
3574         }
3575         if (!i)
3576                 seq_printf(seq, "<none>");
3577
3578         seq_printf(seq, "\n");
3579 }
3580
3581
3582 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3583 {
3584         unsigned long max_blocks, resync, res, dt, db, rt;
3585
3586         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3587
3588         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3589                 max_blocks = mddev->resync_max_sectors >> 1;
3590         else
3591                 max_blocks = mddev->size;
3592
3593         /*
3594          * Should not happen.
3595          */
3596         if (!max_blocks) {
3597                 MD_BUG();
3598                 return;
3599         }
3600         res = (resync/1024)*1000/(max_blocks/1024 + 1);
3601         {
3602                 int i, x = res/50, y = 20-x;
3603                 seq_printf(seq, "[");
3604                 for (i = 0; i < x; i++)
3605                         seq_printf(seq, "=");
3606                 seq_printf(seq, ">");
3607                 for (i = 0; i < y; i++)
3608                         seq_printf(seq, ".");
3609                 seq_printf(seq, "] ");
3610         }
3611         seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3612                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3613                        "resync" : "recovery"),
3614                       res/10, res % 10, resync, max_blocks);
3615
3616         /*
3617          * We do not want to overflow, so the order of operands and
3618          * the * 100 / 100 trick are important. We do a +1 to be
3619          * safe against division by zero. We only estimate anyway.
3620          *
3621          * dt: time from mark until now
3622          * db: blocks written from mark until now
3623          * rt: remaining time
3624          */
3625         dt = ((jiffies - mddev->resync_mark) / HZ);
3626         if (!dt) dt++;
3627         db = resync - (mddev->resync_mark_cnt/2);
3628         rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3629
3630         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3631
3632         seq_printf(seq, " speed=%ldK/sec", db/dt);
3633 }
3634
3635 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3636 {
3637         struct list_head *tmp;
3638         loff_t l = *pos;
3639         mddev_t *mddev;
3640
3641         if (l >= 0x10000)
3642                 return NULL;
3643         if (!l--)
3644                 /* header */
3645                 return (void*)1;
3646
3647         spin_lock(&all_mddevs_lock);
3648         list_for_each(tmp,&all_mddevs)
3649                 if (!l--) {
3650                         mddev = list_entry(tmp, mddev_t, all_mddevs);
3651                         mddev_get(mddev);
3652                         spin_unlock(&all_mddevs_lock);
3653                         return mddev;
3654                 }
3655         spin_unlock(&all_mddevs_lock);
3656         if (!l--)
3657                 return (void*)2;/* tail */
3658         return NULL;
3659 }
3660
3661 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3662 {
3663         struct list_head *tmp;
3664         mddev_t *next_mddev, *mddev = v;
3665         
3666         ++*pos;
3667         if (v == (void*)2)
3668                 return NULL;
3669
3670         spin_lock(&all_mddevs_lock);
3671         if (v == (void*)1)
3672                 tmp = all_mddevs.next;
3673         else
3674                 tmp = mddev->all_mddevs.next;
3675         if (tmp != &all_mddevs)
3676                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3677         else {
3678                 next_mddev = (void*)2;
3679                 *pos = 0x10000;
3680         }               
3681         spin_unlock(&all_mddevs_lock);
3682
3683         if (v != (void*)1)
3684                 mddev_put(mddev);
3685         return next_mddev;
3686
3687 }
3688
3689 static void md_seq_stop(struct seq_file *seq, void *v)
3690 {
3691         mddev_t *mddev = v;
3692
3693         if (mddev && v != (void*)1 && v != (void*)2)
3694                 mddev_put(mddev);
3695 }
3696
3697 struct mdstat_info {
3698         int event;
3699 };
3700
3701 static int md_seq_show(struct seq_file *seq, void *v)
3702 {
3703         mddev_t *mddev = v;
3704         sector_t size;
3705         struct list_head *tmp2;
3706         mdk_rdev_t *rdev;
3707         struct mdstat_info *mi = seq->private;
3708         int i;
3709         struct bitmap *bitmap;
3710
3711         if (v == (void*)1) {
3712                 seq_printf(seq, "Personalities : ");
3713                 spin_lock(&pers_lock);
3714                 for (i = 0; i < MAX_PERSONALITY; i++)
3715                         if (pers[i])
3716                                 seq_printf(seq, "[%s] ", pers[i]->name);
3717
3718                 spin_unlock(&pers_lock);
3719                 seq_printf(seq, "\n");
3720                 mi->event = atomic_read(&md_event_count);
3721                 return 0;
3722         }
3723         if (v == (void*)2) {
3724                 status_unused(seq);
3725                 return 0;
3726         }
3727
3728         if (mddev_lock(mddev)!=0) 
3729                 return -EINTR;
3730         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3731                 seq_printf(seq, "%s : %sactive", mdname(mddev),
3732                                                 mddev->pers ? "" : "in");
3733                 if (mddev->pers) {
3734                         if (mddev->ro==1)
3735                                 seq_printf(seq, " (read-only)");
3736                         if (mddev->ro==2)
3737                                 seq_printf(seq, "(auto-read-only)");
3738                         seq_printf(seq, " %s", mddev->pers->name);
3739                 }
3740
3741                 size = 0;
3742                 ITERATE_RDEV(mddev,rdev,tmp2) {
3743                         char b[BDEVNAME_SIZE];
3744                         seq_printf(seq, " %s[%d]",
3745                                 bdevname(rdev->bdev,b), rdev->desc_nr);
3746                         if (test_bit(WriteMostly, &rdev->flags))
3747                                 seq_printf(seq, "(W)");
3748                         if (test_bit(Faulty, &rdev->flags)) {
3749                                 seq_printf(seq, "(F)");
3750                                 continue;
3751                         } else if (rdev->raid_disk < 0)
3752                                 seq_printf(seq, "(S)"); /* spare */
3753                         size += rdev->size;
3754                 }
3755
3756                 if (!list_empty(&mddev->disks)) {
3757                         if (mddev->pers)
3758                                 seq_printf(seq, "\n      %llu blocks",
3759                                         (unsigned long long)mddev->array_size);
3760                         else
3761                                 seq_printf(seq, "\n      %llu blocks",
3762                                         (unsigned long long)size);
3763                 }
3764                 if (mddev->persistent) {
3765                         if (mddev->major_version != 0 ||
3766                             mddev->minor_version != 90) {
3767                                 seq_printf(seq," super %d.%d",
3768                                            mddev->major_version,
3769                                            mddev->minor_version);
3770                         }
3771                 } else
3772                         seq_printf(seq, " super non-persistent");
3773
3774                 if (mddev->pers) {
3775                         mddev->pers->status (seq, mddev);
3776                         seq_printf(seq, "\n      ");
3777                         if (mddev->pers->sync_request) {
3778                                 if (mddev->curr_resync > 2) {
3779                                         status_resync (seq, mddev);
3780                                         seq_printf(seq, "\n      ");
3781                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3782                                         seq_printf(seq, "\tresync=DELAYED\n      ");
3783                                 else if (mddev->recovery_cp < MaxSector)
3784                                         seq_printf(seq, "\tresync=PENDING\n      ");
3785                         }
3786                 } else
3787                         seq_printf(seq, "\n       ");
3788
3789                 if ((bitmap = mddev->bitmap)) {
3790                         unsigned long chunk_kb;
3791                         unsigned long flags;
3792                         spin_lock_irqsave(&bitmap->lock, flags);
3793                         chunk_kb = bitmap->chunksize >> 10;
3794                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3795                                 "%lu%s chunk",
3796                                 bitmap->pages - bitmap->missing_pages,
3797                                 bitmap->pages,
3798                                 (bitmap->pages - bitmap->missing_pages)
3799                                         << (PAGE_SHIFT - 10),
3800                                 chunk_kb ? chunk_kb : bitmap->chunksize,
3801                                 chunk_kb ? "KB" : "B");
3802                         if (bitmap->file) {
3803                                 seq_printf(seq, ", file: ");
3804                                 seq_path(seq, bitmap->file->f_vfsmnt,
3805                                          bitmap->file->f_dentry," \t\n");
3806                         }
3807
3808                         seq_printf(seq, "\n");
3809                         spin_unlock_irqrestore(&bitmap->lock, flags);
3810                 }
3811
3812                 seq_printf(seq, "\n");
3813         }
3814         mddev_unlock(mddev);
3815         
3816         return 0;
3817 }
3818
3819 static struct seq_operations md_seq_ops = {
3820         .start  = md_seq_start,
3821         .next   = md_seq_next,
3822         .stop   = md_seq_stop,
3823         .show   = md_seq_show,
3824 };
3825
3826 static int md_seq_open(struct inode *inode, struct file *file)
3827 {
3828         int error;
3829         struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
3830         if (mi == NULL)
3831                 return -ENOMEM;
3832
3833         error = seq_open(file, &md_seq_ops);
3834         if (error)
3835                 kfree(mi);
3836         else {
3837                 struct seq_file *p = file->private_data;
3838                 p->private = mi;
3839                 mi->event = atomic_read(&md_event_count);
3840         }
3841         return error;
3842 }
3843
3844 static int md_seq_release(struct inode *inode, struct file *file)
3845 {
3846         struct seq_file *m = file->private_data;
3847         struct mdstat_info *mi = m->private;
3848         m->private = NULL;
3849         kfree(mi);
3850         return seq_release(inode, file);
3851 }
3852
3853 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
3854 {
3855         struct seq_file *m = filp->private_data;
3856         struct mdstat_info *mi = m->private;
3857         int mask;
3858
3859         poll_wait(filp, &md_event_waiters, wait);
3860
3861         /* always allow read */
3862         mask = POLLIN | POLLRDNORM;
3863
3864         if (mi->event != atomic_read(&md_event_count))
3865                 mask |= POLLERR | POLLPRI;
3866         return mask;
3867 }
3868
3869 static struct file_operations md_seq_fops = {
3870         .open           = md_seq_open,
3871         .read           = seq_read,
3872         .llseek         = seq_lseek,
3873         .release        = md_seq_release,
3874         .poll           = mdstat_poll,
3875 };
3876
3877 int register_md_personality(int pnum, mdk_personality_t *p)
3878 {
3879         if (pnum >= MAX_PERSONALITY) {
3880                 printk(KERN_ERR
3881                        "md: tried to install personality %s as nr %d, but max is %lu\n",
3882                        p->name, pnum, MAX_PERSONALITY-1);
3883                 return -EINVAL;
3884         }
3885
3886         spin_lock(&pers_lock);
3887         if (pers[pnum]) {
3888                 spin_unlock(&pers_lock);
3889                 return -EBUSY;
3890         }
3891
3892         pers[pnum] = p;
3893         printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3894         spin_unlock(&pers_lock);
3895         return 0;
3896 }
3897
3898 int unregister_md_personality(int pnum)
3899 {
3900         if (pnum >= MAX_PERSONALITY)
3901                 return -EINVAL;
3902
3903         printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3904         spin_lock(&pers_lock);
3905         pers[pnum] = NULL;
3906         spin_unlock(&pers_lock);
3907         return 0;
3908 }
3909
3910 static int is_mddev_idle(mddev_t *mddev)
3911 {
3912         mdk_rdev_t * rdev;
3913         struct list_head *tmp;
3914         int idle;
3915         unsigned long curr_events;
3916
3917         idle = 1;
3918         ITERATE_RDEV(mddev,rdev,tmp) {
3919                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3920                 curr_events = disk_stat_read(disk, sectors[0]) + 
3921                                 disk_stat_read(disk, sectors[1]) - 
3922                                 atomic_read(&disk->sync_io);
3923                 /* The difference between curr_events and last_events
3924                  * will be affected by any new non-sync IO (making
3925                  * curr_events bigger) and any difference in the amount of
3926                  * in-flight syncio (making current_events bigger or smaller)
3927                  * The amount in-flight is currently limited to
3928                  * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
3929                  * which is at most 4096 sectors.
3930                  * These numbers are fairly fragile and should be made
3931                  * more robust, probably by enforcing the
3932                  * 'window size' that md_do_sync sort-of uses.
3933                  *
3934                  * Note: the following is an unsigned comparison.
3935                  */
3936                 if ((curr_events - rdev->last_events + 4096) > 8192) {
3937                         rdev->last_events = curr_events;
3938                         idle = 0;
3939                 }
3940         }
3941         return idle;
3942 }
3943
3944 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3945 {
3946         /* another "blocks" (512byte) blocks have been synced */
3947         atomic_sub(blocks, &mddev->recovery_active);
3948         wake_up(&mddev->recovery_wait);
3949         if (!ok) {
3950                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3951                 md_wakeup_thread(mddev->thread);
3952                 // stop recovery, signal do_sync ....
3953         }
3954 }
3955
3956
3957 /* md_write_start(mddev, bi)
3958  * If we need to update some array metadata (e.g. 'active' flag
3959  * in superblock) before writing, schedule a superblock update
3960  * and wait for it to complete.
3961  */
3962 void md_write_start(mddev_t *mddev, struct bio *bi)
3963 {
3964         if (bio_data_dir(bi) != WRITE)
3965                 return;
3966
3967         BUG_ON(mddev->ro == 1);
3968         if (mddev->ro == 2) {
3969                 /* need to switch to read/write */
3970                 mddev->ro = 0;
3971                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3972                 md_wakeup_thread(mddev->thread);
3973         }
3974         atomic_inc(&mddev->writes_pending);
3975         if (mddev->in_sync) {
3976                 spin_lock_irq(&mddev->write_lock);
3977                 if (mddev->in_sync) {
3978                         mddev->in_sync = 0;
3979                         mddev->sb_dirty = 1;
3980                         md_wakeup_thread(mddev->thread);
3981                 }
3982                 spin_unlock_irq(&mddev->write_lock);
3983         }
3984         wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3985 }
3986
3987 void md_write_end(mddev_t *mddev)
3988 {
3989         if (atomic_dec_and_test(&mddev->writes_pending)) {
3990                 if (mddev->safemode == 2)
3991                         md_wakeup_thread(mddev->thread);
3992                 else
3993                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3994         }
3995 }
3996
3997 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3998
3999 #define SYNC_MARKS      10
4000 #define SYNC_MARK_STEP  (3*HZ)
4001 static void md_do_sync(mddev_t *mddev)
4002 {
4003         mddev_t *mddev2;
4004         unsigned int currspeed = 0,
4005                  window;
4006         sector_t max_sectors,j, io_sectors;
4007         unsigned long mark[SYNC_MARKS];
4008         sector_t mark_cnt[SYNC_MARKS];
4009         int last_mark,m;
4010         struct list_head *tmp;
4011         sector_t last_check;
4012         int skipped = 0;
4013
4014         /* just incase thread restarts... */
4015         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4016                 return;
4017
4018         /* we overload curr_resync somewhat here.
4019          * 0 == not engaged in resync at all
4020          * 2 == checking that there is no conflict with another sync
4021          * 1 == like 2, but have yielded to allow conflicting resync to
4022          *              commense
4023          * other == active in resync - this many blocks
4024          *
4025          * Before starting a resync we must have set curr_resync to
4026          * 2, and then checked that every "conflicting" array has curr_resync
4027          * less than ours.  When we find one that is the same or higher
4028          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4029          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4030          * This will mean we have to start checking from the beginning again.
4031          *
4032          */
4033
4034         do {
4035                 mddev->curr_resync = 2;
4036
4037         try_again:
4038                 if (kthread_should_stop()) {
4039                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4040                         goto skip;
4041                 }
4042                 ITERATE_MDDEV(mddev2,tmp) {
4043                         if (mddev2 == mddev)
4044                                 continue;
4045                         if (mddev2->curr_resync && 
4046                             match_mddev_units(mddev,mddev2)) {
4047                                 DEFINE_WAIT(wq);
4048                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
4049                                         /* arbitrarily yield */
4050                                         mddev->curr_resync = 1;
4051                                         wake_up(&resync_wait);
4052                                 }
4053                                 if (mddev > mddev2 && mddev->curr_resync == 1)
4054                                         /* no need to wait here, we can wait the next
4055                                          * time 'round when curr_resync == 2
4056                                          */
4057                                         continue;
4058                                 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4059                                 if (!kthread_should_stop() &&
4060                                     mddev2->curr_resync >= mddev->curr_resync) {
4061                                         printk(KERN_INFO "md: delaying resync of %s"
4062                                                " until %s has finished resync (they"
4063                                                " share one or more physical units)\n",
4064                                                mdname(mddev), mdname(mddev2));
4065                                         mddev_put(mddev2);
4066                                         schedule();
4067                                         finish_wait(&resync_wait, &wq);
4068                                         goto try_again;
4069                                 }
4070                                 finish_wait(&resync_wait, &wq);
4071                         }
4072                 }
4073         } while (mddev->curr_resync < 2);
4074
4075         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4076                 /* resync follows the size requested by the personality,
4077                  * which defaults to physical size, but can be virtual size
4078                  */
4079                 max_sectors = mddev->resync_max_sectors;
4080                 mddev->resync_mismatches = 0;
4081         } else
4082                 /* recovery follows the physical size of devices */
4083                 max_sectors = mddev->size << 1;
4084
4085         printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4086         printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4087                 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
4088         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4089                "(but not more than %d KB/sec) for reconstruction.\n",
4090                sysctl_speed_limit_max);
4091
4092         is_mddev_idle(mddev); /* this also initializes IO event counters */
4093         /* we don't use the checkpoint if there's a bitmap */
4094         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4095             && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4096                 j = mddev->recovery_cp;
4097         else
4098                 j = 0;
4099         io_sectors = 0;
4100         for (m = 0; m < SYNC_MARKS; m++) {
4101                 mark[m] = jiffies;
4102                 mark_cnt[m] = io_sectors;
4103         }
4104         last_mark = 0;
4105         mddev->resync_mark = mark[last_mark];
4106         mddev->resync_mark_cnt = mark_cnt[last_mark];
4107
4108         /*
4109          * Tune reconstruction:
4110          */
4111         window = 32*(PAGE_SIZE/512);
4112         printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4113                 window/2,(unsigned long long) max_sectors/2);
4114
4115         atomic_set(&mddev->recovery_active, 0);
4116         init_waitqueue_head(&mddev->recovery_wait);
4117         last_check = 0;
4118
4119         if (j>2) {
4120                 printk(KERN_INFO 
4121                         "md: resuming recovery of %s from checkpoint.\n",
4122                         mdname(mddev));
4123                 mddev->curr_resync = j;
4124         }
4125
4126         while (j < max_sectors) {
4127                 sector_t sectors;
4128
4129                 skipped = 0;
4130                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4131                                             currspeed < sysctl_speed_limit_min);
4132                 if (sectors == 0) {
4133                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4134                         goto out;
4135                 }
4136
4137                 if (!skipped) { /* actual IO requested */
4138                         io_sectors += sectors;
4139                         atomic_add(sectors, &mddev->recovery_active);
4140                 }
4141
4142                 j += sectors;
4143                 if (j>1) mddev->curr_resync = j;
4144                 if (last_check == 0)
4145                         /* this is the earliers that rebuilt will be
4146                          * visible in /proc/mdstat
4147                          */
4148                         md_new_event(mddev);
4149
4150                 if (last_check + window > io_sectors || j == max_sectors)
4151                         continue;
4152
4153                 last_check = io_sectors;
4154
4155                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4156                     test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4157                         break;
4158
4159         repeat:
4160                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4161                         /* step marks */
4162                         int next = (last_mark+1) % SYNC_MARKS;
4163
4164                         mddev->resync_mark = mark[next];
4165                         mddev->resync_mark_cnt = mark_cnt[next];
4166                         mark[next] = jiffies;
4167                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4168                         last_mark = next;
4169                 }
4170
4171
4172                 if (kthread_should_stop()) {
4173                         /*
4174                          * got a signal, exit.
4175                          */
4176                         printk(KERN_INFO 
4177                                 "md: md_do_sync() got signal ... exiting\n");
4178                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4179                         goto out;
4180                 }
4181
4182                 /*
4183                  * this loop exits only if either when we are slower than
4184                  * the 'hard' speed limit, or the system was IO-idle for
4185                  * a jiffy.
4186                  * the system might be non-idle CPU-wise, but we only care
4187                  * about not overloading the IO subsystem. (things like an
4188                  * e2fsck being done on the RAID array should execute fast)
4189                  */
4190                 mddev->queue->unplug_fn(mddev->queue);
4191                 cond_resched();
4192
4193                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4194                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
4195
4196                 if (currspeed > sysctl_speed_limit_min) {
4197                         if ((currspeed > sysctl_speed_limit_max) ||
4198                                         !is_mddev_idle(mddev)) {
4199                                 msleep(500);
4200                                 goto repeat;
4201                         }
4202                 }
4203         }
4204         printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4205         /*
4206          * this also signals 'finished resyncing' to md_stop
4207          */
4208  out:
4209         mddev->queue->unplug_fn(mddev->queue);
4210
4211         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4212
4213         /* tell personality that we are finished */
4214         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4215
4216         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4217             mddev->curr_resync > 2 &&
4218             mddev->curr_resync >= mddev->recovery_cp) {
4219                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4220                         printk(KERN_INFO 
4221                                 "md: checkpointing recovery of %s.\n",
4222                                 mdname(mddev));
4223                         mddev->recovery_cp = mddev->curr_resync;
4224                 } else
4225                         mddev->recovery_cp = MaxSector;
4226         }
4227
4228  skip:
4229         mddev->curr_resync = 0;
4230         wake_up(&resync_wait);
4231         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4232         md_wakeup_thread(mddev->thread);
4233 }
4234
4235
4236 /*
4237  * This routine is regularly called by all per-raid-array threads to
4238  * deal with generic issues like resync and super-block update.
4239  * Raid personalities that don't have a thread (linear/raid0) do not
4240  * need this as they never do any recovery or update the superblock.
4241  *
4242  * It does not do any resync itself, but rather "forks" off other threads
4243  * to do that as needed.
4244  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4245  * "->recovery" and create a thread at ->sync_thread.
4246  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4247  * and wakeups up this thread which will reap the thread and finish up.
4248  * This thread also removes any faulty devices (with nr_pending == 0).
4249  *
4250  * The overall approach is:
4251  *  1/ if the superblock needs updating, update it.
4252  *  2/ If a recovery thread is running, don't do anything else.
4253  *  3/ If recovery has finished, clean up, possibly marking spares active.
4254  *  4/ If there are any faulty devices, remove them.
4255  *  5/ If array is degraded, try to add spares devices
4256  *  6/ If array has spares or is not in-sync, start a resync thread.
4257  */
4258 void md_check_recovery(mddev_t *mddev)
4259 {
4260         mdk_rdev_t *rdev;
4261         struct list_head *rtmp;
4262
4263
4264         if (mddev->bitmap)
4265                 bitmap_daemon_work(mddev->bitmap);
4266
4267         if (mddev->ro)
4268                 return;
4269
4270         if (signal_pending(current)) {
4271                 if (mddev->pers->sync_request) {
4272                         printk(KERN_INFO "md: %s in immediate safe mode\n",
4273                                mdname(mddev));
4274                         mddev->safemode = 2;
4275                 }
4276                 flush_signals(current);
4277         }
4278
4279         if ( ! (
4280                 mddev->sb_dirty ||
4281                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4282                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4283                 (mddev->safemode == 1) ||
4284                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4285                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4286                 ))
4287                 return;
4288
4289         if (mddev_trylock(mddev)==0) {
4290                 int spares =0;
4291
4292                 spin_lock_irq(&mddev->write_lock);
4293                 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4294                     !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4295                         mddev->in_sync = 1;
4296                         mddev->sb_dirty = 1;
4297                 }
4298                 if (mddev->safemode == 1)
4299                         mddev->safemode = 0;
4300                 spin_unlock_irq(&mddev->write_lock);
4301
4302                 if (mddev->sb_dirty)
4303                         md_update_sb(mddev);
4304
4305
4306                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4307                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4308                         /* resync/recovery still happening */
4309                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4310                         goto unlock;
4311                 }
4312                 if (mddev->sync_thread) {
4313                         /* resync has finished, collect result */
4314                         md_unregister_thread(mddev->sync_thread);
4315                         mddev->sync_thread = NULL;
4316                         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4317                             !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4318                                 /* success...*/
4319                                 /* activate any spares */
4320                                 mddev->pers->spare_active(mddev);
4321                         }
4322                         md_update_sb(mddev);
4323
4324                         /* if array is no-longer degraded, then any saved_raid_disk
4325                          * information must be scrapped
4326                          */
4327                         if (!mddev->degraded)
4328                                 ITERATE_RDEV(mddev,rdev,rtmp)
4329                                         rdev->saved_raid_disk = -1;
4330
4331                         mddev->recovery = 0;
4332                         /* flag recovery needed just to double check */
4333                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4334                         md_new_event(mddev);
4335                         goto unlock;
4336                 }
4337                 /* Clear some bits that don't mean anything, but
4338                  * might be left set
4339                  */
4340                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4341                 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4342                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4343                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4344
4345                 /* no recovery is running.
4346                  * remove any failed drives, then
4347                  * add spares if possible.
4348                  * Spare are also removed and re-added, to allow
4349                  * the personality to fail the re-add.
4350                  */
4351                 ITERATE_RDEV(mddev,rdev,rtmp)
4352                         if (rdev->raid_disk >= 0 &&
4353                             (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4354                             atomic_read(&rdev->nr_pending)==0) {
4355                                 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4356                                         char nm[20];
4357                                         sprintf(nm,"rd%d", rdev->raid_disk);
4358                                         sysfs_remove_link(&mddev->kobj, nm);
4359                                         rdev->raid_disk = -1;
4360                                 }
4361                         }
4362
4363                 if (mddev->degraded) {
4364                         ITERATE_RDEV(mddev,rdev,rtmp)
4365                                 if (rdev->raid_disk < 0
4366                                     && !test_bit(Faulty, &rdev->flags)) {
4367                                         if (mddev->pers->hot_add_disk(mddev,rdev)) {
4368                                                 char nm[20];
4369                                                 sprintf(nm, "rd%d", rdev->raid_disk);
4370                                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4371                                                 spares++;
4372                                                 md_new_event(mddev);
4373                                         } else
4374                                                 break;
4375                                 }
4376                 }
4377
4378                 if (spares) {
4379                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4380                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4381                 } else if (mddev->recovery_cp < MaxSector) {
4382                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4383                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4384                         /* nothing to be done ... */
4385                         goto unlock;
4386
4387                 if (mddev->pers->sync_request) {
4388                         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4389                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4390                                 /* We are adding a device or devices to an array
4391                                  * which has the bitmap stored on all devices.
4392                                  * So make sure all bitmap pages get written
4393                                  */
4394                                 bitmap_write_all(mddev->bitmap);
4395                         }
4396                         mddev->sync_thread = md_register_thread(md_do_sync,
4397                                                                 mddev,
4398                                                                 "%s_resync");
4399                         if (!mddev->sync_thread) {
4400                                 printk(KERN_ERR "%s: could not start resync"
4401                                         " thread...\n", 
4402                                         mdname(mddev));
4403                                 /* leave the spares where they are, it shouldn't hurt */
4404                                 mddev->recovery = 0;
4405                         } else
4406                                 md_wakeup_thread(mddev->sync_thread);
4407                         md_new_event(mddev);
4408                 }
4409         unlock:
4410                 mddev_unlock(mddev);
4411         }
4412 }
4413
4414 static int md_notify_reboot(struct notifier_block *this,
4415                             unsigned long code, void *x)
4416 {
4417         struct list_head *tmp;
4418         mddev_t *mddev;
4419
4420         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4421
4422                 printk(KERN_INFO "md: stopping all md devices.\n");
4423
4424                 ITERATE_MDDEV(mddev,tmp)
4425                         if (mddev_trylock(mddev)==0)
4426                                 do_md_stop (mddev, 1);
4427                 /*
4428                  * certain more exotic SCSI devices are known to be
4429                  * volatile wrt too early system reboots. While the
4430                  * right place to handle this issue is the given
4431                  * driver, we do want to have a safe RAID driver ...
4432                  */
4433                 mdelay(1000*1);
4434         }
4435         return NOTIFY_DONE;
4436 }
4437
4438 static struct notifier_block md_notifier = {
4439         .notifier_call  = md_notify_reboot,
4440         .next           = NULL,
4441         .priority       = INT_MAX, /* before any real devices */
4442 };
4443
4444 static void md_geninit(void)
4445 {
4446         struct proc_dir_entry *p;
4447
4448         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4449
4450         p = create_proc_entry("mdstat", S_IRUGO, NULL);
4451         if (p)
4452                 p->proc_fops = &md_seq_fops;
4453 }
4454
4455 static int __init md_init(void)
4456 {
4457         int minor;
4458
4459         printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4460                         " MD_SB_DISKS=%d\n",
4461                         MD_MAJOR_VERSION, MD_MINOR_VERSION,
4462                         MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4463         printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4464                         BITMAP_MINOR);
4465
4466         if (register_blkdev(MAJOR_NR, "md"))
4467                 return -1;
4468         if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4469                 unregister_blkdev(MAJOR_NR, "md");
4470                 return -1;
4471         }
4472         devfs_mk_dir("md");
4473         blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4474                                 md_probe, NULL, NULL);
4475         blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4476                             md_probe, NULL, NULL);
4477
4478         for (minor=0; minor < MAX_MD_DEVS; ++minor)
4479                 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4480                                 S_IFBLK|S_IRUSR|S_IWUSR,
4481                                 "md/%d", minor);
4482
4483         for (minor=0; minor < MAX_MD_DEVS; ++minor)
4484                 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4485                               S_IFBLK|S_IRUSR|S_IWUSR,
4486                               "md/mdp%d", minor);
4487
4488
4489         register_reboot_notifier(&md_notifier);
4490         raid_table_header = register_sysctl_table(raid_root_table, 1);
4491
4492         md_geninit();
4493         return (0);
4494 }
4495
4496
4497 #ifndef MODULE
4498
4499 /*
4500  * Searches all registered partitions for autorun RAID arrays
4501  * at boot time.
4502  */
4503 static dev_t detected_devices[128];
4504 static int dev_cnt;
4505
4506 void md_autodetect_dev(dev_t dev)
4507 {
4508         if (dev_cnt >= 0 && dev_cnt < 127)
4509                 detected_devices[dev_cnt++] = dev;
4510 }
4511
4512
4513 static void autostart_arrays(int part)
4514 {
4515         mdk_rdev_t *rdev;
4516         int i;
4517
4518         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4519
4520         for (i = 0; i < dev_cnt; i++) {
4521                 dev_t dev = detected_devices[i];
4522
4523                 rdev = md_import_device(dev,0, 0);
4524                 if (IS_ERR(rdev))
4525                         continue;
4526
4527                 if (test_bit(Faulty, &rdev->flags)) {
4528                         MD_BUG();
4529                         continue;
4530                 }
4531                 list_add(&rdev->same_set, &pending_raid_disks);
4532         }
4533         dev_cnt = 0;
4534
4535         autorun_devices(part);
4536 }
4537
4538 #endif
4539
4540 static __exit void md_exit(void)
4541 {
4542         mddev_t *mddev;
4543         struct list_head *tmp;
4544         int i;
4545         blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4546         blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4547         for (i=0; i < MAX_MD_DEVS; i++)
4548                 devfs_remove("md/%d", i);
4549         for (i=0; i < MAX_MD_DEVS; i++)
4550                 devfs_remove("md/d%d", i);
4551
4552         devfs_remove("md");
4553
4554         unregister_blkdev(MAJOR_NR,"md");
4555         unregister_blkdev(mdp_major, "mdp");
4556         unregister_reboot_notifier(&md_notifier);
4557         unregister_sysctl_table(raid_table_header);
4558         remove_proc_entry("mdstat", NULL);
4559         ITERATE_MDDEV(mddev,tmp) {
4560                 struct gendisk *disk = mddev->gendisk;
4561                 if (!disk)
4562                         continue;
4563                 export_array(mddev);
4564                 del_gendisk(disk);
4565                 put_disk(disk);
4566                 mddev->gendisk = NULL;
4567                 mddev_put(mddev);
4568         }
4569 }
4570
4571 module_init(md_init)
4572 module_exit(md_exit)
4573
4574 static int get_ro(char *buffer, struct kernel_param *kp)
4575 {
4576         return sprintf(buffer, "%d", start_readonly);
4577 }
4578 static int set_ro(const char *val, struct kernel_param *kp)
4579 {
4580         char *e;
4581         int num = simple_strtoul(val, &e, 10);
4582         if (*val && (*e == '\0' || *e == '\n')) {
4583                 start_readonly = num;
4584                 return 0;;
4585         }
4586         return -EINVAL;
4587 }
4588
4589 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4590 module_param(start_dirty_degraded, int, 0644);
4591
4592
4593 EXPORT_SYMBOL(register_md_personality);
4594 EXPORT_SYMBOL(unregister_md_personality);
4595 EXPORT_SYMBOL(md_error);
4596 EXPORT_SYMBOL(md_done_sync);
4597 EXPORT_SYMBOL(md_write_start);
4598 EXPORT_SYMBOL(md_write_end);
4599 EXPORT_SYMBOL(md_register_thread);
4600 EXPORT_SYMBOL(md_unregister_thread);
4601 EXPORT_SYMBOL(md_wakeup_thread);
4602 EXPORT_SYMBOL(md_print_devices);
4603 EXPORT_SYMBOL(md_check_recovery);
4604 MODULE_LICENSE("GPL");
4605 MODULE_ALIAS("md");
4606 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);