3aa58ab5b1fdbb5dbfc0f9cb8124b1f83d4c34f3
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545                 sector_t dist;
546                 sector_t first_bad;
547                 int bad_sectors;
548                 unsigned int pending;
549                 bool nonrot;
550
551                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552                 if (r1_bio->bios[disk] == IO_BLOCKED
553                     || rdev == NULL
554                     || test_bit(Unmerged, &rdev->flags)
555                     || test_bit(Faulty, &rdev->flags))
556                         continue;
557                 if (!test_bit(In_sync, &rdev->flags) &&
558                     rdev->recovery_offset < this_sector + sectors)
559                         continue;
560                 if (test_bit(WriteMostly, &rdev->flags)) {
561                         /* Don't balance among write-mostly, just
562                          * use the first as a last resort */
563                         if (best_disk < 0) {
564                                 if (is_badblock(rdev, this_sector, sectors,
565                                                 &first_bad, &bad_sectors)) {
566                                         if (first_bad < this_sector)
567                                                 /* Cannot use this */
568                                                 continue;
569                                         best_good_sectors = first_bad - this_sector;
570                                 } else
571                                         best_good_sectors = sectors;
572                                 best_disk = disk;
573                         }
574                         continue;
575                 }
576                 /* This is a reasonable device to use.  It might
577                  * even be best.
578                  */
579                 if (is_badblock(rdev, this_sector, sectors,
580                                 &first_bad, &bad_sectors)) {
581                         if (best_dist < MaxSector)
582                                 /* already have a better device */
583                                 continue;
584                         if (first_bad <= this_sector) {
585                                 /* cannot read here. If this is the 'primary'
586                                  * device, then we must not read beyond
587                                  * bad_sectors from another device..
588                                  */
589                                 bad_sectors -= (this_sector - first_bad);
590                                 if (choose_first && sectors > bad_sectors)
591                                         sectors = bad_sectors;
592                                 if (best_good_sectors > sectors)
593                                         best_good_sectors = sectors;
594
595                         } else {
596                                 sector_t good_sectors = first_bad - this_sector;
597                                 if (good_sectors > best_good_sectors) {
598                                         best_good_sectors = good_sectors;
599                                         best_disk = disk;
600                                 }
601                                 if (choose_first)
602                                         break;
603                         }
604                         continue;
605                 } else
606                         best_good_sectors = sectors;
607
608                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609                 has_nonrot_disk |= nonrot;
610                 pending = atomic_read(&rdev->nr_pending);
611                 dist = abs(this_sector - conf->mirrors[disk].head_position);
612                 if (choose_first) {
613                         best_disk = disk;
614                         break;
615                 }
616                 /* Don't change to another disk for sequential reads */
617                 if (conf->mirrors[disk].next_seq_sect == this_sector
618                     || dist == 0) {
619                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620                         struct raid1_info *mirror = &conf->mirrors[disk];
621
622                         best_disk = disk;
623                         /*
624                          * If buffered sequential IO size exceeds optimal
625                          * iosize, check if there is idle disk. If yes, choose
626                          * the idle disk. read_balance could already choose an
627                          * idle disk before noticing it's a sequential IO in
628                          * this disk. This doesn't matter because this disk
629                          * will idle, next time it will be utilized after the
630                          * first disk has IO size exceeds optimal iosize. In
631                          * this way, iosize of the first disk will be optimal
632                          * iosize at least. iosize of the second disk might be
633                          * small, but not a big deal since when the second disk
634                          * starts IO, the first disk is likely still busy.
635                          */
636                         if (nonrot && opt_iosize > 0 &&
637                             mirror->seq_start != MaxSector &&
638                             mirror->next_seq_sect > opt_iosize &&
639                             mirror->next_seq_sect - opt_iosize >=
640                             mirror->seq_start) {
641                                 choose_next_idle = 1;
642                                 continue;
643                         }
644                         break;
645                 }
646                 /* If device is idle, use it */
647                 if (pending == 0) {
648                         best_disk = disk;
649                         break;
650                 }
651
652                 if (choose_next_idle)
653                         continue;
654
655                 if (min_pending > pending) {
656                         min_pending = pending;
657                         best_pending_disk = disk;
658                 }
659
660                 if (dist < best_dist) {
661                         best_dist = dist;
662                         best_dist_disk = disk;
663                 }
664         }
665
666         /*
667          * If all disks are rotational, choose the closest disk. If any disk is
668          * non-rotational, choose the disk with less pending request even the
669          * disk is rotational, which might/might not be optimal for raids with
670          * mixed ratation/non-rotational disks depending on workload.
671          */
672         if (best_disk == -1) {
673                 if (has_nonrot_disk)
674                         best_disk = best_pending_disk;
675                 else
676                         best_disk = best_dist_disk;
677         }
678
679         if (best_disk >= 0) {
680                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681                 if (!rdev)
682                         goto retry;
683                 atomic_inc(&rdev->nr_pending);
684                 if (test_bit(Faulty, &rdev->flags)) {
685                         /* cannot risk returning a device that failed
686                          * before we inc'ed nr_pending
687                          */
688                         rdev_dec_pending(rdev, conf->mddev);
689                         goto retry;
690                 }
691                 sectors = best_good_sectors;
692
693                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694                         conf->mirrors[best_disk].seq_start = this_sector;
695
696                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697         }
698         rcu_read_unlock();
699         *max_sectors = sectors;
700
701         return best_disk;
702 }
703
704 static int raid1_mergeable_bvec(struct mddev *mddev,
705                                 struct bvec_merge_data *bvm,
706                                 struct bio_vec *biovec)
707 {
708         struct r1conf *conf = mddev->private;
709         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
710         int max = biovec->bv_len;
711
712         if (mddev->merge_check_needed) {
713                 int disk;
714                 rcu_read_lock();
715                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
716                         struct md_rdev *rdev = rcu_dereference(
717                                 conf->mirrors[disk].rdev);
718                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
719                                 struct request_queue *q =
720                                         bdev_get_queue(rdev->bdev);
721                                 if (q->merge_bvec_fn) {
722                                         bvm->bi_sector = sector +
723                                                 rdev->data_offset;
724                                         bvm->bi_bdev = rdev->bdev;
725                                         max = min(max, q->merge_bvec_fn(
726                                                           q, bvm, biovec));
727                                 }
728                         }
729                 }
730                 rcu_read_unlock();
731         }
732         return max;
733
734 }
735
736 static int raid1_congested(struct mddev *mddev, int bits)
737 {
738         struct r1conf *conf = mddev->private;
739         int i, ret = 0;
740
741         if ((bits & (1 << BDI_async_congested)) &&
742             conf->pending_count >= max_queued_requests)
743                 return 1;
744
745         rcu_read_lock();
746         for (i = 0; i < conf->raid_disks * 2; i++) {
747                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
748                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
749                         struct request_queue *q = bdev_get_queue(rdev->bdev);
750
751                         BUG_ON(!q);
752
753                         /* Note the '|| 1' - when read_balance prefers
754                          * non-congested targets, it can be removed
755                          */
756                         if ((bits & (1<<BDI_async_congested)) || 1)
757                                 ret |= bdi_congested(&q->backing_dev_info, bits);
758                         else
759                                 ret &= bdi_congested(&q->backing_dev_info, bits);
760                 }
761         }
762         rcu_read_unlock();
763         return ret;
764 }
765
766 static void flush_pending_writes(struct r1conf *conf)
767 {
768         /* Any writes that have been queued but are awaiting
769          * bitmap updates get flushed here.
770          */
771         spin_lock_irq(&conf->device_lock);
772
773         if (conf->pending_bio_list.head) {
774                 struct bio *bio;
775                 bio = bio_list_get(&conf->pending_bio_list);
776                 conf->pending_count = 0;
777                 spin_unlock_irq(&conf->device_lock);
778                 /* flush any pending bitmap writes to
779                  * disk before proceeding w/ I/O */
780                 bitmap_unplug(conf->mddev->bitmap);
781                 wake_up(&conf->wait_barrier);
782
783                 while (bio) { /* submit pending writes */
784                         struct bio *next = bio->bi_next;
785                         bio->bi_next = NULL;
786                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
787                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
788                                 /* Just ignore it */
789                                 bio_endio(bio, 0);
790                         else
791                                 generic_make_request(bio);
792                         bio = next;
793                 }
794         } else
795                 spin_unlock_irq(&conf->device_lock);
796 }
797
798 /* Barriers....
799  * Sometimes we need to suspend IO while we do something else,
800  * either some resync/recovery, or reconfigure the array.
801  * To do this we raise a 'barrier'.
802  * The 'barrier' is a counter that can be raised multiple times
803  * to count how many activities are happening which preclude
804  * normal IO.
805  * We can only raise the barrier if there is no pending IO.
806  * i.e. if nr_pending == 0.
807  * We choose only to raise the barrier if no-one is waiting for the
808  * barrier to go down.  This means that as soon as an IO request
809  * is ready, no other operations which require a barrier will start
810  * until the IO request has had a chance.
811  *
812  * So: regular IO calls 'wait_barrier'.  When that returns there
813  *    is no backgroup IO happening,  It must arrange to call
814  *    allow_barrier when it has finished its IO.
815  * backgroup IO calls must call raise_barrier.  Once that returns
816  *    there is no normal IO happeing.  It must arrange to call
817  *    lower_barrier when the particular background IO completes.
818  */
819 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
820 {
821         spin_lock_irq(&conf->resync_lock);
822
823         /* Wait until no block IO is waiting */
824         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825                             conf->resync_lock);
826
827         /* block any new IO from starting */
828         conf->barrier++;
829         conf->next_resync = sector_nr;
830
831         /* For these conditions we must wait:
832          * A: while the array is in frozen state
833          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
834          *    the max count which allowed.
835          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
836          *    next resync will reach to the window which normal bios are
837          *    handling.
838          * D: while there are any active requests in the current window.
839          */
840         wait_event_lock_irq(conf->wait_barrier,
841                             !conf->array_frozen &&
842                             conf->barrier < RESYNC_DEPTH &&
843                             conf->current_window_requests == 0 &&
844                             (conf->start_next_window >=
845                              conf->next_resync + RESYNC_SECTORS),
846                             conf->resync_lock);
847
848         conf->nr_pending++;
849         spin_unlock_irq(&conf->resync_lock);
850 }
851
852 static void lower_barrier(struct r1conf *conf)
853 {
854         unsigned long flags;
855         BUG_ON(conf->barrier <= 0);
856         spin_lock_irqsave(&conf->resync_lock, flags);
857         conf->barrier--;
858         conf->nr_pending--;
859         spin_unlock_irqrestore(&conf->resync_lock, flags);
860         wake_up(&conf->wait_barrier);
861 }
862
863 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
864 {
865         bool wait = false;
866
867         if (conf->array_frozen || !bio)
868                 wait = true;
869         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
870                 if ((conf->mddev->curr_resync_completed
871                      >= bio_end_sector(bio)) ||
872                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
873                      <= bio->bi_iter.bi_sector))
874                         wait = false;
875                 else
876                         wait = true;
877         }
878
879         return wait;
880 }
881
882 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
883 {
884         sector_t sector = 0;
885
886         spin_lock_irq(&conf->resync_lock);
887         if (need_to_wait_for_sync(conf, bio)) {
888                 conf->nr_waiting++;
889                 /* Wait for the barrier to drop.
890                  * However if there are already pending
891                  * requests (preventing the barrier from
892                  * rising completely), and the
893                  * per-process bio queue isn't empty,
894                  * then don't wait, as we need to empty
895                  * that queue to allow conf->start_next_window
896                  * to increase.
897                  */
898                 wait_event_lock_irq(conf->wait_barrier,
899                                     !conf->array_frozen &&
900                                     (!conf->barrier ||
901                                      ((conf->start_next_window <
902                                        conf->next_resync + RESYNC_SECTORS) &&
903                                       current->bio_list &&
904                                       !bio_list_empty(current->bio_list))),
905                                     conf->resync_lock);
906                 conf->nr_waiting--;
907         }
908
909         if (bio && bio_data_dir(bio) == WRITE) {
910                 if (bio->bi_iter.bi_sector >=
911                     conf->mddev->curr_resync_completed) {
912                         if (conf->start_next_window == MaxSector)
913                                 conf->start_next_window =
914                                         conf->next_resync +
915                                         NEXT_NORMALIO_DISTANCE;
916
917                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
918                             <= bio->bi_iter.bi_sector)
919                                 conf->next_window_requests++;
920                         else
921                                 conf->current_window_requests++;
922                         sector = conf->start_next_window;
923                 }
924         }
925
926         conf->nr_pending++;
927         spin_unlock_irq(&conf->resync_lock);
928         return sector;
929 }
930
931 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
932                           sector_t bi_sector)
933 {
934         unsigned long flags;
935
936         spin_lock_irqsave(&conf->resync_lock, flags);
937         conf->nr_pending--;
938         if (start_next_window) {
939                 if (start_next_window == conf->start_next_window) {
940                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
941                             <= bi_sector)
942                                 conf->next_window_requests--;
943                         else
944                                 conf->current_window_requests--;
945                 } else
946                         conf->current_window_requests--;
947
948                 if (!conf->current_window_requests) {
949                         if (conf->next_window_requests) {
950                                 conf->current_window_requests =
951                                         conf->next_window_requests;
952                                 conf->next_window_requests = 0;
953                                 conf->start_next_window +=
954                                         NEXT_NORMALIO_DISTANCE;
955                         } else
956                                 conf->start_next_window = MaxSector;
957                 }
958         }
959         spin_unlock_irqrestore(&conf->resync_lock, flags);
960         wake_up(&conf->wait_barrier);
961 }
962
963 static void freeze_array(struct r1conf *conf, int extra)
964 {
965         /* stop syncio and normal IO and wait for everything to
966          * go quite.
967          * We wait until nr_pending match nr_queued+extra
968          * This is called in the context of one normal IO request
969          * that has failed. Thus any sync request that might be pending
970          * will be blocked by nr_pending, and we need to wait for
971          * pending IO requests to complete or be queued for re-try.
972          * Thus the number queued (nr_queued) plus this request (extra)
973          * must match the number of pending IOs (nr_pending) before
974          * we continue.
975          */
976         spin_lock_irq(&conf->resync_lock);
977         conf->array_frozen = 1;
978         wait_event_lock_irq_cmd(conf->wait_barrier,
979                                 conf->nr_pending == conf->nr_queued+extra,
980                                 conf->resync_lock,
981                                 flush_pending_writes(conf));
982         spin_unlock_irq(&conf->resync_lock);
983 }
984 static void unfreeze_array(struct r1conf *conf)
985 {
986         /* reverse the effect of the freeze */
987         spin_lock_irq(&conf->resync_lock);
988         conf->array_frozen = 0;
989         wake_up(&conf->wait_barrier);
990         spin_unlock_irq(&conf->resync_lock);
991 }
992
993 /* duplicate the data pages for behind I/O
994  */
995 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
996 {
997         int i;
998         struct bio_vec *bvec;
999         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1000                                         GFP_NOIO);
1001         if (unlikely(!bvecs))
1002                 return;
1003
1004         bio_for_each_segment_all(bvec, bio, i) {
1005                 bvecs[i] = *bvec;
1006                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1007                 if (unlikely(!bvecs[i].bv_page))
1008                         goto do_sync_io;
1009                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1010                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1011                 kunmap(bvecs[i].bv_page);
1012                 kunmap(bvec->bv_page);
1013         }
1014         r1_bio->behind_bvecs = bvecs;
1015         r1_bio->behind_page_count = bio->bi_vcnt;
1016         set_bit(R1BIO_BehindIO, &r1_bio->state);
1017         return;
1018
1019 do_sync_io:
1020         for (i = 0; i < bio->bi_vcnt; i++)
1021                 if (bvecs[i].bv_page)
1022                         put_page(bvecs[i].bv_page);
1023         kfree(bvecs);
1024         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1025                  bio->bi_iter.bi_size);
1026 }
1027
1028 struct raid1_plug_cb {
1029         struct blk_plug_cb      cb;
1030         struct bio_list         pending;
1031         int                     pending_cnt;
1032 };
1033
1034 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1035 {
1036         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1037                                                   cb);
1038         struct mddev *mddev = plug->cb.data;
1039         struct r1conf *conf = mddev->private;
1040         struct bio *bio;
1041
1042         if (from_schedule || current->bio_list) {
1043                 spin_lock_irq(&conf->device_lock);
1044                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1045                 conf->pending_count += plug->pending_cnt;
1046                 spin_unlock_irq(&conf->device_lock);
1047                 wake_up(&conf->wait_barrier);
1048                 md_wakeup_thread(mddev->thread);
1049                 kfree(plug);
1050                 return;
1051         }
1052
1053         /* we aren't scheduling, so we can do the write-out directly. */
1054         bio = bio_list_get(&plug->pending);
1055         bitmap_unplug(mddev->bitmap);
1056         wake_up(&conf->wait_barrier);
1057
1058         while (bio) { /* submit pending writes */
1059                 struct bio *next = bio->bi_next;
1060                 bio->bi_next = NULL;
1061                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1062                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1063                         /* Just ignore it */
1064                         bio_endio(bio, 0);
1065                 else
1066                         generic_make_request(bio);
1067                 bio = next;
1068         }
1069         kfree(plug);
1070 }
1071
1072 static void make_request(struct mddev *mddev, struct bio * bio)
1073 {
1074         struct r1conf *conf = mddev->private;
1075         struct raid1_info *mirror;
1076         struct r1bio *r1_bio;
1077         struct bio *read_bio;
1078         int i, disks;
1079         struct bitmap *bitmap;
1080         unsigned long flags;
1081         const int rw = bio_data_dir(bio);
1082         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1083         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1084         const unsigned long do_discard = (bio->bi_rw
1085                                           & (REQ_DISCARD | REQ_SECURE));
1086         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1087         struct md_rdev *blocked_rdev;
1088         struct blk_plug_cb *cb;
1089         struct raid1_plug_cb *plug = NULL;
1090         int first_clone;
1091         int sectors_handled;
1092         int max_sectors;
1093         sector_t start_next_window;
1094
1095         /*
1096          * Register the new request and wait if the reconstruction
1097          * thread has put up a bar for new requests.
1098          * Continue immediately if no resync is active currently.
1099          */
1100
1101         md_write_start(mddev, bio); /* wait on superblock update early */
1102
1103         if (bio_data_dir(bio) == WRITE &&
1104             ((bio_end_sector(bio) > mddev->suspend_lo &&
1105             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1106             (mddev_is_clustered(mddev) &&
1107              md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1108                 /* As the suspend_* range is controlled by
1109                  * userspace, we want an interruptible
1110                  * wait.
1111                  */
1112                 DEFINE_WAIT(w);
1113                 for (;;) {
1114                         flush_signals(current);
1115                         prepare_to_wait(&conf->wait_barrier,
1116                                         &w, TASK_INTERRUPTIBLE);
1117                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1118                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1119                             (mddev_is_clustered(mddev) &&
1120                              !md_cluster_ops->area_resyncing(mddev,
1121                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1122                                 break;
1123                         schedule();
1124                 }
1125                 finish_wait(&conf->wait_barrier, &w);
1126         }
1127
1128         start_next_window = wait_barrier(conf, bio);
1129
1130         bitmap = mddev->bitmap;
1131
1132         /*
1133          * make_request() can abort the operation when READA is being
1134          * used and no empty request is available.
1135          *
1136          */
1137         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138
1139         r1_bio->master_bio = bio;
1140         r1_bio->sectors = bio_sectors(bio);
1141         r1_bio->state = 0;
1142         r1_bio->mddev = mddev;
1143         r1_bio->sector = bio->bi_iter.bi_sector;
1144
1145         /* We might need to issue multiple reads to different
1146          * devices if there are bad blocks around, so we keep
1147          * track of the number of reads in bio->bi_phys_segments.
1148          * If this is 0, there is only one r1_bio and no locking
1149          * will be needed when requests complete.  If it is
1150          * non-zero, then it is the number of not-completed requests.
1151          */
1152         bio->bi_phys_segments = 0;
1153         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154
1155         if (rw == READ) {
1156                 /*
1157                  * read balancing logic:
1158                  */
1159                 int rdisk;
1160
1161 read_again:
1162                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1163
1164                 if (rdisk < 0) {
1165                         /* couldn't find anywhere to read from */
1166                         raid_end_bio_io(r1_bio);
1167                         return;
1168                 }
1169                 mirror = conf->mirrors + rdisk;
1170
1171                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172                     bitmap) {
1173                         /* Reading from a write-mostly device must
1174                          * take care not to over-take any writes
1175                          * that are 'behind'
1176                          */
1177                         wait_event(bitmap->behind_wait,
1178                                    atomic_read(&bitmap->behind_writes) == 0);
1179                 }
1180                 r1_bio->read_disk = rdisk;
1181                 r1_bio->start_next_window = 0;
1182
1183                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1184                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1185                          max_sectors);
1186
1187                 r1_bio->bios[rdisk] = read_bio;
1188
1189                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1190                         mirror->rdev->data_offset;
1191                 read_bio->bi_bdev = mirror->rdev->bdev;
1192                 read_bio->bi_end_io = raid1_end_read_request;
1193                 read_bio->bi_rw = READ | do_sync;
1194                 read_bio->bi_private = r1_bio;
1195
1196                 if (max_sectors < r1_bio->sectors) {
1197                         /* could not read all from this device, so we will
1198                          * need another r1_bio.
1199                          */
1200
1201                         sectors_handled = (r1_bio->sector + max_sectors
1202                                            - bio->bi_iter.bi_sector);
1203                         r1_bio->sectors = max_sectors;
1204                         spin_lock_irq(&conf->device_lock);
1205                         if (bio->bi_phys_segments == 0)
1206                                 bio->bi_phys_segments = 2;
1207                         else
1208                                 bio->bi_phys_segments++;
1209                         spin_unlock_irq(&conf->device_lock);
1210                         /* Cannot call generic_make_request directly
1211                          * as that will be queued in __make_request
1212                          * and subsequent mempool_alloc might block waiting
1213                          * for it.  So hand bio over to raid1d.
1214                          */
1215                         reschedule_retry(r1_bio);
1216
1217                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1218
1219                         r1_bio->master_bio = bio;
1220                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1221                         r1_bio->state = 0;
1222                         r1_bio->mddev = mddev;
1223                         r1_bio->sector = bio->bi_iter.bi_sector +
1224                                 sectors_handled;
1225                         goto read_again;
1226                 } else
1227                         generic_make_request(read_bio);
1228                 return;
1229         }
1230
1231         /*
1232          * WRITE:
1233          */
1234         if (conf->pending_count >= max_queued_requests) {
1235                 md_wakeup_thread(mddev->thread);
1236                 wait_event(conf->wait_barrier,
1237                            conf->pending_count < max_queued_requests);
1238         }
1239         /* first select target devices under rcu_lock and
1240          * inc refcount on their rdev.  Record them by setting
1241          * bios[x] to bio
1242          * If there are known/acknowledged bad blocks on any device on
1243          * which we have seen a write error, we want to avoid writing those
1244          * blocks.
1245          * This potentially requires several writes to write around
1246          * the bad blocks.  Each set of writes gets it's own r1bio
1247          * with a set of bios attached.
1248          */
1249
1250         disks = conf->raid_disks * 2;
1251  retry_write:
1252         r1_bio->start_next_window = start_next_window;
1253         blocked_rdev = NULL;
1254         rcu_read_lock();
1255         max_sectors = r1_bio->sectors;
1256         for (i = 0;  i < disks; i++) {
1257                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1258                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1259                         atomic_inc(&rdev->nr_pending);
1260                         blocked_rdev = rdev;
1261                         break;
1262                 }
1263                 r1_bio->bios[i] = NULL;
1264                 if (!rdev || test_bit(Faulty, &rdev->flags)
1265                     || test_bit(Unmerged, &rdev->flags)) {
1266                         if (i < conf->raid_disks)
1267                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1268                         continue;
1269                 }
1270
1271                 atomic_inc(&rdev->nr_pending);
1272                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1273                         sector_t first_bad;
1274                         int bad_sectors;
1275                         int is_bad;
1276
1277                         is_bad = is_badblock(rdev, r1_bio->sector,
1278                                              max_sectors,
1279                                              &first_bad, &bad_sectors);
1280                         if (is_bad < 0) {
1281                                 /* mustn't write here until the bad block is
1282                                  * acknowledged*/
1283                                 set_bit(BlockedBadBlocks, &rdev->flags);
1284                                 blocked_rdev = rdev;
1285                                 break;
1286                         }
1287                         if (is_bad && first_bad <= r1_bio->sector) {
1288                                 /* Cannot write here at all */
1289                                 bad_sectors -= (r1_bio->sector - first_bad);
1290                                 if (bad_sectors < max_sectors)
1291                                         /* mustn't write more than bad_sectors
1292                                          * to other devices yet
1293                                          */
1294                                         max_sectors = bad_sectors;
1295                                 rdev_dec_pending(rdev, mddev);
1296                                 /* We don't set R1BIO_Degraded as that
1297                                  * only applies if the disk is
1298                                  * missing, so it might be re-added,
1299                                  * and we want to know to recover this
1300                                  * chunk.
1301                                  * In this case the device is here,
1302                                  * and the fact that this chunk is not
1303                                  * in-sync is recorded in the bad
1304                                  * block log
1305                                  */
1306                                 continue;
1307                         }
1308                         if (is_bad) {
1309                                 int good_sectors = first_bad - r1_bio->sector;
1310                                 if (good_sectors < max_sectors)
1311                                         max_sectors = good_sectors;
1312                         }
1313                 }
1314                 r1_bio->bios[i] = bio;
1315         }
1316         rcu_read_unlock();
1317
1318         if (unlikely(blocked_rdev)) {
1319                 /* Wait for this device to become unblocked */
1320                 int j;
1321                 sector_t old = start_next_window;
1322
1323                 for (j = 0; j < i; j++)
1324                         if (r1_bio->bios[j])
1325                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1326                 r1_bio->state = 0;
1327                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1328                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329                 start_next_window = wait_barrier(conf, bio);
1330                 /*
1331                  * We must make sure the multi r1bios of bio have
1332                  * the same value of bi_phys_segments
1333                  */
1334                 if (bio->bi_phys_segments && old &&
1335                     old != start_next_window)
1336                         /* Wait for the former r1bio(s) to complete */
1337                         wait_event(conf->wait_barrier,
1338                                    bio->bi_phys_segments == 1);
1339                 goto retry_write;
1340         }
1341
1342         if (max_sectors < r1_bio->sectors) {
1343                 /* We are splitting this write into multiple parts, so
1344                  * we need to prepare for allocating another r1_bio.
1345                  */
1346                 r1_bio->sectors = max_sectors;
1347                 spin_lock_irq(&conf->device_lock);
1348                 if (bio->bi_phys_segments == 0)
1349                         bio->bi_phys_segments = 2;
1350                 else
1351                         bio->bi_phys_segments++;
1352                 spin_unlock_irq(&conf->device_lock);
1353         }
1354         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1355
1356         atomic_set(&r1_bio->remaining, 1);
1357         atomic_set(&r1_bio->behind_remaining, 0);
1358
1359         first_clone = 1;
1360         for (i = 0; i < disks; i++) {
1361                 struct bio *mbio;
1362                 if (!r1_bio->bios[i])
1363                         continue;
1364
1365                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1366                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1367
1368                 if (first_clone) {
1369                         /* do behind I/O ?
1370                          * Not if there are too many, or cannot
1371                          * allocate memory, or a reader on WriteMostly
1372                          * is waiting for behind writes to flush */
1373                         if (bitmap &&
1374                             (atomic_read(&bitmap->behind_writes)
1375                              < mddev->bitmap_info.max_write_behind) &&
1376                             !waitqueue_active(&bitmap->behind_wait))
1377                                 alloc_behind_pages(mbio, r1_bio);
1378
1379                         bitmap_startwrite(bitmap, r1_bio->sector,
1380                                           r1_bio->sectors,
1381                                           test_bit(R1BIO_BehindIO,
1382                                                    &r1_bio->state));
1383                         first_clone = 0;
1384                 }
1385                 if (r1_bio->behind_bvecs) {
1386                         struct bio_vec *bvec;
1387                         int j;
1388
1389                         /*
1390                          * We trimmed the bio, so _all is legit
1391                          */
1392                         bio_for_each_segment_all(bvec, mbio, j)
1393                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1394                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1395                                 atomic_inc(&r1_bio->behind_remaining);
1396                 }
1397
1398                 r1_bio->bios[i] = mbio;
1399
1400                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1401                                    conf->mirrors[i].rdev->data_offset);
1402                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1403                 mbio->bi_end_io = raid1_end_write_request;
1404                 mbio->bi_rw =
1405                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1406                 mbio->bi_private = r1_bio;
1407
1408                 atomic_inc(&r1_bio->remaining);
1409
1410                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1411                 if (cb)
1412                         plug = container_of(cb, struct raid1_plug_cb, cb);
1413                 else
1414                         plug = NULL;
1415                 spin_lock_irqsave(&conf->device_lock, flags);
1416                 if (plug) {
1417                         bio_list_add(&plug->pending, mbio);
1418                         plug->pending_cnt++;
1419                 } else {
1420                         bio_list_add(&conf->pending_bio_list, mbio);
1421                         conf->pending_count++;
1422                 }
1423                 spin_unlock_irqrestore(&conf->device_lock, flags);
1424                 if (!plug)
1425                         md_wakeup_thread(mddev->thread);
1426         }
1427         /* Mustn't call r1_bio_write_done before this next test,
1428          * as it could result in the bio being freed.
1429          */
1430         if (sectors_handled < bio_sectors(bio)) {
1431                 r1_bio_write_done(r1_bio);
1432                 /* We need another r1_bio.  It has already been counted
1433                  * in bio->bi_phys_segments
1434                  */
1435                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1436                 r1_bio->master_bio = bio;
1437                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1438                 r1_bio->state = 0;
1439                 r1_bio->mddev = mddev;
1440                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1441                 goto retry_write;
1442         }
1443
1444         r1_bio_write_done(r1_bio);
1445
1446         /* In case raid1d snuck in to freeze_array */
1447         wake_up(&conf->wait_barrier);
1448 }
1449
1450 static void status(struct seq_file *seq, struct mddev *mddev)
1451 {
1452         struct r1conf *conf = mddev->private;
1453         int i;
1454
1455         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1456                    conf->raid_disks - mddev->degraded);
1457         rcu_read_lock();
1458         for (i = 0; i < conf->raid_disks; i++) {
1459                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1460                 seq_printf(seq, "%s",
1461                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1462         }
1463         rcu_read_unlock();
1464         seq_printf(seq, "]");
1465 }
1466
1467 static void error(struct mddev *mddev, struct md_rdev *rdev)
1468 {
1469         char b[BDEVNAME_SIZE];
1470         struct r1conf *conf = mddev->private;
1471
1472         /*
1473          * If it is not operational, then we have already marked it as dead
1474          * else if it is the last working disks, ignore the error, let the
1475          * next level up know.
1476          * else mark the drive as failed
1477          */
1478         if (test_bit(In_sync, &rdev->flags)
1479             && (conf->raid_disks - mddev->degraded) == 1) {
1480                 /*
1481                  * Don't fail the drive, act as though we were just a
1482                  * normal single drive.
1483                  * However don't try a recovery from this drive as
1484                  * it is very likely to fail.
1485                  */
1486                 conf->recovery_disabled = mddev->recovery_disabled;
1487                 return;
1488         }
1489         set_bit(Blocked, &rdev->flags);
1490         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1491                 unsigned long flags;
1492                 spin_lock_irqsave(&conf->device_lock, flags);
1493                 mddev->degraded++;
1494                 set_bit(Faulty, &rdev->flags);
1495                 spin_unlock_irqrestore(&conf->device_lock, flags);
1496         } else
1497                 set_bit(Faulty, &rdev->flags);
1498         /*
1499          * if recovery is running, make sure it aborts.
1500          */
1501         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1502         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1503         printk(KERN_ALERT
1504                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1505                "md/raid1:%s: Operation continuing on %d devices.\n",
1506                mdname(mddev), bdevname(rdev->bdev, b),
1507                mdname(mddev), conf->raid_disks - mddev->degraded);
1508 }
1509
1510 static void print_conf(struct r1conf *conf)
1511 {
1512         int i;
1513
1514         printk(KERN_DEBUG "RAID1 conf printout:\n");
1515         if (!conf) {
1516                 printk(KERN_DEBUG "(!conf)\n");
1517                 return;
1518         }
1519         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1520                 conf->raid_disks);
1521
1522         rcu_read_lock();
1523         for (i = 0; i < conf->raid_disks; i++) {
1524                 char b[BDEVNAME_SIZE];
1525                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1526                 if (rdev)
1527                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1528                                i, !test_bit(In_sync, &rdev->flags),
1529                                !test_bit(Faulty, &rdev->flags),
1530                                bdevname(rdev->bdev,b));
1531         }
1532         rcu_read_unlock();
1533 }
1534
1535 static void close_sync(struct r1conf *conf)
1536 {
1537         wait_barrier(conf, NULL);
1538         allow_barrier(conf, 0, 0);
1539
1540         mempool_destroy(conf->r1buf_pool);
1541         conf->r1buf_pool = NULL;
1542
1543         spin_lock_irq(&conf->resync_lock);
1544         conf->next_resync = 0;
1545         conf->start_next_window = MaxSector;
1546         conf->current_window_requests +=
1547                 conf->next_window_requests;
1548         conf->next_window_requests = 0;
1549         spin_unlock_irq(&conf->resync_lock);
1550 }
1551
1552 static int raid1_spare_active(struct mddev *mddev)
1553 {
1554         int i;
1555         struct r1conf *conf = mddev->private;
1556         int count = 0;
1557         unsigned long flags;
1558
1559         /*
1560          * Find all failed disks within the RAID1 configuration
1561          * and mark them readable.
1562          * Called under mddev lock, so rcu protection not needed.
1563          */
1564         for (i = 0; i < conf->raid_disks; i++) {
1565                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1566                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1567                 if (repl
1568                     && repl->recovery_offset == MaxSector
1569                     && !test_bit(Faulty, &repl->flags)
1570                     && !test_and_set_bit(In_sync, &repl->flags)) {
1571                         /* replacement has just become active */
1572                         if (!rdev ||
1573                             !test_and_clear_bit(In_sync, &rdev->flags))
1574                                 count++;
1575                         if (rdev) {
1576                                 /* Replaced device not technically
1577                                  * faulty, but we need to be sure
1578                                  * it gets removed and never re-added
1579                                  */
1580                                 set_bit(Faulty, &rdev->flags);
1581                                 sysfs_notify_dirent_safe(
1582                                         rdev->sysfs_state);
1583                         }
1584                 }
1585                 if (rdev
1586                     && rdev->recovery_offset == MaxSector
1587                     && !test_bit(Faulty, &rdev->flags)
1588                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1589                         count++;
1590                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1591                 }
1592         }
1593         spin_lock_irqsave(&conf->device_lock, flags);
1594         mddev->degraded -= count;
1595         spin_unlock_irqrestore(&conf->device_lock, flags);
1596
1597         print_conf(conf);
1598         return count;
1599 }
1600
1601 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1602 {
1603         struct r1conf *conf = mddev->private;
1604         int err = -EEXIST;
1605         int mirror = 0;
1606         struct raid1_info *p;
1607         int first = 0;
1608         int last = conf->raid_disks - 1;
1609         struct request_queue *q = bdev_get_queue(rdev->bdev);
1610
1611         if (mddev->recovery_disabled == conf->recovery_disabled)
1612                 return -EBUSY;
1613
1614         if (rdev->raid_disk >= 0)
1615                 first = last = rdev->raid_disk;
1616
1617         if (q->merge_bvec_fn) {
1618                 set_bit(Unmerged, &rdev->flags);
1619                 mddev->merge_check_needed = 1;
1620         }
1621
1622         for (mirror = first; mirror <= last; mirror++) {
1623                 p = conf->mirrors+mirror;
1624                 if (!p->rdev) {
1625
1626                         if (mddev->gendisk)
1627                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1628                                                   rdev->data_offset << 9);
1629
1630                         p->head_position = 0;
1631                         rdev->raid_disk = mirror;
1632                         err = 0;
1633                         /* As all devices are equivalent, we don't need a full recovery
1634                          * if this was recently any drive of the array
1635                          */
1636                         if (rdev->saved_raid_disk < 0)
1637                                 conf->fullsync = 1;
1638                         rcu_assign_pointer(p->rdev, rdev);
1639                         break;
1640                 }
1641                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1642                     p[conf->raid_disks].rdev == NULL) {
1643                         /* Add this device as a replacement */
1644                         clear_bit(In_sync, &rdev->flags);
1645                         set_bit(Replacement, &rdev->flags);
1646                         rdev->raid_disk = mirror;
1647                         err = 0;
1648                         conf->fullsync = 1;
1649                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1650                         break;
1651                 }
1652         }
1653         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1654                 /* Some requests might not have seen this new
1655                  * merge_bvec_fn.  We must wait for them to complete
1656                  * before merging the device fully.
1657                  * First we make sure any code which has tested
1658                  * our function has submitted the request, then
1659                  * we wait for all outstanding requests to complete.
1660                  */
1661                 synchronize_sched();
1662                 freeze_array(conf, 0);
1663                 unfreeze_array(conf);
1664                 clear_bit(Unmerged, &rdev->flags);
1665         }
1666         md_integrity_add_rdev(rdev, mddev);
1667         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1668                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1669         print_conf(conf);
1670         return err;
1671 }
1672
1673 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1674 {
1675         struct r1conf *conf = mddev->private;
1676         int err = 0;
1677         int number = rdev->raid_disk;
1678         struct raid1_info *p = conf->mirrors + number;
1679
1680         if (rdev != p->rdev)
1681                 p = conf->mirrors + conf->raid_disks + number;
1682
1683         print_conf(conf);
1684         if (rdev == p->rdev) {
1685                 if (test_bit(In_sync, &rdev->flags) ||
1686                     atomic_read(&rdev->nr_pending)) {
1687                         err = -EBUSY;
1688                         goto abort;
1689                 }
1690                 /* Only remove non-faulty devices if recovery
1691                  * is not possible.
1692                  */
1693                 if (!test_bit(Faulty, &rdev->flags) &&
1694                     mddev->recovery_disabled != conf->recovery_disabled &&
1695                     mddev->degraded < conf->raid_disks) {
1696                         err = -EBUSY;
1697                         goto abort;
1698                 }
1699                 p->rdev = NULL;
1700                 synchronize_rcu();
1701                 if (atomic_read(&rdev->nr_pending)) {
1702                         /* lost the race, try later */
1703                         err = -EBUSY;
1704                         p->rdev = rdev;
1705                         goto abort;
1706                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1707                         /* We just removed a device that is being replaced.
1708                          * Move down the replacement.  We drain all IO before
1709                          * doing this to avoid confusion.
1710                          */
1711                         struct md_rdev *repl =
1712                                 conf->mirrors[conf->raid_disks + number].rdev;
1713                         freeze_array(conf, 0);
1714                         clear_bit(Replacement, &repl->flags);
1715                         p->rdev = repl;
1716                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1717                         unfreeze_array(conf);
1718                         clear_bit(WantReplacement, &rdev->flags);
1719                 } else
1720                         clear_bit(WantReplacement, &rdev->flags);
1721                 err = md_integrity_register(mddev);
1722         }
1723 abort:
1724
1725         print_conf(conf);
1726         return err;
1727 }
1728
1729 static void end_sync_read(struct bio *bio, int error)
1730 {
1731         struct r1bio *r1_bio = bio->bi_private;
1732
1733         update_head_pos(r1_bio->read_disk, r1_bio);
1734
1735         /*
1736          * we have read a block, now it needs to be re-written,
1737          * or re-read if the read failed.
1738          * We don't do much here, just schedule handling by raid1d
1739          */
1740         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1741                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1742
1743         if (atomic_dec_and_test(&r1_bio->remaining))
1744                 reschedule_retry(r1_bio);
1745 }
1746
1747 static void end_sync_write(struct bio *bio, int error)
1748 {
1749         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1750         struct r1bio *r1_bio = bio->bi_private;
1751         struct mddev *mddev = r1_bio->mddev;
1752         struct r1conf *conf = mddev->private;
1753         int mirror=0;
1754         sector_t first_bad;
1755         int bad_sectors;
1756
1757         mirror = find_bio_disk(r1_bio, bio);
1758
1759         if (!uptodate) {
1760                 sector_t sync_blocks = 0;
1761                 sector_t s = r1_bio->sector;
1762                 long sectors_to_go = r1_bio->sectors;
1763                 /* make sure these bits doesn't get cleared. */
1764                 do {
1765                         bitmap_end_sync(mddev->bitmap, s,
1766                                         &sync_blocks, 1);
1767                         s += sync_blocks;
1768                         sectors_to_go -= sync_blocks;
1769                 } while (sectors_to_go > 0);
1770                 set_bit(WriteErrorSeen,
1771                         &conf->mirrors[mirror].rdev->flags);
1772                 if (!test_and_set_bit(WantReplacement,
1773                                       &conf->mirrors[mirror].rdev->flags))
1774                         set_bit(MD_RECOVERY_NEEDED, &
1775                                 mddev->recovery);
1776                 set_bit(R1BIO_WriteError, &r1_bio->state);
1777         } else if (is_badblock(conf->mirrors[mirror].rdev,
1778                                r1_bio->sector,
1779                                r1_bio->sectors,
1780                                &first_bad, &bad_sectors) &&
1781                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1782                                 r1_bio->sector,
1783                                 r1_bio->sectors,
1784                                 &first_bad, &bad_sectors)
1785                 )
1786                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1787
1788         if (atomic_dec_and_test(&r1_bio->remaining)) {
1789                 int s = r1_bio->sectors;
1790                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1791                     test_bit(R1BIO_WriteError, &r1_bio->state))
1792                         reschedule_retry(r1_bio);
1793                 else {
1794                         put_buf(r1_bio);
1795                         md_done_sync(mddev, s, uptodate);
1796                 }
1797         }
1798 }
1799
1800 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1801                             int sectors, struct page *page, int rw)
1802 {
1803         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1804                 /* success */
1805                 return 1;
1806         if (rw == WRITE) {
1807                 set_bit(WriteErrorSeen, &rdev->flags);
1808                 if (!test_and_set_bit(WantReplacement,
1809                                       &rdev->flags))
1810                         set_bit(MD_RECOVERY_NEEDED, &
1811                                 rdev->mddev->recovery);
1812         }
1813         /* need to record an error - either for the block or the device */
1814         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1815                 md_error(rdev->mddev, rdev);
1816         return 0;
1817 }
1818
1819 static int fix_sync_read_error(struct r1bio *r1_bio)
1820 {
1821         /* Try some synchronous reads of other devices to get
1822          * good data, much like with normal read errors.  Only
1823          * read into the pages we already have so we don't
1824          * need to re-issue the read request.
1825          * We don't need to freeze the array, because being in an
1826          * active sync request, there is no normal IO, and
1827          * no overlapping syncs.
1828          * We don't need to check is_badblock() again as we
1829          * made sure that anything with a bad block in range
1830          * will have bi_end_io clear.
1831          */
1832         struct mddev *mddev = r1_bio->mddev;
1833         struct r1conf *conf = mddev->private;
1834         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1835         sector_t sect = r1_bio->sector;
1836         int sectors = r1_bio->sectors;
1837         int idx = 0;
1838
1839         while(sectors) {
1840                 int s = sectors;
1841                 int d = r1_bio->read_disk;
1842                 int success = 0;
1843                 struct md_rdev *rdev;
1844                 int start;
1845
1846                 if (s > (PAGE_SIZE>>9))
1847                         s = PAGE_SIZE >> 9;
1848                 do {
1849                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1850                                 /* No rcu protection needed here devices
1851                                  * can only be removed when no resync is
1852                                  * active, and resync is currently active
1853                                  */
1854                                 rdev = conf->mirrors[d].rdev;
1855                                 if (sync_page_io(rdev, sect, s<<9,
1856                                                  bio->bi_io_vec[idx].bv_page,
1857                                                  READ, false)) {
1858                                         success = 1;
1859                                         break;
1860                                 }
1861                         }
1862                         d++;
1863                         if (d == conf->raid_disks * 2)
1864                                 d = 0;
1865                 } while (!success && d != r1_bio->read_disk);
1866
1867                 if (!success) {
1868                         char b[BDEVNAME_SIZE];
1869                         int abort = 0;
1870                         /* Cannot read from anywhere, this block is lost.
1871                          * Record a bad block on each device.  If that doesn't
1872                          * work just disable and interrupt the recovery.
1873                          * Don't fail devices as that won't really help.
1874                          */
1875                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1876                                " for block %llu\n",
1877                                mdname(mddev),
1878                                bdevname(bio->bi_bdev, b),
1879                                (unsigned long long)r1_bio->sector);
1880                         for (d = 0; d < conf->raid_disks * 2; d++) {
1881                                 rdev = conf->mirrors[d].rdev;
1882                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1883                                         continue;
1884                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1885                                         abort = 1;
1886                         }
1887                         if (abort) {
1888                                 conf->recovery_disabled =
1889                                         mddev->recovery_disabled;
1890                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1891                                 md_done_sync(mddev, r1_bio->sectors, 0);
1892                                 put_buf(r1_bio);
1893                                 return 0;
1894                         }
1895                         /* Try next page */
1896                         sectors -= s;
1897                         sect += s;
1898                         idx++;
1899                         continue;
1900                 }
1901
1902                 start = d;
1903                 /* write it back and re-read */
1904                 while (d != r1_bio->read_disk) {
1905                         if (d == 0)
1906                                 d = conf->raid_disks * 2;
1907                         d--;
1908                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1909                                 continue;
1910                         rdev = conf->mirrors[d].rdev;
1911                         if (r1_sync_page_io(rdev, sect, s,
1912                                             bio->bi_io_vec[idx].bv_page,
1913                                             WRITE) == 0) {
1914                                 r1_bio->bios[d]->bi_end_io = NULL;
1915                                 rdev_dec_pending(rdev, mddev);
1916                         }
1917                 }
1918                 d = start;
1919                 while (d != r1_bio->read_disk) {
1920                         if (d == 0)
1921                                 d = conf->raid_disks * 2;
1922                         d--;
1923                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1924                                 continue;
1925                         rdev = conf->mirrors[d].rdev;
1926                         if (r1_sync_page_io(rdev, sect, s,
1927                                             bio->bi_io_vec[idx].bv_page,
1928                                             READ) != 0)
1929                                 atomic_add(s, &rdev->corrected_errors);
1930                 }
1931                 sectors -= s;
1932                 sect += s;
1933                 idx ++;
1934         }
1935         set_bit(R1BIO_Uptodate, &r1_bio->state);
1936         set_bit(BIO_UPTODATE, &bio->bi_flags);
1937         return 1;
1938 }
1939
1940 static void process_checks(struct r1bio *r1_bio)
1941 {
1942         /* We have read all readable devices.  If we haven't
1943          * got the block, then there is no hope left.
1944          * If we have, then we want to do a comparison
1945          * and skip the write if everything is the same.
1946          * If any blocks failed to read, then we need to
1947          * attempt an over-write
1948          */
1949         struct mddev *mddev = r1_bio->mddev;
1950         struct r1conf *conf = mddev->private;
1951         int primary;
1952         int i;
1953         int vcnt;
1954
1955         /* Fix variable parts of all bios */
1956         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1957         for (i = 0; i < conf->raid_disks * 2; i++) {
1958                 int j;
1959                 int size;
1960                 int uptodate;
1961                 struct bio *b = r1_bio->bios[i];
1962                 if (b->bi_end_io != end_sync_read)
1963                         continue;
1964                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1965                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1966                 bio_reset(b);
1967                 if (!uptodate)
1968                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1969                 b->bi_vcnt = vcnt;
1970                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1971                 b->bi_iter.bi_sector = r1_bio->sector +
1972                         conf->mirrors[i].rdev->data_offset;
1973                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1974                 b->bi_end_io = end_sync_read;
1975                 b->bi_private = r1_bio;
1976
1977                 size = b->bi_iter.bi_size;
1978                 for (j = 0; j < vcnt ; j++) {
1979                         struct bio_vec *bi;
1980                         bi = &b->bi_io_vec[j];
1981                         bi->bv_offset = 0;
1982                         if (size > PAGE_SIZE)
1983                                 bi->bv_len = PAGE_SIZE;
1984                         else
1985                                 bi->bv_len = size;
1986                         size -= PAGE_SIZE;
1987                 }
1988         }
1989         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1990                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1991                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1992                         r1_bio->bios[primary]->bi_end_io = NULL;
1993                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1994                         break;
1995                 }
1996         r1_bio->read_disk = primary;
1997         for (i = 0; i < conf->raid_disks * 2; i++) {
1998                 int j;
1999                 struct bio *pbio = r1_bio->bios[primary];
2000                 struct bio *sbio = r1_bio->bios[i];
2001                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2002
2003                 if (sbio->bi_end_io != end_sync_read)
2004                         continue;
2005                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2006                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2007
2008                 if (uptodate) {
2009                         for (j = vcnt; j-- ; ) {
2010                                 struct page *p, *s;
2011                                 p = pbio->bi_io_vec[j].bv_page;
2012                                 s = sbio->bi_io_vec[j].bv_page;
2013                                 if (memcmp(page_address(p),
2014                                            page_address(s),
2015                                            sbio->bi_io_vec[j].bv_len))
2016                                         break;
2017                         }
2018                 } else
2019                         j = 0;
2020                 if (j >= 0)
2021                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2022                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2023                               && uptodate)) {
2024                         /* No need to write to this device. */
2025                         sbio->bi_end_io = NULL;
2026                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2027                         continue;
2028                 }
2029
2030                 bio_copy_data(sbio, pbio);
2031         }
2032 }
2033
2034 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2035 {
2036         struct r1conf *conf = mddev->private;
2037         int i;
2038         int disks = conf->raid_disks * 2;
2039         struct bio *bio, *wbio;
2040
2041         bio = r1_bio->bios[r1_bio->read_disk];
2042
2043         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2044                 /* ouch - failed to read all of that. */
2045                 if (!fix_sync_read_error(r1_bio))
2046                         return;
2047
2048         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2049                 process_checks(r1_bio);
2050
2051         /*
2052          * schedule writes
2053          */
2054         atomic_set(&r1_bio->remaining, 1);
2055         for (i = 0; i < disks ; i++) {
2056                 wbio = r1_bio->bios[i];
2057                 if (wbio->bi_end_io == NULL ||
2058                     (wbio->bi_end_io == end_sync_read &&
2059                      (i == r1_bio->read_disk ||
2060                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2061                         continue;
2062
2063                 wbio->bi_rw = WRITE;
2064                 wbio->bi_end_io = end_sync_write;
2065                 atomic_inc(&r1_bio->remaining);
2066                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2067
2068                 generic_make_request(wbio);
2069         }
2070
2071         if (atomic_dec_and_test(&r1_bio->remaining)) {
2072                 /* if we're here, all write(s) have completed, so clean up */
2073                 int s = r1_bio->sectors;
2074                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2075                     test_bit(R1BIO_WriteError, &r1_bio->state))
2076                         reschedule_retry(r1_bio);
2077                 else {
2078                         put_buf(r1_bio);
2079                         md_done_sync(mddev, s, 1);
2080                 }
2081         }
2082 }
2083
2084 /*
2085  * This is a kernel thread which:
2086  *
2087  *      1.      Retries failed read operations on working mirrors.
2088  *      2.      Updates the raid superblock when problems encounter.
2089  *      3.      Performs writes following reads for array synchronising.
2090  */
2091
2092 static void fix_read_error(struct r1conf *conf, int read_disk,
2093                            sector_t sect, int sectors)
2094 {
2095         struct mddev *mddev = conf->mddev;
2096         while(sectors) {
2097                 int s = sectors;
2098                 int d = read_disk;
2099                 int success = 0;
2100                 int start;
2101                 struct md_rdev *rdev;
2102
2103                 if (s > (PAGE_SIZE>>9))
2104                         s = PAGE_SIZE >> 9;
2105
2106                 do {
2107                         /* Note: no rcu protection needed here
2108                          * as this is synchronous in the raid1d thread
2109                          * which is the thread that might remove
2110                          * a device.  If raid1d ever becomes multi-threaded....
2111                          */
2112                         sector_t first_bad;
2113                         int bad_sectors;
2114
2115                         rdev = conf->mirrors[d].rdev;
2116                         if (rdev &&
2117                             (test_bit(In_sync, &rdev->flags) ||
2118                              (!test_bit(Faulty, &rdev->flags) &&
2119                               rdev->recovery_offset >= sect + s)) &&
2120                             is_badblock(rdev, sect, s,
2121                                         &first_bad, &bad_sectors) == 0 &&
2122                             sync_page_io(rdev, sect, s<<9,
2123                                          conf->tmppage, READ, false))
2124                                 success = 1;
2125                         else {
2126                                 d++;
2127                                 if (d == conf->raid_disks * 2)
2128                                         d = 0;
2129                         }
2130                 } while (!success && d != read_disk);
2131
2132                 if (!success) {
2133                         /* Cannot read from anywhere - mark it bad */
2134                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2135                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2136                                 md_error(mddev, rdev);
2137                         break;
2138                 }
2139                 /* write it back and re-read */
2140                 start = d;
2141                 while (d != read_disk) {
2142                         if (d==0)
2143                                 d = conf->raid_disks * 2;
2144                         d--;
2145                         rdev = conf->mirrors[d].rdev;
2146                         if (rdev &&
2147                             !test_bit(Faulty, &rdev->flags))
2148                                 r1_sync_page_io(rdev, sect, s,
2149                                                 conf->tmppage, WRITE);
2150                 }
2151                 d = start;
2152                 while (d != read_disk) {
2153                         char b[BDEVNAME_SIZE];
2154                         if (d==0)
2155                                 d = conf->raid_disks * 2;
2156                         d--;
2157                         rdev = conf->mirrors[d].rdev;
2158                         if (rdev &&
2159                             !test_bit(Faulty, &rdev->flags)) {
2160                                 if (r1_sync_page_io(rdev, sect, s,
2161                                                     conf->tmppage, READ)) {
2162                                         atomic_add(s, &rdev->corrected_errors);
2163                                         printk(KERN_INFO
2164                                                "md/raid1:%s: read error corrected "
2165                                                "(%d sectors at %llu on %s)\n",
2166                                                mdname(mddev), s,
2167                                                (unsigned long long)(sect +
2168                                                    rdev->data_offset),
2169                                                bdevname(rdev->bdev, b));
2170                                 }
2171                         }
2172                 }
2173                 sectors -= s;
2174                 sect += s;
2175         }
2176 }
2177
2178 static int narrow_write_error(struct r1bio *r1_bio, int i)
2179 {
2180         struct mddev *mddev = r1_bio->mddev;
2181         struct r1conf *conf = mddev->private;
2182         struct md_rdev *rdev = conf->mirrors[i].rdev;
2183
2184         /* bio has the data to be written to device 'i' where
2185          * we just recently had a write error.
2186          * We repeatedly clone the bio and trim down to one block,
2187          * then try the write.  Where the write fails we record
2188          * a bad block.
2189          * It is conceivable that the bio doesn't exactly align with
2190          * blocks.  We must handle this somehow.
2191          *
2192          * We currently own a reference on the rdev.
2193          */
2194
2195         int block_sectors;
2196         sector_t sector;
2197         int sectors;
2198         int sect_to_write = r1_bio->sectors;
2199         int ok = 1;
2200
2201         if (rdev->badblocks.shift < 0)
2202                 return 0;
2203
2204         block_sectors = roundup(1 << rdev->badblocks.shift,
2205                                 bdev_logical_block_size(rdev->bdev) >> 9);
2206         sector = r1_bio->sector;
2207         sectors = ((sector + block_sectors)
2208                    & ~(sector_t)(block_sectors - 1))
2209                 - sector;
2210
2211         while (sect_to_write) {
2212                 struct bio *wbio;
2213                 if (sectors > sect_to_write)
2214                         sectors = sect_to_write;
2215                 /* Write at 'sector' for 'sectors'*/
2216
2217                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2218                         unsigned vcnt = r1_bio->behind_page_count;
2219                         struct bio_vec *vec = r1_bio->behind_bvecs;
2220
2221                         while (!vec->bv_page) {
2222                                 vec++;
2223                                 vcnt--;
2224                         }
2225
2226                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2227                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2228
2229                         wbio->bi_vcnt = vcnt;
2230                 } else {
2231                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2232                 }
2233
2234                 wbio->bi_rw = WRITE;
2235                 wbio->bi_iter.bi_sector = r1_bio->sector;
2236                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2237
2238                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2239                 wbio->bi_iter.bi_sector += rdev->data_offset;
2240                 wbio->bi_bdev = rdev->bdev;
2241                 if (submit_bio_wait(WRITE, wbio) == 0)
2242                         /* failure! */
2243                         ok = rdev_set_badblocks(rdev, sector,
2244                                                 sectors, 0)
2245                                 && ok;
2246
2247                 bio_put(wbio);
2248                 sect_to_write -= sectors;
2249                 sector += sectors;
2250                 sectors = block_sectors;
2251         }
2252         return ok;
2253 }
2254
2255 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2256 {
2257         int m;
2258         int s = r1_bio->sectors;
2259         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2260                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2261                 struct bio *bio = r1_bio->bios[m];
2262                 if (bio->bi_end_io == NULL)
2263                         continue;
2264                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2266                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2267                 }
2268                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2270                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2271                                 md_error(conf->mddev, rdev);
2272                 }
2273         }
2274         put_buf(r1_bio);
2275         md_done_sync(conf->mddev, s, 1);
2276 }
2277
2278 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2279 {
2280         int m;
2281         for (m = 0; m < conf->raid_disks * 2 ; m++)
2282                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2283                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2284                         rdev_clear_badblocks(rdev,
2285                                              r1_bio->sector,
2286                                              r1_bio->sectors, 0);
2287                         rdev_dec_pending(rdev, conf->mddev);
2288                 } else if (r1_bio->bios[m] != NULL) {
2289                         /* This drive got a write error.  We need to
2290                          * narrow down and record precise write
2291                          * errors.
2292                          */
2293                         if (!narrow_write_error(r1_bio, m)) {
2294                                 md_error(conf->mddev,
2295                                          conf->mirrors[m].rdev);
2296                                 /* an I/O failed, we can't clear the bitmap */
2297                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2298                         }
2299                         rdev_dec_pending(conf->mirrors[m].rdev,
2300                                          conf->mddev);
2301                 }
2302         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2303                 close_write(r1_bio);
2304         raid_end_bio_io(r1_bio);
2305 }
2306
2307 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2308 {
2309         int disk;
2310         int max_sectors;
2311         struct mddev *mddev = conf->mddev;
2312         struct bio *bio;
2313         char b[BDEVNAME_SIZE];
2314         struct md_rdev *rdev;
2315
2316         clear_bit(R1BIO_ReadError, &r1_bio->state);
2317         /* we got a read error. Maybe the drive is bad.  Maybe just
2318          * the block and we can fix it.
2319          * We freeze all other IO, and try reading the block from
2320          * other devices.  When we find one, we re-write
2321          * and check it that fixes the read error.
2322          * This is all done synchronously while the array is
2323          * frozen
2324          */
2325         if (mddev->ro == 0) {
2326                 freeze_array(conf, 1);
2327                 fix_read_error(conf, r1_bio->read_disk,
2328                                r1_bio->sector, r1_bio->sectors);
2329                 unfreeze_array(conf);
2330         } else
2331                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2332         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2333
2334         bio = r1_bio->bios[r1_bio->read_disk];
2335         bdevname(bio->bi_bdev, b);
2336 read_more:
2337         disk = read_balance(conf, r1_bio, &max_sectors);
2338         if (disk == -1) {
2339                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2340                        " read error for block %llu\n",
2341                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2342                 raid_end_bio_io(r1_bio);
2343         } else {
2344                 const unsigned long do_sync
2345                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2346                 if (bio) {
2347                         r1_bio->bios[r1_bio->read_disk] =
2348                                 mddev->ro ? IO_BLOCKED : NULL;
2349                         bio_put(bio);
2350                 }
2351                 r1_bio->read_disk = disk;
2352                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2353                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2354                          max_sectors);
2355                 r1_bio->bios[r1_bio->read_disk] = bio;
2356                 rdev = conf->mirrors[disk].rdev;
2357                 printk_ratelimited(KERN_ERR
2358                                    "md/raid1:%s: redirecting sector %llu"
2359                                    " to other mirror: %s\n",
2360                                    mdname(mddev),
2361                                    (unsigned long long)r1_bio->sector,
2362                                    bdevname(rdev->bdev, b));
2363                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2364                 bio->bi_bdev = rdev->bdev;
2365                 bio->bi_end_io = raid1_end_read_request;
2366                 bio->bi_rw = READ | do_sync;
2367                 bio->bi_private = r1_bio;
2368                 if (max_sectors < r1_bio->sectors) {
2369                         /* Drat - have to split this up more */
2370                         struct bio *mbio = r1_bio->master_bio;
2371                         int sectors_handled = (r1_bio->sector + max_sectors
2372                                                - mbio->bi_iter.bi_sector);
2373                         r1_bio->sectors = max_sectors;
2374                         spin_lock_irq(&conf->device_lock);
2375                         if (mbio->bi_phys_segments == 0)
2376                                 mbio->bi_phys_segments = 2;
2377                         else
2378                                 mbio->bi_phys_segments++;
2379                         spin_unlock_irq(&conf->device_lock);
2380                         generic_make_request(bio);
2381                         bio = NULL;
2382
2383                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2384
2385                         r1_bio->master_bio = mbio;
2386                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2387                         r1_bio->state = 0;
2388                         set_bit(R1BIO_ReadError, &r1_bio->state);
2389                         r1_bio->mddev = mddev;
2390                         r1_bio->sector = mbio->bi_iter.bi_sector +
2391                                 sectors_handled;
2392
2393                         goto read_more;
2394                 } else
2395                         generic_make_request(bio);
2396         }
2397 }
2398
2399 static void raid1d(struct md_thread *thread)
2400 {
2401         struct mddev *mddev = thread->mddev;
2402         struct r1bio *r1_bio;
2403         unsigned long flags;
2404         struct r1conf *conf = mddev->private;
2405         struct list_head *head = &conf->retry_list;
2406         struct blk_plug plug;
2407
2408         md_check_recovery(mddev);
2409
2410         blk_start_plug(&plug);
2411         for (;;) {
2412
2413                 flush_pending_writes(conf);
2414
2415                 spin_lock_irqsave(&conf->device_lock, flags);
2416                 if (list_empty(head)) {
2417                         spin_unlock_irqrestore(&conf->device_lock, flags);
2418                         break;
2419                 }
2420                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2421                 list_del(head->prev);
2422                 conf->nr_queued--;
2423                 spin_unlock_irqrestore(&conf->device_lock, flags);
2424
2425                 mddev = r1_bio->mddev;
2426                 conf = mddev->private;
2427                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2428                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429                             test_bit(R1BIO_WriteError, &r1_bio->state))
2430                                 handle_sync_write_finished(conf, r1_bio);
2431                         else
2432                                 sync_request_write(mddev, r1_bio);
2433                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434                            test_bit(R1BIO_WriteError, &r1_bio->state))
2435                         handle_write_finished(conf, r1_bio);
2436                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2437                         handle_read_error(conf, r1_bio);
2438                 else
2439                         /* just a partial read to be scheduled from separate
2440                          * context
2441                          */
2442                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2443
2444                 cond_resched();
2445                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2446                         md_check_recovery(mddev);
2447         }
2448         blk_finish_plug(&plug);
2449 }
2450
2451 static int init_resync(struct r1conf *conf)
2452 {
2453         int buffs;
2454
2455         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2456         BUG_ON(conf->r1buf_pool);
2457         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2458                                           conf->poolinfo);
2459         if (!conf->r1buf_pool)
2460                 return -ENOMEM;
2461         conf->next_resync = 0;
2462         return 0;
2463 }
2464
2465 /*
2466  * perform a "sync" on one "block"
2467  *
2468  * We need to make sure that no normal I/O request - particularly write
2469  * requests - conflict with active sync requests.
2470  *
2471  * This is achieved by tracking pending requests and a 'barrier' concept
2472  * that can be installed to exclude normal IO requests.
2473  */
2474
2475 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2476 {
2477         struct r1conf *conf = mddev->private;
2478         struct r1bio *r1_bio;
2479         struct bio *bio;
2480         sector_t max_sector, nr_sectors;
2481         int disk = -1;
2482         int i;
2483         int wonly = -1;
2484         int write_targets = 0, read_targets = 0;
2485         sector_t sync_blocks;
2486         int still_degraded = 0;
2487         int good_sectors = RESYNC_SECTORS;
2488         int min_bad = 0; /* number of sectors that are bad in all devices */
2489
2490         if (!conf->r1buf_pool)
2491                 if (init_resync(conf))
2492                         return 0;
2493
2494         max_sector = mddev->dev_sectors;
2495         if (sector_nr >= max_sector) {
2496                 /* If we aborted, we need to abort the
2497                  * sync on the 'current' bitmap chunk (there will
2498                  * only be one in raid1 resync.
2499                  * We can find the current addess in mddev->curr_resync
2500                  */
2501                 if (mddev->curr_resync < max_sector) /* aborted */
2502                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2503                                                 &sync_blocks, 1);
2504                 else /* completed sync */
2505                         conf->fullsync = 0;
2506
2507                 bitmap_close_sync(mddev->bitmap);
2508                 close_sync(conf);
2509                 return 0;
2510         }
2511
2512         if (mddev->bitmap == NULL &&
2513             mddev->recovery_cp == MaxSector &&
2514             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2515             conf->fullsync == 0) {
2516                 *skipped = 1;
2517                 return max_sector - sector_nr;
2518         }
2519         /* before building a request, check if we can skip these blocks..
2520          * This call the bitmap_start_sync doesn't actually record anything
2521          */
2522         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2523             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2524                 /* We can skip this block, and probably several more */
2525                 *skipped = 1;
2526                 return sync_blocks;
2527         }
2528         /*
2529          * If there is non-resync activity waiting for a turn,
2530          * and resync is going fast enough,
2531          * then let it though before starting on this new sync request.
2532          */
2533         if (!go_faster && conf->nr_waiting)
2534                 msleep_interruptible(1000);
2535
2536         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2537         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2538
2539         raise_barrier(conf, sector_nr);
2540
2541         rcu_read_lock();
2542         /*
2543          * If we get a correctably read error during resync or recovery,
2544          * we might want to read from a different device.  So we
2545          * flag all drives that could conceivably be read from for READ,
2546          * and any others (which will be non-In_sync devices) for WRITE.
2547          * If a read fails, we try reading from something else for which READ
2548          * is OK.
2549          */
2550
2551         r1_bio->mddev = mddev;
2552         r1_bio->sector = sector_nr;
2553         r1_bio->state = 0;
2554         set_bit(R1BIO_IsSync, &r1_bio->state);
2555
2556         for (i = 0; i < conf->raid_disks * 2; i++) {
2557                 struct md_rdev *rdev;
2558                 bio = r1_bio->bios[i];
2559                 bio_reset(bio);
2560
2561                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2562                 if (rdev == NULL ||
2563                     test_bit(Faulty, &rdev->flags)) {
2564                         if (i < conf->raid_disks)
2565                                 still_degraded = 1;
2566                 } else if (!test_bit(In_sync, &rdev->flags)) {
2567                         bio->bi_rw = WRITE;
2568                         bio->bi_end_io = end_sync_write;
2569                         write_targets ++;
2570                 } else {
2571                         /* may need to read from here */
2572                         sector_t first_bad = MaxSector;
2573                         int bad_sectors;
2574
2575                         if (is_badblock(rdev, sector_nr, good_sectors,
2576                                         &first_bad, &bad_sectors)) {
2577                                 if (first_bad > sector_nr)
2578                                         good_sectors = first_bad - sector_nr;
2579                                 else {
2580                                         bad_sectors -= (sector_nr - first_bad);
2581                                         if (min_bad == 0 ||
2582                                             min_bad > bad_sectors)
2583                                                 min_bad = bad_sectors;
2584                                 }
2585                         }
2586                         if (sector_nr < first_bad) {
2587                                 if (test_bit(WriteMostly, &rdev->flags)) {
2588                                         if (wonly < 0)
2589                                                 wonly = i;
2590                                 } else {
2591                                         if (disk < 0)
2592                                                 disk = i;
2593                                 }
2594                                 bio->bi_rw = READ;
2595                                 bio->bi_end_io = end_sync_read;
2596                                 read_targets++;
2597                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2598                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2599                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2600                                 /*
2601                                  * The device is suitable for reading (InSync),
2602                                  * but has bad block(s) here. Let's try to correct them,
2603                                  * if we are doing resync or repair. Otherwise, leave
2604                                  * this device alone for this sync request.
2605                                  */
2606                                 bio->bi_rw = WRITE;
2607                                 bio->bi_end_io = end_sync_write;
2608                                 write_targets++;
2609                         }
2610                 }
2611                 if (bio->bi_end_io) {
2612                         atomic_inc(&rdev->nr_pending);
2613                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2614                         bio->bi_bdev = rdev->bdev;
2615                         bio->bi_private = r1_bio;
2616                 }
2617         }
2618         rcu_read_unlock();
2619         if (disk < 0)
2620                 disk = wonly;
2621         r1_bio->read_disk = disk;
2622
2623         if (read_targets == 0 && min_bad > 0) {
2624                 /* These sectors are bad on all InSync devices, so we
2625                  * need to mark them bad on all write targets
2626                  */
2627                 int ok = 1;
2628                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2629                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2630                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2631                                 ok = rdev_set_badblocks(rdev, sector_nr,
2632                                                         min_bad, 0
2633                                         ) && ok;
2634                         }
2635                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2636                 *skipped = 1;
2637                 put_buf(r1_bio);
2638
2639                 if (!ok) {
2640                         /* Cannot record the badblocks, so need to
2641                          * abort the resync.
2642                          * If there are multiple read targets, could just
2643                          * fail the really bad ones ???
2644                          */
2645                         conf->recovery_disabled = mddev->recovery_disabled;
2646                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2647                         return 0;
2648                 } else
2649                         return min_bad;
2650
2651         }
2652         if (min_bad > 0 && min_bad < good_sectors) {
2653                 /* only resync enough to reach the next bad->good
2654                  * transition */
2655                 good_sectors = min_bad;
2656         }
2657
2658         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2659                 /* extra read targets are also write targets */
2660                 write_targets += read_targets-1;
2661
2662         if (write_targets == 0 || read_targets == 0) {
2663                 /* There is nowhere to write, so all non-sync
2664                  * drives must be failed - so we are finished
2665                  */
2666                 sector_t rv;
2667                 if (min_bad > 0)
2668                         max_sector = sector_nr + min_bad;
2669                 rv = max_sector - sector_nr;
2670                 *skipped = 1;
2671                 put_buf(r1_bio);
2672                 return rv;
2673         }
2674
2675         if (max_sector > mddev->resync_max)
2676                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2677         if (max_sector > sector_nr + good_sectors)
2678                 max_sector = sector_nr + good_sectors;
2679         nr_sectors = 0;
2680         sync_blocks = 0;
2681         do {
2682                 struct page *page;
2683                 int len = PAGE_SIZE;
2684                 if (sector_nr + (len>>9) > max_sector)
2685                         len = (max_sector - sector_nr) << 9;
2686                 if (len == 0)
2687                         break;
2688                 if (sync_blocks == 0) {
2689                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2690                                                &sync_blocks, still_degraded) &&
2691                             !conf->fullsync &&
2692                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2693                                 break;
2694                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2695                         if ((len >> 9) > sync_blocks)
2696                                 len = sync_blocks<<9;
2697                 }
2698
2699                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2700                         bio = r1_bio->bios[i];
2701                         if (bio->bi_end_io) {
2702                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2703                                 if (bio_add_page(bio, page, len, 0) == 0) {
2704                                         /* stop here */
2705                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2706                                         while (i > 0) {
2707                                                 i--;
2708                                                 bio = r1_bio->bios[i];
2709                                                 if (bio->bi_end_io==NULL)
2710                                                         continue;
2711                                                 /* remove last page from this bio */
2712                                                 bio->bi_vcnt--;
2713                                                 bio->bi_iter.bi_size -= len;
2714                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2715                                         }
2716                                         goto bio_full;
2717                                 }
2718                         }
2719                 }
2720                 nr_sectors += len>>9;
2721                 sector_nr += len>>9;
2722                 sync_blocks -= (len>>9);
2723         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2724  bio_full:
2725         r1_bio->sectors = nr_sectors;
2726
2727         /* For a user-requested sync, we read all readable devices and do a
2728          * compare
2729          */
2730         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2731                 atomic_set(&r1_bio->remaining, read_targets);
2732                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2733                         bio = r1_bio->bios[i];
2734                         if (bio->bi_end_io == end_sync_read) {
2735                                 read_targets--;
2736                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2737                                 generic_make_request(bio);
2738                         }
2739                 }
2740         } else {
2741                 atomic_set(&r1_bio->remaining, 1);
2742                 bio = r1_bio->bios[r1_bio->read_disk];
2743                 md_sync_acct(bio->bi_bdev, nr_sectors);
2744                 generic_make_request(bio);
2745
2746         }
2747         return nr_sectors;
2748 }
2749
2750 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2751 {
2752         if (sectors)
2753                 return sectors;
2754
2755         return mddev->dev_sectors;
2756 }
2757
2758 static struct r1conf *setup_conf(struct mddev *mddev)
2759 {
2760         struct r1conf *conf;
2761         int i;
2762         struct raid1_info *disk;
2763         struct md_rdev *rdev;
2764         int err = -ENOMEM;
2765
2766         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2767         if (!conf)
2768                 goto abort;
2769
2770         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2771                                 * mddev->raid_disks * 2,
2772                                  GFP_KERNEL);
2773         if (!conf->mirrors)
2774                 goto abort;
2775
2776         conf->tmppage = alloc_page(GFP_KERNEL);
2777         if (!conf->tmppage)
2778                 goto abort;
2779
2780         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2781         if (!conf->poolinfo)
2782                 goto abort;
2783         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2784         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2785                                           r1bio_pool_free,
2786                                           conf->poolinfo);
2787         if (!conf->r1bio_pool)
2788                 goto abort;
2789
2790         conf->poolinfo->mddev = mddev;
2791
2792         err = -EINVAL;
2793         spin_lock_init(&conf->device_lock);
2794         rdev_for_each(rdev, mddev) {
2795                 struct request_queue *q;
2796                 int disk_idx = rdev->raid_disk;
2797                 if (disk_idx >= mddev->raid_disks
2798                     || disk_idx < 0)
2799                         continue;
2800                 if (test_bit(Replacement, &rdev->flags))
2801                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2802                 else
2803                         disk = conf->mirrors + disk_idx;
2804
2805                 if (disk->rdev)
2806                         goto abort;
2807                 disk->rdev = rdev;
2808                 q = bdev_get_queue(rdev->bdev);
2809                 if (q->merge_bvec_fn)
2810                         mddev->merge_check_needed = 1;
2811
2812                 disk->head_position = 0;
2813                 disk->seq_start = MaxSector;
2814         }
2815         conf->raid_disks = mddev->raid_disks;
2816         conf->mddev = mddev;
2817         INIT_LIST_HEAD(&conf->retry_list);
2818
2819         spin_lock_init(&conf->resync_lock);
2820         init_waitqueue_head(&conf->wait_barrier);
2821
2822         bio_list_init(&conf->pending_bio_list);
2823         conf->pending_count = 0;
2824         conf->recovery_disabled = mddev->recovery_disabled - 1;
2825
2826         conf->start_next_window = MaxSector;
2827         conf->current_window_requests = conf->next_window_requests = 0;
2828
2829         err = -EIO;
2830         for (i = 0; i < conf->raid_disks * 2; i++) {
2831
2832                 disk = conf->mirrors + i;
2833
2834                 if (i < conf->raid_disks &&
2835                     disk[conf->raid_disks].rdev) {
2836                         /* This slot has a replacement. */
2837                         if (!disk->rdev) {
2838                                 /* No original, just make the replacement
2839                                  * a recovering spare
2840                                  */
2841                                 disk->rdev =
2842                                         disk[conf->raid_disks].rdev;
2843                                 disk[conf->raid_disks].rdev = NULL;
2844                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2845                                 /* Original is not in_sync - bad */
2846                                 goto abort;
2847                 }
2848
2849                 if (!disk->rdev ||
2850                     !test_bit(In_sync, &disk->rdev->flags)) {
2851                         disk->head_position = 0;
2852                         if (disk->rdev &&
2853                             (disk->rdev->saved_raid_disk < 0))
2854                                 conf->fullsync = 1;
2855                 }
2856         }
2857
2858         err = -ENOMEM;
2859         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2860         if (!conf->thread) {
2861                 printk(KERN_ERR
2862                        "md/raid1:%s: couldn't allocate thread\n",
2863                        mdname(mddev));
2864                 goto abort;
2865         }
2866
2867         return conf;
2868
2869  abort:
2870         if (conf) {
2871                 if (conf->r1bio_pool)
2872                         mempool_destroy(conf->r1bio_pool);
2873                 kfree(conf->mirrors);
2874                 safe_put_page(conf->tmppage);
2875                 kfree(conf->poolinfo);
2876                 kfree(conf);
2877         }
2878         return ERR_PTR(err);
2879 }
2880
2881 static void raid1_free(struct mddev *mddev, void *priv);
2882 static int run(struct mddev *mddev)
2883 {
2884         struct r1conf *conf;
2885         int i;
2886         struct md_rdev *rdev;
2887         int ret;
2888         bool discard_supported = false;
2889
2890         if (mddev->level != 1) {
2891                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2892                        mdname(mddev), mddev->level);
2893                 return -EIO;
2894         }
2895         if (mddev->reshape_position != MaxSector) {
2896                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2897                        mdname(mddev));
2898                 return -EIO;
2899         }
2900         /*
2901          * copy the already verified devices into our private RAID1
2902          * bookkeeping area. [whatever we allocate in run(),
2903          * should be freed in raid1_free()]
2904          */
2905         if (mddev->private == NULL)
2906                 conf = setup_conf(mddev);
2907         else
2908                 conf = mddev->private;
2909
2910         if (IS_ERR(conf))
2911                 return PTR_ERR(conf);
2912
2913         if (mddev->queue)
2914                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2915
2916         rdev_for_each(rdev, mddev) {
2917                 if (!mddev->gendisk)
2918                         continue;
2919                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2920                                   rdev->data_offset << 9);
2921                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2922                         discard_supported = true;
2923         }
2924
2925         mddev->degraded = 0;
2926         for (i=0; i < conf->raid_disks; i++)
2927                 if (conf->mirrors[i].rdev == NULL ||
2928                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2929                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2930                         mddev->degraded++;
2931
2932         if (conf->raid_disks - mddev->degraded == 1)
2933                 mddev->recovery_cp = MaxSector;
2934
2935         if (mddev->recovery_cp != MaxSector)
2936                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2937                        " -- starting background reconstruction\n",
2938                        mdname(mddev));
2939         printk(KERN_INFO
2940                 "md/raid1:%s: active with %d out of %d mirrors\n",
2941                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2942                 mddev->raid_disks);
2943
2944         /*
2945          * Ok, everything is just fine now
2946          */
2947         mddev->thread = conf->thread;
2948         conf->thread = NULL;
2949         mddev->private = conf;
2950
2951         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2952
2953         if (mddev->queue) {
2954                 if (discard_supported)
2955                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2956                                                 mddev->queue);
2957                 else
2958                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2959                                                   mddev->queue);
2960         }
2961
2962         ret =  md_integrity_register(mddev);
2963         if (ret) {
2964                 md_unregister_thread(&mddev->thread);
2965                 raid1_free(mddev, conf);
2966         }
2967         return ret;
2968 }
2969
2970 static void raid1_free(struct mddev *mddev, void *priv)
2971 {
2972         struct r1conf *conf = priv;
2973
2974         if (conf->r1bio_pool)
2975                 mempool_destroy(conf->r1bio_pool);
2976         kfree(conf->mirrors);
2977         safe_put_page(conf->tmppage);
2978         kfree(conf->poolinfo);
2979         kfree(conf);
2980 }
2981
2982 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2983 {
2984         /* no resync is happening, and there is enough space
2985          * on all devices, so we can resize.
2986          * We need to make sure resync covers any new space.
2987          * If the array is shrinking we should possibly wait until
2988          * any io in the removed space completes, but it hardly seems
2989          * worth it.
2990          */
2991         sector_t newsize = raid1_size(mddev, sectors, 0);
2992         if (mddev->external_size &&
2993             mddev->array_sectors > newsize)
2994                 return -EINVAL;
2995         if (mddev->bitmap) {
2996                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2997                 if (ret)
2998                         return ret;
2999         }
3000         md_set_array_sectors(mddev, newsize);
3001         set_capacity(mddev->gendisk, mddev->array_sectors);
3002         revalidate_disk(mddev->gendisk);
3003         if (sectors > mddev->dev_sectors &&
3004             mddev->recovery_cp > mddev->dev_sectors) {
3005                 mddev->recovery_cp = mddev->dev_sectors;
3006                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3007         }
3008         mddev->dev_sectors = sectors;
3009         mddev->resync_max_sectors = sectors;
3010         return 0;
3011 }
3012
3013 static int raid1_reshape(struct mddev *mddev)
3014 {
3015         /* We need to:
3016          * 1/ resize the r1bio_pool
3017          * 2/ resize conf->mirrors
3018          *
3019          * We allocate a new r1bio_pool if we can.
3020          * Then raise a device barrier and wait until all IO stops.
3021          * Then resize conf->mirrors and swap in the new r1bio pool.
3022          *
3023          * At the same time, we "pack" the devices so that all the missing
3024          * devices have the higher raid_disk numbers.
3025          */
3026         mempool_t *newpool, *oldpool;
3027         struct pool_info *newpoolinfo;
3028         struct raid1_info *newmirrors;
3029         struct r1conf *conf = mddev->private;
3030         int cnt, raid_disks;
3031         unsigned long flags;
3032         int d, d2, err;
3033
3034         /* Cannot change chunk_size, layout, or level */
3035         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3036             mddev->layout != mddev->new_layout ||
3037             mddev->level != mddev->new_level) {
3038                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3039                 mddev->new_layout = mddev->layout;
3040                 mddev->new_level = mddev->level;
3041                 return -EINVAL;
3042         }
3043
3044         err = md_allow_write(mddev);
3045         if (err)
3046                 return err;
3047
3048         raid_disks = mddev->raid_disks + mddev->delta_disks;
3049
3050         if (raid_disks < conf->raid_disks) {
3051                 cnt=0;
3052                 for (d= 0; d < conf->raid_disks; d++)
3053                         if (conf->mirrors[d].rdev)
3054                                 cnt++;
3055                 if (cnt > raid_disks)
3056                         return -EBUSY;
3057         }
3058
3059         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3060         if (!newpoolinfo)
3061                 return -ENOMEM;
3062         newpoolinfo->mddev = mddev;
3063         newpoolinfo->raid_disks = raid_disks * 2;
3064
3065         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3066                                  r1bio_pool_free, newpoolinfo);
3067         if (!newpool) {
3068                 kfree(newpoolinfo);
3069                 return -ENOMEM;
3070         }
3071         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3072                              GFP_KERNEL);
3073         if (!newmirrors) {
3074                 kfree(newpoolinfo);
3075                 mempool_destroy(newpool);
3076                 return -ENOMEM;
3077         }
3078
3079         freeze_array(conf, 0);
3080
3081         /* ok, everything is stopped */
3082         oldpool = conf->r1bio_pool;
3083         conf->r1bio_pool = newpool;
3084
3085         for (d = d2 = 0; d < conf->raid_disks; d++) {
3086                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3087                 if (rdev && rdev->raid_disk != d2) {
3088                         sysfs_unlink_rdev(mddev, rdev);
3089                         rdev->raid_disk = d2;
3090                         sysfs_unlink_rdev(mddev, rdev);
3091                         if (sysfs_link_rdev(mddev, rdev))
3092                                 printk(KERN_WARNING
3093                                        "md/raid1:%s: cannot register rd%d\n",
3094                                        mdname(mddev), rdev->raid_disk);
3095                 }
3096                 if (rdev)
3097                         newmirrors[d2++].rdev = rdev;
3098         }
3099         kfree(conf->mirrors);
3100         conf->mirrors = newmirrors;
3101         kfree(conf->poolinfo);
3102         conf->poolinfo = newpoolinfo;
3103
3104         spin_lock_irqsave(&conf->device_lock, flags);
3105         mddev->degraded += (raid_disks - conf->raid_disks);
3106         spin_unlock_irqrestore(&conf->device_lock, flags);
3107         conf->raid_disks = mddev->raid_disks = raid_disks;
3108         mddev->delta_disks = 0;
3109
3110         unfreeze_array(conf);
3111
3112         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3113         md_wakeup_thread(mddev->thread);
3114
3115         mempool_destroy(oldpool);
3116         return 0;
3117 }
3118
3119 static void raid1_quiesce(struct mddev *mddev, int state)
3120 {
3121         struct r1conf *conf = mddev->private;
3122
3123         switch(state) {
3124         case 2: /* wake for suspend */
3125                 wake_up(&conf->wait_barrier);
3126                 break;
3127         case 1:
3128                 freeze_array(conf, 0);
3129                 break;
3130         case 0:
3131                 unfreeze_array(conf);
3132                 break;
3133         }
3134 }
3135
3136 static void *raid1_takeover(struct mddev *mddev)
3137 {
3138         /* raid1 can take over:
3139          *  raid5 with 2 devices, any layout or chunk size
3140          */
3141         if (mddev->level == 5 && mddev->raid_disks == 2) {
3142                 struct r1conf *conf;
3143                 mddev->new_level = 1;
3144                 mddev->new_layout = 0;
3145                 mddev->new_chunk_sectors = 0;
3146                 conf = setup_conf(mddev);
3147                 if (!IS_ERR(conf))
3148                         /* Array must appear to be quiesced */
3149                         conf->array_frozen = 1;
3150                 return conf;
3151         }
3152         return ERR_PTR(-EINVAL);
3153 }
3154
3155 static struct md_personality raid1_personality =
3156 {
3157         .name           = "raid1",
3158         .level          = 1,
3159         .owner          = THIS_MODULE,
3160         .make_request   = make_request,
3161         .run            = run,
3162         .free           = raid1_free,
3163         .status         = status,
3164         .error_handler  = error,
3165         .hot_add_disk   = raid1_add_disk,
3166         .hot_remove_disk= raid1_remove_disk,
3167         .spare_active   = raid1_spare_active,
3168         .sync_request   = sync_request,
3169         .resize         = raid1_resize,
3170         .size           = raid1_size,
3171         .check_reshape  = raid1_reshape,
3172         .quiesce        = raid1_quiesce,
3173         .takeover       = raid1_takeover,
3174         .congested      = raid1_congested,
3175         .mergeable_bvec = raid1_mergeable_bvec,
3176 };
3177
3178 static int __init raid_init(void)
3179 {
3180         return register_md_personality(&raid1_personality);
3181 }
3182
3183 static void raid_exit(void)
3184 {
3185         unregister_md_personality(&raid1_personality);
3186 }
3187
3188 module_init(raid_init);
3189 module_exit(raid_exit);
3190 MODULE_LICENSE("GPL");
3191 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3192 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3193 MODULE_ALIAS("md-raid1");
3194 MODULE_ALIAS("md-level-1");
3195
3196 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);