2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
81 static void r1bio_pool_free(void *r1_bio, void *data)
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
94 struct pool_info *pi = data;
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
105 * Allocate bios : 1 for reading, n-1 for writing
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 r1_bio->bios[j] = bio;
114 * Allocate RESYNC_PAGES data pages and attach them to
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
130 bio->bi_io_vec[i].bv_page = page;
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
142 r1_bio->master_bio = NULL;
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
158 static void r1buf_pool_free(void *__r1_bio, void *data)
160 struct pool_info *pi = data;
162 struct r1bio *r1bio = __r1_bio;
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
174 r1bio_pool_free(r1bio, data);
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
189 static void free_r1bio(struct r1bio *r1_bio)
191 struct r1conf *conf = r1_bio->mddev->private;
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
197 static void put_buf(struct r1bio *r1_bio)
199 struct r1conf *conf = r1_bio->mddev->private;
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 mempool_free(r1_bio, conf->r1buf_pool);
213 static void reschedule_retry(struct r1bio *r1_bio)
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
233 static void call_bio_endio(struct r1bio *r1_bio)
235 struct bio *bio = r1_bio->master_bio;
237 struct r1conf *conf = r1_bio->mddev->private;
239 if (bio->bi_phys_segments) {
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
253 * Wake up any possible resync thread that waits for the device
260 static void raid_end_bio_io(struct r1bio *r1_bio)
262 struct bio *bio = r1_bio->master_bio;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
272 call_bio_endio(r1_bio);
278 * Update disk head position estimator based on IRQ completion info.
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
282 struct r1conf *conf = r1_bio->mddev->private;
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
289 * Find the disk number which triggered given bio
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
307 static void raid1_end_read_request(struct bio *bio, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
312 struct r1conf *conf = r1_bio->mddev->private;
314 mirror = r1_bio->read_disk;
316 * this branch is our 'one mirror IO has finished' event handler:
318 update_head_pos(mirror, r1_bio);
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
333 spin_unlock_irqrestore(&conf->device_lock, flags);
337 raid_end_bio_io(r1_bio);
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
343 char b[BDEVNAME_SIZE];
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
348 bdevname(conf->mirrors[mirror].rdev->bdev,
350 (unsigned long long)r1_bio->sector);
351 set_bit(R1BIO_ReadError, &r1_bio->state);
352 reschedule_retry(r1_bio);
353 /* don't drop the reference on read_disk yet */
357 static void close_write(struct r1bio *r1_bio)
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
376 static void r1_bio_write_done(struct r1bio *r1_bio)
378 if (!atomic_dec_and_test(&r1_bio->remaining))
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
388 raid_end_bio_io(r1_bio);
392 static void raid1_end_write_request(struct bio *bio, int error)
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
400 mirror = find_bio_disk(r1_bio, bio);
403 * 'one mirror IO has finished' event handler:
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
413 set_bit(R1BIO_WriteError, &r1_bio->state);
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
428 r1_bio->bios[mirror] = NULL;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
471 * Let's see if all mirrored write operations have finished
474 r1_bio_write_done(r1_bio);
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
493 * The rdev for the device selected will have nr_pending incremented.
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
497 const sector_t this_sector = r1_bio->sector;
499 int best_good_sectors;
500 int best_disk, best_dist_disk, best_pending_disk;
504 unsigned int min_pending;
505 struct md_rdev *rdev;
507 int choose_next_idle;
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
516 sectors = r1_bio->sectors;
519 best_dist = MaxSector;
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
522 best_good_sectors = 0;
524 choose_next_idle = 0;
526 if (conf->mddev->recovery_cp < MaxSector &&
527 (this_sector + sectors >= conf->next_resync))
532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
536 unsigned int pending;
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
542 || test_bit(Unmerged, &rdev->flags)
543 || test_bit(Faulty, &rdev->flags))
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
557 best_good_sectors = first_bad - this_sector;
559 best_good_sectors = sectors;
564 /* This is a reasonable device to use. It might
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
594 best_good_sectors = sectors;
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
598 pending = atomic_read(&rdev->nr_pending);
599 dist = abs(this_sector - conf->mirrors[disk].head_position);
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
629 choose_next_idle = 1;
634 /* If device is idle, use it */
640 if (choose_next_idle)
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
648 if (dist < best_dist) {
650 best_dist_disk = disk;
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
660 if (best_disk == -1) {
662 best_disk = best_pending_disk;
664 best_disk = best_dist_disk;
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
671 atomic_inc(&rdev->nr_pending);
672 if (test_bit(Faulty, &rdev->flags)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
676 rdev_dec_pending(rdev, conf->mddev);
679 sectors = best_good_sectors;
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
687 *max_sectors = sectors;
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
701 if (mddev->merge_check_needed) {
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
725 int md_raid1_congested(struct mddev *mddev, int bits)
727 struct r1conf *conf = mddev->private;
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
735 for (i = 0; i < conf->raid_disks * 2; i++) {
736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q = bdev_get_queue(rdev->bdev);
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
745 if ((bits & (1<<BDI_async_congested)) || 1)
746 ret |= bdi_congested(&q->backing_dev_info, bits);
748 ret &= bdi_congested(&q->backing_dev_info, bits);
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
756 static int raid1_congested(void *data, int bits)
758 struct mddev *mddev = data;
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
764 static void flush_pending_writes(struct r1conf *conf)
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
769 spin_lock_irq(&conf->device_lock);
771 if (conf->pending_bio_list.head) {
773 bio = bio_list_get(&conf->pending_bio_list);
774 conf->pending_count = 0;
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
779 wake_up(&conf->wait_barrier);
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
789 generic_make_request(bio);
793 spin_unlock_irq(&conf->device_lock);
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
817 #define RESYNC_DEPTH 32
819 static void raise_barrier(struct r1conf *conf)
821 spin_lock_irq(&conf->resync_lock);
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
827 /* block any new IO from starting */
830 /* Now wait for all pending IO to complete */
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
835 spin_unlock_irq(&conf->resync_lock);
838 static void lower_barrier(struct r1conf *conf)
841 BUG_ON(conf->barrier <= 0);
842 spin_lock_irqsave(&conf->resync_lock, flags);
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
848 static void wait_barrier(struct r1conf *conf)
850 spin_lock_irq(&conf->resync_lock);
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
862 wait_event_lock_irq(conf->wait_barrier,
866 !bio_list_empty(current->bio_list)),
871 spin_unlock_irq(&conf->resync_lock);
874 static void allow_barrier(struct r1conf *conf)
877 spin_lock_irqsave(&conf->resync_lock, flags);
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
883 static void freeze_array(struct r1conf *conf)
885 /* stop syncio and normal IO and wait for everything to
887 * We increment barrier and nr_waiting, and then
888 * wait until nr_pending match nr_queued+1
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
893 * Thus the number queued (nr_queued) plus this request (1)
894 * must match the number of pending IOs (nr_pending) before
897 spin_lock_irq(&conf->resync_lock);
900 wait_event_lock_irq_cmd(conf->wait_barrier,
901 conf->nr_pending == conf->nr_queued+1,
903 flush_pending_writes(conf));
904 spin_unlock_irq(&conf->resync_lock);
906 static void unfreeze_array(struct r1conf *conf)
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
917 /* duplicate the data pages for behind I/O
919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
922 struct bio_vec *bvec;
923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
925 if (unlikely(!bvecs))
928 bio_for_each_segment(bvec, bio, i) {
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
936 kunmap(bvec->bv_page);
938 r1_bio->behind_bvecs = bvecs;
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
944 for (i = 0; i < bio->bi_vcnt; i++)
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
951 struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
965 if (from_schedule || current->bio_list) {
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
970 wake_up(&conf->wait_barrier);
971 md_wakeup_thread(mddev->thread);
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
984 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
985 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
989 generic_make_request(bio);
995 static void make_request(struct mddev *mddev, struct bio * bio)
997 struct r1conf *conf = mddev->private;
998 struct raid1_info *mirror;
999 struct r1bio *r1_bio;
1000 struct bio *read_bio;
1002 struct bitmap *bitmap;
1003 unsigned long flags;
1004 const int rw = bio_data_dir(bio);
1005 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1006 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1007 const unsigned long do_discard = (bio->bi_rw
1008 & (REQ_DISCARD | REQ_SECURE));
1009 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1010 struct md_rdev *blocked_rdev;
1011 struct blk_plug_cb *cb;
1012 struct raid1_plug_cb *plug = NULL;
1014 int sectors_handled;
1018 * Register the new request and wait if the reconstruction
1019 * thread has put up a bar for new requests.
1020 * Continue immediately if no resync is active currently.
1023 md_write_start(mddev, bio); /* wait on superblock update early */
1025 if (bio_data_dir(bio) == WRITE &&
1026 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1027 bio->bi_sector < mddev->suspend_hi) {
1028 /* As the suspend_* range is controlled by
1029 * userspace, we want an interruptible
1034 flush_signals(current);
1035 prepare_to_wait(&conf->wait_barrier,
1036 &w, TASK_INTERRUPTIBLE);
1037 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1038 bio->bi_sector >= mddev->suspend_hi)
1042 finish_wait(&conf->wait_barrier, &w);
1047 bitmap = mddev->bitmap;
1050 * make_request() can abort the operation when READA is being
1051 * used and no empty request is available.
1054 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1056 r1_bio->master_bio = bio;
1057 r1_bio->sectors = bio->bi_size >> 9;
1059 r1_bio->mddev = mddev;
1060 r1_bio->sector = bio->bi_sector;
1062 /* We might need to issue multiple reads to different
1063 * devices if there are bad blocks around, so we keep
1064 * track of the number of reads in bio->bi_phys_segments.
1065 * If this is 0, there is only one r1_bio and no locking
1066 * will be needed when requests complete. If it is
1067 * non-zero, then it is the number of not-completed requests.
1069 bio->bi_phys_segments = 0;
1070 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1074 * read balancing logic:
1079 rdisk = read_balance(conf, r1_bio, &max_sectors);
1082 /* couldn't find anywhere to read from */
1083 raid_end_bio_io(r1_bio);
1086 mirror = conf->mirrors + rdisk;
1088 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1090 /* Reading from a write-mostly device must
1091 * take care not to over-take any writes
1094 wait_event(bitmap->behind_wait,
1095 atomic_read(&bitmap->behind_writes) == 0);
1097 r1_bio->read_disk = rdisk;
1099 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1100 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1103 r1_bio->bios[rdisk] = read_bio;
1105 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1106 read_bio->bi_bdev = mirror->rdev->bdev;
1107 read_bio->bi_end_io = raid1_end_read_request;
1108 read_bio->bi_rw = READ | do_sync;
1109 read_bio->bi_private = r1_bio;
1111 if (max_sectors < r1_bio->sectors) {
1112 /* could not read all from this device, so we will
1113 * need another r1_bio.
1116 sectors_handled = (r1_bio->sector + max_sectors
1118 r1_bio->sectors = max_sectors;
1119 spin_lock_irq(&conf->device_lock);
1120 if (bio->bi_phys_segments == 0)
1121 bio->bi_phys_segments = 2;
1123 bio->bi_phys_segments++;
1124 spin_unlock_irq(&conf->device_lock);
1125 /* Cannot call generic_make_request directly
1126 * as that will be queued in __make_request
1127 * and subsequent mempool_alloc might block waiting
1128 * for it. So hand bio over to raid1d.
1130 reschedule_retry(r1_bio);
1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1134 r1_bio->master_bio = bio;
1135 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1137 r1_bio->mddev = mddev;
1138 r1_bio->sector = bio->bi_sector + sectors_handled;
1141 generic_make_request(read_bio);
1148 if (conf->pending_count >= max_queued_requests) {
1149 md_wakeup_thread(mddev->thread);
1150 wait_event(conf->wait_barrier,
1151 conf->pending_count < max_queued_requests);
1153 /* first select target devices under rcu_lock and
1154 * inc refcount on their rdev. Record them by setting
1156 * If there are known/acknowledged bad blocks on any device on
1157 * which we have seen a write error, we want to avoid writing those
1159 * This potentially requires several writes to write around
1160 * the bad blocks. Each set of writes gets it's own r1bio
1161 * with a set of bios attached.
1164 disks = conf->raid_disks * 2;
1166 blocked_rdev = NULL;
1168 max_sectors = r1_bio->sectors;
1169 for (i = 0; i < disks; i++) {
1170 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172 atomic_inc(&rdev->nr_pending);
1173 blocked_rdev = rdev;
1176 r1_bio->bios[i] = NULL;
1177 if (!rdev || test_bit(Faulty, &rdev->flags)
1178 || test_bit(Unmerged, &rdev->flags)) {
1179 if (i < conf->raid_disks)
1180 set_bit(R1BIO_Degraded, &r1_bio->state);
1184 atomic_inc(&rdev->nr_pending);
1185 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1190 is_bad = is_badblock(rdev, r1_bio->sector,
1192 &first_bad, &bad_sectors);
1194 /* mustn't write here until the bad block is
1196 set_bit(BlockedBadBlocks, &rdev->flags);
1197 blocked_rdev = rdev;
1200 if (is_bad && first_bad <= r1_bio->sector) {
1201 /* Cannot write here at all */
1202 bad_sectors -= (r1_bio->sector - first_bad);
1203 if (bad_sectors < max_sectors)
1204 /* mustn't write more than bad_sectors
1205 * to other devices yet
1207 max_sectors = bad_sectors;
1208 rdev_dec_pending(rdev, mddev);
1209 /* We don't set R1BIO_Degraded as that
1210 * only applies if the disk is
1211 * missing, so it might be re-added,
1212 * and we want to know to recover this
1214 * In this case the device is here,
1215 * and the fact that this chunk is not
1216 * in-sync is recorded in the bad
1222 int good_sectors = first_bad - r1_bio->sector;
1223 if (good_sectors < max_sectors)
1224 max_sectors = good_sectors;
1227 r1_bio->bios[i] = bio;
1231 if (unlikely(blocked_rdev)) {
1232 /* Wait for this device to become unblocked */
1235 for (j = 0; j < i; j++)
1236 if (r1_bio->bios[j])
1237 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1239 allow_barrier(conf);
1240 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1245 if (max_sectors < r1_bio->sectors) {
1246 /* We are splitting this write into multiple parts, so
1247 * we need to prepare for allocating another r1_bio.
1249 r1_bio->sectors = max_sectors;
1250 spin_lock_irq(&conf->device_lock);
1251 if (bio->bi_phys_segments == 0)
1252 bio->bi_phys_segments = 2;
1254 bio->bi_phys_segments++;
1255 spin_unlock_irq(&conf->device_lock);
1257 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1259 atomic_set(&r1_bio->remaining, 1);
1260 atomic_set(&r1_bio->behind_remaining, 0);
1263 for (i = 0; i < disks; i++) {
1265 if (!r1_bio->bios[i])
1268 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1269 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1273 * Not if there are too many, or cannot
1274 * allocate memory, or a reader on WriteMostly
1275 * is waiting for behind writes to flush */
1277 (atomic_read(&bitmap->behind_writes)
1278 < mddev->bitmap_info.max_write_behind) &&
1279 !waitqueue_active(&bitmap->behind_wait))
1280 alloc_behind_pages(mbio, r1_bio);
1282 bitmap_startwrite(bitmap, r1_bio->sector,
1284 test_bit(R1BIO_BehindIO,
1288 if (r1_bio->behind_bvecs) {
1289 struct bio_vec *bvec;
1292 /* Yes, I really want the '__' version so that
1293 * we clear any unused pointer in the io_vec, rather
1294 * than leave them unchanged. This is important
1295 * because when we come to free the pages, we won't
1296 * know the original bi_idx, so we just free
1299 __bio_for_each_segment(bvec, mbio, j, 0)
1300 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1301 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1302 atomic_inc(&r1_bio->behind_remaining);
1305 r1_bio->bios[i] = mbio;
1307 mbio->bi_sector = (r1_bio->sector +
1308 conf->mirrors[i].rdev->data_offset);
1309 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1310 mbio->bi_end_io = raid1_end_write_request;
1312 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1313 mbio->bi_private = r1_bio;
1315 atomic_inc(&r1_bio->remaining);
1317 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1319 plug = container_of(cb, struct raid1_plug_cb, cb);
1322 spin_lock_irqsave(&conf->device_lock, flags);
1324 bio_list_add(&plug->pending, mbio);
1325 plug->pending_cnt++;
1327 bio_list_add(&conf->pending_bio_list, mbio);
1328 conf->pending_count++;
1330 spin_unlock_irqrestore(&conf->device_lock, flags);
1332 md_wakeup_thread(mddev->thread);
1334 /* Mustn't call r1_bio_write_done before this next test,
1335 * as it could result in the bio being freed.
1337 if (sectors_handled < (bio->bi_size >> 9)) {
1338 r1_bio_write_done(r1_bio);
1339 /* We need another r1_bio. It has already been counted
1340 * in bio->bi_phys_segments
1342 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1343 r1_bio->master_bio = bio;
1344 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1346 r1_bio->mddev = mddev;
1347 r1_bio->sector = bio->bi_sector + sectors_handled;
1351 r1_bio_write_done(r1_bio);
1353 /* In case raid1d snuck in to freeze_array */
1354 wake_up(&conf->wait_barrier);
1357 static void status(struct seq_file *seq, struct mddev *mddev)
1359 struct r1conf *conf = mddev->private;
1362 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1363 conf->raid_disks - mddev->degraded);
1365 for (i = 0; i < conf->raid_disks; i++) {
1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1367 seq_printf(seq, "%s",
1368 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1371 seq_printf(seq, "]");
1375 static void error(struct mddev *mddev, struct md_rdev *rdev)
1377 char b[BDEVNAME_SIZE];
1378 struct r1conf *conf = mddev->private;
1381 * If it is not operational, then we have already marked it as dead
1382 * else if it is the last working disks, ignore the error, let the
1383 * next level up know.
1384 * else mark the drive as failed
1386 if (test_bit(In_sync, &rdev->flags)
1387 && (conf->raid_disks - mddev->degraded) == 1) {
1389 * Don't fail the drive, act as though we were just a
1390 * normal single drive.
1391 * However don't try a recovery from this drive as
1392 * it is very likely to fail.
1394 conf->recovery_disabled = mddev->recovery_disabled;
1397 set_bit(Blocked, &rdev->flags);
1398 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1399 unsigned long flags;
1400 spin_lock_irqsave(&conf->device_lock, flags);
1402 set_bit(Faulty, &rdev->flags);
1403 spin_unlock_irqrestore(&conf->device_lock, flags);
1405 * if recovery is running, make sure it aborts.
1407 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1409 set_bit(Faulty, &rdev->flags);
1410 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1412 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1413 "md/raid1:%s: Operation continuing on %d devices.\n",
1414 mdname(mddev), bdevname(rdev->bdev, b),
1415 mdname(mddev), conf->raid_disks - mddev->degraded);
1418 static void print_conf(struct r1conf *conf)
1422 printk(KERN_DEBUG "RAID1 conf printout:\n");
1424 printk(KERN_DEBUG "(!conf)\n");
1427 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1431 for (i = 0; i < conf->raid_disks; i++) {
1432 char b[BDEVNAME_SIZE];
1433 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1436 i, !test_bit(In_sync, &rdev->flags),
1437 !test_bit(Faulty, &rdev->flags),
1438 bdevname(rdev->bdev,b));
1443 static void close_sync(struct r1conf *conf)
1446 allow_barrier(conf);
1448 mempool_destroy(conf->r1buf_pool);
1449 conf->r1buf_pool = NULL;
1452 static int raid1_spare_active(struct mddev *mddev)
1455 struct r1conf *conf = mddev->private;
1457 unsigned long flags;
1460 * Find all failed disks within the RAID1 configuration
1461 * and mark them readable.
1462 * Called under mddev lock, so rcu protection not needed.
1464 for (i = 0; i < conf->raid_disks; i++) {
1465 struct md_rdev *rdev = conf->mirrors[i].rdev;
1466 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1468 && repl->recovery_offset == MaxSector
1469 && !test_bit(Faulty, &repl->flags)
1470 && !test_and_set_bit(In_sync, &repl->flags)) {
1471 /* replacement has just become active */
1473 !test_and_clear_bit(In_sync, &rdev->flags))
1476 /* Replaced device not technically
1477 * faulty, but we need to be sure
1478 * it gets removed and never re-added
1480 set_bit(Faulty, &rdev->flags);
1481 sysfs_notify_dirent_safe(
1486 && !test_bit(Faulty, &rdev->flags)
1487 && !test_and_set_bit(In_sync, &rdev->flags)) {
1489 sysfs_notify_dirent_safe(rdev->sysfs_state);
1492 spin_lock_irqsave(&conf->device_lock, flags);
1493 mddev->degraded -= count;
1494 spin_unlock_irqrestore(&conf->device_lock, flags);
1501 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1503 struct r1conf *conf = mddev->private;
1506 struct raid1_info *p;
1508 int last = conf->raid_disks - 1;
1509 struct request_queue *q = bdev_get_queue(rdev->bdev);
1511 if (mddev->recovery_disabled == conf->recovery_disabled)
1514 if (rdev->raid_disk >= 0)
1515 first = last = rdev->raid_disk;
1517 if (q->merge_bvec_fn) {
1518 set_bit(Unmerged, &rdev->flags);
1519 mddev->merge_check_needed = 1;
1522 for (mirror = first; mirror <= last; mirror++) {
1523 p = conf->mirrors+mirror;
1526 disk_stack_limits(mddev->gendisk, rdev->bdev,
1527 rdev->data_offset << 9);
1529 p->head_position = 0;
1530 rdev->raid_disk = mirror;
1532 /* As all devices are equivalent, we don't need a full recovery
1533 * if this was recently any drive of the array
1535 if (rdev->saved_raid_disk < 0)
1537 rcu_assign_pointer(p->rdev, rdev);
1540 if (test_bit(WantReplacement, &p->rdev->flags) &&
1541 p[conf->raid_disks].rdev == NULL) {
1542 /* Add this device as a replacement */
1543 clear_bit(In_sync, &rdev->flags);
1544 set_bit(Replacement, &rdev->flags);
1545 rdev->raid_disk = mirror;
1548 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1552 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1553 /* Some requests might not have seen this new
1554 * merge_bvec_fn. We must wait for them to complete
1555 * before merging the device fully.
1556 * First we make sure any code which has tested
1557 * our function has submitted the request, then
1558 * we wait for all outstanding requests to complete.
1560 synchronize_sched();
1561 raise_barrier(conf);
1562 lower_barrier(conf);
1563 clear_bit(Unmerged, &rdev->flags);
1565 md_integrity_add_rdev(rdev, mddev);
1566 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1567 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1572 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1574 struct r1conf *conf = mddev->private;
1576 int number = rdev->raid_disk;
1577 struct raid1_info *p = conf->mirrors + number;
1579 if (rdev != p->rdev)
1580 p = conf->mirrors + conf->raid_disks + number;
1583 if (rdev == p->rdev) {
1584 if (test_bit(In_sync, &rdev->flags) ||
1585 atomic_read(&rdev->nr_pending)) {
1589 /* Only remove non-faulty devices if recovery
1592 if (!test_bit(Faulty, &rdev->flags) &&
1593 mddev->recovery_disabled != conf->recovery_disabled &&
1594 mddev->degraded < conf->raid_disks) {
1600 if (atomic_read(&rdev->nr_pending)) {
1601 /* lost the race, try later */
1605 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1606 /* We just removed a device that is being replaced.
1607 * Move down the replacement. We drain all IO before
1608 * doing this to avoid confusion.
1610 struct md_rdev *repl =
1611 conf->mirrors[conf->raid_disks + number].rdev;
1612 raise_barrier(conf);
1613 clear_bit(Replacement, &repl->flags);
1615 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1616 lower_barrier(conf);
1617 clear_bit(WantReplacement, &rdev->flags);
1619 clear_bit(WantReplacement, &rdev->flags);
1620 err = md_integrity_register(mddev);
1629 static void end_sync_read(struct bio *bio, int error)
1631 struct r1bio *r1_bio = bio->bi_private;
1633 update_head_pos(r1_bio->read_disk, r1_bio);
1636 * we have read a block, now it needs to be re-written,
1637 * or re-read if the read failed.
1638 * We don't do much here, just schedule handling by raid1d
1640 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1641 set_bit(R1BIO_Uptodate, &r1_bio->state);
1643 if (atomic_dec_and_test(&r1_bio->remaining))
1644 reschedule_retry(r1_bio);
1647 static void end_sync_write(struct bio *bio, int error)
1649 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1650 struct r1bio *r1_bio = bio->bi_private;
1651 struct mddev *mddev = r1_bio->mddev;
1652 struct r1conf *conf = mddev->private;
1657 mirror = find_bio_disk(r1_bio, bio);
1660 sector_t sync_blocks = 0;
1661 sector_t s = r1_bio->sector;
1662 long sectors_to_go = r1_bio->sectors;
1663 /* make sure these bits doesn't get cleared. */
1665 bitmap_end_sync(mddev->bitmap, s,
1668 sectors_to_go -= sync_blocks;
1669 } while (sectors_to_go > 0);
1670 set_bit(WriteErrorSeen,
1671 &conf->mirrors[mirror].rdev->flags);
1672 if (!test_and_set_bit(WantReplacement,
1673 &conf->mirrors[mirror].rdev->flags))
1674 set_bit(MD_RECOVERY_NEEDED, &
1676 set_bit(R1BIO_WriteError, &r1_bio->state);
1677 } else if (is_badblock(conf->mirrors[mirror].rdev,
1680 &first_bad, &bad_sectors) &&
1681 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1684 &first_bad, &bad_sectors)
1686 set_bit(R1BIO_MadeGood, &r1_bio->state);
1688 if (atomic_dec_and_test(&r1_bio->remaining)) {
1689 int s = r1_bio->sectors;
1690 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1691 test_bit(R1BIO_WriteError, &r1_bio->state))
1692 reschedule_retry(r1_bio);
1695 md_done_sync(mddev, s, uptodate);
1700 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1701 int sectors, struct page *page, int rw)
1703 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1707 set_bit(WriteErrorSeen, &rdev->flags);
1708 if (!test_and_set_bit(WantReplacement,
1710 set_bit(MD_RECOVERY_NEEDED, &
1711 rdev->mddev->recovery);
1713 /* need to record an error - either for the block or the device */
1714 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1715 md_error(rdev->mddev, rdev);
1719 static int fix_sync_read_error(struct r1bio *r1_bio)
1721 /* Try some synchronous reads of other devices to get
1722 * good data, much like with normal read errors. Only
1723 * read into the pages we already have so we don't
1724 * need to re-issue the read request.
1725 * We don't need to freeze the array, because being in an
1726 * active sync request, there is no normal IO, and
1727 * no overlapping syncs.
1728 * We don't need to check is_badblock() again as we
1729 * made sure that anything with a bad block in range
1730 * will have bi_end_io clear.
1732 struct mddev *mddev = r1_bio->mddev;
1733 struct r1conf *conf = mddev->private;
1734 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1735 sector_t sect = r1_bio->sector;
1736 int sectors = r1_bio->sectors;
1741 int d = r1_bio->read_disk;
1743 struct md_rdev *rdev;
1746 if (s > (PAGE_SIZE>>9))
1749 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1750 /* No rcu protection needed here devices
1751 * can only be removed when no resync is
1752 * active, and resync is currently active
1754 rdev = conf->mirrors[d].rdev;
1755 if (sync_page_io(rdev, sect, s<<9,
1756 bio->bi_io_vec[idx].bv_page,
1763 if (d == conf->raid_disks * 2)
1765 } while (!success && d != r1_bio->read_disk);
1768 char b[BDEVNAME_SIZE];
1770 /* Cannot read from anywhere, this block is lost.
1771 * Record a bad block on each device. If that doesn't
1772 * work just disable and interrupt the recovery.
1773 * Don't fail devices as that won't really help.
1775 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1776 " for block %llu\n",
1778 bdevname(bio->bi_bdev, b),
1779 (unsigned long long)r1_bio->sector);
1780 for (d = 0; d < conf->raid_disks * 2; d++) {
1781 rdev = conf->mirrors[d].rdev;
1782 if (!rdev || test_bit(Faulty, &rdev->flags))
1784 if (!rdev_set_badblocks(rdev, sect, s, 0))
1788 conf->recovery_disabled =
1789 mddev->recovery_disabled;
1790 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1791 md_done_sync(mddev, r1_bio->sectors, 0);
1803 /* write it back and re-read */
1804 while (d != r1_bio->read_disk) {
1806 d = conf->raid_disks * 2;
1808 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1810 rdev = conf->mirrors[d].rdev;
1811 if (r1_sync_page_io(rdev, sect, s,
1812 bio->bi_io_vec[idx].bv_page,
1814 r1_bio->bios[d]->bi_end_io = NULL;
1815 rdev_dec_pending(rdev, mddev);
1819 while (d != r1_bio->read_disk) {
1821 d = conf->raid_disks * 2;
1823 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1825 rdev = conf->mirrors[d].rdev;
1826 if (r1_sync_page_io(rdev, sect, s,
1827 bio->bi_io_vec[idx].bv_page,
1829 atomic_add(s, &rdev->corrected_errors);
1835 set_bit(R1BIO_Uptodate, &r1_bio->state);
1836 set_bit(BIO_UPTODATE, &bio->bi_flags);
1840 static int process_checks(struct r1bio *r1_bio)
1842 /* We have read all readable devices. If we haven't
1843 * got the block, then there is no hope left.
1844 * If we have, then we want to do a comparison
1845 * and skip the write if everything is the same.
1846 * If any blocks failed to read, then we need to
1847 * attempt an over-write
1849 struct mddev *mddev = r1_bio->mddev;
1850 struct r1conf *conf = mddev->private;
1855 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1856 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1857 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1858 r1_bio->bios[primary]->bi_end_io = NULL;
1859 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1862 r1_bio->read_disk = primary;
1863 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1864 for (i = 0; i < conf->raid_disks * 2; i++) {
1866 struct bio *pbio = r1_bio->bios[primary];
1867 struct bio *sbio = r1_bio->bios[i];
1870 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1873 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1874 for (j = vcnt; j-- ; ) {
1876 p = pbio->bi_io_vec[j].bv_page;
1877 s = sbio->bi_io_vec[j].bv_page;
1878 if (memcmp(page_address(p),
1880 sbio->bi_io_vec[j].bv_len))
1886 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1887 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1888 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1889 /* No need to write to this device. */
1890 sbio->bi_end_io = NULL;
1891 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1894 /* fixup the bio for reuse */
1895 sbio->bi_vcnt = vcnt;
1896 sbio->bi_size = r1_bio->sectors << 9;
1898 sbio->bi_phys_segments = 0;
1899 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1900 sbio->bi_flags |= 1 << BIO_UPTODATE;
1901 sbio->bi_next = NULL;
1902 sbio->bi_sector = r1_bio->sector +
1903 conf->mirrors[i].rdev->data_offset;
1904 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1905 size = sbio->bi_size;
1906 for (j = 0; j < vcnt ; j++) {
1908 bi = &sbio->bi_io_vec[j];
1910 if (size > PAGE_SIZE)
1911 bi->bv_len = PAGE_SIZE;
1915 memcpy(page_address(bi->bv_page),
1916 page_address(pbio->bi_io_vec[j].bv_page),
1923 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1925 struct r1conf *conf = mddev->private;
1927 int disks = conf->raid_disks * 2;
1928 struct bio *bio, *wbio;
1930 bio = r1_bio->bios[r1_bio->read_disk];
1932 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1933 /* ouch - failed to read all of that. */
1934 if (!fix_sync_read_error(r1_bio))
1937 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1938 if (process_checks(r1_bio) < 0)
1943 atomic_set(&r1_bio->remaining, 1);
1944 for (i = 0; i < disks ; i++) {
1945 wbio = r1_bio->bios[i];
1946 if (wbio->bi_end_io == NULL ||
1947 (wbio->bi_end_io == end_sync_read &&
1948 (i == r1_bio->read_disk ||
1949 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1952 wbio->bi_rw = WRITE;
1953 wbio->bi_end_io = end_sync_write;
1954 atomic_inc(&r1_bio->remaining);
1955 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1957 generic_make_request(wbio);
1960 if (atomic_dec_and_test(&r1_bio->remaining)) {
1961 /* if we're here, all write(s) have completed, so clean up */
1962 int s = r1_bio->sectors;
1963 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1964 test_bit(R1BIO_WriteError, &r1_bio->state))
1965 reschedule_retry(r1_bio);
1968 md_done_sync(mddev, s, 1);
1974 * This is a kernel thread which:
1976 * 1. Retries failed read operations on working mirrors.
1977 * 2. Updates the raid superblock when problems encounter.
1978 * 3. Performs writes following reads for array synchronising.
1981 static void fix_read_error(struct r1conf *conf, int read_disk,
1982 sector_t sect, int sectors)
1984 struct mddev *mddev = conf->mddev;
1990 struct md_rdev *rdev;
1992 if (s > (PAGE_SIZE>>9))
1996 /* Note: no rcu protection needed here
1997 * as this is synchronous in the raid1d thread
1998 * which is the thread that might remove
1999 * a device. If raid1d ever becomes multi-threaded....
2004 rdev = conf->mirrors[d].rdev;
2006 (test_bit(In_sync, &rdev->flags) ||
2007 (!test_bit(Faulty, &rdev->flags) &&
2008 rdev->recovery_offset >= sect + s)) &&
2009 is_badblock(rdev, sect, s,
2010 &first_bad, &bad_sectors) == 0 &&
2011 sync_page_io(rdev, sect, s<<9,
2012 conf->tmppage, READ, false))
2016 if (d == conf->raid_disks * 2)
2019 } while (!success && d != read_disk);
2022 /* Cannot read from anywhere - mark it bad */
2023 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2024 if (!rdev_set_badblocks(rdev, sect, s, 0))
2025 md_error(mddev, rdev);
2028 /* write it back and re-read */
2030 while (d != read_disk) {
2032 d = conf->raid_disks * 2;
2034 rdev = conf->mirrors[d].rdev;
2036 test_bit(In_sync, &rdev->flags))
2037 r1_sync_page_io(rdev, sect, s,
2038 conf->tmppage, WRITE);
2041 while (d != read_disk) {
2042 char b[BDEVNAME_SIZE];
2044 d = conf->raid_disks * 2;
2046 rdev = conf->mirrors[d].rdev;
2048 test_bit(In_sync, &rdev->flags)) {
2049 if (r1_sync_page_io(rdev, sect, s,
2050 conf->tmppage, READ)) {
2051 atomic_add(s, &rdev->corrected_errors);
2053 "md/raid1:%s: read error corrected "
2054 "(%d sectors at %llu on %s)\n",
2056 (unsigned long long)(sect +
2058 bdevname(rdev->bdev, b));
2067 static void bi_complete(struct bio *bio, int error)
2069 complete((struct completion *)bio->bi_private);
2072 static int submit_bio_wait(int rw, struct bio *bio)
2074 struct completion event;
2077 init_completion(&event);
2078 bio->bi_private = &event;
2079 bio->bi_end_io = bi_complete;
2080 submit_bio(rw, bio);
2081 wait_for_completion(&event);
2083 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2086 static int narrow_write_error(struct r1bio *r1_bio, int i)
2088 struct mddev *mddev = r1_bio->mddev;
2089 struct r1conf *conf = mddev->private;
2090 struct md_rdev *rdev = conf->mirrors[i].rdev;
2092 struct bio_vec *vec;
2094 /* bio has the data to be written to device 'i' where
2095 * we just recently had a write error.
2096 * We repeatedly clone the bio and trim down to one block,
2097 * then try the write. Where the write fails we record
2099 * It is conceivable that the bio doesn't exactly align with
2100 * blocks. We must handle this somehow.
2102 * We currently own a reference on the rdev.
2108 int sect_to_write = r1_bio->sectors;
2111 if (rdev->badblocks.shift < 0)
2114 block_sectors = 1 << rdev->badblocks.shift;
2115 sector = r1_bio->sector;
2116 sectors = ((sector + block_sectors)
2117 & ~(sector_t)(block_sectors - 1))
2120 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2121 vcnt = r1_bio->behind_page_count;
2122 vec = r1_bio->behind_bvecs;
2124 while (vec[idx].bv_page == NULL)
2127 vcnt = r1_bio->master_bio->bi_vcnt;
2128 vec = r1_bio->master_bio->bi_io_vec;
2129 idx = r1_bio->master_bio->bi_idx;
2131 while (sect_to_write) {
2133 if (sectors > sect_to_write)
2134 sectors = sect_to_write;
2135 /* Write at 'sector' for 'sectors'*/
2137 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2138 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2139 wbio->bi_sector = r1_bio->sector;
2140 wbio->bi_rw = WRITE;
2141 wbio->bi_vcnt = vcnt;
2142 wbio->bi_size = r1_bio->sectors << 9;
2145 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2146 wbio->bi_sector += rdev->data_offset;
2147 wbio->bi_bdev = rdev->bdev;
2148 if (submit_bio_wait(WRITE, wbio) == 0)
2150 ok = rdev_set_badblocks(rdev, sector,
2155 sect_to_write -= sectors;
2157 sectors = block_sectors;
2162 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2165 int s = r1_bio->sectors;
2166 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2167 struct md_rdev *rdev = conf->mirrors[m].rdev;
2168 struct bio *bio = r1_bio->bios[m];
2169 if (bio->bi_end_io == NULL)
2171 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2172 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2173 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2175 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2176 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2177 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2178 md_error(conf->mddev, rdev);
2182 md_done_sync(conf->mddev, s, 1);
2185 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2188 for (m = 0; m < conf->raid_disks * 2 ; m++)
2189 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2190 struct md_rdev *rdev = conf->mirrors[m].rdev;
2191 rdev_clear_badblocks(rdev,
2193 r1_bio->sectors, 0);
2194 rdev_dec_pending(rdev, conf->mddev);
2195 } else if (r1_bio->bios[m] != NULL) {
2196 /* This drive got a write error. We need to
2197 * narrow down and record precise write
2200 if (!narrow_write_error(r1_bio, m)) {
2201 md_error(conf->mddev,
2202 conf->mirrors[m].rdev);
2203 /* an I/O failed, we can't clear the bitmap */
2204 set_bit(R1BIO_Degraded, &r1_bio->state);
2206 rdev_dec_pending(conf->mirrors[m].rdev,
2209 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2210 close_write(r1_bio);
2211 raid_end_bio_io(r1_bio);
2214 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2218 struct mddev *mddev = conf->mddev;
2220 char b[BDEVNAME_SIZE];
2221 struct md_rdev *rdev;
2223 clear_bit(R1BIO_ReadError, &r1_bio->state);
2224 /* we got a read error. Maybe the drive is bad. Maybe just
2225 * the block and we can fix it.
2226 * We freeze all other IO, and try reading the block from
2227 * other devices. When we find one, we re-write
2228 * and check it that fixes the read error.
2229 * This is all done synchronously while the array is
2232 if (mddev->ro == 0) {
2234 fix_read_error(conf, r1_bio->read_disk,
2235 r1_bio->sector, r1_bio->sectors);
2236 unfreeze_array(conf);
2238 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2239 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2241 bio = r1_bio->bios[r1_bio->read_disk];
2242 bdevname(bio->bi_bdev, b);
2244 disk = read_balance(conf, r1_bio, &max_sectors);
2246 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2247 " read error for block %llu\n",
2248 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2249 raid_end_bio_io(r1_bio);
2251 const unsigned long do_sync
2252 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2254 r1_bio->bios[r1_bio->read_disk] =
2255 mddev->ro ? IO_BLOCKED : NULL;
2258 r1_bio->read_disk = disk;
2259 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2260 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2261 r1_bio->bios[r1_bio->read_disk] = bio;
2262 rdev = conf->mirrors[disk].rdev;
2263 printk_ratelimited(KERN_ERR
2264 "md/raid1:%s: redirecting sector %llu"
2265 " to other mirror: %s\n",
2267 (unsigned long long)r1_bio->sector,
2268 bdevname(rdev->bdev, b));
2269 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2270 bio->bi_bdev = rdev->bdev;
2271 bio->bi_end_io = raid1_end_read_request;
2272 bio->bi_rw = READ | do_sync;
2273 bio->bi_private = r1_bio;
2274 if (max_sectors < r1_bio->sectors) {
2275 /* Drat - have to split this up more */
2276 struct bio *mbio = r1_bio->master_bio;
2277 int sectors_handled = (r1_bio->sector + max_sectors
2279 r1_bio->sectors = max_sectors;
2280 spin_lock_irq(&conf->device_lock);
2281 if (mbio->bi_phys_segments == 0)
2282 mbio->bi_phys_segments = 2;
2284 mbio->bi_phys_segments++;
2285 spin_unlock_irq(&conf->device_lock);
2286 generic_make_request(bio);
2289 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2291 r1_bio->master_bio = mbio;
2292 r1_bio->sectors = (mbio->bi_size >> 9)
2295 set_bit(R1BIO_ReadError, &r1_bio->state);
2296 r1_bio->mddev = mddev;
2297 r1_bio->sector = mbio->bi_sector + sectors_handled;
2301 generic_make_request(bio);
2305 static void raid1d(struct md_thread *thread)
2307 struct mddev *mddev = thread->mddev;
2308 struct r1bio *r1_bio;
2309 unsigned long flags;
2310 struct r1conf *conf = mddev->private;
2311 struct list_head *head = &conf->retry_list;
2312 struct blk_plug plug;
2314 md_check_recovery(mddev);
2316 blk_start_plug(&plug);
2319 flush_pending_writes(conf);
2321 spin_lock_irqsave(&conf->device_lock, flags);
2322 if (list_empty(head)) {
2323 spin_unlock_irqrestore(&conf->device_lock, flags);
2326 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2327 list_del(head->prev);
2329 spin_unlock_irqrestore(&conf->device_lock, flags);
2331 mddev = r1_bio->mddev;
2332 conf = mddev->private;
2333 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2334 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2335 test_bit(R1BIO_WriteError, &r1_bio->state))
2336 handle_sync_write_finished(conf, r1_bio);
2338 sync_request_write(mddev, r1_bio);
2339 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2340 test_bit(R1BIO_WriteError, &r1_bio->state))
2341 handle_write_finished(conf, r1_bio);
2342 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2343 handle_read_error(conf, r1_bio);
2345 /* just a partial read to be scheduled from separate
2348 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2351 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2352 md_check_recovery(mddev);
2354 blk_finish_plug(&plug);
2358 static int init_resync(struct r1conf *conf)
2362 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2363 BUG_ON(conf->r1buf_pool);
2364 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2366 if (!conf->r1buf_pool)
2368 conf->next_resync = 0;
2373 * perform a "sync" on one "block"
2375 * We need to make sure that no normal I/O request - particularly write
2376 * requests - conflict with active sync requests.
2378 * This is achieved by tracking pending requests and a 'barrier' concept
2379 * that can be installed to exclude normal IO requests.
2382 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2384 struct r1conf *conf = mddev->private;
2385 struct r1bio *r1_bio;
2387 sector_t max_sector, nr_sectors;
2391 int write_targets = 0, read_targets = 0;
2392 sector_t sync_blocks;
2393 int still_degraded = 0;
2394 int good_sectors = RESYNC_SECTORS;
2395 int min_bad = 0; /* number of sectors that are bad in all devices */
2397 if (!conf->r1buf_pool)
2398 if (init_resync(conf))
2401 max_sector = mddev->dev_sectors;
2402 if (sector_nr >= max_sector) {
2403 /* If we aborted, we need to abort the
2404 * sync on the 'current' bitmap chunk (there will
2405 * only be one in raid1 resync.
2406 * We can find the current addess in mddev->curr_resync
2408 if (mddev->curr_resync < max_sector) /* aborted */
2409 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2411 else /* completed sync */
2414 bitmap_close_sync(mddev->bitmap);
2419 if (mddev->bitmap == NULL &&
2420 mddev->recovery_cp == MaxSector &&
2421 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2422 conf->fullsync == 0) {
2424 return max_sector - sector_nr;
2426 /* before building a request, check if we can skip these blocks..
2427 * This call the bitmap_start_sync doesn't actually record anything
2429 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2430 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2431 /* We can skip this block, and probably several more */
2436 * If there is non-resync activity waiting for a turn,
2437 * and resync is going fast enough,
2438 * then let it though before starting on this new sync request.
2440 if (!go_faster && conf->nr_waiting)
2441 msleep_interruptible(1000);
2443 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2444 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2445 raise_barrier(conf);
2447 conf->next_resync = sector_nr;
2451 * If we get a correctably read error during resync or recovery,
2452 * we might want to read from a different device. So we
2453 * flag all drives that could conceivably be read from for READ,
2454 * and any others (which will be non-In_sync devices) for WRITE.
2455 * If a read fails, we try reading from something else for which READ
2459 r1_bio->mddev = mddev;
2460 r1_bio->sector = sector_nr;
2462 set_bit(R1BIO_IsSync, &r1_bio->state);
2464 for (i = 0; i < conf->raid_disks * 2; i++) {
2465 struct md_rdev *rdev;
2466 bio = r1_bio->bios[i];
2468 /* take from bio_init */
2469 bio->bi_next = NULL;
2470 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2471 bio->bi_flags |= 1 << BIO_UPTODATE;
2475 bio->bi_phys_segments = 0;
2477 bio->bi_end_io = NULL;
2478 bio->bi_private = NULL;
2480 rdev = rcu_dereference(conf->mirrors[i].rdev);
2482 test_bit(Faulty, &rdev->flags)) {
2483 if (i < conf->raid_disks)
2485 } else if (!test_bit(In_sync, &rdev->flags)) {
2487 bio->bi_end_io = end_sync_write;
2490 /* may need to read from here */
2491 sector_t first_bad = MaxSector;
2494 if (is_badblock(rdev, sector_nr, good_sectors,
2495 &first_bad, &bad_sectors)) {
2496 if (first_bad > sector_nr)
2497 good_sectors = first_bad - sector_nr;
2499 bad_sectors -= (sector_nr - first_bad);
2501 min_bad > bad_sectors)
2502 min_bad = bad_sectors;
2505 if (sector_nr < first_bad) {
2506 if (test_bit(WriteMostly, &rdev->flags)) {
2514 bio->bi_end_io = end_sync_read;
2516 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2517 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2518 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2520 * The device is suitable for reading (InSync),
2521 * but has bad block(s) here. Let's try to correct them,
2522 * if we are doing resync or repair. Otherwise, leave
2523 * this device alone for this sync request.
2526 bio->bi_end_io = end_sync_write;
2530 if (bio->bi_end_io) {
2531 atomic_inc(&rdev->nr_pending);
2532 bio->bi_sector = sector_nr + rdev->data_offset;
2533 bio->bi_bdev = rdev->bdev;
2534 bio->bi_private = r1_bio;
2540 r1_bio->read_disk = disk;
2542 if (read_targets == 0 && min_bad > 0) {
2543 /* These sectors are bad on all InSync devices, so we
2544 * need to mark them bad on all write targets
2547 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2548 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2549 struct md_rdev *rdev = conf->mirrors[i].rdev;
2550 ok = rdev_set_badblocks(rdev, sector_nr,
2554 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2559 /* Cannot record the badblocks, so need to
2561 * If there are multiple read targets, could just
2562 * fail the really bad ones ???
2564 conf->recovery_disabled = mddev->recovery_disabled;
2565 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2571 if (min_bad > 0 && min_bad < good_sectors) {
2572 /* only resync enough to reach the next bad->good
2574 good_sectors = min_bad;
2577 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2578 /* extra read targets are also write targets */
2579 write_targets += read_targets-1;
2581 if (write_targets == 0 || read_targets == 0) {
2582 /* There is nowhere to write, so all non-sync
2583 * drives must be failed - so we are finished
2587 max_sector = sector_nr + min_bad;
2588 rv = max_sector - sector_nr;
2594 if (max_sector > mddev->resync_max)
2595 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2596 if (max_sector > sector_nr + good_sectors)
2597 max_sector = sector_nr + good_sectors;
2602 int len = PAGE_SIZE;
2603 if (sector_nr + (len>>9) > max_sector)
2604 len = (max_sector - sector_nr) << 9;
2607 if (sync_blocks == 0) {
2608 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2609 &sync_blocks, still_degraded) &&
2611 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2613 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2614 if ((len >> 9) > sync_blocks)
2615 len = sync_blocks<<9;
2618 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2619 bio = r1_bio->bios[i];
2620 if (bio->bi_end_io) {
2621 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2622 if (bio_add_page(bio, page, len, 0) == 0) {
2624 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2627 bio = r1_bio->bios[i];
2628 if (bio->bi_end_io==NULL)
2630 /* remove last page from this bio */
2632 bio->bi_size -= len;
2633 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2639 nr_sectors += len>>9;
2640 sector_nr += len>>9;
2641 sync_blocks -= (len>>9);
2642 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2644 r1_bio->sectors = nr_sectors;
2646 /* For a user-requested sync, we read all readable devices and do a
2649 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2650 atomic_set(&r1_bio->remaining, read_targets);
2651 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2652 bio = r1_bio->bios[i];
2653 if (bio->bi_end_io == end_sync_read) {
2655 md_sync_acct(bio->bi_bdev, nr_sectors);
2656 generic_make_request(bio);
2660 atomic_set(&r1_bio->remaining, 1);
2661 bio = r1_bio->bios[r1_bio->read_disk];
2662 md_sync_acct(bio->bi_bdev, nr_sectors);
2663 generic_make_request(bio);
2669 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2674 return mddev->dev_sectors;
2677 static struct r1conf *setup_conf(struct mddev *mddev)
2679 struct r1conf *conf;
2681 struct raid1_info *disk;
2682 struct md_rdev *rdev;
2685 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2689 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2690 * mddev->raid_disks * 2,
2695 conf->tmppage = alloc_page(GFP_KERNEL);
2699 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2700 if (!conf->poolinfo)
2702 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2703 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2706 if (!conf->r1bio_pool)
2709 conf->poolinfo->mddev = mddev;
2712 spin_lock_init(&conf->device_lock);
2713 rdev_for_each(rdev, mddev) {
2714 struct request_queue *q;
2715 int disk_idx = rdev->raid_disk;
2716 if (disk_idx >= mddev->raid_disks
2719 if (test_bit(Replacement, &rdev->flags))
2720 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2722 disk = conf->mirrors + disk_idx;
2727 q = bdev_get_queue(rdev->bdev);
2728 if (q->merge_bvec_fn)
2729 mddev->merge_check_needed = 1;
2731 disk->head_position = 0;
2732 disk->seq_start = MaxSector;
2734 conf->raid_disks = mddev->raid_disks;
2735 conf->mddev = mddev;
2736 INIT_LIST_HEAD(&conf->retry_list);
2738 spin_lock_init(&conf->resync_lock);
2739 init_waitqueue_head(&conf->wait_barrier);
2741 bio_list_init(&conf->pending_bio_list);
2742 conf->pending_count = 0;
2743 conf->recovery_disabled = mddev->recovery_disabled - 1;
2746 for (i = 0; i < conf->raid_disks * 2; i++) {
2748 disk = conf->mirrors + i;
2750 if (i < conf->raid_disks &&
2751 disk[conf->raid_disks].rdev) {
2752 /* This slot has a replacement. */
2754 /* No original, just make the replacement
2755 * a recovering spare
2758 disk[conf->raid_disks].rdev;
2759 disk[conf->raid_disks].rdev = NULL;
2760 } else if (!test_bit(In_sync, &disk->rdev->flags))
2761 /* Original is not in_sync - bad */
2766 !test_bit(In_sync, &disk->rdev->flags)) {
2767 disk->head_position = 0;
2769 (disk->rdev->saved_raid_disk < 0))
2775 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2776 if (!conf->thread) {
2778 "md/raid1:%s: couldn't allocate thread\n",
2787 if (conf->r1bio_pool)
2788 mempool_destroy(conf->r1bio_pool);
2789 kfree(conf->mirrors);
2790 safe_put_page(conf->tmppage);
2791 kfree(conf->poolinfo);
2794 return ERR_PTR(err);
2797 static int stop(struct mddev *mddev);
2798 static int run(struct mddev *mddev)
2800 struct r1conf *conf;
2802 struct md_rdev *rdev;
2804 bool discard_supported = false;
2806 if (mddev->level != 1) {
2807 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2808 mdname(mddev), mddev->level);
2811 if (mddev->reshape_position != MaxSector) {
2812 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2817 * copy the already verified devices into our private RAID1
2818 * bookkeeping area. [whatever we allocate in run(),
2819 * should be freed in stop()]
2821 if (mddev->private == NULL)
2822 conf = setup_conf(mddev);
2824 conf = mddev->private;
2827 return PTR_ERR(conf);
2830 blk_queue_max_write_same_sectors(mddev->queue,
2831 mddev->chunk_sectors);
2832 rdev_for_each(rdev, mddev) {
2833 if (!mddev->gendisk)
2835 disk_stack_limits(mddev->gendisk, rdev->bdev,
2836 rdev->data_offset << 9);
2837 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2838 discard_supported = true;
2841 mddev->degraded = 0;
2842 for (i=0; i < conf->raid_disks; i++)
2843 if (conf->mirrors[i].rdev == NULL ||
2844 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2845 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2848 if (conf->raid_disks - mddev->degraded == 1)
2849 mddev->recovery_cp = MaxSector;
2851 if (mddev->recovery_cp != MaxSector)
2852 printk(KERN_NOTICE "md/raid1:%s: not clean"
2853 " -- starting background reconstruction\n",
2856 "md/raid1:%s: active with %d out of %d mirrors\n",
2857 mdname(mddev), mddev->raid_disks - mddev->degraded,
2861 * Ok, everything is just fine now
2863 mddev->thread = conf->thread;
2864 conf->thread = NULL;
2865 mddev->private = conf;
2867 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2870 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2871 mddev->queue->backing_dev_info.congested_data = mddev;
2872 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2874 if (discard_supported)
2875 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2878 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2882 ret = md_integrity_register(mddev);
2888 static int stop(struct mddev *mddev)
2890 struct r1conf *conf = mddev->private;
2891 struct bitmap *bitmap = mddev->bitmap;
2893 /* wait for behind writes to complete */
2894 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2895 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2897 /* need to kick something here to make sure I/O goes? */
2898 wait_event(bitmap->behind_wait,
2899 atomic_read(&bitmap->behind_writes) == 0);
2902 raise_barrier(conf);
2903 lower_barrier(conf);
2905 md_unregister_thread(&mddev->thread);
2906 if (conf->r1bio_pool)
2907 mempool_destroy(conf->r1bio_pool);
2908 kfree(conf->mirrors);
2909 safe_put_page(conf->tmppage);
2910 kfree(conf->poolinfo);
2912 mddev->private = NULL;
2916 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2918 /* no resync is happening, and there is enough space
2919 * on all devices, so we can resize.
2920 * We need to make sure resync covers any new space.
2921 * If the array is shrinking we should possibly wait until
2922 * any io in the removed space completes, but it hardly seems
2925 sector_t newsize = raid1_size(mddev, sectors, 0);
2926 if (mddev->external_size &&
2927 mddev->array_sectors > newsize)
2929 if (mddev->bitmap) {
2930 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2934 md_set_array_sectors(mddev, newsize);
2935 set_capacity(mddev->gendisk, mddev->array_sectors);
2936 revalidate_disk(mddev->gendisk);
2937 if (sectors > mddev->dev_sectors &&
2938 mddev->recovery_cp > mddev->dev_sectors) {
2939 mddev->recovery_cp = mddev->dev_sectors;
2940 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2942 mddev->dev_sectors = sectors;
2943 mddev->resync_max_sectors = sectors;
2947 static int raid1_reshape(struct mddev *mddev)
2950 * 1/ resize the r1bio_pool
2951 * 2/ resize conf->mirrors
2953 * We allocate a new r1bio_pool if we can.
2954 * Then raise a device barrier and wait until all IO stops.
2955 * Then resize conf->mirrors and swap in the new r1bio pool.
2957 * At the same time, we "pack" the devices so that all the missing
2958 * devices have the higher raid_disk numbers.
2960 mempool_t *newpool, *oldpool;
2961 struct pool_info *newpoolinfo;
2962 struct raid1_info *newmirrors;
2963 struct r1conf *conf = mddev->private;
2964 int cnt, raid_disks;
2965 unsigned long flags;
2968 /* Cannot change chunk_size, layout, or level */
2969 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2970 mddev->layout != mddev->new_layout ||
2971 mddev->level != mddev->new_level) {
2972 mddev->new_chunk_sectors = mddev->chunk_sectors;
2973 mddev->new_layout = mddev->layout;
2974 mddev->new_level = mddev->level;
2978 err = md_allow_write(mddev);
2982 raid_disks = mddev->raid_disks + mddev->delta_disks;
2984 if (raid_disks < conf->raid_disks) {
2986 for (d= 0; d < conf->raid_disks; d++)
2987 if (conf->mirrors[d].rdev)
2989 if (cnt > raid_disks)
2993 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2996 newpoolinfo->mddev = mddev;
2997 newpoolinfo->raid_disks = raid_disks * 2;
2999 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3000 r1bio_pool_free, newpoolinfo);
3005 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3009 mempool_destroy(newpool);
3013 raise_barrier(conf);
3015 /* ok, everything is stopped */
3016 oldpool = conf->r1bio_pool;
3017 conf->r1bio_pool = newpool;
3019 for (d = d2 = 0; d < conf->raid_disks; d++) {
3020 struct md_rdev *rdev = conf->mirrors[d].rdev;
3021 if (rdev && rdev->raid_disk != d2) {
3022 sysfs_unlink_rdev(mddev, rdev);
3023 rdev->raid_disk = d2;
3024 sysfs_unlink_rdev(mddev, rdev);
3025 if (sysfs_link_rdev(mddev, rdev))
3027 "md/raid1:%s: cannot register rd%d\n",
3028 mdname(mddev), rdev->raid_disk);
3031 newmirrors[d2++].rdev = rdev;
3033 kfree(conf->mirrors);
3034 conf->mirrors = newmirrors;
3035 kfree(conf->poolinfo);
3036 conf->poolinfo = newpoolinfo;
3038 spin_lock_irqsave(&conf->device_lock, flags);
3039 mddev->degraded += (raid_disks - conf->raid_disks);
3040 spin_unlock_irqrestore(&conf->device_lock, flags);
3041 conf->raid_disks = mddev->raid_disks = raid_disks;
3042 mddev->delta_disks = 0;
3044 lower_barrier(conf);
3046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3047 md_wakeup_thread(mddev->thread);
3049 mempool_destroy(oldpool);
3053 static void raid1_quiesce(struct mddev *mddev, int state)
3055 struct r1conf *conf = mddev->private;
3058 case 2: /* wake for suspend */
3059 wake_up(&conf->wait_barrier);
3062 raise_barrier(conf);
3065 lower_barrier(conf);
3070 static void *raid1_takeover(struct mddev *mddev)
3072 /* raid1 can take over:
3073 * raid5 with 2 devices, any layout or chunk size
3075 if (mddev->level == 5 && mddev->raid_disks == 2) {
3076 struct r1conf *conf;
3077 mddev->new_level = 1;
3078 mddev->new_layout = 0;
3079 mddev->new_chunk_sectors = 0;
3080 conf = setup_conf(mddev);
3085 return ERR_PTR(-EINVAL);
3088 static struct md_personality raid1_personality =
3092 .owner = THIS_MODULE,
3093 .make_request = make_request,
3097 .error_handler = error,
3098 .hot_add_disk = raid1_add_disk,
3099 .hot_remove_disk= raid1_remove_disk,
3100 .spare_active = raid1_spare_active,
3101 .sync_request = sync_request,
3102 .resize = raid1_resize,
3104 .check_reshape = raid1_reshape,
3105 .quiesce = raid1_quiesce,
3106 .takeover = raid1_takeover,
3109 static int __init raid_init(void)
3111 return register_md_personality(&raid1_personality);
3114 static void raid_exit(void)
3116 unregister_md_personality(&raid1_personality);
3119 module_init(raid_init);
3120 module_exit(raid_exit);
3121 MODULE_LICENSE("GPL");
3122 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3123 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3124 MODULE_ALIAS("md-raid1");
3125 MODULE_ALIAS("md-level-1");
3127 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);