5ee14ab16a058714ca03f82d5d05c75046e16fee
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 unsigned long flags;
396                 spin_lock_irqsave(&conf->device_lock, flags);
397                 if (!enough(conf, rdev->raid_disk))
398                         uptodate = 1;
399                 spin_unlock_irqrestore(&conf->device_lock, flags);
400         }
401         if (uptodate) {
402                 raid_end_bio_io(r10_bio);
403                 rdev_dec_pending(rdev, conf->mddev);
404         } else {
405                 /*
406                  * oops, read error - keep the refcount on the rdev
407                  */
408                 char b[BDEVNAME_SIZE];
409                 printk_ratelimited(KERN_ERR
410                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
411                                    mdname(conf->mddev),
412                                    bdevname(rdev->bdev, b),
413                                    (unsigned long long)r10_bio->sector);
414                 set_bit(R10BIO_ReadError, &r10_bio->state);
415                 reschedule_retry(r10_bio);
416         }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421         /* clear the bitmap if all writes complete successfully */
422         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423                         r10_bio->sectors,
424                         !test_bit(R10BIO_Degraded, &r10_bio->state),
425                         0);
426         md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431         if (atomic_dec_and_test(&r10_bio->remaining)) {
432                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433                         reschedule_retry(r10_bio);
434                 else {
435                         close_write(r10_bio);
436                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437                                 reschedule_retry(r10_bio);
438                         else
439                                 raid_end_bio_io(r10_bio);
440                 }
441         }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447         struct r10bio *r10_bio = bio->bi_private;
448         int dev;
449         int dec_rdev = 1;
450         struct r10conf *conf = r10_bio->mddev->private;
451         int slot, repl;
452         struct md_rdev *rdev = NULL;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (!uptodate) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
495                 /* Maybe we can clear some bad blocks. */
496                 if (is_badblock(rdev,
497                                 r10_bio->devs[slot].addr,
498                                 r10_bio->sectors,
499                                 &first_bad, &bad_sectors)) {
500                         bio_put(bio);
501                         if (repl)
502                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503                         else
504                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
505                         dec_rdev = 0;
506                         set_bit(R10BIO_MadeGood, &r10_bio->state);
507                 }
508         }
509
510         /*
511          *
512          * Let's see if all mirrored write operations have finished
513          * already.
514          */
515         one_write_done(r10_bio);
516         if (dec_rdev)
517                 rdev_dec_pending(rdev, conf->mddev);
518 }
519
520 /*
521  * RAID10 layout manager
522  * As well as the chunksize and raid_disks count, there are two
523  * parameters: near_copies and far_copies.
524  * near_copies * far_copies must be <= raid_disks.
525  * Normally one of these will be 1.
526  * If both are 1, we get raid0.
527  * If near_copies == raid_disks, we get raid1.
528  *
529  * Chunks are laid out in raid0 style with near_copies copies of the
530  * first chunk, followed by near_copies copies of the next chunk and
531  * so on.
532  * If far_copies > 1, then after 1/far_copies of the array has been assigned
533  * as described above, we start again with a device offset of near_copies.
534  * So we effectively have another copy of the whole array further down all
535  * the drives, but with blocks on different drives.
536  * With this layout, and block is never stored twice on the one device.
537  *
538  * raid10_find_phys finds the sector offset of a given virtual sector
539  * on each device that it is on.
540  *
541  * raid10_find_virt does the reverse mapping, from a device and a
542  * sector offset to a virtual address
543  */
544
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547         int n,f;
548         sector_t sector;
549         sector_t chunk;
550         sector_t stripe;
551         int dev;
552         int slot = 0;
553         int last_far_set_start, last_far_set_size;
554
555         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556         last_far_set_start *= geo->far_set_size;
557
558         last_far_set_size = geo->far_set_size;
559         last_far_set_size += (geo->raid_disks % geo->far_set_size);
560
561         /* now calculate first sector/dev */
562         chunk = r10bio->sector >> geo->chunk_shift;
563         sector = r10bio->sector & geo->chunk_mask;
564
565         chunk *= geo->near_copies;
566         stripe = chunk;
567         dev = sector_div(stripe, geo->raid_disks);
568         if (geo->far_offset)
569                 stripe *= geo->far_copies;
570
571         sector += stripe << geo->chunk_shift;
572
573         /* and calculate all the others */
574         for (n = 0; n < geo->near_copies; n++) {
575                 int d = dev;
576                 int set;
577                 sector_t s = sector;
578                 r10bio->devs[slot].devnum = d;
579                 r10bio->devs[slot].addr = s;
580                 slot++;
581
582                 for (f = 1; f < geo->far_copies; f++) {
583                         set = d / geo->far_set_size;
584                         d += geo->near_copies;
585
586                         if ((geo->raid_disks % geo->far_set_size) &&
587                             (d > last_far_set_start)) {
588                                 d -= last_far_set_start;
589                                 d %= last_far_set_size;
590                                 d += last_far_set_start;
591                         } else {
592                                 d %= geo->far_set_size;
593                                 d += geo->far_set_size * set;
594                         }
595                         s += geo->stride;
596                         r10bio->devs[slot].devnum = d;
597                         r10bio->devs[slot].addr = s;
598                         slot++;
599                 }
600                 dev++;
601                 if (dev >= geo->raid_disks) {
602                         dev = 0;
603                         sector += (geo->chunk_mask + 1);
604                 }
605         }
606 }
607
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610         struct geom *geo = &conf->geo;
611
612         if (conf->reshape_progress != MaxSector &&
613             ((r10bio->sector >= conf->reshape_progress) !=
614              conf->mddev->reshape_backwards)) {
615                 set_bit(R10BIO_Previous, &r10bio->state);
616                 geo = &conf->prev;
617         } else
618                 clear_bit(R10BIO_Previous, &r10bio->state);
619
620         __raid10_find_phys(geo, r10bio);
621 }
622
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625         sector_t offset, chunk, vchunk;
626         /* Never use conf->prev as this is only called during resync
627          * or recovery, so reshape isn't happening
628          */
629         struct geom *geo = &conf->geo;
630         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631         int far_set_size = geo->far_set_size;
632         int last_far_set_start;
633
634         if (geo->raid_disks % geo->far_set_size) {
635                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636                 last_far_set_start *= geo->far_set_size;
637
638                 if (dev >= last_far_set_start) {
639                         far_set_size = geo->far_set_size;
640                         far_set_size += (geo->raid_disks % geo->far_set_size);
641                         far_set_start = last_far_set_start;
642                 }
643         }
644
645         offset = sector & geo->chunk_mask;
646         if (geo->far_offset) {
647                 int fc;
648                 chunk = sector >> geo->chunk_shift;
649                 fc = sector_div(chunk, geo->far_copies);
650                 dev -= fc * geo->near_copies;
651                 if (dev < far_set_start)
652                         dev += far_set_size;
653         } else {
654                 while (sector >= geo->stride) {
655                         sector -= geo->stride;
656                         if (dev < (geo->near_copies + far_set_start))
657                                 dev += far_set_size - geo->near_copies;
658                         else
659                                 dev -= geo->near_copies;
660                 }
661                 chunk = sector >> geo->chunk_shift;
662         }
663         vchunk = chunk * geo->raid_disks + dev;
664         sector_div(vchunk, geo->near_copies);
665         return (vchunk << geo->chunk_shift) + offset;
666 }
667
668 /**
669  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670  *      @q: request queue
671  *      @bvm: properties of new bio
672  *      @biovec: the request that could be merged to it.
673  *
674  *      Return amount of bytes we can accept at this offset
675  *      This requires checking for end-of-chunk if near_copies != raid_disks,
676  *      and for subordinate merge_bvec_fns if merge_check_needed.
677  */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679                                  struct bvec_merge_data *bvm,
680                                  struct bio_vec *biovec)
681 {
682         struct mddev *mddev = q->queuedata;
683         struct r10conf *conf = mddev->private;
684         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685         int max;
686         unsigned int chunk_sectors;
687         unsigned int bio_sectors = bvm->bi_size >> 9;
688         struct geom *geo = &conf->geo;
689
690         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691         if (conf->reshape_progress != MaxSector &&
692             ((sector >= conf->reshape_progress) !=
693              conf->mddev->reshape_backwards))
694                 geo = &conf->prev;
695
696         if (geo->near_copies < geo->raid_disks) {
697                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698                                         + bio_sectors)) << 9;
699                 if (max < 0)
700                         /* bio_add cannot handle a negative return */
701                         max = 0;
702                 if (max <= biovec->bv_len && bio_sectors == 0)
703                         return biovec->bv_len;
704         } else
705                 max = biovec->bv_len;
706
707         if (mddev->merge_check_needed) {
708                 struct {
709                         struct r10bio r10_bio;
710                         struct r10dev devs[conf->copies];
711                 } on_stack;
712                 struct r10bio *r10_bio = &on_stack.r10_bio;
713                 int s;
714                 if (conf->reshape_progress != MaxSector) {
715                         /* Cannot give any guidance during reshape */
716                         if (max <= biovec->bv_len && bio_sectors == 0)
717                                 return biovec->bv_len;
718                         return 0;
719                 }
720                 r10_bio->sector = sector;
721                 raid10_find_phys(conf, r10_bio);
722                 rcu_read_lock();
723                 for (s = 0; s < conf->copies; s++) {
724                         int disk = r10_bio->devs[s].devnum;
725                         struct md_rdev *rdev = rcu_dereference(
726                                 conf->mirrors[disk].rdev);
727                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
728                                 struct request_queue *q =
729                                         bdev_get_queue(rdev->bdev);
730                                 if (q->merge_bvec_fn) {
731                                         bvm->bi_sector = r10_bio->devs[s].addr
732                                                 + rdev->data_offset;
733                                         bvm->bi_bdev = rdev->bdev;
734                                         max = min(max, q->merge_bvec_fn(
735                                                           q, bvm, biovec));
736                                 }
737                         }
738                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
739                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
740                                 struct request_queue *q =
741                                         bdev_get_queue(rdev->bdev);
742                                 if (q->merge_bvec_fn) {
743                                         bvm->bi_sector = r10_bio->devs[s].addr
744                                                 + rdev->data_offset;
745                                         bvm->bi_bdev = rdev->bdev;
746                                         max = min(max, q->merge_bvec_fn(
747                                                           q, bvm, biovec));
748                                 }
749                         }
750                 }
751                 rcu_read_unlock();
752         }
753         return max;
754 }
755
756 /*
757  * This routine returns the disk from which the requested read should
758  * be done. There is a per-array 'next expected sequential IO' sector
759  * number - if this matches on the next IO then we use the last disk.
760  * There is also a per-disk 'last know head position' sector that is
761  * maintained from IRQ contexts, both the normal and the resync IO
762  * completion handlers update this position correctly. If there is no
763  * perfect sequential match then we pick the disk whose head is closest.
764  *
765  * If there are 2 mirrors in the same 2 devices, performance degrades
766  * because position is mirror, not device based.
767  *
768  * The rdev for the device selected will have nr_pending incremented.
769  */
770
771 /*
772  * FIXME: possibly should rethink readbalancing and do it differently
773  * depending on near_copies / far_copies geometry.
774  */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776                                     struct r10bio *r10_bio,
777                                     int *max_sectors)
778 {
779         const sector_t this_sector = r10_bio->sector;
780         int disk, slot;
781         int sectors = r10_bio->sectors;
782         int best_good_sectors;
783         sector_t new_distance, best_dist;
784         struct md_rdev *best_rdev, *rdev = NULL;
785         int do_balance;
786         int best_slot;
787         struct geom *geo = &conf->geo;
788
789         raid10_find_phys(conf, r10_bio);
790         rcu_read_lock();
791 retry:
792         sectors = r10_bio->sectors;
793         best_slot = -1;
794         best_rdev = NULL;
795         best_dist = MaxSector;
796         best_good_sectors = 0;
797         do_balance = 1;
798         /*
799          * Check if we can balance. We can balance on the whole
800          * device if no resync is going on (recovery is ok), or below
801          * the resync window. We take the first readable disk when
802          * above the resync window.
803          */
804         if (conf->mddev->recovery_cp < MaxSector
805             && (this_sector + sectors >= conf->next_resync))
806                 do_balance = 0;
807
808         for (slot = 0; slot < conf->copies ; slot++) {
809                 sector_t first_bad;
810                 int bad_sectors;
811                 sector_t dev_sector;
812
813                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814                         continue;
815                 disk = r10_bio->devs[slot].devnum;
816                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818                     test_bit(Unmerged, &rdev->flags) ||
819                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
821                 if (rdev == NULL ||
822                     test_bit(Faulty, &rdev->flags) ||
823                     test_bit(Unmerged, &rdev->flags))
824                         continue;
825                 if (!test_bit(In_sync, &rdev->flags) &&
826                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827                         continue;
828
829                 dev_sector = r10_bio->devs[slot].addr;
830                 if (is_badblock(rdev, dev_sector, sectors,
831                                 &first_bad, &bad_sectors)) {
832                         if (best_dist < MaxSector)
833                                 /* Already have a better slot */
834                                 continue;
835                         if (first_bad <= dev_sector) {
836                                 /* Cannot read here.  If this is the
837                                  * 'primary' device, then we must not read
838                                  * beyond 'bad_sectors' from another device.
839                                  */
840                                 bad_sectors -= (dev_sector - first_bad);
841                                 if (!do_balance && sectors > bad_sectors)
842                                         sectors = bad_sectors;
843                                 if (best_good_sectors > sectors)
844                                         best_good_sectors = sectors;
845                         } else {
846                                 sector_t good_sectors =
847                                         first_bad - dev_sector;
848                                 if (good_sectors > best_good_sectors) {
849                                         best_good_sectors = good_sectors;
850                                         best_slot = slot;
851                                         best_rdev = rdev;
852                                 }
853                                 if (!do_balance)
854                                         /* Must read from here */
855                                         break;
856                         }
857                         continue;
858                 } else
859                         best_good_sectors = sectors;
860
861                 if (!do_balance)
862                         break;
863
864                 /* This optimisation is debatable, and completely destroys
865                  * sequential read speed for 'far copies' arrays.  So only
866                  * keep it for 'near' arrays, and review those later.
867                  */
868                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869                         break;
870
871                 /* for far > 1 always use the lowest address */
872                 if (geo->far_copies > 1)
873                         new_distance = r10_bio->devs[slot].addr;
874                 else
875                         new_distance = abs(r10_bio->devs[slot].addr -
876                                            conf->mirrors[disk].head_position);
877                 if (new_distance < best_dist) {
878                         best_dist = new_distance;
879                         best_slot = slot;
880                         best_rdev = rdev;
881                 }
882         }
883         if (slot >= conf->copies) {
884                 slot = best_slot;
885                 rdev = best_rdev;
886         }
887
888         if (slot >= 0) {
889                 atomic_inc(&rdev->nr_pending);
890                 if (test_bit(Faulty, &rdev->flags)) {
891                         /* Cannot risk returning a device that failed
892                          * before we inc'ed nr_pending
893                          */
894                         rdev_dec_pending(rdev, conf->mddev);
895                         goto retry;
896                 }
897                 r10_bio->read_slot = slot;
898         } else
899                 rdev = NULL;
900         rcu_read_unlock();
901         *max_sectors = best_good_sectors;
902
903         return rdev;
904 }
905
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908         struct r10conf *conf = mddev->private;
909         int i, ret = 0;
910
911         if ((bits & (1 << BDI_async_congested)) &&
912             conf->pending_count >= max_queued_requests)
913                 return 1;
914
915         rcu_read_lock();
916         for (i = 0;
917              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918                      && ret == 0;
919              i++) {
920                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922                         struct request_queue *q = bdev_get_queue(rdev->bdev);
923
924                         ret |= bdi_congested(&q->backing_dev_info, bits);
925                 }
926         }
927         rcu_read_unlock();
928         return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932 static int raid10_congested(void *data, int bits)
933 {
934         struct mddev *mddev = data;
935
936         return mddev_congested(mddev, bits) ||
937                 md_raid10_congested(mddev, bits);
938 }
939
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942         /* Any writes that have been queued but are awaiting
943          * bitmap updates get flushed here.
944          */
945         spin_lock_irq(&conf->device_lock);
946
947         if (conf->pending_bio_list.head) {
948                 struct bio *bio;
949                 bio = bio_list_get(&conf->pending_bio_list);
950                 conf->pending_count = 0;
951                 spin_unlock_irq(&conf->device_lock);
952                 /* flush any pending bitmap writes to disk
953                  * before proceeding w/ I/O */
954                 bitmap_unplug(conf->mddev->bitmap);
955                 wake_up(&conf->wait_barrier);
956
957                 while (bio) { /* submit pending writes */
958                         struct bio *next = bio->bi_next;
959                         bio->bi_next = NULL;
960                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962                                 /* Just ignore it */
963                                 bio_endio(bio, 0);
964                         else
965                                 generic_make_request(bio);
966                         bio = next;
967                 }
968         } else
969                 spin_unlock_irq(&conf->device_lock);
970 }
971
972 /* Barriers....
973  * Sometimes we need to suspend IO while we do something else,
974  * either some resync/recovery, or reconfigure the array.
975  * To do this we raise a 'barrier'.
976  * The 'barrier' is a counter that can be raised multiple times
977  * to count how many activities are happening which preclude
978  * normal IO.
979  * We can only raise the barrier if there is no pending IO.
980  * i.e. if nr_pending == 0.
981  * We choose only to raise the barrier if no-one is waiting for the
982  * barrier to go down.  This means that as soon as an IO request
983  * is ready, no other operations which require a barrier will start
984  * until the IO request has had a chance.
985  *
986  * So: regular IO calls 'wait_barrier'.  When that returns there
987  *    is no backgroup IO happening,  It must arrange to call
988  *    allow_barrier when it has finished its IO.
989  * backgroup IO calls must call raise_barrier.  Once that returns
990  *    there is no normal IO happeing.  It must arrange to call
991  *    lower_barrier when the particular background IO completes.
992  */
993
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996         BUG_ON(force && !conf->barrier);
997         spin_lock_irq(&conf->resync_lock);
998
999         /* Wait until no block IO is waiting (unless 'force') */
1000         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001                             conf->resync_lock);
1002
1003         /* block any new IO from starting */
1004         conf->barrier++;
1005
1006         /* Now wait for all pending IO to complete */
1007         wait_event_lock_irq(conf->wait_barrier,
1008                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009                             conf->resync_lock);
1010
1011         spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016         unsigned long flags;
1017         spin_lock_irqsave(&conf->resync_lock, flags);
1018         conf->barrier--;
1019         spin_unlock_irqrestore(&conf->resync_lock, flags);
1020         wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025         spin_lock_irq(&conf->resync_lock);
1026         if (conf->barrier) {
1027                 conf->nr_waiting++;
1028                 /* Wait for the barrier to drop.
1029                  * However if there are already pending
1030                  * requests (preventing the barrier from
1031                  * rising completely), and the
1032                  * pre-process bio queue isn't empty,
1033                  * then don't wait, as we need to empty
1034                  * that queue to get the nr_pending
1035                  * count down.
1036                  */
1037                 wait_event_lock_irq(conf->wait_barrier,
1038                                     !conf->barrier ||
1039                                     (conf->nr_pending &&
1040                                      current->bio_list &&
1041                                      !bio_list_empty(current->bio_list)),
1042                                     conf->resync_lock);
1043                 conf->nr_waiting--;
1044         }
1045         conf->nr_pending++;
1046         spin_unlock_irq(&conf->resync_lock);
1047 }
1048
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051         unsigned long flags;
1052         spin_lock_irqsave(&conf->resync_lock, flags);
1053         conf->nr_pending--;
1054         spin_unlock_irqrestore(&conf->resync_lock, flags);
1055         wake_up(&conf->wait_barrier);
1056 }
1057
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060         /* stop syncio and normal IO and wait for everything to
1061          * go quiet.
1062          * We increment barrier and nr_waiting, and then
1063          * wait until nr_pending match nr_queued+1
1064          * This is called in the context of one normal IO request
1065          * that has failed. Thus any sync request that might be pending
1066          * will be blocked by nr_pending, and we need to wait for
1067          * pending IO requests to complete or be queued for re-try.
1068          * Thus the number queued (nr_queued) plus this request (1)
1069          * must match the number of pending IOs (nr_pending) before
1070          * we continue.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->barrier++;
1074         conf->nr_waiting++;
1075         wait_event_lock_irq_cmd(conf->wait_barrier,
1076                                 conf->nr_pending == conf->nr_queued+1,
1077                                 conf->resync_lock,
1078                                 flush_pending_writes(conf));
1079
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085         /* reverse the effect of the freeze */
1086         spin_lock_irq(&conf->resync_lock);
1087         conf->barrier--;
1088         conf->nr_waiting--;
1089         wake_up(&conf->wait_barrier);
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094                                    struct md_rdev *rdev)
1095 {
1096         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097             test_bit(R10BIO_Previous, &r10_bio->state))
1098                 return rdev->data_offset;
1099         else
1100                 return rdev->new_data_offset;
1101 }
1102
1103 struct raid10_plug_cb {
1104         struct blk_plug_cb      cb;
1105         struct bio_list         pending;
1106         int                     pending_cnt;
1107 };
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112                                                    cb);
1113         struct mddev *mddev = plug->cb.data;
1114         struct r10conf *conf = mddev->private;
1115         struct bio *bio;
1116
1117         if (from_schedule || current->bio_list) {
1118                 spin_lock_irq(&conf->device_lock);
1119                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120                 conf->pending_count += plug->pending_cnt;
1121                 spin_unlock_irq(&conf->device_lock);
1122                 wake_up(&conf->wait_barrier);
1123                 md_wakeup_thread(mddev->thread);
1124                 kfree(plug);
1125                 return;
1126         }
1127
1128         /* we aren't scheduling, so we can do the write-out directly. */
1129         bio = bio_list_get(&plug->pending);
1130         bitmap_unplug(mddev->bitmap);
1131         wake_up(&conf->wait_barrier);
1132
1133         while (bio) { /* submit pending writes */
1134                 struct bio *next = bio->bi_next;
1135                 bio->bi_next = NULL;
1136                 generic_make_request(bio);
1137                 bio = next;
1138         }
1139         kfree(plug);
1140 }
1141
1142 static void make_request(struct mddev *mddev, struct bio * bio)
1143 {
1144         struct r10conf *conf = mddev->private;
1145         struct r10bio *r10_bio;
1146         struct bio *read_bio;
1147         int i;
1148         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1149         int chunk_sects = chunk_mask + 1;
1150         const int rw = bio_data_dir(bio);
1151         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153         const unsigned long do_discard = (bio->bi_rw
1154                                           & (REQ_DISCARD | REQ_SECURE));
1155         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156         unsigned long flags;
1157         struct md_rdev *blocked_rdev;
1158         struct blk_plug_cb *cb;
1159         struct raid10_plug_cb *plug = NULL;
1160         int sectors_handled;
1161         int max_sectors;
1162         int sectors;
1163
1164         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1165                 md_flush_request(mddev, bio);
1166                 return;
1167         }
1168
1169         /* If this request crosses a chunk boundary, we need to
1170          * split it.  This will only happen for 1 PAGE (or less) requests.
1171          */
1172         if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1173                      > chunk_sects
1174                      && (conf->geo.near_copies < conf->geo.raid_disks
1175                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1176                 struct bio_pair *bp;
1177                 /* Sanity check -- queue functions should prevent this happening */
1178                 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1179                     bio->bi_idx != 0)
1180                         goto bad_map;
1181                 /* This is a one page bio that upper layers
1182                  * refuse to split for us, so we need to split it.
1183                  */
1184                 bp = bio_split(bio,
1185                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1186
1187                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1188                  * If the first succeeds but the second blocks due to the resync
1189                  * thread raising the barrier, we will deadlock because the
1190                  * IO to the underlying device will be queued in generic_make_request
1191                  * and will never complete, so will never reduce nr_pending.
1192                  * So increment nr_waiting here so no new raise_barriers will
1193                  * succeed, and so the second wait_barrier cannot block.
1194                  */
1195                 spin_lock_irq(&conf->resync_lock);
1196                 conf->nr_waiting++;
1197                 spin_unlock_irq(&conf->resync_lock);
1198
1199                 make_request(mddev, &bp->bio1);
1200                 make_request(mddev, &bp->bio2);
1201
1202                 spin_lock_irq(&conf->resync_lock);
1203                 conf->nr_waiting--;
1204                 wake_up(&conf->wait_barrier);
1205                 spin_unlock_irq(&conf->resync_lock);
1206
1207                 bio_pair_release(bp);
1208                 return;
1209         bad_map:
1210                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1211                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1212                        (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1213
1214                 bio_io_error(bio);
1215                 return;
1216         }
1217
1218         md_write_start(mddev, bio);
1219
1220         /*
1221          * Register the new request and wait if the reconstruction
1222          * thread has put up a bar for new requests.
1223          * Continue immediately if no resync is active currently.
1224          */
1225         wait_barrier(conf);
1226
1227         sectors = bio_sectors(bio);
1228         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1229             bio->bi_sector < conf->reshape_progress &&
1230             bio->bi_sector + sectors > conf->reshape_progress) {
1231                 /* IO spans the reshape position.  Need to wait for
1232                  * reshape to pass
1233                  */
1234                 allow_barrier(conf);
1235                 wait_event(conf->wait_barrier,
1236                            conf->reshape_progress <= bio->bi_sector ||
1237                            conf->reshape_progress >= bio->bi_sector + sectors);
1238                 wait_barrier(conf);
1239         }
1240         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241             bio_data_dir(bio) == WRITE &&
1242             (mddev->reshape_backwards
1243              ? (bio->bi_sector < conf->reshape_safe &&
1244                 bio->bi_sector + sectors > conf->reshape_progress)
1245              : (bio->bi_sector + sectors > conf->reshape_safe &&
1246                 bio->bi_sector < conf->reshape_progress))) {
1247                 /* Need to update reshape_position in metadata */
1248                 mddev->reshape_position = conf->reshape_progress;
1249                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1250                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1251                 md_wakeup_thread(mddev->thread);
1252                 wait_event(mddev->sb_wait,
1253                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1254
1255                 conf->reshape_safe = mddev->reshape_position;
1256         }
1257
1258         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1259
1260         r10_bio->master_bio = bio;
1261         r10_bio->sectors = sectors;
1262
1263         r10_bio->mddev = mddev;
1264         r10_bio->sector = bio->bi_sector;
1265         r10_bio->state = 0;
1266
1267         /* We might need to issue multiple reads to different
1268          * devices if there are bad blocks around, so we keep
1269          * track of the number of reads in bio->bi_phys_segments.
1270          * If this is 0, there is only one r10_bio and no locking
1271          * will be needed when the request completes.  If it is
1272          * non-zero, then it is the number of not-completed requests.
1273          */
1274         bio->bi_phys_segments = 0;
1275         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1276
1277         if (rw == READ) {
1278                 /*
1279                  * read balancing logic:
1280                  */
1281                 struct md_rdev *rdev;
1282                 int slot;
1283
1284 read_again:
1285                 rdev = read_balance(conf, r10_bio, &max_sectors);
1286                 if (!rdev) {
1287                         raid_end_bio_io(r10_bio);
1288                         return;
1289                 }
1290                 slot = r10_bio->read_slot;
1291
1292                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1293                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1294                             max_sectors);
1295
1296                 r10_bio->devs[slot].bio = read_bio;
1297                 r10_bio->devs[slot].rdev = rdev;
1298
1299                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1300                         choose_data_offset(r10_bio, rdev);
1301                 read_bio->bi_bdev = rdev->bdev;
1302                 read_bio->bi_end_io = raid10_end_read_request;
1303                 read_bio->bi_rw = READ | do_sync;
1304                 read_bio->bi_private = r10_bio;
1305
1306                 if (max_sectors < r10_bio->sectors) {
1307                         /* Could not read all from this device, so we will
1308                          * need another r10_bio.
1309                          */
1310                         sectors_handled = (r10_bio->sectors + max_sectors
1311                                            - bio->bi_sector);
1312                         r10_bio->sectors = max_sectors;
1313                         spin_lock_irq(&conf->device_lock);
1314                         if (bio->bi_phys_segments == 0)
1315                                 bio->bi_phys_segments = 2;
1316                         else
1317                                 bio->bi_phys_segments++;
1318                         spin_unlock(&conf->device_lock);
1319                         /* Cannot call generic_make_request directly
1320                          * as that will be queued in __generic_make_request
1321                          * and subsequent mempool_alloc might block
1322                          * waiting for it.  so hand bio over to raid10d.
1323                          */
1324                         reschedule_retry(r10_bio);
1325
1326                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1327
1328                         r10_bio->master_bio = bio;
1329                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1330                         r10_bio->state = 0;
1331                         r10_bio->mddev = mddev;
1332                         r10_bio->sector = bio->bi_sector + sectors_handled;
1333                         goto read_again;
1334                 } else
1335                         generic_make_request(read_bio);
1336                 return;
1337         }
1338
1339         /*
1340          * WRITE:
1341          */
1342         if (conf->pending_count >= max_queued_requests) {
1343                 md_wakeup_thread(mddev->thread);
1344                 wait_event(conf->wait_barrier,
1345                            conf->pending_count < max_queued_requests);
1346         }
1347         /* first select target devices under rcu_lock and
1348          * inc refcount on their rdev.  Record them by setting
1349          * bios[x] to bio
1350          * If there are known/acknowledged bad blocks on any device
1351          * on which we have seen a write error, we want to avoid
1352          * writing to those blocks.  This potentially requires several
1353          * writes to write around the bad blocks.  Each set of writes
1354          * gets its own r10_bio with a set of bios attached.  The number
1355          * of r10_bios is recored in bio->bi_phys_segments just as with
1356          * the read case.
1357          */
1358
1359         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1360         raid10_find_phys(conf, r10_bio);
1361 retry_write:
1362         blocked_rdev = NULL;
1363         rcu_read_lock();
1364         max_sectors = r10_bio->sectors;
1365
1366         for (i = 0;  i < conf->copies; i++) {
1367                 int d = r10_bio->devs[i].devnum;
1368                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1369                 struct md_rdev *rrdev = rcu_dereference(
1370                         conf->mirrors[d].replacement);
1371                 if (rdev == rrdev)
1372                         rrdev = NULL;
1373                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1374                         atomic_inc(&rdev->nr_pending);
1375                         blocked_rdev = rdev;
1376                         break;
1377                 }
1378                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1379                         atomic_inc(&rrdev->nr_pending);
1380                         blocked_rdev = rrdev;
1381                         break;
1382                 }
1383                 if (rdev && (test_bit(Faulty, &rdev->flags)
1384                              || test_bit(Unmerged, &rdev->flags)))
1385                         rdev = NULL;
1386                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1387                               || test_bit(Unmerged, &rrdev->flags)))
1388                         rrdev = NULL;
1389
1390                 r10_bio->devs[i].bio = NULL;
1391                 r10_bio->devs[i].repl_bio = NULL;
1392
1393                 if (!rdev && !rrdev) {
1394                         set_bit(R10BIO_Degraded, &r10_bio->state);
1395                         continue;
1396                 }
1397                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1398                         sector_t first_bad;
1399                         sector_t dev_sector = r10_bio->devs[i].addr;
1400                         int bad_sectors;
1401                         int is_bad;
1402
1403                         is_bad = is_badblock(rdev, dev_sector,
1404                                              max_sectors,
1405                                              &first_bad, &bad_sectors);
1406                         if (is_bad < 0) {
1407                                 /* Mustn't write here until the bad block
1408                                  * is acknowledged
1409                                  */
1410                                 atomic_inc(&rdev->nr_pending);
1411                                 set_bit(BlockedBadBlocks, &rdev->flags);
1412                                 blocked_rdev = rdev;
1413                                 break;
1414                         }
1415                         if (is_bad && first_bad <= dev_sector) {
1416                                 /* Cannot write here at all */
1417                                 bad_sectors -= (dev_sector - first_bad);
1418                                 if (bad_sectors < max_sectors)
1419                                         /* Mustn't write more than bad_sectors
1420                                          * to other devices yet
1421                                          */
1422                                         max_sectors = bad_sectors;
1423                                 /* We don't set R10BIO_Degraded as that
1424                                  * only applies if the disk is missing,
1425                                  * so it might be re-added, and we want to
1426                                  * know to recover this chunk.
1427                                  * In this case the device is here, and the
1428                                  * fact that this chunk is not in-sync is
1429                                  * recorded in the bad block log.
1430                                  */
1431                                 continue;
1432                         }
1433                         if (is_bad) {
1434                                 int good_sectors = first_bad - dev_sector;
1435                                 if (good_sectors < max_sectors)
1436                                         max_sectors = good_sectors;
1437                         }
1438                 }
1439                 if (rdev) {
1440                         r10_bio->devs[i].bio = bio;
1441                         atomic_inc(&rdev->nr_pending);
1442                 }
1443                 if (rrdev) {
1444                         r10_bio->devs[i].repl_bio = bio;
1445                         atomic_inc(&rrdev->nr_pending);
1446                 }
1447         }
1448         rcu_read_unlock();
1449
1450         if (unlikely(blocked_rdev)) {
1451                 /* Have to wait for this device to get unblocked, then retry */
1452                 int j;
1453                 int d;
1454
1455                 for (j = 0; j < i; j++) {
1456                         if (r10_bio->devs[j].bio) {
1457                                 d = r10_bio->devs[j].devnum;
1458                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1459                         }
1460                         if (r10_bio->devs[j].repl_bio) {
1461                                 struct md_rdev *rdev;
1462                                 d = r10_bio->devs[j].devnum;
1463                                 rdev = conf->mirrors[d].replacement;
1464                                 if (!rdev) {
1465                                         /* Race with remove_disk */
1466                                         smp_mb();
1467                                         rdev = conf->mirrors[d].rdev;
1468                                 }
1469                                 rdev_dec_pending(rdev, mddev);
1470                         }
1471                 }
1472                 allow_barrier(conf);
1473                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1474                 wait_barrier(conf);
1475                 goto retry_write;
1476         }
1477
1478         if (max_sectors < r10_bio->sectors) {
1479                 /* We are splitting this into multiple parts, so
1480                  * we need to prepare for allocating another r10_bio.
1481                  */
1482                 r10_bio->sectors = max_sectors;
1483                 spin_lock_irq(&conf->device_lock);
1484                 if (bio->bi_phys_segments == 0)
1485                         bio->bi_phys_segments = 2;
1486                 else
1487                         bio->bi_phys_segments++;
1488                 spin_unlock_irq(&conf->device_lock);
1489         }
1490         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1491
1492         atomic_set(&r10_bio->remaining, 1);
1493         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495         for (i = 0; i < conf->copies; i++) {
1496                 struct bio *mbio;
1497                 int d = r10_bio->devs[i].devnum;
1498                 if (r10_bio->devs[i].bio) {
1499                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1500                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1501                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1502                                     max_sectors);
1503                         r10_bio->devs[i].bio = mbio;
1504
1505                         mbio->bi_sector = (r10_bio->devs[i].addr+
1506                                            choose_data_offset(r10_bio,
1507                                                               rdev));
1508                         mbio->bi_bdev = rdev->bdev;
1509                         mbio->bi_end_io = raid10_end_write_request;
1510                         mbio->bi_rw =
1511                                 WRITE | do_sync | do_fua | do_discard | do_same;
1512                         mbio->bi_private = r10_bio;
1513
1514                         atomic_inc(&r10_bio->remaining);
1515
1516                         cb = blk_check_plugged(raid10_unplug, mddev,
1517                                                sizeof(*plug));
1518                         if (cb)
1519                                 plug = container_of(cb, struct raid10_plug_cb,
1520                                                     cb);
1521                         else
1522                                 plug = NULL;
1523                         spin_lock_irqsave(&conf->device_lock, flags);
1524                         if (plug) {
1525                                 bio_list_add(&plug->pending, mbio);
1526                                 plug->pending_cnt++;
1527                         } else {
1528                                 bio_list_add(&conf->pending_bio_list, mbio);
1529                                 conf->pending_count++;
1530                         }
1531                         spin_unlock_irqrestore(&conf->device_lock, flags);
1532                         if (!plug)
1533                                 md_wakeup_thread(mddev->thread);
1534                 }
1535
1536                 if (r10_bio->devs[i].repl_bio) {
1537                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1538                         if (rdev == NULL) {
1539                                 /* Replacement just got moved to main 'rdev' */
1540                                 smp_mb();
1541                                 rdev = conf->mirrors[d].rdev;
1542                         }
1543                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1544                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1545                                     max_sectors);
1546                         r10_bio->devs[i].repl_bio = mbio;
1547
1548                         mbio->bi_sector = (r10_bio->devs[i].addr +
1549                                            choose_data_offset(
1550                                                    r10_bio, rdev));
1551                         mbio->bi_bdev = rdev->bdev;
1552                         mbio->bi_end_io = raid10_end_write_request;
1553                         mbio->bi_rw =
1554                                 WRITE | do_sync | do_fua | do_discard | do_same;
1555                         mbio->bi_private = r10_bio;
1556
1557                         atomic_inc(&r10_bio->remaining);
1558                         spin_lock_irqsave(&conf->device_lock, flags);
1559                         bio_list_add(&conf->pending_bio_list, mbio);
1560                         conf->pending_count++;
1561                         spin_unlock_irqrestore(&conf->device_lock, flags);
1562                         if (!mddev_check_plugged(mddev))
1563                                 md_wakeup_thread(mddev->thread);
1564                 }
1565         }
1566
1567         /* Don't remove the bias on 'remaining' (one_write_done) until
1568          * after checking if we need to go around again.
1569          */
1570
1571         if (sectors_handled < bio_sectors(bio)) {
1572                 one_write_done(r10_bio);
1573                 /* We need another r10_bio.  It has already been counted
1574                  * in bio->bi_phys_segments.
1575                  */
1576                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1577
1578                 r10_bio->master_bio = bio;
1579                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1580
1581                 r10_bio->mddev = mddev;
1582                 r10_bio->sector = bio->bi_sector + sectors_handled;
1583                 r10_bio->state = 0;
1584                 goto retry_write;
1585         }
1586         one_write_done(r10_bio);
1587
1588         /* In case raid10d snuck in to freeze_array */
1589         wake_up(&conf->wait_barrier);
1590 }
1591
1592 static void status(struct seq_file *seq, struct mddev *mddev)
1593 {
1594         struct r10conf *conf = mddev->private;
1595         int i;
1596
1597         if (conf->geo.near_copies < conf->geo.raid_disks)
1598                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1599         if (conf->geo.near_copies > 1)
1600                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1601         if (conf->geo.far_copies > 1) {
1602                 if (conf->geo.far_offset)
1603                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1604                 else
1605                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1606         }
1607         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1608                                         conf->geo.raid_disks - mddev->degraded);
1609         for (i = 0; i < conf->geo.raid_disks; i++)
1610                 seq_printf(seq, "%s",
1611                               conf->mirrors[i].rdev &&
1612                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1613         seq_printf(seq, "]");
1614 }
1615
1616 /* check if there are enough drives for
1617  * every block to appear on atleast one.
1618  * Don't consider the device numbered 'ignore'
1619  * as we might be about to remove it.
1620  */
1621 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1622 {
1623         int first = 0;
1624
1625         do {
1626                 int n = conf->copies;
1627                 int cnt = 0;
1628                 int this = first;
1629                 while (n--) {
1630                         if (conf->mirrors[this].rdev &&
1631                             this != ignore)
1632                                 cnt++;
1633                         this = (this+1) % geo->raid_disks;
1634                 }
1635                 if (cnt == 0)
1636                         return 0;
1637                 first = (first + geo->near_copies) % geo->raid_disks;
1638         } while (first != 0);
1639         return 1;
1640 }
1641
1642 static int enough(struct r10conf *conf, int ignore)
1643 {
1644         return _enough(conf, &conf->geo, ignore) &&
1645                 _enough(conf, &conf->prev, ignore);
1646 }
1647
1648 static void error(struct mddev *mddev, struct md_rdev *rdev)
1649 {
1650         char b[BDEVNAME_SIZE];
1651         struct r10conf *conf = mddev->private;
1652
1653         /*
1654          * If it is not operational, then we have already marked it as dead
1655          * else if it is the last working disks, ignore the error, let the
1656          * next level up know.
1657          * else mark the drive as failed
1658          */
1659         if (test_bit(In_sync, &rdev->flags)
1660             && !enough(conf, rdev->raid_disk))
1661                 /*
1662                  * Don't fail the drive, just return an IO error.
1663                  */
1664                 return;
1665         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1666                 unsigned long flags;
1667                 spin_lock_irqsave(&conf->device_lock, flags);
1668                 mddev->degraded++;
1669                 spin_unlock_irqrestore(&conf->device_lock, flags);
1670                 /*
1671                  * if recovery is running, make sure it aborts.
1672                  */
1673                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1674         }
1675         set_bit(Blocked, &rdev->flags);
1676         set_bit(Faulty, &rdev->flags);
1677         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1678         printk(KERN_ALERT
1679                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1680                "md/raid10:%s: Operation continuing on %d devices.\n",
1681                mdname(mddev), bdevname(rdev->bdev, b),
1682                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1683 }
1684
1685 static void print_conf(struct r10conf *conf)
1686 {
1687         int i;
1688         struct raid10_info *tmp;
1689
1690         printk(KERN_DEBUG "RAID10 conf printout:\n");
1691         if (!conf) {
1692                 printk(KERN_DEBUG "(!conf)\n");
1693                 return;
1694         }
1695         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1696                 conf->geo.raid_disks);
1697
1698         for (i = 0; i < conf->geo.raid_disks; i++) {
1699                 char b[BDEVNAME_SIZE];
1700                 tmp = conf->mirrors + i;
1701                 if (tmp->rdev)
1702                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1703                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1704                                 !test_bit(Faulty, &tmp->rdev->flags),
1705                                 bdevname(tmp->rdev->bdev,b));
1706         }
1707 }
1708
1709 static void close_sync(struct r10conf *conf)
1710 {
1711         wait_barrier(conf);
1712         allow_barrier(conf);
1713
1714         mempool_destroy(conf->r10buf_pool);
1715         conf->r10buf_pool = NULL;
1716 }
1717
1718 static int raid10_spare_active(struct mddev *mddev)
1719 {
1720         int i;
1721         struct r10conf *conf = mddev->private;
1722         struct raid10_info *tmp;
1723         int count = 0;
1724         unsigned long flags;
1725
1726         /*
1727          * Find all non-in_sync disks within the RAID10 configuration
1728          * and mark them in_sync
1729          */
1730         for (i = 0; i < conf->geo.raid_disks; i++) {
1731                 tmp = conf->mirrors + i;
1732                 if (tmp->replacement
1733                     && tmp->replacement->recovery_offset == MaxSector
1734                     && !test_bit(Faulty, &tmp->replacement->flags)
1735                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1736                         /* Replacement has just become active */
1737                         if (!tmp->rdev
1738                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1739                                 count++;
1740                         if (tmp->rdev) {
1741                                 /* Replaced device not technically faulty,
1742                                  * but we need to be sure it gets removed
1743                                  * and never re-added.
1744                                  */
1745                                 set_bit(Faulty, &tmp->rdev->flags);
1746                                 sysfs_notify_dirent_safe(
1747                                         tmp->rdev->sysfs_state);
1748                         }
1749                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1750                 } else if (tmp->rdev
1751                            && !test_bit(Faulty, &tmp->rdev->flags)
1752                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1753                         count++;
1754                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1755                 }
1756         }
1757         spin_lock_irqsave(&conf->device_lock, flags);
1758         mddev->degraded -= count;
1759         spin_unlock_irqrestore(&conf->device_lock, flags);
1760
1761         print_conf(conf);
1762         return count;
1763 }
1764
1765
1766 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1767 {
1768         struct r10conf *conf = mddev->private;
1769         int err = -EEXIST;
1770         int mirror;
1771         int first = 0;
1772         int last = conf->geo.raid_disks - 1;
1773         struct request_queue *q = bdev_get_queue(rdev->bdev);
1774
1775         if (mddev->recovery_cp < MaxSector)
1776                 /* only hot-add to in-sync arrays, as recovery is
1777                  * very different from resync
1778                  */
1779                 return -EBUSY;
1780         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1781                 return -EINVAL;
1782
1783         if (rdev->raid_disk >= 0)
1784                 first = last = rdev->raid_disk;
1785
1786         if (q->merge_bvec_fn) {
1787                 set_bit(Unmerged, &rdev->flags);
1788                 mddev->merge_check_needed = 1;
1789         }
1790
1791         if (rdev->saved_raid_disk >= first &&
1792             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1793                 mirror = rdev->saved_raid_disk;
1794         else
1795                 mirror = first;
1796         for ( ; mirror <= last ; mirror++) {
1797                 struct raid10_info *p = &conf->mirrors[mirror];
1798                 if (p->recovery_disabled == mddev->recovery_disabled)
1799                         continue;
1800                 if (p->rdev) {
1801                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1802                             p->replacement != NULL)
1803                                 continue;
1804                         clear_bit(In_sync, &rdev->flags);
1805                         set_bit(Replacement, &rdev->flags);
1806                         rdev->raid_disk = mirror;
1807                         err = 0;
1808                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1809                                           rdev->data_offset << 9);
1810                         conf->fullsync = 1;
1811                         rcu_assign_pointer(p->replacement, rdev);
1812                         break;
1813                 }
1814
1815                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1816                                   rdev->data_offset << 9);
1817
1818                 p->head_position = 0;
1819                 p->recovery_disabled = mddev->recovery_disabled - 1;
1820                 rdev->raid_disk = mirror;
1821                 err = 0;
1822                 if (rdev->saved_raid_disk != mirror)
1823                         conf->fullsync = 1;
1824                 rcu_assign_pointer(p->rdev, rdev);
1825                 break;
1826         }
1827         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1828                 /* Some requests might not have seen this new
1829                  * merge_bvec_fn.  We must wait for them to complete
1830                  * before merging the device fully.
1831                  * First we make sure any code which has tested
1832                  * our function has submitted the request, then
1833                  * we wait for all outstanding requests to complete.
1834                  */
1835                 synchronize_sched();
1836                 raise_barrier(conf, 0);
1837                 lower_barrier(conf);
1838                 clear_bit(Unmerged, &rdev->flags);
1839         }
1840         md_integrity_add_rdev(rdev, mddev);
1841         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1842                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1843
1844         print_conf(conf);
1845         return err;
1846 }
1847
1848 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1849 {
1850         struct r10conf *conf = mddev->private;
1851         int err = 0;
1852         int number = rdev->raid_disk;
1853         struct md_rdev **rdevp;
1854         struct raid10_info *p = conf->mirrors + number;
1855
1856         print_conf(conf);
1857         if (rdev == p->rdev)
1858                 rdevp = &p->rdev;
1859         else if (rdev == p->replacement)
1860                 rdevp = &p->replacement;
1861         else
1862                 return 0;
1863
1864         if (test_bit(In_sync, &rdev->flags) ||
1865             atomic_read(&rdev->nr_pending)) {
1866                 err = -EBUSY;
1867                 goto abort;
1868         }
1869         /* Only remove faulty devices if recovery
1870          * is not possible.
1871          */
1872         if (!test_bit(Faulty, &rdev->flags) &&
1873             mddev->recovery_disabled != p->recovery_disabled &&
1874             (!p->replacement || p->replacement == rdev) &&
1875             number < conf->geo.raid_disks &&
1876             enough(conf, -1)) {
1877                 err = -EBUSY;
1878                 goto abort;
1879         }
1880         *rdevp = NULL;
1881         synchronize_rcu();
1882         if (atomic_read(&rdev->nr_pending)) {
1883                 /* lost the race, try later */
1884                 err = -EBUSY;
1885                 *rdevp = rdev;
1886                 goto abort;
1887         } else if (p->replacement) {
1888                 /* We must have just cleared 'rdev' */
1889                 p->rdev = p->replacement;
1890                 clear_bit(Replacement, &p->replacement->flags);
1891                 smp_mb(); /* Make sure other CPUs may see both as identical
1892                            * but will never see neither -- if they are careful.
1893                            */
1894                 p->replacement = NULL;
1895                 clear_bit(WantReplacement, &rdev->flags);
1896         } else
1897                 /* We might have just remove the Replacement as faulty
1898                  * Clear the flag just in case
1899                  */
1900                 clear_bit(WantReplacement, &rdev->flags);
1901
1902         err = md_integrity_register(mddev);
1903
1904 abort:
1905
1906         print_conf(conf);
1907         return err;
1908 }
1909
1910
1911 static void end_sync_read(struct bio *bio, int error)
1912 {
1913         struct r10bio *r10_bio = bio->bi_private;
1914         struct r10conf *conf = r10_bio->mddev->private;
1915         int d;
1916
1917         if (bio == r10_bio->master_bio) {
1918                 /* this is a reshape read */
1919                 d = r10_bio->read_slot; /* really the read dev */
1920         } else
1921                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1922
1923         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1924                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1925         else
1926                 /* The write handler will notice the lack of
1927                  * R10BIO_Uptodate and record any errors etc
1928                  */
1929                 atomic_add(r10_bio->sectors,
1930                            &conf->mirrors[d].rdev->corrected_errors);
1931
1932         /* for reconstruct, we always reschedule after a read.
1933          * for resync, only after all reads
1934          */
1935         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1936         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1937             atomic_dec_and_test(&r10_bio->remaining)) {
1938                 /* we have read all the blocks,
1939                  * do the comparison in process context in raid10d
1940                  */
1941                 reschedule_retry(r10_bio);
1942         }
1943 }
1944
1945 static void end_sync_request(struct r10bio *r10_bio)
1946 {
1947         struct mddev *mddev = r10_bio->mddev;
1948
1949         while (atomic_dec_and_test(&r10_bio->remaining)) {
1950                 if (r10_bio->master_bio == NULL) {
1951                         /* the primary of several recovery bios */
1952                         sector_t s = r10_bio->sectors;
1953                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1954                             test_bit(R10BIO_WriteError, &r10_bio->state))
1955                                 reschedule_retry(r10_bio);
1956                         else
1957                                 put_buf(r10_bio);
1958                         md_done_sync(mddev, s, 1);
1959                         break;
1960                 } else {
1961                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1962                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1963                             test_bit(R10BIO_WriteError, &r10_bio->state))
1964                                 reschedule_retry(r10_bio);
1965                         else
1966                                 put_buf(r10_bio);
1967                         r10_bio = r10_bio2;
1968                 }
1969         }
1970 }
1971
1972 static void end_sync_write(struct bio *bio, int error)
1973 {
1974         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1975         struct r10bio *r10_bio = bio->bi_private;
1976         struct mddev *mddev = r10_bio->mddev;
1977         struct r10conf *conf = mddev->private;
1978         int d;
1979         sector_t first_bad;
1980         int bad_sectors;
1981         int slot;
1982         int repl;
1983         struct md_rdev *rdev = NULL;
1984
1985         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1986         if (repl)
1987                 rdev = conf->mirrors[d].replacement;
1988         else
1989                 rdev = conf->mirrors[d].rdev;
1990
1991         if (!uptodate) {
1992                 if (repl)
1993                         md_error(mddev, rdev);
1994                 else {
1995                         set_bit(WriteErrorSeen, &rdev->flags);
1996                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997                                 set_bit(MD_RECOVERY_NEEDED,
1998                                         &rdev->mddev->recovery);
1999                         set_bit(R10BIO_WriteError, &r10_bio->state);
2000                 }
2001         } else if (is_badblock(rdev,
2002                              r10_bio->devs[slot].addr,
2003                              r10_bio->sectors,
2004                              &first_bad, &bad_sectors))
2005                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2006
2007         rdev_dec_pending(rdev, mddev);
2008
2009         end_sync_request(r10_bio);
2010 }
2011
2012 /*
2013  * Note: sync and recover and handled very differently for raid10
2014  * This code is for resync.
2015  * For resync, we read through virtual addresses and read all blocks.
2016  * If there is any error, we schedule a write.  The lowest numbered
2017  * drive is authoritative.
2018  * However requests come for physical address, so we need to map.
2019  * For every physical address there are raid_disks/copies virtual addresses,
2020  * which is always are least one, but is not necessarly an integer.
2021  * This means that a physical address can span multiple chunks, so we may
2022  * have to submit multiple io requests for a single sync request.
2023  */
2024 /*
2025  * We check if all blocks are in-sync and only write to blocks that
2026  * aren't in sync
2027  */
2028 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2029 {
2030         struct r10conf *conf = mddev->private;
2031         int i, first;
2032         struct bio *tbio, *fbio;
2033         int vcnt;
2034
2035         atomic_set(&r10_bio->remaining, 1);
2036
2037         /* find the first device with a block */
2038         for (i=0; i<conf->copies; i++)
2039                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2040                         break;
2041
2042         if (i == conf->copies)
2043                 goto done;
2044
2045         first = i;
2046         fbio = r10_bio->devs[i].bio;
2047
2048         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2049         /* now find blocks with errors */
2050         for (i=0 ; i < conf->copies ; i++) {
2051                 int  j, d;
2052
2053                 tbio = r10_bio->devs[i].bio;
2054
2055                 if (tbio->bi_end_io != end_sync_read)
2056                         continue;
2057                 if (i == first)
2058                         continue;
2059                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2060                         /* We know that the bi_io_vec layout is the same for
2061                          * both 'first' and 'i', so we just compare them.
2062                          * All vec entries are PAGE_SIZE;
2063                          */
2064                         for (j = 0; j < vcnt; j++)
2065                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2066                                            page_address(tbio->bi_io_vec[j].bv_page),
2067                                            fbio->bi_io_vec[j].bv_len))
2068                                         break;
2069                         if (j == vcnt)
2070                                 continue;
2071                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2072                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2073                                 /* Don't fix anything. */
2074                                 continue;
2075                 }
2076                 /* Ok, we need to write this bio, either to correct an
2077                  * inconsistency or to correct an unreadable block.
2078                  * First we need to fixup bv_offset, bv_len and
2079                  * bi_vecs, as the read request might have corrupted these
2080                  */
2081                 tbio->bi_vcnt = vcnt;
2082                 tbio->bi_size = r10_bio->sectors << 9;
2083                 tbio->bi_idx = 0;
2084                 tbio->bi_phys_segments = 0;
2085                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2086                 tbio->bi_flags |= 1 << BIO_UPTODATE;
2087                 tbio->bi_next = NULL;
2088                 tbio->bi_rw = WRITE;
2089                 tbio->bi_private = r10_bio;
2090                 tbio->bi_sector = r10_bio->devs[i].addr;
2091
2092                 for (j=0; j < vcnt ; j++) {
2093                         tbio->bi_io_vec[j].bv_offset = 0;
2094                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2095
2096                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2097                                page_address(fbio->bi_io_vec[j].bv_page),
2098                                PAGE_SIZE);
2099                 }
2100                 tbio->bi_end_io = end_sync_write;
2101
2102                 d = r10_bio->devs[i].devnum;
2103                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2104                 atomic_inc(&r10_bio->remaining);
2105                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2106
2107                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2108                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2109                 generic_make_request(tbio);
2110         }
2111
2112         /* Now write out to any replacement devices
2113          * that are active
2114          */
2115         for (i = 0; i < conf->copies; i++) {
2116                 int j, d;
2117
2118                 tbio = r10_bio->devs[i].repl_bio;
2119                 if (!tbio || !tbio->bi_end_io)
2120                         continue;
2121                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2122                     && r10_bio->devs[i].bio != fbio)
2123                         for (j = 0; j < vcnt; j++)
2124                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2125                                        page_address(fbio->bi_io_vec[j].bv_page),
2126                                        PAGE_SIZE);
2127                 d = r10_bio->devs[i].devnum;
2128                 atomic_inc(&r10_bio->remaining);
2129                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2130                              bio_sectors(tbio));
2131                 generic_make_request(tbio);
2132         }
2133
2134 done:
2135         if (atomic_dec_and_test(&r10_bio->remaining)) {
2136                 md_done_sync(mddev, r10_bio->sectors, 1);
2137                 put_buf(r10_bio);
2138         }
2139 }
2140
2141 /*
2142  * Now for the recovery code.
2143  * Recovery happens across physical sectors.
2144  * We recover all non-is_sync drives by finding the virtual address of
2145  * each, and then choose a working drive that also has that virt address.
2146  * There is a separate r10_bio for each non-in_sync drive.
2147  * Only the first two slots are in use. The first for reading,
2148  * The second for writing.
2149  *
2150  */
2151 static void fix_recovery_read_error(struct r10bio *r10_bio)
2152 {
2153         /* We got a read error during recovery.
2154          * We repeat the read in smaller page-sized sections.
2155          * If a read succeeds, write it to the new device or record
2156          * a bad block if we cannot.
2157          * If a read fails, record a bad block on both old and
2158          * new devices.
2159          */
2160         struct mddev *mddev = r10_bio->mddev;
2161         struct r10conf *conf = mddev->private;
2162         struct bio *bio = r10_bio->devs[0].bio;
2163         sector_t sect = 0;
2164         int sectors = r10_bio->sectors;
2165         int idx = 0;
2166         int dr = r10_bio->devs[0].devnum;
2167         int dw = r10_bio->devs[1].devnum;
2168
2169         while (sectors) {
2170                 int s = sectors;
2171                 struct md_rdev *rdev;
2172                 sector_t addr;
2173                 int ok;
2174
2175                 if (s > (PAGE_SIZE>>9))
2176                         s = PAGE_SIZE >> 9;
2177
2178                 rdev = conf->mirrors[dr].rdev;
2179                 addr = r10_bio->devs[0].addr + sect,
2180                 ok = sync_page_io(rdev,
2181                                   addr,
2182                                   s << 9,
2183                                   bio->bi_io_vec[idx].bv_page,
2184                                   READ, false);
2185                 if (ok) {
2186                         rdev = conf->mirrors[dw].rdev;
2187                         addr = r10_bio->devs[1].addr + sect;
2188                         ok = sync_page_io(rdev,
2189                                           addr,
2190                                           s << 9,
2191                                           bio->bi_io_vec[idx].bv_page,
2192                                           WRITE, false);
2193                         if (!ok) {
2194                                 set_bit(WriteErrorSeen, &rdev->flags);
2195                                 if (!test_and_set_bit(WantReplacement,
2196                                                       &rdev->flags))
2197                                         set_bit(MD_RECOVERY_NEEDED,
2198                                                 &rdev->mddev->recovery);
2199                         }
2200                 }
2201                 if (!ok) {
2202                         /* We don't worry if we cannot set a bad block -
2203                          * it really is bad so there is no loss in not
2204                          * recording it yet
2205                          */
2206                         rdev_set_badblocks(rdev, addr, s, 0);
2207
2208                         if (rdev != conf->mirrors[dw].rdev) {
2209                                 /* need bad block on destination too */
2210                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2211                                 addr = r10_bio->devs[1].addr + sect;
2212                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2213                                 if (!ok) {
2214                                         /* just abort the recovery */
2215                                         printk(KERN_NOTICE
2216                                                "md/raid10:%s: recovery aborted"
2217                                                " due to read error\n",
2218                                                mdname(mddev));
2219
2220                                         conf->mirrors[dw].recovery_disabled
2221                                                 = mddev->recovery_disabled;
2222                                         set_bit(MD_RECOVERY_INTR,
2223                                                 &mddev->recovery);
2224                                         break;
2225                                 }
2226                         }
2227                 }
2228
2229                 sectors -= s;
2230                 sect += s;
2231                 idx++;
2232         }
2233 }
2234
2235 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237         struct r10conf *conf = mddev->private;
2238         int d;
2239         struct bio *wbio, *wbio2;
2240
2241         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2242                 fix_recovery_read_error(r10_bio);
2243                 end_sync_request(r10_bio);
2244                 return;
2245         }
2246
2247         /*
2248          * share the pages with the first bio
2249          * and submit the write request
2250          */
2251         d = r10_bio->devs[1].devnum;
2252         wbio = r10_bio->devs[1].bio;
2253         wbio2 = r10_bio->devs[1].repl_bio;
2254         if (wbio->bi_end_io) {
2255                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2256                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2257                 generic_make_request(wbio);
2258         }
2259         if (wbio2 && wbio2->bi_end_io) {
2260                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2261                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2262                              bio_sectors(wbio2));
2263                 generic_make_request(wbio2);
2264         }
2265 }
2266
2267
2268 /*
2269  * Used by fix_read_error() to decay the per rdev read_errors.
2270  * We halve the read error count for every hour that has elapsed
2271  * since the last recorded read error.
2272  *
2273  */
2274 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2275 {
2276         struct timespec cur_time_mon;
2277         unsigned long hours_since_last;
2278         unsigned int read_errors = atomic_read(&rdev->read_errors);
2279
2280         ktime_get_ts(&cur_time_mon);
2281
2282         if (rdev->last_read_error.tv_sec == 0 &&
2283             rdev->last_read_error.tv_nsec == 0) {
2284                 /* first time we've seen a read error */
2285                 rdev->last_read_error = cur_time_mon;
2286                 return;
2287         }
2288
2289         hours_since_last = (cur_time_mon.tv_sec -
2290                             rdev->last_read_error.tv_sec) / 3600;
2291
2292         rdev->last_read_error = cur_time_mon;
2293
2294         /*
2295          * if hours_since_last is > the number of bits in read_errors
2296          * just set read errors to 0. We do this to avoid
2297          * overflowing the shift of read_errors by hours_since_last.
2298          */
2299         if (hours_since_last >= 8 * sizeof(read_errors))
2300                 atomic_set(&rdev->read_errors, 0);
2301         else
2302                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2303 }
2304
2305 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2306                             int sectors, struct page *page, int rw)
2307 {
2308         sector_t first_bad;
2309         int bad_sectors;
2310
2311         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2312             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2313                 return -1;
2314         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2315                 /* success */
2316                 return 1;
2317         if (rw == WRITE) {
2318                 set_bit(WriteErrorSeen, &rdev->flags);
2319                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2320                         set_bit(MD_RECOVERY_NEEDED,
2321                                 &rdev->mddev->recovery);
2322         }
2323         /* need to record an error - either for the block or the device */
2324         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2325                 md_error(rdev->mddev, rdev);
2326         return 0;
2327 }
2328
2329 /*
2330  * This is a kernel thread which:
2331  *
2332  *      1.      Retries failed read operations on working mirrors.
2333  *      2.      Updates the raid superblock when problems encounter.
2334  *      3.      Performs writes following reads for array synchronising.
2335  */
2336
2337 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2338 {
2339         int sect = 0; /* Offset from r10_bio->sector */
2340         int sectors = r10_bio->sectors;
2341         struct md_rdev*rdev;
2342         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2343         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2344
2345         /* still own a reference to this rdev, so it cannot
2346          * have been cleared recently.
2347          */
2348         rdev = conf->mirrors[d].rdev;
2349
2350         if (test_bit(Faulty, &rdev->flags))
2351                 /* drive has already been failed, just ignore any
2352                    more fix_read_error() attempts */
2353                 return;
2354
2355         check_decay_read_errors(mddev, rdev);
2356         atomic_inc(&rdev->read_errors);
2357         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2358                 char b[BDEVNAME_SIZE];
2359                 bdevname(rdev->bdev, b);
2360
2361                 printk(KERN_NOTICE
2362                        "md/raid10:%s: %s: Raid device exceeded "
2363                        "read_error threshold [cur %d:max %d]\n",
2364                        mdname(mddev), b,
2365                        atomic_read(&rdev->read_errors), max_read_errors);
2366                 printk(KERN_NOTICE
2367                        "md/raid10:%s: %s: Failing raid device\n",
2368                        mdname(mddev), b);
2369                 md_error(mddev, conf->mirrors[d].rdev);
2370                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2371                 return;
2372         }
2373
2374         while(sectors) {
2375                 int s = sectors;
2376                 int sl = r10_bio->read_slot;
2377                 int success = 0;
2378                 int start;
2379
2380                 if (s > (PAGE_SIZE>>9))
2381                         s = PAGE_SIZE >> 9;
2382
2383                 rcu_read_lock();
2384                 do {
2385                         sector_t first_bad;
2386                         int bad_sectors;
2387
2388                         d = r10_bio->devs[sl].devnum;
2389                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2390                         if (rdev &&
2391                             !test_bit(Unmerged, &rdev->flags) &&
2392                             test_bit(In_sync, &rdev->flags) &&
2393                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2394                                         &first_bad, &bad_sectors) == 0) {
2395                                 atomic_inc(&rdev->nr_pending);
2396                                 rcu_read_unlock();
2397                                 success = sync_page_io(rdev,
2398                                                        r10_bio->devs[sl].addr +
2399                                                        sect,
2400                                                        s<<9,
2401                                                        conf->tmppage, READ, false);
2402                                 rdev_dec_pending(rdev, mddev);
2403                                 rcu_read_lock();
2404                                 if (success)
2405                                         break;
2406                         }
2407                         sl++;
2408                         if (sl == conf->copies)
2409                                 sl = 0;
2410                 } while (!success && sl != r10_bio->read_slot);
2411                 rcu_read_unlock();
2412
2413                 if (!success) {
2414                         /* Cannot read from anywhere, just mark the block
2415                          * as bad on the first device to discourage future
2416                          * reads.
2417                          */
2418                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2419                         rdev = conf->mirrors[dn].rdev;
2420
2421                         if (!rdev_set_badblocks(
2422                                     rdev,
2423                                     r10_bio->devs[r10_bio->read_slot].addr
2424                                     + sect,
2425                                     s, 0)) {
2426                                 md_error(mddev, rdev);
2427                                 r10_bio->devs[r10_bio->read_slot].bio
2428                                         = IO_BLOCKED;
2429                         }
2430                         break;
2431                 }
2432
2433                 start = sl;
2434                 /* write it back and re-read */
2435                 rcu_read_lock();
2436                 while (sl != r10_bio->read_slot) {
2437                         char b[BDEVNAME_SIZE];
2438
2439                         if (sl==0)
2440                                 sl = conf->copies;
2441                         sl--;
2442                         d = r10_bio->devs[sl].devnum;
2443                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2444                         if (!rdev ||
2445                             test_bit(Unmerged, &rdev->flags) ||
2446                             !test_bit(In_sync, &rdev->flags))
2447                                 continue;
2448
2449                         atomic_inc(&rdev->nr_pending);
2450                         rcu_read_unlock();
2451                         if (r10_sync_page_io(rdev,
2452                                              r10_bio->devs[sl].addr +
2453                                              sect,
2454                                              s, conf->tmppage, WRITE)
2455                             == 0) {
2456                                 /* Well, this device is dead */
2457                                 printk(KERN_NOTICE
2458                                        "md/raid10:%s: read correction "
2459                                        "write failed"
2460                                        " (%d sectors at %llu on %s)\n",
2461                                        mdname(mddev), s,
2462                                        (unsigned long long)(
2463                                                sect +
2464                                                choose_data_offset(r10_bio,
2465                                                                   rdev)),
2466                                        bdevname(rdev->bdev, b));
2467                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2468                                        "drive\n",
2469                                        mdname(mddev),
2470                                        bdevname(rdev->bdev, b));
2471                         }
2472                         rdev_dec_pending(rdev, mddev);
2473                         rcu_read_lock();
2474                 }
2475                 sl = start;
2476                 while (sl != r10_bio->read_slot) {
2477                         char b[BDEVNAME_SIZE];
2478
2479                         if (sl==0)
2480                                 sl = conf->copies;
2481                         sl--;
2482                         d = r10_bio->devs[sl].devnum;
2483                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2484                         if (!rdev ||
2485                             !test_bit(In_sync, &rdev->flags))
2486                                 continue;
2487
2488                         atomic_inc(&rdev->nr_pending);
2489                         rcu_read_unlock();
2490                         switch (r10_sync_page_io(rdev,
2491                                              r10_bio->devs[sl].addr +
2492                                              sect,
2493                                              s, conf->tmppage,
2494                                                  READ)) {
2495                         case 0:
2496                                 /* Well, this device is dead */
2497                                 printk(KERN_NOTICE
2498                                        "md/raid10:%s: unable to read back "
2499                                        "corrected sectors"
2500                                        " (%d sectors at %llu on %s)\n",
2501                                        mdname(mddev), s,
2502                                        (unsigned long long)(
2503                                                sect +
2504                                                choose_data_offset(r10_bio, rdev)),
2505                                        bdevname(rdev->bdev, b));
2506                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2507                                        "drive\n",
2508                                        mdname(mddev),
2509                                        bdevname(rdev->bdev, b));
2510                                 break;
2511                         case 1:
2512                                 printk(KERN_INFO
2513                                        "md/raid10:%s: read error corrected"
2514                                        " (%d sectors at %llu on %s)\n",
2515                                        mdname(mddev), s,
2516                                        (unsigned long long)(
2517                                                sect +
2518                                                choose_data_offset(r10_bio, rdev)),
2519                                        bdevname(rdev->bdev, b));
2520                                 atomic_add(s, &rdev->corrected_errors);
2521                         }
2522
2523                         rdev_dec_pending(rdev, mddev);
2524                         rcu_read_lock();
2525                 }
2526                 rcu_read_unlock();
2527
2528                 sectors -= s;
2529                 sect += s;
2530         }
2531 }
2532
2533 static void bi_complete(struct bio *bio, int error)
2534 {
2535         complete((struct completion *)bio->bi_private);
2536 }
2537
2538 static int submit_bio_wait(int rw, struct bio *bio)
2539 {
2540         struct completion event;
2541         rw |= REQ_SYNC;
2542
2543         init_completion(&event);
2544         bio->bi_private = &event;
2545         bio->bi_end_io = bi_complete;
2546         submit_bio(rw, bio);
2547         wait_for_completion(&event);
2548
2549         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2550 }
2551
2552 static int narrow_write_error(struct r10bio *r10_bio, int i)
2553 {
2554         struct bio *bio = r10_bio->master_bio;
2555         struct mddev *mddev = r10_bio->mddev;
2556         struct r10conf *conf = mddev->private;
2557         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2558         /* bio has the data to be written to slot 'i' where
2559          * we just recently had a write error.
2560          * We repeatedly clone the bio and trim down to one block,
2561          * then try the write.  Where the write fails we record
2562          * a bad block.
2563          * It is conceivable that the bio doesn't exactly align with
2564          * blocks.  We must handle this.
2565          *
2566          * We currently own a reference to the rdev.
2567          */
2568
2569         int block_sectors;
2570         sector_t sector;
2571         int sectors;
2572         int sect_to_write = r10_bio->sectors;
2573         int ok = 1;
2574
2575         if (rdev->badblocks.shift < 0)
2576                 return 0;
2577
2578         block_sectors = 1 << rdev->badblocks.shift;
2579         sector = r10_bio->sector;
2580         sectors = ((r10_bio->sector + block_sectors)
2581                    & ~(sector_t)(block_sectors - 1))
2582                 - sector;
2583
2584         while (sect_to_write) {
2585                 struct bio *wbio;
2586                 if (sectors > sect_to_write)
2587                         sectors = sect_to_write;
2588                 /* Write at 'sector' for 'sectors' */
2589                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2590                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2591                 wbio->bi_sector = (r10_bio->devs[i].addr+
2592                                    choose_data_offset(r10_bio, rdev) +
2593                                    (sector - r10_bio->sector));
2594                 wbio->bi_bdev = rdev->bdev;
2595                 if (submit_bio_wait(WRITE, wbio) == 0)
2596                         /* Failure! */
2597                         ok = rdev_set_badblocks(rdev, sector,
2598                                                 sectors, 0)
2599                                 && ok;
2600
2601                 bio_put(wbio);
2602                 sect_to_write -= sectors;
2603                 sector += sectors;
2604                 sectors = block_sectors;
2605         }
2606         return ok;
2607 }
2608
2609 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2610 {
2611         int slot = r10_bio->read_slot;
2612         struct bio *bio;
2613         struct r10conf *conf = mddev->private;
2614         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2615         char b[BDEVNAME_SIZE];
2616         unsigned long do_sync;
2617         int max_sectors;
2618
2619         /* we got a read error. Maybe the drive is bad.  Maybe just
2620          * the block and we can fix it.
2621          * We freeze all other IO, and try reading the block from
2622          * other devices.  When we find one, we re-write
2623          * and check it that fixes the read error.
2624          * This is all done synchronously while the array is
2625          * frozen.
2626          */
2627         bio = r10_bio->devs[slot].bio;
2628         bdevname(bio->bi_bdev, b);
2629         bio_put(bio);
2630         r10_bio->devs[slot].bio = NULL;
2631
2632         if (mddev->ro == 0) {
2633                 freeze_array(conf);
2634                 fix_read_error(conf, mddev, r10_bio);
2635                 unfreeze_array(conf);
2636         } else
2637                 r10_bio->devs[slot].bio = IO_BLOCKED;
2638
2639         rdev_dec_pending(rdev, mddev);
2640
2641 read_more:
2642         rdev = read_balance(conf, r10_bio, &max_sectors);
2643         if (rdev == NULL) {
2644                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2645                        " read error for block %llu\n",
2646                        mdname(mddev), b,
2647                        (unsigned long long)r10_bio->sector);
2648                 raid_end_bio_io(r10_bio);
2649                 return;
2650         }
2651
2652         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2653         slot = r10_bio->read_slot;
2654         printk_ratelimited(
2655                 KERN_ERR
2656                 "md/raid10:%s: %s: redirecting "
2657                 "sector %llu to another mirror\n",
2658                 mdname(mddev),
2659                 bdevname(rdev->bdev, b),
2660                 (unsigned long long)r10_bio->sector);
2661         bio = bio_clone_mddev(r10_bio->master_bio,
2662                               GFP_NOIO, mddev);
2663         md_trim_bio(bio,
2664                     r10_bio->sector - bio->bi_sector,
2665                     max_sectors);
2666         r10_bio->devs[slot].bio = bio;
2667         r10_bio->devs[slot].rdev = rdev;
2668         bio->bi_sector = r10_bio->devs[slot].addr
2669                 + choose_data_offset(r10_bio, rdev);
2670         bio->bi_bdev = rdev->bdev;
2671         bio->bi_rw = READ | do_sync;
2672         bio->bi_private = r10_bio;
2673         bio->bi_end_io = raid10_end_read_request;
2674         if (max_sectors < r10_bio->sectors) {
2675                 /* Drat - have to split this up more */
2676                 struct bio *mbio = r10_bio->master_bio;
2677                 int sectors_handled =
2678                         r10_bio->sector + max_sectors
2679                         - mbio->bi_sector;
2680                 r10_bio->sectors = max_sectors;
2681                 spin_lock_irq(&conf->device_lock);
2682                 if (mbio->bi_phys_segments == 0)
2683                         mbio->bi_phys_segments = 2;
2684                 else
2685                         mbio->bi_phys_segments++;
2686                 spin_unlock_irq(&conf->device_lock);
2687                 generic_make_request(bio);
2688
2689                 r10_bio = mempool_alloc(conf->r10bio_pool,
2690                                         GFP_NOIO);
2691                 r10_bio->master_bio = mbio;
2692                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2693                 r10_bio->state = 0;
2694                 set_bit(R10BIO_ReadError,
2695                         &r10_bio->state);
2696                 r10_bio->mddev = mddev;
2697                 r10_bio->sector = mbio->bi_sector
2698                         + sectors_handled;
2699
2700                 goto read_more;
2701         } else
2702                 generic_make_request(bio);
2703 }
2704
2705 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2706 {
2707         /* Some sort of write request has finished and it
2708          * succeeded in writing where we thought there was a
2709          * bad block.  So forget the bad block.
2710          * Or possibly if failed and we need to record
2711          * a bad block.
2712          */
2713         int m;
2714         struct md_rdev *rdev;
2715
2716         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2717             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2718                 for (m = 0; m < conf->copies; m++) {
2719                         int dev = r10_bio->devs[m].devnum;
2720                         rdev = conf->mirrors[dev].rdev;
2721                         if (r10_bio->devs[m].bio == NULL)
2722                                 continue;
2723                         if (test_bit(BIO_UPTODATE,
2724                                      &r10_bio->devs[m].bio->bi_flags)) {
2725                                 rdev_clear_badblocks(
2726                                         rdev,
2727                                         r10_bio->devs[m].addr,
2728                                         r10_bio->sectors, 0);
2729                         } else {
2730                                 if (!rdev_set_badblocks(
2731                                             rdev,
2732                                             r10_bio->devs[m].addr,
2733                                             r10_bio->sectors, 0))
2734                                         md_error(conf->mddev, rdev);
2735                         }
2736                         rdev = conf->mirrors[dev].replacement;
2737                         if (r10_bio->devs[m].repl_bio == NULL)
2738                                 continue;
2739                         if (test_bit(BIO_UPTODATE,
2740                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2741                                 rdev_clear_badblocks(
2742                                         rdev,
2743                                         r10_bio->devs[m].addr,
2744                                         r10_bio->sectors, 0);
2745                         } else {
2746                                 if (!rdev_set_badblocks(
2747                                             rdev,
2748                                             r10_bio->devs[m].addr,
2749                                             r10_bio->sectors, 0))
2750                                         md_error(conf->mddev, rdev);
2751                         }
2752                 }
2753                 put_buf(r10_bio);
2754         } else {
2755                 for (m = 0; m < conf->copies; m++) {
2756                         int dev = r10_bio->devs[m].devnum;
2757                         struct bio *bio = r10_bio->devs[m].bio;
2758                         rdev = conf->mirrors[dev].rdev;
2759                         if (bio == IO_MADE_GOOD) {
2760                                 rdev_clear_badblocks(
2761                                         rdev,
2762                                         r10_bio->devs[m].addr,
2763                                         r10_bio->sectors, 0);
2764                                 rdev_dec_pending(rdev, conf->mddev);
2765                         } else if (bio != NULL &&
2766                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2767                                 if (!narrow_write_error(r10_bio, m)) {
2768                                         md_error(conf->mddev, rdev);
2769                                         set_bit(R10BIO_Degraded,
2770                                                 &r10_bio->state);
2771                                 }
2772                                 rdev_dec_pending(rdev, conf->mddev);
2773                         }
2774                         bio = r10_bio->devs[m].repl_bio;
2775                         rdev = conf->mirrors[dev].replacement;
2776                         if (rdev && bio == IO_MADE_GOOD) {
2777                                 rdev_clear_badblocks(
2778                                         rdev,
2779                                         r10_bio->devs[m].addr,
2780                                         r10_bio->sectors, 0);
2781                                 rdev_dec_pending(rdev, conf->mddev);
2782                         }
2783                 }
2784                 if (test_bit(R10BIO_WriteError,
2785                              &r10_bio->state))
2786                         close_write(r10_bio);
2787                 raid_end_bio_io(r10_bio);
2788         }
2789 }
2790
2791 static void raid10d(struct md_thread *thread)
2792 {
2793         struct mddev *mddev = thread->mddev;
2794         struct r10bio *r10_bio;
2795         unsigned long flags;
2796         struct r10conf *conf = mddev->private;
2797         struct list_head *head = &conf->retry_list;
2798         struct blk_plug plug;
2799
2800         md_check_recovery(mddev);
2801
2802         blk_start_plug(&plug);
2803         for (;;) {
2804
2805                 flush_pending_writes(conf);
2806
2807                 spin_lock_irqsave(&conf->device_lock, flags);
2808                 if (list_empty(head)) {
2809                         spin_unlock_irqrestore(&conf->device_lock, flags);
2810                         break;
2811                 }
2812                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2813                 list_del(head->prev);
2814                 conf->nr_queued--;
2815                 spin_unlock_irqrestore(&conf->device_lock, flags);
2816
2817                 mddev = r10_bio->mddev;
2818                 conf = mddev->private;
2819                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2820                     test_bit(R10BIO_WriteError, &r10_bio->state))
2821                         handle_write_completed(conf, r10_bio);
2822                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2823                         reshape_request_write(mddev, r10_bio);
2824                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2825                         sync_request_write(mddev, r10_bio);
2826                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2827                         recovery_request_write(mddev, r10_bio);
2828                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2829                         handle_read_error(mddev, r10_bio);
2830                 else {
2831                         /* just a partial read to be scheduled from a
2832                          * separate context
2833                          */
2834                         int slot = r10_bio->read_slot;
2835                         generic_make_request(r10_bio->devs[slot].bio);
2836                 }
2837
2838                 cond_resched();
2839                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2840                         md_check_recovery(mddev);
2841         }
2842         blk_finish_plug(&plug);
2843 }
2844
2845
2846 static int init_resync(struct r10conf *conf)
2847 {
2848         int buffs;
2849         int i;
2850
2851         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2852         BUG_ON(conf->r10buf_pool);
2853         conf->have_replacement = 0;
2854         for (i = 0; i < conf->geo.raid_disks; i++)
2855                 if (conf->mirrors[i].replacement)
2856                         conf->have_replacement = 1;
2857         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2858         if (!conf->r10buf_pool)
2859                 return -ENOMEM;
2860         conf->next_resync = 0;
2861         return 0;
2862 }
2863
2864 /*
2865  * perform a "sync" on one "block"
2866  *
2867  * We need to make sure that no normal I/O request - particularly write
2868  * requests - conflict with active sync requests.
2869  *
2870  * This is achieved by tracking pending requests and a 'barrier' concept
2871  * that can be installed to exclude normal IO requests.
2872  *
2873  * Resync and recovery are handled very differently.
2874  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2875  *
2876  * For resync, we iterate over virtual addresses, read all copies,
2877  * and update if there are differences.  If only one copy is live,
2878  * skip it.
2879  * For recovery, we iterate over physical addresses, read a good
2880  * value for each non-in_sync drive, and over-write.
2881  *
2882  * So, for recovery we may have several outstanding complex requests for a
2883  * given address, one for each out-of-sync device.  We model this by allocating
2884  * a number of r10_bio structures, one for each out-of-sync device.
2885  * As we setup these structures, we collect all bio's together into a list
2886  * which we then process collectively to add pages, and then process again
2887  * to pass to generic_make_request.
2888  *
2889  * The r10_bio structures are linked using a borrowed master_bio pointer.
2890  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2891  * has its remaining count decremented to 0, the whole complex operation
2892  * is complete.
2893  *
2894  */
2895
2896 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2897                              int *skipped, int go_faster)
2898 {
2899         struct r10conf *conf = mddev->private;
2900         struct r10bio *r10_bio;
2901         struct bio *biolist = NULL, *bio;
2902         sector_t max_sector, nr_sectors;
2903         int i;
2904         int max_sync;
2905         sector_t sync_blocks;
2906         sector_t sectors_skipped = 0;
2907         int chunks_skipped = 0;
2908         sector_t chunk_mask = conf->geo.chunk_mask;
2909
2910         if (!conf->r10buf_pool)
2911                 if (init_resync(conf))
2912                         return 0;
2913
2914  skipped:
2915         max_sector = mddev->dev_sectors;
2916         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2918                 max_sector = mddev->resync_max_sectors;
2919         if (sector_nr >= max_sector) {
2920                 /* If we aborted, we need to abort the
2921                  * sync on the 'current' bitmap chucks (there can
2922                  * be several when recovering multiple devices).
2923                  * as we may have started syncing it but not finished.
2924                  * We can find the current address in
2925                  * mddev->curr_resync, but for recovery,
2926                  * we need to convert that to several
2927                  * virtual addresses.
2928                  */
2929                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2930                         end_reshape(conf);
2931                         return 0;
2932                 }
2933
2934                 if (mddev->curr_resync < max_sector) { /* aborted */
2935                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2936                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2937                                                 &sync_blocks, 1);
2938                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2939                                 sector_t sect =
2940                                         raid10_find_virt(conf, mddev->curr_resync, i);
2941                                 bitmap_end_sync(mddev->bitmap, sect,
2942                                                 &sync_blocks, 1);
2943                         }
2944                 } else {
2945                         /* completed sync */
2946                         if ((!mddev->bitmap || conf->fullsync)
2947                             && conf->have_replacement
2948                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2949                                 /* Completed a full sync so the replacements
2950                                  * are now fully recovered.
2951                                  */
2952                                 for (i = 0; i < conf->geo.raid_disks; i++)
2953                                         if (conf->mirrors[i].replacement)
2954                                                 conf->mirrors[i].replacement
2955                                                         ->recovery_offset
2956                                                         = MaxSector;
2957                         }
2958                         conf->fullsync = 0;
2959                 }
2960                 bitmap_close_sync(mddev->bitmap);
2961                 close_sync(conf);
2962                 *skipped = 1;
2963                 return sectors_skipped;
2964         }
2965
2966         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2967                 return reshape_request(mddev, sector_nr, skipped);
2968
2969         if (chunks_skipped >= conf->geo.raid_disks) {
2970                 /* if there has been nothing to do on any drive,
2971                  * then there is nothing to do at all..
2972                  */
2973                 *skipped = 1;
2974                 return (max_sector - sector_nr) + sectors_skipped;
2975         }
2976
2977         if (max_sector > mddev->resync_max)
2978                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2979
2980         /* make sure whole request will fit in a chunk - if chunks
2981          * are meaningful
2982          */
2983         if (conf->geo.near_copies < conf->geo.raid_disks &&
2984             max_sector > (sector_nr | chunk_mask))
2985                 max_sector = (sector_nr | chunk_mask) + 1;
2986         /*
2987          * If there is non-resync activity waiting for us then
2988          * put in a delay to throttle resync.
2989          */
2990         if (!go_faster && conf->nr_waiting)
2991                 msleep_interruptible(1000);
2992
2993         /* Again, very different code for resync and recovery.
2994          * Both must result in an r10bio with a list of bios that
2995          * have bi_end_io, bi_sector, bi_bdev set,
2996          * and bi_private set to the r10bio.
2997          * For recovery, we may actually create several r10bios
2998          * with 2 bios in each, that correspond to the bios in the main one.
2999          * In this case, the subordinate r10bios link back through a
3000          * borrowed master_bio pointer, and the counter in the master
3001          * includes a ref from each subordinate.
3002          */
3003         /* First, we decide what to do and set ->bi_end_io
3004          * To end_sync_read if we want to read, and
3005          * end_sync_write if we will want to write.
3006          */
3007
3008         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3009         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3010                 /* recovery... the complicated one */
3011                 int j;
3012                 r10_bio = NULL;
3013
3014                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3015                         int still_degraded;
3016                         struct r10bio *rb2;
3017                         sector_t sect;
3018                         int must_sync;
3019                         int any_working;
3020                         struct raid10_info *mirror = &conf->mirrors[i];
3021
3022                         if ((mirror->rdev == NULL ||
3023                              test_bit(In_sync, &mirror->rdev->flags))
3024                             &&
3025                             (mirror->replacement == NULL ||
3026                              test_bit(Faulty,
3027                                       &mirror->replacement->flags)))
3028                                 continue;
3029
3030                         still_degraded = 0;
3031                         /* want to reconstruct this device */
3032                         rb2 = r10_bio;
3033                         sect = raid10_find_virt(conf, sector_nr, i);
3034                         if (sect >= mddev->resync_max_sectors) {
3035                                 /* last stripe is not complete - don't
3036                                  * try to recover this sector.
3037                                  */
3038                                 continue;
3039                         }
3040                         /* Unless we are doing a full sync, or a replacement
3041                          * we only need to recover the block if it is set in
3042                          * the bitmap
3043                          */
3044                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3045                                                       &sync_blocks, 1);
3046                         if (sync_blocks < max_sync)
3047                                 max_sync = sync_blocks;
3048                         if (!must_sync &&
3049                             mirror->replacement == NULL &&
3050                             !conf->fullsync) {
3051                                 /* yep, skip the sync_blocks here, but don't assume
3052                                  * that there will never be anything to do here
3053                                  */
3054                                 chunks_skipped = -1;
3055                                 continue;
3056                         }
3057
3058                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3059                         raise_barrier(conf, rb2 != NULL);
3060                         atomic_set(&r10_bio->remaining, 0);
3061
3062                         r10_bio->master_bio = (struct bio*)rb2;
3063                         if (rb2)
3064                                 atomic_inc(&rb2->remaining);
3065                         r10_bio->mddev = mddev;
3066                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3067                         r10_bio->sector = sect;
3068
3069                         raid10_find_phys(conf, r10_bio);
3070
3071                         /* Need to check if the array will still be
3072                          * degraded
3073                          */
3074                         for (j = 0; j < conf->geo.raid_disks; j++)
3075                                 if (conf->mirrors[j].rdev == NULL ||
3076                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3077                                         still_degraded = 1;
3078                                         break;
3079                                 }
3080
3081                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3082                                                       &sync_blocks, still_degraded);
3083
3084                         any_working = 0;
3085                         for (j=0; j<conf->copies;j++) {
3086                                 int k;
3087                                 int d = r10_bio->devs[j].devnum;
3088                                 sector_t from_addr, to_addr;
3089                                 struct md_rdev *rdev;
3090                                 sector_t sector, first_bad;
3091                                 int bad_sectors;
3092                                 if (!conf->mirrors[d].rdev ||
3093                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3094                                         continue;
3095                                 /* This is where we read from */
3096                                 any_working = 1;
3097                                 rdev = conf->mirrors[d].rdev;
3098                                 sector = r10_bio->devs[j].addr;
3099
3100                                 if (is_badblock(rdev, sector, max_sync,
3101                                                 &first_bad, &bad_sectors)) {
3102                                         if (first_bad > sector)
3103                                                 max_sync = first_bad - sector;
3104                                         else {
3105                                                 bad_sectors -= (sector
3106                                                                 - first_bad);
3107                                                 if (max_sync > bad_sectors)
3108                                                         max_sync = bad_sectors;
3109                                                 continue;
3110                                         }
3111                                 }
3112                                 bio = r10_bio->devs[0].bio;
3113                                 bio->bi_next = biolist;
3114                                 biolist = bio;
3115                                 bio->bi_private = r10_bio;
3116                                 bio->bi_end_io = end_sync_read;
3117                                 bio->bi_rw = READ;
3118                                 from_addr = r10_bio->devs[j].addr;
3119                                 bio->bi_sector = from_addr + rdev->data_offset;
3120                                 bio->bi_bdev = rdev->bdev;
3121                                 atomic_inc(&rdev->nr_pending);
3122                                 /* and we write to 'i' (if not in_sync) */
3123
3124                                 for (k=0; k<conf->copies; k++)
3125                                         if (r10_bio->devs[k].devnum == i)
3126                                                 break;
3127                                 BUG_ON(k == conf->copies);
3128                                 to_addr = r10_bio->devs[k].addr;
3129                                 r10_bio->devs[0].devnum = d;
3130                                 r10_bio->devs[0].addr = from_addr;
3131                                 r10_bio->devs[1].devnum = i;
3132                                 r10_bio->devs[1].addr = to_addr;
3133
3134                                 rdev = mirror->rdev;
3135                                 if (!test_bit(In_sync, &rdev->flags)) {
3136                                         bio = r10_bio->devs[1].bio;
3137                                         bio->bi_next = biolist;
3138                                         biolist = bio;
3139                                         bio->bi_private = r10_bio;
3140                                         bio->bi_end_io = end_sync_write;
3141                                         bio->bi_rw = WRITE;
3142                                         bio->bi_sector = to_addr
3143                                                 + rdev->data_offset;
3144                                         bio->bi_bdev = rdev->bdev;
3145                                         atomic_inc(&r10_bio->remaining);
3146                                 } else
3147                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3148
3149                                 /* and maybe write to replacement */
3150                                 bio = r10_bio->devs[1].repl_bio;
3151                                 if (bio)
3152                                         bio->bi_end_io = NULL;
3153                                 rdev = mirror->replacement;
3154                                 /* Note: if rdev != NULL, then bio
3155                                  * cannot be NULL as r10buf_pool_alloc will
3156                                  * have allocated it.
3157                                  * So the second test here is pointless.
3158                                  * But it keeps semantic-checkers happy, and
3159                                  * this comment keeps human reviewers
3160                                  * happy.
3161                                  */
3162                                 if (rdev == NULL || bio == NULL ||
3163                                     test_bit(Faulty, &rdev->flags))
3164                                         break;
3165                                 bio->bi_next = biolist;
3166                                 biolist = bio;
3167                                 bio->bi_private = r10_bio;
3168                                 bio->bi_end_io = end_sync_write;
3169                                 bio->bi_rw = WRITE;
3170                                 bio->bi_sector = to_addr + rdev->data_offset;
3171                                 bio->bi_bdev = rdev->bdev;
3172                                 atomic_inc(&r10_bio->remaining);
3173                                 break;
3174                         }
3175                         if (j == conf->copies) {
3176                                 /* Cannot recover, so abort the recovery or
3177                                  * record a bad block */
3178                                 put_buf(r10_bio);
3179                                 if (rb2)
3180                                         atomic_dec(&rb2->remaining);
3181                                 r10_bio = rb2;
3182                                 if (any_working) {
3183                                         /* problem is that there are bad blocks
3184                                          * on other device(s)
3185                                          */
3186                                         int k;
3187                                         for (k = 0; k < conf->copies; k++)
3188                                                 if (r10_bio->devs[k].devnum == i)
3189                                                         break;
3190                                         if (!test_bit(In_sync,
3191                                                       &mirror->rdev->flags)
3192                                             && !rdev_set_badblocks(
3193                                                     mirror->rdev,
3194                                                     r10_bio->devs[k].addr,
3195                                                     max_sync, 0))
3196                                                 any_working = 0;
3197                                         if (mirror->replacement &&
3198                                             !rdev_set_badblocks(
3199                                                     mirror->replacement,
3200                                                     r10_bio->devs[k].addr,
3201                                                     max_sync, 0))
3202                                                 any_working = 0;
3203                                 }
3204                                 if (!any_working)  {
3205                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3206                                                               &mddev->recovery))
3207                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3208                                                        "working devices for recovery.\n",
3209                                                        mdname(mddev));
3210                                         mirror->recovery_disabled
3211                                                 = mddev->recovery_disabled;
3212                                 }
3213                                 break;
3214                         }
3215                 }
3216                 if (biolist == NULL) {
3217                         while (r10_bio) {
3218                                 struct r10bio *rb2 = r10_bio;
3219                                 r10_bio = (struct r10bio*) rb2->master_bio;
3220                                 rb2->master_bio = NULL;
3221                                 put_buf(rb2);
3222                         }
3223                         goto giveup;
3224                 }
3225         } else {
3226                 /* resync. Schedule a read for every block at this virt offset */
3227                 int count = 0;
3228
3229                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3230
3231                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3232                                        &sync_blocks, mddev->degraded) &&
3233                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3234                                                  &mddev->recovery)) {
3235                         /* We can skip this block */
3236                         *skipped = 1;
3237                         return sync_blocks + sectors_skipped;
3238                 }
3239                 if (sync_blocks < max_sync)
3240                         max_sync = sync_blocks;
3241                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3242
3243                 r10_bio->mddev = mddev;
3244                 atomic_set(&r10_bio->remaining, 0);
3245                 raise_barrier(conf, 0);
3246                 conf->next_resync = sector_nr;
3247
3248                 r10_bio->master_bio = NULL;
3249                 r10_bio->sector = sector_nr;
3250                 set_bit(R10BIO_IsSync, &r10_bio->state);
3251                 raid10_find_phys(conf, r10_bio);
3252                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3253
3254                 for (i = 0; i < conf->copies; i++) {
3255                         int d = r10_bio->devs[i].devnum;
3256                         sector_t first_bad, sector;
3257                         int bad_sectors;
3258
3259                         if (r10_bio->devs[i].repl_bio)
3260                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3261
3262                         bio = r10_bio->devs[i].bio;
3263                         bio->bi_end_io = NULL;
3264                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3265                         if (conf->mirrors[d].rdev == NULL ||
3266                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3267                                 continue;
3268                         sector = r10_bio->devs[i].addr;
3269                         if (is_badblock(conf->mirrors[d].rdev,
3270                                         sector, max_sync,
3271                                         &first_bad, &bad_sectors)) {
3272                                 if (first_bad > sector)
3273                                         max_sync = first_bad - sector;
3274                                 else {
3275                                         bad_sectors -= (sector - first_bad);
3276                                         if (max_sync > bad_sectors)
3277                                                 max_sync = bad_sectors;
3278                                         continue;
3279                                 }
3280                         }
3281                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3282                         atomic_inc(&r10_bio->remaining);
3283                         bio->bi_next = biolist;
3284                         biolist = bio;
3285                         bio->bi_private = r10_bio;
3286                         bio->bi_end_io = end_sync_read;
3287                         bio->bi_rw = READ;
3288                         bio->bi_sector = sector +
3289                                 conf->mirrors[d].rdev->data_offset;
3290                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3291                         count++;
3292
3293                         if (conf->mirrors[d].replacement == NULL ||
3294                             test_bit(Faulty,
3295                                      &conf->mirrors[d].replacement->flags))
3296                                 continue;
3297
3298                         /* Need to set up for writing to the replacement */
3299                         bio = r10_bio->devs[i].repl_bio;
3300                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3301
3302                         sector = r10_bio->devs[i].addr;
3303                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3304                         bio->bi_next = biolist;
3305                         biolist = bio;
3306                         bio->bi_private = r10_bio;
3307                         bio->bi_end_io = end_sync_write;
3308                         bio->bi_rw = WRITE;
3309                         bio->bi_sector = sector +
3310                                 conf->mirrors[d].replacement->data_offset;
3311                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3312                         count++;
3313                 }
3314
3315                 if (count < 2) {
3316                         for (i=0; i<conf->copies; i++) {
3317                                 int d = r10_bio->devs[i].devnum;
3318                                 if (r10_bio->devs[i].bio->bi_end_io)
3319                                         rdev_dec_pending(conf->mirrors[d].rdev,
3320                                                          mddev);
3321                                 if (r10_bio->devs[i].repl_bio &&
3322                                     r10_bio->devs[i].repl_bio->bi_end_io)
3323                                         rdev_dec_pending(
3324                                                 conf->mirrors[d].replacement,
3325                                                 mddev);
3326                         }
3327                         put_buf(r10_bio);
3328                         biolist = NULL;
3329                         goto giveup;
3330                 }
3331         }
3332
3333         for (bio = biolist; bio ; bio=bio->bi_next) {
3334
3335                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3336                 if (bio->bi_end_io)
3337                         bio->bi_flags |= 1 << BIO_UPTODATE;
3338                 bio->bi_vcnt = 0;
3339                 bio->bi_idx = 0;
3340                 bio->bi_phys_segments = 0;
3341                 bio->bi_size = 0;
3342         }
3343
3344         nr_sectors = 0;
3345         if (sector_nr + max_sync < max_sector)
3346                 max_sector = sector_nr + max_sync;
3347         do {
3348                 struct page *page;
3349                 int len = PAGE_SIZE;
3350                 if (sector_nr + (len>>9) > max_sector)
3351                         len = (max_sector - sector_nr) << 9;
3352                 if (len == 0)
3353                         break;
3354                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3355                         struct bio *bio2;
3356                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3357                         if (bio_add_page(bio, page, len, 0))
3358                                 continue;
3359
3360                         /* stop here */
3361                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3362                         for (bio2 = biolist;
3363                              bio2 && bio2 != bio;
3364                              bio2 = bio2->bi_next) {
3365                                 /* remove last page from this bio */
3366                                 bio2->bi_vcnt--;
3367                                 bio2->bi_size -= len;
3368                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3369                         }
3370                         goto bio_full;
3371                 }
3372                 nr_sectors += len>>9;
3373                 sector_nr += len>>9;
3374         } while (biolist->bi_vcnt < RESYNC_PAGES);
3375  bio_full:
3376         r10_bio->sectors = nr_sectors;
3377
3378         while (biolist) {
3379                 bio = biolist;
3380                 biolist = biolist->bi_next;
3381
3382                 bio->bi_next = NULL;
3383                 r10_bio = bio->bi_private;
3384                 r10_bio->sectors = nr_sectors;
3385
3386                 if (bio->bi_end_io == end_sync_read) {
3387                         md_sync_acct(bio->bi_bdev, nr_sectors);
3388                         generic_make_request(bio);
3389                 }
3390         }
3391
3392         if (sectors_skipped)
3393                 /* pretend they weren't skipped, it makes
3394                  * no important difference in this case
3395                  */
3396                 md_done_sync(mddev, sectors_skipped, 1);
3397
3398         return sectors_skipped + nr_sectors;
3399  giveup:
3400         /* There is nowhere to write, so all non-sync
3401          * drives must be failed or in resync, all drives
3402          * have a bad block, so try the next chunk...
3403          */
3404         if (sector_nr + max_sync < max_sector)
3405                 max_sector = sector_nr + max_sync;
3406
3407         sectors_skipped += (max_sector - sector_nr);
3408         chunks_skipped ++;
3409         sector_nr = max_sector;
3410         goto skipped;
3411 }
3412
3413 static sector_t
3414 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3415 {
3416         sector_t size;
3417         struct r10conf *conf = mddev->private;
3418
3419         if (!raid_disks)
3420                 raid_disks = min(conf->geo.raid_disks,
3421                                  conf->prev.raid_disks);
3422         if (!sectors)
3423                 sectors = conf->dev_sectors;
3424
3425         size = sectors >> conf->geo.chunk_shift;
3426         sector_div(size, conf->geo.far_copies);
3427         size = size * raid_disks;
3428         sector_div(size, conf->geo.near_copies);
3429
3430         return size << conf->geo.chunk_shift;
3431 }
3432
3433 static void calc_sectors(struct r10conf *conf, sector_t size)
3434 {
3435         /* Calculate the number of sectors-per-device that will
3436          * actually be used, and set conf->dev_sectors and
3437          * conf->stride
3438          */
3439
3440         size = size >> conf->geo.chunk_shift;
3441         sector_div(size, conf->geo.far_copies);
3442         size = size * conf->geo.raid_disks;
3443         sector_div(size, conf->geo.near_copies);
3444         /* 'size' is now the number of chunks in the array */
3445         /* calculate "used chunks per device" */
3446         size = size * conf->copies;
3447
3448         /* We need to round up when dividing by raid_disks to
3449          * get the stride size.
3450          */
3451         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3452
3453         conf->dev_sectors = size << conf->geo.chunk_shift;
3454
3455         if (conf->geo.far_offset)
3456                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3457         else {
3458                 sector_div(size, conf->geo.far_copies);
3459                 conf->geo.stride = size << conf->geo.chunk_shift;
3460         }
3461 }
3462
3463 enum geo_type {geo_new, geo_old, geo_start};
3464 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3465 {
3466         int nc, fc, fo;
3467         int layout, chunk, disks;
3468         switch (new) {
3469         case geo_old:
3470                 layout = mddev->layout;
3471                 chunk = mddev->chunk_sectors;
3472                 disks = mddev->raid_disks - mddev->delta_disks;
3473                 break;
3474         case geo_new:
3475                 layout = mddev->new_layout;
3476                 chunk = mddev->new_chunk_sectors;
3477                 disks = mddev->raid_disks;
3478                 break;
3479         default: /* avoid 'may be unused' warnings */
3480         case geo_start: /* new when starting reshape - raid_disks not
3481                          * updated yet. */
3482                 layout = mddev->new_layout;
3483                 chunk = mddev->new_chunk_sectors;
3484                 disks = mddev->raid_disks + mddev->delta_disks;
3485                 break;
3486         }
3487         if (layout >> 18)
3488                 return -1;
3489         if (chunk < (PAGE_SIZE >> 9) ||
3490             !is_power_of_2(chunk))
3491                 return -2;
3492         nc = layout & 255;
3493         fc = (layout >> 8) & 255;
3494         fo = layout & (1<<16);
3495         geo->raid_disks = disks;
3496         geo->near_copies = nc;
3497         geo->far_copies = fc;
3498         geo->far_offset = fo;
3499         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3500         geo->chunk_mask = chunk - 1;
3501         geo->chunk_shift = ffz(~chunk);
3502         return nc*fc;
3503 }
3504
3505 static struct r10conf *setup_conf(struct mddev *mddev)
3506 {
3507         struct r10conf *conf = NULL;
3508         int err = -EINVAL;
3509         struct geom geo;
3510         int copies;
3511
3512         copies = setup_geo(&geo, mddev, geo_new);
3513
3514         if (copies == -2) {
3515                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3516                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3517                        mdname(mddev), PAGE_SIZE);
3518                 goto out;
3519         }
3520
3521         if (copies < 2 || copies > mddev->raid_disks) {
3522                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3523                        mdname(mddev), mddev->new_layout);
3524                 goto out;
3525         }
3526
3527         err = -ENOMEM;
3528         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3529         if (!conf)
3530                 goto out;
3531
3532         /* FIXME calc properly */
3533         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3534                                                             max(0,mddev->delta_disks)),
3535                                 GFP_KERNEL);
3536         if (!conf->mirrors)
3537                 goto out;
3538
3539         conf->tmppage = alloc_page(GFP_KERNEL);
3540         if (!conf->tmppage)
3541                 goto out;
3542
3543         conf->geo = geo;
3544         conf->copies = copies;
3545         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3546                                            r10bio_pool_free, conf);
3547         if (!conf->r10bio_pool)
3548                 goto out;
3549
3550         calc_sectors(conf, mddev->dev_sectors);
3551         if (mddev->reshape_position == MaxSector) {
3552                 conf->prev = conf->geo;
3553                 conf->reshape_progress = MaxSector;
3554         } else {
3555                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3556                         err = -EINVAL;
3557                         goto out;
3558                 }
3559                 conf->reshape_progress = mddev->reshape_position;
3560                 if (conf->prev.far_offset)
3561                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3562                 else
3563                         /* far_copies must be 1 */
3564                         conf->prev.stride = conf->dev_sectors;
3565         }
3566         spin_lock_init(&conf->device_lock);
3567         INIT_LIST_HEAD(&conf->retry_list);
3568
3569         spin_lock_init(&conf->resync_lock);
3570         init_waitqueue_head(&conf->wait_barrier);
3571
3572         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3573         if (!conf->thread)
3574                 goto out;
3575
3576         conf->mddev = mddev;
3577         return conf;
3578
3579  out:
3580         if (err == -ENOMEM)
3581                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3582                        mdname(mddev));
3583         if (conf) {
3584                 if (conf->r10bio_pool)
3585                         mempool_destroy(conf->r10bio_pool);
3586                 kfree(conf->mirrors);
3587                 safe_put_page(conf->tmppage);
3588                 kfree(conf);
3589         }
3590         return ERR_PTR(err);
3591 }
3592
3593 static int run(struct mddev *mddev)
3594 {
3595         struct r10conf *conf;
3596         int i, disk_idx, chunk_size;
3597         struct raid10_info *disk;
3598         struct md_rdev *rdev;
3599         sector_t size;
3600         sector_t min_offset_diff = 0;
3601         int first = 1;
3602         bool discard_supported = false;
3603
3604         if (mddev->private == NULL) {
3605                 conf = setup_conf(mddev);
3606                 if (IS_ERR(conf))
3607                         return PTR_ERR(conf);
3608                 mddev->private = conf;
3609         }
3610         conf = mddev->private;
3611         if (!conf)
3612                 goto out;
3613
3614         mddev->thread = conf->thread;
3615         conf->thread = NULL;
3616
3617         chunk_size = mddev->chunk_sectors << 9;
3618         if (mddev->queue) {
3619                 blk_queue_max_discard_sectors(mddev->queue,
3620                                               mddev->chunk_sectors);
3621                 blk_queue_max_write_same_sectors(mddev->queue,
3622                                                  mddev->chunk_sectors);
3623                 blk_queue_io_min(mddev->queue, chunk_size);
3624                 if (conf->geo.raid_disks % conf->geo.near_copies)
3625                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3626                 else
3627                         blk_queue_io_opt(mddev->queue, chunk_size *
3628                                          (conf->geo.raid_disks / conf->geo.near_copies));
3629         }
3630
3631         rdev_for_each(rdev, mddev) {
3632                 long long diff;
3633                 struct request_queue *q;
3634
3635                 disk_idx = rdev->raid_disk;
3636                 if (disk_idx < 0)
3637                         continue;
3638                 if (disk_idx >= conf->geo.raid_disks &&
3639                     disk_idx >= conf->prev.raid_disks)
3640                         continue;
3641                 disk = conf->mirrors + disk_idx;
3642
3643                 if (test_bit(Replacement, &rdev->flags)) {
3644                         if (disk->replacement)
3645                                 goto out_free_conf;
3646                         disk->replacement = rdev;
3647                 } else {
3648                         if (disk->rdev)
3649                                 goto out_free_conf;
3650                         disk->rdev = rdev;
3651                 }
3652                 q = bdev_get_queue(rdev->bdev);
3653                 if (q->merge_bvec_fn)
3654                         mddev->merge_check_needed = 1;
3655                 diff = (rdev->new_data_offset - rdev->data_offset);
3656                 if (!mddev->reshape_backwards)
3657                         diff = -diff;
3658                 if (diff < 0)
3659                         diff = 0;
3660                 if (first || diff < min_offset_diff)
3661                         min_offset_diff = diff;
3662
3663                 if (mddev->gendisk)
3664                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3665                                           rdev->data_offset << 9);
3666
3667                 disk->head_position = 0;
3668
3669                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3670                         discard_supported = true;
3671         }
3672
3673         if (mddev->queue) {
3674                 if (discard_supported)
3675                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3676                                                 mddev->queue);
3677                 else
3678                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3679                                                   mddev->queue);
3680         }
3681         /* need to check that every block has at least one working mirror */
3682         if (!enough(conf, -1)) {
3683                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3684                        mdname(mddev));
3685                 goto out_free_conf;
3686         }
3687
3688         if (conf->reshape_progress != MaxSector) {
3689                 /* must ensure that shape change is supported */
3690                 if (conf->geo.far_copies != 1 &&
3691                     conf->geo.far_offset == 0)
3692                         goto out_free_conf;
3693                 if (conf->prev.far_copies != 1 &&
3694                     conf->geo.far_offset == 0)
3695                         goto out_free_conf;
3696         }
3697
3698         mddev->degraded = 0;
3699         for (i = 0;
3700              i < conf->geo.raid_disks
3701                      || i < conf->prev.raid_disks;
3702              i++) {
3703
3704                 disk = conf->mirrors + i;
3705
3706                 if (!disk->rdev && disk->replacement) {
3707                         /* The replacement is all we have - use it */
3708                         disk->rdev = disk->replacement;
3709                         disk->replacement = NULL;
3710                         clear_bit(Replacement, &disk->rdev->flags);
3711                 }
3712
3713                 if (!disk->rdev ||
3714                     !test_bit(In_sync, &disk->rdev->flags)) {
3715                         disk->head_position = 0;
3716                         mddev->degraded++;
3717                         if (disk->rdev)
3718                                 conf->fullsync = 1;
3719                 }
3720                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3721         }
3722
3723         if (mddev->recovery_cp != MaxSector)
3724                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3725                        " -- starting background reconstruction\n",
3726                        mdname(mddev));
3727         printk(KERN_INFO
3728                 "md/raid10:%s: active with %d out of %d devices\n",
3729                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3730                 conf->geo.raid_disks);
3731         /*
3732          * Ok, everything is just fine now
3733          */
3734         mddev->dev_sectors = conf->dev_sectors;
3735         size = raid10_size(mddev, 0, 0);
3736         md_set_array_sectors(mddev, size);
3737         mddev->resync_max_sectors = size;
3738
3739         if (mddev->queue) {
3740                 int stripe = conf->geo.raid_disks *
3741                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3742                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3743                 mddev->queue->backing_dev_info.congested_data = mddev;
3744
3745                 /* Calculate max read-ahead size.
3746                  * We need to readahead at least twice a whole stripe....
3747                  * maybe...
3748                  */
3749                 stripe /= conf->geo.near_copies;
3750                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3751                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3752                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3753         }
3754
3755
3756         if (md_integrity_register(mddev))
3757                 goto out_free_conf;
3758
3759         if (conf->reshape_progress != MaxSector) {
3760                 unsigned long before_length, after_length;
3761
3762                 before_length = ((1 << conf->prev.chunk_shift) *
3763                                  conf->prev.far_copies);
3764                 after_length = ((1 << conf->geo.chunk_shift) *
3765                                 conf->geo.far_copies);
3766
3767                 if (max(before_length, after_length) > min_offset_diff) {
3768                         /* This cannot work */
3769                         printk("md/raid10: offset difference not enough to continue reshape\n");
3770                         goto out_free_conf;
3771                 }
3772                 conf->offset_diff = min_offset_diff;
3773
3774                 conf->reshape_safe = conf->reshape_progress;
3775                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3776                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3777                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3778                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3779                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3780                                                         "reshape");
3781         }
3782
3783         return 0;
3784
3785 out_free_conf:
3786         md_unregister_thread(&mddev->thread);
3787         if (conf->r10bio_pool)
3788                 mempool_destroy(conf->r10bio_pool);
3789         safe_put_page(conf->tmppage);
3790         kfree(conf->mirrors);
3791         kfree(conf);
3792         mddev->private = NULL;
3793 out:
3794         return -EIO;
3795 }
3796
3797 static int stop(struct mddev *mddev)
3798 {
3799         struct r10conf *conf = mddev->private;
3800
3801         raise_barrier(conf, 0);
3802         lower_barrier(conf);
3803
3804         md_unregister_thread(&mddev->thread);
3805         if (mddev->queue)
3806                 /* the unplug fn references 'conf'*/
3807                 blk_sync_queue(mddev->queue);
3808
3809         if (conf->r10bio_pool)
3810                 mempool_destroy(conf->r10bio_pool);
3811         kfree(conf->mirrors);
3812         kfree(conf);
3813         mddev->private = NULL;
3814         return 0;
3815 }
3816
3817 static void raid10_quiesce(struct mddev *mddev, int state)
3818 {
3819         struct r10conf *conf = mddev->private;
3820
3821         switch(state) {
3822         case 1:
3823                 raise_barrier(conf, 0);
3824                 break;
3825         case 0:
3826                 lower_barrier(conf);
3827                 break;
3828         }
3829 }
3830
3831 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3832 {
3833         /* Resize of 'far' arrays is not supported.
3834          * For 'near' and 'offset' arrays we can set the
3835          * number of sectors used to be an appropriate multiple
3836          * of the chunk size.
3837          * For 'offset', this is far_copies*chunksize.
3838          * For 'near' the multiplier is the LCM of
3839          * near_copies and raid_disks.
3840          * So if far_copies > 1 && !far_offset, fail.
3841          * Else find LCM(raid_disks, near_copy)*far_copies and
3842          * multiply by chunk_size.  Then round to this number.
3843          * This is mostly done by raid10_size()
3844          */
3845         struct r10conf *conf = mddev->private;
3846         sector_t oldsize, size;
3847
3848         if (mddev->reshape_position != MaxSector)
3849                 return -EBUSY;
3850
3851         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3852                 return -EINVAL;
3853
3854         oldsize = raid10_size(mddev, 0, 0);
3855         size = raid10_size(mddev, sectors, 0);
3856         if (mddev->external_size &&
3857             mddev->array_sectors > size)
3858                 return -EINVAL;
3859         if (mddev->bitmap) {
3860                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3861                 if (ret)
3862                         return ret;
3863         }
3864         md_set_array_sectors(mddev, size);
3865         set_capacity(mddev->gendisk, mddev->array_sectors);
3866         revalidate_disk(mddev->gendisk);
3867         if (sectors > mddev->dev_sectors &&
3868             mddev->recovery_cp > oldsize) {
3869                 mddev->recovery_cp = oldsize;
3870                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3871         }
3872         calc_sectors(conf, sectors);
3873         mddev->dev_sectors = conf->dev_sectors;
3874         mddev->resync_max_sectors = size;
3875         return 0;
3876 }
3877
3878 static void *raid10_takeover_raid0(struct mddev *mddev)
3879 {
3880         struct md_rdev *rdev;
3881         struct r10conf *conf;
3882
3883         if (mddev->degraded > 0) {
3884                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3885                        mdname(mddev));
3886                 return ERR_PTR(-EINVAL);
3887         }
3888
3889         /* Set new parameters */
3890         mddev->new_level = 10;
3891         /* new layout: far_copies = 1, near_copies = 2 */
3892         mddev->new_layout = (1<<8) + 2;
3893         mddev->new_chunk_sectors = mddev->chunk_sectors;
3894         mddev->delta_disks = mddev->raid_disks;
3895         mddev->raid_disks *= 2;
3896         /* make sure it will be not marked as dirty */
3897         mddev->recovery_cp = MaxSector;
3898
3899         conf = setup_conf(mddev);
3900         if (!IS_ERR(conf)) {
3901                 rdev_for_each(rdev, mddev)
3902                         if (rdev->raid_disk >= 0)
3903                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3904                 conf->barrier = 1;
3905         }
3906
3907         return conf;
3908 }
3909
3910 static void *raid10_takeover(struct mddev *mddev)
3911 {
3912         struct r0conf *raid0_conf;
3913
3914         /* raid10 can take over:
3915          *  raid0 - providing it has only two drives
3916          */
3917         if (mddev->level == 0) {
3918                 /* for raid0 takeover only one zone is supported */
3919                 raid0_conf = mddev->private;
3920                 if (raid0_conf->nr_strip_zones > 1) {
3921                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3922                                " with more than one zone.\n",
3923                                mdname(mddev));
3924                         return ERR_PTR(-EINVAL);
3925                 }
3926                 return raid10_takeover_raid0(mddev);
3927         }
3928         return ERR_PTR(-EINVAL);
3929 }
3930
3931 static int raid10_check_reshape(struct mddev *mddev)
3932 {
3933         /* Called when there is a request to change
3934          * - layout (to ->new_layout)
3935          * - chunk size (to ->new_chunk_sectors)
3936          * - raid_disks (by delta_disks)
3937          * or when trying to restart a reshape that was ongoing.
3938          *
3939          * We need to validate the request and possibly allocate
3940          * space if that might be an issue later.
3941          *
3942          * Currently we reject any reshape of a 'far' mode array,
3943          * allow chunk size to change if new is generally acceptable,
3944          * allow raid_disks to increase, and allow
3945          * a switch between 'near' mode and 'offset' mode.
3946          */
3947         struct r10conf *conf = mddev->private;
3948         struct geom geo;
3949
3950         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3951                 return -EINVAL;
3952
3953         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3954                 /* mustn't change number of copies */
3955                 return -EINVAL;
3956         if (geo.far_copies > 1 && !geo.far_offset)
3957                 /* Cannot switch to 'far' mode */
3958                 return -EINVAL;
3959
3960         if (mddev->array_sectors & geo.chunk_mask)
3961                         /* not factor of array size */
3962                         return -EINVAL;
3963
3964         if (!enough(conf, -1))
3965                 return -EINVAL;
3966
3967         kfree(conf->mirrors_new);
3968         conf->mirrors_new = NULL;
3969         if (mddev->delta_disks > 0) {
3970                 /* allocate new 'mirrors' list */
3971                 conf->mirrors_new = kzalloc(
3972                         sizeof(struct raid10_info)
3973                         *(mddev->raid_disks +
3974                           mddev->delta_disks),
3975                         GFP_KERNEL);
3976                 if (!conf->mirrors_new)
3977                         return -ENOMEM;
3978         }
3979         return 0;
3980 }
3981
3982 /*
3983  * Need to check if array has failed when deciding whether to:
3984  *  - start an array
3985  *  - remove non-faulty devices
3986  *  - add a spare
3987  *  - allow a reshape
3988  * This determination is simple when no reshape is happening.
3989  * However if there is a reshape, we need to carefully check
3990  * both the before and after sections.
3991  * This is because some failed devices may only affect one
3992  * of the two sections, and some non-in_sync devices may
3993  * be insync in the section most affected by failed devices.
3994  */
3995 static int calc_degraded(struct r10conf *conf)
3996 {
3997         int degraded, degraded2;
3998         int i;
3999
4000         rcu_read_lock();
4001         degraded = 0;
4002         /* 'prev' section first */
4003         for (i = 0; i < conf->prev.raid_disks; i++) {
4004                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4005                 if (!rdev || test_bit(Faulty, &rdev->flags))
4006                         degraded++;
4007                 else if (!test_bit(In_sync, &rdev->flags))
4008                         /* When we can reduce the number of devices in
4009                          * an array, this might not contribute to
4010                          * 'degraded'.  It does now.
4011                          */
4012                         degraded++;
4013         }
4014         rcu_read_unlock();
4015         if (conf->geo.raid_disks == conf->prev.raid_disks)
4016                 return degraded;
4017         rcu_read_lock();
4018         degraded2 = 0;
4019         for (i = 0; i < conf->geo.raid_disks; i++) {
4020                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4021                 if (!rdev || test_bit(Faulty, &rdev->flags))
4022                         degraded2++;
4023                 else if (!test_bit(In_sync, &rdev->flags)) {
4024                         /* If reshape is increasing the number of devices,
4025                          * this section has already been recovered, so
4026                          * it doesn't contribute to degraded.
4027                          * else it does.
4028                          */
4029                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4030                                 degraded2++;
4031                 }
4032         }
4033         rcu_read_unlock();
4034         if (degraded2 > degraded)
4035                 return degraded2;
4036         return degraded;
4037 }
4038
4039 static int raid10_start_reshape(struct mddev *mddev)
4040 {
4041         /* A 'reshape' has been requested. This commits
4042          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4043          * This also checks if there are enough spares and adds them
4044          * to the array.
4045          * We currently require enough spares to make the final
4046          * array non-degraded.  We also require that the difference
4047          * between old and new data_offset - on each device - is
4048          * enough that we never risk over-writing.
4049          */
4050
4051         unsigned long before_length, after_length;
4052         sector_t min_offset_diff = 0;
4053         int first = 1;
4054         struct geom new;
4055         struct r10conf *conf = mddev->private;
4056         struct md_rdev *rdev;
4057         int spares = 0;
4058         int ret;
4059
4060         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4061                 return -EBUSY;
4062
4063         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4064                 return -EINVAL;
4065
4066         before_length = ((1 << conf->prev.chunk_shift) *
4067                          conf->prev.far_copies);
4068         after_length = ((1 << conf->geo.chunk_shift) *
4069                         conf->geo.far_copies);
4070
4071         rdev_for_each(rdev, mddev) {
4072                 if (!test_bit(In_sync, &rdev->flags)
4073                     && !test_bit(Faulty, &rdev->flags))
4074                         spares++;
4075                 if (rdev->raid_disk >= 0) {
4076                         long long diff = (rdev->new_data_offset
4077                                           - rdev->data_offset);
4078                         if (!mddev->reshape_backwards)
4079                                 diff = -diff;
4080                         if (diff < 0)
4081                                 diff = 0;
4082                         if (first || diff < min_offset_diff)
4083                                 min_offset_diff = diff;
4084                 }
4085         }
4086
4087         if (max(before_length, after_length) > min_offset_diff)
4088                 return -EINVAL;
4089
4090         if (spares < mddev->delta_disks)
4091                 return -EINVAL;
4092
4093         conf->offset_diff = min_offset_diff;
4094         spin_lock_irq(&conf->device_lock);
4095         if (conf->mirrors_new) {
4096                 memcpy(conf->mirrors_new, conf->mirrors,
4097                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4098                 smp_mb();
4099                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4100                 conf->mirrors_old = conf->mirrors;
4101                 conf->mirrors = conf->mirrors_new;
4102                 conf->mirrors_new = NULL;
4103         }
4104         setup_geo(&conf->geo, mddev, geo_start);
4105         smp_mb();
4106         if (mddev->reshape_backwards) {
4107                 sector_t size = raid10_size(mddev, 0, 0);
4108                 if (size < mddev->array_sectors) {
4109                         spin_unlock_irq(&conf->device_lock);
4110                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4111                                mdname(mddev));
4112                         return -EINVAL;
4113                 }
4114                 mddev->resync_max_sectors = size;
4115                 conf->reshape_progress = size;
4116         } else
4117                 conf->reshape_progress = 0;
4118         spin_unlock_irq(&conf->device_lock);
4119
4120         if (mddev->delta_disks && mddev->bitmap) {
4121                 ret = bitmap_resize(mddev->bitmap,
4122                                     raid10_size(mddev, 0,
4123                                                 conf->geo.raid_disks),
4124                                     0, 0);
4125                 if (ret)
4126                         goto abort;
4127         }
4128         if (mddev->delta_disks > 0) {
4129                 rdev_for_each(rdev, mddev)
4130                         if (rdev->raid_disk < 0 &&
4131                             !test_bit(Faulty, &rdev->flags)) {
4132                                 if (raid10_add_disk(mddev, rdev) == 0) {
4133                                         if (rdev->raid_disk >=
4134                                             conf->prev.raid_disks)
4135                                                 set_bit(In_sync, &rdev->flags);
4136                                         else
4137                                                 rdev->recovery_offset = 0;
4138
4139                                         if (sysfs_link_rdev(mddev, rdev))
4140                                                 /* Failure here  is OK */;
4141                                 }
4142                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4143                                    && !test_bit(Faulty, &rdev->flags)) {
4144                                 /* This is a spare that was manually added */
4145                                 set_bit(In_sync, &rdev->flags);
4146                         }
4147         }
4148         /* When a reshape changes the number of devices,
4149          * ->degraded is measured against the larger of the
4150          * pre and  post numbers.
4151          */
4152         spin_lock_irq(&conf->device_lock);
4153         mddev->degraded = calc_degraded(conf);
4154         spin_unlock_irq(&conf->device_lock);
4155         mddev->raid_disks = conf->geo.raid_disks;
4156         mddev->reshape_position = conf->reshape_progress;
4157         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4158
4159         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4160         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4161         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4162         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4163
4164         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4165                                                 "reshape");
4166         if (!mddev->sync_thread) {
4167                 ret = -EAGAIN;
4168                 goto abort;
4169         }
4170         conf->reshape_checkpoint = jiffies;
4171         md_wakeup_thread(mddev->sync_thread);
4172         md_new_event(mddev);
4173         return 0;
4174
4175 abort:
4176         mddev->recovery = 0;
4177         spin_lock_irq(&conf->device_lock);
4178         conf->geo = conf->prev;
4179         mddev->raid_disks = conf->geo.raid_disks;
4180         rdev_for_each(rdev, mddev)
4181                 rdev->new_data_offset = rdev->data_offset;
4182         smp_wmb();
4183         conf->reshape_progress = MaxSector;
4184         mddev->reshape_position = MaxSector;
4185         spin_unlock_irq(&conf->device_lock);
4186         return ret;
4187 }
4188
4189 /* Calculate the last device-address that could contain
4190  * any block from the chunk that includes the array-address 's'
4191  * and report the next address.
4192  * i.e. the address returned will be chunk-aligned and after
4193  * any data that is in the chunk containing 's'.
4194  */
4195 static sector_t last_dev_address(sector_t s, struct geom *geo)
4196 {
4197         s = (s | geo->chunk_mask) + 1;
4198         s >>= geo->chunk_shift;
4199         s *= geo->near_copies;
4200         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4201         s *= geo->far_copies;
4202         s <<= geo->chunk_shift;
4203         return s;
4204 }
4205
4206 /* Calculate the first device-address that could contain
4207  * any block from the chunk that includes the array-address 's'.
4208  * This too will be the start of a chunk
4209  */
4210 static sector_t first_dev_address(sector_t s, struct geom *geo)
4211 {
4212         s >>= geo->chunk_shift;
4213         s *= geo->near_copies;
4214         sector_div(s, geo->raid_disks);
4215         s *= geo->far_copies;
4216         s <<= geo->chunk_shift;
4217         return s;
4218 }
4219
4220 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4221                                 int *skipped)
4222 {
4223         /* We simply copy at most one chunk (smallest of old and new)
4224          * at a time, possibly less if that exceeds RESYNC_PAGES,
4225          * or we hit a bad block or something.
4226          * This might mean we pause for normal IO in the middle of
4227          * a chunk, but that is not a problem was mddev->reshape_position
4228          * can record any location.
4229          *
4230          * If we will want to write to a location that isn't
4231          * yet recorded as 'safe' (i.e. in metadata on disk) then
4232          * we need to flush all reshape requests and update the metadata.
4233          *
4234          * When reshaping forwards (e.g. to more devices), we interpret
4235          * 'safe' as the earliest block which might not have been copied
4236          * down yet.  We divide this by previous stripe size and multiply
4237          * by previous stripe length to get lowest device offset that we
4238          * cannot write to yet.
4239          * We interpret 'sector_nr' as an address that we want to write to.
4240          * From this we use last_device_address() to find where we might
4241          * write to, and first_device_address on the  'safe' position.
4242          * If this 'next' write position is after the 'safe' position,
4243          * we must update the metadata to increase the 'safe' position.
4244          *
4245          * When reshaping backwards, we round in the opposite direction
4246          * and perform the reverse test:  next write position must not be
4247          * less than current safe position.
4248          *
4249          * In all this the minimum difference in data offsets
4250          * (conf->offset_diff - always positive) allows a bit of slack,
4251          * so next can be after 'safe', but not by more than offset_disk
4252          *
4253          * We need to prepare all the bios here before we start any IO
4254          * to ensure the size we choose is acceptable to all devices.
4255          * The means one for each copy for write-out and an extra one for
4256          * read-in.
4257          * We store the read-in bio in ->master_bio and the others in
4258          * ->devs[x].bio and ->devs[x].repl_bio.
4259          */
4260         struct r10conf *conf = mddev->private;
4261         struct r10bio *r10_bio;
4262         sector_t next, safe, last;
4263         int max_sectors;
4264         int nr_sectors;
4265         int s;
4266         struct md_rdev *rdev;
4267         int need_flush = 0;
4268         struct bio *blist;
4269         struct bio *bio, *read_bio;
4270         int sectors_done = 0;
4271
4272         if (sector_nr == 0) {
4273                 /* If restarting in the middle, skip the initial sectors */
4274                 if (mddev->reshape_backwards &&
4275                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4276                         sector_nr = (raid10_size(mddev, 0, 0)
4277                                      - conf->reshape_progress);
4278                 } else if (!mddev->reshape_backwards &&
4279                            conf->reshape_progress > 0)
4280                         sector_nr = conf->reshape_progress;
4281                 if (sector_nr) {
4282                         mddev->curr_resync_completed = sector_nr;
4283                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4284                         *skipped = 1;
4285                         return sector_nr;
4286                 }
4287         }
4288
4289         /* We don't use sector_nr to track where we are up to
4290          * as that doesn't work well for ->reshape_backwards.
4291          * So just use ->reshape_progress.
4292          */
4293         if (mddev->reshape_backwards) {
4294                 /* 'next' is the earliest device address that we might
4295                  * write to for this chunk in the new layout
4296                  */
4297                 next = first_dev_address(conf->reshape_progress - 1,
4298                                          &conf->geo);
4299
4300                 /* 'safe' is the last device address that we might read from
4301                  * in the old layout after a restart
4302                  */
4303                 safe = last_dev_address(conf->reshape_safe - 1,
4304                                         &conf->prev);
4305
4306                 if (next + conf->offset_diff < safe)
4307                         need_flush = 1;
4308
4309                 last = conf->reshape_progress - 1;
4310                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4311                                                & conf->prev.chunk_mask);
4312                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4313                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4314         } else {
4315                 /* 'next' is after the last device address that we
4316                  * might write to for this chunk in the new layout
4317                  */
4318                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4319
4320                 /* 'safe' is the earliest device address that we might
4321                  * read from in the old layout after a restart
4322                  */
4323                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4324
4325                 /* Need to update metadata if 'next' might be beyond 'safe'
4326                  * as that would possibly corrupt data
4327                  */
4328                 if (next > safe + conf->offset_diff)
4329                         need_flush = 1;
4330
4331                 sector_nr = conf->reshape_progress;
4332                 last  = sector_nr | (conf->geo.chunk_mask
4333                                      & conf->prev.chunk_mask);
4334
4335                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4336                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4337         }
4338
4339         if (need_flush ||
4340             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4341                 /* Need to update reshape_position in metadata */
4342                 wait_barrier(conf);
4343                 mddev->reshape_position = conf->reshape_progress;
4344                 if (mddev->reshape_backwards)
4345                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4346                                 - conf->reshape_progress;
4347                 else
4348                         mddev->curr_resync_completed = conf->reshape_progress;
4349                 conf->reshape_checkpoint = jiffies;
4350                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4351                 md_wakeup_thread(mddev->thread);
4352                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4353                            kthread_should_stop());
4354                 conf->reshape_safe = mddev->reshape_position;
4355                 allow_barrier(conf);
4356         }
4357
4358 read_more:
4359         /* Now schedule reads for blocks from sector_nr to last */
4360         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4361         raise_barrier(conf, sectors_done != 0);
4362         atomic_set(&r10_bio->remaining, 0);
4363         r10_bio->mddev = mddev;
4364         r10_bio->sector = sector_nr;
4365         set_bit(R10BIO_IsReshape, &r10_bio->state);
4366         r10_bio->sectors = last - sector_nr + 1;
4367         rdev = read_balance(conf, r10_bio, &max_sectors);
4368         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4369
4370         if (!rdev) {
4371                 /* Cannot read from here, so need to record bad blocks
4372                  * on all the target devices.
4373                  */
4374                 // FIXME
4375                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4376                 return sectors_done;
4377         }
4378
4379         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4380
4381         read_bio->bi_bdev = rdev->bdev;
4382         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4383                                + rdev->data_offset);
4384         read_bio->bi_private = r10_bio;
4385         read_bio->bi_end_io = end_sync_read;
4386         read_bio->bi_rw = READ;
4387         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4388         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4389         read_bio->bi_vcnt = 0;
4390         read_bio->bi_idx = 0;
4391         read_bio->bi_size = 0;
4392         r10_bio->master_bio = read_bio;
4393         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4394
4395         /* Now find the locations in the new layout */
4396         __raid10_find_phys(&conf->geo, r10_bio);
4397
4398         blist = read_bio;
4399         read_bio->bi_next = NULL;
4400
4401         for (s = 0; s < conf->copies*2; s++) {
4402                 struct bio *b;
4403                 int d = r10_bio->devs[s/2].devnum;
4404                 struct md_rdev *rdev2;
4405                 if (s&1) {
4406                         rdev2 = conf->mirrors[d].replacement;
4407                         b = r10_bio->devs[s/2].repl_bio;
4408                 } else {
4409                         rdev2 = conf->mirrors[d].rdev;
4410                         b = r10_bio->devs[s/2].bio;
4411                 }
4412                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4413                         continue;
4414                 b->bi_bdev = rdev2->bdev;
4415                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4416                 b->bi_private = r10_bio;
4417                 b->bi_end_io = end_reshape_write;
4418                 b->bi_rw = WRITE;
4419                 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4420                 b->bi_flags |= 1 << BIO_UPTODATE;
4421                 b->bi_next = blist;
4422                 b->bi_vcnt = 0;
4423                 b->bi_idx = 0;
4424                 b->bi_size = 0;
4425                 blist = b;
4426         }
4427
4428         /* Now add as many pages as possible to all of these bios. */
4429
4430         nr_sectors = 0;
4431         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4432                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4433                 int len = (max_sectors - s) << 9;
4434                 if (len > PAGE_SIZE)
4435                         len = PAGE_SIZE;
4436                 for (bio = blist; bio ; bio = bio->bi_next) {
4437                         struct bio *bio2;
4438                         if (bio_add_page(bio, page, len, 0))
4439                                 continue;
4440
4441                         /* Didn't fit, must stop */
4442                         for (bio2 = blist;
4443                              bio2 && bio2 != bio;
4444                              bio2 = bio2->bi_next) {
4445                                 /* Remove last page from this bio */
4446                                 bio2->bi_vcnt--;
4447                                 bio2->bi_size -= len;
4448                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4449                         }
4450                         goto bio_full;
4451                 }
4452                 sector_nr += len >> 9;
4453                 nr_sectors += len >> 9;
4454         }
4455 bio_full:
4456         r10_bio->sectors = nr_sectors;
4457
4458         /* Now submit the read */
4459         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4460         atomic_inc(&r10_bio->remaining);
4461         read_bio->bi_next = NULL;
4462         generic_make_request(read_bio);
4463         sector_nr += nr_sectors;
4464         sectors_done += nr_sectors;
4465         if (sector_nr <= last)
4466                 goto read_more;
4467
4468         /* Now that we have done the whole section we can
4469          * update reshape_progress
4470          */
4471         if (mddev->reshape_backwards)
4472                 conf->reshape_progress -= sectors_done;
4473         else
4474                 conf->reshape_progress += sectors_done;
4475
4476         return sectors_done;
4477 }
4478
4479 static void end_reshape_request(struct r10bio *r10_bio);
4480 static int handle_reshape_read_error(struct mddev *mddev,
4481                                      struct r10bio *r10_bio);
4482 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4483 {
4484         /* Reshape read completed.  Hopefully we have a block
4485          * to write out.
4486          * If we got a read error then we do sync 1-page reads from
4487          * elsewhere until we find the data - or give up.
4488          */
4489         struct r10conf *conf = mddev->private;
4490         int s;
4491
4492         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4493                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4494                         /* Reshape has been aborted */
4495                         md_done_sync(mddev, r10_bio->sectors, 0);
4496                         return;
4497                 }
4498
4499         /* We definitely have the data in the pages, schedule the
4500          * writes.
4501          */
4502         atomic_set(&r10_bio->remaining, 1);
4503         for (s = 0; s < conf->copies*2; s++) {
4504                 struct bio *b;
4505                 int d = r10_bio->devs[s/2].devnum;
4506                 struct md_rdev *rdev;
4507                 if (s&1) {
4508                         rdev = conf->mirrors[d].replacement;
4509                         b = r10_bio->devs[s/2].repl_bio;
4510                 } else {
4511                         rdev = conf->mirrors[d].rdev;
4512                         b = r10_bio->devs[s/2].bio;
4513                 }
4514                 if (!rdev || test_bit(Faulty, &rdev->flags))
4515                         continue;
4516                 atomic_inc(&rdev->nr_pending);
4517                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4518                 atomic_inc(&r10_bio->remaining);
4519                 b->bi_next = NULL;
4520                 generic_make_request(b);
4521         }
4522         end_reshape_request(r10_bio);
4523 }
4524
4525 static void end_reshape(struct r10conf *conf)
4526 {
4527         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4528                 return;
4529
4530         spin_lock_irq(&conf->device_lock);
4531         conf->prev = conf->geo;
4532         md_finish_reshape(conf->mddev);
4533         smp_wmb();
4534         conf->reshape_progress = MaxSector;
4535         spin_unlock_irq(&conf->device_lock);
4536
4537         /* read-ahead size must cover two whole stripes, which is
4538          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4539          */
4540         if (conf->mddev->queue) {
4541                 int stripe = conf->geo.raid_disks *
4542                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4543                 stripe /= conf->geo.near_copies;
4544                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4545                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4546         }
4547         conf->fullsync = 0;
4548 }
4549
4550
4551 static int handle_reshape_read_error(struct mddev *mddev,
4552                                      struct r10bio *r10_bio)
4553 {
4554         /* Use sync reads to get the blocks from somewhere else */
4555         int sectors = r10_bio->sectors;
4556         struct r10conf *conf = mddev->private;
4557         struct {
4558                 struct r10bio r10_bio;
4559                 struct r10dev devs[conf->copies];
4560         } on_stack;
4561         struct r10bio *r10b = &on_stack.r10_bio;
4562         int slot = 0;
4563         int idx = 0;
4564         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4565
4566         r10b->sector = r10_bio->sector;
4567         __raid10_find_phys(&conf->prev, r10b);
4568
4569         while (sectors) {
4570                 int s = sectors;
4571                 int success = 0;
4572                 int first_slot = slot;
4573
4574                 if (s > (PAGE_SIZE >> 9))
4575                         s = PAGE_SIZE >> 9;
4576
4577                 while (!success) {
4578                         int d = r10b->devs[slot].devnum;
4579                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4580                         sector_t addr;
4581                         if (rdev == NULL ||
4582                             test_bit(Faulty, &rdev->flags) ||
4583                             !test_bit(In_sync, &rdev->flags))
4584                                 goto failed;
4585
4586                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4587                         success = sync_page_io(rdev,
4588                                                addr,
4589                                                s << 9,
4590                                                bvec[idx].bv_page,
4591                                                READ, false);
4592                         if (success)
4593                                 break;
4594                 failed:
4595                         slot++;
4596                         if (slot >= conf->copies)
4597                                 slot = 0;
4598                         if (slot == first_slot)
4599                                 break;
4600                 }
4601                 if (!success) {
4602                         /* couldn't read this block, must give up */
4603                         set_bit(MD_RECOVERY_INTR,
4604                                 &mddev->recovery);
4605                         return -EIO;
4606                 }
4607                 sectors -= s;
4608                 idx++;
4609         }
4610         return 0;
4611 }
4612
4613 static void end_reshape_write(struct bio *bio, int error)
4614 {
4615         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4616         struct r10bio *r10_bio = bio->bi_private;
4617         struct mddev *mddev = r10_bio->mddev;
4618         struct r10conf *conf = mddev->private;
4619         int d;
4620         int slot;
4621         int repl;
4622         struct md_rdev *rdev = NULL;
4623
4624         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4625         if (repl)
4626                 rdev = conf->mirrors[d].replacement;
4627         if (!rdev) {
4628                 smp_mb();
4629                 rdev = conf->mirrors[d].rdev;
4630         }
4631
4632         if (!uptodate) {
4633                 /* FIXME should record badblock */
4634                 md_error(mddev, rdev);
4635         }
4636
4637         rdev_dec_pending(rdev, mddev);
4638         end_reshape_request(r10_bio);
4639 }
4640
4641 static void end_reshape_request(struct r10bio *r10_bio)
4642 {
4643         if (!atomic_dec_and_test(&r10_bio->remaining))
4644                 return;
4645         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4646         bio_put(r10_bio->master_bio);
4647         put_buf(r10_bio);
4648 }
4649
4650 static void raid10_finish_reshape(struct mddev *mddev)
4651 {
4652         struct r10conf *conf = mddev->private;
4653
4654         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4655                 return;
4656
4657         if (mddev->delta_disks > 0) {
4658                 sector_t size = raid10_size(mddev, 0, 0);
4659                 md_set_array_sectors(mddev, size);
4660                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4661                         mddev->recovery_cp = mddev->resync_max_sectors;
4662                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4663                 }
4664                 mddev->resync_max_sectors = size;
4665                 set_capacity(mddev->gendisk, mddev->array_sectors);
4666                 revalidate_disk(mddev->gendisk);
4667         } else {
4668                 int d;
4669                 for (d = conf->geo.raid_disks ;
4670                      d < conf->geo.raid_disks - mddev->delta_disks;
4671                      d++) {
4672                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4673                         if (rdev)
4674                                 clear_bit(In_sync, &rdev->flags);
4675                         rdev = conf->mirrors[d].replacement;
4676                         if (rdev)
4677                                 clear_bit(In_sync, &rdev->flags);
4678                 }
4679         }
4680         mddev->layout = mddev->new_layout;
4681         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4682         mddev->reshape_position = MaxSector;
4683         mddev->delta_disks = 0;
4684         mddev->reshape_backwards = 0;
4685 }
4686
4687 static struct md_personality raid10_personality =
4688 {
4689         .name           = "raid10",
4690         .level          = 10,
4691         .owner          = THIS_MODULE,
4692         .make_request   = make_request,
4693         .run            = run,
4694         .stop           = stop,
4695         .status         = status,
4696         .error_handler  = error,
4697         .hot_add_disk   = raid10_add_disk,
4698         .hot_remove_disk= raid10_remove_disk,
4699         .spare_active   = raid10_spare_active,
4700         .sync_request   = sync_request,
4701         .quiesce        = raid10_quiesce,
4702         .size           = raid10_size,
4703         .resize         = raid10_resize,
4704         .takeover       = raid10_takeover,
4705         .check_reshape  = raid10_check_reshape,
4706         .start_reshape  = raid10_start_reshape,
4707         .finish_reshape = raid10_finish_reshape,
4708 };
4709
4710 static int __init raid_init(void)
4711 {
4712         return register_md_personality(&raid10_personality);
4713 }
4714
4715 static void raid_exit(void)
4716 {
4717         unregister_md_personality(&raid10_personality);
4718 }
4719
4720 module_init(raid_init);
4721 module_exit(raid_exit);
4722 MODULE_LICENSE("GPL");
4723 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4724 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4725 MODULE_ALIAS("md-raid10");
4726 MODULE_ALIAS("md-level-10");
4727
4728 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);