md: add proper write-congestion reporting to RAID1 and RAID10.
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
30
31 /*
32  * RAID10 provides a combination of RAID0 and RAID1 functionality.
33  * The layout of data is defined by
34  *    chunk_size
35  *    raid_disks
36  *    near_copies (stored in low byte of layout)
37  *    far_copies (stored in second byte of layout)
38  *    far_offset (stored in bit 16 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.
41  * Each device is divided into far_copies sections.
42  * In each section, chunks are laid out in a style similar to raid0, but
43  * near_copies copies of each chunk is stored (each on a different drive).
44  * The starting device for each section is offset near_copies from the starting
45  * device of the previous section.
46  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47  * drive.
48  * near_copies and far_copies must be at least one, and their product is at most
49  * raid_disks.
50  *
51  * If far_offset is true, then the far_copies are handled a bit differently.
52  * The copies are still in different stripes, but instead of be very far apart
53  * on disk, there are adjacent stripes.
54  */
55
56 /*
57  * Number of guaranteed r10bios in case of extreme VM load:
58  */
59 #define NR_RAID10_BIOS 256
60
61 /* When there are this many requests queue to be written by
62  * the raid10 thread, we become 'congested' to provide back-pressure
63  * for writeback.
64  */
65 static int max_queued_requests = 1024;
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69
70 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
71 {
72         struct r10conf *conf = data;
73         int size = offsetof(struct r10bio, devs[conf->copies]);
74
75         /* allocate a r10bio with room for raid_disks entries in the bios array */
76         return kzalloc(size, gfp_flags);
77 }
78
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81         kfree(r10_bio);
82 }
83
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91
92 /*
93  * When performing a resync, we need to read and compare, so
94  * we need as many pages are there are copies.
95  * When performing a recovery, we need 2 bios, one for read,
96  * one for write (we recover only one drive per r10buf)
97  *
98  */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101         struct r10conf *conf = data;
102         struct page *page;
103         struct r10bio *r10_bio;
104         struct bio *bio;
105         int i, j;
106         int nalloc;
107
108         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109         if (!r10_bio)
110                 return NULL;
111
112         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113                 nalloc = conf->copies; /* resync */
114         else
115                 nalloc = 2; /* recovery */
116
117         /*
118          * Allocate bios.
119          */
120         for (j = nalloc ; j-- ; ) {
121                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122                 if (!bio)
123                         goto out_free_bio;
124                 r10_bio->devs[j].bio = bio;
125         }
126         /*
127          * Allocate RESYNC_PAGES data pages and attach them
128          * where needed.
129          */
130         for (j = 0 ; j < nalloc; j++) {
131                 bio = r10_bio->devs[j].bio;
132                 for (i = 0; i < RESYNC_PAGES; i++) {
133                         if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
134                                                 &conf->mddev->recovery)) {
135                                 /* we can share bv_page's during recovery */
136                                 struct bio *rbio = r10_bio->devs[0].bio;
137                                 page = rbio->bi_io_vec[i].bv_page;
138                                 get_page(page);
139                         } else
140                                 page = alloc_page(gfp_flags);
141                         if (unlikely(!page))
142                                 goto out_free_pages;
143
144                         bio->bi_io_vec[i].bv_page = page;
145                 }
146         }
147
148         return r10_bio;
149
150 out_free_pages:
151         for ( ; i > 0 ; i--)
152                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
153         while (j--)
154                 for (i = 0; i < RESYNC_PAGES ; i++)
155                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
156         j = -1;
157 out_free_bio:
158         while ( ++j < nalloc )
159                 bio_put(r10_bio->devs[j].bio);
160         r10bio_pool_free(r10_bio, conf);
161         return NULL;
162 }
163
164 static void r10buf_pool_free(void *__r10_bio, void *data)
165 {
166         int i;
167         struct r10conf *conf = data;
168         struct r10bio *r10bio = __r10_bio;
169         int j;
170
171         for (j=0; j < conf->copies; j++) {
172                 struct bio *bio = r10bio->devs[j].bio;
173                 if (bio) {
174                         for (i = 0; i < RESYNC_PAGES; i++) {
175                                 safe_put_page(bio->bi_io_vec[i].bv_page);
176                                 bio->bi_io_vec[i].bv_page = NULL;
177                         }
178                         bio_put(bio);
179                 }
180         }
181         r10bio_pool_free(r10bio, conf);
182 }
183
184 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
185 {
186         int i;
187
188         for (i = 0; i < conf->copies; i++) {
189                 struct bio **bio = & r10_bio->devs[i].bio;
190                 if (!BIO_SPECIAL(*bio))
191                         bio_put(*bio);
192                 *bio = NULL;
193         }
194 }
195
196 static void free_r10bio(struct r10bio *r10_bio)
197 {
198         struct r10conf *conf = r10_bio->mddev->private;
199
200         put_all_bios(conf, r10_bio);
201         mempool_free(r10_bio, conf->r10bio_pool);
202 }
203
204 static void put_buf(struct r10bio *r10_bio)
205 {
206         struct r10conf *conf = r10_bio->mddev->private;
207
208         mempool_free(r10_bio, conf->r10buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r10bio *r10_bio)
214 {
215         unsigned long flags;
216         struct mddev *mddev = r10_bio->mddev;
217         struct r10conf *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r10_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         /* wake up frozen array... */
225         wake_up(&conf->wait_barrier);
226
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void raid_end_bio_io(struct r10bio *r10_bio)
236 {
237         struct bio *bio = r10_bio->master_bio;
238         int done;
239         struct r10conf *conf = r10_bio->mddev->private;
240
241         if (bio->bi_phys_segments) {
242                 unsigned long flags;
243                 spin_lock_irqsave(&conf->device_lock, flags);
244                 bio->bi_phys_segments--;
245                 done = (bio->bi_phys_segments == 0);
246                 spin_unlock_irqrestore(&conf->device_lock, flags);
247         } else
248                 done = 1;
249         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
250                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
251         if (done) {
252                 bio_endio(bio, 0);
253                 /*
254                  * Wake up any possible resync thread that waits for the device
255                  * to go idle.
256                  */
257                 allow_barrier(conf);
258         }
259         free_r10bio(r10_bio);
260 }
261
262 /*
263  * Update disk head position estimator based on IRQ completion info.
264  */
265 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
270                 r10_bio->devs[slot].addr + (r10_bio->sectors);
271 }
272
273 /*
274  * Find the disk number which triggered given bio
275  */
276 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
277                          struct bio *bio, int *slotp)
278 {
279         int slot;
280
281         for (slot = 0; slot < conf->copies; slot++)
282                 if (r10_bio->devs[slot].bio == bio)
283                         break;
284
285         BUG_ON(slot == conf->copies);
286         update_head_pos(slot, r10_bio);
287
288         if (slotp)
289                 *slotp = slot;
290         return r10_bio->devs[slot].devnum;
291 }
292
293 static void raid10_end_read_request(struct bio *bio, int error)
294 {
295         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296         struct r10bio *r10_bio = bio->bi_private;
297         int slot, dev;
298         struct r10conf *conf = r10_bio->mddev->private;
299
300
301         slot = r10_bio->read_slot;
302         dev = r10_bio->devs[slot].devnum;
303         /*
304          * this branch is our 'one mirror IO has finished' event handler:
305          */
306         update_head_pos(slot, r10_bio);
307
308         if (uptodate) {
309                 /*
310                  * Set R10BIO_Uptodate in our master bio, so that
311                  * we will return a good error code to the higher
312                  * levels even if IO on some other mirrored buffer fails.
313                  *
314                  * The 'master' represents the composite IO operation to
315                  * user-side. So if something waits for IO, then it will
316                  * wait for the 'master' bio.
317                  */
318                 set_bit(R10BIO_Uptodate, &r10_bio->state);
319                 raid_end_bio_io(r10_bio);
320                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
321         } else {
322                 /*
323                  * oops, read error - keep the refcount on the rdev
324                  */
325                 char b[BDEVNAME_SIZE];
326                 printk_ratelimited(KERN_ERR
327                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
328                                    mdname(conf->mddev),
329                                    bdevname(conf->mirrors[dev].rdev->bdev, b),
330                                    (unsigned long long)r10_bio->sector);
331                 set_bit(R10BIO_ReadError, &r10_bio->state);
332                 reschedule_retry(r10_bio);
333         }
334 }
335
336 static void close_write(struct r10bio *r10_bio)
337 {
338         /* clear the bitmap if all writes complete successfully */
339         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
340                         r10_bio->sectors,
341                         !test_bit(R10BIO_Degraded, &r10_bio->state),
342                         0);
343         md_write_end(r10_bio->mddev);
344 }
345
346 static void one_write_done(struct r10bio *r10_bio)
347 {
348         if (atomic_dec_and_test(&r10_bio->remaining)) {
349                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
350                         reschedule_retry(r10_bio);
351                 else {
352                         close_write(r10_bio);
353                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
354                                 reschedule_retry(r10_bio);
355                         else
356                                 raid_end_bio_io(r10_bio);
357                 }
358         }
359 }
360
361 static void raid10_end_write_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int dev;
366         int dec_rdev = 1;
367         struct r10conf *conf = r10_bio->mddev->private;
368         int slot;
369
370         dev = find_bio_disk(conf, r10_bio, bio, &slot);
371
372         /*
373          * this branch is our 'one mirror IO has finished' event handler:
374          */
375         if (!uptodate) {
376                 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
377                 set_bit(R10BIO_WriteError, &r10_bio->state);
378                 dec_rdev = 0;
379         } else {
380                 /*
381                  * Set R10BIO_Uptodate in our master bio, so that
382                  * we will return a good error code for to the higher
383                  * levels even if IO on some other mirrored buffer fails.
384                  *
385                  * The 'master' represents the composite IO operation to
386                  * user-side. So if something waits for IO, then it will
387                  * wait for the 'master' bio.
388                  */
389                 sector_t first_bad;
390                 int bad_sectors;
391
392                 set_bit(R10BIO_Uptodate, &r10_bio->state);
393
394                 /* Maybe we can clear some bad blocks. */
395                 if (is_badblock(conf->mirrors[dev].rdev,
396                                 r10_bio->devs[slot].addr,
397                                 r10_bio->sectors,
398                                 &first_bad, &bad_sectors)) {
399                         bio_put(bio);
400                         r10_bio->devs[slot].bio = IO_MADE_GOOD;
401                         dec_rdev = 0;
402                         set_bit(R10BIO_MadeGood, &r10_bio->state);
403                 }
404         }
405
406         /*
407          *
408          * Let's see if all mirrored write operations have finished
409          * already.
410          */
411         one_write_done(r10_bio);
412         if (dec_rdev)
413                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
414 }
415
416
417 /*
418  * RAID10 layout manager
419  * As well as the chunksize and raid_disks count, there are two
420  * parameters: near_copies and far_copies.
421  * near_copies * far_copies must be <= raid_disks.
422  * Normally one of these will be 1.
423  * If both are 1, we get raid0.
424  * If near_copies == raid_disks, we get raid1.
425  *
426  * Chunks are laid out in raid0 style with near_copies copies of the
427  * first chunk, followed by near_copies copies of the next chunk and
428  * so on.
429  * If far_copies > 1, then after 1/far_copies of the array has been assigned
430  * as described above, we start again with a device offset of near_copies.
431  * So we effectively have another copy of the whole array further down all
432  * the drives, but with blocks on different drives.
433  * With this layout, and block is never stored twice on the one device.
434  *
435  * raid10_find_phys finds the sector offset of a given virtual sector
436  * on each device that it is on.
437  *
438  * raid10_find_virt does the reverse mapping, from a device and a
439  * sector offset to a virtual address
440  */
441
442 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
443 {
444         int n,f;
445         sector_t sector;
446         sector_t chunk;
447         sector_t stripe;
448         int dev;
449
450         int slot = 0;
451
452         /* now calculate first sector/dev */
453         chunk = r10bio->sector >> conf->chunk_shift;
454         sector = r10bio->sector & conf->chunk_mask;
455
456         chunk *= conf->near_copies;
457         stripe = chunk;
458         dev = sector_div(stripe, conf->raid_disks);
459         if (conf->far_offset)
460                 stripe *= conf->far_copies;
461
462         sector += stripe << conf->chunk_shift;
463
464         /* and calculate all the others */
465         for (n=0; n < conf->near_copies; n++) {
466                 int d = dev;
467                 sector_t s = sector;
468                 r10bio->devs[slot].addr = sector;
469                 r10bio->devs[slot].devnum = d;
470                 slot++;
471
472                 for (f = 1; f < conf->far_copies; f++) {
473                         d += conf->near_copies;
474                         if (d >= conf->raid_disks)
475                                 d -= conf->raid_disks;
476                         s += conf->stride;
477                         r10bio->devs[slot].devnum = d;
478                         r10bio->devs[slot].addr = s;
479                         slot++;
480                 }
481                 dev++;
482                 if (dev >= conf->raid_disks) {
483                         dev = 0;
484                         sector += (conf->chunk_mask + 1);
485                 }
486         }
487         BUG_ON(slot != conf->copies);
488 }
489
490 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
491 {
492         sector_t offset, chunk, vchunk;
493
494         offset = sector & conf->chunk_mask;
495         if (conf->far_offset) {
496                 int fc;
497                 chunk = sector >> conf->chunk_shift;
498                 fc = sector_div(chunk, conf->far_copies);
499                 dev -= fc * conf->near_copies;
500                 if (dev < 0)
501                         dev += conf->raid_disks;
502         } else {
503                 while (sector >= conf->stride) {
504                         sector -= conf->stride;
505                         if (dev < conf->near_copies)
506                                 dev += conf->raid_disks - conf->near_copies;
507                         else
508                                 dev -= conf->near_copies;
509                 }
510                 chunk = sector >> conf->chunk_shift;
511         }
512         vchunk = chunk * conf->raid_disks + dev;
513         sector_div(vchunk, conf->near_copies);
514         return (vchunk << conf->chunk_shift) + offset;
515 }
516
517 /**
518  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
519  *      @q: request queue
520  *      @bvm: properties of new bio
521  *      @biovec: the request that could be merged to it.
522  *
523  *      Return amount of bytes we can accept at this offset
524  *      If near_copies == raid_disk, there are no striping issues,
525  *      but in that case, the function isn't called at all.
526  */
527 static int raid10_mergeable_bvec(struct request_queue *q,
528                                  struct bvec_merge_data *bvm,
529                                  struct bio_vec *biovec)
530 {
531         struct mddev *mddev = q->queuedata;
532         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
533         int max;
534         unsigned int chunk_sectors = mddev->chunk_sectors;
535         unsigned int bio_sectors = bvm->bi_size >> 9;
536
537         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
538         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
539         if (max <= biovec->bv_len && bio_sectors == 0)
540                 return biovec->bv_len;
541         else
542                 return max;
543 }
544
545 /*
546  * This routine returns the disk from which the requested read should
547  * be done. There is a per-array 'next expected sequential IO' sector
548  * number - if this matches on the next IO then we use the last disk.
549  * There is also a per-disk 'last know head position' sector that is
550  * maintained from IRQ contexts, both the normal and the resync IO
551  * completion handlers update this position correctly. If there is no
552  * perfect sequential match then we pick the disk whose head is closest.
553  *
554  * If there are 2 mirrors in the same 2 devices, performance degrades
555  * because position is mirror, not device based.
556  *
557  * The rdev for the device selected will have nr_pending incremented.
558  */
559
560 /*
561  * FIXME: possibly should rethink readbalancing and do it differently
562  * depending on near_copies / far_copies geometry.
563  */
564 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors)
565 {
566         const sector_t this_sector = r10_bio->sector;
567         int disk, slot;
568         int sectors = r10_bio->sectors;
569         int best_good_sectors;
570         sector_t new_distance, best_dist;
571         struct md_rdev *rdev;
572         int do_balance;
573         int best_slot;
574
575         raid10_find_phys(conf, r10_bio);
576         rcu_read_lock();
577 retry:
578         sectors = r10_bio->sectors;
579         best_slot = -1;
580         best_dist = MaxSector;
581         best_good_sectors = 0;
582         do_balance = 1;
583         /*
584          * Check if we can balance. We can balance on the whole
585          * device if no resync is going on (recovery is ok), or below
586          * the resync window. We take the first readable disk when
587          * above the resync window.
588          */
589         if (conf->mddev->recovery_cp < MaxSector
590             && (this_sector + sectors >= conf->next_resync))
591                 do_balance = 0;
592
593         for (slot = 0; slot < conf->copies ; slot++) {
594                 sector_t first_bad;
595                 int bad_sectors;
596                 sector_t dev_sector;
597
598                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
599                         continue;
600                 disk = r10_bio->devs[slot].devnum;
601                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
602                 if (rdev == NULL)
603                         continue;
604                 if (!test_bit(In_sync, &rdev->flags))
605                         continue;
606
607                 dev_sector = r10_bio->devs[slot].addr;
608                 if (is_badblock(rdev, dev_sector, sectors,
609                                 &first_bad, &bad_sectors)) {
610                         if (best_dist < MaxSector)
611                                 /* Already have a better slot */
612                                 continue;
613                         if (first_bad <= dev_sector) {
614                                 /* Cannot read here.  If this is the
615                                  * 'primary' device, then we must not read
616                                  * beyond 'bad_sectors' from another device.
617                                  */
618                                 bad_sectors -= (dev_sector - first_bad);
619                                 if (!do_balance && sectors > bad_sectors)
620                                         sectors = bad_sectors;
621                                 if (best_good_sectors > sectors)
622                                         best_good_sectors = sectors;
623                         } else {
624                                 sector_t good_sectors =
625                                         first_bad - dev_sector;
626                                 if (good_sectors > best_good_sectors) {
627                                         best_good_sectors = good_sectors;
628                                         best_slot = slot;
629                                 }
630                                 if (!do_balance)
631                                         /* Must read from here */
632                                         break;
633                         }
634                         continue;
635                 } else
636                         best_good_sectors = sectors;
637
638                 if (!do_balance)
639                         break;
640
641                 /* This optimisation is debatable, and completely destroys
642                  * sequential read speed for 'far copies' arrays.  So only
643                  * keep it for 'near' arrays, and review those later.
644                  */
645                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
646                         break;
647
648                 /* for far > 1 always use the lowest address */
649                 if (conf->far_copies > 1)
650                         new_distance = r10_bio->devs[slot].addr;
651                 else
652                         new_distance = abs(r10_bio->devs[slot].addr -
653                                            conf->mirrors[disk].head_position);
654                 if (new_distance < best_dist) {
655                         best_dist = new_distance;
656                         best_slot = slot;
657                 }
658         }
659         if (slot == conf->copies)
660                 slot = best_slot;
661
662         if (slot >= 0) {
663                 disk = r10_bio->devs[slot].devnum;
664                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
665                 if (!rdev)
666                         goto retry;
667                 atomic_inc(&rdev->nr_pending);
668                 if (test_bit(Faulty, &rdev->flags)) {
669                         /* Cannot risk returning a device that failed
670                          * before we inc'ed nr_pending
671                          */
672                         rdev_dec_pending(rdev, conf->mddev);
673                         goto retry;
674                 }
675                 r10_bio->read_slot = slot;
676         } else
677                 disk = -1;
678         rcu_read_unlock();
679         *max_sectors = best_good_sectors;
680
681         return disk;
682 }
683
684 static int raid10_congested(void *data, int bits)
685 {
686         struct mddev *mddev = data;
687         struct r10conf *conf = mddev->private;
688         int i, ret = 0;
689
690         if ((bits & (1 << BDI_async_congested)) &&
691             conf->pending_count >= max_queued_requests)
692                 return 1;
693
694         if (mddev_congested(mddev, bits))
695                 return 1;
696         rcu_read_lock();
697         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
698                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
699                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
700                         struct request_queue *q = bdev_get_queue(rdev->bdev);
701
702                         ret |= bdi_congested(&q->backing_dev_info, bits);
703                 }
704         }
705         rcu_read_unlock();
706         return ret;
707 }
708
709 static void flush_pending_writes(struct r10conf *conf)
710 {
711         /* Any writes that have been queued but are awaiting
712          * bitmap updates get flushed here.
713          */
714         spin_lock_irq(&conf->device_lock);
715
716         if (conf->pending_bio_list.head) {
717                 struct bio *bio;
718                 bio = bio_list_get(&conf->pending_bio_list);
719                 conf->pending_count = 0;
720                 spin_unlock_irq(&conf->device_lock);
721                 /* flush any pending bitmap writes to disk
722                  * before proceeding w/ I/O */
723                 bitmap_unplug(conf->mddev->bitmap);
724                 wake_up(&conf->wait_barrier);
725
726                 while (bio) { /* submit pending writes */
727                         struct bio *next = bio->bi_next;
728                         bio->bi_next = NULL;
729                         generic_make_request(bio);
730                         bio = next;
731                 }
732         } else
733                 spin_unlock_irq(&conf->device_lock);
734 }
735
736 /* Barriers....
737  * Sometimes we need to suspend IO while we do something else,
738  * either some resync/recovery, or reconfigure the array.
739  * To do this we raise a 'barrier'.
740  * The 'barrier' is a counter that can be raised multiple times
741  * to count how many activities are happening which preclude
742  * normal IO.
743  * We can only raise the barrier if there is no pending IO.
744  * i.e. if nr_pending == 0.
745  * We choose only to raise the barrier if no-one is waiting for the
746  * barrier to go down.  This means that as soon as an IO request
747  * is ready, no other operations which require a barrier will start
748  * until the IO request has had a chance.
749  *
750  * So: regular IO calls 'wait_barrier'.  When that returns there
751  *    is no backgroup IO happening,  It must arrange to call
752  *    allow_barrier when it has finished its IO.
753  * backgroup IO calls must call raise_barrier.  Once that returns
754  *    there is no normal IO happeing.  It must arrange to call
755  *    lower_barrier when the particular background IO completes.
756  */
757
758 static void raise_barrier(struct r10conf *conf, int force)
759 {
760         BUG_ON(force && !conf->barrier);
761         spin_lock_irq(&conf->resync_lock);
762
763         /* Wait until no block IO is waiting (unless 'force') */
764         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
765                             conf->resync_lock, );
766
767         /* block any new IO from starting */
768         conf->barrier++;
769
770         /* Now wait for all pending IO to complete */
771         wait_event_lock_irq(conf->wait_barrier,
772                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
773                             conf->resync_lock, );
774
775         spin_unlock_irq(&conf->resync_lock);
776 }
777
778 static void lower_barrier(struct r10conf *conf)
779 {
780         unsigned long flags;
781         spin_lock_irqsave(&conf->resync_lock, flags);
782         conf->barrier--;
783         spin_unlock_irqrestore(&conf->resync_lock, flags);
784         wake_up(&conf->wait_barrier);
785 }
786
787 static void wait_barrier(struct r10conf *conf)
788 {
789         spin_lock_irq(&conf->resync_lock);
790         if (conf->barrier) {
791                 conf->nr_waiting++;
792                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
793                                     conf->resync_lock,
794                                     );
795                 conf->nr_waiting--;
796         }
797         conf->nr_pending++;
798         spin_unlock_irq(&conf->resync_lock);
799 }
800
801 static void allow_barrier(struct r10conf *conf)
802 {
803         unsigned long flags;
804         spin_lock_irqsave(&conf->resync_lock, flags);
805         conf->nr_pending--;
806         spin_unlock_irqrestore(&conf->resync_lock, flags);
807         wake_up(&conf->wait_barrier);
808 }
809
810 static void freeze_array(struct r10conf *conf)
811 {
812         /* stop syncio and normal IO and wait for everything to
813          * go quiet.
814          * We increment barrier and nr_waiting, and then
815          * wait until nr_pending match nr_queued+1
816          * This is called in the context of one normal IO request
817          * that has failed. Thus any sync request that might be pending
818          * will be blocked by nr_pending, and we need to wait for
819          * pending IO requests to complete or be queued for re-try.
820          * Thus the number queued (nr_queued) plus this request (1)
821          * must match the number of pending IOs (nr_pending) before
822          * we continue.
823          */
824         spin_lock_irq(&conf->resync_lock);
825         conf->barrier++;
826         conf->nr_waiting++;
827         wait_event_lock_irq(conf->wait_barrier,
828                             conf->nr_pending == conf->nr_queued+1,
829                             conf->resync_lock,
830                             flush_pending_writes(conf));
831
832         spin_unlock_irq(&conf->resync_lock);
833 }
834
835 static void unfreeze_array(struct r10conf *conf)
836 {
837         /* reverse the effect of the freeze */
838         spin_lock_irq(&conf->resync_lock);
839         conf->barrier--;
840         conf->nr_waiting--;
841         wake_up(&conf->wait_barrier);
842         spin_unlock_irq(&conf->resync_lock);
843 }
844
845 static int make_request(struct mddev *mddev, struct bio * bio)
846 {
847         struct r10conf *conf = mddev->private;
848         struct mirror_info *mirror;
849         struct r10bio *r10_bio;
850         struct bio *read_bio;
851         int i;
852         int chunk_sects = conf->chunk_mask + 1;
853         const int rw = bio_data_dir(bio);
854         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
855         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
856         unsigned long flags;
857         struct md_rdev *blocked_rdev;
858         int plugged;
859         int sectors_handled;
860         int max_sectors;
861
862         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
863                 md_flush_request(mddev, bio);
864                 return 0;
865         }
866
867         /* If this request crosses a chunk boundary, we need to
868          * split it.  This will only happen for 1 PAGE (or less) requests.
869          */
870         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
871                       > chunk_sects &&
872                     conf->near_copies < conf->raid_disks)) {
873                 struct bio_pair *bp;
874                 /* Sanity check -- queue functions should prevent this happening */
875                 if (bio->bi_vcnt != 1 ||
876                     bio->bi_idx != 0)
877                         goto bad_map;
878                 /* This is a one page bio that upper layers
879                  * refuse to split for us, so we need to split it.
880                  */
881                 bp = bio_split(bio,
882                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
883
884                 /* Each of these 'make_request' calls will call 'wait_barrier'.
885                  * If the first succeeds but the second blocks due to the resync
886                  * thread raising the barrier, we will deadlock because the
887                  * IO to the underlying device will be queued in generic_make_request
888                  * and will never complete, so will never reduce nr_pending.
889                  * So increment nr_waiting here so no new raise_barriers will
890                  * succeed, and so the second wait_barrier cannot block.
891                  */
892                 spin_lock_irq(&conf->resync_lock);
893                 conf->nr_waiting++;
894                 spin_unlock_irq(&conf->resync_lock);
895
896                 if (make_request(mddev, &bp->bio1))
897                         generic_make_request(&bp->bio1);
898                 if (make_request(mddev, &bp->bio2))
899                         generic_make_request(&bp->bio2);
900
901                 spin_lock_irq(&conf->resync_lock);
902                 conf->nr_waiting--;
903                 wake_up(&conf->wait_barrier);
904                 spin_unlock_irq(&conf->resync_lock);
905
906                 bio_pair_release(bp);
907                 return 0;
908         bad_map:
909                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
910                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
911                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
912
913                 bio_io_error(bio);
914                 return 0;
915         }
916
917         md_write_start(mddev, bio);
918
919         /*
920          * Register the new request and wait if the reconstruction
921          * thread has put up a bar for new requests.
922          * Continue immediately if no resync is active currently.
923          */
924         wait_barrier(conf);
925
926         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
927
928         r10_bio->master_bio = bio;
929         r10_bio->sectors = bio->bi_size >> 9;
930
931         r10_bio->mddev = mddev;
932         r10_bio->sector = bio->bi_sector;
933         r10_bio->state = 0;
934
935         /* We might need to issue multiple reads to different
936          * devices if there are bad blocks around, so we keep
937          * track of the number of reads in bio->bi_phys_segments.
938          * If this is 0, there is only one r10_bio and no locking
939          * will be needed when the request completes.  If it is
940          * non-zero, then it is the number of not-completed requests.
941          */
942         bio->bi_phys_segments = 0;
943         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
944
945         if (rw == READ) {
946                 /*
947                  * read balancing logic:
948                  */
949                 int disk;
950                 int slot;
951
952 read_again:
953                 disk = read_balance(conf, r10_bio, &max_sectors);
954                 slot = r10_bio->read_slot;
955                 if (disk < 0) {
956                         raid_end_bio_io(r10_bio);
957                         return 0;
958                 }
959                 mirror = conf->mirrors + disk;
960
961                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
962                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
963                             max_sectors);
964
965                 r10_bio->devs[slot].bio = read_bio;
966
967                 read_bio->bi_sector = r10_bio->devs[slot].addr +
968                         mirror->rdev->data_offset;
969                 read_bio->bi_bdev = mirror->rdev->bdev;
970                 read_bio->bi_end_io = raid10_end_read_request;
971                 read_bio->bi_rw = READ | do_sync;
972                 read_bio->bi_private = r10_bio;
973
974                 if (max_sectors < r10_bio->sectors) {
975                         /* Could not read all from this device, so we will
976                          * need another r10_bio.
977                          */
978                         sectors_handled = (r10_bio->sectors + max_sectors
979                                            - bio->bi_sector);
980                         r10_bio->sectors = max_sectors;
981                         spin_lock_irq(&conf->device_lock);
982                         if (bio->bi_phys_segments == 0)
983                                 bio->bi_phys_segments = 2;
984                         else
985                                 bio->bi_phys_segments++;
986                         spin_unlock(&conf->device_lock);
987                         /* Cannot call generic_make_request directly
988                          * as that will be queued in __generic_make_request
989                          * and subsequent mempool_alloc might block
990                          * waiting for it.  so hand bio over to raid10d.
991                          */
992                         reschedule_retry(r10_bio);
993
994                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
995
996                         r10_bio->master_bio = bio;
997                         r10_bio->sectors = ((bio->bi_size >> 9)
998                                             - sectors_handled);
999                         r10_bio->state = 0;
1000                         r10_bio->mddev = mddev;
1001                         r10_bio->sector = bio->bi_sector + sectors_handled;
1002                         goto read_again;
1003                 } else
1004                         generic_make_request(read_bio);
1005                 return 0;
1006         }
1007
1008         /*
1009          * WRITE:
1010          */
1011         if (conf->pending_count >= max_queued_requests) {
1012                 md_wakeup_thread(mddev->thread);
1013                 wait_event(conf->wait_barrier,
1014                            conf->pending_count < max_queued_requests);
1015         }
1016         /* first select target devices under rcu_lock and
1017          * inc refcount on their rdev.  Record them by setting
1018          * bios[x] to bio
1019          * If there are known/acknowledged bad blocks on any device
1020          * on which we have seen a write error, we want to avoid
1021          * writing to those blocks.  This potentially requires several
1022          * writes to write around the bad blocks.  Each set of writes
1023          * gets its own r10_bio with a set of bios attached.  The number
1024          * of r10_bios is recored in bio->bi_phys_segments just as with
1025          * the read case.
1026          */
1027         plugged = mddev_check_plugged(mddev);
1028
1029         raid10_find_phys(conf, r10_bio);
1030 retry_write:
1031         blocked_rdev = NULL;
1032         rcu_read_lock();
1033         max_sectors = r10_bio->sectors;
1034
1035         for (i = 0;  i < conf->copies; i++) {
1036                 int d = r10_bio->devs[i].devnum;
1037                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1038                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1039                         atomic_inc(&rdev->nr_pending);
1040                         blocked_rdev = rdev;
1041                         break;
1042                 }
1043                 r10_bio->devs[i].bio = NULL;
1044                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1045                         set_bit(R10BIO_Degraded, &r10_bio->state);
1046                         continue;
1047                 }
1048                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1049                         sector_t first_bad;
1050                         sector_t dev_sector = r10_bio->devs[i].addr;
1051                         int bad_sectors;
1052                         int is_bad;
1053
1054                         is_bad = is_badblock(rdev, dev_sector,
1055                                              max_sectors,
1056                                              &first_bad, &bad_sectors);
1057                         if (is_bad < 0) {
1058                                 /* Mustn't write here until the bad block
1059                                  * is acknowledged
1060                                  */
1061                                 atomic_inc(&rdev->nr_pending);
1062                                 set_bit(BlockedBadBlocks, &rdev->flags);
1063                                 blocked_rdev = rdev;
1064                                 break;
1065                         }
1066                         if (is_bad && first_bad <= dev_sector) {
1067                                 /* Cannot write here at all */
1068                                 bad_sectors -= (dev_sector - first_bad);
1069                                 if (bad_sectors < max_sectors)
1070                                         /* Mustn't write more than bad_sectors
1071                                          * to other devices yet
1072                                          */
1073                                         max_sectors = bad_sectors;
1074                                 /* We don't set R10BIO_Degraded as that
1075                                  * only applies if the disk is missing,
1076                                  * so it might be re-added, and we want to
1077                                  * know to recover this chunk.
1078                                  * In this case the device is here, and the
1079                                  * fact that this chunk is not in-sync is
1080                                  * recorded in the bad block log.
1081                                  */
1082                                 continue;
1083                         }
1084                         if (is_bad) {
1085                                 int good_sectors = first_bad - dev_sector;
1086                                 if (good_sectors < max_sectors)
1087                                         max_sectors = good_sectors;
1088                         }
1089                 }
1090                 r10_bio->devs[i].bio = bio;
1091                 atomic_inc(&rdev->nr_pending);
1092         }
1093         rcu_read_unlock();
1094
1095         if (unlikely(blocked_rdev)) {
1096                 /* Have to wait for this device to get unblocked, then retry */
1097                 int j;
1098                 int d;
1099
1100                 for (j = 0; j < i; j++)
1101                         if (r10_bio->devs[j].bio) {
1102                                 d = r10_bio->devs[j].devnum;
1103                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1104                         }
1105                 allow_barrier(conf);
1106                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1107                 wait_barrier(conf);
1108                 goto retry_write;
1109         }
1110
1111         if (max_sectors < r10_bio->sectors) {
1112                 /* We are splitting this into multiple parts, so
1113                  * we need to prepare for allocating another r10_bio.
1114                  */
1115                 r10_bio->sectors = max_sectors;
1116                 spin_lock_irq(&conf->device_lock);
1117                 if (bio->bi_phys_segments == 0)
1118                         bio->bi_phys_segments = 2;
1119                 else
1120                         bio->bi_phys_segments++;
1121                 spin_unlock_irq(&conf->device_lock);
1122         }
1123         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1124
1125         atomic_set(&r10_bio->remaining, 1);
1126         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1127
1128         for (i = 0; i < conf->copies; i++) {
1129                 struct bio *mbio;
1130                 int d = r10_bio->devs[i].devnum;
1131                 if (!r10_bio->devs[i].bio)
1132                         continue;
1133
1134                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1135                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1136                             max_sectors);
1137                 r10_bio->devs[i].bio = mbio;
1138
1139                 mbio->bi_sector = (r10_bio->devs[i].addr+
1140                                    conf->mirrors[d].rdev->data_offset);
1141                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1142                 mbio->bi_end_io = raid10_end_write_request;
1143                 mbio->bi_rw = WRITE | do_sync | do_fua;
1144                 mbio->bi_private = r10_bio;
1145
1146                 atomic_inc(&r10_bio->remaining);
1147                 spin_lock_irqsave(&conf->device_lock, flags);
1148                 bio_list_add(&conf->pending_bio_list, mbio);
1149                 conf->pending_count++;
1150                 spin_unlock_irqrestore(&conf->device_lock, flags);
1151         }
1152
1153         /* Don't remove the bias on 'remaining' (one_write_done) until
1154          * after checking if we need to go around again.
1155          */
1156
1157         if (sectors_handled < (bio->bi_size >> 9)) {
1158                 one_write_done(r10_bio);
1159                 /* We need another r10_bio.  It has already been counted
1160                  * in bio->bi_phys_segments.
1161                  */
1162                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1163
1164                 r10_bio->master_bio = bio;
1165                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1166
1167                 r10_bio->mddev = mddev;
1168                 r10_bio->sector = bio->bi_sector + sectors_handled;
1169                 r10_bio->state = 0;
1170                 goto retry_write;
1171         }
1172         one_write_done(r10_bio);
1173
1174         /* In case raid10d snuck in to freeze_array */
1175         wake_up(&conf->wait_barrier);
1176
1177         if (do_sync || !mddev->bitmap || !plugged)
1178                 md_wakeup_thread(mddev->thread);
1179         return 0;
1180 }
1181
1182 static void status(struct seq_file *seq, struct mddev *mddev)
1183 {
1184         struct r10conf *conf = mddev->private;
1185         int i;
1186
1187         if (conf->near_copies < conf->raid_disks)
1188                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1189         if (conf->near_copies > 1)
1190                 seq_printf(seq, " %d near-copies", conf->near_copies);
1191         if (conf->far_copies > 1) {
1192                 if (conf->far_offset)
1193                         seq_printf(seq, " %d offset-copies", conf->far_copies);
1194                 else
1195                         seq_printf(seq, " %d far-copies", conf->far_copies);
1196         }
1197         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1198                                         conf->raid_disks - mddev->degraded);
1199         for (i = 0; i < conf->raid_disks; i++)
1200                 seq_printf(seq, "%s",
1201                               conf->mirrors[i].rdev &&
1202                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1203         seq_printf(seq, "]");
1204 }
1205
1206 /* check if there are enough drives for
1207  * every block to appear on atleast one.
1208  * Don't consider the device numbered 'ignore'
1209  * as we might be about to remove it.
1210  */
1211 static int enough(struct r10conf *conf, int ignore)
1212 {
1213         int first = 0;
1214
1215         do {
1216                 int n = conf->copies;
1217                 int cnt = 0;
1218                 while (n--) {
1219                         if (conf->mirrors[first].rdev &&
1220                             first != ignore)
1221                                 cnt++;
1222                         first = (first+1) % conf->raid_disks;
1223                 }
1224                 if (cnt == 0)
1225                         return 0;
1226         } while (first != 0);
1227         return 1;
1228 }
1229
1230 static void error(struct mddev *mddev, struct md_rdev *rdev)
1231 {
1232         char b[BDEVNAME_SIZE];
1233         struct r10conf *conf = mddev->private;
1234
1235         /*
1236          * If it is not operational, then we have already marked it as dead
1237          * else if it is the last working disks, ignore the error, let the
1238          * next level up know.
1239          * else mark the drive as failed
1240          */
1241         if (test_bit(In_sync, &rdev->flags)
1242             && !enough(conf, rdev->raid_disk))
1243                 /*
1244                  * Don't fail the drive, just return an IO error.
1245                  */
1246                 return;
1247         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1248                 unsigned long flags;
1249                 spin_lock_irqsave(&conf->device_lock, flags);
1250                 mddev->degraded++;
1251                 spin_unlock_irqrestore(&conf->device_lock, flags);
1252                 /*
1253                  * if recovery is running, make sure it aborts.
1254                  */
1255                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1256         }
1257         set_bit(Blocked, &rdev->flags);
1258         set_bit(Faulty, &rdev->flags);
1259         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1260         printk(KERN_ALERT
1261                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1262                "md/raid10:%s: Operation continuing on %d devices.\n",
1263                mdname(mddev), bdevname(rdev->bdev, b),
1264                mdname(mddev), conf->raid_disks - mddev->degraded);
1265 }
1266
1267 static void print_conf(struct r10conf *conf)
1268 {
1269         int i;
1270         struct mirror_info *tmp;
1271
1272         printk(KERN_DEBUG "RAID10 conf printout:\n");
1273         if (!conf) {
1274                 printk(KERN_DEBUG "(!conf)\n");
1275                 return;
1276         }
1277         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1278                 conf->raid_disks);
1279
1280         for (i = 0; i < conf->raid_disks; i++) {
1281                 char b[BDEVNAME_SIZE];
1282                 tmp = conf->mirrors + i;
1283                 if (tmp->rdev)
1284                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1285                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1286                                 !test_bit(Faulty, &tmp->rdev->flags),
1287                                 bdevname(tmp->rdev->bdev,b));
1288         }
1289 }
1290
1291 static void close_sync(struct r10conf *conf)
1292 {
1293         wait_barrier(conf);
1294         allow_barrier(conf);
1295
1296         mempool_destroy(conf->r10buf_pool);
1297         conf->r10buf_pool = NULL;
1298 }
1299
1300 static int raid10_spare_active(struct mddev *mddev)
1301 {
1302         int i;
1303         struct r10conf *conf = mddev->private;
1304         struct mirror_info *tmp;
1305         int count = 0;
1306         unsigned long flags;
1307
1308         /*
1309          * Find all non-in_sync disks within the RAID10 configuration
1310          * and mark them in_sync
1311          */
1312         for (i = 0; i < conf->raid_disks; i++) {
1313                 tmp = conf->mirrors + i;
1314                 if (tmp->rdev
1315                     && !test_bit(Faulty, &tmp->rdev->flags)
1316                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1317                         count++;
1318                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1319                 }
1320         }
1321         spin_lock_irqsave(&conf->device_lock, flags);
1322         mddev->degraded -= count;
1323         spin_unlock_irqrestore(&conf->device_lock, flags);
1324
1325         print_conf(conf);
1326         return count;
1327 }
1328
1329
1330 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1331 {
1332         struct r10conf *conf = mddev->private;
1333         int err = -EEXIST;
1334         int mirror;
1335         int first = 0;
1336         int last = conf->raid_disks - 1;
1337
1338         if (mddev->recovery_cp < MaxSector)
1339                 /* only hot-add to in-sync arrays, as recovery is
1340                  * very different from resync
1341                  */
1342                 return -EBUSY;
1343         if (!enough(conf, -1))
1344                 return -EINVAL;
1345
1346         if (rdev->raid_disk >= 0)
1347                 first = last = rdev->raid_disk;
1348
1349         if (rdev->saved_raid_disk >= first &&
1350             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1351                 mirror = rdev->saved_raid_disk;
1352         else
1353                 mirror = first;
1354         for ( ; mirror <= last ; mirror++) {
1355                 struct mirror_info *p = &conf->mirrors[mirror];
1356                 if (p->recovery_disabled == mddev->recovery_disabled)
1357                         continue;
1358                 if (!p->rdev)
1359                         continue;
1360
1361                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1362                                   rdev->data_offset << 9);
1363                 /* as we don't honour merge_bvec_fn, we must
1364                  * never risk violating it, so limit
1365                  * ->max_segments to one lying with a single
1366                  * page, as a one page request is never in
1367                  * violation.
1368                  */
1369                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1370                         blk_queue_max_segments(mddev->queue, 1);
1371                         blk_queue_segment_boundary(mddev->queue,
1372                                                    PAGE_CACHE_SIZE - 1);
1373                 }
1374
1375                 p->head_position = 0;
1376                 rdev->raid_disk = mirror;
1377                 err = 0;
1378                 if (rdev->saved_raid_disk != mirror)
1379                         conf->fullsync = 1;
1380                 rcu_assign_pointer(p->rdev, rdev);
1381                 break;
1382         }
1383
1384         md_integrity_add_rdev(rdev, mddev);
1385         print_conf(conf);
1386         return err;
1387 }
1388
1389 static int raid10_remove_disk(struct mddev *mddev, int number)
1390 {
1391         struct r10conf *conf = mddev->private;
1392         int err = 0;
1393         struct md_rdev *rdev;
1394         struct mirror_info *p = conf->mirrors+ number;
1395
1396         print_conf(conf);
1397         rdev = p->rdev;
1398         if (rdev) {
1399                 if (test_bit(In_sync, &rdev->flags) ||
1400                     atomic_read(&rdev->nr_pending)) {
1401                         err = -EBUSY;
1402                         goto abort;
1403                 }
1404                 /* Only remove faulty devices in recovery
1405                  * is not possible.
1406                  */
1407                 if (!test_bit(Faulty, &rdev->flags) &&
1408                     mddev->recovery_disabled != p->recovery_disabled &&
1409                     enough(conf, -1)) {
1410                         err = -EBUSY;
1411                         goto abort;
1412                 }
1413                 p->rdev = NULL;
1414                 synchronize_rcu();
1415                 if (atomic_read(&rdev->nr_pending)) {
1416                         /* lost the race, try later */
1417                         err = -EBUSY;
1418                         p->rdev = rdev;
1419                         goto abort;
1420                 }
1421                 err = md_integrity_register(mddev);
1422         }
1423 abort:
1424
1425         print_conf(conf);
1426         return err;
1427 }
1428
1429
1430 static void end_sync_read(struct bio *bio, int error)
1431 {
1432         struct r10bio *r10_bio = bio->bi_private;
1433         struct r10conf *conf = r10_bio->mddev->private;
1434         int d;
1435
1436         d = find_bio_disk(conf, r10_bio, bio, NULL);
1437
1438         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1439                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1440         else
1441                 /* The write handler will notice the lack of
1442                  * R10BIO_Uptodate and record any errors etc
1443                  */
1444                 atomic_add(r10_bio->sectors,
1445                            &conf->mirrors[d].rdev->corrected_errors);
1446
1447         /* for reconstruct, we always reschedule after a read.
1448          * for resync, only after all reads
1449          */
1450         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1451         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1452             atomic_dec_and_test(&r10_bio->remaining)) {
1453                 /* we have read all the blocks,
1454                  * do the comparison in process context in raid10d
1455                  */
1456                 reschedule_retry(r10_bio);
1457         }
1458 }
1459
1460 static void end_sync_request(struct r10bio *r10_bio)
1461 {
1462         struct mddev *mddev = r10_bio->mddev;
1463
1464         while (atomic_dec_and_test(&r10_bio->remaining)) {
1465                 if (r10_bio->master_bio == NULL) {
1466                         /* the primary of several recovery bios */
1467                         sector_t s = r10_bio->sectors;
1468                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1469                             test_bit(R10BIO_WriteError, &r10_bio->state))
1470                                 reschedule_retry(r10_bio);
1471                         else
1472                                 put_buf(r10_bio);
1473                         md_done_sync(mddev, s, 1);
1474                         break;
1475                 } else {
1476                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1477                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1478                             test_bit(R10BIO_WriteError, &r10_bio->state))
1479                                 reschedule_retry(r10_bio);
1480                         else
1481                                 put_buf(r10_bio);
1482                         r10_bio = r10_bio2;
1483                 }
1484         }
1485 }
1486
1487 static void end_sync_write(struct bio *bio, int error)
1488 {
1489         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1490         struct r10bio *r10_bio = bio->bi_private;
1491         struct mddev *mddev = r10_bio->mddev;
1492         struct r10conf *conf = mddev->private;
1493         int d;
1494         sector_t first_bad;
1495         int bad_sectors;
1496         int slot;
1497
1498         d = find_bio_disk(conf, r10_bio, bio, &slot);
1499
1500         if (!uptodate) {
1501                 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1502                 set_bit(R10BIO_WriteError, &r10_bio->state);
1503         } else if (is_badblock(conf->mirrors[d].rdev,
1504                              r10_bio->devs[slot].addr,
1505                              r10_bio->sectors,
1506                              &first_bad, &bad_sectors))
1507                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1508
1509         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1510
1511         end_sync_request(r10_bio);
1512 }
1513
1514 /*
1515  * Note: sync and recover and handled very differently for raid10
1516  * This code is for resync.
1517  * For resync, we read through virtual addresses and read all blocks.
1518  * If there is any error, we schedule a write.  The lowest numbered
1519  * drive is authoritative.
1520  * However requests come for physical address, so we need to map.
1521  * For every physical address there are raid_disks/copies virtual addresses,
1522  * which is always are least one, but is not necessarly an integer.
1523  * This means that a physical address can span multiple chunks, so we may
1524  * have to submit multiple io requests for a single sync request.
1525  */
1526 /*
1527  * We check if all blocks are in-sync and only write to blocks that
1528  * aren't in sync
1529  */
1530 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1531 {
1532         struct r10conf *conf = mddev->private;
1533         int i, first;
1534         struct bio *tbio, *fbio;
1535
1536         atomic_set(&r10_bio->remaining, 1);
1537
1538         /* find the first device with a block */
1539         for (i=0; i<conf->copies; i++)
1540                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1541                         break;
1542
1543         if (i == conf->copies)
1544                 goto done;
1545
1546         first = i;
1547         fbio = r10_bio->devs[i].bio;
1548
1549         /* now find blocks with errors */
1550         for (i=0 ; i < conf->copies ; i++) {
1551                 int  j, d;
1552                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1553
1554                 tbio = r10_bio->devs[i].bio;
1555
1556                 if (tbio->bi_end_io != end_sync_read)
1557                         continue;
1558                 if (i == first)
1559                         continue;
1560                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1561                         /* We know that the bi_io_vec layout is the same for
1562                          * both 'first' and 'i', so we just compare them.
1563                          * All vec entries are PAGE_SIZE;
1564                          */
1565                         for (j = 0; j < vcnt; j++)
1566                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1567                                            page_address(tbio->bi_io_vec[j].bv_page),
1568                                            PAGE_SIZE))
1569                                         break;
1570                         if (j == vcnt)
1571                                 continue;
1572                         mddev->resync_mismatches += r10_bio->sectors;
1573                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1574                                 /* Don't fix anything. */
1575                                 continue;
1576                 }
1577                 /* Ok, we need to write this bio, either to correct an
1578                  * inconsistency or to correct an unreadable block.
1579                  * First we need to fixup bv_offset, bv_len and
1580                  * bi_vecs, as the read request might have corrupted these
1581                  */
1582                 tbio->bi_vcnt = vcnt;
1583                 tbio->bi_size = r10_bio->sectors << 9;
1584                 tbio->bi_idx = 0;
1585                 tbio->bi_phys_segments = 0;
1586                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1587                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1588                 tbio->bi_next = NULL;
1589                 tbio->bi_rw = WRITE;
1590                 tbio->bi_private = r10_bio;
1591                 tbio->bi_sector = r10_bio->devs[i].addr;
1592
1593                 for (j=0; j < vcnt ; j++) {
1594                         tbio->bi_io_vec[j].bv_offset = 0;
1595                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1596
1597                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1598                                page_address(fbio->bi_io_vec[j].bv_page),
1599                                PAGE_SIZE);
1600                 }
1601                 tbio->bi_end_io = end_sync_write;
1602
1603                 d = r10_bio->devs[i].devnum;
1604                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1605                 atomic_inc(&r10_bio->remaining);
1606                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1607
1608                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1609                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1610                 generic_make_request(tbio);
1611         }
1612
1613 done:
1614         if (atomic_dec_and_test(&r10_bio->remaining)) {
1615                 md_done_sync(mddev, r10_bio->sectors, 1);
1616                 put_buf(r10_bio);
1617         }
1618 }
1619
1620 /*
1621  * Now for the recovery code.
1622  * Recovery happens across physical sectors.
1623  * We recover all non-is_sync drives by finding the virtual address of
1624  * each, and then choose a working drive that also has that virt address.
1625  * There is a separate r10_bio for each non-in_sync drive.
1626  * Only the first two slots are in use. The first for reading,
1627  * The second for writing.
1628  *
1629  */
1630 static void fix_recovery_read_error(struct r10bio *r10_bio)
1631 {
1632         /* We got a read error during recovery.
1633          * We repeat the read in smaller page-sized sections.
1634          * If a read succeeds, write it to the new device or record
1635          * a bad block if we cannot.
1636          * If a read fails, record a bad block on both old and
1637          * new devices.
1638          */
1639         struct mddev *mddev = r10_bio->mddev;
1640         struct r10conf *conf = mddev->private;
1641         struct bio *bio = r10_bio->devs[0].bio;
1642         sector_t sect = 0;
1643         int sectors = r10_bio->sectors;
1644         int idx = 0;
1645         int dr = r10_bio->devs[0].devnum;
1646         int dw = r10_bio->devs[1].devnum;
1647
1648         while (sectors) {
1649                 int s = sectors;
1650                 struct md_rdev *rdev;
1651                 sector_t addr;
1652                 int ok;
1653
1654                 if (s > (PAGE_SIZE>>9))
1655                         s = PAGE_SIZE >> 9;
1656
1657                 rdev = conf->mirrors[dr].rdev;
1658                 addr = r10_bio->devs[0].addr + sect,
1659                 ok = sync_page_io(rdev,
1660                                   addr,
1661                                   s << 9,
1662                                   bio->bi_io_vec[idx].bv_page,
1663                                   READ, false);
1664                 if (ok) {
1665                         rdev = conf->mirrors[dw].rdev;
1666                         addr = r10_bio->devs[1].addr + sect;
1667                         ok = sync_page_io(rdev,
1668                                           addr,
1669                                           s << 9,
1670                                           bio->bi_io_vec[idx].bv_page,
1671                                           WRITE, false);
1672                         if (!ok)
1673                                 set_bit(WriteErrorSeen, &rdev->flags);
1674                 }
1675                 if (!ok) {
1676                         /* We don't worry if we cannot set a bad block -
1677                          * it really is bad so there is no loss in not
1678                          * recording it yet
1679                          */
1680                         rdev_set_badblocks(rdev, addr, s, 0);
1681
1682                         if (rdev != conf->mirrors[dw].rdev) {
1683                                 /* need bad block on destination too */
1684                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1685                                 addr = r10_bio->devs[1].addr + sect;
1686                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1687                                 if (!ok) {
1688                                         /* just abort the recovery */
1689                                         printk(KERN_NOTICE
1690                                                "md/raid10:%s: recovery aborted"
1691                                                " due to read error\n",
1692                                                mdname(mddev));
1693
1694                                         conf->mirrors[dw].recovery_disabled
1695                                                 = mddev->recovery_disabled;
1696                                         set_bit(MD_RECOVERY_INTR,
1697                                                 &mddev->recovery);
1698                                         break;
1699                                 }
1700                         }
1701                 }
1702
1703                 sectors -= s;
1704                 sect += s;
1705                 idx++;
1706         }
1707 }
1708
1709 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1710 {
1711         struct r10conf *conf = mddev->private;
1712         int d;
1713         struct bio *wbio;
1714
1715         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1716                 fix_recovery_read_error(r10_bio);
1717                 end_sync_request(r10_bio);
1718                 return;
1719         }
1720
1721         /*
1722          * share the pages with the first bio
1723          * and submit the write request
1724          */
1725         wbio = r10_bio->devs[1].bio;
1726         d = r10_bio->devs[1].devnum;
1727
1728         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1729         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1730         generic_make_request(wbio);
1731 }
1732
1733
1734 /*
1735  * Used by fix_read_error() to decay the per rdev read_errors.
1736  * We halve the read error count for every hour that has elapsed
1737  * since the last recorded read error.
1738  *
1739  */
1740 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1741 {
1742         struct timespec cur_time_mon;
1743         unsigned long hours_since_last;
1744         unsigned int read_errors = atomic_read(&rdev->read_errors);
1745
1746         ktime_get_ts(&cur_time_mon);
1747
1748         if (rdev->last_read_error.tv_sec == 0 &&
1749             rdev->last_read_error.tv_nsec == 0) {
1750                 /* first time we've seen a read error */
1751                 rdev->last_read_error = cur_time_mon;
1752                 return;
1753         }
1754
1755         hours_since_last = (cur_time_mon.tv_sec -
1756                             rdev->last_read_error.tv_sec) / 3600;
1757
1758         rdev->last_read_error = cur_time_mon;
1759
1760         /*
1761          * if hours_since_last is > the number of bits in read_errors
1762          * just set read errors to 0. We do this to avoid
1763          * overflowing the shift of read_errors by hours_since_last.
1764          */
1765         if (hours_since_last >= 8 * sizeof(read_errors))
1766                 atomic_set(&rdev->read_errors, 0);
1767         else
1768                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1769 }
1770
1771 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772                             int sectors, struct page *page, int rw)
1773 {
1774         sector_t first_bad;
1775         int bad_sectors;
1776
1777         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1778             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1779                 return -1;
1780         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1781                 /* success */
1782                 return 1;
1783         if (rw == WRITE)
1784                 set_bit(WriteErrorSeen, &rdev->flags);
1785         /* need to record an error - either for the block or the device */
1786         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1787                 md_error(rdev->mddev, rdev);
1788         return 0;
1789 }
1790
1791 /*
1792  * This is a kernel thread which:
1793  *
1794  *      1.      Retries failed read operations on working mirrors.
1795  *      2.      Updates the raid superblock when problems encounter.
1796  *      3.      Performs writes following reads for array synchronising.
1797  */
1798
1799 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
1800 {
1801         int sect = 0; /* Offset from r10_bio->sector */
1802         int sectors = r10_bio->sectors;
1803         struct md_rdev*rdev;
1804         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1805         int d = r10_bio->devs[r10_bio->read_slot].devnum;
1806
1807         /* still own a reference to this rdev, so it cannot
1808          * have been cleared recently.
1809          */
1810         rdev = conf->mirrors[d].rdev;
1811
1812         if (test_bit(Faulty, &rdev->flags))
1813                 /* drive has already been failed, just ignore any
1814                    more fix_read_error() attempts */
1815                 return;
1816
1817         check_decay_read_errors(mddev, rdev);
1818         atomic_inc(&rdev->read_errors);
1819         if (atomic_read(&rdev->read_errors) > max_read_errors) {
1820                 char b[BDEVNAME_SIZE];
1821                 bdevname(rdev->bdev, b);
1822
1823                 printk(KERN_NOTICE
1824                        "md/raid10:%s: %s: Raid device exceeded "
1825                        "read_error threshold [cur %d:max %d]\n",
1826                        mdname(mddev), b,
1827                        atomic_read(&rdev->read_errors), max_read_errors);
1828                 printk(KERN_NOTICE
1829                        "md/raid10:%s: %s: Failing raid device\n",
1830                        mdname(mddev), b);
1831                 md_error(mddev, conf->mirrors[d].rdev);
1832                 return;
1833         }
1834
1835         while(sectors) {
1836                 int s = sectors;
1837                 int sl = r10_bio->read_slot;
1838                 int success = 0;
1839                 int start;
1840
1841                 if (s > (PAGE_SIZE>>9))
1842                         s = PAGE_SIZE >> 9;
1843
1844                 rcu_read_lock();
1845                 do {
1846                         sector_t first_bad;
1847                         int bad_sectors;
1848
1849                         d = r10_bio->devs[sl].devnum;
1850                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1851                         if (rdev &&
1852                             test_bit(In_sync, &rdev->flags) &&
1853                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1854                                         &first_bad, &bad_sectors) == 0) {
1855                                 atomic_inc(&rdev->nr_pending);
1856                                 rcu_read_unlock();
1857                                 success = sync_page_io(rdev,
1858                                                        r10_bio->devs[sl].addr +
1859                                                        sect,
1860                                                        s<<9,
1861                                                        conf->tmppage, READ, false);
1862                                 rdev_dec_pending(rdev, mddev);
1863                                 rcu_read_lock();
1864                                 if (success)
1865                                         break;
1866                         }
1867                         sl++;
1868                         if (sl == conf->copies)
1869                                 sl = 0;
1870                 } while (!success && sl != r10_bio->read_slot);
1871                 rcu_read_unlock();
1872
1873                 if (!success) {
1874                         /* Cannot read from anywhere, just mark the block
1875                          * as bad on the first device to discourage future
1876                          * reads.
1877                          */
1878                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1879                         rdev = conf->mirrors[dn].rdev;
1880
1881                         if (!rdev_set_badblocks(
1882                                     rdev,
1883                                     r10_bio->devs[r10_bio->read_slot].addr
1884                                     + sect,
1885                                     s, 0))
1886                                 md_error(mddev, rdev);
1887                         break;
1888                 }
1889
1890                 start = sl;
1891                 /* write it back and re-read */
1892                 rcu_read_lock();
1893                 while (sl != r10_bio->read_slot) {
1894                         char b[BDEVNAME_SIZE];
1895
1896                         if (sl==0)
1897                                 sl = conf->copies;
1898                         sl--;
1899                         d = r10_bio->devs[sl].devnum;
1900                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1901                         if (!rdev ||
1902                             !test_bit(In_sync, &rdev->flags))
1903                                 continue;
1904
1905                         atomic_inc(&rdev->nr_pending);
1906                         rcu_read_unlock();
1907                         if (r10_sync_page_io(rdev,
1908                                              r10_bio->devs[sl].addr +
1909                                              sect,
1910                                              s<<9, conf->tmppage, WRITE)
1911                             == 0) {
1912                                 /* Well, this device is dead */
1913                                 printk(KERN_NOTICE
1914                                        "md/raid10:%s: read correction "
1915                                        "write failed"
1916                                        " (%d sectors at %llu on %s)\n",
1917                                        mdname(mddev), s,
1918                                        (unsigned long long)(
1919                                                sect + rdev->data_offset),
1920                                        bdevname(rdev->bdev, b));
1921                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1922                                        "drive\n",
1923                                        mdname(mddev),
1924                                        bdevname(rdev->bdev, b));
1925                         }
1926                         rdev_dec_pending(rdev, mddev);
1927                         rcu_read_lock();
1928                 }
1929                 sl = start;
1930                 while (sl != r10_bio->read_slot) {
1931                         char b[BDEVNAME_SIZE];
1932
1933                         if (sl==0)
1934                                 sl = conf->copies;
1935                         sl--;
1936                         d = r10_bio->devs[sl].devnum;
1937                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1938                         if (!rdev ||
1939                             !test_bit(In_sync, &rdev->flags))
1940                                 continue;
1941
1942                         atomic_inc(&rdev->nr_pending);
1943                         rcu_read_unlock();
1944                         switch (r10_sync_page_io(rdev,
1945                                              r10_bio->devs[sl].addr +
1946                                              sect,
1947                                              s<<9, conf->tmppage,
1948                                                  READ)) {
1949                         case 0:
1950                                 /* Well, this device is dead */
1951                                 printk(KERN_NOTICE
1952                                        "md/raid10:%s: unable to read back "
1953                                        "corrected sectors"
1954                                        " (%d sectors at %llu on %s)\n",
1955                                        mdname(mddev), s,
1956                                        (unsigned long long)(
1957                                                sect + rdev->data_offset),
1958                                        bdevname(rdev->bdev, b));
1959                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1960                                        "drive\n",
1961                                        mdname(mddev),
1962                                        bdevname(rdev->bdev, b));
1963                                 break;
1964                         case 1:
1965                                 printk(KERN_INFO
1966                                        "md/raid10:%s: read error corrected"
1967                                        " (%d sectors at %llu on %s)\n",
1968                                        mdname(mddev), s,
1969                                        (unsigned long long)(
1970                                                sect + rdev->data_offset),
1971                                        bdevname(rdev->bdev, b));
1972                                 atomic_add(s, &rdev->corrected_errors);
1973                         }
1974
1975                         rdev_dec_pending(rdev, mddev);
1976                         rcu_read_lock();
1977                 }
1978                 rcu_read_unlock();
1979
1980                 sectors -= s;
1981                 sect += s;
1982         }
1983 }
1984
1985 static void bi_complete(struct bio *bio, int error)
1986 {
1987         complete((struct completion *)bio->bi_private);
1988 }
1989
1990 static int submit_bio_wait(int rw, struct bio *bio)
1991 {
1992         struct completion event;
1993         rw |= REQ_SYNC;
1994
1995         init_completion(&event);
1996         bio->bi_private = &event;
1997         bio->bi_end_io = bi_complete;
1998         submit_bio(rw, bio);
1999         wait_for_completion(&event);
2000
2001         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2002 }
2003
2004 static int narrow_write_error(struct r10bio *r10_bio, int i)
2005 {
2006         struct bio *bio = r10_bio->master_bio;
2007         struct mddev *mddev = r10_bio->mddev;
2008         struct r10conf *conf = mddev->private;
2009         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2010         /* bio has the data to be written to slot 'i' where
2011          * we just recently had a write error.
2012          * We repeatedly clone the bio and trim down to one block,
2013          * then try the write.  Where the write fails we record
2014          * a bad block.
2015          * It is conceivable that the bio doesn't exactly align with
2016          * blocks.  We must handle this.
2017          *
2018          * We currently own a reference to the rdev.
2019          */
2020
2021         int block_sectors;
2022         sector_t sector;
2023         int sectors;
2024         int sect_to_write = r10_bio->sectors;
2025         int ok = 1;
2026
2027         if (rdev->badblocks.shift < 0)
2028                 return 0;
2029
2030         block_sectors = 1 << rdev->badblocks.shift;
2031         sector = r10_bio->sector;
2032         sectors = ((r10_bio->sector + block_sectors)
2033                    & ~(sector_t)(block_sectors - 1))
2034                 - sector;
2035
2036         while (sect_to_write) {
2037                 struct bio *wbio;
2038                 if (sectors > sect_to_write)
2039                         sectors = sect_to_write;
2040                 /* Write at 'sector' for 'sectors' */
2041                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2042                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2043                 wbio->bi_sector = (r10_bio->devs[i].addr+
2044                                    rdev->data_offset+
2045                                    (sector - r10_bio->sector));
2046                 wbio->bi_bdev = rdev->bdev;
2047                 if (submit_bio_wait(WRITE, wbio) == 0)
2048                         /* Failure! */
2049                         ok = rdev_set_badblocks(rdev, sector,
2050                                                 sectors, 0)
2051                                 && ok;
2052
2053                 bio_put(wbio);
2054                 sect_to_write -= sectors;
2055                 sector += sectors;
2056                 sectors = block_sectors;
2057         }
2058         return ok;
2059 }
2060
2061 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2062 {
2063         int slot = r10_bio->read_slot;
2064         int mirror = r10_bio->devs[slot].devnum;
2065         struct bio *bio;
2066         struct r10conf *conf = mddev->private;
2067         struct md_rdev *rdev;
2068         char b[BDEVNAME_SIZE];
2069         unsigned long do_sync;
2070         int max_sectors;
2071
2072         /* we got a read error. Maybe the drive is bad.  Maybe just
2073          * the block and we can fix it.
2074          * We freeze all other IO, and try reading the block from
2075          * other devices.  When we find one, we re-write
2076          * and check it that fixes the read error.
2077          * This is all done synchronously while the array is
2078          * frozen.
2079          */
2080         if (mddev->ro == 0) {
2081                 freeze_array(conf);
2082                 fix_read_error(conf, mddev, r10_bio);
2083                 unfreeze_array(conf);
2084         }
2085         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2086
2087         bio = r10_bio->devs[slot].bio;
2088         bdevname(bio->bi_bdev, b);
2089         r10_bio->devs[slot].bio =
2090                 mddev->ro ? IO_BLOCKED : NULL;
2091 read_more:
2092         mirror = read_balance(conf, r10_bio, &max_sectors);
2093         if (mirror == -1) {
2094                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2095                        " read error for block %llu\n",
2096                        mdname(mddev), b,
2097                        (unsigned long long)r10_bio->sector);
2098                 raid_end_bio_io(r10_bio);
2099                 bio_put(bio);
2100                 return;
2101         }
2102
2103         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2104         if (bio)
2105                 bio_put(bio);
2106         slot = r10_bio->read_slot;
2107         rdev = conf->mirrors[mirror].rdev;
2108         printk_ratelimited(
2109                 KERN_ERR
2110                 "md/raid10:%s: %s: redirecting"
2111                 "sector %llu to another mirror\n",
2112                 mdname(mddev),
2113                 bdevname(rdev->bdev, b),
2114                 (unsigned long long)r10_bio->sector);
2115         bio = bio_clone_mddev(r10_bio->master_bio,
2116                               GFP_NOIO, mddev);
2117         md_trim_bio(bio,
2118                     r10_bio->sector - bio->bi_sector,
2119                     max_sectors);
2120         r10_bio->devs[slot].bio = bio;
2121         bio->bi_sector = r10_bio->devs[slot].addr
2122                 + rdev->data_offset;
2123         bio->bi_bdev = rdev->bdev;
2124         bio->bi_rw = READ | do_sync;
2125         bio->bi_private = r10_bio;
2126         bio->bi_end_io = raid10_end_read_request;
2127         if (max_sectors < r10_bio->sectors) {
2128                 /* Drat - have to split this up more */
2129                 struct bio *mbio = r10_bio->master_bio;
2130                 int sectors_handled =
2131                         r10_bio->sector + max_sectors
2132                         - mbio->bi_sector;
2133                 r10_bio->sectors = max_sectors;
2134                 spin_lock_irq(&conf->device_lock);
2135                 if (mbio->bi_phys_segments == 0)
2136                         mbio->bi_phys_segments = 2;
2137                 else
2138                         mbio->bi_phys_segments++;
2139                 spin_unlock_irq(&conf->device_lock);
2140                 generic_make_request(bio);
2141                 bio = NULL;
2142
2143                 r10_bio = mempool_alloc(conf->r10bio_pool,
2144                                         GFP_NOIO);
2145                 r10_bio->master_bio = mbio;
2146                 r10_bio->sectors = (mbio->bi_size >> 9)
2147                         - sectors_handled;
2148                 r10_bio->state = 0;
2149                 set_bit(R10BIO_ReadError,
2150                         &r10_bio->state);
2151                 r10_bio->mddev = mddev;
2152                 r10_bio->sector = mbio->bi_sector
2153                         + sectors_handled;
2154
2155                 goto read_more;
2156         } else
2157                 generic_make_request(bio);
2158 }
2159
2160 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2161 {
2162         /* Some sort of write request has finished and it
2163          * succeeded in writing where we thought there was a
2164          * bad block.  So forget the bad block.
2165          * Or possibly if failed and we need to record
2166          * a bad block.
2167          */
2168         int m;
2169         struct md_rdev *rdev;
2170
2171         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2172             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2173                 for (m = 0; m < conf->copies; m++) {
2174                         int dev = r10_bio->devs[m].devnum;
2175                         rdev = conf->mirrors[dev].rdev;
2176                         if (r10_bio->devs[m].bio == NULL)
2177                                 continue;
2178                         if (test_bit(BIO_UPTODATE,
2179                                      &r10_bio->devs[m].bio->bi_flags)) {
2180                                 rdev_clear_badblocks(
2181                                         rdev,
2182                                         r10_bio->devs[m].addr,
2183                                         r10_bio->sectors);
2184                         } else {
2185                                 if (!rdev_set_badblocks(
2186                                             rdev,
2187                                             r10_bio->devs[m].addr,
2188                                             r10_bio->sectors, 0))
2189                                         md_error(conf->mddev, rdev);
2190                         }
2191                 }
2192                 put_buf(r10_bio);
2193         } else {
2194                 for (m = 0; m < conf->copies; m++) {
2195                         int dev = r10_bio->devs[m].devnum;
2196                         struct bio *bio = r10_bio->devs[m].bio;
2197                         rdev = conf->mirrors[dev].rdev;
2198                         if (bio == IO_MADE_GOOD) {
2199                                 rdev_clear_badblocks(
2200                                         rdev,
2201                                         r10_bio->devs[m].addr,
2202                                         r10_bio->sectors);
2203                                 rdev_dec_pending(rdev, conf->mddev);
2204                         } else if (bio != NULL &&
2205                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2206                                 if (!narrow_write_error(r10_bio, m)) {
2207                                         md_error(conf->mddev, rdev);
2208                                         set_bit(R10BIO_Degraded,
2209                                                 &r10_bio->state);
2210                                 }
2211                                 rdev_dec_pending(rdev, conf->mddev);
2212                         }
2213                 }
2214                 if (test_bit(R10BIO_WriteError,
2215                              &r10_bio->state))
2216                         close_write(r10_bio);
2217                 raid_end_bio_io(r10_bio);
2218         }
2219 }
2220
2221 static void raid10d(struct mddev *mddev)
2222 {
2223         struct r10bio *r10_bio;
2224         unsigned long flags;
2225         struct r10conf *conf = mddev->private;
2226         struct list_head *head = &conf->retry_list;
2227         struct blk_plug plug;
2228
2229         md_check_recovery(mddev);
2230
2231         blk_start_plug(&plug);
2232         for (;;) {
2233
2234                 flush_pending_writes(conf);
2235
2236                 spin_lock_irqsave(&conf->device_lock, flags);
2237                 if (list_empty(head)) {
2238                         spin_unlock_irqrestore(&conf->device_lock, flags);
2239                         break;
2240                 }
2241                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2242                 list_del(head->prev);
2243                 conf->nr_queued--;
2244                 spin_unlock_irqrestore(&conf->device_lock, flags);
2245
2246                 mddev = r10_bio->mddev;
2247                 conf = mddev->private;
2248                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249                     test_bit(R10BIO_WriteError, &r10_bio->state))
2250                         handle_write_completed(conf, r10_bio);
2251                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2252                         sync_request_write(mddev, r10_bio);
2253                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2254                         recovery_request_write(mddev, r10_bio);
2255                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2256                         handle_read_error(mddev, r10_bio);
2257                 else {
2258                         /* just a partial read to be scheduled from a
2259                          * separate context
2260                          */
2261                         int slot = r10_bio->read_slot;
2262                         generic_make_request(r10_bio->devs[slot].bio);
2263                 }
2264
2265                 cond_resched();
2266                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2267                         md_check_recovery(mddev);
2268         }
2269         blk_finish_plug(&plug);
2270 }
2271
2272
2273 static int init_resync(struct r10conf *conf)
2274 {
2275         int buffs;
2276
2277         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2278         BUG_ON(conf->r10buf_pool);
2279         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2280         if (!conf->r10buf_pool)
2281                 return -ENOMEM;
2282         conf->next_resync = 0;
2283         return 0;
2284 }
2285
2286 /*
2287  * perform a "sync" on one "block"
2288  *
2289  * We need to make sure that no normal I/O request - particularly write
2290  * requests - conflict with active sync requests.
2291  *
2292  * This is achieved by tracking pending requests and a 'barrier' concept
2293  * that can be installed to exclude normal IO requests.
2294  *
2295  * Resync and recovery are handled very differently.
2296  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2297  *
2298  * For resync, we iterate over virtual addresses, read all copies,
2299  * and update if there are differences.  If only one copy is live,
2300  * skip it.
2301  * For recovery, we iterate over physical addresses, read a good
2302  * value for each non-in_sync drive, and over-write.
2303  *
2304  * So, for recovery we may have several outstanding complex requests for a
2305  * given address, one for each out-of-sync device.  We model this by allocating
2306  * a number of r10_bio structures, one for each out-of-sync device.
2307  * As we setup these structures, we collect all bio's together into a list
2308  * which we then process collectively to add pages, and then process again
2309  * to pass to generic_make_request.
2310  *
2311  * The r10_bio structures are linked using a borrowed master_bio pointer.
2312  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2313  * has its remaining count decremented to 0, the whole complex operation
2314  * is complete.
2315  *
2316  */
2317
2318 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2319                              int *skipped, int go_faster)
2320 {
2321         struct r10conf *conf = mddev->private;
2322         struct r10bio *r10_bio;
2323         struct bio *biolist = NULL, *bio;
2324         sector_t max_sector, nr_sectors;
2325         int i;
2326         int max_sync;
2327         sector_t sync_blocks;
2328         sector_t sectors_skipped = 0;
2329         int chunks_skipped = 0;
2330
2331         if (!conf->r10buf_pool)
2332                 if (init_resync(conf))
2333                         return 0;
2334
2335  skipped:
2336         max_sector = mddev->dev_sectors;
2337         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2338                 max_sector = mddev->resync_max_sectors;
2339         if (sector_nr >= max_sector) {
2340                 /* If we aborted, we need to abort the
2341                  * sync on the 'current' bitmap chucks (there can
2342                  * be several when recovering multiple devices).
2343                  * as we may have started syncing it but not finished.
2344                  * We can find the current address in
2345                  * mddev->curr_resync, but for recovery,
2346                  * we need to convert that to several
2347                  * virtual addresses.
2348                  */
2349                 if (mddev->curr_resync < max_sector) { /* aborted */
2350                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2351                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2352                                                 &sync_blocks, 1);
2353                         else for (i=0; i<conf->raid_disks; i++) {
2354                                 sector_t sect =
2355                                         raid10_find_virt(conf, mddev->curr_resync, i);
2356                                 bitmap_end_sync(mddev->bitmap, sect,
2357                                                 &sync_blocks, 1);
2358                         }
2359                 } else /* completed sync */
2360                         conf->fullsync = 0;
2361
2362                 bitmap_close_sync(mddev->bitmap);
2363                 close_sync(conf);
2364                 *skipped = 1;
2365                 return sectors_skipped;
2366         }
2367         if (chunks_skipped >= conf->raid_disks) {
2368                 /* if there has been nothing to do on any drive,
2369                  * then there is nothing to do at all..
2370                  */
2371                 *skipped = 1;
2372                 return (max_sector - sector_nr) + sectors_skipped;
2373         }
2374
2375         if (max_sector > mddev->resync_max)
2376                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2377
2378         /* make sure whole request will fit in a chunk - if chunks
2379          * are meaningful
2380          */
2381         if (conf->near_copies < conf->raid_disks &&
2382             max_sector > (sector_nr | conf->chunk_mask))
2383                 max_sector = (sector_nr | conf->chunk_mask) + 1;
2384         /*
2385          * If there is non-resync activity waiting for us then
2386          * put in a delay to throttle resync.
2387          */
2388         if (!go_faster && conf->nr_waiting)
2389                 msleep_interruptible(1000);
2390
2391         /* Again, very different code for resync and recovery.
2392          * Both must result in an r10bio with a list of bios that
2393          * have bi_end_io, bi_sector, bi_bdev set,
2394          * and bi_private set to the r10bio.
2395          * For recovery, we may actually create several r10bios
2396          * with 2 bios in each, that correspond to the bios in the main one.
2397          * In this case, the subordinate r10bios link back through a
2398          * borrowed master_bio pointer, and the counter in the master
2399          * includes a ref from each subordinate.
2400          */
2401         /* First, we decide what to do and set ->bi_end_io
2402          * To end_sync_read if we want to read, and
2403          * end_sync_write if we will want to write.
2404          */
2405
2406         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2407         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2408                 /* recovery... the complicated one */
2409                 int j;
2410                 r10_bio = NULL;
2411
2412                 for (i=0 ; i<conf->raid_disks; i++) {
2413                         int still_degraded;
2414                         struct r10bio *rb2;
2415                         sector_t sect;
2416                         int must_sync;
2417                         int any_working;
2418
2419                         if (conf->mirrors[i].rdev == NULL ||
2420                             test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
2421                                 continue;
2422
2423                         still_degraded = 0;
2424                         /* want to reconstruct this device */
2425                         rb2 = r10_bio;
2426                         sect = raid10_find_virt(conf, sector_nr, i);
2427                         /* Unless we are doing a full sync, we only need
2428                          * to recover the block if it is set in the bitmap
2429                          */
2430                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2431                                                       &sync_blocks, 1);
2432                         if (sync_blocks < max_sync)
2433                                 max_sync = sync_blocks;
2434                         if (!must_sync &&
2435                             !conf->fullsync) {
2436                                 /* yep, skip the sync_blocks here, but don't assume
2437                                  * that there will never be anything to do here
2438                                  */
2439                                 chunks_skipped = -1;
2440                                 continue;
2441                         }
2442
2443                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2444                         raise_barrier(conf, rb2 != NULL);
2445                         atomic_set(&r10_bio->remaining, 0);
2446
2447                         r10_bio->master_bio = (struct bio*)rb2;
2448                         if (rb2)
2449                                 atomic_inc(&rb2->remaining);
2450                         r10_bio->mddev = mddev;
2451                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2452                         r10_bio->sector = sect;
2453
2454                         raid10_find_phys(conf, r10_bio);
2455
2456                         /* Need to check if the array will still be
2457                          * degraded
2458                          */
2459                         for (j=0; j<conf->raid_disks; j++)
2460                                 if (conf->mirrors[j].rdev == NULL ||
2461                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2462                                         still_degraded = 1;
2463                                         break;
2464                                 }
2465
2466                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2467                                                       &sync_blocks, still_degraded);
2468
2469                         any_working = 0;
2470                         for (j=0; j<conf->copies;j++) {
2471                                 int k;
2472                                 int d = r10_bio->devs[j].devnum;
2473                                 sector_t from_addr, to_addr;
2474                                 struct md_rdev *rdev;
2475                                 sector_t sector, first_bad;
2476                                 int bad_sectors;
2477                                 if (!conf->mirrors[d].rdev ||
2478                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2479                                         continue;
2480                                 /* This is where we read from */
2481                                 any_working = 1;
2482                                 rdev = conf->mirrors[d].rdev;
2483                                 sector = r10_bio->devs[j].addr;
2484
2485                                 if (is_badblock(rdev, sector, max_sync,
2486                                                 &first_bad, &bad_sectors)) {
2487                                         if (first_bad > sector)
2488                                                 max_sync = first_bad - sector;
2489                                         else {
2490                                                 bad_sectors -= (sector
2491                                                                 - first_bad);
2492                                                 if (max_sync > bad_sectors)
2493                                                         max_sync = bad_sectors;
2494                                                 continue;
2495                                         }
2496                                 }
2497                                 bio = r10_bio->devs[0].bio;
2498                                 bio->bi_next = biolist;
2499                                 biolist = bio;
2500                                 bio->bi_private = r10_bio;
2501                                 bio->bi_end_io = end_sync_read;
2502                                 bio->bi_rw = READ;
2503                                 from_addr = r10_bio->devs[j].addr;
2504                                 bio->bi_sector = from_addr +
2505                                         conf->mirrors[d].rdev->data_offset;
2506                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2507                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2508                                 atomic_inc(&r10_bio->remaining);
2509                                 /* and we write to 'i' */
2510
2511                                 for (k=0; k<conf->copies; k++)
2512                                         if (r10_bio->devs[k].devnum == i)
2513                                                 break;
2514                                 BUG_ON(k == conf->copies);
2515                                 bio = r10_bio->devs[1].bio;
2516                                 bio->bi_next = biolist;
2517                                 biolist = bio;
2518                                 bio->bi_private = r10_bio;
2519                                 bio->bi_end_io = end_sync_write;
2520                                 bio->bi_rw = WRITE;
2521                                 to_addr = r10_bio->devs[k].addr;
2522                                 bio->bi_sector = to_addr +
2523                                         conf->mirrors[i].rdev->data_offset;
2524                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2525
2526                                 r10_bio->devs[0].devnum = d;
2527                                 r10_bio->devs[0].addr = from_addr;
2528                                 r10_bio->devs[1].devnum = i;
2529                                 r10_bio->devs[1].addr = to_addr;
2530
2531                                 break;
2532                         }
2533                         if (j == conf->copies) {
2534                                 /* Cannot recover, so abort the recovery or
2535                                  * record a bad block */
2536                                 put_buf(r10_bio);
2537                                 if (rb2)
2538                                         atomic_dec(&rb2->remaining);
2539                                 r10_bio = rb2;
2540                                 if (any_working) {
2541                                         /* problem is that there are bad blocks
2542                                          * on other device(s)
2543                                          */
2544                                         int k;
2545                                         for (k = 0; k < conf->copies; k++)
2546                                                 if (r10_bio->devs[k].devnum == i)
2547                                                         break;
2548                                         if (!rdev_set_badblocks(
2549                                                     conf->mirrors[i].rdev,
2550                                                     r10_bio->devs[k].addr,
2551                                                     max_sync, 0))
2552                                                 any_working = 0;
2553                                 }
2554                                 if (!any_working)  {
2555                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
2556                                                               &mddev->recovery))
2557                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
2558                                                        "working devices for recovery.\n",
2559                                                        mdname(mddev));
2560                                         conf->mirrors[i].recovery_disabled
2561                                                 = mddev->recovery_disabled;
2562                                 }
2563                                 break;
2564                         }
2565                 }
2566                 if (biolist == NULL) {
2567                         while (r10_bio) {
2568                                 struct r10bio *rb2 = r10_bio;
2569                                 r10_bio = (struct r10bio*) rb2->master_bio;
2570                                 rb2->master_bio = NULL;
2571                                 put_buf(rb2);
2572                         }
2573                         goto giveup;
2574                 }
2575         } else {
2576                 /* resync. Schedule a read for every block at this virt offset */
2577                 int count = 0;
2578
2579                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2580
2581                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2582                                        &sync_blocks, mddev->degraded) &&
2583                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2584                                                  &mddev->recovery)) {
2585                         /* We can skip this block */
2586                         *skipped = 1;
2587                         return sync_blocks + sectors_skipped;
2588                 }
2589                 if (sync_blocks < max_sync)
2590                         max_sync = sync_blocks;
2591                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2592
2593                 r10_bio->mddev = mddev;
2594                 atomic_set(&r10_bio->remaining, 0);
2595                 raise_barrier(conf, 0);
2596                 conf->next_resync = sector_nr;
2597
2598                 r10_bio->master_bio = NULL;
2599                 r10_bio->sector = sector_nr;
2600                 set_bit(R10BIO_IsSync, &r10_bio->state);
2601                 raid10_find_phys(conf, r10_bio);
2602                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2603
2604                 for (i=0; i<conf->copies; i++) {
2605                         int d = r10_bio->devs[i].devnum;
2606                         sector_t first_bad, sector;
2607                         int bad_sectors;
2608
2609                         bio = r10_bio->devs[i].bio;
2610                         bio->bi_end_io = NULL;
2611                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2612                         if (conf->mirrors[d].rdev == NULL ||
2613                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2614                                 continue;
2615                         sector = r10_bio->devs[i].addr;
2616                         if (is_badblock(conf->mirrors[d].rdev,
2617                                         sector, max_sync,
2618                                         &first_bad, &bad_sectors)) {
2619                                 if (first_bad > sector)
2620                                         max_sync = first_bad - sector;
2621                                 else {
2622                                         bad_sectors -= (sector - first_bad);
2623                                         if (max_sync > bad_sectors)
2624                                                 max_sync = max_sync;
2625                                         continue;
2626                                 }
2627                         }
2628                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2629                         atomic_inc(&r10_bio->remaining);
2630                         bio->bi_next = biolist;
2631                         biolist = bio;
2632                         bio->bi_private = r10_bio;
2633                         bio->bi_end_io = end_sync_read;
2634                         bio->bi_rw = READ;
2635                         bio->bi_sector = sector +
2636                                 conf->mirrors[d].rdev->data_offset;
2637                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2638                         count++;
2639                 }
2640
2641                 if (count < 2) {
2642                         for (i=0; i<conf->copies; i++) {
2643                                 int d = r10_bio->devs[i].devnum;
2644                                 if (r10_bio->devs[i].bio->bi_end_io)
2645                                         rdev_dec_pending(conf->mirrors[d].rdev,
2646                                                          mddev);
2647                         }
2648                         put_buf(r10_bio);
2649                         biolist = NULL;
2650                         goto giveup;
2651                 }
2652         }
2653
2654         for (bio = biolist; bio ; bio=bio->bi_next) {
2655
2656                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2657                 if (bio->bi_end_io)
2658                         bio->bi_flags |= 1 << BIO_UPTODATE;
2659                 bio->bi_vcnt = 0;
2660                 bio->bi_idx = 0;
2661                 bio->bi_phys_segments = 0;
2662                 bio->bi_size = 0;
2663         }
2664
2665         nr_sectors = 0;
2666         if (sector_nr + max_sync < max_sector)
2667                 max_sector = sector_nr + max_sync;
2668         do {
2669                 struct page *page;
2670                 int len = PAGE_SIZE;
2671                 if (sector_nr + (len>>9) > max_sector)
2672                         len = (max_sector - sector_nr) << 9;
2673                 if (len == 0)
2674                         break;
2675                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2676                         struct bio *bio2;
2677                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2678                         if (bio_add_page(bio, page, len, 0))
2679                                 continue;
2680
2681                         /* stop here */
2682                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2683                         for (bio2 = biolist;
2684                              bio2 && bio2 != bio;
2685                              bio2 = bio2->bi_next) {
2686                                 /* remove last page from this bio */
2687                                 bio2->bi_vcnt--;
2688                                 bio2->bi_size -= len;
2689                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2690                         }
2691                         goto bio_full;
2692                 }
2693                 nr_sectors += len>>9;
2694                 sector_nr += len>>9;
2695         } while (biolist->bi_vcnt < RESYNC_PAGES);
2696  bio_full:
2697         r10_bio->sectors = nr_sectors;
2698
2699         while (biolist) {
2700                 bio = biolist;
2701                 biolist = biolist->bi_next;
2702
2703                 bio->bi_next = NULL;
2704                 r10_bio = bio->bi_private;
2705                 r10_bio->sectors = nr_sectors;
2706
2707                 if (bio->bi_end_io == end_sync_read) {
2708                         md_sync_acct(bio->bi_bdev, nr_sectors);
2709                         generic_make_request(bio);
2710                 }
2711         }
2712
2713         if (sectors_skipped)
2714                 /* pretend they weren't skipped, it makes
2715                  * no important difference in this case
2716                  */
2717                 md_done_sync(mddev, sectors_skipped, 1);
2718
2719         return sectors_skipped + nr_sectors;
2720  giveup:
2721         /* There is nowhere to write, so all non-sync
2722          * drives must be failed or in resync, all drives
2723          * have a bad block, so try the next chunk...
2724          */
2725         if (sector_nr + max_sync < max_sector)
2726                 max_sector = sector_nr + max_sync;
2727
2728         sectors_skipped += (max_sector - sector_nr);
2729         chunks_skipped ++;
2730         sector_nr = max_sector;
2731         goto skipped;
2732 }
2733
2734 static sector_t
2735 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2736 {
2737         sector_t size;
2738         struct r10conf *conf = mddev->private;
2739
2740         if (!raid_disks)
2741                 raid_disks = conf->raid_disks;
2742         if (!sectors)
2743                 sectors = conf->dev_sectors;
2744
2745         size = sectors >> conf->chunk_shift;
2746         sector_div(size, conf->far_copies);
2747         size = size * raid_disks;
2748         sector_div(size, conf->near_copies);
2749
2750         return size << conf->chunk_shift;
2751 }
2752
2753
2754 static struct r10conf *setup_conf(struct mddev *mddev)
2755 {
2756         struct r10conf *conf = NULL;
2757         int nc, fc, fo;
2758         sector_t stride, size;
2759         int err = -EINVAL;
2760
2761         if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2762             !is_power_of_2(mddev->new_chunk_sectors)) {
2763                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2764                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2765                        mdname(mddev), PAGE_SIZE);
2766                 goto out;
2767         }
2768
2769         nc = mddev->new_layout & 255;
2770         fc = (mddev->new_layout >> 8) & 255;
2771         fo = mddev->new_layout & (1<<16);
2772
2773         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2774             (mddev->new_layout >> 17)) {
2775                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2776                        mdname(mddev), mddev->new_layout);
2777                 goto out;
2778         }
2779
2780         err = -ENOMEM;
2781         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
2782         if (!conf)
2783                 goto out;
2784
2785         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2786                                 GFP_KERNEL);
2787         if (!conf->mirrors)
2788                 goto out;
2789
2790         conf->tmppage = alloc_page(GFP_KERNEL);
2791         if (!conf->tmppage)
2792                 goto out;
2793
2794
2795         conf->raid_disks = mddev->raid_disks;
2796         conf->near_copies = nc;
2797         conf->far_copies = fc;
2798         conf->copies = nc*fc;
2799         conf->far_offset = fo;
2800         conf->chunk_mask = mddev->new_chunk_sectors - 1;
2801         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2802
2803         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2804                                            r10bio_pool_free, conf);
2805         if (!conf->r10bio_pool)
2806                 goto out;
2807
2808         size = mddev->dev_sectors >> conf->chunk_shift;
2809         sector_div(size, fc);
2810         size = size * conf->raid_disks;
2811         sector_div(size, nc);
2812         /* 'size' is now the number of chunks in the array */
2813         /* calculate "used chunks per device" in 'stride' */
2814         stride = size * conf->copies;
2815
2816         /* We need to round up when dividing by raid_disks to
2817          * get the stride size.
2818          */
2819         stride += conf->raid_disks - 1;
2820         sector_div(stride, conf->raid_disks);
2821
2822         conf->dev_sectors = stride << conf->chunk_shift;
2823
2824         if (fo)
2825                 stride = 1;
2826         else
2827                 sector_div(stride, fc);
2828         conf->stride = stride << conf->chunk_shift;
2829
2830
2831         spin_lock_init(&conf->device_lock);
2832         INIT_LIST_HEAD(&conf->retry_list);
2833
2834         spin_lock_init(&conf->resync_lock);
2835         init_waitqueue_head(&conf->wait_barrier);
2836
2837         conf->thread = md_register_thread(raid10d, mddev, NULL);
2838         if (!conf->thread)
2839                 goto out;
2840
2841         conf->mddev = mddev;
2842         return conf;
2843
2844  out:
2845         printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2846                mdname(mddev));
2847         if (conf) {
2848                 if (conf->r10bio_pool)
2849                         mempool_destroy(conf->r10bio_pool);
2850                 kfree(conf->mirrors);
2851                 safe_put_page(conf->tmppage);
2852                 kfree(conf);
2853         }
2854         return ERR_PTR(err);
2855 }
2856
2857 static int run(struct mddev *mddev)
2858 {
2859         struct r10conf *conf;
2860         int i, disk_idx, chunk_size;
2861         struct mirror_info *disk;
2862         struct md_rdev *rdev;
2863         sector_t size;
2864
2865         /*
2866          * copy the already verified devices into our private RAID10
2867          * bookkeeping area. [whatever we allocate in run(),
2868          * should be freed in stop()]
2869          */
2870
2871         if (mddev->private == NULL) {
2872                 conf = setup_conf(mddev);
2873                 if (IS_ERR(conf))
2874                         return PTR_ERR(conf);
2875                 mddev->private = conf;
2876         }
2877         conf = mddev->private;
2878         if (!conf)
2879                 goto out;
2880
2881         mddev->thread = conf->thread;
2882         conf->thread = NULL;
2883
2884         chunk_size = mddev->chunk_sectors << 9;
2885         blk_queue_io_min(mddev->queue, chunk_size);
2886         if (conf->raid_disks % conf->near_copies)
2887                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2888         else
2889                 blk_queue_io_opt(mddev->queue, chunk_size *
2890                                  (conf->raid_disks / conf->near_copies));
2891
2892         list_for_each_entry(rdev, &mddev->disks, same_set) {
2893
2894                 disk_idx = rdev->raid_disk;
2895                 if (disk_idx >= conf->raid_disks
2896                     || disk_idx < 0)
2897                         continue;
2898                 disk = conf->mirrors + disk_idx;
2899
2900                 disk->rdev = rdev;
2901                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2902                                   rdev->data_offset << 9);
2903                 /* as we don't honour merge_bvec_fn, we must never risk
2904                  * violating it, so limit max_segments to 1 lying
2905                  * within a single page.
2906                  */
2907                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2908                         blk_queue_max_segments(mddev->queue, 1);
2909                         blk_queue_segment_boundary(mddev->queue,
2910                                                    PAGE_CACHE_SIZE - 1);
2911                 }
2912
2913                 disk->head_position = 0;
2914         }
2915         /* need to check that every block has at least one working mirror */
2916         if (!enough(conf, -1)) {
2917                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2918                        mdname(mddev));
2919                 goto out_free_conf;
2920         }
2921
2922         mddev->degraded = 0;
2923         for (i = 0; i < conf->raid_disks; i++) {
2924
2925                 disk = conf->mirrors + i;
2926
2927                 if (!disk->rdev ||
2928                     !test_bit(In_sync, &disk->rdev->flags)) {
2929                         disk->head_position = 0;
2930                         mddev->degraded++;
2931                         if (disk->rdev)
2932                                 conf->fullsync = 1;
2933                 }
2934         }
2935
2936         if (mddev->recovery_cp != MaxSector)
2937                 printk(KERN_NOTICE "md/raid10:%s: not clean"
2938                        " -- starting background reconstruction\n",
2939                        mdname(mddev));
2940         printk(KERN_INFO
2941                 "md/raid10:%s: active with %d out of %d devices\n",
2942                 mdname(mddev), conf->raid_disks - mddev->degraded,
2943                 conf->raid_disks);
2944         /*
2945          * Ok, everything is just fine now
2946          */
2947         mddev->dev_sectors = conf->dev_sectors;
2948         size = raid10_size(mddev, 0, 0);
2949         md_set_array_sectors(mddev, size);
2950         mddev->resync_max_sectors = size;
2951
2952         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2953         mddev->queue->backing_dev_info.congested_data = mddev;
2954
2955         /* Calculate max read-ahead size.
2956          * We need to readahead at least twice a whole stripe....
2957          * maybe...
2958          */
2959         {
2960                 int stripe = conf->raid_disks *
2961                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2962                 stripe /= conf->near_copies;
2963                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2964                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2965         }
2966
2967         if (conf->near_copies < conf->raid_disks)
2968                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2969
2970         if (md_integrity_register(mddev))
2971                 goto out_free_conf;
2972
2973         return 0;
2974
2975 out_free_conf:
2976         md_unregister_thread(&mddev->thread);
2977         if (conf->r10bio_pool)
2978                 mempool_destroy(conf->r10bio_pool);
2979         safe_put_page(conf->tmppage);
2980         kfree(conf->mirrors);
2981         kfree(conf);
2982         mddev->private = NULL;
2983 out:
2984         return -EIO;
2985 }
2986
2987 static int stop(struct mddev *mddev)
2988 {
2989         struct r10conf *conf = mddev->private;
2990
2991         raise_barrier(conf, 0);
2992         lower_barrier(conf);
2993
2994         md_unregister_thread(&mddev->thread);
2995         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2996         if (conf->r10bio_pool)
2997                 mempool_destroy(conf->r10bio_pool);
2998         kfree(conf->mirrors);
2999         kfree(conf);
3000         mddev->private = NULL;
3001         return 0;
3002 }
3003
3004 static void raid10_quiesce(struct mddev *mddev, int state)
3005 {
3006         struct r10conf *conf = mddev->private;
3007
3008         switch(state) {
3009         case 1:
3010                 raise_barrier(conf, 0);
3011                 break;
3012         case 0:
3013                 lower_barrier(conf);
3014                 break;
3015         }
3016 }
3017
3018 static void *raid10_takeover_raid0(struct mddev *mddev)
3019 {
3020         struct md_rdev *rdev;
3021         struct r10conf *conf;
3022
3023         if (mddev->degraded > 0) {
3024                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3025                        mdname(mddev));
3026                 return ERR_PTR(-EINVAL);
3027         }
3028
3029         /* Set new parameters */
3030         mddev->new_level = 10;
3031         /* new layout: far_copies = 1, near_copies = 2 */
3032         mddev->new_layout = (1<<8) + 2;
3033         mddev->new_chunk_sectors = mddev->chunk_sectors;
3034         mddev->delta_disks = mddev->raid_disks;
3035         mddev->raid_disks *= 2;
3036         /* make sure it will be not marked as dirty */
3037         mddev->recovery_cp = MaxSector;
3038
3039         conf = setup_conf(mddev);
3040         if (!IS_ERR(conf)) {
3041                 list_for_each_entry(rdev, &mddev->disks, same_set)
3042                         if (rdev->raid_disk >= 0)
3043                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3044                 conf->barrier = 1;
3045         }
3046
3047         return conf;
3048 }
3049
3050 static void *raid10_takeover(struct mddev *mddev)
3051 {
3052         struct r0conf *raid0_conf;
3053
3054         /* raid10 can take over:
3055          *  raid0 - providing it has only two drives
3056          */
3057         if (mddev->level == 0) {
3058                 /* for raid0 takeover only one zone is supported */
3059                 raid0_conf = mddev->private;
3060                 if (raid0_conf->nr_strip_zones > 1) {
3061                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3062                                " with more than one zone.\n",
3063                                mdname(mddev));
3064                         return ERR_PTR(-EINVAL);
3065                 }
3066                 return raid10_takeover_raid0(mddev);
3067         }
3068         return ERR_PTR(-EINVAL);
3069 }
3070
3071 static struct md_personality raid10_personality =
3072 {
3073         .name           = "raid10",
3074         .level          = 10,
3075         .owner          = THIS_MODULE,
3076         .make_request   = make_request,
3077         .run            = run,
3078         .stop           = stop,
3079         .status         = status,
3080         .error_handler  = error,
3081         .hot_add_disk   = raid10_add_disk,
3082         .hot_remove_disk= raid10_remove_disk,
3083         .spare_active   = raid10_spare_active,
3084         .sync_request   = sync_request,
3085         .quiesce        = raid10_quiesce,
3086         .size           = raid10_size,
3087         .takeover       = raid10_takeover,
3088 };
3089
3090 static int __init raid_init(void)
3091 {
3092         return register_md_personality(&raid10_personality);
3093 }
3094
3095 static void raid_exit(void)
3096 {
3097         unregister_md_personality(&raid10_personality);
3098 }
3099
3100 module_init(raid_init);
3101 module_exit(raid_exit);
3102 MODULE_LICENSE("GPL");
3103 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3104 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3105 MODULE_ALIAS("md-raid10");
3106 MODULE_ALIAS("md-level-10");
3107
3108 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);