md/raid10: fix bug which causes all RAID10 reshapes to move no data.
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 unsigned long flags;
396                 spin_lock_irqsave(&conf->device_lock, flags);
397                 if (!enough(conf, rdev->raid_disk))
398                         uptodate = 1;
399                 spin_unlock_irqrestore(&conf->device_lock, flags);
400         }
401         if (uptodate) {
402                 raid_end_bio_io(r10_bio);
403                 rdev_dec_pending(rdev, conf->mddev);
404         } else {
405                 /*
406                  * oops, read error - keep the refcount on the rdev
407                  */
408                 char b[BDEVNAME_SIZE];
409                 printk_ratelimited(KERN_ERR
410                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
411                                    mdname(conf->mddev),
412                                    bdevname(rdev->bdev, b),
413                                    (unsigned long long)r10_bio->sector);
414                 set_bit(R10BIO_ReadError, &r10_bio->state);
415                 reschedule_retry(r10_bio);
416         }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421         /* clear the bitmap if all writes complete successfully */
422         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423                         r10_bio->sectors,
424                         !test_bit(R10BIO_Degraded, &r10_bio->state),
425                         0);
426         md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431         if (atomic_dec_and_test(&r10_bio->remaining)) {
432                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433                         reschedule_retry(r10_bio);
434                 else {
435                         close_write(r10_bio);
436                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437                                 reschedule_retry(r10_bio);
438                         else
439                                 raid_end_bio_io(r10_bio);
440                 }
441         }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447         struct r10bio *r10_bio = bio->bi_private;
448         int dev;
449         int dec_rdev = 1;
450         struct r10conf *conf = r10_bio->mddev->private;
451         int slot, repl;
452         struct md_rdev *rdev = NULL;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (!uptodate) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 /*
494                  * Do not set R10BIO_Uptodate if the current device is
495                  * rebuilding or Faulty. This is because we cannot use
496                  * such device for properly reading the data back (we could
497                  * potentially use it, if the current write would have felt
498                  * before rdev->recovery_offset, but for simplicity we don't
499                  * check this here.
500                  */
501                 if (test_bit(In_sync, &rdev->flags) &&
502                     !test_bit(Faulty, &rdev->flags))
503                         set_bit(R10BIO_Uptodate, &r10_bio->state);
504
505                 /* Maybe we can clear some bad blocks. */
506                 if (is_badblock(rdev,
507                                 r10_bio->devs[slot].addr,
508                                 r10_bio->sectors,
509                                 &first_bad, &bad_sectors)) {
510                         bio_put(bio);
511                         if (repl)
512                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513                         else
514                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
515                         dec_rdev = 0;
516                         set_bit(R10BIO_MadeGood, &r10_bio->state);
517                 }
518         }
519
520         /*
521          *
522          * Let's see if all mirrored write operations have finished
523          * already.
524          */
525         one_write_done(r10_bio);
526         if (dec_rdev)
527                 rdev_dec_pending(rdev, conf->mddev);
528 }
529
530 /*
531  * RAID10 layout manager
532  * As well as the chunksize and raid_disks count, there are two
533  * parameters: near_copies and far_copies.
534  * near_copies * far_copies must be <= raid_disks.
535  * Normally one of these will be 1.
536  * If both are 1, we get raid0.
537  * If near_copies == raid_disks, we get raid1.
538  *
539  * Chunks are laid out in raid0 style with near_copies copies of the
540  * first chunk, followed by near_copies copies of the next chunk and
541  * so on.
542  * If far_copies > 1, then after 1/far_copies of the array has been assigned
543  * as described above, we start again with a device offset of near_copies.
544  * So we effectively have another copy of the whole array further down all
545  * the drives, but with blocks on different drives.
546  * With this layout, and block is never stored twice on the one device.
547  *
548  * raid10_find_phys finds the sector offset of a given virtual sector
549  * on each device that it is on.
550  *
551  * raid10_find_virt does the reverse mapping, from a device and a
552  * sector offset to a virtual address
553  */
554
555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
556 {
557         int n,f;
558         sector_t sector;
559         sector_t chunk;
560         sector_t stripe;
561         int dev;
562         int slot = 0;
563         int last_far_set_start, last_far_set_size;
564
565         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566         last_far_set_start *= geo->far_set_size;
567
568         last_far_set_size = geo->far_set_size;
569         last_far_set_size += (geo->raid_disks % geo->far_set_size);
570
571         /* now calculate first sector/dev */
572         chunk = r10bio->sector >> geo->chunk_shift;
573         sector = r10bio->sector & geo->chunk_mask;
574
575         chunk *= geo->near_copies;
576         stripe = chunk;
577         dev = sector_div(stripe, geo->raid_disks);
578         if (geo->far_offset)
579                 stripe *= geo->far_copies;
580
581         sector += stripe << geo->chunk_shift;
582
583         /* and calculate all the others */
584         for (n = 0; n < geo->near_copies; n++) {
585                 int d = dev;
586                 int set;
587                 sector_t s = sector;
588                 r10bio->devs[slot].devnum = d;
589                 r10bio->devs[slot].addr = s;
590                 slot++;
591
592                 for (f = 1; f < geo->far_copies; f++) {
593                         set = d / geo->far_set_size;
594                         d += geo->near_copies;
595
596                         if ((geo->raid_disks % geo->far_set_size) &&
597                             (d > last_far_set_start)) {
598                                 d -= last_far_set_start;
599                                 d %= last_far_set_size;
600                                 d += last_far_set_start;
601                         } else {
602                                 d %= geo->far_set_size;
603                                 d += geo->far_set_size * set;
604                         }
605                         s += geo->stride;
606                         r10bio->devs[slot].devnum = d;
607                         r10bio->devs[slot].addr = s;
608                         slot++;
609                 }
610                 dev++;
611                 if (dev >= geo->raid_disks) {
612                         dev = 0;
613                         sector += (geo->chunk_mask + 1);
614                 }
615         }
616 }
617
618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619 {
620         struct geom *geo = &conf->geo;
621
622         if (conf->reshape_progress != MaxSector &&
623             ((r10bio->sector >= conf->reshape_progress) !=
624              conf->mddev->reshape_backwards)) {
625                 set_bit(R10BIO_Previous, &r10bio->state);
626                 geo = &conf->prev;
627         } else
628                 clear_bit(R10BIO_Previous, &r10bio->state);
629
630         __raid10_find_phys(geo, r10bio);
631 }
632
633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
634 {
635         sector_t offset, chunk, vchunk;
636         /* Never use conf->prev as this is only called during resync
637          * or recovery, so reshape isn't happening
638          */
639         struct geom *geo = &conf->geo;
640         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641         int far_set_size = geo->far_set_size;
642         int last_far_set_start;
643
644         if (geo->raid_disks % geo->far_set_size) {
645                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646                 last_far_set_start *= geo->far_set_size;
647
648                 if (dev >= last_far_set_start) {
649                         far_set_size = geo->far_set_size;
650                         far_set_size += (geo->raid_disks % geo->far_set_size);
651                         far_set_start = last_far_set_start;
652                 }
653         }
654
655         offset = sector & geo->chunk_mask;
656         if (geo->far_offset) {
657                 int fc;
658                 chunk = sector >> geo->chunk_shift;
659                 fc = sector_div(chunk, geo->far_copies);
660                 dev -= fc * geo->near_copies;
661                 if (dev < far_set_start)
662                         dev += far_set_size;
663         } else {
664                 while (sector >= geo->stride) {
665                         sector -= geo->stride;
666                         if (dev < (geo->near_copies + far_set_start))
667                                 dev += far_set_size - geo->near_copies;
668                         else
669                                 dev -= geo->near_copies;
670                 }
671                 chunk = sector >> geo->chunk_shift;
672         }
673         vchunk = chunk * geo->raid_disks + dev;
674         sector_div(vchunk, geo->near_copies);
675         return (vchunk << geo->chunk_shift) + offset;
676 }
677
678 /**
679  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
680  *      @q: request queue
681  *      @bvm: properties of new bio
682  *      @biovec: the request that could be merged to it.
683  *
684  *      Return amount of bytes we can accept at this offset
685  *      This requires checking for end-of-chunk if near_copies != raid_disks,
686  *      and for subordinate merge_bvec_fns if merge_check_needed.
687  */
688 static int raid10_mergeable_bvec(struct request_queue *q,
689                                  struct bvec_merge_data *bvm,
690                                  struct bio_vec *biovec)
691 {
692         struct mddev *mddev = q->queuedata;
693         struct r10conf *conf = mddev->private;
694         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
695         int max;
696         unsigned int chunk_sectors;
697         unsigned int bio_sectors = bvm->bi_size >> 9;
698         struct geom *geo = &conf->geo;
699
700         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
701         if (conf->reshape_progress != MaxSector &&
702             ((sector >= conf->reshape_progress) !=
703              conf->mddev->reshape_backwards))
704                 geo = &conf->prev;
705
706         if (geo->near_copies < geo->raid_disks) {
707                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
708                                         + bio_sectors)) << 9;
709                 if (max < 0)
710                         /* bio_add cannot handle a negative return */
711                         max = 0;
712                 if (max <= biovec->bv_len && bio_sectors == 0)
713                         return biovec->bv_len;
714         } else
715                 max = biovec->bv_len;
716
717         if (mddev->merge_check_needed) {
718                 struct {
719                         struct r10bio r10_bio;
720                         struct r10dev devs[conf->copies];
721                 } on_stack;
722                 struct r10bio *r10_bio = &on_stack.r10_bio;
723                 int s;
724                 if (conf->reshape_progress != MaxSector) {
725                         /* Cannot give any guidance during reshape */
726                         if (max <= biovec->bv_len && bio_sectors == 0)
727                                 return biovec->bv_len;
728                         return 0;
729                 }
730                 r10_bio->sector = sector;
731                 raid10_find_phys(conf, r10_bio);
732                 rcu_read_lock();
733                 for (s = 0; s < conf->copies; s++) {
734                         int disk = r10_bio->devs[s].devnum;
735                         struct md_rdev *rdev = rcu_dereference(
736                                 conf->mirrors[disk].rdev);
737                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
738                                 struct request_queue *q =
739                                         bdev_get_queue(rdev->bdev);
740                                 if (q->merge_bvec_fn) {
741                                         bvm->bi_sector = r10_bio->devs[s].addr
742                                                 + rdev->data_offset;
743                                         bvm->bi_bdev = rdev->bdev;
744                                         max = min(max, q->merge_bvec_fn(
745                                                           q, bvm, biovec));
746                                 }
747                         }
748                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
749                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
750                                 struct request_queue *q =
751                                         bdev_get_queue(rdev->bdev);
752                                 if (q->merge_bvec_fn) {
753                                         bvm->bi_sector = r10_bio->devs[s].addr
754                                                 + rdev->data_offset;
755                                         bvm->bi_bdev = rdev->bdev;
756                                         max = min(max, q->merge_bvec_fn(
757                                                           q, bvm, biovec));
758                                 }
759                         }
760                 }
761                 rcu_read_unlock();
762         }
763         return max;
764 }
765
766 /*
767  * This routine returns the disk from which the requested read should
768  * be done. There is a per-array 'next expected sequential IO' sector
769  * number - if this matches on the next IO then we use the last disk.
770  * There is also a per-disk 'last know head position' sector that is
771  * maintained from IRQ contexts, both the normal and the resync IO
772  * completion handlers update this position correctly. If there is no
773  * perfect sequential match then we pick the disk whose head is closest.
774  *
775  * If there are 2 mirrors in the same 2 devices, performance degrades
776  * because position is mirror, not device based.
777  *
778  * The rdev for the device selected will have nr_pending incremented.
779  */
780
781 /*
782  * FIXME: possibly should rethink readbalancing and do it differently
783  * depending on near_copies / far_copies geometry.
784  */
785 static struct md_rdev *read_balance(struct r10conf *conf,
786                                     struct r10bio *r10_bio,
787                                     int *max_sectors)
788 {
789         const sector_t this_sector = r10_bio->sector;
790         int disk, slot;
791         int sectors = r10_bio->sectors;
792         int best_good_sectors;
793         sector_t new_distance, best_dist;
794         struct md_rdev *best_rdev, *rdev = NULL;
795         int do_balance;
796         int best_slot;
797         struct geom *geo = &conf->geo;
798
799         raid10_find_phys(conf, r10_bio);
800         rcu_read_lock();
801 retry:
802         sectors = r10_bio->sectors;
803         best_slot = -1;
804         best_rdev = NULL;
805         best_dist = MaxSector;
806         best_good_sectors = 0;
807         do_balance = 1;
808         /*
809          * Check if we can balance. We can balance on the whole
810          * device if no resync is going on (recovery is ok), or below
811          * the resync window. We take the first readable disk when
812          * above the resync window.
813          */
814         if (conf->mddev->recovery_cp < MaxSector
815             && (this_sector + sectors >= conf->next_resync))
816                 do_balance = 0;
817
818         for (slot = 0; slot < conf->copies ; slot++) {
819                 sector_t first_bad;
820                 int bad_sectors;
821                 sector_t dev_sector;
822
823                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
824                         continue;
825                 disk = r10_bio->devs[slot].devnum;
826                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
827                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
828                     test_bit(Unmerged, &rdev->flags) ||
829                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
830                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
831                 if (rdev == NULL ||
832                     test_bit(Faulty, &rdev->flags) ||
833                     test_bit(Unmerged, &rdev->flags))
834                         continue;
835                 if (!test_bit(In_sync, &rdev->flags) &&
836                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
837                         continue;
838
839                 dev_sector = r10_bio->devs[slot].addr;
840                 if (is_badblock(rdev, dev_sector, sectors,
841                                 &first_bad, &bad_sectors)) {
842                         if (best_dist < MaxSector)
843                                 /* Already have a better slot */
844                                 continue;
845                         if (first_bad <= dev_sector) {
846                                 /* Cannot read here.  If this is the
847                                  * 'primary' device, then we must not read
848                                  * beyond 'bad_sectors' from another device.
849                                  */
850                                 bad_sectors -= (dev_sector - first_bad);
851                                 if (!do_balance && sectors > bad_sectors)
852                                         sectors = bad_sectors;
853                                 if (best_good_sectors > sectors)
854                                         best_good_sectors = sectors;
855                         } else {
856                                 sector_t good_sectors =
857                                         first_bad - dev_sector;
858                                 if (good_sectors > best_good_sectors) {
859                                         best_good_sectors = good_sectors;
860                                         best_slot = slot;
861                                         best_rdev = rdev;
862                                 }
863                                 if (!do_balance)
864                                         /* Must read from here */
865                                         break;
866                         }
867                         continue;
868                 } else
869                         best_good_sectors = sectors;
870
871                 if (!do_balance)
872                         break;
873
874                 /* This optimisation is debatable, and completely destroys
875                  * sequential read speed for 'far copies' arrays.  So only
876                  * keep it for 'near' arrays, and review those later.
877                  */
878                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
879                         break;
880
881                 /* for far > 1 always use the lowest address */
882                 if (geo->far_copies > 1)
883                         new_distance = r10_bio->devs[slot].addr;
884                 else
885                         new_distance = abs(r10_bio->devs[slot].addr -
886                                            conf->mirrors[disk].head_position);
887                 if (new_distance < best_dist) {
888                         best_dist = new_distance;
889                         best_slot = slot;
890                         best_rdev = rdev;
891                 }
892         }
893         if (slot >= conf->copies) {
894                 slot = best_slot;
895                 rdev = best_rdev;
896         }
897
898         if (slot >= 0) {
899                 atomic_inc(&rdev->nr_pending);
900                 if (test_bit(Faulty, &rdev->flags)) {
901                         /* Cannot risk returning a device that failed
902                          * before we inc'ed nr_pending
903                          */
904                         rdev_dec_pending(rdev, conf->mddev);
905                         goto retry;
906                 }
907                 r10_bio->read_slot = slot;
908         } else
909                 rdev = NULL;
910         rcu_read_unlock();
911         *max_sectors = best_good_sectors;
912
913         return rdev;
914 }
915
916 int md_raid10_congested(struct mddev *mddev, int bits)
917 {
918         struct r10conf *conf = mddev->private;
919         int i, ret = 0;
920
921         if ((bits & (1 << BDI_async_congested)) &&
922             conf->pending_count >= max_queued_requests)
923                 return 1;
924
925         rcu_read_lock();
926         for (i = 0;
927              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
928                      && ret == 0;
929              i++) {
930                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
931                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
932                         struct request_queue *q = bdev_get_queue(rdev->bdev);
933
934                         ret |= bdi_congested(&q->backing_dev_info, bits);
935                 }
936         }
937         rcu_read_unlock();
938         return ret;
939 }
940 EXPORT_SYMBOL_GPL(md_raid10_congested);
941
942 static int raid10_congested(void *data, int bits)
943 {
944         struct mddev *mddev = data;
945
946         return mddev_congested(mddev, bits) ||
947                 md_raid10_congested(mddev, bits);
948 }
949
950 static void flush_pending_writes(struct r10conf *conf)
951 {
952         /* Any writes that have been queued but are awaiting
953          * bitmap updates get flushed here.
954          */
955         spin_lock_irq(&conf->device_lock);
956
957         if (conf->pending_bio_list.head) {
958                 struct bio *bio;
959                 bio = bio_list_get(&conf->pending_bio_list);
960                 conf->pending_count = 0;
961                 spin_unlock_irq(&conf->device_lock);
962                 /* flush any pending bitmap writes to disk
963                  * before proceeding w/ I/O */
964                 bitmap_unplug(conf->mddev->bitmap);
965                 wake_up(&conf->wait_barrier);
966
967                 while (bio) { /* submit pending writes */
968                         struct bio *next = bio->bi_next;
969                         bio->bi_next = NULL;
970                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
971                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
972                                 /* Just ignore it */
973                                 bio_endio(bio, 0);
974                         else
975                                 generic_make_request(bio);
976                         bio = next;
977                 }
978         } else
979                 spin_unlock_irq(&conf->device_lock);
980 }
981
982 /* Barriers....
983  * Sometimes we need to suspend IO while we do something else,
984  * either some resync/recovery, or reconfigure the array.
985  * To do this we raise a 'barrier'.
986  * The 'barrier' is a counter that can be raised multiple times
987  * to count how many activities are happening which preclude
988  * normal IO.
989  * We can only raise the barrier if there is no pending IO.
990  * i.e. if nr_pending == 0.
991  * We choose only to raise the barrier if no-one is waiting for the
992  * barrier to go down.  This means that as soon as an IO request
993  * is ready, no other operations which require a barrier will start
994  * until the IO request has had a chance.
995  *
996  * So: regular IO calls 'wait_barrier'.  When that returns there
997  *    is no backgroup IO happening,  It must arrange to call
998  *    allow_barrier when it has finished its IO.
999  * backgroup IO calls must call raise_barrier.  Once that returns
1000  *    there is no normal IO happeing.  It must arrange to call
1001  *    lower_barrier when the particular background IO completes.
1002  */
1003
1004 static void raise_barrier(struct r10conf *conf, int force)
1005 {
1006         BUG_ON(force && !conf->barrier);
1007         spin_lock_irq(&conf->resync_lock);
1008
1009         /* Wait until no block IO is waiting (unless 'force') */
1010         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1011                             conf->resync_lock);
1012
1013         /* block any new IO from starting */
1014         conf->barrier++;
1015
1016         /* Now wait for all pending IO to complete */
1017         wait_event_lock_irq(conf->wait_barrier,
1018                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1019                             conf->resync_lock);
1020
1021         spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void lower_barrier(struct r10conf *conf)
1025 {
1026         unsigned long flags;
1027         spin_lock_irqsave(&conf->resync_lock, flags);
1028         conf->barrier--;
1029         spin_unlock_irqrestore(&conf->resync_lock, flags);
1030         wake_up(&conf->wait_barrier);
1031 }
1032
1033 static void wait_barrier(struct r10conf *conf)
1034 {
1035         spin_lock_irq(&conf->resync_lock);
1036         if (conf->barrier) {
1037                 conf->nr_waiting++;
1038                 /* Wait for the barrier to drop.
1039                  * However if there are already pending
1040                  * requests (preventing the barrier from
1041                  * rising completely), and the
1042                  * pre-process bio queue isn't empty,
1043                  * then don't wait, as we need to empty
1044                  * that queue to get the nr_pending
1045                  * count down.
1046                  */
1047                 wait_event_lock_irq(conf->wait_barrier,
1048                                     !conf->barrier ||
1049                                     (conf->nr_pending &&
1050                                      current->bio_list &&
1051                                      !bio_list_empty(current->bio_list)),
1052                                     conf->resync_lock);
1053                 conf->nr_waiting--;
1054         }
1055         conf->nr_pending++;
1056         spin_unlock_irq(&conf->resync_lock);
1057 }
1058
1059 static void allow_barrier(struct r10conf *conf)
1060 {
1061         unsigned long flags;
1062         spin_lock_irqsave(&conf->resync_lock, flags);
1063         conf->nr_pending--;
1064         spin_unlock_irqrestore(&conf->resync_lock, flags);
1065         wake_up(&conf->wait_barrier);
1066 }
1067
1068 static void freeze_array(struct r10conf *conf, int extra)
1069 {
1070         /* stop syncio and normal IO and wait for everything to
1071          * go quiet.
1072          * We increment barrier and nr_waiting, and then
1073          * wait until nr_pending match nr_queued+extra
1074          * This is called in the context of one normal IO request
1075          * that has failed. Thus any sync request that might be pending
1076          * will be blocked by nr_pending, and we need to wait for
1077          * pending IO requests to complete or be queued for re-try.
1078          * Thus the number queued (nr_queued) plus this request (extra)
1079          * must match the number of pending IOs (nr_pending) before
1080          * we continue.
1081          */
1082         spin_lock_irq(&conf->resync_lock);
1083         conf->barrier++;
1084         conf->nr_waiting++;
1085         wait_event_lock_irq_cmd(conf->wait_barrier,
1086                                 conf->nr_pending == conf->nr_queued+extra,
1087                                 conf->resync_lock,
1088                                 flush_pending_writes(conf));
1089
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static void unfreeze_array(struct r10conf *conf)
1094 {
1095         /* reverse the effect of the freeze */
1096         spin_lock_irq(&conf->resync_lock);
1097         conf->barrier--;
1098         conf->nr_waiting--;
1099         wake_up(&conf->wait_barrier);
1100         spin_unlock_irq(&conf->resync_lock);
1101 }
1102
1103 static sector_t choose_data_offset(struct r10bio *r10_bio,
1104                                    struct md_rdev *rdev)
1105 {
1106         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1107             test_bit(R10BIO_Previous, &r10_bio->state))
1108                 return rdev->data_offset;
1109         else
1110                 return rdev->new_data_offset;
1111 }
1112
1113 struct raid10_plug_cb {
1114         struct blk_plug_cb      cb;
1115         struct bio_list         pending;
1116         int                     pending_cnt;
1117 };
1118
1119 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1120 {
1121         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1122                                                    cb);
1123         struct mddev *mddev = plug->cb.data;
1124         struct r10conf *conf = mddev->private;
1125         struct bio *bio;
1126
1127         if (from_schedule || current->bio_list) {
1128                 spin_lock_irq(&conf->device_lock);
1129                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130                 conf->pending_count += plug->pending_cnt;
1131                 spin_unlock_irq(&conf->device_lock);
1132                 wake_up(&conf->wait_barrier);
1133                 md_wakeup_thread(mddev->thread);
1134                 kfree(plug);
1135                 return;
1136         }
1137
1138         /* we aren't scheduling, so we can do the write-out directly. */
1139         bio = bio_list_get(&plug->pending);
1140         bitmap_unplug(mddev->bitmap);
1141         wake_up(&conf->wait_barrier);
1142
1143         while (bio) { /* submit pending writes */
1144                 struct bio *next = bio->bi_next;
1145                 bio->bi_next = NULL;
1146                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1147                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1148                         /* Just ignore it */
1149                         bio_endio(bio, 0);
1150                 else
1151                         generic_make_request(bio);
1152                 bio = next;
1153         }
1154         kfree(plug);
1155 }
1156
1157 static void make_request(struct mddev *mddev, struct bio * bio)
1158 {
1159         struct r10conf *conf = mddev->private;
1160         struct r10bio *r10_bio;
1161         struct bio *read_bio;
1162         int i;
1163         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1164         int chunk_sects = chunk_mask + 1;
1165         const int rw = bio_data_dir(bio);
1166         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1167         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1168         const unsigned long do_discard = (bio->bi_rw
1169                                           & (REQ_DISCARD | REQ_SECURE));
1170         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1171         unsigned long flags;
1172         struct md_rdev *blocked_rdev;
1173         struct blk_plug_cb *cb;
1174         struct raid10_plug_cb *plug = NULL;
1175         int sectors_handled;
1176         int max_sectors;
1177         int sectors;
1178
1179         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1180                 md_flush_request(mddev, bio);
1181                 return;
1182         }
1183
1184         /* If this request crosses a chunk boundary, we need to
1185          * split it.  This will only happen for 1 PAGE (or less) requests.
1186          */
1187         if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1188                      > chunk_sects
1189                      && (conf->geo.near_copies < conf->geo.raid_disks
1190                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1191                 struct bio_pair *bp;
1192                 /* Sanity check -- queue functions should prevent this happening */
1193                 if (bio_segments(bio) > 1)
1194                         goto bad_map;
1195                 /* This is a one page bio that upper layers
1196                  * refuse to split for us, so we need to split it.
1197                  */
1198                 bp = bio_split(bio,
1199                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1200
1201                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1202                  * If the first succeeds but the second blocks due to the resync
1203                  * thread raising the barrier, we will deadlock because the
1204                  * IO to the underlying device will be queued in generic_make_request
1205                  * and will never complete, so will never reduce nr_pending.
1206                  * So increment nr_waiting here so no new raise_barriers will
1207                  * succeed, and so the second wait_barrier cannot block.
1208                  */
1209                 spin_lock_irq(&conf->resync_lock);
1210                 conf->nr_waiting++;
1211                 spin_unlock_irq(&conf->resync_lock);
1212
1213                 make_request(mddev, &bp->bio1);
1214                 make_request(mddev, &bp->bio2);
1215
1216                 spin_lock_irq(&conf->resync_lock);
1217                 conf->nr_waiting--;
1218                 wake_up(&conf->wait_barrier);
1219                 spin_unlock_irq(&conf->resync_lock);
1220
1221                 bio_pair_release(bp);
1222                 return;
1223         bad_map:
1224                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1225                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1226                        (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1227
1228                 bio_io_error(bio);
1229                 return;
1230         }
1231
1232         md_write_start(mddev, bio);
1233
1234         /*
1235          * Register the new request and wait if the reconstruction
1236          * thread has put up a bar for new requests.
1237          * Continue immediately if no resync is active currently.
1238          */
1239         wait_barrier(conf);
1240
1241         sectors = bio_sectors(bio);
1242         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1243             bio->bi_sector < conf->reshape_progress &&
1244             bio->bi_sector + sectors > conf->reshape_progress) {
1245                 /* IO spans the reshape position.  Need to wait for
1246                  * reshape to pass
1247                  */
1248                 allow_barrier(conf);
1249                 wait_event(conf->wait_barrier,
1250                            conf->reshape_progress <= bio->bi_sector ||
1251                            conf->reshape_progress >= bio->bi_sector + sectors);
1252                 wait_barrier(conf);
1253         }
1254         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1255             bio_data_dir(bio) == WRITE &&
1256             (mddev->reshape_backwards
1257              ? (bio->bi_sector < conf->reshape_safe &&
1258                 bio->bi_sector + sectors > conf->reshape_progress)
1259              : (bio->bi_sector + sectors > conf->reshape_safe &&
1260                 bio->bi_sector < conf->reshape_progress))) {
1261                 /* Need to update reshape_position in metadata */
1262                 mddev->reshape_position = conf->reshape_progress;
1263                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1264                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1265                 md_wakeup_thread(mddev->thread);
1266                 wait_event(mddev->sb_wait,
1267                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1268
1269                 conf->reshape_safe = mddev->reshape_position;
1270         }
1271
1272         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273
1274         r10_bio->master_bio = bio;
1275         r10_bio->sectors = sectors;
1276
1277         r10_bio->mddev = mddev;
1278         r10_bio->sector = bio->bi_sector;
1279         r10_bio->state = 0;
1280
1281         /* We might need to issue multiple reads to different
1282          * devices if there are bad blocks around, so we keep
1283          * track of the number of reads in bio->bi_phys_segments.
1284          * If this is 0, there is only one r10_bio and no locking
1285          * will be needed when the request completes.  If it is
1286          * non-zero, then it is the number of not-completed requests.
1287          */
1288         bio->bi_phys_segments = 0;
1289         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1290
1291         if (rw == READ) {
1292                 /*
1293                  * read balancing logic:
1294                  */
1295                 struct md_rdev *rdev;
1296                 int slot;
1297
1298 read_again:
1299                 rdev = read_balance(conf, r10_bio, &max_sectors);
1300                 if (!rdev) {
1301                         raid_end_bio_io(r10_bio);
1302                         return;
1303                 }
1304                 slot = r10_bio->read_slot;
1305
1306                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1307                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1308                             max_sectors);
1309
1310                 r10_bio->devs[slot].bio = read_bio;
1311                 r10_bio->devs[slot].rdev = rdev;
1312
1313                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1314                         choose_data_offset(r10_bio, rdev);
1315                 read_bio->bi_bdev = rdev->bdev;
1316                 read_bio->bi_end_io = raid10_end_read_request;
1317                 read_bio->bi_rw = READ | do_sync;
1318                 read_bio->bi_private = r10_bio;
1319
1320                 if (max_sectors < r10_bio->sectors) {
1321                         /* Could not read all from this device, so we will
1322                          * need another r10_bio.
1323                          */
1324                         sectors_handled = (r10_bio->sectors + max_sectors
1325                                            - bio->bi_sector);
1326                         r10_bio->sectors = max_sectors;
1327                         spin_lock_irq(&conf->device_lock);
1328                         if (bio->bi_phys_segments == 0)
1329                                 bio->bi_phys_segments = 2;
1330                         else
1331                                 bio->bi_phys_segments++;
1332                         spin_unlock(&conf->device_lock);
1333                         /* Cannot call generic_make_request directly
1334                          * as that will be queued in __generic_make_request
1335                          * and subsequent mempool_alloc might block
1336                          * waiting for it.  so hand bio over to raid10d.
1337                          */
1338                         reschedule_retry(r10_bio);
1339
1340                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1341
1342                         r10_bio->master_bio = bio;
1343                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1344                         r10_bio->state = 0;
1345                         r10_bio->mddev = mddev;
1346                         r10_bio->sector = bio->bi_sector + sectors_handled;
1347                         goto read_again;
1348                 } else
1349                         generic_make_request(read_bio);
1350                 return;
1351         }
1352
1353         /*
1354          * WRITE:
1355          */
1356         if (conf->pending_count >= max_queued_requests) {
1357                 md_wakeup_thread(mddev->thread);
1358                 wait_event(conf->wait_barrier,
1359                            conf->pending_count < max_queued_requests);
1360         }
1361         /* first select target devices under rcu_lock and
1362          * inc refcount on their rdev.  Record them by setting
1363          * bios[x] to bio
1364          * If there are known/acknowledged bad blocks on any device
1365          * on which we have seen a write error, we want to avoid
1366          * writing to those blocks.  This potentially requires several
1367          * writes to write around the bad blocks.  Each set of writes
1368          * gets its own r10_bio with a set of bios attached.  The number
1369          * of r10_bios is recored in bio->bi_phys_segments just as with
1370          * the read case.
1371          */
1372
1373         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1374         raid10_find_phys(conf, r10_bio);
1375 retry_write:
1376         blocked_rdev = NULL;
1377         rcu_read_lock();
1378         max_sectors = r10_bio->sectors;
1379
1380         for (i = 0;  i < conf->copies; i++) {
1381                 int d = r10_bio->devs[i].devnum;
1382                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1383                 struct md_rdev *rrdev = rcu_dereference(
1384                         conf->mirrors[d].replacement);
1385                 if (rdev == rrdev)
1386                         rrdev = NULL;
1387                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1388                         atomic_inc(&rdev->nr_pending);
1389                         blocked_rdev = rdev;
1390                         break;
1391                 }
1392                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1393                         atomic_inc(&rrdev->nr_pending);
1394                         blocked_rdev = rrdev;
1395                         break;
1396                 }
1397                 if (rdev && (test_bit(Faulty, &rdev->flags)
1398                              || test_bit(Unmerged, &rdev->flags)))
1399                         rdev = NULL;
1400                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1401                               || test_bit(Unmerged, &rrdev->flags)))
1402                         rrdev = NULL;
1403
1404                 r10_bio->devs[i].bio = NULL;
1405                 r10_bio->devs[i].repl_bio = NULL;
1406
1407                 if (!rdev && !rrdev) {
1408                         set_bit(R10BIO_Degraded, &r10_bio->state);
1409                         continue;
1410                 }
1411                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1412                         sector_t first_bad;
1413                         sector_t dev_sector = r10_bio->devs[i].addr;
1414                         int bad_sectors;
1415                         int is_bad;
1416
1417                         is_bad = is_badblock(rdev, dev_sector,
1418                                              max_sectors,
1419                                              &first_bad, &bad_sectors);
1420                         if (is_bad < 0) {
1421                                 /* Mustn't write here until the bad block
1422                                  * is acknowledged
1423                                  */
1424                                 atomic_inc(&rdev->nr_pending);
1425                                 set_bit(BlockedBadBlocks, &rdev->flags);
1426                                 blocked_rdev = rdev;
1427                                 break;
1428                         }
1429                         if (is_bad && first_bad <= dev_sector) {
1430                                 /* Cannot write here at all */
1431                                 bad_sectors -= (dev_sector - first_bad);
1432                                 if (bad_sectors < max_sectors)
1433                                         /* Mustn't write more than bad_sectors
1434                                          * to other devices yet
1435                                          */
1436                                         max_sectors = bad_sectors;
1437                                 /* We don't set R10BIO_Degraded as that
1438                                  * only applies if the disk is missing,
1439                                  * so it might be re-added, and we want to
1440                                  * know to recover this chunk.
1441                                  * In this case the device is here, and the
1442                                  * fact that this chunk is not in-sync is
1443                                  * recorded in the bad block log.
1444                                  */
1445                                 continue;
1446                         }
1447                         if (is_bad) {
1448                                 int good_sectors = first_bad - dev_sector;
1449                                 if (good_sectors < max_sectors)
1450                                         max_sectors = good_sectors;
1451                         }
1452                 }
1453                 if (rdev) {
1454                         r10_bio->devs[i].bio = bio;
1455                         atomic_inc(&rdev->nr_pending);
1456                 }
1457                 if (rrdev) {
1458                         r10_bio->devs[i].repl_bio = bio;
1459                         atomic_inc(&rrdev->nr_pending);
1460                 }
1461         }
1462         rcu_read_unlock();
1463
1464         if (unlikely(blocked_rdev)) {
1465                 /* Have to wait for this device to get unblocked, then retry */
1466                 int j;
1467                 int d;
1468
1469                 for (j = 0; j < i; j++) {
1470                         if (r10_bio->devs[j].bio) {
1471                                 d = r10_bio->devs[j].devnum;
1472                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1473                         }
1474                         if (r10_bio->devs[j].repl_bio) {
1475                                 struct md_rdev *rdev;
1476                                 d = r10_bio->devs[j].devnum;
1477                                 rdev = conf->mirrors[d].replacement;
1478                                 if (!rdev) {
1479                                         /* Race with remove_disk */
1480                                         smp_mb();
1481                                         rdev = conf->mirrors[d].rdev;
1482                                 }
1483                                 rdev_dec_pending(rdev, mddev);
1484                         }
1485                 }
1486                 allow_barrier(conf);
1487                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488                 wait_barrier(conf);
1489                 goto retry_write;
1490         }
1491
1492         if (max_sectors < r10_bio->sectors) {
1493                 /* We are splitting this into multiple parts, so
1494                  * we need to prepare for allocating another r10_bio.
1495                  */
1496                 r10_bio->sectors = max_sectors;
1497                 spin_lock_irq(&conf->device_lock);
1498                 if (bio->bi_phys_segments == 0)
1499                         bio->bi_phys_segments = 2;
1500                 else
1501                         bio->bi_phys_segments++;
1502                 spin_unlock_irq(&conf->device_lock);
1503         }
1504         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1505
1506         atomic_set(&r10_bio->remaining, 1);
1507         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1508
1509         for (i = 0; i < conf->copies; i++) {
1510                 struct bio *mbio;
1511                 int d = r10_bio->devs[i].devnum;
1512                 if (r10_bio->devs[i].bio) {
1513                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1514                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1515                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1516                                     max_sectors);
1517                         r10_bio->devs[i].bio = mbio;
1518
1519                         mbio->bi_sector = (r10_bio->devs[i].addr+
1520                                            choose_data_offset(r10_bio,
1521                                                               rdev));
1522                         mbio->bi_bdev = rdev->bdev;
1523                         mbio->bi_end_io = raid10_end_write_request;
1524                         mbio->bi_rw =
1525                                 WRITE | do_sync | do_fua | do_discard | do_same;
1526                         mbio->bi_private = r10_bio;
1527
1528                         atomic_inc(&r10_bio->remaining);
1529
1530                         cb = blk_check_plugged(raid10_unplug, mddev,
1531                                                sizeof(*plug));
1532                         if (cb)
1533                                 plug = container_of(cb, struct raid10_plug_cb,
1534                                                     cb);
1535                         else
1536                                 plug = NULL;
1537                         spin_lock_irqsave(&conf->device_lock, flags);
1538                         if (plug) {
1539                                 bio_list_add(&plug->pending, mbio);
1540                                 plug->pending_cnt++;
1541                         } else {
1542                                 bio_list_add(&conf->pending_bio_list, mbio);
1543                                 conf->pending_count++;
1544                         }
1545                         spin_unlock_irqrestore(&conf->device_lock, flags);
1546                         if (!plug)
1547                                 md_wakeup_thread(mddev->thread);
1548                 }
1549
1550                 if (r10_bio->devs[i].repl_bio) {
1551                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1552                         if (rdev == NULL) {
1553                                 /* Replacement just got moved to main 'rdev' */
1554                                 smp_mb();
1555                                 rdev = conf->mirrors[d].rdev;
1556                         }
1557                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1558                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1559                                     max_sectors);
1560                         r10_bio->devs[i].repl_bio = mbio;
1561
1562                         mbio->bi_sector = (r10_bio->devs[i].addr +
1563                                            choose_data_offset(
1564                                                    r10_bio, rdev));
1565                         mbio->bi_bdev = rdev->bdev;
1566                         mbio->bi_end_io = raid10_end_write_request;
1567                         mbio->bi_rw =
1568                                 WRITE | do_sync | do_fua | do_discard | do_same;
1569                         mbio->bi_private = r10_bio;
1570
1571                         atomic_inc(&r10_bio->remaining);
1572                         spin_lock_irqsave(&conf->device_lock, flags);
1573                         bio_list_add(&conf->pending_bio_list, mbio);
1574                         conf->pending_count++;
1575                         spin_unlock_irqrestore(&conf->device_lock, flags);
1576                         if (!mddev_check_plugged(mddev))
1577                                 md_wakeup_thread(mddev->thread);
1578                 }
1579         }
1580
1581         /* Don't remove the bias on 'remaining' (one_write_done) until
1582          * after checking if we need to go around again.
1583          */
1584
1585         if (sectors_handled < bio_sectors(bio)) {
1586                 one_write_done(r10_bio);
1587                 /* We need another r10_bio.  It has already been counted
1588                  * in bio->bi_phys_segments.
1589                  */
1590                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1591
1592                 r10_bio->master_bio = bio;
1593                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1594
1595                 r10_bio->mddev = mddev;
1596                 r10_bio->sector = bio->bi_sector + sectors_handled;
1597                 r10_bio->state = 0;
1598                 goto retry_write;
1599         }
1600         one_write_done(r10_bio);
1601
1602         /* In case raid10d snuck in to freeze_array */
1603         wake_up(&conf->wait_barrier);
1604 }
1605
1606 static void status(struct seq_file *seq, struct mddev *mddev)
1607 {
1608         struct r10conf *conf = mddev->private;
1609         int i;
1610
1611         if (conf->geo.near_copies < conf->geo.raid_disks)
1612                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1613         if (conf->geo.near_copies > 1)
1614                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1615         if (conf->geo.far_copies > 1) {
1616                 if (conf->geo.far_offset)
1617                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1618                 else
1619                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1620         }
1621         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1622                                         conf->geo.raid_disks - mddev->degraded);
1623         for (i = 0; i < conf->geo.raid_disks; i++)
1624                 seq_printf(seq, "%s",
1625                               conf->mirrors[i].rdev &&
1626                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1627         seq_printf(seq, "]");
1628 }
1629
1630 /* check if there are enough drives for
1631  * every block to appear on atleast one.
1632  * Don't consider the device numbered 'ignore'
1633  * as we might be about to remove it.
1634  */
1635 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1636 {
1637         int first = 0;
1638
1639         do {
1640                 int n = conf->copies;
1641                 int cnt = 0;
1642                 int this = first;
1643                 while (n--) {
1644                         if (conf->mirrors[this].rdev &&
1645                             this != ignore)
1646                                 cnt++;
1647                         this = (this+1) % geo->raid_disks;
1648                 }
1649                 if (cnt == 0)
1650                         return 0;
1651                 first = (first + geo->near_copies) % geo->raid_disks;
1652         } while (first != 0);
1653         return 1;
1654 }
1655
1656 static int enough(struct r10conf *conf, int ignore)
1657 {
1658         return _enough(conf, &conf->geo, ignore) &&
1659                 _enough(conf, &conf->prev, ignore);
1660 }
1661
1662 static void error(struct mddev *mddev, struct md_rdev *rdev)
1663 {
1664         char b[BDEVNAME_SIZE];
1665         struct r10conf *conf = mddev->private;
1666
1667         /*
1668          * If it is not operational, then we have already marked it as dead
1669          * else if it is the last working disks, ignore the error, let the
1670          * next level up know.
1671          * else mark the drive as failed
1672          */
1673         if (test_bit(In_sync, &rdev->flags)
1674             && !enough(conf, rdev->raid_disk))
1675                 /*
1676                  * Don't fail the drive, just return an IO error.
1677                  */
1678                 return;
1679         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1680                 unsigned long flags;
1681                 spin_lock_irqsave(&conf->device_lock, flags);
1682                 mddev->degraded++;
1683                 spin_unlock_irqrestore(&conf->device_lock, flags);
1684                 /*
1685                  * if recovery is running, make sure it aborts.
1686                  */
1687                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1688         }
1689         set_bit(Blocked, &rdev->flags);
1690         set_bit(Faulty, &rdev->flags);
1691         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1692         printk(KERN_ALERT
1693                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1694                "md/raid10:%s: Operation continuing on %d devices.\n",
1695                mdname(mddev), bdevname(rdev->bdev, b),
1696                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1697 }
1698
1699 static void print_conf(struct r10conf *conf)
1700 {
1701         int i;
1702         struct raid10_info *tmp;
1703
1704         printk(KERN_DEBUG "RAID10 conf printout:\n");
1705         if (!conf) {
1706                 printk(KERN_DEBUG "(!conf)\n");
1707                 return;
1708         }
1709         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1710                 conf->geo.raid_disks);
1711
1712         for (i = 0; i < conf->geo.raid_disks; i++) {
1713                 char b[BDEVNAME_SIZE];
1714                 tmp = conf->mirrors + i;
1715                 if (tmp->rdev)
1716                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1717                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1718                                 !test_bit(Faulty, &tmp->rdev->flags),
1719                                 bdevname(tmp->rdev->bdev,b));
1720         }
1721 }
1722
1723 static void close_sync(struct r10conf *conf)
1724 {
1725         wait_barrier(conf);
1726         allow_barrier(conf);
1727
1728         mempool_destroy(conf->r10buf_pool);
1729         conf->r10buf_pool = NULL;
1730 }
1731
1732 static int raid10_spare_active(struct mddev *mddev)
1733 {
1734         int i;
1735         struct r10conf *conf = mddev->private;
1736         struct raid10_info *tmp;
1737         int count = 0;
1738         unsigned long flags;
1739
1740         /*
1741          * Find all non-in_sync disks within the RAID10 configuration
1742          * and mark them in_sync
1743          */
1744         for (i = 0; i < conf->geo.raid_disks; i++) {
1745                 tmp = conf->mirrors + i;
1746                 if (tmp->replacement
1747                     && tmp->replacement->recovery_offset == MaxSector
1748                     && !test_bit(Faulty, &tmp->replacement->flags)
1749                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1750                         /* Replacement has just become active */
1751                         if (!tmp->rdev
1752                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1753                                 count++;
1754                         if (tmp->rdev) {
1755                                 /* Replaced device not technically faulty,
1756                                  * but we need to be sure it gets removed
1757                                  * and never re-added.
1758                                  */
1759                                 set_bit(Faulty, &tmp->rdev->flags);
1760                                 sysfs_notify_dirent_safe(
1761                                         tmp->rdev->sysfs_state);
1762                         }
1763                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1764                 } else if (tmp->rdev
1765                            && !test_bit(Faulty, &tmp->rdev->flags)
1766                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1767                         count++;
1768                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1769                 }
1770         }
1771         spin_lock_irqsave(&conf->device_lock, flags);
1772         mddev->degraded -= count;
1773         spin_unlock_irqrestore(&conf->device_lock, flags);
1774
1775         print_conf(conf);
1776         return count;
1777 }
1778
1779
1780 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782         struct r10conf *conf = mddev->private;
1783         int err = -EEXIST;
1784         int mirror;
1785         int first = 0;
1786         int last = conf->geo.raid_disks - 1;
1787         struct request_queue *q = bdev_get_queue(rdev->bdev);
1788
1789         if (mddev->recovery_cp < MaxSector)
1790                 /* only hot-add to in-sync arrays, as recovery is
1791                  * very different from resync
1792                  */
1793                 return -EBUSY;
1794         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1795                 return -EINVAL;
1796
1797         if (rdev->raid_disk >= 0)
1798                 first = last = rdev->raid_disk;
1799
1800         if (q->merge_bvec_fn) {
1801                 set_bit(Unmerged, &rdev->flags);
1802                 mddev->merge_check_needed = 1;
1803         }
1804
1805         if (rdev->saved_raid_disk >= first &&
1806             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807                 mirror = rdev->saved_raid_disk;
1808         else
1809                 mirror = first;
1810         for ( ; mirror <= last ; mirror++) {
1811                 struct raid10_info *p = &conf->mirrors[mirror];
1812                 if (p->recovery_disabled == mddev->recovery_disabled)
1813                         continue;
1814                 if (p->rdev) {
1815                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1816                             p->replacement != NULL)
1817                                 continue;
1818                         clear_bit(In_sync, &rdev->flags);
1819                         set_bit(Replacement, &rdev->flags);
1820                         rdev->raid_disk = mirror;
1821                         err = 0;
1822                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1823                                           rdev->data_offset << 9);
1824                         conf->fullsync = 1;
1825                         rcu_assign_pointer(p->replacement, rdev);
1826                         break;
1827                 }
1828
1829                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1830                                   rdev->data_offset << 9);
1831
1832                 p->head_position = 0;
1833                 p->recovery_disabled = mddev->recovery_disabled - 1;
1834                 rdev->raid_disk = mirror;
1835                 err = 0;
1836                 if (rdev->saved_raid_disk != mirror)
1837                         conf->fullsync = 1;
1838                 rcu_assign_pointer(p->rdev, rdev);
1839                 break;
1840         }
1841         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1842                 /* Some requests might not have seen this new
1843                  * merge_bvec_fn.  We must wait for them to complete
1844                  * before merging the device fully.
1845                  * First we make sure any code which has tested
1846                  * our function has submitted the request, then
1847                  * we wait for all outstanding requests to complete.
1848                  */
1849                 synchronize_sched();
1850                 freeze_array(conf, 0);
1851                 unfreeze_array(conf);
1852                 clear_bit(Unmerged, &rdev->flags);
1853         }
1854         md_integrity_add_rdev(rdev, mddev);
1855         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1856                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1857
1858         print_conf(conf);
1859         return err;
1860 }
1861
1862 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1863 {
1864         struct r10conf *conf = mddev->private;
1865         int err = 0;
1866         int number = rdev->raid_disk;
1867         struct md_rdev **rdevp;
1868         struct raid10_info *p = conf->mirrors + number;
1869
1870         print_conf(conf);
1871         if (rdev == p->rdev)
1872                 rdevp = &p->rdev;
1873         else if (rdev == p->replacement)
1874                 rdevp = &p->replacement;
1875         else
1876                 return 0;
1877
1878         if (test_bit(In_sync, &rdev->flags) ||
1879             atomic_read(&rdev->nr_pending)) {
1880                 err = -EBUSY;
1881                 goto abort;
1882         }
1883         /* Only remove faulty devices if recovery
1884          * is not possible.
1885          */
1886         if (!test_bit(Faulty, &rdev->flags) &&
1887             mddev->recovery_disabled != p->recovery_disabled &&
1888             (!p->replacement || p->replacement == rdev) &&
1889             number < conf->geo.raid_disks &&
1890             enough(conf, -1)) {
1891                 err = -EBUSY;
1892                 goto abort;
1893         }
1894         *rdevp = NULL;
1895         synchronize_rcu();
1896         if (atomic_read(&rdev->nr_pending)) {
1897                 /* lost the race, try later */
1898                 err = -EBUSY;
1899                 *rdevp = rdev;
1900                 goto abort;
1901         } else if (p->replacement) {
1902                 /* We must have just cleared 'rdev' */
1903                 p->rdev = p->replacement;
1904                 clear_bit(Replacement, &p->replacement->flags);
1905                 smp_mb(); /* Make sure other CPUs may see both as identical
1906                            * but will never see neither -- if they are careful.
1907                            */
1908                 p->replacement = NULL;
1909                 clear_bit(WantReplacement, &rdev->flags);
1910         } else
1911                 /* We might have just remove the Replacement as faulty
1912                  * Clear the flag just in case
1913                  */
1914                 clear_bit(WantReplacement, &rdev->flags);
1915
1916         err = md_integrity_register(mddev);
1917
1918 abort:
1919
1920         print_conf(conf);
1921         return err;
1922 }
1923
1924
1925 static void end_sync_read(struct bio *bio, int error)
1926 {
1927         struct r10bio *r10_bio = bio->bi_private;
1928         struct r10conf *conf = r10_bio->mddev->private;
1929         int d;
1930
1931         if (bio == r10_bio->master_bio) {
1932                 /* this is a reshape read */
1933                 d = r10_bio->read_slot; /* really the read dev */
1934         } else
1935                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1936
1937         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1938                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1939         else
1940                 /* The write handler will notice the lack of
1941                  * R10BIO_Uptodate and record any errors etc
1942                  */
1943                 atomic_add(r10_bio->sectors,
1944                            &conf->mirrors[d].rdev->corrected_errors);
1945
1946         /* for reconstruct, we always reschedule after a read.
1947          * for resync, only after all reads
1948          */
1949         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1950         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1951             atomic_dec_and_test(&r10_bio->remaining)) {
1952                 /* we have read all the blocks,
1953                  * do the comparison in process context in raid10d
1954                  */
1955                 reschedule_retry(r10_bio);
1956         }
1957 }
1958
1959 static void end_sync_request(struct r10bio *r10_bio)
1960 {
1961         struct mddev *mddev = r10_bio->mddev;
1962
1963         while (atomic_dec_and_test(&r10_bio->remaining)) {
1964                 if (r10_bio->master_bio == NULL) {
1965                         /* the primary of several recovery bios */
1966                         sector_t s = r10_bio->sectors;
1967                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968                             test_bit(R10BIO_WriteError, &r10_bio->state))
1969                                 reschedule_retry(r10_bio);
1970                         else
1971                                 put_buf(r10_bio);
1972                         md_done_sync(mddev, s, 1);
1973                         break;
1974                 } else {
1975                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1976                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977                             test_bit(R10BIO_WriteError, &r10_bio->state))
1978                                 reschedule_retry(r10_bio);
1979                         else
1980                                 put_buf(r10_bio);
1981                         r10_bio = r10_bio2;
1982                 }
1983         }
1984 }
1985
1986 static void end_sync_write(struct bio *bio, int error)
1987 {
1988         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1989         struct r10bio *r10_bio = bio->bi_private;
1990         struct mddev *mddev = r10_bio->mddev;
1991         struct r10conf *conf = mddev->private;
1992         int d;
1993         sector_t first_bad;
1994         int bad_sectors;
1995         int slot;
1996         int repl;
1997         struct md_rdev *rdev = NULL;
1998
1999         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2000         if (repl)
2001                 rdev = conf->mirrors[d].replacement;
2002         else
2003                 rdev = conf->mirrors[d].rdev;
2004
2005         if (!uptodate) {
2006                 if (repl)
2007                         md_error(mddev, rdev);
2008                 else {
2009                         set_bit(WriteErrorSeen, &rdev->flags);
2010                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2011                                 set_bit(MD_RECOVERY_NEEDED,
2012                                         &rdev->mddev->recovery);
2013                         set_bit(R10BIO_WriteError, &r10_bio->state);
2014                 }
2015         } else if (is_badblock(rdev,
2016                              r10_bio->devs[slot].addr,
2017                              r10_bio->sectors,
2018                              &first_bad, &bad_sectors))
2019                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2020
2021         rdev_dec_pending(rdev, mddev);
2022
2023         end_sync_request(r10_bio);
2024 }
2025
2026 /*
2027  * Note: sync and recover and handled very differently for raid10
2028  * This code is for resync.
2029  * For resync, we read through virtual addresses and read all blocks.
2030  * If there is any error, we schedule a write.  The lowest numbered
2031  * drive is authoritative.
2032  * However requests come for physical address, so we need to map.
2033  * For every physical address there are raid_disks/copies virtual addresses,
2034  * which is always are least one, but is not necessarly an integer.
2035  * This means that a physical address can span multiple chunks, so we may
2036  * have to submit multiple io requests for a single sync request.
2037  */
2038 /*
2039  * We check if all blocks are in-sync and only write to blocks that
2040  * aren't in sync
2041  */
2042 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2043 {
2044         struct r10conf *conf = mddev->private;
2045         int i, first;
2046         struct bio *tbio, *fbio;
2047         int vcnt;
2048
2049         atomic_set(&r10_bio->remaining, 1);
2050
2051         /* find the first device with a block */
2052         for (i=0; i<conf->copies; i++)
2053                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2054                         break;
2055
2056         if (i == conf->copies)
2057                 goto done;
2058
2059         first = i;
2060         fbio = r10_bio->devs[i].bio;
2061
2062         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2063         /* now find blocks with errors */
2064         for (i=0 ; i < conf->copies ; i++) {
2065                 int  j, d;
2066
2067                 tbio = r10_bio->devs[i].bio;
2068
2069                 if (tbio->bi_end_io != end_sync_read)
2070                         continue;
2071                 if (i == first)
2072                         continue;
2073                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2074                         /* We know that the bi_io_vec layout is the same for
2075                          * both 'first' and 'i', so we just compare them.
2076                          * All vec entries are PAGE_SIZE;
2077                          */
2078                         for (j = 0; j < vcnt; j++)
2079                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2080                                            page_address(tbio->bi_io_vec[j].bv_page),
2081                                            fbio->bi_io_vec[j].bv_len))
2082                                         break;
2083                         if (j == vcnt)
2084                                 continue;
2085                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2086                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087                                 /* Don't fix anything. */
2088                                 continue;
2089                 }
2090                 /* Ok, we need to write this bio, either to correct an
2091                  * inconsistency or to correct an unreadable block.
2092                  * First we need to fixup bv_offset, bv_len and
2093                  * bi_vecs, as the read request might have corrupted these
2094                  */
2095                 bio_reset(tbio);
2096
2097                 tbio->bi_vcnt = vcnt;
2098                 tbio->bi_size = r10_bio->sectors << 9;
2099                 tbio->bi_rw = WRITE;
2100                 tbio->bi_private = r10_bio;
2101                 tbio->bi_sector = r10_bio->devs[i].addr;
2102
2103                 for (j=0; j < vcnt ; j++) {
2104                         tbio->bi_io_vec[j].bv_offset = 0;
2105                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2106
2107                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2108                                page_address(fbio->bi_io_vec[j].bv_page),
2109                                PAGE_SIZE);
2110                 }
2111                 tbio->bi_end_io = end_sync_write;
2112
2113                 d = r10_bio->devs[i].devnum;
2114                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115                 atomic_inc(&r10_bio->remaining);
2116                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117
2118                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2119                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2120                 generic_make_request(tbio);
2121         }
2122
2123         /* Now write out to any replacement devices
2124          * that are active
2125          */
2126         for (i = 0; i < conf->copies; i++) {
2127                 int j, d;
2128
2129                 tbio = r10_bio->devs[i].repl_bio;
2130                 if (!tbio || !tbio->bi_end_io)
2131                         continue;
2132                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2133                     && r10_bio->devs[i].bio != fbio)
2134                         for (j = 0; j < vcnt; j++)
2135                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2136                                        page_address(fbio->bi_io_vec[j].bv_page),
2137                                        PAGE_SIZE);
2138                 d = r10_bio->devs[i].devnum;
2139                 atomic_inc(&r10_bio->remaining);
2140                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2141                              bio_sectors(tbio));
2142                 generic_make_request(tbio);
2143         }
2144
2145 done:
2146         if (atomic_dec_and_test(&r10_bio->remaining)) {
2147                 md_done_sync(mddev, r10_bio->sectors, 1);
2148                 put_buf(r10_bio);
2149         }
2150 }
2151
2152 /*
2153  * Now for the recovery code.
2154  * Recovery happens across physical sectors.
2155  * We recover all non-is_sync drives by finding the virtual address of
2156  * each, and then choose a working drive that also has that virt address.
2157  * There is a separate r10_bio for each non-in_sync drive.
2158  * Only the first two slots are in use. The first for reading,
2159  * The second for writing.
2160  *
2161  */
2162 static void fix_recovery_read_error(struct r10bio *r10_bio)
2163 {
2164         /* We got a read error during recovery.
2165          * We repeat the read in smaller page-sized sections.
2166          * If a read succeeds, write it to the new device or record
2167          * a bad block if we cannot.
2168          * If a read fails, record a bad block on both old and
2169          * new devices.
2170          */
2171         struct mddev *mddev = r10_bio->mddev;
2172         struct r10conf *conf = mddev->private;
2173         struct bio *bio = r10_bio->devs[0].bio;
2174         sector_t sect = 0;
2175         int sectors = r10_bio->sectors;
2176         int idx = 0;
2177         int dr = r10_bio->devs[0].devnum;
2178         int dw = r10_bio->devs[1].devnum;
2179
2180         while (sectors) {
2181                 int s = sectors;
2182                 struct md_rdev *rdev;
2183                 sector_t addr;
2184                 int ok;
2185
2186                 if (s > (PAGE_SIZE>>9))
2187                         s = PAGE_SIZE >> 9;
2188
2189                 rdev = conf->mirrors[dr].rdev;
2190                 addr = r10_bio->devs[0].addr + sect,
2191                 ok = sync_page_io(rdev,
2192                                   addr,
2193                                   s << 9,
2194                                   bio->bi_io_vec[idx].bv_page,
2195                                   READ, false);
2196                 if (ok) {
2197                         rdev = conf->mirrors[dw].rdev;
2198                         addr = r10_bio->devs[1].addr + sect;
2199                         ok = sync_page_io(rdev,
2200                                           addr,
2201                                           s << 9,
2202                                           bio->bi_io_vec[idx].bv_page,
2203                                           WRITE, false);
2204                         if (!ok) {
2205                                 set_bit(WriteErrorSeen, &rdev->flags);
2206                                 if (!test_and_set_bit(WantReplacement,
2207                                                       &rdev->flags))
2208                                         set_bit(MD_RECOVERY_NEEDED,
2209                                                 &rdev->mddev->recovery);
2210                         }
2211                 }
2212                 if (!ok) {
2213                         /* We don't worry if we cannot set a bad block -
2214                          * it really is bad so there is no loss in not
2215                          * recording it yet
2216                          */
2217                         rdev_set_badblocks(rdev, addr, s, 0);
2218
2219                         if (rdev != conf->mirrors[dw].rdev) {
2220                                 /* need bad block on destination too */
2221                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222                                 addr = r10_bio->devs[1].addr + sect;
2223                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224                                 if (!ok) {
2225                                         /* just abort the recovery */
2226                                         printk(KERN_NOTICE
2227                                                "md/raid10:%s: recovery aborted"
2228                                                " due to read error\n",
2229                                                mdname(mddev));
2230
2231                                         conf->mirrors[dw].recovery_disabled
2232                                                 = mddev->recovery_disabled;
2233                                         set_bit(MD_RECOVERY_INTR,
2234                                                 &mddev->recovery);
2235                                         break;
2236                                 }
2237                         }
2238                 }
2239
2240                 sectors -= s;
2241                 sect += s;
2242                 idx++;
2243         }
2244 }
2245
2246 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2247 {
2248         struct r10conf *conf = mddev->private;
2249         int d;
2250         struct bio *wbio, *wbio2;
2251
2252         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2253                 fix_recovery_read_error(r10_bio);
2254                 end_sync_request(r10_bio);
2255                 return;
2256         }
2257
2258         /*
2259          * share the pages with the first bio
2260          * and submit the write request
2261          */
2262         d = r10_bio->devs[1].devnum;
2263         wbio = r10_bio->devs[1].bio;
2264         wbio2 = r10_bio->devs[1].repl_bio;
2265         if (wbio->bi_end_io) {
2266                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2267                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2268                 generic_make_request(wbio);
2269         }
2270         if (wbio2 && wbio2->bi_end_io) {
2271                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2272                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2273                              bio_sectors(wbio2));
2274                 generic_make_request(wbio2);
2275         }
2276 }
2277
2278
2279 /*
2280  * Used by fix_read_error() to decay the per rdev read_errors.
2281  * We halve the read error count for every hour that has elapsed
2282  * since the last recorded read error.
2283  *
2284  */
2285 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2286 {
2287         struct timespec cur_time_mon;
2288         unsigned long hours_since_last;
2289         unsigned int read_errors = atomic_read(&rdev->read_errors);
2290
2291         ktime_get_ts(&cur_time_mon);
2292
2293         if (rdev->last_read_error.tv_sec == 0 &&
2294             rdev->last_read_error.tv_nsec == 0) {
2295                 /* first time we've seen a read error */
2296                 rdev->last_read_error = cur_time_mon;
2297                 return;
2298         }
2299
2300         hours_since_last = (cur_time_mon.tv_sec -
2301                             rdev->last_read_error.tv_sec) / 3600;
2302
2303         rdev->last_read_error = cur_time_mon;
2304
2305         /*
2306          * if hours_since_last is > the number of bits in read_errors
2307          * just set read errors to 0. We do this to avoid
2308          * overflowing the shift of read_errors by hours_since_last.
2309          */
2310         if (hours_since_last >= 8 * sizeof(read_errors))
2311                 atomic_set(&rdev->read_errors, 0);
2312         else
2313                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2314 }
2315
2316 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2317                             int sectors, struct page *page, int rw)
2318 {
2319         sector_t first_bad;
2320         int bad_sectors;
2321
2322         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2323             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2324                 return -1;
2325         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2326                 /* success */
2327                 return 1;
2328         if (rw == WRITE) {
2329                 set_bit(WriteErrorSeen, &rdev->flags);
2330                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2331                         set_bit(MD_RECOVERY_NEEDED,
2332                                 &rdev->mddev->recovery);
2333         }
2334         /* need to record an error - either for the block or the device */
2335         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2336                 md_error(rdev->mddev, rdev);
2337         return 0;
2338 }
2339
2340 /*
2341  * This is a kernel thread which:
2342  *
2343  *      1.      Retries failed read operations on working mirrors.
2344  *      2.      Updates the raid superblock when problems encounter.
2345  *      3.      Performs writes following reads for array synchronising.
2346  */
2347
2348 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2349 {
2350         int sect = 0; /* Offset from r10_bio->sector */
2351         int sectors = r10_bio->sectors;
2352         struct md_rdev*rdev;
2353         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2354         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2355
2356         /* still own a reference to this rdev, so it cannot
2357          * have been cleared recently.
2358          */
2359         rdev = conf->mirrors[d].rdev;
2360
2361         if (test_bit(Faulty, &rdev->flags))
2362                 /* drive has already been failed, just ignore any
2363                    more fix_read_error() attempts */
2364                 return;
2365
2366         check_decay_read_errors(mddev, rdev);
2367         atomic_inc(&rdev->read_errors);
2368         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2369                 char b[BDEVNAME_SIZE];
2370                 bdevname(rdev->bdev, b);
2371
2372                 printk(KERN_NOTICE
2373                        "md/raid10:%s: %s: Raid device exceeded "
2374                        "read_error threshold [cur %d:max %d]\n",
2375                        mdname(mddev), b,
2376                        atomic_read(&rdev->read_errors), max_read_errors);
2377                 printk(KERN_NOTICE
2378                        "md/raid10:%s: %s: Failing raid device\n",
2379                        mdname(mddev), b);
2380                 md_error(mddev, conf->mirrors[d].rdev);
2381                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2382                 return;
2383         }
2384
2385         while(sectors) {
2386                 int s = sectors;
2387                 int sl = r10_bio->read_slot;
2388                 int success = 0;
2389                 int start;
2390
2391                 if (s > (PAGE_SIZE>>9))
2392                         s = PAGE_SIZE >> 9;
2393
2394                 rcu_read_lock();
2395                 do {
2396                         sector_t first_bad;
2397                         int bad_sectors;
2398
2399                         d = r10_bio->devs[sl].devnum;
2400                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2401                         if (rdev &&
2402                             !test_bit(Unmerged, &rdev->flags) &&
2403                             test_bit(In_sync, &rdev->flags) &&
2404                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2405                                         &first_bad, &bad_sectors) == 0) {
2406                                 atomic_inc(&rdev->nr_pending);
2407                                 rcu_read_unlock();
2408                                 success = sync_page_io(rdev,
2409                                                        r10_bio->devs[sl].addr +
2410                                                        sect,
2411                                                        s<<9,
2412                                                        conf->tmppage, READ, false);
2413                                 rdev_dec_pending(rdev, mddev);
2414                                 rcu_read_lock();
2415                                 if (success)
2416                                         break;
2417                         }
2418                         sl++;
2419                         if (sl == conf->copies)
2420                                 sl = 0;
2421                 } while (!success && sl != r10_bio->read_slot);
2422                 rcu_read_unlock();
2423
2424                 if (!success) {
2425                         /* Cannot read from anywhere, just mark the block
2426                          * as bad on the first device to discourage future
2427                          * reads.
2428                          */
2429                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2430                         rdev = conf->mirrors[dn].rdev;
2431
2432                         if (!rdev_set_badblocks(
2433                                     rdev,
2434                                     r10_bio->devs[r10_bio->read_slot].addr
2435                                     + sect,
2436                                     s, 0)) {
2437                                 md_error(mddev, rdev);
2438                                 r10_bio->devs[r10_bio->read_slot].bio
2439                                         = IO_BLOCKED;
2440                         }
2441                         break;
2442                 }
2443
2444                 start = sl;
2445                 /* write it back and re-read */
2446                 rcu_read_lock();
2447                 while (sl != r10_bio->read_slot) {
2448                         char b[BDEVNAME_SIZE];
2449
2450                         if (sl==0)
2451                                 sl = conf->copies;
2452                         sl--;
2453                         d = r10_bio->devs[sl].devnum;
2454                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2455                         if (!rdev ||
2456                             test_bit(Unmerged, &rdev->flags) ||
2457                             !test_bit(In_sync, &rdev->flags))
2458                                 continue;
2459
2460                         atomic_inc(&rdev->nr_pending);
2461                         rcu_read_unlock();
2462                         if (r10_sync_page_io(rdev,
2463                                              r10_bio->devs[sl].addr +
2464                                              sect,
2465                                              s, conf->tmppage, WRITE)
2466                             == 0) {
2467                                 /* Well, this device is dead */
2468                                 printk(KERN_NOTICE
2469                                        "md/raid10:%s: read correction "
2470                                        "write failed"
2471                                        " (%d sectors at %llu on %s)\n",
2472                                        mdname(mddev), s,
2473                                        (unsigned long long)(
2474                                                sect +
2475                                                choose_data_offset(r10_bio,
2476                                                                   rdev)),
2477                                        bdevname(rdev->bdev, b));
2478                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2479                                        "drive\n",
2480                                        mdname(mddev),
2481                                        bdevname(rdev->bdev, b));
2482                         }
2483                         rdev_dec_pending(rdev, mddev);
2484                         rcu_read_lock();
2485                 }
2486                 sl = start;
2487                 while (sl != r10_bio->read_slot) {
2488                         char b[BDEVNAME_SIZE];
2489
2490                         if (sl==0)
2491                                 sl = conf->copies;
2492                         sl--;
2493                         d = r10_bio->devs[sl].devnum;
2494                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2495                         if (!rdev ||
2496                             !test_bit(In_sync, &rdev->flags))
2497                                 continue;
2498
2499                         atomic_inc(&rdev->nr_pending);
2500                         rcu_read_unlock();
2501                         switch (r10_sync_page_io(rdev,
2502                                              r10_bio->devs[sl].addr +
2503                                              sect,
2504                                              s, conf->tmppage,
2505                                                  READ)) {
2506                         case 0:
2507                                 /* Well, this device is dead */
2508                                 printk(KERN_NOTICE
2509                                        "md/raid10:%s: unable to read back "
2510                                        "corrected sectors"
2511                                        " (%d sectors at %llu on %s)\n",
2512                                        mdname(mddev), s,
2513                                        (unsigned long long)(
2514                                                sect +
2515                                                choose_data_offset(r10_bio, rdev)),
2516                                        bdevname(rdev->bdev, b));
2517                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2518                                        "drive\n",
2519                                        mdname(mddev),
2520                                        bdevname(rdev->bdev, b));
2521                                 break;
2522                         case 1:
2523                                 printk(KERN_INFO
2524                                        "md/raid10:%s: read error corrected"
2525                                        " (%d sectors at %llu on %s)\n",
2526                                        mdname(mddev), s,
2527                                        (unsigned long long)(
2528                                                sect +
2529                                                choose_data_offset(r10_bio, rdev)),
2530                                        bdevname(rdev->bdev, b));
2531                                 atomic_add(s, &rdev->corrected_errors);
2532                         }
2533
2534                         rdev_dec_pending(rdev, mddev);
2535                         rcu_read_lock();
2536                 }
2537                 rcu_read_unlock();
2538
2539                 sectors -= s;
2540                 sect += s;
2541         }
2542 }
2543
2544 static int narrow_write_error(struct r10bio *r10_bio, int i)
2545 {
2546         struct bio *bio = r10_bio->master_bio;
2547         struct mddev *mddev = r10_bio->mddev;
2548         struct r10conf *conf = mddev->private;
2549         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2550         /* bio has the data to be written to slot 'i' where
2551          * we just recently had a write error.
2552          * We repeatedly clone the bio and trim down to one block,
2553          * then try the write.  Where the write fails we record
2554          * a bad block.
2555          * It is conceivable that the bio doesn't exactly align with
2556          * blocks.  We must handle this.
2557          *
2558          * We currently own a reference to the rdev.
2559          */
2560
2561         int block_sectors;
2562         sector_t sector;
2563         int sectors;
2564         int sect_to_write = r10_bio->sectors;
2565         int ok = 1;
2566
2567         if (rdev->badblocks.shift < 0)
2568                 return 0;
2569
2570         block_sectors = 1 << rdev->badblocks.shift;
2571         sector = r10_bio->sector;
2572         sectors = ((r10_bio->sector + block_sectors)
2573                    & ~(sector_t)(block_sectors - 1))
2574                 - sector;
2575
2576         while (sect_to_write) {
2577                 struct bio *wbio;
2578                 if (sectors > sect_to_write)
2579                         sectors = sect_to_write;
2580                 /* Write at 'sector' for 'sectors' */
2581                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2582                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2583                 wbio->bi_sector = (r10_bio->devs[i].addr+
2584                                    choose_data_offset(r10_bio, rdev) +
2585                                    (sector - r10_bio->sector));
2586                 wbio->bi_bdev = rdev->bdev;
2587                 if (submit_bio_wait(WRITE, wbio) == 0)
2588                         /* Failure! */
2589                         ok = rdev_set_badblocks(rdev, sector,
2590                                                 sectors, 0)
2591                                 && ok;
2592
2593                 bio_put(wbio);
2594                 sect_to_write -= sectors;
2595                 sector += sectors;
2596                 sectors = block_sectors;
2597         }
2598         return ok;
2599 }
2600
2601 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2602 {
2603         int slot = r10_bio->read_slot;
2604         struct bio *bio;
2605         struct r10conf *conf = mddev->private;
2606         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2607         char b[BDEVNAME_SIZE];
2608         unsigned long do_sync;
2609         int max_sectors;
2610
2611         /* we got a read error. Maybe the drive is bad.  Maybe just
2612          * the block and we can fix it.
2613          * We freeze all other IO, and try reading the block from
2614          * other devices.  When we find one, we re-write
2615          * and check it that fixes the read error.
2616          * This is all done synchronously while the array is
2617          * frozen.
2618          */
2619         bio = r10_bio->devs[slot].bio;
2620         bdevname(bio->bi_bdev, b);
2621         bio_put(bio);
2622         r10_bio->devs[slot].bio = NULL;
2623
2624         if (mddev->ro == 0) {
2625                 freeze_array(conf, 1);
2626                 fix_read_error(conf, mddev, r10_bio);
2627                 unfreeze_array(conf);
2628         } else
2629                 r10_bio->devs[slot].bio = IO_BLOCKED;
2630
2631         rdev_dec_pending(rdev, mddev);
2632
2633 read_more:
2634         rdev = read_balance(conf, r10_bio, &max_sectors);
2635         if (rdev == NULL) {
2636                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2637                        " read error for block %llu\n",
2638                        mdname(mddev), b,
2639                        (unsigned long long)r10_bio->sector);
2640                 raid_end_bio_io(r10_bio);
2641                 return;
2642         }
2643
2644         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2645         slot = r10_bio->read_slot;
2646         printk_ratelimited(
2647                 KERN_ERR
2648                 "md/raid10:%s: %s: redirecting "
2649                 "sector %llu to another mirror\n",
2650                 mdname(mddev),
2651                 bdevname(rdev->bdev, b),
2652                 (unsigned long long)r10_bio->sector);
2653         bio = bio_clone_mddev(r10_bio->master_bio,
2654                               GFP_NOIO, mddev);
2655         md_trim_bio(bio,
2656                     r10_bio->sector - bio->bi_sector,
2657                     max_sectors);
2658         r10_bio->devs[slot].bio = bio;
2659         r10_bio->devs[slot].rdev = rdev;
2660         bio->bi_sector = r10_bio->devs[slot].addr
2661                 + choose_data_offset(r10_bio, rdev);
2662         bio->bi_bdev = rdev->bdev;
2663         bio->bi_rw = READ | do_sync;
2664         bio->bi_private = r10_bio;
2665         bio->bi_end_io = raid10_end_read_request;
2666         if (max_sectors < r10_bio->sectors) {
2667                 /* Drat - have to split this up more */
2668                 struct bio *mbio = r10_bio->master_bio;
2669                 int sectors_handled =
2670                         r10_bio->sector + max_sectors
2671                         - mbio->bi_sector;
2672                 r10_bio->sectors = max_sectors;
2673                 spin_lock_irq(&conf->device_lock);
2674                 if (mbio->bi_phys_segments == 0)
2675                         mbio->bi_phys_segments = 2;
2676                 else
2677                         mbio->bi_phys_segments++;
2678                 spin_unlock_irq(&conf->device_lock);
2679                 generic_make_request(bio);
2680
2681                 r10_bio = mempool_alloc(conf->r10bio_pool,
2682                                         GFP_NOIO);
2683                 r10_bio->master_bio = mbio;
2684                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2685                 r10_bio->state = 0;
2686                 set_bit(R10BIO_ReadError,
2687                         &r10_bio->state);
2688                 r10_bio->mddev = mddev;
2689                 r10_bio->sector = mbio->bi_sector
2690                         + sectors_handled;
2691
2692                 goto read_more;
2693         } else
2694                 generic_make_request(bio);
2695 }
2696
2697 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2698 {
2699         /* Some sort of write request has finished and it
2700          * succeeded in writing where we thought there was a
2701          * bad block.  So forget the bad block.
2702          * Or possibly if failed and we need to record
2703          * a bad block.
2704          */
2705         int m;
2706         struct md_rdev *rdev;
2707
2708         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2709             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2710                 for (m = 0; m < conf->copies; m++) {
2711                         int dev = r10_bio->devs[m].devnum;
2712                         rdev = conf->mirrors[dev].rdev;
2713                         if (r10_bio->devs[m].bio == NULL)
2714                                 continue;
2715                         if (test_bit(BIO_UPTODATE,
2716                                      &r10_bio->devs[m].bio->bi_flags)) {
2717                                 rdev_clear_badblocks(
2718                                         rdev,
2719                                         r10_bio->devs[m].addr,
2720                                         r10_bio->sectors, 0);
2721                         } else {
2722                                 if (!rdev_set_badblocks(
2723                                             rdev,
2724                                             r10_bio->devs[m].addr,
2725                                             r10_bio->sectors, 0))
2726                                         md_error(conf->mddev, rdev);
2727                         }
2728                         rdev = conf->mirrors[dev].replacement;
2729                         if (r10_bio->devs[m].repl_bio == NULL)
2730                                 continue;
2731                         if (test_bit(BIO_UPTODATE,
2732                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2733                                 rdev_clear_badblocks(
2734                                         rdev,
2735                                         r10_bio->devs[m].addr,
2736                                         r10_bio->sectors, 0);
2737                         } else {
2738                                 if (!rdev_set_badblocks(
2739                                             rdev,
2740                                             r10_bio->devs[m].addr,
2741                                             r10_bio->sectors, 0))
2742                                         md_error(conf->mddev, rdev);
2743                         }
2744                 }
2745                 put_buf(r10_bio);
2746         } else {
2747                 for (m = 0; m < conf->copies; m++) {
2748                         int dev = r10_bio->devs[m].devnum;
2749                         struct bio *bio = r10_bio->devs[m].bio;
2750                         rdev = conf->mirrors[dev].rdev;
2751                         if (bio == IO_MADE_GOOD) {
2752                                 rdev_clear_badblocks(
2753                                         rdev,
2754                                         r10_bio->devs[m].addr,
2755                                         r10_bio->sectors, 0);
2756                                 rdev_dec_pending(rdev, conf->mddev);
2757                         } else if (bio != NULL &&
2758                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2759                                 if (!narrow_write_error(r10_bio, m)) {
2760                                         md_error(conf->mddev, rdev);
2761                                         set_bit(R10BIO_Degraded,
2762                                                 &r10_bio->state);
2763                                 }
2764                                 rdev_dec_pending(rdev, conf->mddev);
2765                         }
2766                         bio = r10_bio->devs[m].repl_bio;
2767                         rdev = conf->mirrors[dev].replacement;
2768                         if (rdev && bio == IO_MADE_GOOD) {
2769                                 rdev_clear_badblocks(
2770                                         rdev,
2771                                         r10_bio->devs[m].addr,
2772                                         r10_bio->sectors, 0);
2773                                 rdev_dec_pending(rdev, conf->mddev);
2774                         }
2775                 }
2776                 if (test_bit(R10BIO_WriteError,
2777                              &r10_bio->state))
2778                         close_write(r10_bio);
2779                 raid_end_bio_io(r10_bio);
2780         }
2781 }
2782
2783 static void raid10d(struct md_thread *thread)
2784 {
2785         struct mddev *mddev = thread->mddev;
2786         struct r10bio *r10_bio;
2787         unsigned long flags;
2788         struct r10conf *conf = mddev->private;
2789         struct list_head *head = &conf->retry_list;
2790         struct blk_plug plug;
2791
2792         md_check_recovery(mddev);
2793
2794         blk_start_plug(&plug);
2795         for (;;) {
2796
2797                 flush_pending_writes(conf);
2798
2799                 spin_lock_irqsave(&conf->device_lock, flags);
2800                 if (list_empty(head)) {
2801                         spin_unlock_irqrestore(&conf->device_lock, flags);
2802                         break;
2803                 }
2804                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2805                 list_del(head->prev);
2806                 conf->nr_queued--;
2807                 spin_unlock_irqrestore(&conf->device_lock, flags);
2808
2809                 mddev = r10_bio->mddev;
2810                 conf = mddev->private;
2811                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2812                     test_bit(R10BIO_WriteError, &r10_bio->state))
2813                         handle_write_completed(conf, r10_bio);
2814                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2815                         reshape_request_write(mddev, r10_bio);
2816                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2817                         sync_request_write(mddev, r10_bio);
2818                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2819                         recovery_request_write(mddev, r10_bio);
2820                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2821                         handle_read_error(mddev, r10_bio);
2822                 else {
2823                         /* just a partial read to be scheduled from a
2824                          * separate context
2825                          */
2826                         int slot = r10_bio->read_slot;
2827                         generic_make_request(r10_bio->devs[slot].bio);
2828                 }
2829
2830                 cond_resched();
2831                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2832                         md_check_recovery(mddev);
2833         }
2834         blk_finish_plug(&plug);
2835 }
2836
2837
2838 static int init_resync(struct r10conf *conf)
2839 {
2840         int buffs;
2841         int i;
2842
2843         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2844         BUG_ON(conf->r10buf_pool);
2845         conf->have_replacement = 0;
2846         for (i = 0; i < conf->geo.raid_disks; i++)
2847                 if (conf->mirrors[i].replacement)
2848                         conf->have_replacement = 1;
2849         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2850         if (!conf->r10buf_pool)
2851                 return -ENOMEM;
2852         conf->next_resync = 0;
2853         return 0;
2854 }
2855
2856 /*
2857  * perform a "sync" on one "block"
2858  *
2859  * We need to make sure that no normal I/O request - particularly write
2860  * requests - conflict with active sync requests.
2861  *
2862  * This is achieved by tracking pending requests and a 'barrier' concept
2863  * that can be installed to exclude normal IO requests.
2864  *
2865  * Resync and recovery are handled very differently.
2866  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2867  *
2868  * For resync, we iterate over virtual addresses, read all copies,
2869  * and update if there are differences.  If only one copy is live,
2870  * skip it.
2871  * For recovery, we iterate over physical addresses, read a good
2872  * value for each non-in_sync drive, and over-write.
2873  *
2874  * So, for recovery we may have several outstanding complex requests for a
2875  * given address, one for each out-of-sync device.  We model this by allocating
2876  * a number of r10_bio structures, one for each out-of-sync device.
2877  * As we setup these structures, we collect all bio's together into a list
2878  * which we then process collectively to add pages, and then process again
2879  * to pass to generic_make_request.
2880  *
2881  * The r10_bio structures are linked using a borrowed master_bio pointer.
2882  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2883  * has its remaining count decremented to 0, the whole complex operation
2884  * is complete.
2885  *
2886  */
2887
2888 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2889                              int *skipped, int go_faster)
2890 {
2891         struct r10conf *conf = mddev->private;
2892         struct r10bio *r10_bio;
2893         struct bio *biolist = NULL, *bio;
2894         sector_t max_sector, nr_sectors;
2895         int i;
2896         int max_sync;
2897         sector_t sync_blocks;
2898         sector_t sectors_skipped = 0;
2899         int chunks_skipped = 0;
2900         sector_t chunk_mask = conf->geo.chunk_mask;
2901
2902         if (!conf->r10buf_pool)
2903                 if (init_resync(conf))
2904                         return 0;
2905
2906         /*
2907          * Allow skipping a full rebuild for incremental assembly
2908          * of a clean array, like RAID1 does.
2909          */
2910         if (mddev->bitmap == NULL &&
2911             mddev->recovery_cp == MaxSector &&
2912             mddev->reshape_position == MaxSector &&
2913             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2914             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2915             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2916             conf->fullsync == 0) {
2917                 *skipped = 1;
2918                 return mddev->dev_sectors - sector_nr;
2919         }
2920
2921  skipped:
2922         max_sector = mddev->dev_sectors;
2923         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2924             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2925                 max_sector = mddev->resync_max_sectors;
2926         if (sector_nr >= max_sector) {
2927                 /* If we aborted, we need to abort the
2928                  * sync on the 'current' bitmap chucks (there can
2929                  * be several when recovering multiple devices).
2930                  * as we may have started syncing it but not finished.
2931                  * We can find the current address in
2932                  * mddev->curr_resync, but for recovery,
2933                  * we need to convert that to several
2934                  * virtual addresses.
2935                  */
2936                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937                         end_reshape(conf);
2938                         return 0;
2939                 }
2940
2941                 if (mddev->curr_resync < max_sector) { /* aborted */
2942                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2943                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2944                                                 &sync_blocks, 1);
2945                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2946                                 sector_t sect =
2947                                         raid10_find_virt(conf, mddev->curr_resync, i);
2948                                 bitmap_end_sync(mddev->bitmap, sect,
2949                                                 &sync_blocks, 1);
2950                         }
2951                 } else {
2952                         /* completed sync */
2953                         if ((!mddev->bitmap || conf->fullsync)
2954                             && conf->have_replacement
2955                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2956                                 /* Completed a full sync so the replacements
2957                                  * are now fully recovered.
2958                                  */
2959                                 for (i = 0; i < conf->geo.raid_disks; i++)
2960                                         if (conf->mirrors[i].replacement)
2961                                                 conf->mirrors[i].replacement
2962                                                         ->recovery_offset
2963                                                         = MaxSector;
2964                         }
2965                         conf->fullsync = 0;
2966                 }
2967                 bitmap_close_sync(mddev->bitmap);
2968                 close_sync(conf);
2969                 *skipped = 1;
2970                 return sectors_skipped;
2971         }
2972
2973         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2974                 return reshape_request(mddev, sector_nr, skipped);
2975
2976         if (chunks_skipped >= conf->geo.raid_disks) {
2977                 /* if there has been nothing to do on any drive,
2978                  * then there is nothing to do at all..
2979                  */
2980                 *skipped = 1;
2981                 return (max_sector - sector_nr) + sectors_skipped;
2982         }
2983
2984         if (max_sector > mddev->resync_max)
2985                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2986
2987         /* make sure whole request will fit in a chunk - if chunks
2988          * are meaningful
2989          */
2990         if (conf->geo.near_copies < conf->geo.raid_disks &&
2991             max_sector > (sector_nr | chunk_mask))
2992                 max_sector = (sector_nr | chunk_mask) + 1;
2993         /*
2994          * If there is non-resync activity waiting for us then
2995          * put in a delay to throttle resync.
2996          */
2997         if (!go_faster && conf->nr_waiting)
2998                 msleep_interruptible(1000);
2999
3000         /* Again, very different code for resync and recovery.
3001          * Both must result in an r10bio with a list of bios that
3002          * have bi_end_io, bi_sector, bi_bdev set,
3003          * and bi_private set to the r10bio.
3004          * For recovery, we may actually create several r10bios
3005          * with 2 bios in each, that correspond to the bios in the main one.
3006          * In this case, the subordinate r10bios link back through a
3007          * borrowed master_bio pointer, and the counter in the master
3008          * includes a ref from each subordinate.
3009          */
3010         /* First, we decide what to do and set ->bi_end_io
3011          * To end_sync_read if we want to read, and
3012          * end_sync_write if we will want to write.
3013          */
3014
3015         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3016         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3017                 /* recovery... the complicated one */
3018                 int j;
3019                 r10_bio = NULL;
3020
3021                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3022                         int still_degraded;
3023                         struct r10bio *rb2;
3024                         sector_t sect;
3025                         int must_sync;
3026                         int any_working;
3027                         struct raid10_info *mirror = &conf->mirrors[i];
3028
3029                         if ((mirror->rdev == NULL ||
3030                              test_bit(In_sync, &mirror->rdev->flags))
3031                             &&
3032                             (mirror->replacement == NULL ||
3033                              test_bit(Faulty,
3034                                       &mirror->replacement->flags)))
3035                                 continue;
3036
3037                         still_degraded = 0;
3038                         /* want to reconstruct this device */
3039                         rb2 = r10_bio;
3040                         sect = raid10_find_virt(conf, sector_nr, i);
3041                         if (sect >= mddev->resync_max_sectors) {
3042                                 /* last stripe is not complete - don't
3043                                  * try to recover this sector.
3044                                  */
3045                                 continue;
3046                         }
3047                         /* Unless we are doing a full sync, or a replacement
3048                          * we only need to recover the block if it is set in
3049                          * the bitmap
3050                          */
3051                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3052                                                       &sync_blocks, 1);
3053                         if (sync_blocks < max_sync)
3054                                 max_sync = sync_blocks;
3055                         if (!must_sync &&
3056                             mirror->replacement == NULL &&
3057                             !conf->fullsync) {
3058                                 /* yep, skip the sync_blocks here, but don't assume
3059                                  * that there will never be anything to do here
3060                                  */
3061                                 chunks_skipped = -1;
3062                                 continue;
3063                         }
3064
3065                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3066                         raise_barrier(conf, rb2 != NULL);
3067                         atomic_set(&r10_bio->remaining, 0);
3068
3069                         r10_bio->master_bio = (struct bio*)rb2;
3070                         if (rb2)
3071                                 atomic_inc(&rb2->remaining);
3072                         r10_bio->mddev = mddev;
3073                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3074                         r10_bio->sector = sect;
3075
3076                         raid10_find_phys(conf, r10_bio);
3077
3078                         /* Need to check if the array will still be
3079                          * degraded
3080                          */
3081                         for (j = 0; j < conf->geo.raid_disks; j++)
3082                                 if (conf->mirrors[j].rdev == NULL ||
3083                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3084                                         still_degraded = 1;
3085                                         break;
3086                                 }
3087
3088                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3089                                                       &sync_blocks, still_degraded);
3090
3091                         any_working = 0;
3092                         for (j=0; j<conf->copies;j++) {
3093                                 int k;
3094                                 int d = r10_bio->devs[j].devnum;
3095                                 sector_t from_addr, to_addr;
3096                                 struct md_rdev *rdev;
3097                                 sector_t sector, first_bad;
3098                                 int bad_sectors;
3099                                 if (!conf->mirrors[d].rdev ||
3100                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3101                                         continue;
3102                                 /* This is where we read from */
3103                                 any_working = 1;
3104                                 rdev = conf->mirrors[d].rdev;
3105                                 sector = r10_bio->devs[j].addr;
3106
3107                                 if (is_badblock(rdev, sector, max_sync,
3108                                                 &first_bad, &bad_sectors)) {
3109                                         if (first_bad > sector)
3110                                                 max_sync = first_bad - sector;
3111                                         else {
3112                                                 bad_sectors -= (sector
3113                                                                 - first_bad);
3114                                                 if (max_sync > bad_sectors)
3115                                                         max_sync = bad_sectors;
3116                                                 continue;
3117                                         }
3118                                 }
3119                                 bio = r10_bio->devs[0].bio;
3120                                 bio_reset(bio);
3121                                 bio->bi_next = biolist;
3122                                 biolist = bio;
3123                                 bio->bi_private = r10_bio;
3124                                 bio->bi_end_io = end_sync_read;
3125                                 bio->bi_rw = READ;
3126                                 from_addr = r10_bio->devs[j].addr;
3127                                 bio->bi_sector = from_addr + rdev->data_offset;
3128                                 bio->bi_bdev = rdev->bdev;
3129                                 atomic_inc(&rdev->nr_pending);
3130                                 /* and we write to 'i' (if not in_sync) */
3131
3132                                 for (k=0; k<conf->copies; k++)
3133                                         if (r10_bio->devs[k].devnum == i)
3134                                                 break;
3135                                 BUG_ON(k == conf->copies);
3136                                 to_addr = r10_bio->devs[k].addr;
3137                                 r10_bio->devs[0].devnum = d;
3138                                 r10_bio->devs[0].addr = from_addr;
3139                                 r10_bio->devs[1].devnum = i;
3140                                 r10_bio->devs[1].addr = to_addr;
3141
3142                                 rdev = mirror->rdev;
3143                                 if (!test_bit(In_sync, &rdev->flags)) {
3144                                         bio = r10_bio->devs[1].bio;
3145                                         bio_reset(bio);
3146                                         bio->bi_next = biolist;
3147                                         biolist = bio;
3148                                         bio->bi_private = r10_bio;
3149                                         bio->bi_end_io = end_sync_write;
3150                                         bio->bi_rw = WRITE;
3151                                         bio->bi_sector = to_addr
3152                                                 + rdev->data_offset;
3153                                         bio->bi_bdev = rdev->bdev;
3154                                         atomic_inc(&r10_bio->remaining);
3155                                 } else
3156                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3157
3158                                 /* and maybe write to replacement */
3159                                 bio = r10_bio->devs[1].repl_bio;
3160                                 if (bio)
3161                                         bio->bi_end_io = NULL;
3162                                 rdev = mirror->replacement;
3163                                 /* Note: if rdev != NULL, then bio
3164                                  * cannot be NULL as r10buf_pool_alloc will
3165                                  * have allocated it.
3166                                  * So the second test here is pointless.
3167                                  * But it keeps semantic-checkers happy, and
3168                                  * this comment keeps human reviewers
3169                                  * happy.
3170                                  */
3171                                 if (rdev == NULL || bio == NULL ||
3172                                     test_bit(Faulty, &rdev->flags))
3173                                         break;
3174                                 bio_reset(bio);
3175                                 bio->bi_next = biolist;
3176                                 biolist = bio;
3177                                 bio->bi_private = r10_bio;
3178                                 bio->bi_end_io = end_sync_write;
3179                                 bio->bi_rw = WRITE;
3180                                 bio->bi_sector = to_addr + rdev->data_offset;
3181                                 bio->bi_bdev = rdev->bdev;
3182                                 atomic_inc(&r10_bio->remaining);
3183                                 break;
3184                         }
3185                         if (j == conf->copies) {
3186                                 /* Cannot recover, so abort the recovery or
3187                                  * record a bad block */
3188                                 put_buf(r10_bio);
3189                                 if (rb2)
3190                                         atomic_dec(&rb2->remaining);
3191                                 r10_bio = rb2;
3192                                 if (any_working) {
3193                                         /* problem is that there are bad blocks
3194                                          * on other device(s)
3195                                          */
3196                                         int k;
3197                                         for (k = 0; k < conf->copies; k++)
3198                                                 if (r10_bio->devs[k].devnum == i)
3199                                                         break;
3200                                         if (!test_bit(In_sync,
3201                                                       &mirror->rdev->flags)
3202                                             && !rdev_set_badblocks(
3203                                                     mirror->rdev,
3204                                                     r10_bio->devs[k].addr,
3205                                                     max_sync, 0))
3206                                                 any_working = 0;
3207                                         if (mirror->replacement &&
3208                                             !rdev_set_badblocks(
3209                                                     mirror->replacement,
3210                                                     r10_bio->devs[k].addr,
3211                                                     max_sync, 0))
3212                                                 any_working = 0;
3213                                 }
3214                                 if (!any_working)  {
3215                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3216                                                               &mddev->recovery))
3217                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3218                                                        "working devices for recovery.\n",
3219                                                        mdname(mddev));
3220                                         mirror->recovery_disabled
3221                                                 = mddev->recovery_disabled;
3222                                 }
3223                                 break;
3224                         }
3225                 }
3226                 if (biolist == NULL) {
3227                         while (r10_bio) {
3228                                 struct r10bio *rb2 = r10_bio;
3229                                 r10_bio = (struct r10bio*) rb2->master_bio;
3230                                 rb2->master_bio = NULL;
3231                                 put_buf(rb2);
3232                         }
3233                         goto giveup;
3234                 }
3235         } else {
3236                 /* resync. Schedule a read for every block at this virt offset */
3237                 int count = 0;
3238
3239                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3240
3241                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3242                                        &sync_blocks, mddev->degraded) &&
3243                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3244                                                  &mddev->recovery)) {
3245                         /* We can skip this block */
3246                         *skipped = 1;
3247                         return sync_blocks + sectors_skipped;
3248                 }
3249                 if (sync_blocks < max_sync)
3250                         max_sync = sync_blocks;
3251                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3252
3253                 r10_bio->mddev = mddev;
3254                 atomic_set(&r10_bio->remaining, 0);
3255                 raise_barrier(conf, 0);
3256                 conf->next_resync = sector_nr;
3257
3258                 r10_bio->master_bio = NULL;
3259                 r10_bio->sector = sector_nr;
3260                 set_bit(R10BIO_IsSync, &r10_bio->state);
3261                 raid10_find_phys(conf, r10_bio);
3262                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3263
3264                 for (i = 0; i < conf->copies; i++) {
3265                         int d = r10_bio->devs[i].devnum;
3266                         sector_t first_bad, sector;
3267                         int bad_sectors;
3268
3269                         if (r10_bio->devs[i].repl_bio)
3270                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3271
3272                         bio = r10_bio->devs[i].bio;
3273                         bio_reset(bio);
3274                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3275                         if (conf->mirrors[d].rdev == NULL ||
3276                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3277                                 continue;
3278                         sector = r10_bio->devs[i].addr;
3279                         if (is_badblock(conf->mirrors[d].rdev,
3280                                         sector, max_sync,
3281                                         &first_bad, &bad_sectors)) {
3282                                 if (first_bad > sector)
3283                                         max_sync = first_bad - sector;
3284                                 else {
3285                                         bad_sectors -= (sector - first_bad);
3286                                         if (max_sync > bad_sectors)
3287                                                 max_sync = bad_sectors;
3288                                         continue;
3289                                 }
3290                         }
3291                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3292                         atomic_inc(&r10_bio->remaining);
3293                         bio->bi_next = biolist;
3294                         biolist = bio;
3295                         bio->bi_private = r10_bio;
3296                         bio->bi_end_io = end_sync_read;
3297                         bio->bi_rw = READ;
3298                         bio->bi_sector = sector +
3299                                 conf->mirrors[d].rdev->data_offset;
3300                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3301                         count++;
3302
3303                         if (conf->mirrors[d].replacement == NULL ||
3304                             test_bit(Faulty,
3305                                      &conf->mirrors[d].replacement->flags))
3306                                 continue;
3307
3308                         /* Need to set up for writing to the replacement */
3309                         bio = r10_bio->devs[i].repl_bio;
3310                         bio_reset(bio);
3311                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3312
3313                         sector = r10_bio->devs[i].addr;
3314                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3315                         bio->bi_next = biolist;
3316                         biolist = bio;
3317                         bio->bi_private = r10_bio;
3318                         bio->bi_end_io = end_sync_write;
3319                         bio->bi_rw = WRITE;
3320                         bio->bi_sector = sector +
3321                                 conf->mirrors[d].replacement->data_offset;
3322                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3323                         count++;
3324                 }
3325
3326                 if (count < 2) {
3327                         for (i=0; i<conf->copies; i++) {
3328                                 int d = r10_bio->devs[i].devnum;
3329                                 if (r10_bio->devs[i].bio->bi_end_io)
3330                                         rdev_dec_pending(conf->mirrors[d].rdev,
3331                                                          mddev);
3332                                 if (r10_bio->devs[i].repl_bio &&
3333                                     r10_bio->devs[i].repl_bio->bi_end_io)
3334                                         rdev_dec_pending(
3335                                                 conf->mirrors[d].replacement,
3336                                                 mddev);
3337                         }
3338                         put_buf(r10_bio);
3339                         biolist = NULL;
3340                         goto giveup;
3341                 }
3342         }
3343
3344         nr_sectors = 0;
3345         if (sector_nr + max_sync < max_sector)
3346                 max_sector = sector_nr + max_sync;
3347         do {
3348                 struct page *page;
3349                 int len = PAGE_SIZE;
3350                 if (sector_nr + (len>>9) > max_sector)
3351                         len = (max_sector - sector_nr) << 9;
3352                 if (len == 0)
3353                         break;
3354                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3355                         struct bio *bio2;
3356                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3357                         if (bio_add_page(bio, page, len, 0))
3358                                 continue;
3359
3360                         /* stop here */
3361                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3362                         for (bio2 = biolist;
3363                              bio2 && bio2 != bio;
3364                              bio2 = bio2->bi_next) {
3365                                 /* remove last page from this bio */
3366                                 bio2->bi_vcnt--;
3367                                 bio2->bi_size -= len;
3368                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3369                         }
3370                         goto bio_full;
3371                 }
3372                 nr_sectors += len>>9;
3373                 sector_nr += len>>9;
3374         } while (biolist->bi_vcnt < RESYNC_PAGES);
3375  bio_full:
3376         r10_bio->sectors = nr_sectors;
3377
3378         while (biolist) {
3379                 bio = biolist;
3380                 biolist = biolist->bi_next;
3381
3382                 bio->bi_next = NULL;
3383                 r10_bio = bio->bi_private;
3384                 r10_bio->sectors = nr_sectors;
3385
3386                 if (bio->bi_end_io == end_sync_read) {
3387                         md_sync_acct(bio->bi_bdev, nr_sectors);
3388                         generic_make_request(bio);
3389                 }
3390         }
3391
3392         if (sectors_skipped)
3393                 /* pretend they weren't skipped, it makes
3394                  * no important difference in this case
3395                  */
3396                 md_done_sync(mddev, sectors_skipped, 1);
3397
3398         return sectors_skipped + nr_sectors;
3399  giveup:
3400         /* There is nowhere to write, so all non-sync
3401          * drives must be failed or in resync, all drives
3402          * have a bad block, so try the next chunk...
3403          */
3404         if (sector_nr + max_sync < max_sector)
3405                 max_sector = sector_nr + max_sync;
3406
3407         sectors_skipped += (max_sector - sector_nr);
3408         chunks_skipped ++;
3409         sector_nr = max_sector;
3410         goto skipped;
3411 }
3412
3413 static sector_t
3414 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3415 {
3416         sector_t size;
3417         struct r10conf *conf = mddev->private;
3418
3419         if (!raid_disks)
3420                 raid_disks = min(conf->geo.raid_disks,
3421                                  conf->prev.raid_disks);
3422         if (!sectors)
3423                 sectors = conf->dev_sectors;
3424
3425         size = sectors >> conf->geo.chunk_shift;
3426         sector_div(size, conf->geo.far_copies);
3427         size = size * raid_disks;
3428         sector_div(size, conf->geo.near_copies);
3429
3430         return size << conf->geo.chunk_shift;
3431 }
3432
3433 static void calc_sectors(struct r10conf *conf, sector_t size)
3434 {
3435         /* Calculate the number of sectors-per-device that will
3436          * actually be used, and set conf->dev_sectors and
3437          * conf->stride
3438          */
3439
3440         size = size >> conf->geo.chunk_shift;
3441         sector_div(size, conf->geo.far_copies);
3442         size = size * conf->geo.raid_disks;
3443         sector_div(size, conf->geo.near_copies);
3444         /* 'size' is now the number of chunks in the array */
3445         /* calculate "used chunks per device" */
3446         size = size * conf->copies;
3447
3448         /* We need to round up when dividing by raid_disks to
3449          * get the stride size.
3450          */
3451         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3452
3453         conf->dev_sectors = size << conf->geo.chunk_shift;
3454
3455         if (conf->geo.far_offset)
3456                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3457         else {
3458                 sector_div(size, conf->geo.far_copies);
3459                 conf->geo.stride = size << conf->geo.chunk_shift;
3460         }
3461 }
3462
3463 enum geo_type {geo_new, geo_old, geo_start};
3464 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3465 {
3466         int nc, fc, fo;
3467         int layout, chunk, disks;
3468         switch (new) {
3469         case geo_old:
3470                 layout = mddev->layout;
3471                 chunk = mddev->chunk_sectors;
3472                 disks = mddev->raid_disks - mddev->delta_disks;
3473                 break;
3474         case geo_new:
3475                 layout = mddev->new_layout;
3476                 chunk = mddev->new_chunk_sectors;
3477                 disks = mddev->raid_disks;
3478                 break;
3479         default: /* avoid 'may be unused' warnings */
3480         case geo_start: /* new when starting reshape - raid_disks not
3481                          * updated yet. */
3482                 layout = mddev->new_layout;
3483                 chunk = mddev->new_chunk_sectors;
3484                 disks = mddev->raid_disks + mddev->delta_disks;
3485                 break;
3486         }
3487         if (layout >> 18)
3488                 return -1;
3489         if (chunk < (PAGE_SIZE >> 9) ||
3490             !is_power_of_2(chunk))
3491                 return -2;
3492         nc = layout & 255;
3493         fc = (layout >> 8) & 255;
3494         fo = layout & (1<<16);
3495         geo->raid_disks = disks;
3496         geo->near_copies = nc;
3497         geo->far_copies = fc;
3498         geo->far_offset = fo;
3499         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3500         geo->chunk_mask = chunk - 1;
3501         geo->chunk_shift = ffz(~chunk);
3502         return nc*fc;
3503 }
3504
3505 static struct r10conf *setup_conf(struct mddev *mddev)
3506 {
3507         struct r10conf *conf = NULL;
3508         int err = -EINVAL;
3509         struct geom geo;
3510         int copies;
3511
3512         copies = setup_geo(&geo, mddev, geo_new);
3513
3514         if (copies == -2) {
3515                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3516                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3517                        mdname(mddev), PAGE_SIZE);
3518                 goto out;
3519         }
3520
3521         if (copies < 2 || copies > mddev->raid_disks) {
3522                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3523                        mdname(mddev), mddev->new_layout);
3524                 goto out;
3525         }
3526
3527         err = -ENOMEM;
3528         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3529         if (!conf)
3530                 goto out;
3531
3532         /* FIXME calc properly */
3533         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3534                                                             max(0,mddev->delta_disks)),
3535                                 GFP_KERNEL);
3536         if (!conf->mirrors)
3537                 goto out;
3538
3539         conf->tmppage = alloc_page(GFP_KERNEL);
3540         if (!conf->tmppage)
3541                 goto out;
3542
3543         conf->geo = geo;
3544         conf->copies = copies;
3545         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3546                                            r10bio_pool_free, conf);
3547         if (!conf->r10bio_pool)
3548                 goto out;
3549
3550         calc_sectors(conf, mddev->dev_sectors);
3551         if (mddev->reshape_position == MaxSector) {
3552                 conf->prev = conf->geo;
3553                 conf->reshape_progress = MaxSector;
3554         } else {
3555                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3556                         err = -EINVAL;
3557                         goto out;
3558                 }
3559                 conf->reshape_progress = mddev->reshape_position;
3560                 if (conf->prev.far_offset)
3561                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3562                 else
3563                         /* far_copies must be 1 */
3564                         conf->prev.stride = conf->dev_sectors;
3565         }
3566         spin_lock_init(&conf->device_lock);
3567         INIT_LIST_HEAD(&conf->retry_list);
3568
3569         spin_lock_init(&conf->resync_lock);
3570         init_waitqueue_head(&conf->wait_barrier);
3571
3572         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3573         if (!conf->thread)
3574                 goto out;
3575
3576         conf->mddev = mddev;
3577         return conf;
3578
3579  out:
3580         if (err == -ENOMEM)
3581                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3582                        mdname(mddev));
3583         if (conf) {
3584                 if (conf->r10bio_pool)
3585                         mempool_destroy(conf->r10bio_pool);
3586                 kfree(conf->mirrors);
3587                 safe_put_page(conf->tmppage);
3588                 kfree(conf);
3589         }
3590         return ERR_PTR(err);
3591 }
3592
3593 static int run(struct mddev *mddev)
3594 {
3595         struct r10conf *conf;
3596         int i, disk_idx, chunk_size;
3597         struct raid10_info *disk;
3598         struct md_rdev *rdev;
3599         sector_t size;
3600         sector_t min_offset_diff = 0;
3601         int first = 1;
3602         bool discard_supported = false;
3603
3604         if (mddev->private == NULL) {
3605                 conf = setup_conf(mddev);
3606                 if (IS_ERR(conf))
3607                         return PTR_ERR(conf);
3608                 mddev->private = conf;
3609         }
3610         conf = mddev->private;
3611         if (!conf)
3612                 goto out;
3613
3614         mddev->thread = conf->thread;
3615         conf->thread = NULL;
3616
3617         chunk_size = mddev->chunk_sectors << 9;
3618         if (mddev->queue) {
3619                 blk_queue_max_discard_sectors(mddev->queue,
3620                                               mddev->chunk_sectors);
3621                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3622                 blk_queue_io_min(mddev->queue, chunk_size);
3623                 if (conf->geo.raid_disks % conf->geo.near_copies)
3624                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3625                 else
3626                         blk_queue_io_opt(mddev->queue, chunk_size *
3627                                          (conf->geo.raid_disks / conf->geo.near_copies));
3628         }
3629
3630         rdev_for_each(rdev, mddev) {
3631                 long long diff;
3632                 struct request_queue *q;
3633
3634                 disk_idx = rdev->raid_disk;
3635                 if (disk_idx < 0)
3636                         continue;
3637                 if (disk_idx >= conf->geo.raid_disks &&
3638                     disk_idx >= conf->prev.raid_disks)
3639                         continue;
3640                 disk = conf->mirrors + disk_idx;
3641
3642                 if (test_bit(Replacement, &rdev->flags)) {
3643                         if (disk->replacement)
3644                                 goto out_free_conf;
3645                         disk->replacement = rdev;
3646                 } else {
3647                         if (disk->rdev)
3648                                 goto out_free_conf;
3649                         disk->rdev = rdev;
3650                 }
3651                 q = bdev_get_queue(rdev->bdev);
3652                 if (q->merge_bvec_fn)
3653                         mddev->merge_check_needed = 1;
3654                 diff = (rdev->new_data_offset - rdev->data_offset);
3655                 if (!mddev->reshape_backwards)
3656                         diff = -diff;
3657                 if (diff < 0)
3658                         diff = 0;
3659                 if (first || diff < min_offset_diff)
3660                         min_offset_diff = diff;
3661
3662                 if (mddev->gendisk)
3663                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3664                                           rdev->data_offset << 9);
3665
3666                 disk->head_position = 0;
3667
3668                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3669                         discard_supported = true;
3670         }
3671
3672         if (mddev->queue) {
3673                 if (discard_supported)
3674                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3675                                                 mddev->queue);
3676                 else
3677                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3678                                                   mddev->queue);
3679         }
3680         /* need to check that every block has at least one working mirror */
3681         if (!enough(conf, -1)) {
3682                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3683                        mdname(mddev));
3684                 goto out_free_conf;
3685         }
3686
3687         if (conf->reshape_progress != MaxSector) {
3688                 /* must ensure that shape change is supported */
3689                 if (conf->geo.far_copies != 1 &&
3690                     conf->geo.far_offset == 0)
3691                         goto out_free_conf;
3692                 if (conf->prev.far_copies != 1 &&
3693                     conf->geo.far_offset == 0)
3694                         goto out_free_conf;
3695         }
3696
3697         mddev->degraded = 0;
3698         for (i = 0;
3699              i < conf->geo.raid_disks
3700                      || i < conf->prev.raid_disks;
3701              i++) {
3702
3703                 disk = conf->mirrors + i;
3704
3705                 if (!disk->rdev && disk->replacement) {
3706                         /* The replacement is all we have - use it */
3707                         disk->rdev = disk->replacement;
3708                         disk->replacement = NULL;
3709                         clear_bit(Replacement, &disk->rdev->flags);
3710                 }
3711
3712                 if (!disk->rdev ||
3713                     !test_bit(In_sync, &disk->rdev->flags)) {
3714                         disk->head_position = 0;
3715                         mddev->degraded++;
3716                         if (disk->rdev)
3717                                 conf->fullsync = 1;
3718                 }
3719                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3720         }
3721
3722         if (mddev->recovery_cp != MaxSector)
3723                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3724                        " -- starting background reconstruction\n",
3725                        mdname(mddev));
3726         printk(KERN_INFO
3727                 "md/raid10:%s: active with %d out of %d devices\n",
3728                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3729                 conf->geo.raid_disks);
3730         /*
3731          * Ok, everything is just fine now
3732          */
3733         mddev->dev_sectors = conf->dev_sectors;
3734         size = raid10_size(mddev, 0, 0);
3735         md_set_array_sectors(mddev, size);
3736         mddev->resync_max_sectors = size;
3737
3738         if (mddev->queue) {
3739                 int stripe = conf->geo.raid_disks *
3740                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3741                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3742                 mddev->queue->backing_dev_info.congested_data = mddev;
3743
3744                 /* Calculate max read-ahead size.
3745                  * We need to readahead at least twice a whole stripe....
3746                  * maybe...
3747                  */
3748                 stripe /= conf->geo.near_copies;
3749                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3750                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3751                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3752         }
3753
3754
3755         if (md_integrity_register(mddev))
3756                 goto out_free_conf;
3757
3758         if (conf->reshape_progress != MaxSector) {
3759                 unsigned long before_length, after_length;
3760
3761                 before_length = ((1 << conf->prev.chunk_shift) *
3762                                  conf->prev.far_copies);
3763                 after_length = ((1 << conf->geo.chunk_shift) *
3764                                 conf->geo.far_copies);
3765
3766                 if (max(before_length, after_length) > min_offset_diff) {
3767                         /* This cannot work */
3768                         printk("md/raid10: offset difference not enough to continue reshape\n");
3769                         goto out_free_conf;
3770                 }
3771                 conf->offset_diff = min_offset_diff;
3772
3773                 conf->reshape_safe = conf->reshape_progress;
3774                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3775                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3776                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3777                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3778                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3779                                                         "reshape");
3780         }
3781
3782         return 0;
3783
3784 out_free_conf:
3785         md_unregister_thread(&mddev->thread);
3786         if (conf->r10bio_pool)
3787                 mempool_destroy(conf->r10bio_pool);
3788         safe_put_page(conf->tmppage);
3789         kfree(conf->mirrors);
3790         kfree(conf);
3791         mddev->private = NULL;
3792 out:
3793         return -EIO;
3794 }
3795
3796 static int stop(struct mddev *mddev)
3797 {
3798         struct r10conf *conf = mddev->private;
3799
3800         raise_barrier(conf, 0);
3801         lower_barrier(conf);
3802
3803         md_unregister_thread(&mddev->thread);
3804         if (mddev->queue)
3805                 /* the unplug fn references 'conf'*/
3806                 blk_sync_queue(mddev->queue);
3807
3808         if (conf->r10bio_pool)
3809                 mempool_destroy(conf->r10bio_pool);
3810         safe_put_page(conf->tmppage);
3811         kfree(conf->mirrors);
3812         kfree(conf);
3813         mddev->private = NULL;
3814         return 0;
3815 }
3816
3817 static void raid10_quiesce(struct mddev *mddev, int state)
3818 {
3819         struct r10conf *conf = mddev->private;
3820
3821         switch(state) {
3822         case 1:
3823                 raise_barrier(conf, 0);
3824                 break;
3825         case 0:
3826                 lower_barrier(conf);
3827                 break;
3828         }
3829 }
3830
3831 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3832 {
3833         /* Resize of 'far' arrays is not supported.
3834          * For 'near' and 'offset' arrays we can set the
3835          * number of sectors used to be an appropriate multiple
3836          * of the chunk size.
3837          * For 'offset', this is far_copies*chunksize.
3838          * For 'near' the multiplier is the LCM of
3839          * near_copies and raid_disks.
3840          * So if far_copies > 1 && !far_offset, fail.
3841          * Else find LCM(raid_disks, near_copy)*far_copies and
3842          * multiply by chunk_size.  Then round to this number.
3843          * This is mostly done by raid10_size()
3844          */
3845         struct r10conf *conf = mddev->private;
3846         sector_t oldsize, size;
3847
3848         if (mddev->reshape_position != MaxSector)
3849                 return -EBUSY;
3850
3851         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3852                 return -EINVAL;
3853
3854         oldsize = raid10_size(mddev, 0, 0);
3855         size = raid10_size(mddev, sectors, 0);
3856         if (mddev->external_size &&
3857             mddev->array_sectors > size)
3858                 return -EINVAL;
3859         if (mddev->bitmap) {
3860                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3861                 if (ret)
3862                         return ret;
3863         }
3864         md_set_array_sectors(mddev, size);
3865         set_capacity(mddev->gendisk, mddev->array_sectors);
3866         revalidate_disk(mddev->gendisk);
3867         if (sectors > mddev->dev_sectors &&
3868             mddev->recovery_cp > oldsize) {
3869                 mddev->recovery_cp = oldsize;
3870                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3871         }
3872         calc_sectors(conf, sectors);
3873         mddev->dev_sectors = conf->dev_sectors;
3874         mddev->resync_max_sectors = size;
3875         return 0;
3876 }
3877
3878 static void *raid10_takeover_raid0(struct mddev *mddev)
3879 {
3880         struct md_rdev *rdev;
3881         struct r10conf *conf;
3882
3883         if (mddev->degraded > 0) {
3884                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3885                        mdname(mddev));
3886                 return ERR_PTR(-EINVAL);
3887         }
3888
3889         /* Set new parameters */
3890         mddev->new_level = 10;
3891         /* new layout: far_copies = 1, near_copies = 2 */
3892         mddev->new_layout = (1<<8) + 2;
3893         mddev->new_chunk_sectors = mddev->chunk_sectors;
3894         mddev->delta_disks = mddev->raid_disks;
3895         mddev->raid_disks *= 2;
3896         /* make sure it will be not marked as dirty */
3897         mddev->recovery_cp = MaxSector;
3898
3899         conf = setup_conf(mddev);
3900         if (!IS_ERR(conf)) {
3901                 rdev_for_each(rdev, mddev)
3902                         if (rdev->raid_disk >= 0)
3903                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3904                 conf->barrier = 1;
3905         }
3906
3907         return conf;
3908 }
3909
3910 static void *raid10_takeover(struct mddev *mddev)
3911 {
3912         struct r0conf *raid0_conf;
3913
3914         /* raid10 can take over:
3915          *  raid0 - providing it has only two drives
3916          */
3917         if (mddev->level == 0) {
3918                 /* for raid0 takeover only one zone is supported */
3919                 raid0_conf = mddev->private;
3920                 if (raid0_conf->nr_strip_zones > 1) {
3921                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3922                                " with more than one zone.\n",
3923                                mdname(mddev));
3924                         return ERR_PTR(-EINVAL);
3925                 }
3926                 return raid10_takeover_raid0(mddev);
3927         }
3928         return ERR_PTR(-EINVAL);
3929 }
3930
3931 static int raid10_check_reshape(struct mddev *mddev)
3932 {
3933         /* Called when there is a request to change
3934          * - layout (to ->new_layout)
3935          * - chunk size (to ->new_chunk_sectors)
3936          * - raid_disks (by delta_disks)
3937          * or when trying to restart a reshape that was ongoing.
3938          *
3939          * We need to validate the request and possibly allocate
3940          * space if that might be an issue later.
3941          *
3942          * Currently we reject any reshape of a 'far' mode array,
3943          * allow chunk size to change if new is generally acceptable,
3944          * allow raid_disks to increase, and allow
3945          * a switch between 'near' mode and 'offset' mode.
3946          */
3947         struct r10conf *conf = mddev->private;
3948         struct geom geo;
3949
3950         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3951                 return -EINVAL;
3952
3953         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3954                 /* mustn't change number of copies */
3955                 return -EINVAL;
3956         if (geo.far_copies > 1 && !geo.far_offset)
3957                 /* Cannot switch to 'far' mode */
3958                 return -EINVAL;
3959
3960         if (mddev->array_sectors & geo.chunk_mask)
3961                         /* not factor of array size */
3962                         return -EINVAL;
3963
3964         if (!enough(conf, -1))
3965                 return -EINVAL;
3966
3967         kfree(conf->mirrors_new);
3968         conf->mirrors_new = NULL;
3969         if (mddev->delta_disks > 0) {
3970                 /* allocate new 'mirrors' list */
3971                 conf->mirrors_new = kzalloc(
3972                         sizeof(struct raid10_info)
3973                         *(mddev->raid_disks +
3974                           mddev->delta_disks),
3975                         GFP_KERNEL);
3976                 if (!conf->mirrors_new)
3977                         return -ENOMEM;
3978         }
3979         return 0;
3980 }
3981
3982 /*
3983  * Need to check if array has failed when deciding whether to:
3984  *  - start an array
3985  *  - remove non-faulty devices
3986  *  - add a spare
3987  *  - allow a reshape
3988  * This determination is simple when no reshape is happening.
3989  * However if there is a reshape, we need to carefully check
3990  * both the before and after sections.
3991  * This is because some failed devices may only affect one
3992  * of the two sections, and some non-in_sync devices may
3993  * be insync in the section most affected by failed devices.
3994  */
3995 static int calc_degraded(struct r10conf *conf)
3996 {
3997         int degraded, degraded2;
3998         int i;
3999
4000         rcu_read_lock();
4001         degraded = 0;
4002         /* 'prev' section first */
4003         for (i = 0; i < conf->prev.raid_disks; i++) {
4004                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4005                 if (!rdev || test_bit(Faulty, &rdev->flags))
4006                         degraded++;
4007                 else if (!test_bit(In_sync, &rdev->flags))
4008                         /* When we can reduce the number of devices in
4009                          * an array, this might not contribute to
4010                          * 'degraded'.  It does now.
4011                          */
4012                         degraded++;
4013         }
4014         rcu_read_unlock();
4015         if (conf->geo.raid_disks == conf->prev.raid_disks)
4016                 return degraded;
4017         rcu_read_lock();
4018         degraded2 = 0;
4019         for (i = 0; i < conf->geo.raid_disks; i++) {
4020                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4021                 if (!rdev || test_bit(Faulty, &rdev->flags))
4022                         degraded2++;
4023                 else if (!test_bit(In_sync, &rdev->flags)) {
4024                         /* If reshape is increasing the number of devices,
4025                          * this section has already been recovered, so
4026                          * it doesn't contribute to degraded.
4027                          * else it does.
4028                          */
4029                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4030                                 degraded2++;
4031                 }
4032         }
4033         rcu_read_unlock();
4034         if (degraded2 > degraded)
4035                 return degraded2;
4036         return degraded;
4037 }
4038
4039 static int raid10_start_reshape(struct mddev *mddev)
4040 {
4041         /* A 'reshape' has been requested. This commits
4042          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4043          * This also checks if there are enough spares and adds them
4044          * to the array.
4045          * We currently require enough spares to make the final
4046          * array non-degraded.  We also require that the difference
4047          * between old and new data_offset - on each device - is
4048          * enough that we never risk over-writing.
4049          */
4050
4051         unsigned long before_length, after_length;
4052         sector_t min_offset_diff = 0;
4053         int first = 1;
4054         struct geom new;
4055         struct r10conf *conf = mddev->private;
4056         struct md_rdev *rdev;
4057         int spares = 0;
4058         int ret;
4059
4060         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4061                 return -EBUSY;
4062
4063         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4064                 return -EINVAL;
4065
4066         before_length = ((1 << conf->prev.chunk_shift) *
4067                          conf->prev.far_copies);
4068         after_length = ((1 << conf->geo.chunk_shift) *
4069                         conf->geo.far_copies);
4070
4071         rdev_for_each(rdev, mddev) {
4072                 if (!test_bit(In_sync, &rdev->flags)
4073                     && !test_bit(Faulty, &rdev->flags))
4074                         spares++;
4075                 if (rdev->raid_disk >= 0) {
4076                         long long diff = (rdev->new_data_offset
4077                                           - rdev->data_offset);
4078                         if (!mddev->reshape_backwards)
4079                                 diff = -diff;
4080                         if (diff < 0)
4081                                 diff = 0;
4082                         if (first || diff < min_offset_diff)
4083                                 min_offset_diff = diff;
4084                 }
4085         }
4086
4087         if (max(before_length, after_length) > min_offset_diff)
4088                 return -EINVAL;
4089
4090         if (spares < mddev->delta_disks)
4091                 return -EINVAL;
4092
4093         conf->offset_diff = min_offset_diff;
4094         spin_lock_irq(&conf->device_lock);
4095         if (conf->mirrors_new) {
4096                 memcpy(conf->mirrors_new, conf->mirrors,
4097                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4098                 smp_mb();
4099                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4100                 conf->mirrors_old = conf->mirrors;
4101                 conf->mirrors = conf->mirrors_new;
4102                 conf->mirrors_new = NULL;
4103         }
4104         setup_geo(&conf->geo, mddev, geo_start);
4105         smp_mb();
4106         if (mddev->reshape_backwards) {
4107                 sector_t size = raid10_size(mddev, 0, 0);
4108                 if (size < mddev->array_sectors) {
4109                         spin_unlock_irq(&conf->device_lock);
4110                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4111                                mdname(mddev));
4112                         return -EINVAL;
4113                 }
4114                 mddev->resync_max_sectors = size;
4115                 conf->reshape_progress = size;
4116         } else
4117                 conf->reshape_progress = 0;
4118         spin_unlock_irq(&conf->device_lock);
4119
4120         if (mddev->delta_disks && mddev->bitmap) {
4121                 ret = bitmap_resize(mddev->bitmap,
4122                                     raid10_size(mddev, 0,
4123                                                 conf->geo.raid_disks),
4124                                     0, 0);
4125                 if (ret)
4126                         goto abort;
4127         }
4128         if (mddev->delta_disks > 0) {
4129                 rdev_for_each(rdev, mddev)
4130                         if (rdev->raid_disk < 0 &&
4131                             !test_bit(Faulty, &rdev->flags)) {
4132                                 if (raid10_add_disk(mddev, rdev) == 0) {
4133                                         if (rdev->raid_disk >=
4134                                             conf->prev.raid_disks)
4135                                                 set_bit(In_sync, &rdev->flags);
4136                                         else
4137                                                 rdev->recovery_offset = 0;
4138
4139                                         if (sysfs_link_rdev(mddev, rdev))
4140                                                 /* Failure here  is OK */;
4141                                 }
4142                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4143                                    && !test_bit(Faulty, &rdev->flags)) {
4144                                 /* This is a spare that was manually added */
4145                                 set_bit(In_sync, &rdev->flags);
4146                         }
4147         }
4148         /* When a reshape changes the number of devices,
4149          * ->degraded is measured against the larger of the
4150          * pre and  post numbers.
4151          */
4152         spin_lock_irq(&conf->device_lock);
4153         mddev->degraded = calc_degraded(conf);
4154         spin_unlock_irq(&conf->device_lock);
4155         mddev->raid_disks = conf->geo.raid_disks;
4156         mddev->reshape_position = conf->reshape_progress;
4157         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4158
4159         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4160         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4161         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4162         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4163
4164         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4165                                                 "reshape");
4166         if (!mddev->sync_thread) {
4167                 ret = -EAGAIN;
4168                 goto abort;
4169         }
4170         conf->reshape_checkpoint = jiffies;
4171         md_wakeup_thread(mddev->sync_thread);
4172         md_new_event(mddev);
4173         return 0;
4174
4175 abort:
4176         mddev->recovery = 0;
4177         spin_lock_irq(&conf->device_lock);
4178         conf->geo = conf->prev;
4179         mddev->raid_disks = conf->geo.raid_disks;
4180         rdev_for_each(rdev, mddev)
4181                 rdev->new_data_offset = rdev->data_offset;
4182         smp_wmb();
4183         conf->reshape_progress = MaxSector;
4184         mddev->reshape_position = MaxSector;
4185         spin_unlock_irq(&conf->device_lock);
4186         return ret;
4187 }
4188
4189 /* Calculate the last device-address that could contain
4190  * any block from the chunk that includes the array-address 's'
4191  * and report the next address.
4192  * i.e. the address returned will be chunk-aligned and after
4193  * any data that is in the chunk containing 's'.
4194  */
4195 static sector_t last_dev_address(sector_t s, struct geom *geo)
4196 {
4197         s = (s | geo->chunk_mask) + 1;
4198         s >>= geo->chunk_shift;
4199         s *= geo->near_copies;
4200         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4201         s *= geo->far_copies;
4202         s <<= geo->chunk_shift;
4203         return s;
4204 }
4205
4206 /* Calculate the first device-address that could contain
4207  * any block from the chunk that includes the array-address 's'.
4208  * This too will be the start of a chunk
4209  */
4210 static sector_t first_dev_address(sector_t s, struct geom *geo)
4211 {
4212         s >>= geo->chunk_shift;
4213         s *= geo->near_copies;
4214         sector_div(s, geo->raid_disks);
4215         s *= geo->far_copies;
4216         s <<= geo->chunk_shift;
4217         return s;
4218 }
4219
4220 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4221                                 int *skipped)
4222 {
4223         /* We simply copy at most one chunk (smallest of old and new)
4224          * at a time, possibly less if that exceeds RESYNC_PAGES,
4225          * or we hit a bad block or something.
4226          * This might mean we pause for normal IO in the middle of
4227          * a chunk, but that is not a problem was mddev->reshape_position
4228          * can record any location.
4229          *
4230          * If we will want to write to a location that isn't
4231          * yet recorded as 'safe' (i.e. in metadata on disk) then
4232          * we need to flush all reshape requests and update the metadata.
4233          *
4234          * When reshaping forwards (e.g. to more devices), we interpret
4235          * 'safe' as the earliest block which might not have been copied
4236          * down yet.  We divide this by previous stripe size and multiply
4237          * by previous stripe length to get lowest device offset that we
4238          * cannot write to yet.
4239          * We interpret 'sector_nr' as an address that we want to write to.
4240          * From this we use last_device_address() to find where we might
4241          * write to, and first_device_address on the  'safe' position.
4242          * If this 'next' write position is after the 'safe' position,
4243          * we must update the metadata to increase the 'safe' position.
4244          *
4245          * When reshaping backwards, we round in the opposite direction
4246          * and perform the reverse test:  next write position must not be
4247          * less than current safe position.
4248          *
4249          * In all this the minimum difference in data offsets
4250          * (conf->offset_diff - always positive) allows a bit of slack,
4251          * so next can be after 'safe', but not by more than offset_disk
4252          *
4253          * We need to prepare all the bios here before we start any IO
4254          * to ensure the size we choose is acceptable to all devices.
4255          * The means one for each copy for write-out and an extra one for
4256          * read-in.
4257          * We store the read-in bio in ->master_bio and the others in
4258          * ->devs[x].bio and ->devs[x].repl_bio.
4259          */
4260         struct r10conf *conf = mddev->private;
4261         struct r10bio *r10_bio;
4262         sector_t next, safe, last;
4263         int max_sectors;
4264         int nr_sectors;
4265         int s;
4266         struct md_rdev *rdev;
4267         int need_flush = 0;
4268         struct bio *blist;
4269         struct bio *bio, *read_bio;
4270         int sectors_done = 0;
4271
4272         if (sector_nr == 0) {
4273                 /* If restarting in the middle, skip the initial sectors */
4274                 if (mddev->reshape_backwards &&
4275                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4276                         sector_nr = (raid10_size(mddev, 0, 0)
4277                                      - conf->reshape_progress);
4278                 } else if (!mddev->reshape_backwards &&
4279                            conf->reshape_progress > 0)
4280                         sector_nr = conf->reshape_progress;
4281                 if (sector_nr) {
4282                         mddev->curr_resync_completed = sector_nr;
4283                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4284                         *skipped = 1;
4285                         return sector_nr;
4286                 }
4287         }
4288
4289         /* We don't use sector_nr to track where we are up to
4290          * as that doesn't work well for ->reshape_backwards.
4291          * So just use ->reshape_progress.
4292          */
4293         if (mddev->reshape_backwards) {
4294                 /* 'next' is the earliest device address that we might
4295                  * write to for this chunk in the new layout
4296                  */
4297                 next = first_dev_address(conf->reshape_progress - 1,
4298                                          &conf->geo);
4299
4300                 /* 'safe' is the last device address that we might read from
4301                  * in the old layout after a restart
4302                  */
4303                 safe = last_dev_address(conf->reshape_safe - 1,
4304                                         &conf->prev);
4305
4306                 if (next + conf->offset_diff < safe)
4307                         need_flush = 1;
4308
4309                 last = conf->reshape_progress - 1;
4310                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4311                                                & conf->prev.chunk_mask);
4312                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4313                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4314         } else {
4315                 /* 'next' is after the last device address that we
4316                  * might write to for this chunk in the new layout
4317                  */
4318                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4319
4320                 /* 'safe' is the earliest device address that we might
4321                  * read from in the old layout after a restart
4322                  */
4323                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4324
4325                 /* Need to update metadata if 'next' might be beyond 'safe'
4326                  * as that would possibly corrupt data
4327                  */
4328                 if (next > safe + conf->offset_diff)
4329                         need_flush = 1;
4330
4331                 sector_nr = conf->reshape_progress;
4332                 last  = sector_nr | (conf->geo.chunk_mask
4333                                      & conf->prev.chunk_mask);
4334
4335                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4336                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4337         }
4338
4339         if (need_flush ||
4340             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4341                 /* Need to update reshape_position in metadata */
4342                 wait_barrier(conf);
4343                 mddev->reshape_position = conf->reshape_progress;
4344                 if (mddev->reshape_backwards)
4345                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4346                                 - conf->reshape_progress;
4347                 else
4348                         mddev->curr_resync_completed = conf->reshape_progress;
4349                 conf->reshape_checkpoint = jiffies;
4350                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4351                 md_wakeup_thread(mddev->thread);
4352                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4353                            kthread_should_stop());
4354                 conf->reshape_safe = mddev->reshape_position;
4355                 allow_barrier(conf);
4356         }
4357
4358 read_more:
4359         /* Now schedule reads for blocks from sector_nr to last */
4360         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4361         raise_barrier(conf, sectors_done != 0);
4362         atomic_set(&r10_bio->remaining, 0);
4363         r10_bio->mddev = mddev;
4364         r10_bio->sector = sector_nr;
4365         set_bit(R10BIO_IsReshape, &r10_bio->state);
4366         r10_bio->sectors = last - sector_nr + 1;
4367         rdev = read_balance(conf, r10_bio, &max_sectors);
4368         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4369
4370         if (!rdev) {
4371                 /* Cannot read from here, so need to record bad blocks
4372                  * on all the target devices.
4373                  */
4374                 // FIXME
4375                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4376                 return sectors_done;
4377         }
4378
4379         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4380
4381         read_bio->bi_bdev = rdev->bdev;
4382         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4383                                + rdev->data_offset);
4384         read_bio->bi_private = r10_bio;
4385         read_bio->bi_end_io = end_sync_read;
4386         read_bio->bi_rw = READ;
4387         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4388         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4389         read_bio->bi_vcnt = 0;
4390         read_bio->bi_size = 0;
4391         r10_bio->master_bio = read_bio;
4392         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4393
4394         /* Now find the locations in the new layout */
4395         __raid10_find_phys(&conf->geo, r10_bio);
4396
4397         blist = read_bio;
4398         read_bio->bi_next = NULL;
4399
4400         for (s = 0; s < conf->copies*2; s++) {
4401                 struct bio *b;
4402                 int d = r10_bio->devs[s/2].devnum;
4403                 struct md_rdev *rdev2;
4404                 if (s&1) {
4405                         rdev2 = conf->mirrors[d].replacement;
4406                         b = r10_bio->devs[s/2].repl_bio;
4407                 } else {
4408                         rdev2 = conf->mirrors[d].rdev;
4409                         b = r10_bio->devs[s/2].bio;
4410                 }
4411                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4412                         continue;
4413
4414                 bio_reset(b);
4415                 b->bi_bdev = rdev2->bdev;
4416                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4417                 b->bi_private = r10_bio;
4418                 b->bi_end_io = end_reshape_write;
4419                 b->bi_rw = WRITE;
4420                 b->bi_next = blist;
4421                 blist = b;
4422         }
4423
4424         /* Now add as many pages as possible to all of these bios. */
4425
4426         nr_sectors = 0;
4427         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4428                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4429                 int len = (max_sectors - s) << 9;
4430                 if (len > PAGE_SIZE)
4431                         len = PAGE_SIZE;
4432                 for (bio = blist; bio ; bio = bio->bi_next) {
4433                         struct bio *bio2;
4434                         if (bio_add_page(bio, page, len, 0))
4435                                 continue;
4436
4437                         /* Didn't fit, must stop */
4438                         for (bio2 = blist;
4439                              bio2 && bio2 != bio;
4440                              bio2 = bio2->bi_next) {
4441                                 /* Remove last page from this bio */
4442                                 bio2->bi_vcnt--;
4443                                 bio2->bi_size -= len;
4444                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4445                         }
4446                         goto bio_full;
4447                 }
4448                 sector_nr += len >> 9;
4449                 nr_sectors += len >> 9;
4450         }
4451 bio_full:
4452         r10_bio->sectors = nr_sectors;
4453
4454         /* Now submit the read */
4455         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4456         atomic_inc(&r10_bio->remaining);
4457         read_bio->bi_next = NULL;
4458         generic_make_request(read_bio);
4459         sector_nr += nr_sectors;
4460         sectors_done += nr_sectors;
4461         if (sector_nr <= last)
4462                 goto read_more;
4463
4464         /* Now that we have done the whole section we can
4465          * update reshape_progress
4466          */
4467         if (mddev->reshape_backwards)
4468                 conf->reshape_progress -= sectors_done;
4469         else
4470                 conf->reshape_progress += sectors_done;
4471
4472         return sectors_done;
4473 }
4474
4475 static void end_reshape_request(struct r10bio *r10_bio);
4476 static int handle_reshape_read_error(struct mddev *mddev,
4477                                      struct r10bio *r10_bio);
4478 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4479 {
4480         /* Reshape read completed.  Hopefully we have a block
4481          * to write out.
4482          * If we got a read error then we do sync 1-page reads from
4483          * elsewhere until we find the data - or give up.
4484          */
4485         struct r10conf *conf = mddev->private;
4486         int s;
4487
4488         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4489                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4490                         /* Reshape has been aborted */
4491                         md_done_sync(mddev, r10_bio->sectors, 0);
4492                         return;
4493                 }
4494
4495         /* We definitely have the data in the pages, schedule the
4496          * writes.
4497          */
4498         atomic_set(&r10_bio->remaining, 1);
4499         for (s = 0; s < conf->copies*2; s++) {
4500                 struct bio *b;
4501                 int d = r10_bio->devs[s/2].devnum;
4502                 struct md_rdev *rdev;
4503                 if (s&1) {
4504                         rdev = conf->mirrors[d].replacement;
4505                         b = r10_bio->devs[s/2].repl_bio;
4506                 } else {
4507                         rdev = conf->mirrors[d].rdev;
4508                         b = r10_bio->devs[s/2].bio;
4509                 }
4510                 if (!rdev || test_bit(Faulty, &rdev->flags))
4511                         continue;
4512                 atomic_inc(&rdev->nr_pending);
4513                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4514                 atomic_inc(&r10_bio->remaining);
4515                 b->bi_next = NULL;
4516                 generic_make_request(b);
4517         }
4518         end_reshape_request(r10_bio);
4519 }
4520
4521 static void end_reshape(struct r10conf *conf)
4522 {
4523         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4524                 return;
4525
4526         spin_lock_irq(&conf->device_lock);
4527         conf->prev = conf->geo;
4528         md_finish_reshape(conf->mddev);
4529         smp_wmb();
4530         conf->reshape_progress = MaxSector;
4531         spin_unlock_irq(&conf->device_lock);
4532
4533         /* read-ahead size must cover two whole stripes, which is
4534          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4535          */
4536         if (conf->mddev->queue) {
4537                 int stripe = conf->geo.raid_disks *
4538                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4539                 stripe /= conf->geo.near_copies;
4540                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4541                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4542         }
4543         conf->fullsync = 0;
4544 }
4545
4546
4547 static int handle_reshape_read_error(struct mddev *mddev,
4548                                      struct r10bio *r10_bio)
4549 {
4550         /* Use sync reads to get the blocks from somewhere else */
4551         int sectors = r10_bio->sectors;
4552         struct r10conf *conf = mddev->private;
4553         struct {
4554                 struct r10bio r10_bio;
4555                 struct r10dev devs[conf->copies];
4556         } on_stack;
4557         struct r10bio *r10b = &on_stack.r10_bio;
4558         int slot = 0;
4559         int idx = 0;
4560         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4561
4562         r10b->sector = r10_bio->sector;
4563         __raid10_find_phys(&conf->prev, r10b);
4564
4565         while (sectors) {
4566                 int s = sectors;
4567                 int success = 0;
4568                 int first_slot = slot;
4569
4570                 if (s > (PAGE_SIZE >> 9))
4571                         s = PAGE_SIZE >> 9;
4572
4573                 while (!success) {
4574                         int d = r10b->devs[slot].devnum;
4575                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4576                         sector_t addr;
4577                         if (rdev == NULL ||
4578                             test_bit(Faulty, &rdev->flags) ||
4579                             !test_bit(In_sync, &rdev->flags))
4580                                 goto failed;
4581
4582                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4583                         success = sync_page_io(rdev,
4584                                                addr,
4585                                                s << 9,
4586                                                bvec[idx].bv_page,
4587                                                READ, false);
4588                         if (success)
4589                                 break;
4590                 failed:
4591                         slot++;
4592                         if (slot >= conf->copies)
4593                                 slot = 0;
4594                         if (slot == first_slot)
4595                                 break;
4596                 }
4597                 if (!success) {
4598                         /* couldn't read this block, must give up */
4599                         set_bit(MD_RECOVERY_INTR,
4600                                 &mddev->recovery);
4601                         return -EIO;
4602                 }
4603                 sectors -= s;
4604                 idx++;
4605         }
4606         return 0;
4607 }
4608
4609 static void end_reshape_write(struct bio *bio, int error)
4610 {
4611         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4612         struct r10bio *r10_bio = bio->bi_private;
4613         struct mddev *mddev = r10_bio->mddev;
4614         struct r10conf *conf = mddev->private;
4615         int d;
4616         int slot;
4617         int repl;
4618         struct md_rdev *rdev = NULL;
4619
4620         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4621         if (repl)
4622                 rdev = conf->mirrors[d].replacement;
4623         if (!rdev) {
4624                 smp_mb();
4625                 rdev = conf->mirrors[d].rdev;
4626         }
4627
4628         if (!uptodate) {
4629                 /* FIXME should record badblock */
4630                 md_error(mddev, rdev);
4631         }
4632
4633         rdev_dec_pending(rdev, mddev);
4634         end_reshape_request(r10_bio);
4635 }
4636
4637 static void end_reshape_request(struct r10bio *r10_bio)
4638 {
4639         if (!atomic_dec_and_test(&r10_bio->remaining))
4640                 return;
4641         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4642         bio_put(r10_bio->master_bio);
4643         put_buf(r10_bio);
4644 }
4645
4646 static void raid10_finish_reshape(struct mddev *mddev)
4647 {
4648         struct r10conf *conf = mddev->private;
4649
4650         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4651                 return;
4652
4653         if (mddev->delta_disks > 0) {
4654                 sector_t size = raid10_size(mddev, 0, 0);
4655                 md_set_array_sectors(mddev, size);
4656                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4657                         mddev->recovery_cp = mddev->resync_max_sectors;
4658                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4659                 }
4660                 mddev->resync_max_sectors = size;
4661                 set_capacity(mddev->gendisk, mddev->array_sectors);
4662                 revalidate_disk(mddev->gendisk);
4663         } else {
4664                 int d;
4665                 for (d = conf->geo.raid_disks ;
4666                      d < conf->geo.raid_disks - mddev->delta_disks;
4667                      d++) {
4668                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4669                         if (rdev)
4670                                 clear_bit(In_sync, &rdev->flags);
4671                         rdev = conf->mirrors[d].replacement;
4672                         if (rdev)
4673                                 clear_bit(In_sync, &rdev->flags);
4674                 }
4675         }
4676         mddev->layout = mddev->new_layout;
4677         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4678         mddev->reshape_position = MaxSector;
4679         mddev->delta_disks = 0;
4680         mddev->reshape_backwards = 0;
4681 }
4682
4683 static struct md_personality raid10_personality =
4684 {
4685         .name           = "raid10",
4686         .level          = 10,
4687         .owner          = THIS_MODULE,
4688         .make_request   = make_request,
4689         .run            = run,
4690         .stop           = stop,
4691         .status         = status,
4692         .error_handler  = error,
4693         .hot_add_disk   = raid10_add_disk,
4694         .hot_remove_disk= raid10_remove_disk,
4695         .spare_active   = raid10_spare_active,
4696         .sync_request   = sync_request,
4697         .quiesce        = raid10_quiesce,
4698         .size           = raid10_size,
4699         .resize         = raid10_resize,
4700         .takeover       = raid10_takeover,
4701         .check_reshape  = raid10_check_reshape,
4702         .start_reshape  = raid10_start_reshape,
4703         .finish_reshape = raid10_finish_reshape,
4704 };
4705
4706 static int __init raid_init(void)
4707 {
4708         return register_md_personality(&raid10_personality);
4709 }
4710
4711 static void raid_exit(void)
4712 {
4713         unregister_md_personality(&raid10_personality);
4714 }
4715
4716 module_init(raid_init);
4717 module_exit(raid_exit);
4718 MODULE_LICENSE("GPL");
4719 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4720 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4721 MODULE_ALIAS("md-raid10");
4722 MODULE_ALIAS("md-level-10");
4723
4724 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);