274db1834d43ddc86320c986fda53bbcff341503
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73  * Stripe cache
74  */
75
76 #define NR_STRIPES              256
77 #define STRIPE_SIZE             PAGE_SIZE
78 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD            1
81 #define BYPASS_THRESHOLD        1
82 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK               (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH        8
85
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89         return &conf->stripe_hashtbl[hash];
90 }
91
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99         spin_lock_irq(conf->hash_locks + hash);
100         spin_lock(&conf->device_lock);
101 }
102
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105         spin_unlock(&conf->device_lock);
106         spin_unlock_irq(conf->hash_locks + hash);
107 }
108
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111         int i;
112         local_irq_disable();
113         spin_lock(conf->hash_locks);
114         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116         spin_lock(&conf->device_lock);
117 }
118
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121         int i;
122         spin_unlock(&conf->device_lock);
123         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124                 spin_unlock(conf->hash_locks + i - 1);
125         local_irq_enable();
126 }
127
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129  * order without overlap.  There may be several bio's per stripe+device, and
130  * a bio could span several devices.
131  * When walking this list for a particular stripe+device, we must never proceed
132  * beyond a bio that extends past this device, as the next bio might no longer
133  * be valid.
134  * This function is used to determine the 'next' bio in the list, given the sector
135  * of the current stripe+device
136  */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139         int sectors = bio_sectors(bio);
140         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141                 return bio->bi_next;
142         else
143                 return NULL;
144 }
145
146 /*
147  * We maintain a biased count of active stripes in the bottom 16 bits of
148  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149  */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153         return (atomic_read(segments) >> 16) & 0xffff;
154 }
155
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159         return atomic_sub_return(1, segments) & 0xffff;
160 }
161
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165         atomic_inc(segments);
166 }
167
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169         unsigned int cnt)
170 {
171         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172         int old, new;
173
174         do {
175                 old = atomic_read(segments);
176                 new = (old & 0xffff) | (cnt << 16);
177         } while (atomic_cmpxchg(segments, old, new) != old);
178 }
179
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183         atomic_set(segments, cnt);
184 }
185
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189         if (sh->ddf_layout)
190                 /* ddf always start from first device */
191                 return 0;
192         /* md starts just after Q block */
193         if (sh->qd_idx == sh->disks - 1)
194                 return 0;
195         else
196                 return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200         disk++;
201         return (disk < raid_disks) ? disk : 0;
202 }
203
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205  * We need to map each disk to a 'slot', where the data disks are slot
206  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207  * is raid_disks-1.  This help does that mapping.
208  */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210                              int *count, int syndrome_disks)
211 {
212         int slot = *count;
213
214         if (sh->ddf_layout)
215                 (*count)++;
216         if (idx == sh->pd_idx)
217                 return syndrome_disks;
218         if (idx == sh->qd_idx)
219                 return syndrome_disks + 1;
220         if (!sh->ddf_layout)
221                 (*count)++;
222         return slot;
223 }
224
225 static void return_io(struct bio *return_bi)
226 {
227         struct bio *bi = return_bi;
228         while (bi) {
229
230                 return_bi = bi->bi_next;
231                 bi->bi_next = NULL;
232                 bi->bi_iter.bi_size = 0;
233                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234                                          bi, 0);
235                 bio_endio(bi, 0);
236                 bi = return_bi;
237         }
238 }
239
240 static void print_raid5_conf (struct r5conf *conf);
241
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244         return sh->check_state || sh->reconstruct_state ||
245                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251         struct r5conf *conf = sh->raid_conf;
252         struct r5worker_group *group;
253         int thread_cnt;
254         int i, cpu = sh->cpu;
255
256         if (!cpu_online(cpu)) {
257                 cpu = cpumask_any(cpu_online_mask);
258                 sh->cpu = cpu;
259         }
260
261         if (list_empty(&sh->lru)) {
262                 struct r5worker_group *group;
263                 group = conf->worker_groups + cpu_to_group(cpu);
264                 list_add_tail(&sh->lru, &group->handle_list);
265                 group->stripes_cnt++;
266                 sh->group = group;
267         }
268
269         if (conf->worker_cnt_per_group == 0) {
270                 md_wakeup_thread(conf->mddev->thread);
271                 return;
272         }
273
274         group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276         group->workers[0].working = true;
277         /* at least one worker should run to avoid race */
278         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281         /* wakeup more workers */
282         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283                 if (group->workers[i].working == false) {
284                         group->workers[i].working = true;
285                         queue_work_on(sh->cpu, raid5_wq,
286                                       &group->workers[i].work);
287                         thread_cnt--;
288                 }
289         }
290 }
291
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293                               struct list_head *temp_inactive_list)
294 {
295         BUG_ON(!list_empty(&sh->lru));
296         BUG_ON(atomic_read(&conf->active_stripes)==0);
297         if (test_bit(STRIPE_HANDLE, &sh->state)) {
298                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
300                         list_add_tail(&sh->lru, &conf->delayed_list);
301                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
302                            sh->bm_seq - conf->seq_write > 0)
303                         list_add_tail(&sh->lru, &conf->bitmap_list);
304                 else {
305                         clear_bit(STRIPE_DELAYED, &sh->state);
306                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
307                         if (conf->worker_cnt_per_group == 0) {
308                                 list_add_tail(&sh->lru, &conf->handle_list);
309                         } else {
310                                 raid5_wakeup_stripe_thread(sh);
311                                 return;
312                         }
313                 }
314                 md_wakeup_thread(conf->mddev->thread);
315         } else {
316                 BUG_ON(stripe_operations_active(sh));
317                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
318                         if (atomic_dec_return(&conf->preread_active_stripes)
319                             < IO_THRESHOLD)
320                                 md_wakeup_thread(conf->mddev->thread);
321                 atomic_dec(&conf->active_stripes);
322                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
323                         list_add_tail(&sh->lru, temp_inactive_list);
324         }
325 }
326
327 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
328                              struct list_head *temp_inactive_list)
329 {
330         if (atomic_dec_and_test(&sh->count))
331                 do_release_stripe(conf, sh, temp_inactive_list);
332 }
333
334 /*
335  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
336  *
337  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
338  * given time. Adding stripes only takes device lock, while deleting stripes
339  * only takes hash lock.
340  */
341 static void release_inactive_stripe_list(struct r5conf *conf,
342                                          struct list_head *temp_inactive_list,
343                                          int hash)
344 {
345         int size;
346         bool do_wakeup = false;
347         unsigned long flags;
348
349         if (hash == NR_STRIPE_HASH_LOCKS) {
350                 size = NR_STRIPE_HASH_LOCKS;
351                 hash = NR_STRIPE_HASH_LOCKS - 1;
352         } else
353                 size = 1;
354         while (size) {
355                 struct list_head *list = &temp_inactive_list[size - 1];
356
357                 /*
358                  * We don't hold any lock here yet, get_active_stripe() might
359                  * remove stripes from the list
360                  */
361                 if (!list_empty_careful(list)) {
362                         spin_lock_irqsave(conf->hash_locks + hash, flags);
363                         if (list_empty(conf->inactive_list + hash) &&
364                             !list_empty(list))
365                                 atomic_dec(&conf->empty_inactive_list_nr);
366                         list_splice_tail_init(list, conf->inactive_list + hash);
367                         do_wakeup = true;
368                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
369                 }
370                 size--;
371                 hash--;
372         }
373
374         if (do_wakeup) {
375                 wake_up(&conf->wait_for_stripe);
376                 if (conf->retry_read_aligned)
377                         md_wakeup_thread(conf->mddev->thread);
378         }
379 }
380
381 /* should hold conf->device_lock already */
382 static int release_stripe_list(struct r5conf *conf,
383                                struct list_head *temp_inactive_list)
384 {
385         struct stripe_head *sh;
386         int count = 0;
387         struct llist_node *head;
388
389         head = llist_del_all(&conf->released_stripes);
390         head = llist_reverse_order(head);
391         while (head) {
392                 int hash;
393
394                 sh = llist_entry(head, struct stripe_head, release_list);
395                 head = llist_next(head);
396                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
397                 smp_mb();
398                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
399                 /*
400                  * Don't worry the bit is set here, because if the bit is set
401                  * again, the count is always > 1. This is true for
402                  * STRIPE_ON_UNPLUG_LIST bit too.
403                  */
404                 hash = sh->hash_lock_index;
405                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
406                 count++;
407         }
408
409         return count;
410 }
411
412 static void release_stripe(struct stripe_head *sh)
413 {
414         struct r5conf *conf = sh->raid_conf;
415         unsigned long flags;
416         struct list_head list;
417         int hash;
418         bool wakeup;
419
420         /* Avoid release_list until the last reference.
421          */
422         if (atomic_add_unless(&sh->count, -1, 1))
423                 return;
424
425         if (unlikely(!conf->mddev->thread) ||
426                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
427                 goto slow_path;
428         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
429         if (wakeup)
430                 md_wakeup_thread(conf->mddev->thread);
431         return;
432 slow_path:
433         local_irq_save(flags);
434         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
435         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
436                 INIT_LIST_HEAD(&list);
437                 hash = sh->hash_lock_index;
438                 do_release_stripe(conf, sh, &list);
439                 spin_unlock(&conf->device_lock);
440                 release_inactive_stripe_list(conf, &list, hash);
441         }
442         local_irq_restore(flags);
443 }
444
445 static inline void remove_hash(struct stripe_head *sh)
446 {
447         pr_debug("remove_hash(), stripe %llu\n",
448                 (unsigned long long)sh->sector);
449
450         hlist_del_init(&sh->hash);
451 }
452
453 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
454 {
455         struct hlist_head *hp = stripe_hash(conf, sh->sector);
456
457         pr_debug("insert_hash(), stripe %llu\n",
458                 (unsigned long long)sh->sector);
459
460         hlist_add_head(&sh->hash, hp);
461 }
462
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466         struct stripe_head *sh = NULL;
467         struct list_head *first;
468
469         if (list_empty(conf->inactive_list + hash))
470                 goto out;
471         first = (conf->inactive_list + hash)->next;
472         sh = list_entry(first, struct stripe_head, lru);
473         list_del_init(first);
474         remove_hash(sh);
475         atomic_inc(&conf->active_stripes);
476         BUG_ON(hash != sh->hash_lock_index);
477         if (list_empty(conf->inactive_list + hash))
478                 atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480         return sh;
481 }
482
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485         struct page *p;
486         int i;
487         int num = sh->raid_conf->pool_size;
488
489         for (i = 0; i < num ; i++) {
490                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491                 p = sh->dev[i].page;
492                 if (!p)
493                         continue;
494                 sh->dev[i].page = NULL;
495                 put_page(p);
496         }
497 }
498
499 static int grow_buffers(struct stripe_head *sh)
500 {
501         int i;
502         int num = sh->raid_conf->pool_size;
503
504         for (i = 0; i < num; i++) {
505                 struct page *page;
506
507                 if (!(page = alloc_page(GFP_KERNEL))) {
508                         return 1;
509                 }
510                 sh->dev[i].page = page;
511                 sh->dev[i].orig_page = page;
512         }
513         return 0;
514 }
515
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518                             struct stripe_head *sh);
519
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522         struct r5conf *conf = sh->raid_conf;
523         int i, seq;
524
525         BUG_ON(atomic_read(&sh->count) != 0);
526         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527         BUG_ON(stripe_operations_active(sh));
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         insert_hash(conf, sh);
556         sh->cpu = smp_processor_id();
557 }
558
559 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
560                                          short generation)
561 {
562         struct stripe_head *sh;
563
564         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
565         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
566                 if (sh->sector == sector && sh->generation == generation)
567                         return sh;
568         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
569         return NULL;
570 }
571
572 /*
573  * Need to check if array has failed when deciding whether to:
574  *  - start an array
575  *  - remove non-faulty devices
576  *  - add a spare
577  *  - allow a reshape
578  * This determination is simple when no reshape is happening.
579  * However if there is a reshape, we need to carefully check
580  * both the before and after sections.
581  * This is because some failed devices may only affect one
582  * of the two sections, and some non-in_sync devices may
583  * be insync in the section most affected by failed devices.
584  */
585 static int calc_degraded(struct r5conf *conf)
586 {
587         int degraded, degraded2;
588         int i;
589
590         rcu_read_lock();
591         degraded = 0;
592         for (i = 0; i < conf->previous_raid_disks; i++) {
593                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594                 if (rdev && test_bit(Faulty, &rdev->flags))
595                         rdev = rcu_dereference(conf->disks[i].replacement);
596                 if (!rdev || test_bit(Faulty, &rdev->flags))
597                         degraded++;
598                 else if (test_bit(In_sync, &rdev->flags))
599                         ;
600                 else
601                         /* not in-sync or faulty.
602                          * If the reshape increases the number of devices,
603                          * this is being recovered by the reshape, so
604                          * this 'previous' section is not in_sync.
605                          * If the number of devices is being reduced however,
606                          * the device can only be part of the array if
607                          * we are reverting a reshape, so this section will
608                          * be in-sync.
609                          */
610                         if (conf->raid_disks >= conf->previous_raid_disks)
611                                 degraded++;
612         }
613         rcu_read_unlock();
614         if (conf->raid_disks == conf->previous_raid_disks)
615                 return degraded;
616         rcu_read_lock();
617         degraded2 = 0;
618         for (i = 0; i < conf->raid_disks; i++) {
619                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
620                 if (rdev && test_bit(Faulty, &rdev->flags))
621                         rdev = rcu_dereference(conf->disks[i].replacement);
622                 if (!rdev || test_bit(Faulty, &rdev->flags))
623                         degraded2++;
624                 else if (test_bit(In_sync, &rdev->flags))
625                         ;
626                 else
627                         /* not in-sync or faulty.
628                          * If reshape increases the number of devices, this
629                          * section has already been recovered, else it
630                          * almost certainly hasn't.
631                          */
632                         if (conf->raid_disks <= conf->previous_raid_disks)
633                                 degraded2++;
634         }
635         rcu_read_unlock();
636         if (degraded2 > degraded)
637                 return degraded2;
638         return degraded;
639 }
640
641 static int has_failed(struct r5conf *conf)
642 {
643         int degraded;
644
645         if (conf->mddev->reshape_position == MaxSector)
646                 return conf->mddev->degraded > conf->max_degraded;
647
648         degraded = calc_degraded(conf);
649         if (degraded > conf->max_degraded)
650                 return 1;
651         return 0;
652 }
653
654 static struct stripe_head *
655 get_active_stripe(struct r5conf *conf, sector_t sector,
656                   int previous, int noblock, int noquiesce)
657 {
658         struct stripe_head *sh;
659         int hash = stripe_hash_locks_hash(sector);
660
661         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
662
663         spin_lock_irq(conf->hash_locks + hash);
664
665         do {
666                 wait_event_lock_irq(conf->wait_for_stripe,
667                                     conf->quiesce == 0 || noquiesce,
668                                     *(conf->hash_locks + hash));
669                 sh = __find_stripe(conf, sector, conf->generation - previous);
670                 if (!sh) {
671                         if (!conf->inactive_blocked)
672                                 sh = get_free_stripe(conf, hash);
673                         if (noblock && sh == NULL)
674                                 break;
675                         if (!sh) {
676                                 conf->inactive_blocked = 1;
677                                 wait_event_lock_irq(
678                                         conf->wait_for_stripe,
679                                         !list_empty(conf->inactive_list + hash) &&
680                                         (atomic_read(&conf->active_stripes)
681                                          < (conf->max_nr_stripes * 3 / 4)
682                                          || !conf->inactive_blocked),
683                                         *(conf->hash_locks + hash));
684                                 conf->inactive_blocked = 0;
685                         } else {
686                                 init_stripe(sh, sector, previous);
687                                 atomic_inc(&sh->count);
688                         }
689                 } else if (!atomic_inc_not_zero(&sh->count)) {
690                         spin_lock(&conf->device_lock);
691                         if (!atomic_read(&sh->count)) {
692                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
693                                         atomic_inc(&conf->active_stripes);
694                                 BUG_ON(list_empty(&sh->lru) &&
695                                        !test_bit(STRIPE_EXPANDING, &sh->state));
696                                 list_del_init(&sh->lru);
697                                 if (sh->group) {
698                                         sh->group->stripes_cnt--;
699                                         sh->group = NULL;
700                                 }
701                         }
702                         atomic_inc(&sh->count);
703                         spin_unlock(&conf->device_lock);
704                 }
705         } while (sh == NULL);
706
707         spin_unlock_irq(conf->hash_locks + hash);
708         return sh;
709 }
710
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712  * in this stripe_head.
713  */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716         sector_t progress = conf->reshape_progress;
717         /* Need a memory barrier to make sure we see the value
718          * of conf->generation, or ->data_offset that was set before
719          * reshape_progress was updated.
720          */
721         smp_rmb();
722         if (progress == MaxSector)
723                 return 0;
724         if (sh->generation == conf->generation - 1)
725                 return 0;
726         /* We are in a reshape, and this is a new-generation stripe,
727          * so use new_data_offset.
728          */
729         return 1;
730 }
731
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739         struct r5conf *conf = sh->raid_conf;
740         int i, disks = sh->disks;
741
742         might_sleep();
743
744         for (i = disks; i--; ) {
745                 int rw;
746                 int replace_only = 0;
747                 struct bio *bi, *rbi;
748                 struct md_rdev *rdev, *rrdev = NULL;
749                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751                                 rw = WRITE_FUA;
752                         else
753                                 rw = WRITE;
754                         if (test_bit(R5_Discard, &sh->dev[i].flags))
755                                 rw |= REQ_DISCARD;
756                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757                         rw = READ;
758                 else if (test_and_clear_bit(R5_WantReplace,
759                                             &sh->dev[i].flags)) {
760                         rw = WRITE;
761                         replace_only = 1;
762                 } else
763                         continue;
764                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765                         rw |= REQ_SYNC;
766
767                 bi = &sh->dev[i].req;
768                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
769
770                 rcu_read_lock();
771                 rrdev = rcu_dereference(conf->disks[i].replacement);
772                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773                 rdev = rcu_dereference(conf->disks[i].rdev);
774                 if (!rdev) {
775                         rdev = rrdev;
776                         rrdev = NULL;
777                 }
778                 if (rw & WRITE) {
779                         if (replace_only)
780                                 rdev = NULL;
781                         if (rdev == rrdev)
782                                 /* We raced and saw duplicates */
783                                 rrdev = NULL;
784                 } else {
785                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786                                 rdev = rrdev;
787                         rrdev = NULL;
788                 }
789
790                 if (rdev && test_bit(Faulty, &rdev->flags))
791                         rdev = NULL;
792                 if (rdev)
793                         atomic_inc(&rdev->nr_pending);
794                 if (rrdev && test_bit(Faulty, &rrdev->flags))
795                         rrdev = NULL;
796                 if (rrdev)
797                         atomic_inc(&rrdev->nr_pending);
798                 rcu_read_unlock();
799
800                 /* We have already checked bad blocks for reads.  Now
801                  * need to check for writes.  We never accept write errors
802                  * on the replacement, so we don't to check rrdev.
803                  */
804                 while ((rw & WRITE) && rdev &&
805                        test_bit(WriteErrorSeen, &rdev->flags)) {
806                         sector_t first_bad;
807                         int bad_sectors;
808                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809                                               &first_bad, &bad_sectors);
810                         if (!bad)
811                                 break;
812
813                         if (bad < 0) {
814                                 set_bit(BlockedBadBlocks, &rdev->flags);
815                                 if (!conf->mddev->external &&
816                                     conf->mddev->flags) {
817                                         /* It is very unlikely, but we might
818                                          * still need to write out the
819                                          * bad block log - better give it
820                                          * a chance*/
821                                         md_check_recovery(conf->mddev);
822                                 }
823                                 /*
824                                  * Because md_wait_for_blocked_rdev
825                                  * will dec nr_pending, we must
826                                  * increment it first.
827                                  */
828                                 atomic_inc(&rdev->nr_pending);
829                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
830                         } else {
831                                 /* Acknowledged bad block - skip the write */
832                                 rdev_dec_pending(rdev, conf->mddev);
833                                 rdev = NULL;
834                         }
835                 }
836
837                 if (rdev) {
838                         if (s->syncing || s->expanding || s->expanded
839                             || s->replacing)
840                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841
842                         set_bit(STRIPE_IO_STARTED, &sh->state);
843
844                         bio_reset(bi);
845                         bi->bi_bdev = rdev->bdev;
846                         bi->bi_rw = rw;
847                         bi->bi_end_io = (rw & WRITE)
848                                 ? raid5_end_write_request
849                                 : raid5_end_read_request;
850                         bi->bi_private = sh;
851
852                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853                                 __func__, (unsigned long long)sh->sector,
854                                 bi->bi_rw, i);
855                         atomic_inc(&sh->count);
856                         if (use_new_offset(conf, sh))
857                                 bi->bi_iter.bi_sector = (sh->sector
858                                                  + rdev->new_data_offset);
859                         else
860                                 bi->bi_iter.bi_sector = (sh->sector
861                                                  + rdev->data_offset);
862                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863                                 bi->bi_rw |= REQ_NOMERGE;
864
865                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
866                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
867                         sh->dev[i].vec.bv_page = sh->dev[i].page;
868                         bi->bi_vcnt = 1;
869                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
870                         bi->bi_io_vec[0].bv_offset = 0;
871                         bi->bi_iter.bi_size = STRIPE_SIZE;
872                         /*
873                          * If this is discard request, set bi_vcnt 0. We don't
874                          * want to confuse SCSI because SCSI will replace payload
875                          */
876                         if (rw & REQ_DISCARD)
877                                 bi->bi_vcnt = 0;
878                         if (rrdev)
879                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
880
881                         if (conf->mddev->gendisk)
882                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
883                                                       bi, disk_devt(conf->mddev->gendisk),
884                                                       sh->dev[i].sector);
885                         generic_make_request(bi);
886                 }
887                 if (rrdev) {
888                         if (s->syncing || s->expanding || s->expanded
889                             || s->replacing)
890                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
891
892                         set_bit(STRIPE_IO_STARTED, &sh->state);
893
894                         bio_reset(rbi);
895                         rbi->bi_bdev = rrdev->bdev;
896                         rbi->bi_rw = rw;
897                         BUG_ON(!(rw & WRITE));
898                         rbi->bi_end_io = raid5_end_write_request;
899                         rbi->bi_private = sh;
900
901                         pr_debug("%s: for %llu schedule op %ld on "
902                                  "replacement disc %d\n",
903                                 __func__, (unsigned long long)sh->sector,
904                                 rbi->bi_rw, i);
905                         atomic_inc(&sh->count);
906                         if (use_new_offset(conf, sh))
907                                 rbi->bi_iter.bi_sector = (sh->sector
908                                                   + rrdev->new_data_offset);
909                         else
910                                 rbi->bi_iter.bi_sector = (sh->sector
911                                                   + rrdev->data_offset);
912                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
913                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
914                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
915                         rbi->bi_vcnt = 1;
916                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
917                         rbi->bi_io_vec[0].bv_offset = 0;
918                         rbi->bi_iter.bi_size = STRIPE_SIZE;
919                         /*
920                          * If this is discard request, set bi_vcnt 0. We don't
921                          * want to confuse SCSI because SCSI will replace payload
922                          */
923                         if (rw & REQ_DISCARD)
924                                 rbi->bi_vcnt = 0;
925                         if (conf->mddev->gendisk)
926                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
927                                                       rbi, disk_devt(conf->mddev->gendisk),
928                                                       sh->dev[i].sector);
929                         generic_make_request(rbi);
930                 }
931                 if (!rdev && !rrdev) {
932                         if (rw & WRITE)
933                                 set_bit(STRIPE_DEGRADED, &sh->state);
934                         pr_debug("skip op %ld on disc %d for sector %llu\n",
935                                 bi->bi_rw, i, (unsigned long long)sh->sector);
936                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
937                         set_bit(STRIPE_HANDLE, &sh->state);
938                 }
939         }
940 }
941
942 static struct dma_async_tx_descriptor *
943 async_copy_data(int frombio, struct bio *bio, struct page **page,
944         sector_t sector, struct dma_async_tx_descriptor *tx,
945         struct stripe_head *sh)
946 {
947         struct bio_vec bvl;
948         struct bvec_iter iter;
949         struct page *bio_page;
950         int page_offset;
951         struct async_submit_ctl submit;
952         enum async_tx_flags flags = 0;
953
954         if (bio->bi_iter.bi_sector >= sector)
955                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
956         else
957                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
958
959         if (frombio)
960                 flags |= ASYNC_TX_FENCE;
961         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
962
963         bio_for_each_segment(bvl, bio, iter) {
964                 int len = bvl.bv_len;
965                 int clen;
966                 int b_offset = 0;
967
968                 if (page_offset < 0) {
969                         b_offset = -page_offset;
970                         page_offset += b_offset;
971                         len -= b_offset;
972                 }
973
974                 if (len > 0 && page_offset + len > STRIPE_SIZE)
975                         clen = STRIPE_SIZE - page_offset;
976                 else
977                         clen = len;
978
979                 if (clen > 0) {
980                         b_offset += bvl.bv_offset;
981                         bio_page = bvl.bv_page;
982                         if (frombio) {
983                                 if (sh->raid_conf->skip_copy &&
984                                     b_offset == 0 && page_offset == 0 &&
985                                     clen == STRIPE_SIZE)
986                                         *page = bio_page;
987                                 else
988                                         tx = async_memcpy(*page, bio_page, page_offset,
989                                                   b_offset, clen, &submit);
990                         } else
991                                 tx = async_memcpy(bio_page, *page, b_offset,
992                                                   page_offset, clen, &submit);
993                 }
994                 /* chain the operations */
995                 submit.depend_tx = tx;
996
997                 if (clen < len) /* hit end of page */
998                         break;
999                 page_offset +=  len;
1000         }
1001
1002         return tx;
1003 }
1004
1005 static void ops_complete_biofill(void *stripe_head_ref)
1006 {
1007         struct stripe_head *sh = stripe_head_ref;
1008         struct bio *return_bi = NULL;
1009         int i;
1010
1011         pr_debug("%s: stripe %llu\n", __func__,
1012                 (unsigned long long)sh->sector);
1013
1014         /* clear completed biofills */
1015         for (i = sh->disks; i--; ) {
1016                 struct r5dev *dev = &sh->dev[i];
1017
1018                 /* acknowledge completion of a biofill operation */
1019                 /* and check if we need to reply to a read request,
1020                  * new R5_Wantfill requests are held off until
1021                  * !STRIPE_BIOFILL_RUN
1022                  */
1023                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1024                         struct bio *rbi, *rbi2;
1025
1026                         BUG_ON(!dev->read);
1027                         rbi = dev->read;
1028                         dev->read = NULL;
1029                         while (rbi && rbi->bi_iter.bi_sector <
1030                                 dev->sector + STRIPE_SECTORS) {
1031                                 rbi2 = r5_next_bio(rbi, dev->sector);
1032                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1033                                         rbi->bi_next = return_bi;
1034                                         return_bi = rbi;
1035                                 }
1036                                 rbi = rbi2;
1037                         }
1038                 }
1039         }
1040         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1041
1042         return_io(return_bi);
1043
1044         set_bit(STRIPE_HANDLE, &sh->state);
1045         release_stripe(sh);
1046 }
1047
1048 static void ops_run_biofill(struct stripe_head *sh)
1049 {
1050         struct dma_async_tx_descriptor *tx = NULL;
1051         struct async_submit_ctl submit;
1052         int i;
1053
1054         pr_debug("%s: stripe %llu\n", __func__,
1055                 (unsigned long long)sh->sector);
1056
1057         for (i = sh->disks; i--; ) {
1058                 struct r5dev *dev = &sh->dev[i];
1059                 if (test_bit(R5_Wantfill, &dev->flags)) {
1060                         struct bio *rbi;
1061                         spin_lock_irq(&sh->stripe_lock);
1062                         dev->read = rbi = dev->toread;
1063                         dev->toread = NULL;
1064                         spin_unlock_irq(&sh->stripe_lock);
1065                         while (rbi && rbi->bi_iter.bi_sector <
1066                                 dev->sector + STRIPE_SECTORS) {
1067                                 tx = async_copy_data(0, rbi, &dev->page,
1068                                         dev->sector, tx, sh);
1069                                 rbi = r5_next_bio(rbi, dev->sector);
1070                         }
1071                 }
1072         }
1073
1074         atomic_inc(&sh->count);
1075         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1076         async_trigger_callback(&submit);
1077 }
1078
1079 static void mark_target_uptodate(struct stripe_head *sh, int target)
1080 {
1081         struct r5dev *tgt;
1082
1083         if (target < 0)
1084                 return;
1085
1086         tgt = &sh->dev[target];
1087         set_bit(R5_UPTODATE, &tgt->flags);
1088         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1089         clear_bit(R5_Wantcompute, &tgt->flags);
1090 }
1091
1092 static void ops_complete_compute(void *stripe_head_ref)
1093 {
1094         struct stripe_head *sh = stripe_head_ref;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098
1099         /* mark the computed target(s) as uptodate */
1100         mark_target_uptodate(sh, sh->ops.target);
1101         mark_target_uptodate(sh, sh->ops.target2);
1102
1103         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1104         if (sh->check_state == check_state_compute_run)
1105                 sh->check_state = check_state_compute_result;
1106         set_bit(STRIPE_HANDLE, &sh->state);
1107         release_stripe(sh);
1108 }
1109
1110 /* return a pointer to the address conversion region of the scribble buffer */
1111 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1112                                  struct raid5_percpu *percpu)
1113 {
1114         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1119 {
1120         int disks = sh->disks;
1121         struct page **xor_srcs = percpu->scribble;
1122         int target = sh->ops.target;
1123         struct r5dev *tgt = &sh->dev[target];
1124         struct page *xor_dest = tgt->page;
1125         int count = 0;
1126         struct dma_async_tx_descriptor *tx;
1127         struct async_submit_ctl submit;
1128         int i;
1129
1130         pr_debug("%s: stripe %llu block: %d\n",
1131                 __func__, (unsigned long long)sh->sector, target);
1132         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1133
1134         for (i = disks; i--; )
1135                 if (i != target)
1136                         xor_srcs[count++] = sh->dev[i].page;
1137
1138         atomic_inc(&sh->count);
1139
1140         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1141                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1142         if (unlikely(count == 1))
1143                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1144         else
1145                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146
1147         return tx;
1148 }
1149
1150 /* set_syndrome_sources - populate source buffers for gen_syndrome
1151  * @srcs - (struct page *) array of size sh->disks
1152  * @sh - stripe_head to parse
1153  *
1154  * Populates srcs in proper layout order for the stripe and returns the
1155  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1156  * destination buffer is recorded in srcs[count] and the Q destination
1157  * is recorded in srcs[count+1]].
1158  */
1159 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1160 {
1161         int disks = sh->disks;
1162         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1163         int d0_idx = raid6_d0(sh);
1164         int count;
1165         int i;
1166
1167         for (i = 0; i < disks; i++)
1168                 srcs[i] = NULL;
1169
1170         count = 0;
1171         i = d0_idx;
1172         do {
1173                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1174
1175                 srcs[slot] = sh->dev[i].page;
1176                 i = raid6_next_disk(i, disks);
1177         } while (i != d0_idx);
1178
1179         return syndrome_disks;
1180 }
1181
1182 static struct dma_async_tx_descriptor *
1183 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1184 {
1185         int disks = sh->disks;
1186         struct page **blocks = percpu->scribble;
1187         int target;
1188         int qd_idx = sh->qd_idx;
1189         struct dma_async_tx_descriptor *tx;
1190         struct async_submit_ctl submit;
1191         struct r5dev *tgt;
1192         struct page *dest;
1193         int i;
1194         int count;
1195
1196         if (sh->ops.target < 0)
1197                 target = sh->ops.target2;
1198         else if (sh->ops.target2 < 0)
1199                 target = sh->ops.target;
1200         else
1201                 /* we should only have one valid target */
1202                 BUG();
1203         BUG_ON(target < 0);
1204         pr_debug("%s: stripe %llu block: %d\n",
1205                 __func__, (unsigned long long)sh->sector, target);
1206
1207         tgt = &sh->dev[target];
1208         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1209         dest = tgt->page;
1210
1211         atomic_inc(&sh->count);
1212
1213         if (target == qd_idx) {
1214                 count = set_syndrome_sources(blocks, sh);
1215                 blocks[count] = NULL; /* regenerating p is not necessary */
1216                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1217                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1218                                   ops_complete_compute, sh,
1219                                   to_addr_conv(sh, percpu));
1220                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1221         } else {
1222                 /* Compute any data- or p-drive using XOR */
1223                 count = 0;
1224                 for (i = disks; i-- ; ) {
1225                         if (i == target || i == qd_idx)
1226                                 continue;
1227                         blocks[count++] = sh->dev[i].page;
1228                 }
1229
1230                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1231                                   NULL, ops_complete_compute, sh,
1232                                   to_addr_conv(sh, percpu));
1233                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1234         }
1235
1236         return tx;
1237 }
1238
1239 static struct dma_async_tx_descriptor *
1240 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1241 {
1242         int i, count, disks = sh->disks;
1243         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1244         int d0_idx = raid6_d0(sh);
1245         int faila = -1, failb = -1;
1246         int target = sh->ops.target;
1247         int target2 = sh->ops.target2;
1248         struct r5dev *tgt = &sh->dev[target];
1249         struct r5dev *tgt2 = &sh->dev[target2];
1250         struct dma_async_tx_descriptor *tx;
1251         struct page **blocks = percpu->scribble;
1252         struct async_submit_ctl submit;
1253
1254         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1255                  __func__, (unsigned long long)sh->sector, target, target2);
1256         BUG_ON(target < 0 || target2 < 0);
1257         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1259
1260         /* we need to open-code set_syndrome_sources to handle the
1261          * slot number conversion for 'faila' and 'failb'
1262          */
1263         for (i = 0; i < disks ; i++)
1264                 blocks[i] = NULL;
1265         count = 0;
1266         i = d0_idx;
1267         do {
1268                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1269
1270                 blocks[slot] = sh->dev[i].page;
1271
1272                 if (i == target)
1273                         faila = slot;
1274                 if (i == target2)
1275                         failb = slot;
1276                 i = raid6_next_disk(i, disks);
1277         } while (i != d0_idx);
1278
1279         BUG_ON(faila == failb);
1280         if (failb < faila)
1281                 swap(faila, failb);
1282         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1283                  __func__, (unsigned long long)sh->sector, faila, failb);
1284
1285         atomic_inc(&sh->count);
1286
1287         if (failb == syndrome_disks+1) {
1288                 /* Q disk is one of the missing disks */
1289                 if (faila == syndrome_disks) {
1290                         /* Missing P+Q, just recompute */
1291                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1292                                           ops_complete_compute, sh,
1293                                           to_addr_conv(sh, percpu));
1294                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1295                                                   STRIPE_SIZE, &submit);
1296                 } else {
1297                         struct page *dest;
1298                         int data_target;
1299                         int qd_idx = sh->qd_idx;
1300
1301                         /* Missing D+Q: recompute D from P, then recompute Q */
1302                         if (target == qd_idx)
1303                                 data_target = target2;
1304                         else
1305                                 data_target = target;
1306
1307                         count = 0;
1308                         for (i = disks; i-- ; ) {
1309                                 if (i == data_target || i == qd_idx)
1310                                         continue;
1311                                 blocks[count++] = sh->dev[i].page;
1312                         }
1313                         dest = sh->dev[data_target].page;
1314                         init_async_submit(&submit,
1315                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1316                                           NULL, NULL, NULL,
1317                                           to_addr_conv(sh, percpu));
1318                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1319                                        &submit);
1320
1321                         count = set_syndrome_sources(blocks, sh);
1322                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1323                                           ops_complete_compute, sh,
1324                                           to_addr_conv(sh, percpu));
1325                         return async_gen_syndrome(blocks, 0, count+2,
1326                                                   STRIPE_SIZE, &submit);
1327                 }
1328         } else {
1329                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1330                                   ops_complete_compute, sh,
1331                                   to_addr_conv(sh, percpu));
1332                 if (failb == syndrome_disks) {
1333                         /* We're missing D+P. */
1334                         return async_raid6_datap_recov(syndrome_disks+2,
1335                                                        STRIPE_SIZE, faila,
1336                                                        blocks, &submit);
1337                 } else {
1338                         /* We're missing D+D. */
1339                         return async_raid6_2data_recov(syndrome_disks+2,
1340                                                        STRIPE_SIZE, faila, failb,
1341                                                        blocks, &submit);
1342                 }
1343         }
1344 }
1345
1346 static void ops_complete_prexor(void *stripe_head_ref)
1347 {
1348         struct stripe_head *sh = stripe_head_ref;
1349
1350         pr_debug("%s: stripe %llu\n", __func__,
1351                 (unsigned long long)sh->sector);
1352 }
1353
1354 static struct dma_async_tx_descriptor *
1355 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1356                struct dma_async_tx_descriptor *tx)
1357 {
1358         int disks = sh->disks;
1359         struct page **xor_srcs = percpu->scribble;
1360         int count = 0, pd_idx = sh->pd_idx, i;
1361         struct async_submit_ctl submit;
1362
1363         /* existing parity data subtracted */
1364         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1365
1366         pr_debug("%s: stripe %llu\n", __func__,
1367                 (unsigned long long)sh->sector);
1368
1369         for (i = disks; i--; ) {
1370                 struct r5dev *dev = &sh->dev[i];
1371                 /* Only process blocks that are known to be uptodate */
1372                 if (test_bit(R5_Wantdrain, &dev->flags))
1373                         xor_srcs[count++] = dev->page;
1374         }
1375
1376         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1377                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1378         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1379
1380         return tx;
1381 }
1382
1383 static struct dma_async_tx_descriptor *
1384 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1385 {
1386         int disks = sh->disks;
1387         int i;
1388
1389         pr_debug("%s: stripe %llu\n", __func__,
1390                 (unsigned long long)sh->sector);
1391
1392         for (i = disks; i--; ) {
1393                 struct r5dev *dev = &sh->dev[i];
1394                 struct bio *chosen;
1395
1396                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1397                         struct bio *wbi;
1398
1399                         spin_lock_irq(&sh->stripe_lock);
1400                         chosen = dev->towrite;
1401                         dev->towrite = NULL;
1402                         BUG_ON(dev->written);
1403                         wbi = dev->written = chosen;
1404                         spin_unlock_irq(&sh->stripe_lock);
1405                         WARN_ON(dev->page != dev->orig_page);
1406
1407                         while (wbi && wbi->bi_iter.bi_sector <
1408                                 dev->sector + STRIPE_SECTORS) {
1409                                 if (wbi->bi_rw & REQ_FUA)
1410                                         set_bit(R5_WantFUA, &dev->flags);
1411                                 if (wbi->bi_rw & REQ_SYNC)
1412                                         set_bit(R5_SyncIO, &dev->flags);
1413                                 if (wbi->bi_rw & REQ_DISCARD)
1414                                         set_bit(R5_Discard, &dev->flags);
1415                                 else {
1416                                         tx = async_copy_data(1, wbi, &dev->page,
1417                                                 dev->sector, tx, sh);
1418                                         if (dev->page != dev->orig_page) {
1419                                                 set_bit(R5_SkipCopy, &dev->flags);
1420                                                 clear_bit(R5_UPTODATE, &dev->flags);
1421                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1422                                         }
1423                                 }
1424                                 wbi = r5_next_bio(wbi, dev->sector);
1425                         }
1426                 }
1427         }
1428
1429         return tx;
1430 }
1431
1432 static void ops_complete_reconstruct(void *stripe_head_ref)
1433 {
1434         struct stripe_head *sh = stripe_head_ref;
1435         int disks = sh->disks;
1436         int pd_idx = sh->pd_idx;
1437         int qd_idx = sh->qd_idx;
1438         int i;
1439         bool fua = false, sync = false, discard = false;
1440
1441         pr_debug("%s: stripe %llu\n", __func__,
1442                 (unsigned long long)sh->sector);
1443
1444         for (i = disks; i--; ) {
1445                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1446                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1447                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1448         }
1449
1450         for (i = disks; i--; ) {
1451                 struct r5dev *dev = &sh->dev[i];
1452
1453                 if (dev->written || i == pd_idx || i == qd_idx) {
1454                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1455                                 set_bit(R5_UPTODATE, &dev->flags);
1456                         if (fua)
1457                                 set_bit(R5_WantFUA, &dev->flags);
1458                         if (sync)
1459                                 set_bit(R5_SyncIO, &dev->flags);
1460                 }
1461         }
1462
1463         if (sh->reconstruct_state == reconstruct_state_drain_run)
1464                 sh->reconstruct_state = reconstruct_state_drain_result;
1465         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1466                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1467         else {
1468                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1469                 sh->reconstruct_state = reconstruct_state_result;
1470         }
1471
1472         set_bit(STRIPE_HANDLE, &sh->state);
1473         release_stripe(sh);
1474 }
1475
1476 static void
1477 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1478                      struct dma_async_tx_descriptor *tx)
1479 {
1480         int disks = sh->disks;
1481         struct page **xor_srcs = percpu->scribble;
1482         struct async_submit_ctl submit;
1483         int count = 0, pd_idx = sh->pd_idx, i;
1484         struct page *xor_dest;
1485         int prexor = 0;
1486         unsigned long flags;
1487
1488         pr_debug("%s: stripe %llu\n", __func__,
1489                 (unsigned long long)sh->sector);
1490
1491         for (i = 0; i < sh->disks; i++) {
1492                 if (pd_idx == i)
1493                         continue;
1494                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1495                         break;
1496         }
1497         if (i >= sh->disks) {
1498                 atomic_inc(&sh->count);
1499                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1500                 ops_complete_reconstruct(sh);
1501                 return;
1502         }
1503         /* check if prexor is active which means only process blocks
1504          * that are part of a read-modify-write (written)
1505          */
1506         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1507                 prexor = 1;
1508                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1509                 for (i = disks; i--; ) {
1510                         struct r5dev *dev = &sh->dev[i];
1511                         if (dev->written)
1512                                 xor_srcs[count++] = dev->page;
1513                 }
1514         } else {
1515                 xor_dest = sh->dev[pd_idx].page;
1516                 for (i = disks; i--; ) {
1517                         struct r5dev *dev = &sh->dev[i];
1518                         if (i != pd_idx)
1519                                 xor_srcs[count++] = dev->page;
1520                 }
1521         }
1522
1523         /* 1/ if we prexor'd then the dest is reused as a source
1524          * 2/ if we did not prexor then we are redoing the parity
1525          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1526          * for the synchronous xor case
1527          */
1528         flags = ASYNC_TX_ACK |
1529                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1530
1531         atomic_inc(&sh->count);
1532
1533         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1534                           to_addr_conv(sh, percpu));
1535         if (unlikely(count == 1))
1536                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1537         else
1538                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1539 }
1540
1541 static void
1542 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1543                      struct dma_async_tx_descriptor *tx)
1544 {
1545         struct async_submit_ctl submit;
1546         struct page **blocks = percpu->scribble;
1547         int count, i;
1548
1549         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1550
1551         for (i = 0; i < sh->disks; i++) {
1552                 if (sh->pd_idx == i || sh->qd_idx == i)
1553                         continue;
1554                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1555                         break;
1556         }
1557         if (i >= sh->disks) {
1558                 atomic_inc(&sh->count);
1559                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1560                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1561                 ops_complete_reconstruct(sh);
1562                 return;
1563         }
1564
1565         count = set_syndrome_sources(blocks, sh);
1566
1567         atomic_inc(&sh->count);
1568
1569         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1570                           sh, to_addr_conv(sh, percpu));
1571         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1572 }
1573
1574 static void ops_complete_check(void *stripe_head_ref)
1575 {
1576         struct stripe_head *sh = stripe_head_ref;
1577
1578         pr_debug("%s: stripe %llu\n", __func__,
1579                 (unsigned long long)sh->sector);
1580
1581         sh->check_state = check_state_check_result;
1582         set_bit(STRIPE_HANDLE, &sh->state);
1583         release_stripe(sh);
1584 }
1585
1586 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1587 {
1588         int disks = sh->disks;
1589         int pd_idx = sh->pd_idx;
1590         int qd_idx = sh->qd_idx;
1591         struct page *xor_dest;
1592         struct page **xor_srcs = percpu->scribble;
1593         struct dma_async_tx_descriptor *tx;
1594         struct async_submit_ctl submit;
1595         int count;
1596         int i;
1597
1598         pr_debug("%s: stripe %llu\n", __func__,
1599                 (unsigned long long)sh->sector);
1600
1601         count = 0;
1602         xor_dest = sh->dev[pd_idx].page;
1603         xor_srcs[count++] = xor_dest;
1604         for (i = disks; i--; ) {
1605                 if (i == pd_idx || i == qd_idx)
1606                         continue;
1607                 xor_srcs[count++] = sh->dev[i].page;
1608         }
1609
1610         init_async_submit(&submit, 0, NULL, NULL, NULL,
1611                           to_addr_conv(sh, percpu));
1612         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1613                            &sh->ops.zero_sum_result, &submit);
1614
1615         atomic_inc(&sh->count);
1616         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1617         tx = async_trigger_callback(&submit);
1618 }
1619
1620 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1621 {
1622         struct page **srcs = percpu->scribble;
1623         struct async_submit_ctl submit;
1624         int count;
1625
1626         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1627                 (unsigned long long)sh->sector, checkp);
1628
1629         count = set_syndrome_sources(srcs, sh);
1630         if (!checkp)
1631                 srcs[count] = NULL;
1632
1633         atomic_inc(&sh->count);
1634         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1635                           sh, to_addr_conv(sh, percpu));
1636         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1637                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1638 }
1639
1640 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1641 {
1642         int overlap_clear = 0, i, disks = sh->disks;
1643         struct dma_async_tx_descriptor *tx = NULL;
1644         struct r5conf *conf = sh->raid_conf;
1645         int level = conf->level;
1646         struct raid5_percpu *percpu;
1647         unsigned long cpu;
1648
1649         cpu = get_cpu();
1650         percpu = per_cpu_ptr(conf->percpu, cpu);
1651         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1652                 ops_run_biofill(sh);
1653                 overlap_clear++;
1654         }
1655
1656         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1657                 if (level < 6)
1658                         tx = ops_run_compute5(sh, percpu);
1659                 else {
1660                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1661                                 tx = ops_run_compute6_1(sh, percpu);
1662                         else
1663                                 tx = ops_run_compute6_2(sh, percpu);
1664                 }
1665                 /* terminate the chain if reconstruct is not set to be run */
1666                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1667                         async_tx_ack(tx);
1668         }
1669
1670         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1671                 tx = ops_run_prexor(sh, percpu, tx);
1672
1673         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1674                 tx = ops_run_biodrain(sh, tx);
1675                 overlap_clear++;
1676         }
1677
1678         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1679                 if (level < 6)
1680                         ops_run_reconstruct5(sh, percpu, tx);
1681                 else
1682                         ops_run_reconstruct6(sh, percpu, tx);
1683         }
1684
1685         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1686                 if (sh->check_state == check_state_run)
1687                         ops_run_check_p(sh, percpu);
1688                 else if (sh->check_state == check_state_run_q)
1689                         ops_run_check_pq(sh, percpu, 0);
1690                 else if (sh->check_state == check_state_run_pq)
1691                         ops_run_check_pq(sh, percpu, 1);
1692                 else
1693                         BUG();
1694         }
1695
1696         if (overlap_clear)
1697                 for (i = disks; i--; ) {
1698                         struct r5dev *dev = &sh->dev[i];
1699                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1700                                 wake_up(&sh->raid_conf->wait_for_overlap);
1701                 }
1702         put_cpu();
1703 }
1704
1705 static int grow_one_stripe(struct r5conf *conf, int hash)
1706 {
1707         struct stripe_head *sh;
1708         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1709         if (!sh)
1710                 return 0;
1711
1712         sh->raid_conf = conf;
1713
1714         spin_lock_init(&sh->stripe_lock);
1715
1716         if (grow_buffers(sh)) {
1717                 shrink_buffers(sh);
1718                 kmem_cache_free(conf->slab_cache, sh);
1719                 return 0;
1720         }
1721         sh->hash_lock_index = hash;
1722         /* we just created an active stripe so... */
1723         atomic_set(&sh->count, 1);
1724         atomic_inc(&conf->active_stripes);
1725         INIT_LIST_HEAD(&sh->lru);
1726         release_stripe(sh);
1727         return 1;
1728 }
1729
1730 static int grow_stripes(struct r5conf *conf, int num)
1731 {
1732         struct kmem_cache *sc;
1733         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1734         int hash;
1735
1736         if (conf->mddev->gendisk)
1737                 sprintf(conf->cache_name[0],
1738                         "raid%d-%s", conf->level, mdname(conf->mddev));
1739         else
1740                 sprintf(conf->cache_name[0],
1741                         "raid%d-%p", conf->level, conf->mddev);
1742         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1743
1744         conf->active_name = 0;
1745         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1746                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1747                                0, 0, NULL);
1748         if (!sc)
1749                 return 1;
1750         conf->slab_cache = sc;
1751         conf->pool_size = devs;
1752         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1753         while (num--) {
1754                 if (!grow_one_stripe(conf, hash))
1755                         return 1;
1756                 conf->max_nr_stripes++;
1757                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1758         }
1759         return 0;
1760 }
1761
1762 /**
1763  * scribble_len - return the required size of the scribble region
1764  * @num - total number of disks in the array
1765  *
1766  * The size must be enough to contain:
1767  * 1/ a struct page pointer for each device in the array +2
1768  * 2/ room to convert each entry in (1) to its corresponding dma
1769  *    (dma_map_page()) or page (page_address()) address.
1770  *
1771  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1772  * calculate over all devices (not just the data blocks), using zeros in place
1773  * of the P and Q blocks.
1774  */
1775 static size_t scribble_len(int num)
1776 {
1777         size_t len;
1778
1779         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1780
1781         return len;
1782 }
1783
1784 static int resize_stripes(struct r5conf *conf, int newsize)
1785 {
1786         /* Make all the stripes able to hold 'newsize' devices.
1787          * New slots in each stripe get 'page' set to a new page.
1788          *
1789          * This happens in stages:
1790          * 1/ create a new kmem_cache and allocate the required number of
1791          *    stripe_heads.
1792          * 2/ gather all the old stripe_heads and transfer the pages across
1793          *    to the new stripe_heads.  This will have the side effect of
1794          *    freezing the array as once all stripe_heads have been collected,
1795          *    no IO will be possible.  Old stripe heads are freed once their
1796          *    pages have been transferred over, and the old kmem_cache is
1797          *    freed when all stripes are done.
1798          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1799          *    we simple return a failre status - no need to clean anything up.
1800          * 4/ allocate new pages for the new slots in the new stripe_heads.
1801          *    If this fails, we don't bother trying the shrink the
1802          *    stripe_heads down again, we just leave them as they are.
1803          *    As each stripe_head is processed the new one is released into
1804          *    active service.
1805          *
1806          * Once step2 is started, we cannot afford to wait for a write,
1807          * so we use GFP_NOIO allocations.
1808          */
1809         struct stripe_head *osh, *nsh;
1810         LIST_HEAD(newstripes);
1811         struct disk_info *ndisks;
1812         unsigned long cpu;
1813         int err;
1814         struct kmem_cache *sc;
1815         int i;
1816         int hash, cnt;
1817
1818         if (newsize <= conf->pool_size)
1819                 return 0; /* never bother to shrink */
1820
1821         err = md_allow_write(conf->mddev);
1822         if (err)
1823                 return err;
1824
1825         /* Step 1 */
1826         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1827                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1828                                0, 0, NULL);
1829         if (!sc)
1830                 return -ENOMEM;
1831
1832         for (i = conf->max_nr_stripes; i; i--) {
1833                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1834                 if (!nsh)
1835                         break;
1836
1837                 nsh->raid_conf = conf;
1838                 spin_lock_init(&nsh->stripe_lock);
1839
1840                 list_add(&nsh->lru, &newstripes);
1841         }
1842         if (i) {
1843                 /* didn't get enough, give up */
1844                 while (!list_empty(&newstripes)) {
1845                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1846                         list_del(&nsh->lru);
1847                         kmem_cache_free(sc, nsh);
1848                 }
1849                 kmem_cache_destroy(sc);
1850                 return -ENOMEM;
1851         }
1852         /* Step 2 - Must use GFP_NOIO now.
1853          * OK, we have enough stripes, start collecting inactive
1854          * stripes and copying them over
1855          */
1856         hash = 0;
1857         cnt = 0;
1858         list_for_each_entry(nsh, &newstripes, lru) {
1859                 lock_device_hash_lock(conf, hash);
1860                 wait_event_cmd(conf->wait_for_stripe,
1861                                     !list_empty(conf->inactive_list + hash),
1862                                     unlock_device_hash_lock(conf, hash),
1863                                     lock_device_hash_lock(conf, hash));
1864                 osh = get_free_stripe(conf, hash);
1865                 unlock_device_hash_lock(conf, hash);
1866                 atomic_set(&nsh->count, 1);
1867                 for(i=0; i<conf->pool_size; i++) {
1868                         nsh->dev[i].page = osh->dev[i].page;
1869                         nsh->dev[i].orig_page = osh->dev[i].page;
1870                 }
1871                 for( ; i<newsize; i++)
1872                         nsh->dev[i].page = NULL;
1873                 nsh->hash_lock_index = hash;
1874                 kmem_cache_free(conf->slab_cache, osh);
1875                 cnt++;
1876                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1877                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1878                         hash++;
1879                         cnt = 0;
1880                 }
1881         }
1882         kmem_cache_destroy(conf->slab_cache);
1883
1884         /* Step 3.
1885          * At this point, we are holding all the stripes so the array
1886          * is completely stalled, so now is a good time to resize
1887          * conf->disks and the scribble region
1888          */
1889         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1890         if (ndisks) {
1891                 for (i=0; i<conf->raid_disks; i++)
1892                         ndisks[i] = conf->disks[i];
1893                 kfree(conf->disks);
1894                 conf->disks = ndisks;
1895         } else
1896                 err = -ENOMEM;
1897
1898         get_online_cpus();
1899         conf->scribble_len = scribble_len(newsize);
1900         for_each_present_cpu(cpu) {
1901                 struct raid5_percpu *percpu;
1902                 void *scribble;
1903
1904                 percpu = per_cpu_ptr(conf->percpu, cpu);
1905                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1906
1907                 if (scribble) {
1908                         kfree(percpu->scribble);
1909                         percpu->scribble = scribble;
1910                 } else {
1911                         err = -ENOMEM;
1912                         break;
1913                 }
1914         }
1915         put_online_cpus();
1916
1917         /* Step 4, return new stripes to service */
1918         while(!list_empty(&newstripes)) {
1919                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1920                 list_del_init(&nsh->lru);
1921
1922                 for (i=conf->raid_disks; i < newsize; i++)
1923                         if (nsh->dev[i].page == NULL) {
1924                                 struct page *p = alloc_page(GFP_NOIO);
1925                                 nsh->dev[i].page = p;
1926                                 nsh->dev[i].orig_page = p;
1927                                 if (!p)
1928                                         err = -ENOMEM;
1929                         }
1930                 release_stripe(nsh);
1931         }
1932         /* critical section pass, GFP_NOIO no longer needed */
1933
1934         conf->slab_cache = sc;
1935         conf->active_name = 1-conf->active_name;
1936         conf->pool_size = newsize;
1937         return err;
1938 }
1939
1940 static int drop_one_stripe(struct r5conf *conf, int hash)
1941 {
1942         struct stripe_head *sh;
1943
1944         spin_lock_irq(conf->hash_locks + hash);
1945         sh = get_free_stripe(conf, hash);
1946         spin_unlock_irq(conf->hash_locks + hash);
1947         if (!sh)
1948                 return 0;
1949         BUG_ON(atomic_read(&sh->count));
1950         shrink_buffers(sh);
1951         kmem_cache_free(conf->slab_cache, sh);
1952         atomic_dec(&conf->active_stripes);
1953         return 1;
1954 }
1955
1956 static void shrink_stripes(struct r5conf *conf)
1957 {
1958         int hash;
1959         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1960                 while (drop_one_stripe(conf, hash))
1961                         ;
1962
1963         if (conf->slab_cache)
1964                 kmem_cache_destroy(conf->slab_cache);
1965         conf->slab_cache = NULL;
1966 }
1967
1968 static void raid5_end_read_request(struct bio * bi, int error)
1969 {
1970         struct stripe_head *sh = bi->bi_private;
1971         struct r5conf *conf = sh->raid_conf;
1972         int disks = sh->disks, i;
1973         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1974         char b[BDEVNAME_SIZE];
1975         struct md_rdev *rdev = NULL;
1976         sector_t s;
1977
1978         for (i=0 ; i<disks; i++)
1979                 if (bi == &sh->dev[i].req)
1980                         break;
1981
1982         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1983                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1984                 uptodate);
1985         if (i == disks) {
1986                 BUG();
1987                 return;
1988         }
1989         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1990                 /* If replacement finished while this request was outstanding,
1991                  * 'replacement' might be NULL already.
1992                  * In that case it moved down to 'rdev'.
1993                  * rdev is not removed until all requests are finished.
1994                  */
1995                 rdev = conf->disks[i].replacement;
1996         if (!rdev)
1997                 rdev = conf->disks[i].rdev;
1998
1999         if (use_new_offset(conf, sh))
2000                 s = sh->sector + rdev->new_data_offset;
2001         else
2002                 s = sh->sector + rdev->data_offset;
2003         if (uptodate) {
2004                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2005                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2006                         /* Note that this cannot happen on a
2007                          * replacement device.  We just fail those on
2008                          * any error
2009                          */
2010                         printk_ratelimited(
2011                                 KERN_INFO
2012                                 "md/raid:%s: read error corrected"
2013                                 " (%lu sectors at %llu on %s)\n",
2014                                 mdname(conf->mddev), STRIPE_SECTORS,
2015                                 (unsigned long long)s,
2016                                 bdevname(rdev->bdev, b));
2017                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2018                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2019                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2020                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2021                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2022
2023                 if (atomic_read(&rdev->read_errors))
2024                         atomic_set(&rdev->read_errors, 0);
2025         } else {
2026                 const char *bdn = bdevname(rdev->bdev, b);
2027                 int retry = 0;
2028                 int set_bad = 0;
2029
2030                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2031                 atomic_inc(&rdev->read_errors);
2032                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2033                         printk_ratelimited(
2034                                 KERN_WARNING
2035                                 "md/raid:%s: read error on replacement device "
2036                                 "(sector %llu on %s).\n",
2037                                 mdname(conf->mddev),
2038                                 (unsigned long long)s,
2039                                 bdn);
2040                 else if (conf->mddev->degraded >= conf->max_degraded) {
2041                         set_bad = 1;
2042                         printk_ratelimited(
2043                                 KERN_WARNING
2044                                 "md/raid:%s: read error not correctable "
2045                                 "(sector %llu on %s).\n",
2046                                 mdname(conf->mddev),
2047                                 (unsigned long long)s,
2048                                 bdn);
2049                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2050                         /* Oh, no!!! */
2051                         set_bad = 1;
2052                         printk_ratelimited(
2053                                 KERN_WARNING
2054                                 "md/raid:%s: read error NOT corrected!! "
2055                                 "(sector %llu on %s).\n",
2056                                 mdname(conf->mddev),
2057                                 (unsigned long long)s,
2058                                 bdn);
2059                 } else if (atomic_read(&rdev->read_errors)
2060                          > conf->max_nr_stripes)
2061                         printk(KERN_WARNING
2062                                "md/raid:%s: Too many read errors, failing device %s.\n",
2063                                mdname(conf->mddev), bdn);
2064                 else
2065                         retry = 1;
2066                 if (set_bad && test_bit(In_sync, &rdev->flags)
2067                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2068                         retry = 1;
2069                 if (retry)
2070                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2071                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2072                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2073                         } else
2074                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2075                 else {
2076                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2077                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2078                         if (!(set_bad
2079                               && test_bit(In_sync, &rdev->flags)
2080                               && rdev_set_badblocks(
2081                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2082                                 md_error(conf->mddev, rdev);
2083                 }
2084         }
2085         rdev_dec_pending(rdev, conf->mddev);
2086         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2087         set_bit(STRIPE_HANDLE, &sh->state);
2088         release_stripe(sh);
2089 }
2090
2091 static void raid5_end_write_request(struct bio *bi, int error)
2092 {
2093         struct stripe_head *sh = bi->bi_private;
2094         struct r5conf *conf = sh->raid_conf;
2095         int disks = sh->disks, i;
2096         struct md_rdev *uninitialized_var(rdev);
2097         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2098         sector_t first_bad;
2099         int bad_sectors;
2100         int replacement = 0;
2101
2102         for (i = 0 ; i < disks; i++) {
2103                 if (bi == &sh->dev[i].req) {
2104                         rdev = conf->disks[i].rdev;
2105                         break;
2106                 }
2107                 if (bi == &sh->dev[i].rreq) {
2108                         rdev = conf->disks[i].replacement;
2109                         if (rdev)
2110                                 replacement = 1;
2111                         else
2112                                 /* rdev was removed and 'replacement'
2113                                  * replaced it.  rdev is not removed
2114                                  * until all requests are finished.
2115                                  */
2116                                 rdev = conf->disks[i].rdev;
2117                         break;
2118                 }
2119         }
2120         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2121                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2122                 uptodate);
2123         if (i == disks) {
2124                 BUG();
2125                 return;
2126         }
2127
2128         if (replacement) {
2129                 if (!uptodate)
2130                         md_error(conf->mddev, rdev);
2131                 else if (is_badblock(rdev, sh->sector,
2132                                      STRIPE_SECTORS,
2133                                      &first_bad, &bad_sectors))
2134                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2135         } else {
2136                 if (!uptodate) {
2137                         set_bit(STRIPE_DEGRADED, &sh->state);
2138                         set_bit(WriteErrorSeen, &rdev->flags);
2139                         set_bit(R5_WriteError, &sh->dev[i].flags);
2140                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2141                                 set_bit(MD_RECOVERY_NEEDED,
2142                                         &rdev->mddev->recovery);
2143                 } else if (is_badblock(rdev, sh->sector,
2144                                        STRIPE_SECTORS,
2145                                        &first_bad, &bad_sectors)) {
2146                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2147                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2148                                 /* That was a successful write so make
2149                                  * sure it looks like we already did
2150                                  * a re-write.
2151                                  */
2152                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2153                 }
2154         }
2155         rdev_dec_pending(rdev, conf->mddev);
2156
2157         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2158                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2159         set_bit(STRIPE_HANDLE, &sh->state);
2160         release_stripe(sh);
2161 }
2162
2163 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2164
2165 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2166 {
2167         struct r5dev *dev = &sh->dev[i];
2168
2169         bio_init(&dev->req);
2170         dev->req.bi_io_vec = &dev->vec;
2171         dev->req.bi_max_vecs = 1;
2172         dev->req.bi_private = sh;
2173
2174         bio_init(&dev->rreq);
2175         dev->rreq.bi_io_vec = &dev->rvec;
2176         dev->rreq.bi_max_vecs = 1;
2177         dev->rreq.bi_private = sh;
2178
2179         dev->flags = 0;
2180         dev->sector = compute_blocknr(sh, i, previous);
2181 }
2182
2183 static void error(struct mddev *mddev, struct md_rdev *rdev)
2184 {
2185         char b[BDEVNAME_SIZE];
2186         struct r5conf *conf = mddev->private;
2187         unsigned long flags;
2188         pr_debug("raid456: error called\n");
2189
2190         spin_lock_irqsave(&conf->device_lock, flags);
2191         clear_bit(In_sync, &rdev->flags);
2192         mddev->degraded = calc_degraded(conf);
2193         spin_unlock_irqrestore(&conf->device_lock, flags);
2194         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2195
2196         set_bit(Blocked, &rdev->flags);
2197         set_bit(Faulty, &rdev->flags);
2198         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2199         printk(KERN_ALERT
2200                "md/raid:%s: Disk failure on %s, disabling device.\n"
2201                "md/raid:%s: Operation continuing on %d devices.\n",
2202                mdname(mddev),
2203                bdevname(rdev->bdev, b),
2204                mdname(mddev),
2205                conf->raid_disks - mddev->degraded);
2206 }
2207
2208 /*
2209  * Input: a 'big' sector number,
2210  * Output: index of the data and parity disk, and the sector # in them.
2211  */
2212 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2213                                      int previous, int *dd_idx,
2214                                      struct stripe_head *sh)
2215 {
2216         sector_t stripe, stripe2;
2217         sector_t chunk_number;
2218         unsigned int chunk_offset;
2219         int pd_idx, qd_idx;
2220         int ddf_layout = 0;
2221         sector_t new_sector;
2222         int algorithm = previous ? conf->prev_algo
2223                                  : conf->algorithm;
2224         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2225                                          : conf->chunk_sectors;
2226         int raid_disks = previous ? conf->previous_raid_disks
2227                                   : conf->raid_disks;
2228         int data_disks = raid_disks - conf->max_degraded;
2229
2230         /* First compute the information on this sector */
2231
2232         /*
2233          * Compute the chunk number and the sector offset inside the chunk
2234          */
2235         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2236         chunk_number = r_sector;
2237
2238         /*
2239          * Compute the stripe number
2240          */
2241         stripe = chunk_number;
2242         *dd_idx = sector_div(stripe, data_disks);
2243         stripe2 = stripe;
2244         /*
2245          * Select the parity disk based on the user selected algorithm.
2246          */
2247         pd_idx = qd_idx = -1;
2248         switch(conf->level) {
2249         case 4:
2250                 pd_idx = data_disks;
2251                 break;
2252         case 5:
2253                 switch (algorithm) {
2254                 case ALGORITHM_LEFT_ASYMMETRIC:
2255                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2256                         if (*dd_idx >= pd_idx)
2257                                 (*dd_idx)++;
2258                         break;
2259                 case ALGORITHM_RIGHT_ASYMMETRIC:
2260                         pd_idx = sector_div(stripe2, raid_disks);
2261                         if (*dd_idx >= pd_idx)
2262                                 (*dd_idx)++;
2263                         break;
2264                 case ALGORITHM_LEFT_SYMMETRIC:
2265                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2266                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2267                         break;
2268                 case ALGORITHM_RIGHT_SYMMETRIC:
2269                         pd_idx = sector_div(stripe2, raid_disks);
2270                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271                         break;
2272                 case ALGORITHM_PARITY_0:
2273                         pd_idx = 0;
2274                         (*dd_idx)++;
2275                         break;
2276                 case ALGORITHM_PARITY_N:
2277                         pd_idx = data_disks;
2278                         break;
2279                 default:
2280                         BUG();
2281                 }
2282                 break;
2283         case 6:
2284
2285                 switch (algorithm) {
2286                 case ALGORITHM_LEFT_ASYMMETRIC:
2287                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288                         qd_idx = pd_idx + 1;
2289                         if (pd_idx == raid_disks-1) {
2290                                 (*dd_idx)++;    /* Q D D D P */
2291                                 qd_idx = 0;
2292                         } else if (*dd_idx >= pd_idx)
2293                                 (*dd_idx) += 2; /* D D P Q D */
2294                         break;
2295                 case ALGORITHM_RIGHT_ASYMMETRIC:
2296                         pd_idx = sector_div(stripe2, raid_disks);
2297                         qd_idx = pd_idx + 1;
2298                         if (pd_idx == raid_disks-1) {
2299                                 (*dd_idx)++;    /* Q D D D P */
2300                                 qd_idx = 0;
2301                         } else if (*dd_idx >= pd_idx)
2302                                 (*dd_idx) += 2; /* D D P Q D */
2303                         break;
2304                 case ALGORITHM_LEFT_SYMMETRIC:
2305                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2306                         qd_idx = (pd_idx + 1) % raid_disks;
2307                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2308                         break;
2309                 case ALGORITHM_RIGHT_SYMMETRIC:
2310                         pd_idx = sector_div(stripe2, raid_disks);
2311                         qd_idx = (pd_idx + 1) % raid_disks;
2312                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2313                         break;
2314
2315                 case ALGORITHM_PARITY_0:
2316                         pd_idx = 0;
2317                         qd_idx = 1;
2318                         (*dd_idx) += 2;
2319                         break;
2320                 case ALGORITHM_PARITY_N:
2321                         pd_idx = data_disks;
2322                         qd_idx = data_disks + 1;
2323                         break;
2324
2325                 case ALGORITHM_ROTATING_ZERO_RESTART:
2326                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2327                          * of blocks for computing Q is different.
2328                          */
2329                         pd_idx = sector_div(stripe2, raid_disks);
2330                         qd_idx = pd_idx + 1;
2331                         if (pd_idx == raid_disks-1) {
2332                                 (*dd_idx)++;    /* Q D D D P */
2333                                 qd_idx = 0;
2334                         } else if (*dd_idx >= pd_idx)
2335                                 (*dd_idx) += 2; /* D D P Q D */
2336                         ddf_layout = 1;
2337                         break;
2338
2339                 case ALGORITHM_ROTATING_N_RESTART:
2340                         /* Same a left_asymmetric, by first stripe is
2341                          * D D D P Q  rather than
2342                          * Q D D D P
2343                          */
2344                         stripe2 += 1;
2345                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2346                         qd_idx = pd_idx + 1;
2347                         if (pd_idx == raid_disks-1) {
2348                                 (*dd_idx)++;    /* Q D D D P */
2349                                 qd_idx = 0;
2350                         } else if (*dd_idx >= pd_idx)
2351                                 (*dd_idx) += 2; /* D D P Q D */
2352                         ddf_layout = 1;
2353                         break;
2354
2355                 case ALGORITHM_ROTATING_N_CONTINUE:
2356                         /* Same as left_symmetric but Q is before P */
2357                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2358                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2359                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2360                         ddf_layout = 1;
2361                         break;
2362
2363                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2364                         /* RAID5 left_asymmetric, with Q on last device */
2365                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2366                         if (*dd_idx >= pd_idx)
2367                                 (*dd_idx)++;
2368                         qd_idx = raid_disks - 1;
2369                         break;
2370
2371                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2372                         pd_idx = sector_div(stripe2, raid_disks-1);
2373                         if (*dd_idx >= pd_idx)
2374                                 (*dd_idx)++;
2375                         qd_idx = raid_disks - 1;
2376                         break;
2377
2378                 case ALGORITHM_LEFT_SYMMETRIC_6:
2379                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2380                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2381                         qd_idx = raid_disks - 1;
2382                         break;
2383
2384                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2385                         pd_idx = sector_div(stripe2, raid_disks-1);
2386                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2387                         qd_idx = raid_disks - 1;
2388                         break;
2389
2390                 case ALGORITHM_PARITY_0_6:
2391                         pd_idx = 0;
2392                         (*dd_idx)++;
2393                         qd_idx = raid_disks - 1;
2394                         break;
2395
2396                 default:
2397                         BUG();
2398                 }
2399                 break;
2400         }
2401
2402         if (sh) {
2403                 sh->pd_idx = pd_idx;
2404                 sh->qd_idx = qd_idx;
2405                 sh->ddf_layout = ddf_layout;
2406         }
2407         /*
2408          * Finally, compute the new sector number
2409          */
2410         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2411         return new_sector;
2412 }
2413
2414 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2415 {
2416         struct r5conf *conf = sh->raid_conf;
2417         int raid_disks = sh->disks;
2418         int data_disks = raid_disks - conf->max_degraded;
2419         sector_t new_sector = sh->sector, check;
2420         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2421                                          : conf->chunk_sectors;
2422         int algorithm = previous ? conf->prev_algo
2423                                  : conf->algorithm;
2424         sector_t stripe;
2425         int chunk_offset;
2426         sector_t chunk_number;
2427         int dummy1, dd_idx = i;
2428         sector_t r_sector;
2429         struct stripe_head sh2;
2430
2431         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2432         stripe = new_sector;
2433
2434         if (i == sh->pd_idx)
2435                 return 0;
2436         switch(conf->level) {
2437         case 4: break;
2438         case 5:
2439                 switch (algorithm) {
2440                 case ALGORITHM_LEFT_ASYMMETRIC:
2441                 case ALGORITHM_RIGHT_ASYMMETRIC:
2442                         if (i > sh->pd_idx)
2443                                 i--;
2444                         break;
2445                 case ALGORITHM_LEFT_SYMMETRIC:
2446                 case ALGORITHM_RIGHT_SYMMETRIC:
2447                         if (i < sh->pd_idx)
2448                                 i += raid_disks;
2449                         i -= (sh->pd_idx + 1);
2450                         break;
2451                 case ALGORITHM_PARITY_0:
2452                         i -= 1;
2453                         break;
2454                 case ALGORITHM_PARITY_N:
2455                         break;
2456                 default:
2457                         BUG();
2458                 }
2459                 break;
2460         case 6:
2461                 if (i == sh->qd_idx)
2462                         return 0; /* It is the Q disk */
2463                 switch (algorithm) {
2464                 case ALGORITHM_LEFT_ASYMMETRIC:
2465                 case ALGORITHM_RIGHT_ASYMMETRIC:
2466                 case ALGORITHM_ROTATING_ZERO_RESTART:
2467                 case ALGORITHM_ROTATING_N_RESTART:
2468                         if (sh->pd_idx == raid_disks-1)
2469                                 i--;    /* Q D D D P */
2470                         else if (i > sh->pd_idx)
2471                                 i -= 2; /* D D P Q D */
2472                         break;
2473                 case ALGORITHM_LEFT_SYMMETRIC:
2474                 case ALGORITHM_RIGHT_SYMMETRIC:
2475                         if (sh->pd_idx == raid_disks-1)
2476                                 i--; /* Q D D D P */
2477                         else {
2478                                 /* D D P Q D */
2479                                 if (i < sh->pd_idx)
2480                                         i += raid_disks;
2481                                 i -= (sh->pd_idx + 2);
2482                         }
2483                         break;
2484                 case ALGORITHM_PARITY_0:
2485                         i -= 2;
2486                         break;
2487                 case ALGORITHM_PARITY_N:
2488                         break;
2489                 case ALGORITHM_ROTATING_N_CONTINUE:
2490                         /* Like left_symmetric, but P is before Q */
2491                         if (sh->pd_idx == 0)
2492                                 i--;    /* P D D D Q */
2493                         else {
2494                                 /* D D Q P D */
2495                                 if (i < sh->pd_idx)
2496                                         i += raid_disks;
2497                                 i -= (sh->pd_idx + 1);
2498                         }
2499                         break;
2500                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2501                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2502                         if (i > sh->pd_idx)
2503                                 i--;
2504                         break;
2505                 case ALGORITHM_LEFT_SYMMETRIC_6:
2506                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2507                         if (i < sh->pd_idx)
2508                                 i += data_disks + 1;
2509                         i -= (sh->pd_idx + 1);
2510                         break;
2511                 case ALGORITHM_PARITY_0_6:
2512                         i -= 1;
2513                         break;
2514                 default:
2515                         BUG();
2516                 }
2517                 break;
2518         }
2519
2520         chunk_number = stripe * data_disks + i;
2521         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2522
2523         check = raid5_compute_sector(conf, r_sector,
2524                                      previous, &dummy1, &sh2);
2525         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2526                 || sh2.qd_idx != sh->qd_idx) {
2527                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2528                        mdname(conf->mddev));
2529                 return 0;
2530         }
2531         return r_sector;
2532 }
2533
2534 static void
2535 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2536                          int rcw, int expand)
2537 {
2538         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2539         struct r5conf *conf = sh->raid_conf;
2540         int level = conf->level;
2541
2542         if (rcw) {
2543
2544                 for (i = disks; i--; ) {
2545                         struct r5dev *dev = &sh->dev[i];
2546
2547                         if (dev->towrite) {
2548                                 set_bit(R5_LOCKED, &dev->flags);
2549                                 set_bit(R5_Wantdrain, &dev->flags);
2550                                 if (!expand)
2551                                         clear_bit(R5_UPTODATE, &dev->flags);
2552                                 s->locked++;
2553                         }
2554                 }
2555                 /* if we are not expanding this is a proper write request, and
2556                  * there will be bios with new data to be drained into the
2557                  * stripe cache
2558                  */
2559                 if (!expand) {
2560                         if (!s->locked)
2561                                 /* False alarm, nothing to do */
2562                                 return;
2563                         sh->reconstruct_state = reconstruct_state_drain_run;
2564                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2565                 } else
2566                         sh->reconstruct_state = reconstruct_state_run;
2567
2568                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2569
2570                 if (s->locked + conf->max_degraded == disks)
2571                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2572                                 atomic_inc(&conf->pending_full_writes);
2573         } else {
2574                 BUG_ON(level == 6);
2575                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2576                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2577
2578                 for (i = disks; i--; ) {
2579                         struct r5dev *dev = &sh->dev[i];
2580                         if (i == pd_idx)
2581                                 continue;
2582
2583                         if (dev->towrite &&
2584                             (test_bit(R5_UPTODATE, &dev->flags) ||
2585                              test_bit(R5_Wantcompute, &dev->flags))) {
2586                                 set_bit(R5_Wantdrain, &dev->flags);
2587                                 set_bit(R5_LOCKED, &dev->flags);
2588                                 clear_bit(R5_UPTODATE, &dev->flags);
2589                                 s->locked++;
2590                         }
2591                 }
2592                 if (!s->locked)
2593                         /* False alarm - nothing to do */
2594                         return;
2595                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2596                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2597                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2598                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2599         }
2600
2601         /* keep the parity disk(s) locked while asynchronous operations
2602          * are in flight
2603          */
2604         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2605         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2606         s->locked++;
2607
2608         if (level == 6) {
2609                 int qd_idx = sh->qd_idx;
2610                 struct r5dev *dev = &sh->dev[qd_idx];
2611
2612                 set_bit(R5_LOCKED, &dev->flags);
2613                 clear_bit(R5_UPTODATE, &dev->flags);
2614                 s->locked++;
2615         }
2616
2617         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2618                 __func__, (unsigned long long)sh->sector,
2619                 s->locked, s->ops_request);
2620 }
2621
2622 /*
2623  * Each stripe/dev can have one or more bion attached.
2624  * toread/towrite point to the first in a chain.
2625  * The bi_next chain must be in order.
2626  */
2627 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2628 {
2629         struct bio **bip;
2630         struct r5conf *conf = sh->raid_conf;
2631         int firstwrite=0;
2632
2633         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2634                 (unsigned long long)bi->bi_iter.bi_sector,
2635                 (unsigned long long)sh->sector);
2636
2637         /*
2638          * If several bio share a stripe. The bio bi_phys_segments acts as a
2639          * reference count to avoid race. The reference count should already be
2640          * increased before this function is called (for example, in
2641          * make_request()), so other bio sharing this stripe will not free the
2642          * stripe. If a stripe is owned by one stripe, the stripe lock will
2643          * protect it.
2644          */
2645         spin_lock_irq(&sh->stripe_lock);
2646         if (forwrite) {
2647                 bip = &sh->dev[dd_idx].towrite;
2648                 if (*bip == NULL)
2649                         firstwrite = 1;
2650         } else
2651                 bip = &sh->dev[dd_idx].toread;
2652         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2653                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2654                         goto overlap;
2655                 bip = & (*bip)->bi_next;
2656         }
2657         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2658                 goto overlap;
2659
2660         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2661         if (*bip)
2662                 bi->bi_next = *bip;
2663         *bip = bi;
2664         raid5_inc_bi_active_stripes(bi);
2665
2666         if (forwrite) {
2667                 /* check if page is covered */
2668                 sector_t sector = sh->dev[dd_idx].sector;
2669                 for (bi=sh->dev[dd_idx].towrite;
2670                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2671                              bi && bi->bi_iter.bi_sector <= sector;
2672                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2673                         if (bio_end_sector(bi) >= sector)
2674                                 sector = bio_end_sector(bi);
2675                 }
2676                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2677                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2678         }
2679
2680         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2681                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2682                 (unsigned long long)sh->sector, dd_idx);
2683         spin_unlock_irq(&sh->stripe_lock);
2684
2685         if (conf->mddev->bitmap && firstwrite) {
2686                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2687                                   STRIPE_SECTORS, 0);
2688                 sh->bm_seq = conf->seq_flush+1;
2689                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2690         }
2691         return 1;
2692
2693  overlap:
2694         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2695         spin_unlock_irq(&sh->stripe_lock);
2696         return 0;
2697 }
2698
2699 static void end_reshape(struct r5conf *conf);
2700
2701 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2702                             struct stripe_head *sh)
2703 {
2704         int sectors_per_chunk =
2705                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2706         int dd_idx;
2707         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2708         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2709
2710         raid5_compute_sector(conf,
2711                              stripe * (disks - conf->max_degraded)
2712                              *sectors_per_chunk + chunk_offset,
2713                              previous,
2714                              &dd_idx, sh);
2715 }
2716
2717 static void
2718 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2719                                 struct stripe_head_state *s, int disks,
2720                                 struct bio **return_bi)
2721 {
2722         int i;
2723         for (i = disks; i--; ) {
2724                 struct bio *bi;
2725                 int bitmap_end = 0;
2726
2727                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2728                         struct md_rdev *rdev;
2729                         rcu_read_lock();
2730                         rdev = rcu_dereference(conf->disks[i].rdev);
2731                         if (rdev && test_bit(In_sync, &rdev->flags))
2732                                 atomic_inc(&rdev->nr_pending);
2733                         else
2734                                 rdev = NULL;
2735                         rcu_read_unlock();
2736                         if (rdev) {
2737                                 if (!rdev_set_badblocks(
2738                                             rdev,
2739                                             sh->sector,
2740                                             STRIPE_SECTORS, 0))
2741                                         md_error(conf->mddev, rdev);
2742                                 rdev_dec_pending(rdev, conf->mddev);
2743                         }
2744                 }
2745                 spin_lock_irq(&sh->stripe_lock);
2746                 /* fail all writes first */
2747                 bi = sh->dev[i].towrite;
2748                 sh->dev[i].towrite = NULL;
2749                 spin_unlock_irq(&sh->stripe_lock);
2750                 if (bi)
2751                         bitmap_end = 1;
2752
2753                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2754                         wake_up(&conf->wait_for_overlap);
2755
2756                 while (bi && bi->bi_iter.bi_sector <
2757                         sh->dev[i].sector + STRIPE_SECTORS) {
2758                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2759                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2760                         if (!raid5_dec_bi_active_stripes(bi)) {
2761                                 md_write_end(conf->mddev);
2762                                 bi->bi_next = *return_bi;
2763                                 *return_bi = bi;
2764                         }
2765                         bi = nextbi;
2766                 }
2767                 if (bitmap_end)
2768                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2769                                 STRIPE_SECTORS, 0, 0);
2770                 bitmap_end = 0;
2771                 /* and fail all 'written' */
2772                 bi = sh->dev[i].written;
2773                 sh->dev[i].written = NULL;
2774                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2775                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2776                         sh->dev[i].page = sh->dev[i].orig_page;
2777                 }
2778
2779                 if (bi) bitmap_end = 1;
2780                 while (bi && bi->bi_iter.bi_sector <
2781                        sh->dev[i].sector + STRIPE_SECTORS) {
2782                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2783                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2784                         if (!raid5_dec_bi_active_stripes(bi)) {
2785                                 md_write_end(conf->mddev);
2786                                 bi->bi_next = *return_bi;
2787                                 *return_bi = bi;
2788                         }
2789                         bi = bi2;
2790                 }
2791
2792                 /* fail any reads if this device is non-operational and
2793                  * the data has not reached the cache yet.
2794                  */
2795                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2796                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2797                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2798                         spin_lock_irq(&sh->stripe_lock);
2799                         bi = sh->dev[i].toread;
2800                         sh->dev[i].toread = NULL;
2801                         spin_unlock_irq(&sh->stripe_lock);
2802                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2803                                 wake_up(&conf->wait_for_overlap);
2804                         while (bi && bi->bi_iter.bi_sector <
2805                                sh->dev[i].sector + STRIPE_SECTORS) {
2806                                 struct bio *nextbi =
2807                                         r5_next_bio(bi, sh->dev[i].sector);
2808                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2809                                 if (!raid5_dec_bi_active_stripes(bi)) {
2810                                         bi->bi_next = *return_bi;
2811                                         *return_bi = bi;
2812                                 }
2813                                 bi = nextbi;
2814                         }
2815                 }
2816                 if (bitmap_end)
2817                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2818                                         STRIPE_SECTORS, 0, 0);
2819                 /* If we were in the middle of a write the parity block might
2820                  * still be locked - so just clear all R5_LOCKED flags
2821                  */
2822                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2823         }
2824
2825         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2826                 if (atomic_dec_and_test(&conf->pending_full_writes))
2827                         md_wakeup_thread(conf->mddev->thread);
2828 }
2829
2830 static void
2831 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2832                    struct stripe_head_state *s)
2833 {
2834         int abort = 0;
2835         int i;
2836
2837         clear_bit(STRIPE_SYNCING, &sh->state);
2838         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2839                 wake_up(&conf->wait_for_overlap);
2840         s->syncing = 0;
2841         s->replacing = 0;
2842         /* There is nothing more to do for sync/check/repair.
2843          * Don't even need to abort as that is handled elsewhere
2844          * if needed, and not always wanted e.g. if there is a known
2845          * bad block here.
2846          * For recover/replace we need to record a bad block on all
2847          * non-sync devices, or abort the recovery
2848          */
2849         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2850                 /* During recovery devices cannot be removed, so
2851                  * locking and refcounting of rdevs is not needed
2852                  */
2853                 for (i = 0; i < conf->raid_disks; i++) {
2854                         struct md_rdev *rdev = conf->disks[i].rdev;
2855                         if (rdev
2856                             && !test_bit(Faulty, &rdev->flags)
2857                             && !test_bit(In_sync, &rdev->flags)
2858                             && !rdev_set_badblocks(rdev, sh->sector,
2859                                                    STRIPE_SECTORS, 0))
2860                                 abort = 1;
2861                         rdev = conf->disks[i].replacement;
2862                         if (rdev
2863                             && !test_bit(Faulty, &rdev->flags)
2864                             && !test_bit(In_sync, &rdev->flags)
2865                             && !rdev_set_badblocks(rdev, sh->sector,
2866                                                    STRIPE_SECTORS, 0))
2867                                 abort = 1;
2868                 }
2869                 if (abort)
2870                         conf->recovery_disabled =
2871                                 conf->mddev->recovery_disabled;
2872         }
2873         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2874 }
2875
2876 static int want_replace(struct stripe_head *sh, int disk_idx)
2877 {
2878         struct md_rdev *rdev;
2879         int rv = 0;
2880         /* Doing recovery so rcu locking not required */
2881         rdev = sh->raid_conf->disks[disk_idx].replacement;
2882         if (rdev
2883             && !test_bit(Faulty, &rdev->flags)
2884             && !test_bit(In_sync, &rdev->flags)
2885             && (rdev->recovery_offset <= sh->sector
2886                 || rdev->mddev->recovery_cp <= sh->sector))
2887                 rv = 1;
2888
2889         return rv;
2890 }
2891
2892 /* fetch_block - checks the given member device to see if its data needs
2893  * to be read or computed to satisfy a request.
2894  *
2895  * Returns 1 when no more member devices need to be checked, otherwise returns
2896  * 0 to tell the loop in handle_stripe_fill to continue
2897  */
2898 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2899                        int disk_idx, int disks)
2900 {
2901         struct r5dev *dev = &sh->dev[disk_idx];
2902         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2903                                   &sh->dev[s->failed_num[1]] };
2904
2905         /* is the data in this block needed, and can we get it? */
2906         if (!test_bit(R5_LOCKED, &dev->flags) &&
2907             !test_bit(R5_UPTODATE, &dev->flags) &&
2908             (dev->toread ||
2909              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2910              s->syncing || s->expanding ||
2911              (s->replacing && want_replace(sh, disk_idx)) ||
2912              (s->failed >= 1 && fdev[0]->toread) ||
2913              (s->failed >= 2 && fdev[1]->toread) ||
2914              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2915               (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2916               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2917              ((sh->raid_conf->level == 6 ||
2918                sh->sector >= sh->raid_conf->mddev->recovery_cp)
2919               && s->failed && s->to_write &&
2920               (s->to_write - s->non_overwrite <
2921                sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) &&
2922               (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2923                 /* we would like to get this block, possibly by computing it,
2924                  * otherwise read it if the backing disk is insync
2925                  */
2926                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2927                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2928                 if ((s->uptodate == disks - 1) &&
2929                     (s->failed && (disk_idx == s->failed_num[0] ||
2930                                    disk_idx == s->failed_num[1]))) {
2931                         /* have disk failed, and we're requested to fetch it;
2932                          * do compute it
2933                          */
2934                         pr_debug("Computing stripe %llu block %d\n",
2935                                (unsigned long long)sh->sector, disk_idx);
2936                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2937                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2938                         set_bit(R5_Wantcompute, &dev->flags);
2939                         sh->ops.target = disk_idx;
2940                         sh->ops.target2 = -1; /* no 2nd target */
2941                         s->req_compute = 1;
2942                         /* Careful: from this point on 'uptodate' is in the eye
2943                          * of raid_run_ops which services 'compute' operations
2944                          * before writes. R5_Wantcompute flags a block that will
2945                          * be R5_UPTODATE by the time it is needed for a
2946                          * subsequent operation.
2947                          */
2948                         s->uptodate++;
2949                         return 1;
2950                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2951                         /* Computing 2-failure is *very* expensive; only
2952                          * do it if failed >= 2
2953                          */
2954                         int other;
2955                         for (other = disks; other--; ) {
2956                                 if (other == disk_idx)
2957                                         continue;
2958                                 if (!test_bit(R5_UPTODATE,
2959                                       &sh->dev[other].flags))
2960                                         break;
2961                         }
2962                         BUG_ON(other < 0);
2963                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2964                                (unsigned long long)sh->sector,
2965                                disk_idx, other);
2966                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2967                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2968                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2969                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2970                         sh->ops.target = disk_idx;
2971                         sh->ops.target2 = other;
2972                         s->uptodate += 2;
2973                         s->req_compute = 1;
2974                         return 1;
2975                 } else if (test_bit(R5_Insync, &dev->flags)) {
2976                         set_bit(R5_LOCKED, &dev->flags);
2977                         set_bit(R5_Wantread, &dev->flags);
2978                         s->locked++;
2979                         pr_debug("Reading block %d (sync=%d)\n",
2980                                 disk_idx, s->syncing);
2981                 }
2982         }
2983
2984         return 0;
2985 }
2986
2987 /**
2988  * handle_stripe_fill - read or compute data to satisfy pending requests.
2989  */
2990 static void handle_stripe_fill(struct stripe_head *sh,
2991                                struct stripe_head_state *s,
2992                                int disks)
2993 {
2994         int i;
2995
2996         /* look for blocks to read/compute, skip this if a compute
2997          * is already in flight, or if the stripe contents are in the
2998          * midst of changing due to a write
2999          */
3000         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3001             !sh->reconstruct_state)
3002                 for (i = disks; i--; )
3003                         if (fetch_block(sh, s, i, disks))
3004                                 break;
3005         set_bit(STRIPE_HANDLE, &sh->state);
3006 }
3007
3008 /* handle_stripe_clean_event
3009  * any written block on an uptodate or failed drive can be returned.
3010  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3011  * never LOCKED, so we don't need to test 'failed' directly.
3012  */
3013 static void handle_stripe_clean_event(struct r5conf *conf,
3014         struct stripe_head *sh, int disks, struct bio **return_bi)
3015 {
3016         int i;
3017         struct r5dev *dev;
3018         int discard_pending = 0;
3019
3020         for (i = disks; i--; )
3021                 if (sh->dev[i].written) {
3022                         dev = &sh->dev[i];
3023                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3024                             (test_bit(R5_UPTODATE, &dev->flags) ||
3025                              test_bit(R5_Discard, &dev->flags) ||
3026                              test_bit(R5_SkipCopy, &dev->flags))) {
3027                                 /* We can return any write requests */
3028                                 struct bio *wbi, *wbi2;
3029                                 pr_debug("Return write for disc %d\n", i);
3030                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3031                                         clear_bit(R5_UPTODATE, &dev->flags);
3032                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3033                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3034                                         dev->page = dev->orig_page;
3035                                 }
3036                                 wbi = dev->written;
3037                                 dev->written = NULL;
3038                                 while (wbi && wbi->bi_iter.bi_sector <
3039                                         dev->sector + STRIPE_SECTORS) {
3040                                         wbi2 = r5_next_bio(wbi, dev->sector);
3041                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3042                                                 md_write_end(conf->mddev);
3043                                                 wbi->bi_next = *return_bi;
3044                                                 *return_bi = wbi;
3045                                         }
3046                                         wbi = wbi2;
3047                                 }
3048                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3049                                                 STRIPE_SECTORS,
3050                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3051                                                 0);
3052                         } else if (test_bit(R5_Discard, &dev->flags))
3053                                 discard_pending = 1;
3054                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3055                         WARN_ON(dev->page != dev->orig_page);
3056                 }
3057         if (!discard_pending &&
3058             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3059                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3060                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3061                 if (sh->qd_idx >= 0) {
3062                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3063                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3064                 }
3065                 /* now that discard is done we can proceed with any sync */
3066                 clear_bit(STRIPE_DISCARD, &sh->state);
3067                 /*
3068                  * SCSI discard will change some bio fields and the stripe has
3069                  * no updated data, so remove it from hash list and the stripe
3070                  * will be reinitialized
3071                  */
3072                 spin_lock_irq(&conf->device_lock);
3073                 remove_hash(sh);
3074                 spin_unlock_irq(&conf->device_lock);
3075                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3076                         set_bit(STRIPE_HANDLE, &sh->state);
3077
3078         }
3079
3080         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3081                 if (atomic_dec_and_test(&conf->pending_full_writes))
3082                         md_wakeup_thread(conf->mddev->thread);
3083 }
3084
3085 static void handle_stripe_dirtying(struct r5conf *conf,
3086                                    struct stripe_head *sh,
3087                                    struct stripe_head_state *s,
3088                                    int disks)
3089 {
3090         int rmw = 0, rcw = 0, i;
3091         sector_t recovery_cp = conf->mddev->recovery_cp;
3092
3093         /* RAID6 requires 'rcw' in current implementation.
3094          * Otherwise, check whether resync is now happening or should start.
3095          * If yes, then the array is dirty (after unclean shutdown or
3096          * initial creation), so parity in some stripes might be inconsistent.
3097          * In this case, we need to always do reconstruct-write, to ensure
3098          * that in case of drive failure or read-error correction, we
3099          * generate correct data from the parity.
3100          */
3101         if (conf->max_degraded == 2 ||
3102             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3103                 /* Calculate the real rcw later - for now make it
3104                  * look like rcw is cheaper
3105                  */
3106                 rcw = 1; rmw = 2;
3107                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3108                          conf->max_degraded, (unsigned long long)recovery_cp,
3109                          (unsigned long long)sh->sector);
3110         } else for (i = disks; i--; ) {
3111                 /* would I have to read this buffer for read_modify_write */
3112                 struct r5dev *dev = &sh->dev[i];
3113                 if ((dev->towrite || i == sh->pd_idx) &&
3114                     !test_bit(R5_LOCKED, &dev->flags) &&
3115                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3116                       test_bit(R5_Wantcompute, &dev->flags))) {
3117                         if (test_bit(R5_Insync, &dev->flags))
3118                                 rmw++;
3119                         else
3120                                 rmw += 2*disks;  /* cannot read it */
3121                 }
3122                 /* Would I have to read this buffer for reconstruct_write */
3123                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3124                     !test_bit(R5_LOCKED, &dev->flags) &&
3125                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3126                     test_bit(R5_Wantcompute, &dev->flags))) {
3127                         if (test_bit(R5_Insync, &dev->flags))
3128                                 rcw++;
3129                         else
3130                                 rcw += 2*disks;
3131                 }
3132         }
3133         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3134                 (unsigned long long)sh->sector, rmw, rcw);
3135         set_bit(STRIPE_HANDLE, &sh->state);
3136         if (rmw < rcw && rmw > 0) {
3137                 /* prefer read-modify-write, but need to get some data */
3138                 if (conf->mddev->queue)
3139                         blk_add_trace_msg(conf->mddev->queue,
3140                                           "raid5 rmw %llu %d",
3141                                           (unsigned long long)sh->sector, rmw);
3142                 for (i = disks; i--; ) {
3143                         struct r5dev *dev = &sh->dev[i];
3144                         if ((dev->towrite || i == sh->pd_idx) &&
3145                             !test_bit(R5_LOCKED, &dev->flags) &&
3146                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3147                             test_bit(R5_Wantcompute, &dev->flags)) &&
3148                             test_bit(R5_Insync, &dev->flags)) {
3149                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3150                                              &sh->state)) {
3151                                         pr_debug("Read_old block %d for r-m-w\n",
3152                                                  i);
3153                                         set_bit(R5_LOCKED, &dev->flags);
3154                                         set_bit(R5_Wantread, &dev->flags);
3155                                         s->locked++;
3156                                 } else {
3157                                         set_bit(STRIPE_DELAYED, &sh->state);
3158                                         set_bit(STRIPE_HANDLE, &sh->state);
3159                                 }
3160                         }
3161                 }
3162         }
3163         if (rcw <= rmw && rcw > 0) {
3164                 /* want reconstruct write, but need to get some data */
3165                 int qread =0;
3166                 rcw = 0;
3167                 for (i = disks; i--; ) {
3168                         struct r5dev *dev = &sh->dev[i];
3169                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3170                             i != sh->pd_idx && i != sh->qd_idx &&
3171                             !test_bit(R5_LOCKED, &dev->flags) &&
3172                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3173                               test_bit(R5_Wantcompute, &dev->flags))) {
3174                                 rcw++;
3175                                 if (test_bit(R5_Insync, &dev->flags) &&
3176                                     test_bit(STRIPE_PREREAD_ACTIVE,
3177                                              &sh->state)) {
3178                                         pr_debug("Read_old block "
3179                                                 "%d for Reconstruct\n", i);
3180                                         set_bit(R5_LOCKED, &dev->flags);
3181                                         set_bit(R5_Wantread, &dev->flags);
3182                                         s->locked++;
3183                                         qread++;
3184                                 } else {
3185                                         set_bit(STRIPE_DELAYED, &sh->state);
3186                                         set_bit(STRIPE_HANDLE, &sh->state);
3187                                 }
3188                         }
3189                 }
3190                 if (rcw && conf->mddev->queue)
3191                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3192                                           (unsigned long long)sh->sector,
3193                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3194         }
3195
3196         if (rcw > disks && rmw > disks &&
3197             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3198                 set_bit(STRIPE_DELAYED, &sh->state);
3199
3200         /* now if nothing is locked, and if we have enough data,
3201          * we can start a write request
3202          */
3203         /* since handle_stripe can be called at any time we need to handle the
3204          * case where a compute block operation has been submitted and then a
3205          * subsequent call wants to start a write request.  raid_run_ops only
3206          * handles the case where compute block and reconstruct are requested
3207          * simultaneously.  If this is not the case then new writes need to be
3208          * held off until the compute completes.
3209          */
3210         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3211             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3212             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3213                 schedule_reconstruction(sh, s, rcw == 0, 0);
3214 }
3215
3216 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3217                                 struct stripe_head_state *s, int disks)
3218 {
3219         struct r5dev *dev = NULL;
3220
3221         set_bit(STRIPE_HANDLE, &sh->state);
3222
3223         switch (sh->check_state) {
3224         case check_state_idle:
3225                 /* start a new check operation if there are no failures */
3226                 if (s->failed == 0) {
3227                         BUG_ON(s->uptodate != disks);
3228                         sh->check_state = check_state_run;
3229                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3230                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3231                         s->uptodate--;
3232                         break;
3233                 }
3234                 dev = &sh->dev[s->failed_num[0]];
3235                 /* fall through */
3236         case check_state_compute_result:
3237                 sh->check_state = check_state_idle;
3238                 if (!dev)
3239                         dev = &sh->dev[sh->pd_idx];
3240
3241                 /* check that a write has not made the stripe insync */
3242                 if (test_bit(STRIPE_INSYNC, &sh->state))
3243                         break;
3244
3245                 /* either failed parity check, or recovery is happening */
3246                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3247                 BUG_ON(s->uptodate != disks);
3248
3249                 set_bit(R5_LOCKED, &dev->flags);
3250                 s->locked++;
3251                 set_bit(R5_Wantwrite, &dev->flags);
3252
3253                 clear_bit(STRIPE_DEGRADED, &sh->state);
3254                 set_bit(STRIPE_INSYNC, &sh->state);
3255                 break;
3256         case check_state_run:
3257                 break; /* we will be called again upon completion */
3258         case check_state_check_result:
3259                 sh->check_state = check_state_idle;
3260
3261                 /* if a failure occurred during the check operation, leave
3262                  * STRIPE_INSYNC not set and let the stripe be handled again
3263                  */
3264                 if (s->failed)
3265                         break;
3266
3267                 /* handle a successful check operation, if parity is correct
3268                  * we are done.  Otherwise update the mismatch count and repair
3269                  * parity if !MD_RECOVERY_CHECK
3270                  */
3271                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3272                         /* parity is correct (on disc,
3273                          * not in buffer any more)
3274                          */
3275                         set_bit(STRIPE_INSYNC, &sh->state);
3276                 else {
3277                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3278                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3279                                 /* don't try to repair!! */
3280                                 set_bit(STRIPE_INSYNC, &sh->state);
3281                         else {
3282                                 sh->check_state = check_state_compute_run;
3283                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3284                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3285                                 set_bit(R5_Wantcompute,
3286                                         &sh->dev[sh->pd_idx].flags);
3287                                 sh->ops.target = sh->pd_idx;
3288                                 sh->ops.target2 = -1;
3289                                 s->uptodate++;
3290                         }
3291                 }
3292                 break;
3293         case check_state_compute_run:
3294                 break;
3295         default:
3296                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3297                        __func__, sh->check_state,
3298                        (unsigned long long) sh->sector);
3299                 BUG();
3300         }
3301 }
3302
3303 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3304                                   struct stripe_head_state *s,
3305                                   int disks)
3306 {
3307         int pd_idx = sh->pd_idx;
3308         int qd_idx = sh->qd_idx;
3309         struct r5dev *dev;
3310
3311         set_bit(STRIPE_HANDLE, &sh->state);
3312
3313         BUG_ON(s->failed > 2);
3314
3315         /* Want to check and possibly repair P and Q.
3316          * However there could be one 'failed' device, in which
3317          * case we can only check one of them, possibly using the
3318          * other to generate missing data
3319          */
3320
3321         switch (sh->check_state) {
3322         case check_state_idle:
3323                 /* start a new check operation if there are < 2 failures */
3324                 if (s->failed == s->q_failed) {
3325                         /* The only possible failed device holds Q, so it
3326                          * makes sense to check P (If anything else were failed,
3327                          * we would have used P to recreate it).
3328                          */
3329                         sh->check_state = check_state_run;
3330                 }
3331                 if (!s->q_failed && s->failed < 2) {
3332                         /* Q is not failed, and we didn't use it to generate
3333                          * anything, so it makes sense to check it
3334                          */
3335                         if (sh->check_state == check_state_run)
3336                                 sh->check_state = check_state_run_pq;
3337                         else
3338                                 sh->check_state = check_state_run_q;
3339                 }
3340
3341                 /* discard potentially stale zero_sum_result */
3342                 sh->ops.zero_sum_result = 0;
3343
3344                 if (sh->check_state == check_state_run) {
3345                         /* async_xor_zero_sum destroys the contents of P */
3346                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3347                         s->uptodate--;
3348                 }
3349                 if (sh->check_state >= check_state_run &&
3350                     sh->check_state <= check_state_run_pq) {
3351                         /* async_syndrome_zero_sum preserves P and Q, so
3352                          * no need to mark them !uptodate here
3353                          */
3354                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3355                         break;
3356                 }
3357
3358                 /* we have 2-disk failure */
3359                 BUG_ON(s->failed != 2);
3360                 /* fall through */
3361         case check_state_compute_result:
3362                 sh->check_state = check_state_idle;
3363
3364                 /* check that a write has not made the stripe insync */
3365                 if (test_bit(STRIPE_INSYNC, &sh->state))
3366                         break;
3367
3368                 /* now write out any block on a failed drive,
3369                  * or P or Q if they were recomputed
3370                  */
3371                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3372                 if (s->failed == 2) {
3373                         dev = &sh->dev[s->failed_num[1]];
3374                         s->locked++;
3375                         set_bit(R5_LOCKED, &dev->flags);
3376                         set_bit(R5_Wantwrite, &dev->flags);
3377                 }
3378                 if (s->failed >= 1) {
3379                         dev = &sh->dev[s->failed_num[0]];
3380                         s->locked++;
3381                         set_bit(R5_LOCKED, &dev->flags);
3382                         set_bit(R5_Wantwrite, &dev->flags);
3383                 }
3384                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3385                         dev = &sh->dev[pd_idx];
3386                         s->locked++;
3387                         set_bit(R5_LOCKED, &dev->flags);
3388                         set_bit(R5_Wantwrite, &dev->flags);
3389                 }
3390                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3391                         dev = &sh->dev[qd_idx];
3392                         s->locked++;
3393                         set_bit(R5_LOCKED, &dev->flags);
3394                         set_bit(R5_Wantwrite, &dev->flags);
3395                 }
3396                 clear_bit(STRIPE_DEGRADED, &sh->state);
3397
3398                 set_bit(STRIPE_INSYNC, &sh->state);
3399                 break;
3400         case check_state_run:
3401         case check_state_run_q:
3402         case check_state_run_pq:
3403                 break; /* we will be called again upon completion */
3404         case check_state_check_result:
3405                 sh->check_state = check_state_idle;
3406
3407                 /* handle a successful check operation, if parity is correct
3408                  * we are done.  Otherwise update the mismatch count and repair
3409                  * parity if !MD_RECOVERY_CHECK
3410                  */
3411                 if (sh->ops.zero_sum_result == 0) {
3412                         /* both parities are correct */
3413                         if (!s->failed)
3414                                 set_bit(STRIPE_INSYNC, &sh->state);
3415                         else {
3416                                 /* in contrast to the raid5 case we can validate
3417                                  * parity, but still have a failure to write
3418                                  * back
3419                                  */
3420                                 sh->check_state = check_state_compute_result;
3421                                 /* Returning at this point means that we may go
3422                                  * off and bring p and/or q uptodate again so
3423                                  * we make sure to check zero_sum_result again
3424                                  * to verify if p or q need writeback
3425                                  */
3426                         }
3427                 } else {
3428                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3429                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3430                                 /* don't try to repair!! */
3431                                 set_bit(STRIPE_INSYNC, &sh->state);
3432                         else {
3433                                 int *target = &sh->ops.target;
3434
3435                                 sh->ops.target = -1;
3436                                 sh->ops.target2 = -1;
3437                                 sh->check_state = check_state_compute_run;
3438                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3439                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3440                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3441                                         set_bit(R5_Wantcompute,
3442                                                 &sh->dev[pd_idx].flags);
3443                                         *target = pd_idx;
3444                                         target = &sh->ops.target2;
3445                                         s->uptodate++;
3446                                 }
3447                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3448                                         set_bit(R5_Wantcompute,
3449                                                 &sh->dev[qd_idx].flags);
3450                                         *target = qd_idx;
3451                                         s->uptodate++;
3452                                 }
3453                         }
3454                 }
3455                 break;
3456         case check_state_compute_run:
3457                 break;
3458         default:
3459                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3460                        __func__, sh->check_state,
3461                        (unsigned long long) sh->sector);
3462                 BUG();
3463         }
3464 }
3465
3466 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3467 {
3468         int i;
3469
3470         /* We have read all the blocks in this stripe and now we need to
3471          * copy some of them into a target stripe for expand.
3472          */
3473         struct dma_async_tx_descriptor *tx = NULL;
3474         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3475         for (i = 0; i < sh->disks; i++)
3476                 if (i != sh->pd_idx && i != sh->qd_idx) {
3477                         int dd_idx, j;
3478                         struct stripe_head *sh2;
3479                         struct async_submit_ctl submit;
3480
3481                         sector_t bn = compute_blocknr(sh, i, 1);
3482                         sector_t s = raid5_compute_sector(conf, bn, 0,
3483                                                           &dd_idx, NULL);
3484                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3485                         if (sh2 == NULL)
3486                                 /* so far only the early blocks of this stripe
3487                                  * have been requested.  When later blocks
3488                                  * get requested, we will try again
3489                                  */
3490                                 continue;
3491                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3492                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3493                                 /* must have already done this block */
3494                                 release_stripe(sh2);
3495                                 continue;
3496                         }
3497
3498                         /* place all the copies on one channel */
3499                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3500                         tx = async_memcpy(sh2->dev[dd_idx].page,
3501                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3502                                           &submit);
3503
3504                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3505                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3506                         for (j = 0; j < conf->raid_disks; j++)
3507                                 if (j != sh2->pd_idx &&
3508                                     j != sh2->qd_idx &&
3509                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3510                                         break;
3511                         if (j == conf->raid_disks) {
3512                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3513                                 set_bit(STRIPE_HANDLE, &sh2->state);
3514                         }
3515                         release_stripe(sh2);
3516
3517                 }
3518         /* done submitting copies, wait for them to complete */
3519         async_tx_quiesce(&tx);
3520 }
3521
3522 /*
3523  * handle_stripe - do things to a stripe.
3524  *
3525  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3526  * state of various bits to see what needs to be done.
3527  * Possible results:
3528  *    return some read requests which now have data
3529  *    return some write requests which are safely on storage
3530  *    schedule a read on some buffers
3531  *    schedule a write of some buffers
3532  *    return confirmation of parity correctness
3533  *
3534  */
3535
3536 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3537 {
3538         struct r5conf *conf = sh->raid_conf;
3539         int disks = sh->disks;
3540         struct r5dev *dev;
3541         int i;
3542         int do_recovery = 0;
3543
3544         memset(s, 0, sizeof(*s));
3545
3546         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3547         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3548         s->failed_num[0] = -1;
3549         s->failed_num[1] = -1;
3550
3551         /* Now to look around and see what can be done */
3552         rcu_read_lock();
3553         for (i=disks; i--; ) {
3554                 struct md_rdev *rdev;
3555                 sector_t first_bad;
3556                 int bad_sectors;
3557                 int is_bad = 0;
3558
3559                 dev = &sh->dev[i];
3560
3561                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3562                          i, dev->flags,
3563                          dev->toread, dev->towrite, dev->written);
3564                 /* maybe we can reply to a read
3565                  *
3566                  * new wantfill requests are only permitted while
3567                  * ops_complete_biofill is guaranteed to be inactive
3568                  */
3569                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3570                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3571                         set_bit(R5_Wantfill, &dev->flags);
3572
3573                 /* now count some things */
3574                 if (test_bit(R5_LOCKED, &dev->flags))
3575                         s->locked++;
3576                 if (test_bit(R5_UPTODATE, &dev->flags))
3577                         s->uptodate++;
3578                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3579                         s->compute++;
3580                         BUG_ON(s->compute > 2);
3581                 }
3582
3583                 if (test_bit(R5_Wantfill, &dev->flags))
3584                         s->to_fill++;
3585                 else if (dev->toread)
3586                         s->to_read++;
3587                 if (dev->towrite) {
3588                         s->to_write++;
3589                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3590                                 s->non_overwrite++;
3591                 }
3592                 if (dev->written)
3593                         s->written++;
3594                 /* Prefer to use the replacement for reads, but only
3595                  * if it is recovered enough and has no bad blocks.
3596                  */
3597                 rdev = rcu_dereference(conf->disks[i].replacement);
3598                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3599                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3600                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3601                                  &first_bad, &bad_sectors))
3602                         set_bit(R5_ReadRepl, &dev->flags);
3603                 else {
3604                         if (rdev)
3605                                 set_bit(R5_NeedReplace, &dev->flags);
3606                         rdev = rcu_dereference(conf->disks[i].rdev);
3607                         clear_bit(R5_ReadRepl, &dev->flags);
3608                 }
3609                 if (rdev && test_bit(Faulty, &rdev->flags))
3610                         rdev = NULL;
3611                 if (rdev) {
3612                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3613                                              &first_bad, &bad_sectors);
3614                         if (s->blocked_rdev == NULL
3615                             && (test_bit(Blocked, &rdev->flags)
3616                                 || is_bad < 0)) {
3617                                 if (is_bad < 0)
3618                                         set_bit(BlockedBadBlocks,
3619                                                 &rdev->flags);
3620                                 s->blocked_rdev = rdev;
3621                                 atomic_inc(&rdev->nr_pending);
3622                         }
3623                 }
3624                 clear_bit(R5_Insync, &dev->flags);
3625                 if (!rdev)
3626                         /* Not in-sync */;
3627                 else if (is_bad) {
3628                         /* also not in-sync */
3629                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3630                             test_bit(R5_UPTODATE, &dev->flags)) {
3631                                 /* treat as in-sync, but with a read error
3632                                  * which we can now try to correct
3633                                  */
3634                                 set_bit(R5_Insync, &dev->flags);
3635                                 set_bit(R5_ReadError, &dev->flags);
3636                         }
3637                 } else if (test_bit(In_sync, &rdev->flags))
3638                         set_bit(R5_Insync, &dev->flags);
3639                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3640                         /* in sync if before recovery_offset */
3641                         set_bit(R5_Insync, &dev->flags);
3642                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3643                          test_bit(R5_Expanded, &dev->flags))
3644                         /* If we've reshaped into here, we assume it is Insync.
3645                          * We will shortly update recovery_offset to make
3646                          * it official.
3647                          */
3648                         set_bit(R5_Insync, &dev->flags);
3649
3650                 if (test_bit(R5_WriteError, &dev->flags)) {
3651                         /* This flag does not apply to '.replacement'
3652                          * only to .rdev, so make sure to check that*/
3653                         struct md_rdev *rdev2 = rcu_dereference(
3654                                 conf->disks[i].rdev);
3655                         if (rdev2 == rdev)
3656                                 clear_bit(R5_Insync, &dev->flags);
3657                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3658                                 s->handle_bad_blocks = 1;
3659                                 atomic_inc(&rdev2->nr_pending);
3660                         } else
3661                                 clear_bit(R5_WriteError, &dev->flags);
3662                 }
3663                 if (test_bit(R5_MadeGood, &dev->flags)) {
3664                         /* This flag does not apply to '.replacement'
3665                          * only to .rdev, so make sure to check that*/
3666                         struct md_rdev *rdev2 = rcu_dereference(
3667                                 conf->disks[i].rdev);
3668                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3669                                 s->handle_bad_blocks = 1;
3670                                 atomic_inc(&rdev2->nr_pending);
3671                         } else
3672                                 clear_bit(R5_MadeGood, &dev->flags);
3673                 }
3674                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3675                         struct md_rdev *rdev2 = rcu_dereference(
3676                                 conf->disks[i].replacement);
3677                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3678                                 s->handle_bad_blocks = 1;
3679                                 atomic_inc(&rdev2->nr_pending);
3680                         } else
3681                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3682                 }
3683                 if (!test_bit(R5_Insync, &dev->flags)) {
3684                         /* The ReadError flag will just be confusing now */
3685                         clear_bit(R5_ReadError, &dev->flags);
3686                         clear_bit(R5_ReWrite, &dev->flags);
3687                 }
3688                 if (test_bit(R5_ReadError, &dev->flags))
3689                         clear_bit(R5_Insync, &dev->flags);
3690                 if (!test_bit(R5_Insync, &dev->flags)) {
3691                         if (s->failed < 2)
3692                                 s->failed_num[s->failed] = i;
3693                         s->failed++;
3694                         if (rdev && !test_bit(Faulty, &rdev->flags))
3695                                 do_recovery = 1;
3696                 }
3697         }
3698         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3699                 /* If there is a failed device being replaced,
3700                  *     we must be recovering.
3701                  * else if we are after recovery_cp, we must be syncing
3702                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3703                  * else we can only be replacing
3704                  * sync and recovery both need to read all devices, and so
3705                  * use the same flag.
3706                  */
3707                 if (do_recovery ||
3708                     sh->sector >= conf->mddev->recovery_cp ||
3709                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3710                         s->syncing = 1;
3711                 else
3712                         s->replacing = 1;
3713         }
3714         rcu_read_unlock();
3715 }
3716
3717 static void handle_stripe(struct stripe_head *sh)
3718 {
3719         struct stripe_head_state s;
3720         struct r5conf *conf = sh->raid_conf;
3721         int i;
3722         int prexor;
3723         int disks = sh->disks;
3724         struct r5dev *pdev, *qdev;
3725
3726         clear_bit(STRIPE_HANDLE, &sh->state);
3727         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3728                 /* already being handled, ensure it gets handled
3729                  * again when current action finishes */
3730                 set_bit(STRIPE_HANDLE, &sh->state);
3731                 return;
3732         }
3733
3734         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3735                 spin_lock(&sh->stripe_lock);
3736                 /* Cannot process 'sync' concurrently with 'discard' */
3737                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3738                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3739                         set_bit(STRIPE_SYNCING, &sh->state);
3740                         clear_bit(STRIPE_INSYNC, &sh->state);
3741                         clear_bit(STRIPE_REPLACED, &sh->state);
3742                 }
3743                 spin_unlock(&sh->stripe_lock);
3744         }
3745         clear_bit(STRIPE_DELAYED, &sh->state);
3746
3747         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3748                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3749                (unsigned long long)sh->sector, sh->state,
3750                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3751                sh->check_state, sh->reconstruct_state);
3752
3753         analyse_stripe(sh, &s);
3754
3755         if (s.handle_bad_blocks) {
3756                 set_bit(STRIPE_HANDLE, &sh->state);
3757                 goto finish;
3758         }
3759
3760         if (unlikely(s.blocked_rdev)) {
3761                 if (s.syncing || s.expanding || s.expanded ||
3762                     s.replacing || s.to_write || s.written) {
3763                         set_bit(STRIPE_HANDLE, &sh->state);
3764                         goto finish;
3765                 }
3766                 /* There is nothing for the blocked_rdev to block */
3767                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3768                 s.blocked_rdev = NULL;
3769         }
3770
3771         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3772                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3773                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3774         }
3775
3776         pr_debug("locked=%d uptodate=%d to_read=%d"
3777                " to_write=%d failed=%d failed_num=%d,%d\n",
3778                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3779                s.failed_num[0], s.failed_num[1]);
3780         /* check if the array has lost more than max_degraded devices and,
3781          * if so, some requests might need to be failed.
3782          */
3783         if (s.failed > conf->max_degraded) {
3784                 sh->check_state = 0;
3785                 sh->reconstruct_state = 0;
3786                 if (s.to_read+s.to_write+s.written)
3787                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3788                 if (s.syncing + s.replacing)
3789                         handle_failed_sync(conf, sh, &s);
3790         }
3791
3792         /* Now we check to see if any write operations have recently
3793          * completed
3794          */
3795         prexor = 0;
3796         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3797                 prexor = 1;
3798         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3799             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3800                 sh->reconstruct_state = reconstruct_state_idle;
3801
3802                 /* All the 'written' buffers and the parity block are ready to
3803                  * be written back to disk
3804                  */
3805                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3806                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3807                 BUG_ON(sh->qd_idx >= 0 &&
3808                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3809                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3810                 for (i = disks; i--; ) {
3811                         struct r5dev *dev = &sh->dev[i];
3812                         if (test_bit(R5_LOCKED, &dev->flags) &&
3813                                 (i == sh->pd_idx || i == sh->qd_idx ||
3814                                  dev->written)) {
3815                                 pr_debug("Writing block %d\n", i);
3816                                 set_bit(R5_Wantwrite, &dev->flags);
3817                                 if (prexor)
3818                                         continue;
3819                                 if (s.failed > 1)
3820                                         continue;
3821                                 if (!test_bit(R5_Insync, &dev->flags) ||
3822                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3823                                      s.failed == 0))
3824                                         set_bit(STRIPE_INSYNC, &sh->state);
3825                         }
3826                 }
3827                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3828                         s.dec_preread_active = 1;
3829         }
3830
3831         /*
3832          * might be able to return some write requests if the parity blocks
3833          * are safe, or on a failed drive
3834          */
3835         pdev = &sh->dev[sh->pd_idx];
3836         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3837                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3838         qdev = &sh->dev[sh->qd_idx];
3839         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3840                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3841                 || conf->level < 6;
3842
3843         if (s.written &&
3844             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3845                              && !test_bit(R5_LOCKED, &pdev->flags)
3846                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3847                                  test_bit(R5_Discard, &pdev->flags))))) &&
3848             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3849                              && !test_bit(R5_LOCKED, &qdev->flags)
3850                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3851                                  test_bit(R5_Discard, &qdev->flags))))))
3852                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3853
3854         /* Now we might consider reading some blocks, either to check/generate
3855          * parity, or to satisfy requests
3856          * or to load a block that is being partially written.
3857          */
3858         if (s.to_read || s.non_overwrite
3859             || (conf->level == 6 && s.to_write && s.failed)
3860             || (s.syncing && (s.uptodate + s.compute < disks))
3861             || s.replacing
3862             || s.expanding)
3863                 handle_stripe_fill(sh, &s, disks);
3864
3865         /* Now to consider new write requests and what else, if anything
3866          * should be read.  We do not handle new writes when:
3867          * 1/ A 'write' operation (copy+xor) is already in flight.
3868          * 2/ A 'check' operation is in flight, as it may clobber the parity
3869          *    block.
3870          */
3871         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3872                 handle_stripe_dirtying(conf, sh, &s, disks);
3873
3874         /* maybe we need to check and possibly fix the parity for this stripe
3875          * Any reads will already have been scheduled, so we just see if enough
3876          * data is available.  The parity check is held off while parity
3877          * dependent operations are in flight.
3878          */
3879         if (sh->check_state ||
3880             (s.syncing && s.locked == 0 &&
3881              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3882              !test_bit(STRIPE_INSYNC, &sh->state))) {
3883                 if (conf->level == 6)
3884                         handle_parity_checks6(conf, sh, &s, disks);
3885                 else
3886                         handle_parity_checks5(conf, sh, &s, disks);
3887         }
3888
3889         if ((s.replacing || s.syncing) && s.locked == 0
3890             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3891             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3892                 /* Write out to replacement devices where possible */
3893                 for (i = 0; i < conf->raid_disks; i++)
3894                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3895                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3896                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3897                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3898                                 s.locked++;
3899                         }
3900                 if (s.replacing)
3901                         set_bit(STRIPE_INSYNC, &sh->state);
3902                 set_bit(STRIPE_REPLACED, &sh->state);
3903         }
3904         if ((s.syncing || s.replacing) && s.locked == 0 &&
3905             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3906             test_bit(STRIPE_INSYNC, &sh->state)) {
3907                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3908                 clear_bit(STRIPE_SYNCING, &sh->state);
3909                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3910                         wake_up(&conf->wait_for_overlap);
3911         }
3912
3913         /* If the failed drives are just a ReadError, then we might need
3914          * to progress the repair/check process
3915          */
3916         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3917                 for (i = 0; i < s.failed; i++) {
3918                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3919                         if (test_bit(R5_ReadError, &dev->flags)
3920                             && !test_bit(R5_LOCKED, &dev->flags)
3921                             && test_bit(R5_UPTODATE, &dev->flags)
3922                                 ) {
3923                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3924                                         set_bit(R5_Wantwrite, &dev->flags);
3925                                         set_bit(R5_ReWrite, &dev->flags);
3926                                         set_bit(R5_LOCKED, &dev->flags);
3927                                         s.locked++;
3928                                 } else {
3929                                         /* let's read it back */
3930                                         set_bit(R5_Wantread, &dev->flags);
3931                                         set_bit(R5_LOCKED, &dev->flags);
3932                                         s.locked++;
3933                                 }
3934                         }
3935                 }
3936
3937         /* Finish reconstruct operations initiated by the expansion process */
3938         if (sh->reconstruct_state == reconstruct_state_result) {
3939                 struct stripe_head *sh_src
3940                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3941                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3942                         /* sh cannot be written until sh_src has been read.
3943                          * so arrange for sh to be delayed a little
3944                          */
3945                         set_bit(STRIPE_DELAYED, &sh->state);
3946                         set_bit(STRIPE_HANDLE, &sh->state);
3947                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3948                                               &sh_src->state))
3949                                 atomic_inc(&conf->preread_active_stripes);
3950                         release_stripe(sh_src);
3951                         goto finish;
3952                 }
3953                 if (sh_src)
3954                         release_stripe(sh_src);
3955
3956                 sh->reconstruct_state = reconstruct_state_idle;
3957                 clear_bit(STRIPE_EXPANDING, &sh->state);
3958                 for (i = conf->raid_disks; i--; ) {
3959                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3960                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3961                         s.locked++;
3962                 }
3963         }
3964
3965         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3966             !sh->reconstruct_state) {
3967                 /* Need to write out all blocks after computing parity */
3968                 sh->disks = conf->raid_disks;
3969                 stripe_set_idx(sh->sector, conf, 0, sh);
3970                 schedule_reconstruction(sh, &s, 1, 1);
3971         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3972                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3973                 atomic_dec(&conf->reshape_stripes);
3974                 wake_up(&conf->wait_for_overlap);
3975                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3976         }
3977
3978         if (s.expanding && s.locked == 0 &&
3979             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3980                 handle_stripe_expansion(conf, sh);
3981
3982 finish:
3983         /* wait for this device to become unblocked */
3984         if (unlikely(s.blocked_rdev)) {
3985                 if (conf->mddev->external)
3986                         md_wait_for_blocked_rdev(s.blocked_rdev,
3987                                                  conf->mddev);
3988                 else
3989                         /* Internal metadata will immediately
3990                          * be written by raid5d, so we don't
3991                          * need to wait here.
3992                          */
3993                         rdev_dec_pending(s.blocked_rdev,
3994                                          conf->mddev);
3995         }
3996
3997         if (s.handle_bad_blocks)
3998                 for (i = disks; i--; ) {
3999                         struct md_rdev *rdev;
4000                         struct r5dev *dev = &sh->dev[i];
4001                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4002                                 /* We own a safe reference to the rdev */
4003                                 rdev = conf->disks[i].rdev;
4004                                 if (!rdev_set_badblocks(rdev, sh->sector,
4005                                                         STRIPE_SECTORS, 0))
4006                                         md_error(conf->mddev, rdev);
4007                                 rdev_dec_pending(rdev, conf->mddev);
4008                         }
4009                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4010                                 rdev = conf->disks[i].rdev;
4011                                 rdev_clear_badblocks(rdev, sh->sector,
4012                                                      STRIPE_SECTORS, 0);
4013                                 rdev_dec_pending(rdev, conf->mddev);
4014                         }
4015                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4016                                 rdev = conf->disks[i].replacement;
4017                                 if (!rdev)
4018                                         /* rdev have been moved down */
4019                                         rdev = conf->disks[i].rdev;
4020                                 rdev_clear_badblocks(rdev, sh->sector,
4021                                                      STRIPE_SECTORS, 0);
4022                                 rdev_dec_pending(rdev, conf->mddev);
4023                         }
4024                 }
4025
4026         if (s.ops_request)
4027                 raid_run_ops(sh, s.ops_request);
4028
4029         ops_run_io(sh, &s);
4030
4031         if (s.dec_preread_active) {
4032                 /* We delay this until after ops_run_io so that if make_request
4033                  * is waiting on a flush, it won't continue until the writes
4034                  * have actually been submitted.
4035                  */
4036                 atomic_dec(&conf->preread_active_stripes);
4037                 if (atomic_read(&conf->preread_active_stripes) <
4038                     IO_THRESHOLD)
4039                         md_wakeup_thread(conf->mddev->thread);
4040         }
4041
4042         return_io(s.return_bi);
4043
4044         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4045 }
4046
4047 static void raid5_activate_delayed(struct r5conf *conf)
4048 {
4049         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4050                 while (!list_empty(&conf->delayed_list)) {
4051                         struct list_head *l = conf->delayed_list.next;
4052                         struct stripe_head *sh;
4053                         sh = list_entry(l, struct stripe_head, lru);
4054                         list_del_init(l);
4055                         clear_bit(STRIPE_DELAYED, &sh->state);
4056                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4057                                 atomic_inc(&conf->preread_active_stripes);
4058                         list_add_tail(&sh->lru, &conf->hold_list);
4059                         raid5_wakeup_stripe_thread(sh);
4060                 }
4061         }
4062 }
4063
4064 static void activate_bit_delay(struct r5conf *conf,
4065         struct list_head *temp_inactive_list)
4066 {
4067         /* device_lock is held */
4068         struct list_head head;
4069         list_add(&head, &conf->bitmap_list);
4070         list_del_init(&conf->bitmap_list);
4071         while (!list_empty(&head)) {
4072                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4073                 int hash;
4074                 list_del_init(&sh->lru);
4075                 atomic_inc(&sh->count);
4076                 hash = sh->hash_lock_index;
4077                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4078         }
4079 }
4080
4081 int md_raid5_congested(struct mddev *mddev, int bits)
4082 {
4083         struct r5conf *conf = mddev->private;
4084
4085         /* No difference between reads and writes.  Just check
4086          * how busy the stripe_cache is
4087          */
4088
4089         if (conf->inactive_blocked)
4090                 return 1;
4091         if (conf->quiesce)
4092                 return 1;
4093         if (atomic_read(&conf->empty_inactive_list_nr))
4094                 return 1;
4095
4096         return 0;
4097 }
4098 EXPORT_SYMBOL_GPL(md_raid5_congested);
4099
4100 static int raid5_congested(void *data, int bits)
4101 {
4102         struct mddev *mddev = data;
4103
4104         return mddev_congested(mddev, bits) ||
4105                 md_raid5_congested(mddev, bits);
4106 }
4107
4108 /* We want read requests to align with chunks where possible,
4109  * but write requests don't need to.
4110  */
4111 static int raid5_mergeable_bvec(struct request_queue *q,
4112                                 struct bvec_merge_data *bvm,
4113                                 struct bio_vec *biovec)
4114 {
4115         struct mddev *mddev = q->queuedata;
4116         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4117         int max;
4118         unsigned int chunk_sectors = mddev->chunk_sectors;
4119         unsigned int bio_sectors = bvm->bi_size >> 9;
4120
4121         if ((bvm->bi_rw & 1) == WRITE)
4122                 return biovec->bv_len; /* always allow writes to be mergeable */
4123
4124         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4125                 chunk_sectors = mddev->new_chunk_sectors;
4126         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4127         if (max < 0) max = 0;
4128         if (max <= biovec->bv_len && bio_sectors == 0)
4129                 return biovec->bv_len;
4130         else
4131                 return max;
4132 }
4133
4134 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4135 {
4136         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4137         unsigned int chunk_sectors = mddev->chunk_sectors;
4138         unsigned int bio_sectors = bio_sectors(bio);
4139
4140         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4141                 chunk_sectors = mddev->new_chunk_sectors;
4142         return  chunk_sectors >=
4143                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4144 }
4145
4146 /*
4147  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4148  *  later sampled by raid5d.
4149  */
4150 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4151 {
4152         unsigned long flags;
4153
4154         spin_lock_irqsave(&conf->device_lock, flags);
4155
4156         bi->bi_next = conf->retry_read_aligned_list;
4157         conf->retry_read_aligned_list = bi;
4158
4159         spin_unlock_irqrestore(&conf->device_lock, flags);
4160         md_wakeup_thread(conf->mddev->thread);
4161 }
4162
4163 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4164 {
4165         struct bio *bi;
4166
4167         bi = conf->retry_read_aligned;
4168         if (bi) {
4169                 conf->retry_read_aligned = NULL;
4170                 return bi;
4171         }
4172         bi = conf->retry_read_aligned_list;
4173         if(bi) {
4174                 conf->retry_read_aligned_list = bi->bi_next;
4175                 bi->bi_next = NULL;
4176                 /*
4177                  * this sets the active strip count to 1 and the processed
4178                  * strip count to zero (upper 8 bits)
4179                  */
4180                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4181         }
4182
4183         return bi;
4184 }
4185
4186 /*
4187  *  The "raid5_align_endio" should check if the read succeeded and if it
4188  *  did, call bio_endio on the original bio (having bio_put the new bio
4189  *  first).
4190  *  If the read failed..
4191  */
4192 static void raid5_align_endio(struct bio *bi, int error)
4193 {
4194         struct bio* raid_bi  = bi->bi_private;
4195         struct mddev *mddev;
4196         struct r5conf *conf;
4197         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4198         struct md_rdev *rdev;
4199
4200         bio_put(bi);
4201
4202         rdev = (void*)raid_bi->bi_next;
4203         raid_bi->bi_next = NULL;
4204         mddev = rdev->mddev;
4205         conf = mddev->private;
4206
4207         rdev_dec_pending(rdev, conf->mddev);
4208
4209         if (!error && uptodate) {
4210                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4211                                          raid_bi, 0);
4212                 bio_endio(raid_bi, 0);
4213                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4214                         wake_up(&conf->wait_for_stripe);
4215                 return;
4216         }
4217
4218         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4219
4220         add_bio_to_retry(raid_bi, conf);
4221 }
4222
4223 static int bio_fits_rdev(struct bio *bi)
4224 {
4225         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4226
4227         if (bio_sectors(bi) > queue_max_sectors(q))
4228                 return 0;
4229         blk_recount_segments(q, bi);
4230         if (bi->bi_phys_segments > queue_max_segments(q))
4231                 return 0;
4232
4233         if (q->merge_bvec_fn)
4234                 /* it's too hard to apply the merge_bvec_fn at this stage,
4235                  * just just give up
4236                  */
4237                 return 0;
4238
4239         return 1;
4240 }
4241
4242 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4243 {
4244         struct r5conf *conf = mddev->private;
4245         int dd_idx;
4246         struct bio* align_bi;
4247         struct md_rdev *rdev;
4248         sector_t end_sector;
4249
4250         if (!in_chunk_boundary(mddev, raid_bio)) {
4251                 pr_debug("chunk_aligned_read : non aligned\n");
4252                 return 0;
4253         }
4254         /*
4255          * use bio_clone_mddev to make a copy of the bio
4256          */
4257         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4258         if (!align_bi)
4259                 return 0;
4260         /*
4261          *   set bi_end_io to a new function, and set bi_private to the
4262          *     original bio.
4263          */
4264         align_bi->bi_end_io  = raid5_align_endio;
4265         align_bi->bi_private = raid_bio;
4266         /*
4267          *      compute position
4268          */
4269         align_bi->bi_iter.bi_sector =
4270                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4271                                      0, &dd_idx, NULL);
4272
4273         end_sector = bio_end_sector(align_bi);
4274         rcu_read_lock();
4275         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4276         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4277             rdev->recovery_offset < end_sector) {
4278                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4279                 if (rdev &&
4280                     (test_bit(Faulty, &rdev->flags) ||
4281                     !(test_bit(In_sync, &rdev->flags) ||
4282                       rdev->recovery_offset >= end_sector)))
4283                         rdev = NULL;
4284         }
4285         if (rdev) {
4286                 sector_t first_bad;
4287                 int bad_sectors;
4288
4289                 atomic_inc(&rdev->nr_pending);
4290                 rcu_read_unlock();
4291                 raid_bio->bi_next = (void*)rdev;
4292                 align_bi->bi_bdev =  rdev->bdev;
4293                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4294
4295                 if (!bio_fits_rdev(align_bi) ||
4296                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4297                                 bio_sectors(align_bi),
4298                                 &first_bad, &bad_sectors)) {
4299                         /* too big in some way, or has a known bad block */
4300                         bio_put(align_bi);
4301                         rdev_dec_pending(rdev, mddev);
4302                         return 0;
4303                 }
4304
4305                 /* No reshape active, so we can trust rdev->data_offset */
4306                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4307
4308                 spin_lock_irq(&conf->device_lock);
4309                 wait_event_lock_irq(conf->wait_for_stripe,
4310                                     conf->quiesce == 0,
4311                                     conf->device_lock);
4312                 atomic_inc(&conf->active_aligned_reads);
4313                 spin_unlock_irq(&conf->device_lock);
4314
4315                 if (mddev->gendisk)
4316                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4317                                               align_bi, disk_devt(mddev->gendisk),
4318                                               raid_bio->bi_iter.bi_sector);
4319                 generic_make_request(align_bi);
4320                 return 1;
4321         } else {
4322                 rcu_read_unlock();
4323                 bio_put(align_bi);
4324                 return 0;
4325         }
4326 }
4327
4328 /* __get_priority_stripe - get the next stripe to process
4329  *
4330  * Full stripe writes are allowed to pass preread active stripes up until
4331  * the bypass_threshold is exceeded.  In general the bypass_count
4332  * increments when the handle_list is handled before the hold_list; however, it
4333  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4334  * stripe with in flight i/o.  The bypass_count will be reset when the
4335  * head of the hold_list has changed, i.e. the head was promoted to the
4336  * handle_list.
4337  */
4338 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4339 {
4340         struct stripe_head *sh = NULL, *tmp;
4341         struct list_head *handle_list = NULL;
4342         struct r5worker_group *wg = NULL;
4343
4344         if (conf->worker_cnt_per_group == 0) {
4345                 handle_list = &conf->handle_list;
4346         } else if (group != ANY_GROUP) {
4347                 handle_list = &conf->worker_groups[group].handle_list;
4348                 wg = &conf->worker_groups[group];
4349         } else {
4350                 int i;
4351                 for (i = 0; i < conf->group_cnt; i++) {
4352                         handle_list = &conf->worker_groups[i].handle_list;
4353                         wg = &conf->worker_groups[i];
4354                         if (!list_empty(handle_list))
4355                                 break;
4356                 }
4357         }
4358
4359         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4360                   __func__,
4361                   list_empty(handle_list) ? "empty" : "busy",
4362                   list_empty(&conf->hold_list) ? "empty" : "busy",
4363                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4364
4365         if (!list_empty(handle_list)) {
4366                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4367
4368                 if (list_empty(&conf->hold_list))
4369                         conf->bypass_count = 0;
4370                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4371                         if (conf->hold_list.next == conf->last_hold)
4372                                 conf->bypass_count++;
4373                         else {
4374                                 conf->last_hold = conf->hold_list.next;
4375                                 conf->bypass_count -= conf->bypass_threshold;
4376                                 if (conf->bypass_count < 0)
4377                                         conf->bypass_count = 0;
4378                         }
4379                 }
4380         } else if (!list_empty(&conf->hold_list) &&
4381                    ((conf->bypass_threshold &&
4382                      conf->bypass_count > conf->bypass_threshold) ||
4383                     atomic_read(&conf->pending_full_writes) == 0)) {
4384
4385                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4386                         if (conf->worker_cnt_per_group == 0 ||
4387                             group == ANY_GROUP ||
4388                             !cpu_online(tmp->cpu) ||
4389                             cpu_to_group(tmp->cpu) == group) {
4390                                 sh = tmp;
4391                                 break;
4392                         }
4393                 }
4394
4395                 if (sh) {
4396                         conf->bypass_count -= conf->bypass_threshold;
4397                         if (conf->bypass_count < 0)
4398                                 conf->bypass_count = 0;
4399                 }
4400                 wg = NULL;
4401         }
4402
4403         if (!sh)
4404                 return NULL;
4405
4406         if (wg) {
4407                 wg->stripes_cnt--;
4408                 sh->group = NULL;
4409         }
4410         list_del_init(&sh->lru);
4411         BUG_ON(atomic_inc_return(&sh->count) != 1);
4412         return sh;
4413 }
4414
4415 struct raid5_plug_cb {
4416         struct blk_plug_cb      cb;
4417         struct list_head        list;
4418         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4419 };
4420
4421 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4422 {
4423         struct raid5_plug_cb *cb = container_of(
4424                 blk_cb, struct raid5_plug_cb, cb);
4425         struct stripe_head *sh;
4426         struct mddev *mddev = cb->cb.data;
4427         struct r5conf *conf = mddev->private;
4428         int cnt = 0;
4429         int hash;
4430
4431         if (cb->list.next && !list_empty(&cb->list)) {
4432                 spin_lock_irq(&conf->device_lock);
4433                 while (!list_empty(&cb->list)) {
4434                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4435                         list_del_init(&sh->lru);
4436                         /*
4437                          * avoid race release_stripe_plug() sees
4438                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4439                          * is still in our list
4440                          */
4441                         smp_mb__before_atomic();
4442                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4443                         /*
4444                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4445                          * case, the count is always > 1 here
4446                          */
4447                         hash = sh->hash_lock_index;
4448                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4449                         cnt++;
4450                 }
4451                 spin_unlock_irq(&conf->device_lock);
4452         }
4453         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4454                                      NR_STRIPE_HASH_LOCKS);
4455         if (mddev->queue)
4456                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4457         kfree(cb);
4458 }
4459
4460 static void release_stripe_plug(struct mddev *mddev,
4461                                 struct stripe_head *sh)
4462 {
4463         struct blk_plug_cb *blk_cb = blk_check_plugged(
4464                 raid5_unplug, mddev,
4465                 sizeof(struct raid5_plug_cb));
4466         struct raid5_plug_cb *cb;
4467
4468         if (!blk_cb) {
4469                 release_stripe(sh);
4470                 return;
4471         }
4472
4473         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4474
4475         if (cb->list.next == NULL) {
4476                 int i;
4477                 INIT_LIST_HEAD(&cb->list);
4478                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4479                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4480         }
4481
4482         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4483                 list_add_tail(&sh->lru, &cb->list);
4484         else
4485                 release_stripe(sh);
4486 }
4487
4488 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4489 {
4490         struct r5conf *conf = mddev->private;
4491         sector_t logical_sector, last_sector;
4492         struct stripe_head *sh;
4493         int remaining;
4494         int stripe_sectors;
4495
4496         if (mddev->reshape_position != MaxSector)
4497                 /* Skip discard while reshape is happening */
4498                 return;
4499
4500         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4501         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4502
4503         bi->bi_next = NULL;
4504         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4505
4506         stripe_sectors = conf->chunk_sectors *
4507                 (conf->raid_disks - conf->max_degraded);
4508         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4509                                                stripe_sectors);
4510         sector_div(last_sector, stripe_sectors);
4511
4512         logical_sector *= conf->chunk_sectors;
4513         last_sector *= conf->chunk_sectors;
4514
4515         for (; logical_sector < last_sector;
4516              logical_sector += STRIPE_SECTORS) {
4517                 DEFINE_WAIT(w);
4518                 int d;
4519         again:
4520                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4521                 prepare_to_wait(&conf->wait_for_overlap, &w,
4522                                 TASK_UNINTERRUPTIBLE);
4523                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4524                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4525                         release_stripe(sh);
4526                         schedule();
4527                         goto again;
4528                 }
4529                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4530                 spin_lock_irq(&sh->stripe_lock);
4531                 for (d = 0; d < conf->raid_disks; d++) {
4532                         if (d == sh->pd_idx || d == sh->qd_idx)
4533                                 continue;
4534                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4535                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4536                                 spin_unlock_irq(&sh->stripe_lock);
4537                                 release_stripe(sh);
4538                                 schedule();
4539                                 goto again;
4540                         }
4541                 }
4542                 set_bit(STRIPE_DISCARD, &sh->state);
4543                 finish_wait(&conf->wait_for_overlap, &w);
4544                 for (d = 0; d < conf->raid_disks; d++) {
4545                         if (d == sh->pd_idx || d == sh->qd_idx)
4546                                 continue;
4547                         sh->dev[d].towrite = bi;
4548                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4549                         raid5_inc_bi_active_stripes(bi);
4550                 }
4551                 spin_unlock_irq(&sh->stripe_lock);
4552                 if (conf->mddev->bitmap) {
4553                         for (d = 0;
4554                              d < conf->raid_disks - conf->max_degraded;
4555                              d++)
4556                                 bitmap_startwrite(mddev->bitmap,
4557                                                   sh->sector,
4558                                                   STRIPE_SECTORS,
4559                                                   0);
4560                         sh->bm_seq = conf->seq_flush + 1;
4561                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4562                 }
4563
4564                 set_bit(STRIPE_HANDLE, &sh->state);
4565                 clear_bit(STRIPE_DELAYED, &sh->state);
4566                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4567                         atomic_inc(&conf->preread_active_stripes);
4568                 release_stripe_plug(mddev, sh);
4569         }
4570
4571         remaining = raid5_dec_bi_active_stripes(bi);
4572         if (remaining == 0) {
4573                 md_write_end(mddev);
4574                 bio_endio(bi, 0);
4575         }
4576 }
4577
4578 static void make_request(struct mddev *mddev, struct bio * bi)
4579 {
4580         struct r5conf *conf = mddev->private;
4581         int dd_idx;
4582         sector_t new_sector;
4583         sector_t logical_sector, last_sector;
4584         struct stripe_head *sh;
4585         const int rw = bio_data_dir(bi);
4586         int remaining;
4587         DEFINE_WAIT(w);
4588         bool do_prepare;
4589
4590         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4591                 md_flush_request(mddev, bi);
4592                 return;
4593         }
4594
4595         md_write_start(mddev, bi);
4596
4597         if (rw == READ &&
4598              mddev->reshape_position == MaxSector &&
4599              chunk_aligned_read(mddev,bi))
4600                 return;
4601
4602         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4603                 make_discard_request(mddev, bi);
4604                 return;
4605         }
4606
4607         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4608         last_sector = bio_end_sector(bi);
4609         bi->bi_next = NULL;
4610         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4611
4612         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4613         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4614                 int previous;
4615                 int seq;
4616
4617                 do_prepare = false;
4618         retry:
4619                 seq = read_seqcount_begin(&conf->gen_lock);
4620                 previous = 0;
4621                 if (do_prepare)
4622                         prepare_to_wait(&conf->wait_for_overlap, &w,
4623                                 TASK_UNINTERRUPTIBLE);
4624                 if (unlikely(conf->reshape_progress != MaxSector)) {
4625                         /* spinlock is needed as reshape_progress may be
4626                          * 64bit on a 32bit platform, and so it might be
4627                          * possible to see a half-updated value
4628                          * Of course reshape_progress could change after
4629                          * the lock is dropped, so once we get a reference
4630                          * to the stripe that we think it is, we will have
4631                          * to check again.
4632                          */
4633                         spin_lock_irq(&conf->device_lock);
4634                         if (mddev->reshape_backwards
4635                             ? logical_sector < conf->reshape_progress
4636                             : logical_sector >= conf->reshape_progress) {
4637                                 previous = 1;
4638                         } else {
4639                                 if (mddev->reshape_backwards
4640                                     ? logical_sector < conf->reshape_safe
4641                                     : logical_sector >= conf->reshape_safe) {
4642                                         spin_unlock_irq(&conf->device_lock);
4643                                         schedule();
4644                                         do_prepare = true;
4645                                         goto retry;
4646                                 }
4647                         }
4648                         spin_unlock_irq(&conf->device_lock);
4649                 }
4650
4651                 new_sector = raid5_compute_sector(conf, logical_sector,
4652                                                   previous,
4653                                                   &dd_idx, NULL);
4654                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4655                         (unsigned long long)new_sector,
4656                         (unsigned long long)logical_sector);
4657
4658                 sh = get_active_stripe(conf, new_sector, previous,
4659                                        (bi->bi_rw&RWA_MASK), 0);
4660                 if (sh) {
4661                         if (unlikely(previous)) {
4662                                 /* expansion might have moved on while waiting for a
4663                                  * stripe, so we must do the range check again.
4664                                  * Expansion could still move past after this
4665                                  * test, but as we are holding a reference to
4666                                  * 'sh', we know that if that happens,
4667                                  *  STRIPE_EXPANDING will get set and the expansion
4668                                  * won't proceed until we finish with the stripe.
4669                                  */
4670                                 int must_retry = 0;
4671                                 spin_lock_irq(&conf->device_lock);
4672                                 if (mddev->reshape_backwards
4673                                     ? logical_sector >= conf->reshape_progress
4674                                     : logical_sector < conf->reshape_progress)
4675                                         /* mismatch, need to try again */
4676                                         must_retry = 1;
4677                                 spin_unlock_irq(&conf->device_lock);
4678                                 if (must_retry) {
4679                                         release_stripe(sh);
4680                                         schedule();
4681                                         do_prepare = true;
4682                                         goto retry;
4683                                 }
4684                         }
4685                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4686                                 /* Might have got the wrong stripe_head
4687                                  * by accident
4688                                  */
4689                                 release_stripe(sh);
4690                                 goto retry;
4691                         }
4692
4693                         if (rw == WRITE &&
4694                             logical_sector >= mddev->suspend_lo &&
4695                             logical_sector < mddev->suspend_hi) {
4696                                 release_stripe(sh);
4697                                 /* As the suspend_* range is controlled by
4698                                  * userspace, we want an interruptible
4699                                  * wait.
4700                                  */
4701                                 flush_signals(current);
4702                                 prepare_to_wait(&conf->wait_for_overlap,
4703                                                 &w, TASK_INTERRUPTIBLE);
4704                                 if (logical_sector >= mddev->suspend_lo &&
4705                                     logical_sector < mddev->suspend_hi) {
4706                                         schedule();
4707                                         do_prepare = true;
4708                                 }
4709                                 goto retry;
4710                         }
4711
4712                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4713                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4714                                 /* Stripe is busy expanding or
4715                                  * add failed due to overlap.  Flush everything
4716                                  * and wait a while
4717                                  */
4718                                 md_wakeup_thread(mddev->thread);
4719                                 release_stripe(sh);
4720                                 schedule();
4721                                 do_prepare = true;
4722                                 goto retry;
4723                         }
4724                         set_bit(STRIPE_HANDLE, &sh->state);
4725                         clear_bit(STRIPE_DELAYED, &sh->state);
4726                         if ((bi->bi_rw & REQ_SYNC) &&
4727                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4728                                 atomic_inc(&conf->preread_active_stripes);
4729                         release_stripe_plug(mddev, sh);
4730                 } else {
4731                         /* cannot get stripe for read-ahead, just give-up */
4732                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4733                         break;
4734                 }
4735         }
4736         finish_wait(&conf->wait_for_overlap, &w);
4737
4738         remaining = raid5_dec_bi_active_stripes(bi);
4739         if (remaining == 0) {
4740
4741                 if ( rw == WRITE )
4742                         md_write_end(mddev);
4743
4744                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4745                                          bi, 0);
4746                 bio_endio(bi, 0);
4747         }
4748 }
4749
4750 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4751
4752 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4753 {
4754         /* reshaping is quite different to recovery/resync so it is
4755          * handled quite separately ... here.
4756          *
4757          * On each call to sync_request, we gather one chunk worth of
4758          * destination stripes and flag them as expanding.
4759          * Then we find all the source stripes and request reads.
4760          * As the reads complete, handle_stripe will copy the data
4761          * into the destination stripe and release that stripe.
4762          */
4763         struct r5conf *conf = mddev->private;
4764         struct stripe_head *sh;
4765         sector_t first_sector, last_sector;
4766         int raid_disks = conf->previous_raid_disks;
4767         int data_disks = raid_disks - conf->max_degraded;
4768         int new_data_disks = conf->raid_disks - conf->max_degraded;
4769         int i;
4770         int dd_idx;
4771         sector_t writepos, readpos, safepos;
4772         sector_t stripe_addr;
4773         int reshape_sectors;
4774         struct list_head stripes;
4775
4776         if (sector_nr == 0) {
4777                 /* If restarting in the middle, skip the initial sectors */
4778                 if (mddev->reshape_backwards &&
4779                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4780                         sector_nr = raid5_size(mddev, 0, 0)
4781                                 - conf->reshape_progress;
4782                 } else if (!mddev->reshape_backwards &&
4783                            conf->reshape_progress > 0)
4784                         sector_nr = conf->reshape_progress;
4785                 sector_div(sector_nr, new_data_disks);
4786                 if (sector_nr) {
4787                         mddev->curr_resync_completed = sector_nr;
4788                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4789                         *skipped = 1;
4790                         return sector_nr;
4791                 }
4792         }
4793
4794         /* We need to process a full chunk at a time.
4795          * If old and new chunk sizes differ, we need to process the
4796          * largest of these
4797          */
4798         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4799                 reshape_sectors = mddev->new_chunk_sectors;
4800         else
4801                 reshape_sectors = mddev->chunk_sectors;
4802
4803         /* We update the metadata at least every 10 seconds, or when
4804          * the data about to be copied would over-write the source of
4805          * the data at the front of the range.  i.e. one new_stripe
4806          * along from reshape_progress new_maps to after where
4807          * reshape_safe old_maps to
4808          */
4809         writepos = conf->reshape_progress;
4810         sector_div(writepos, new_data_disks);
4811         readpos = conf->reshape_progress;
4812         sector_div(readpos, data_disks);
4813         safepos = conf->reshape_safe;
4814         sector_div(safepos, data_disks);
4815         if (mddev->reshape_backwards) {
4816                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4817                 readpos += reshape_sectors;
4818                 safepos += reshape_sectors;
4819         } else {
4820                 writepos += reshape_sectors;
4821                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4822                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4823         }
4824
4825         /* Having calculated the 'writepos' possibly use it
4826          * to set 'stripe_addr' which is where we will write to.
4827          */
4828         if (mddev->reshape_backwards) {
4829                 BUG_ON(conf->reshape_progress == 0);
4830                 stripe_addr = writepos;
4831                 BUG_ON((mddev->dev_sectors &
4832                         ~((sector_t)reshape_sectors - 1))
4833                        - reshape_sectors - stripe_addr
4834                        != sector_nr);
4835         } else {
4836                 BUG_ON(writepos != sector_nr + reshape_sectors);
4837                 stripe_addr = sector_nr;
4838         }
4839
4840         /* 'writepos' is the most advanced device address we might write.
4841          * 'readpos' is the least advanced device address we might read.
4842          * 'safepos' is the least address recorded in the metadata as having
4843          *     been reshaped.
4844          * If there is a min_offset_diff, these are adjusted either by
4845          * increasing the safepos/readpos if diff is negative, or
4846          * increasing writepos if diff is positive.
4847          * If 'readpos' is then behind 'writepos', there is no way that we can
4848          * ensure safety in the face of a crash - that must be done by userspace
4849          * making a backup of the data.  So in that case there is no particular
4850          * rush to update metadata.
4851          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4852          * update the metadata to advance 'safepos' to match 'readpos' so that
4853          * we can be safe in the event of a crash.
4854          * So we insist on updating metadata if safepos is behind writepos and
4855          * readpos is beyond writepos.
4856          * In any case, update the metadata every 10 seconds.
4857          * Maybe that number should be configurable, but I'm not sure it is
4858          * worth it.... maybe it could be a multiple of safemode_delay???
4859          */
4860         if (conf->min_offset_diff < 0) {
4861                 safepos += -conf->min_offset_diff;
4862                 readpos += -conf->min_offset_diff;
4863         } else
4864                 writepos += conf->min_offset_diff;
4865
4866         if ((mddev->reshape_backwards
4867              ? (safepos > writepos && readpos < writepos)
4868              : (safepos < writepos && readpos > writepos)) ||
4869             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4870                 /* Cannot proceed until we've updated the superblock... */
4871                 wait_event(conf->wait_for_overlap,
4872                            atomic_read(&conf->reshape_stripes)==0
4873                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4874                 if (atomic_read(&conf->reshape_stripes) != 0)
4875                         return 0;
4876                 mddev->reshape_position = conf->reshape_progress;
4877                 mddev->curr_resync_completed = sector_nr;
4878                 conf->reshape_checkpoint = jiffies;
4879                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4880                 md_wakeup_thread(mddev->thread);
4881                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4882                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4883                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4884                         return 0;
4885                 spin_lock_irq(&conf->device_lock);
4886                 conf->reshape_safe = mddev->reshape_position;
4887                 spin_unlock_irq(&conf->device_lock);
4888                 wake_up(&conf->wait_for_overlap);
4889                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4890         }
4891
4892         INIT_LIST_HEAD(&stripes);
4893         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4894                 int j;
4895                 int skipped_disk = 0;
4896                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4897                 set_bit(STRIPE_EXPANDING, &sh->state);
4898                 atomic_inc(&conf->reshape_stripes);
4899                 /* If any of this stripe is beyond the end of the old
4900                  * array, then we need to zero those blocks
4901                  */
4902                 for (j=sh->disks; j--;) {
4903                         sector_t s;
4904                         if (j == sh->pd_idx)
4905                                 continue;
4906                         if (conf->level == 6 &&
4907                             j == sh->qd_idx)
4908                                 continue;
4909                         s = compute_blocknr(sh, j, 0);
4910                         if (s < raid5_size(mddev, 0, 0)) {
4911                                 skipped_disk = 1;
4912                                 continue;
4913                         }
4914                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4915                         set_bit(R5_Expanded, &sh->dev[j].flags);
4916                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4917                 }
4918                 if (!skipped_disk) {
4919                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4920                         set_bit(STRIPE_HANDLE, &sh->state);
4921                 }
4922                 list_add(&sh->lru, &stripes);
4923         }
4924         spin_lock_irq(&conf->device_lock);
4925         if (mddev->reshape_backwards)
4926                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4927         else
4928                 conf->reshape_progress += reshape_sectors * new_data_disks;
4929         spin_unlock_irq(&conf->device_lock);
4930         /* Ok, those stripe are ready. We can start scheduling
4931          * reads on the source stripes.
4932          * The source stripes are determined by mapping the first and last
4933          * block on the destination stripes.
4934          */
4935         first_sector =
4936                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4937                                      1, &dd_idx, NULL);
4938         last_sector =
4939                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4940                                             * new_data_disks - 1),
4941                                      1, &dd_idx, NULL);
4942         if (last_sector >= mddev->dev_sectors)
4943                 last_sector = mddev->dev_sectors - 1;
4944         while (first_sector <= last_sector) {
4945                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4946                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4947                 set_bit(STRIPE_HANDLE, &sh->state);
4948                 release_stripe(sh);
4949                 first_sector += STRIPE_SECTORS;
4950         }
4951         /* Now that the sources are clearly marked, we can release
4952          * the destination stripes
4953          */
4954         while (!list_empty(&stripes)) {
4955                 sh = list_entry(stripes.next, struct stripe_head, lru);
4956                 list_del_init(&sh->lru);
4957                 release_stripe(sh);
4958         }
4959         /* If this takes us to the resync_max point where we have to pause,
4960          * then we need to write out the superblock.
4961          */
4962         sector_nr += reshape_sectors;
4963         if ((sector_nr - mddev->curr_resync_completed) * 2
4964             >= mddev->resync_max - mddev->curr_resync_completed) {
4965                 /* Cannot proceed until we've updated the superblock... */
4966                 wait_event(conf->wait_for_overlap,
4967                            atomic_read(&conf->reshape_stripes) == 0
4968                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4969                 if (atomic_read(&conf->reshape_stripes) != 0)
4970                         goto ret;
4971                 mddev->reshape_position = conf->reshape_progress;
4972                 mddev->curr_resync_completed = sector_nr;
4973                 conf->reshape_checkpoint = jiffies;
4974                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4975                 md_wakeup_thread(mddev->thread);
4976                 wait_event(mddev->sb_wait,
4977                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4978                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4979                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4980                         goto ret;
4981                 spin_lock_irq(&conf->device_lock);
4982                 conf->reshape_safe = mddev->reshape_position;
4983                 spin_unlock_irq(&conf->device_lock);
4984                 wake_up(&conf->wait_for_overlap);
4985                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4986         }
4987 ret:
4988         return reshape_sectors;
4989 }
4990
4991 /* FIXME go_faster isn't used */
4992 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4993 {
4994         struct r5conf *conf = mddev->private;
4995         struct stripe_head *sh;
4996         sector_t max_sector = mddev->dev_sectors;
4997         sector_t sync_blocks;
4998         int still_degraded = 0;
4999         int i;
5000
5001         if (sector_nr >= max_sector) {
5002                 /* just being told to finish up .. nothing much to do */
5003
5004                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5005                         end_reshape(conf);
5006                         return 0;
5007                 }
5008
5009                 if (mddev->curr_resync < max_sector) /* aborted */
5010                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5011                                         &sync_blocks, 1);
5012                 else /* completed sync */
5013                         conf->fullsync = 0;
5014                 bitmap_close_sync(mddev->bitmap);
5015
5016                 return 0;
5017         }
5018
5019         /* Allow raid5_quiesce to complete */
5020         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5021
5022         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5023                 return reshape_request(mddev, sector_nr, skipped);
5024
5025         /* No need to check resync_max as we never do more than one
5026          * stripe, and as resync_max will always be on a chunk boundary,
5027          * if the check in md_do_sync didn't fire, there is no chance
5028          * of overstepping resync_max here
5029          */
5030
5031         /* if there is too many failed drives and we are trying
5032          * to resync, then assert that we are finished, because there is
5033          * nothing we can do.
5034          */
5035         if (mddev->degraded >= conf->max_degraded &&
5036             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5037                 sector_t rv = mddev->dev_sectors - sector_nr;
5038                 *skipped = 1;
5039                 return rv;
5040         }
5041         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5042             !conf->fullsync &&
5043             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5044             sync_blocks >= STRIPE_SECTORS) {
5045                 /* we can skip this block, and probably more */
5046                 sync_blocks /= STRIPE_SECTORS;
5047                 *skipped = 1;
5048                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5049         }
5050
5051         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5052
5053         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5054         if (sh == NULL) {
5055                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5056                 /* make sure we don't swamp the stripe cache if someone else
5057                  * is trying to get access
5058                  */
5059                 schedule_timeout_uninterruptible(1);
5060         }
5061         /* Need to check if array will still be degraded after recovery/resync
5062          * We don't need to check the 'failed' flag as when that gets set,
5063          * recovery aborts.
5064          */
5065         for (i = 0; i < conf->raid_disks; i++)
5066                 if (conf->disks[i].rdev == NULL)
5067                         still_degraded = 1;
5068
5069         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5070
5071         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5072         set_bit(STRIPE_HANDLE, &sh->state);
5073
5074         release_stripe(sh);
5075
5076         return STRIPE_SECTORS;
5077 }
5078
5079 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5080 {
5081         /* We may not be able to submit a whole bio at once as there
5082          * may not be enough stripe_heads available.
5083          * We cannot pre-allocate enough stripe_heads as we may need
5084          * more than exist in the cache (if we allow ever large chunks).
5085          * So we do one stripe head at a time and record in
5086          * ->bi_hw_segments how many have been done.
5087          *
5088          * We *know* that this entire raid_bio is in one chunk, so
5089          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5090          */
5091         struct stripe_head *sh;
5092         int dd_idx;
5093         sector_t sector, logical_sector, last_sector;
5094         int scnt = 0;
5095         int remaining;
5096         int handled = 0;
5097
5098         logical_sector = raid_bio->bi_iter.bi_sector &
5099                 ~((sector_t)STRIPE_SECTORS-1);
5100         sector = raid5_compute_sector(conf, logical_sector,
5101                                       0, &dd_idx, NULL);
5102         last_sector = bio_end_sector(raid_bio);
5103
5104         for (; logical_sector < last_sector;
5105              logical_sector += STRIPE_SECTORS,
5106                      sector += STRIPE_SECTORS,
5107                      scnt++) {
5108
5109                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5110                         /* already done this stripe */
5111                         continue;
5112
5113                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5114
5115                 if (!sh) {
5116                         /* failed to get a stripe - must wait */
5117                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5118                         conf->retry_read_aligned = raid_bio;
5119                         return handled;
5120                 }
5121
5122                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5123                         release_stripe(sh);
5124                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5125                         conf->retry_read_aligned = raid_bio;
5126                         return handled;
5127                 }
5128
5129                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5130                 handle_stripe(sh);
5131                 release_stripe(sh);
5132                 handled++;
5133         }
5134         remaining = raid5_dec_bi_active_stripes(raid_bio);
5135         if (remaining == 0) {
5136                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5137                                          raid_bio, 0);
5138                 bio_endio(raid_bio, 0);
5139         }
5140         if (atomic_dec_and_test(&conf->active_aligned_reads))
5141                 wake_up(&conf->wait_for_stripe);
5142         return handled;
5143 }
5144
5145 static int handle_active_stripes(struct r5conf *conf, int group,
5146                                  struct r5worker *worker,
5147                                  struct list_head *temp_inactive_list)
5148 {
5149         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5150         int i, batch_size = 0, hash;
5151         bool release_inactive = false;
5152
5153         while (batch_size < MAX_STRIPE_BATCH &&
5154                         (sh = __get_priority_stripe(conf, group)) != NULL)
5155                 batch[batch_size++] = sh;
5156
5157         if (batch_size == 0) {
5158                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5159                         if (!list_empty(temp_inactive_list + i))
5160                                 break;
5161                 if (i == NR_STRIPE_HASH_LOCKS)
5162                         return batch_size;
5163                 release_inactive = true;
5164         }
5165         spin_unlock_irq(&conf->device_lock);
5166
5167         release_inactive_stripe_list(conf, temp_inactive_list,
5168                                      NR_STRIPE_HASH_LOCKS);
5169
5170         if (release_inactive) {
5171                 spin_lock_irq(&conf->device_lock);
5172                 return 0;
5173         }
5174
5175         for (i = 0; i < batch_size; i++)
5176                 handle_stripe(batch[i]);
5177
5178         cond_resched();
5179
5180         spin_lock_irq(&conf->device_lock);
5181         for (i = 0; i < batch_size; i++) {
5182                 hash = batch[i]->hash_lock_index;
5183                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5184         }
5185         return batch_size;
5186 }
5187
5188 static void raid5_do_work(struct work_struct *work)
5189 {
5190         struct r5worker *worker = container_of(work, struct r5worker, work);
5191         struct r5worker_group *group = worker->group;
5192         struct r5conf *conf = group->conf;
5193         int group_id = group - conf->worker_groups;
5194         int handled;
5195         struct blk_plug plug;
5196
5197         pr_debug("+++ raid5worker active\n");
5198
5199         blk_start_plug(&plug);
5200         handled = 0;
5201         spin_lock_irq(&conf->device_lock);
5202         while (1) {
5203                 int batch_size, released;
5204
5205                 released = release_stripe_list(conf, worker->temp_inactive_list);
5206
5207                 batch_size = handle_active_stripes(conf, group_id, worker,
5208                                                    worker->temp_inactive_list);
5209                 worker->working = false;
5210                 if (!batch_size && !released)
5211                         break;
5212                 handled += batch_size;
5213         }
5214         pr_debug("%d stripes handled\n", handled);
5215
5216         spin_unlock_irq(&conf->device_lock);
5217         blk_finish_plug(&plug);
5218
5219         pr_debug("--- raid5worker inactive\n");
5220 }
5221
5222 /*
5223  * This is our raid5 kernel thread.
5224  *
5225  * We scan the hash table for stripes which can be handled now.
5226  * During the scan, completed stripes are saved for us by the interrupt
5227  * handler, so that they will not have to wait for our next wakeup.
5228  */
5229 static void raid5d(struct md_thread *thread)
5230 {
5231         struct mddev *mddev = thread->mddev;
5232         struct r5conf *conf = mddev->private;
5233         int handled;
5234         struct blk_plug plug;
5235
5236         pr_debug("+++ raid5d active\n");
5237
5238         md_check_recovery(mddev);
5239
5240         blk_start_plug(&plug);
5241         handled = 0;
5242         spin_lock_irq(&conf->device_lock);
5243         while (1) {
5244                 struct bio *bio;
5245                 int batch_size, released;
5246
5247                 released = release_stripe_list(conf, conf->temp_inactive_list);
5248
5249                 if (
5250                     !list_empty(&conf->bitmap_list)) {
5251                         /* Now is a good time to flush some bitmap updates */
5252                         conf->seq_flush++;
5253                         spin_unlock_irq(&conf->device_lock);
5254                         bitmap_unplug(mddev->bitmap);
5255                         spin_lock_irq(&conf->device_lock);
5256                         conf->seq_write = conf->seq_flush;
5257                         activate_bit_delay(conf, conf->temp_inactive_list);
5258                 }
5259                 raid5_activate_delayed(conf);
5260
5261                 while ((bio = remove_bio_from_retry(conf))) {
5262                         int ok;
5263                         spin_unlock_irq(&conf->device_lock);
5264                         ok = retry_aligned_read(conf, bio);
5265                         spin_lock_irq(&conf->device_lock);
5266                         if (!ok)
5267                                 break;
5268                         handled++;
5269                 }
5270
5271                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5272                                                    conf->temp_inactive_list);
5273                 if (!batch_size && !released)
5274                         break;
5275                 handled += batch_size;
5276
5277                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5278                         spin_unlock_irq(&conf->device_lock);
5279                         md_check_recovery(mddev);
5280                         spin_lock_irq(&conf->device_lock);
5281                 }
5282         }
5283         pr_debug("%d stripes handled\n", handled);
5284
5285         spin_unlock_irq(&conf->device_lock);
5286
5287         async_tx_issue_pending_all();
5288         blk_finish_plug(&plug);
5289
5290         pr_debug("--- raid5d inactive\n");
5291 }
5292
5293 static ssize_t
5294 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5295 {
5296         struct r5conf *conf = mddev->private;
5297         if (conf)
5298                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5299         else
5300                 return 0;
5301 }
5302
5303 int
5304 raid5_set_cache_size(struct mddev *mddev, int size)
5305 {
5306         struct r5conf *conf = mddev->private;
5307         int err;
5308         int hash;
5309
5310         if (size <= 16 || size > 32768)
5311                 return -EINVAL;
5312         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5313         while (size < conf->max_nr_stripes) {
5314                 if (drop_one_stripe(conf, hash))
5315                         conf->max_nr_stripes--;
5316                 else
5317                         break;
5318                 hash--;
5319                 if (hash < 0)
5320                         hash = NR_STRIPE_HASH_LOCKS - 1;
5321         }
5322         err = md_allow_write(mddev);
5323         if (err)
5324                 return err;
5325         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5326         while (size > conf->max_nr_stripes) {
5327                 if (grow_one_stripe(conf, hash))
5328                         conf->max_nr_stripes++;
5329                 else break;
5330                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5331         }
5332         return 0;
5333 }
5334 EXPORT_SYMBOL(raid5_set_cache_size);
5335
5336 static ssize_t
5337 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5338 {
5339         struct r5conf *conf = mddev->private;
5340         unsigned long new;
5341         int err;
5342
5343         if (len >= PAGE_SIZE)
5344                 return -EINVAL;
5345         if (!conf)
5346                 return -ENODEV;
5347
5348         if (kstrtoul(page, 10, &new))
5349                 return -EINVAL;
5350         err = raid5_set_cache_size(mddev, new);
5351         if (err)
5352                 return err;
5353         return len;
5354 }
5355
5356 static struct md_sysfs_entry
5357 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5358                                 raid5_show_stripe_cache_size,
5359                                 raid5_store_stripe_cache_size);
5360
5361 static ssize_t
5362 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5363 {
5364         struct r5conf *conf = mddev->private;
5365         if (conf)
5366                 return sprintf(page, "%d\n", conf->bypass_threshold);
5367         else
5368                 return 0;
5369 }
5370
5371 static ssize_t
5372 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5373 {
5374         struct r5conf *conf = mddev->private;
5375         unsigned long new;
5376         if (len >= PAGE_SIZE)
5377                 return -EINVAL;
5378         if (!conf)
5379                 return -ENODEV;
5380
5381         if (kstrtoul(page, 10, &new))
5382                 return -EINVAL;
5383         if (new > conf->max_nr_stripes)
5384                 return -EINVAL;
5385         conf->bypass_threshold = new;
5386         return len;
5387 }
5388
5389 static struct md_sysfs_entry
5390 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5391                                         S_IRUGO | S_IWUSR,
5392                                         raid5_show_preread_threshold,
5393                                         raid5_store_preread_threshold);
5394
5395 static ssize_t
5396 raid5_show_skip_copy(struct mddev *mddev, char *page)
5397 {
5398         struct r5conf *conf = mddev->private;
5399         if (conf)
5400                 return sprintf(page, "%d\n", conf->skip_copy);
5401         else
5402                 return 0;
5403 }
5404
5405 static ssize_t
5406 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5407 {
5408         struct r5conf *conf = mddev->private;
5409         unsigned long new;
5410         if (len >= PAGE_SIZE)
5411                 return -EINVAL;
5412         if (!conf)
5413                 return -ENODEV;
5414
5415         if (kstrtoul(page, 10, &new))
5416                 return -EINVAL;
5417         new = !!new;
5418         if (new == conf->skip_copy)
5419                 return len;
5420
5421         mddev_suspend(mddev);
5422         conf->skip_copy = new;
5423         if (new)
5424                 mddev->queue->backing_dev_info.capabilities |=
5425                                                 BDI_CAP_STABLE_WRITES;
5426         else
5427                 mddev->queue->backing_dev_info.capabilities &=
5428                                                 ~BDI_CAP_STABLE_WRITES;
5429         mddev_resume(mddev);
5430         return len;
5431 }
5432
5433 static struct md_sysfs_entry
5434 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5435                                         raid5_show_skip_copy,
5436                                         raid5_store_skip_copy);
5437
5438 static ssize_t
5439 stripe_cache_active_show(struct mddev *mddev, char *page)
5440 {
5441         struct r5conf *conf = mddev->private;
5442         if (conf)
5443                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5444         else
5445                 return 0;
5446 }
5447
5448 static struct md_sysfs_entry
5449 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5450
5451 static ssize_t
5452 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5453 {
5454         struct r5conf *conf = mddev->private;
5455         if (conf)
5456                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5457         else
5458                 return 0;
5459 }
5460
5461 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5462                                int *group_cnt,
5463                                int *worker_cnt_per_group,
5464                                struct r5worker_group **worker_groups);
5465 static ssize_t
5466 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5467 {
5468         struct r5conf *conf = mddev->private;
5469         unsigned long new;
5470         int err;
5471         struct r5worker_group *new_groups, *old_groups;
5472         int group_cnt, worker_cnt_per_group;
5473
5474         if (len >= PAGE_SIZE)
5475                 return -EINVAL;
5476         if (!conf)
5477                 return -ENODEV;
5478
5479         if (kstrtoul(page, 10, &new))
5480                 return -EINVAL;
5481
5482         if (new == conf->worker_cnt_per_group)
5483                 return len;
5484
5485         mddev_suspend(mddev);
5486
5487         old_groups = conf->worker_groups;
5488         if (old_groups)
5489                 flush_workqueue(raid5_wq);
5490
5491         err = alloc_thread_groups(conf, new,
5492                                   &group_cnt, &worker_cnt_per_group,
5493                                   &new_groups);
5494         if (!err) {
5495                 spin_lock_irq(&conf->device_lock);
5496                 conf->group_cnt = group_cnt;
5497                 conf->worker_cnt_per_group = worker_cnt_per_group;
5498                 conf->worker_groups = new_groups;
5499                 spin_unlock_irq(&conf->device_lock);
5500
5501                 if (old_groups)
5502                         kfree(old_groups[0].workers);
5503                 kfree(old_groups);
5504         }
5505
5506         mddev_resume(mddev);
5507
5508         if (err)
5509                 return err;
5510         return len;
5511 }
5512
5513 static struct md_sysfs_entry
5514 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5515                                 raid5_show_group_thread_cnt,
5516                                 raid5_store_group_thread_cnt);
5517
5518 static struct attribute *raid5_attrs[] =  {
5519         &raid5_stripecache_size.attr,
5520         &raid5_stripecache_active.attr,
5521         &raid5_preread_bypass_threshold.attr,
5522         &raid5_group_thread_cnt.attr,
5523         &raid5_skip_copy.attr,
5524         NULL,
5525 };
5526 static struct attribute_group raid5_attrs_group = {
5527         .name = NULL,
5528         .attrs = raid5_attrs,
5529 };
5530
5531 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5532                                int *group_cnt,
5533                                int *worker_cnt_per_group,
5534                                struct r5worker_group **worker_groups)
5535 {
5536         int i, j, k;
5537         ssize_t size;
5538         struct r5worker *workers;
5539
5540         *worker_cnt_per_group = cnt;
5541         if (cnt == 0) {
5542                 *group_cnt = 0;
5543                 *worker_groups = NULL;
5544                 return 0;
5545         }
5546         *group_cnt = num_possible_nodes();
5547         size = sizeof(struct r5worker) * cnt;
5548         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5549         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5550                                 *group_cnt, GFP_NOIO);
5551         if (!*worker_groups || !workers) {
5552                 kfree(workers);
5553                 kfree(*worker_groups);
5554                 return -ENOMEM;
5555         }
5556
5557         for (i = 0; i < *group_cnt; i++) {
5558                 struct r5worker_group *group;
5559
5560                 group = &(*worker_groups)[i];
5561                 INIT_LIST_HEAD(&group->handle_list);
5562                 group->conf = conf;
5563                 group->workers = workers + i * cnt;
5564
5565                 for (j = 0; j < cnt; j++) {
5566                         struct r5worker *worker = group->workers + j;
5567                         worker->group = group;
5568                         INIT_WORK(&worker->work, raid5_do_work);
5569
5570                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5571                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5572                 }
5573         }
5574
5575         return 0;
5576 }
5577
5578 static void free_thread_groups(struct r5conf *conf)
5579 {
5580         if (conf->worker_groups)
5581                 kfree(conf->worker_groups[0].workers);
5582         kfree(conf->worker_groups);
5583         conf->worker_groups = NULL;
5584 }
5585
5586 static sector_t
5587 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5588 {
5589         struct r5conf *conf = mddev->private;
5590
5591         if (!sectors)
5592                 sectors = mddev->dev_sectors;
5593         if (!raid_disks)
5594                 /* size is defined by the smallest of previous and new size */
5595                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5596
5597         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5598         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5599         return sectors * (raid_disks - conf->max_degraded);
5600 }
5601
5602 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5603 {
5604         safe_put_page(percpu->spare_page);
5605         kfree(percpu->scribble);
5606         percpu->spare_page = NULL;
5607         percpu->scribble = NULL;
5608 }
5609
5610 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5611 {
5612         if (conf->level == 6 && !percpu->spare_page)
5613                 percpu->spare_page = alloc_page(GFP_KERNEL);
5614         if (!percpu->scribble)
5615                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5616
5617         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5618                 free_scratch_buffer(conf, percpu);
5619                 return -ENOMEM;
5620         }
5621
5622         return 0;
5623 }
5624
5625 static void raid5_free_percpu(struct r5conf *conf)
5626 {
5627         unsigned long cpu;
5628
5629         if (!conf->percpu)
5630                 return;
5631
5632 #ifdef CONFIG_HOTPLUG_CPU
5633         unregister_cpu_notifier(&conf->cpu_notify);
5634 #endif
5635
5636         get_online_cpus();
5637         for_each_possible_cpu(cpu)
5638                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5639         put_online_cpus();
5640
5641         free_percpu(conf->percpu);
5642 }
5643
5644 static void free_conf(struct r5conf *conf)
5645 {
5646         free_thread_groups(conf);
5647         shrink_stripes(conf);
5648         raid5_free_percpu(conf);
5649         kfree(conf->disks);
5650         kfree(conf->stripe_hashtbl);
5651         kfree(conf);
5652 }
5653
5654 #ifdef CONFIG_HOTPLUG_CPU
5655 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5656                               void *hcpu)
5657 {
5658         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5659         long cpu = (long)hcpu;
5660         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5661
5662         switch (action) {
5663         case CPU_UP_PREPARE:
5664         case CPU_UP_PREPARE_FROZEN:
5665                 if (alloc_scratch_buffer(conf, percpu)) {
5666                         pr_err("%s: failed memory allocation for cpu%ld\n",
5667                                __func__, cpu);
5668                         return notifier_from_errno(-ENOMEM);
5669                 }
5670                 break;
5671         case CPU_DEAD:
5672         case CPU_DEAD_FROZEN:
5673                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5674                 break;
5675         default:
5676                 break;
5677         }
5678         return NOTIFY_OK;
5679 }
5680 #endif
5681
5682 static int raid5_alloc_percpu(struct r5conf *conf)
5683 {
5684         unsigned long cpu;
5685         int err = 0;
5686
5687         conf->percpu = alloc_percpu(struct raid5_percpu);
5688         if (!conf->percpu)
5689                 return -ENOMEM;
5690
5691 #ifdef CONFIG_HOTPLUG_CPU
5692         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5693         conf->cpu_notify.priority = 0;
5694         err = register_cpu_notifier(&conf->cpu_notify);
5695         if (err)
5696                 return err;
5697 #endif
5698
5699         get_online_cpus();
5700         for_each_present_cpu(cpu) {
5701                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5702                 if (err) {
5703                         pr_err("%s: failed memory allocation for cpu%ld\n",
5704                                __func__, cpu);
5705                         break;
5706                 }
5707         }
5708         put_online_cpus();
5709
5710         return err;
5711 }
5712
5713 static struct r5conf *setup_conf(struct mddev *mddev)
5714 {
5715         struct r5conf *conf;
5716         int raid_disk, memory, max_disks;
5717         struct md_rdev *rdev;
5718         struct disk_info *disk;
5719         char pers_name[6];
5720         int i;
5721         int group_cnt, worker_cnt_per_group;
5722         struct r5worker_group *new_group;
5723
5724         if (mddev->new_level != 5
5725             && mddev->new_level != 4
5726             && mddev->new_level != 6) {
5727                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5728                        mdname(mddev), mddev->new_level);
5729                 return ERR_PTR(-EIO);
5730         }
5731         if ((mddev->new_level == 5
5732              && !algorithm_valid_raid5(mddev->new_layout)) ||
5733             (mddev->new_level == 6
5734              && !algorithm_valid_raid6(mddev->new_layout))) {
5735                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5736                        mdname(mddev), mddev->new_layout);
5737                 return ERR_PTR(-EIO);
5738         }
5739         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5740                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5741                        mdname(mddev), mddev->raid_disks);
5742                 return ERR_PTR(-EINVAL);
5743         }
5744
5745         if (!mddev->new_chunk_sectors ||
5746             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5747             !is_power_of_2(mddev->new_chunk_sectors)) {
5748                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5749                        mdname(mddev), mddev->new_chunk_sectors << 9);
5750                 return ERR_PTR(-EINVAL);
5751         }
5752
5753         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5754         if (conf == NULL)
5755                 goto abort;
5756         /* Don't enable multi-threading by default*/
5757         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5758                                  &new_group)) {
5759                 conf->group_cnt = group_cnt;
5760                 conf->worker_cnt_per_group = worker_cnt_per_group;
5761                 conf->worker_groups = new_group;
5762         } else
5763                 goto abort;
5764         spin_lock_init(&conf->device_lock);
5765         seqcount_init(&conf->gen_lock);
5766         init_waitqueue_head(&conf->wait_for_stripe);
5767         init_waitqueue_head(&conf->wait_for_overlap);
5768         INIT_LIST_HEAD(&conf->handle_list);
5769         INIT_LIST_HEAD(&conf->hold_list);
5770         INIT_LIST_HEAD(&conf->delayed_list);
5771         INIT_LIST_HEAD(&conf->bitmap_list);
5772         init_llist_head(&conf->released_stripes);
5773         atomic_set(&conf->active_stripes, 0);
5774         atomic_set(&conf->preread_active_stripes, 0);
5775         atomic_set(&conf->active_aligned_reads, 0);
5776         conf->bypass_threshold = BYPASS_THRESHOLD;
5777         conf->recovery_disabled = mddev->recovery_disabled - 1;
5778
5779         conf->raid_disks = mddev->raid_disks;
5780         if (mddev->reshape_position == MaxSector)
5781                 conf->previous_raid_disks = mddev->raid_disks;
5782         else
5783                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5784         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5785         conf->scribble_len = scribble_len(max_disks);
5786
5787         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5788                               GFP_KERNEL);
5789         if (!conf->disks)
5790                 goto abort;
5791
5792         conf->mddev = mddev;
5793
5794         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5795                 goto abort;
5796
5797         /* We init hash_locks[0] separately to that it can be used
5798          * as the reference lock in the spin_lock_nest_lock() call
5799          * in lock_all_device_hash_locks_irq in order to convince
5800          * lockdep that we know what we are doing.
5801          */
5802         spin_lock_init(conf->hash_locks);
5803         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5804                 spin_lock_init(conf->hash_locks + i);
5805
5806         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5807                 INIT_LIST_HEAD(conf->inactive_list + i);
5808
5809         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5810                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5811
5812         conf->level = mddev->new_level;
5813         if (raid5_alloc_percpu(conf) != 0)
5814                 goto abort;
5815
5816         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5817
5818         rdev_for_each(rdev, mddev) {
5819                 raid_disk = rdev->raid_disk;
5820                 if (raid_disk >= max_disks
5821                     || raid_disk < 0)
5822                         continue;
5823                 disk = conf->disks + raid_disk;
5824
5825                 if (test_bit(Replacement, &rdev->flags)) {
5826                         if (disk->replacement)
5827                                 goto abort;
5828                         disk->replacement = rdev;
5829                 } else {
5830                         if (disk->rdev)
5831                                 goto abort;
5832                         disk->rdev = rdev;
5833                 }
5834
5835                 if (test_bit(In_sync, &rdev->flags)) {
5836                         char b[BDEVNAME_SIZE];
5837                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5838                                " disk %d\n",
5839                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5840                 } else if (rdev->saved_raid_disk != raid_disk)
5841                         /* Cannot rely on bitmap to complete recovery */
5842                         conf->fullsync = 1;
5843         }
5844
5845         conf->chunk_sectors = mddev->new_chunk_sectors;
5846         conf->level = mddev->new_level;
5847         if (conf->level == 6)
5848                 conf->max_degraded = 2;
5849         else
5850                 conf->max_degraded = 1;
5851         conf->algorithm = mddev->new_layout;
5852         conf->reshape_progress = mddev->reshape_position;
5853         if (conf->reshape_progress != MaxSector) {
5854                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5855                 conf->prev_algo = mddev->layout;
5856         }
5857
5858         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5859                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5860         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5861         if (grow_stripes(conf, NR_STRIPES)) {
5862                 printk(KERN_ERR
5863                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5864                        mdname(mddev), memory);
5865                 goto abort;
5866         } else
5867                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5868                        mdname(mddev), memory);
5869
5870         sprintf(pers_name, "raid%d", mddev->new_level);
5871         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5872         if (!conf->thread) {
5873                 printk(KERN_ERR
5874                        "md/raid:%s: couldn't allocate thread.\n",
5875                        mdname(mddev));
5876                 goto abort;
5877         }
5878
5879         return conf;
5880
5881  abort:
5882         if (conf) {
5883                 free_conf(conf);
5884                 return ERR_PTR(-EIO);
5885         } else
5886                 return ERR_PTR(-ENOMEM);
5887 }
5888
5889 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5890 {
5891         switch (algo) {
5892         case ALGORITHM_PARITY_0:
5893                 if (raid_disk < max_degraded)
5894                         return 1;
5895                 break;
5896         case ALGORITHM_PARITY_N:
5897                 if (raid_disk >= raid_disks - max_degraded)
5898                         return 1;
5899                 break;
5900         case ALGORITHM_PARITY_0_6:
5901                 if (raid_disk == 0 ||
5902                     raid_disk == raid_disks - 1)
5903                         return 1;
5904                 break;
5905         case ALGORITHM_LEFT_ASYMMETRIC_6:
5906         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5907         case ALGORITHM_LEFT_SYMMETRIC_6:
5908         case ALGORITHM_RIGHT_SYMMETRIC_6:
5909                 if (raid_disk == raid_disks - 1)
5910                         return 1;
5911         }
5912         return 0;
5913 }
5914
5915 static int run(struct mddev *mddev)
5916 {
5917         struct r5conf *conf;
5918         int working_disks = 0;
5919         int dirty_parity_disks = 0;
5920         struct md_rdev *rdev;
5921         sector_t reshape_offset = 0;
5922         int i;
5923         long long min_offset_diff = 0;
5924         int first = 1;
5925
5926         if (mddev->recovery_cp != MaxSector)
5927                 printk(KERN_NOTICE "md/raid:%s: not clean"
5928                        " -- starting background reconstruction\n",
5929                        mdname(mddev));
5930
5931         rdev_for_each(rdev, mddev) {
5932                 long long diff;
5933                 if (rdev->raid_disk < 0)
5934                         continue;
5935                 diff = (rdev->new_data_offset - rdev->data_offset);
5936                 if (first) {
5937                         min_offset_diff = diff;
5938                         first = 0;
5939                 } else if (mddev->reshape_backwards &&
5940                          diff < min_offset_diff)
5941                         min_offset_diff = diff;
5942                 else if (!mddev->reshape_backwards &&
5943                          diff > min_offset_diff)
5944                         min_offset_diff = diff;
5945         }
5946
5947         if (mddev->reshape_position != MaxSector) {
5948                 /* Check that we can continue the reshape.
5949                  * Difficulties arise if the stripe we would write to
5950                  * next is at or after the stripe we would read from next.
5951                  * For a reshape that changes the number of devices, this
5952                  * is only possible for a very short time, and mdadm makes
5953                  * sure that time appears to have past before assembling
5954                  * the array.  So we fail if that time hasn't passed.
5955                  * For a reshape that keeps the number of devices the same
5956                  * mdadm must be monitoring the reshape can keeping the
5957                  * critical areas read-only and backed up.  It will start
5958                  * the array in read-only mode, so we check for that.
5959                  */
5960                 sector_t here_new, here_old;
5961                 int old_disks;
5962                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5963
5964                 if (mddev->new_level != mddev->level) {
5965                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5966                                "required - aborting.\n",
5967                                mdname(mddev));
5968                         return -EINVAL;
5969                 }
5970                 old_disks = mddev->raid_disks - mddev->delta_disks;
5971                 /* reshape_position must be on a new-stripe boundary, and one
5972                  * further up in new geometry must map after here in old
5973                  * geometry.
5974                  */
5975                 here_new = mddev->reshape_position;
5976                 if (sector_div(here_new, mddev->new_chunk_sectors *
5977                                (mddev->raid_disks - max_degraded))) {
5978                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5979                                "on a stripe boundary\n", mdname(mddev));
5980                         return -EINVAL;
5981                 }
5982                 reshape_offset = here_new * mddev->new_chunk_sectors;
5983                 /* here_new is the stripe we will write to */
5984                 here_old = mddev->reshape_position;
5985                 sector_div(here_old, mddev->chunk_sectors *
5986                            (old_disks-max_degraded));
5987                 /* here_old is the first stripe that we might need to read
5988                  * from */
5989                 if (mddev->delta_disks == 0) {
5990                         if ((here_new * mddev->new_chunk_sectors !=
5991                              here_old * mddev->chunk_sectors)) {
5992                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5993                                        " confused - aborting\n", mdname(mddev));
5994                                 return -EINVAL;
5995                         }
5996                         /* We cannot be sure it is safe to start an in-place
5997                          * reshape.  It is only safe if user-space is monitoring
5998                          * and taking constant backups.
5999                          * mdadm always starts a situation like this in
6000                          * readonly mode so it can take control before
6001                          * allowing any writes.  So just check for that.
6002                          */
6003                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6004                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6005                                 /* not really in-place - so OK */;
6006                         else if (mddev->ro == 0) {
6007                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6008                                        "must be started in read-only mode "
6009                                        "- aborting\n",
6010                                        mdname(mddev));
6011                                 return -EINVAL;
6012                         }
6013                 } else if (mddev->reshape_backwards
6014                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6015                        here_old * mddev->chunk_sectors)
6016                     : (here_new * mddev->new_chunk_sectors >=
6017                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6018                         /* Reading from the same stripe as writing to - bad */
6019                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6020                                "auto-recovery - aborting.\n",
6021                                mdname(mddev));
6022                         return -EINVAL;
6023                 }
6024                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6025                        mdname(mddev));
6026                 /* OK, we should be able to continue; */
6027         } else {
6028                 BUG_ON(mddev->level != mddev->new_level);
6029                 BUG_ON(mddev->layout != mddev->new_layout);
6030                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6031                 BUG_ON(mddev->delta_disks != 0);
6032         }
6033
6034         if (mddev->private == NULL)
6035                 conf = setup_conf(mddev);
6036         else
6037                 conf = mddev->private;
6038
6039         if (IS_ERR(conf))
6040                 return PTR_ERR(conf);
6041
6042         conf->min_offset_diff = min_offset_diff;
6043         mddev->thread = conf->thread;
6044         conf->thread = NULL;
6045         mddev->private = conf;
6046
6047         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6048              i++) {
6049                 rdev = conf->disks[i].rdev;
6050                 if (!rdev && conf->disks[i].replacement) {
6051                         /* The replacement is all we have yet */
6052                         rdev = conf->disks[i].replacement;
6053                         conf->disks[i].replacement = NULL;
6054                         clear_bit(Replacement, &rdev->flags);
6055                         conf->disks[i].rdev = rdev;
6056                 }
6057                 if (!rdev)
6058                         continue;
6059                 if (conf->disks[i].replacement &&
6060                     conf->reshape_progress != MaxSector) {
6061                         /* replacements and reshape simply do not mix. */
6062                         printk(KERN_ERR "md: cannot handle concurrent "
6063                                "replacement and reshape.\n");
6064                         goto abort;
6065                 }
6066                 if (test_bit(In_sync, &rdev->flags)) {
6067                         working_disks++;
6068                         continue;
6069                 }
6070                 /* This disc is not fully in-sync.  However if it
6071                  * just stored parity (beyond the recovery_offset),
6072                  * when we don't need to be concerned about the
6073                  * array being dirty.
6074                  * When reshape goes 'backwards', we never have
6075                  * partially completed devices, so we only need
6076                  * to worry about reshape going forwards.
6077                  */
6078                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6079                 if (mddev->major_version == 0 &&
6080                     mddev->minor_version > 90)
6081                         rdev->recovery_offset = reshape_offset;
6082
6083                 if (rdev->recovery_offset < reshape_offset) {
6084                         /* We need to check old and new layout */
6085                         if (!only_parity(rdev->raid_disk,
6086                                          conf->algorithm,
6087                                          conf->raid_disks,
6088                                          conf->max_degraded))
6089                                 continue;
6090                 }
6091                 if (!only_parity(rdev->raid_disk,
6092                                  conf->prev_algo,
6093                                  conf->previous_raid_disks,
6094                                  conf->max_degraded))
6095                         continue;
6096                 dirty_parity_disks++;
6097         }
6098
6099         /*
6100          * 0 for a fully functional array, 1 or 2 for a degraded array.
6101          */
6102         mddev->degraded = calc_degraded(conf);
6103
6104         if (has_failed(conf)) {
6105                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6106                         " (%d/%d failed)\n",
6107                         mdname(mddev), mddev->degraded, conf->raid_disks);
6108                 goto abort;
6109         }
6110
6111         /* device size must be a multiple of chunk size */
6112         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6113         mddev->resync_max_sectors = mddev->dev_sectors;
6114
6115         if (mddev->degraded > dirty_parity_disks &&
6116             mddev->recovery_cp != MaxSector) {
6117                 if (mddev->ok_start_degraded)
6118                         printk(KERN_WARNING
6119                                "md/raid:%s: starting dirty degraded array"
6120                                " - data corruption possible.\n",
6121                                mdname(mddev));
6122                 else {
6123                         printk(KERN_ERR
6124                                "md/raid:%s: cannot start dirty degraded array.\n",
6125                                mdname(mddev));
6126                         goto abort;
6127                 }
6128         }
6129
6130         if (mddev->degraded == 0)
6131                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6132                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6133                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6134                        mddev->new_layout);
6135         else
6136                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6137                        " out of %d devices, algorithm %d\n",
6138                        mdname(mddev), conf->level,
6139                        mddev->raid_disks - mddev->degraded,
6140                        mddev->raid_disks, mddev->new_layout);
6141
6142         print_raid5_conf(conf);
6143
6144         if (conf->reshape_progress != MaxSector) {
6145                 conf->reshape_safe = conf->reshape_progress;
6146                 atomic_set(&conf->reshape_stripes, 0);
6147                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6148                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6149                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6150                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6151                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6152                                                         "reshape");
6153         }
6154
6155         /* Ok, everything is just fine now */
6156         if (mddev->to_remove == &raid5_attrs_group)
6157                 mddev->to_remove = NULL;
6158         else if (mddev->kobj.sd &&
6159             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6160                 printk(KERN_WARNING
6161                        "raid5: failed to create sysfs attributes for %s\n",
6162                        mdname(mddev));
6163         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6164
6165         if (mddev->queue) {
6166                 int chunk_size;
6167                 bool discard_supported = true;
6168                 /* read-ahead size must cover two whole stripes, which
6169                  * is 2 * (datadisks) * chunksize where 'n' is the
6170                  * number of raid devices
6171                  */
6172                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6173                 int stripe = data_disks *
6174                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6175                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6176                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6177
6178                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6179
6180                 mddev->queue->backing_dev_info.congested_data = mddev;
6181                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6182
6183                 chunk_size = mddev->chunk_sectors << 9;
6184                 blk_queue_io_min(mddev->queue, chunk_size);
6185                 blk_queue_io_opt(mddev->queue, chunk_size *
6186                                  (conf->raid_disks - conf->max_degraded));
6187                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6188                 /*
6189                  * We can only discard a whole stripe. It doesn't make sense to
6190                  * discard data disk but write parity disk
6191                  */
6192                 stripe = stripe * PAGE_SIZE;
6193                 /* Round up to power of 2, as discard handling
6194                  * currently assumes that */
6195                 while ((stripe-1) & stripe)
6196                         stripe = (stripe | (stripe-1)) + 1;
6197                 mddev->queue->limits.discard_alignment = stripe;
6198                 mddev->queue->limits.discard_granularity = stripe;
6199                 /*
6200                  * unaligned part of discard request will be ignored, so can't
6201                  * guarantee discard_zeroes_data
6202                  */
6203                 mddev->queue->limits.discard_zeroes_data = 0;
6204
6205                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6206
6207                 rdev_for_each(rdev, mddev) {
6208                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6209                                           rdev->data_offset << 9);
6210                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6211                                           rdev->new_data_offset << 9);
6212                         /*
6213                          * discard_zeroes_data is required, otherwise data
6214                          * could be lost. Consider a scenario: discard a stripe
6215                          * (the stripe could be inconsistent if
6216                          * discard_zeroes_data is 0); write one disk of the
6217                          * stripe (the stripe could be inconsistent again
6218                          * depending on which disks are used to calculate
6219                          * parity); the disk is broken; The stripe data of this
6220                          * disk is lost.
6221                          */
6222                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6223                             !bdev_get_queue(rdev->bdev)->
6224                                                 limits.discard_zeroes_data)
6225                                 discard_supported = false;
6226                         /* Unfortunately, discard_zeroes_data is not currently
6227                          * a guarantee - just a hint.  So we only allow DISCARD
6228                          * if the sysadmin has confirmed that only safe devices
6229                          * are in use by setting a module parameter.
6230                          */
6231                         if (!devices_handle_discard_safely) {
6232                                 if (discard_supported) {
6233                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6234                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6235                                 }
6236                                 discard_supported = false;
6237                         }
6238                 }
6239
6240                 if (discard_supported &&
6241                    mddev->queue->limits.max_discard_sectors >= stripe &&
6242                    mddev->queue->limits.discard_granularity >= stripe)
6243                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6244                                                 mddev->queue);
6245                 else
6246                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6247                                                 mddev->queue);
6248         }
6249
6250         return 0;
6251 abort:
6252         md_unregister_thread(&mddev->thread);
6253         print_raid5_conf(conf);
6254         free_conf(conf);
6255         mddev->private = NULL;
6256         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6257         return -EIO;
6258 }
6259
6260 static int stop(struct mddev *mddev)
6261 {
6262         struct r5conf *conf = mddev->private;
6263
6264         md_unregister_thread(&mddev->thread);
6265         if (mddev->queue)
6266                 mddev->queue->backing_dev_info.congested_fn = NULL;
6267         free_conf(conf);
6268         mddev->private = NULL;
6269         mddev->to_remove = &raid5_attrs_group;
6270         return 0;
6271 }
6272
6273 static void status(struct seq_file *seq, struct mddev *mddev)
6274 {
6275         struct r5conf *conf = mddev->private;
6276         int i;
6277
6278         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6279                 mddev->chunk_sectors / 2, mddev->layout);
6280         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6281         for (i = 0; i < conf->raid_disks; i++)
6282                 seq_printf (seq, "%s",
6283                                conf->disks[i].rdev &&
6284                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6285         seq_printf (seq, "]");
6286 }
6287
6288 static void print_raid5_conf (struct r5conf *conf)
6289 {
6290         int i;
6291         struct disk_info *tmp;
6292
6293         printk(KERN_DEBUG "RAID conf printout:\n");
6294         if (!conf) {
6295                 printk("(conf==NULL)\n");
6296                 return;
6297         }
6298         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6299                conf->raid_disks,
6300                conf->raid_disks - conf->mddev->degraded);
6301
6302         for (i = 0; i < conf->raid_disks; i++) {
6303                 char b[BDEVNAME_SIZE];
6304                 tmp = conf->disks + i;
6305                 if (tmp->rdev)
6306                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6307                                i, !test_bit(Faulty, &tmp->rdev->flags),
6308                                bdevname(tmp->rdev->bdev, b));
6309         }
6310 }
6311
6312 static int raid5_spare_active(struct mddev *mddev)
6313 {
6314         int i;
6315         struct r5conf *conf = mddev->private;
6316         struct disk_info *tmp;
6317         int count = 0;
6318         unsigned long flags;
6319
6320         for (i = 0; i < conf->raid_disks; i++) {
6321                 tmp = conf->disks + i;
6322                 if (tmp->replacement
6323                     && tmp->replacement->recovery_offset == MaxSector
6324                     && !test_bit(Faulty, &tmp->replacement->flags)
6325                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6326                         /* Replacement has just become active. */
6327                         if (!tmp->rdev
6328                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6329                                 count++;
6330                         if (tmp->rdev) {
6331                                 /* Replaced device not technically faulty,
6332                                  * but we need to be sure it gets removed
6333                                  * and never re-added.
6334                                  */
6335                                 set_bit(Faulty, &tmp->rdev->flags);
6336                                 sysfs_notify_dirent_safe(
6337                                         tmp->rdev->sysfs_state);
6338                         }
6339                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6340                 } else if (tmp->rdev
6341                     && tmp->rdev->recovery_offset == MaxSector
6342                     && !test_bit(Faulty, &tmp->rdev->flags)
6343                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6344                         count++;
6345                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6346                 }
6347         }
6348         spin_lock_irqsave(&conf->device_lock, flags);
6349         mddev->degraded = calc_degraded(conf);
6350         spin_unlock_irqrestore(&conf->device_lock, flags);
6351         print_raid5_conf(conf);
6352         return count;
6353 }
6354
6355 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6356 {
6357         struct r5conf *conf = mddev->private;
6358         int err = 0;
6359         int number = rdev->raid_disk;
6360         struct md_rdev **rdevp;
6361         struct disk_info *p = conf->disks + number;
6362
6363         print_raid5_conf(conf);
6364         if (rdev == p->rdev)
6365                 rdevp = &p->rdev;
6366         else if (rdev == p->replacement)
6367                 rdevp = &p->replacement;
6368         else
6369                 return 0;
6370
6371         if (number >= conf->raid_disks &&
6372             conf->reshape_progress == MaxSector)
6373                 clear_bit(In_sync, &rdev->flags);
6374
6375         if (test_bit(In_sync, &rdev->flags) ||
6376             atomic_read(&rdev->nr_pending)) {
6377                 err = -EBUSY;
6378                 goto abort;
6379         }
6380         /* Only remove non-faulty devices if recovery
6381          * isn't possible.
6382          */
6383         if (!test_bit(Faulty, &rdev->flags) &&
6384             mddev->recovery_disabled != conf->recovery_disabled &&
6385             !has_failed(conf) &&
6386             (!p->replacement || p->replacement == rdev) &&
6387             number < conf->raid_disks) {
6388                 err = -EBUSY;
6389                 goto abort;
6390         }
6391         *rdevp = NULL;
6392         synchronize_rcu();
6393         if (atomic_read(&rdev->nr_pending)) {
6394                 /* lost the race, try later */
6395                 err = -EBUSY;
6396                 *rdevp = rdev;
6397         } else if (p->replacement) {
6398                 /* We must have just cleared 'rdev' */
6399                 p->rdev = p->replacement;
6400                 clear_bit(Replacement, &p->replacement->flags);
6401                 smp_mb(); /* Make sure other CPUs may see both as identical
6402                            * but will never see neither - if they are careful
6403                            */
6404                 p->replacement = NULL;
6405                 clear_bit(WantReplacement, &rdev->flags);
6406         } else
6407                 /* We might have just removed the Replacement as faulty-
6408                  * clear the bit just in case
6409                  */
6410                 clear_bit(WantReplacement, &rdev->flags);
6411 abort:
6412
6413         print_raid5_conf(conf);
6414         return err;
6415 }
6416
6417 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6418 {
6419         struct r5conf *conf = mddev->private;
6420         int err = -EEXIST;
6421         int disk;
6422         struct disk_info *p;
6423         int first = 0;
6424         int last = conf->raid_disks - 1;
6425
6426         if (mddev->recovery_disabled == conf->recovery_disabled)
6427                 return -EBUSY;
6428
6429         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6430                 /* no point adding a device */
6431                 return -EINVAL;
6432
6433         if (rdev->raid_disk >= 0)
6434                 first = last = rdev->raid_disk;
6435
6436         /*
6437          * find the disk ... but prefer rdev->saved_raid_disk
6438          * if possible.
6439          */
6440         if (rdev->saved_raid_disk >= 0 &&
6441             rdev->saved_raid_disk >= first &&
6442             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6443                 first = rdev->saved_raid_disk;
6444
6445         for (disk = first; disk <= last; disk++) {
6446                 p = conf->disks + disk;
6447                 if (p->rdev == NULL) {
6448                         clear_bit(In_sync, &rdev->flags);
6449                         rdev->raid_disk = disk;
6450                         err = 0;
6451                         if (rdev->saved_raid_disk != disk)
6452                                 conf->fullsync = 1;
6453                         rcu_assign_pointer(p->rdev, rdev);
6454                         goto out;
6455                 }
6456         }
6457         for (disk = first; disk <= last; disk++) {
6458                 p = conf->disks + disk;
6459                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6460                     p->replacement == NULL) {
6461                         clear_bit(In_sync, &rdev->flags);
6462                         set_bit(Replacement, &rdev->flags);
6463                         rdev->raid_disk = disk;
6464                         err = 0;
6465                         conf->fullsync = 1;
6466                         rcu_assign_pointer(p->replacement, rdev);
6467                         break;
6468                 }
6469         }
6470 out:
6471         print_raid5_conf(conf);
6472         return err;
6473 }
6474
6475 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6476 {
6477         /* no resync is happening, and there is enough space
6478          * on all devices, so we can resize.
6479          * We need to make sure resync covers any new space.
6480          * If the array is shrinking we should possibly wait until
6481          * any io in the removed space completes, but it hardly seems
6482          * worth it.
6483          */
6484         sector_t newsize;
6485         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6486         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6487         if (mddev->external_size &&
6488             mddev->array_sectors > newsize)
6489                 return -EINVAL;
6490         if (mddev->bitmap) {
6491                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6492                 if (ret)
6493                         return ret;
6494         }
6495         md_set_array_sectors(mddev, newsize);
6496         set_capacity(mddev->gendisk, mddev->array_sectors);
6497         revalidate_disk(mddev->gendisk);
6498         if (sectors > mddev->dev_sectors &&
6499             mddev->recovery_cp > mddev->dev_sectors) {
6500                 mddev->recovery_cp = mddev->dev_sectors;
6501                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6502         }
6503         mddev->dev_sectors = sectors;
6504         mddev->resync_max_sectors = sectors;
6505         return 0;
6506 }
6507
6508 static int check_stripe_cache(struct mddev *mddev)
6509 {
6510         /* Can only proceed if there are plenty of stripe_heads.
6511          * We need a minimum of one full stripe,, and for sensible progress
6512          * it is best to have about 4 times that.
6513          * If we require 4 times, then the default 256 4K stripe_heads will
6514          * allow for chunk sizes up to 256K, which is probably OK.
6515          * If the chunk size is greater, user-space should request more
6516          * stripe_heads first.
6517          */
6518         struct r5conf *conf = mddev->private;
6519         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6520             > conf->max_nr_stripes ||
6521             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6522             > conf->max_nr_stripes) {
6523                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6524                        mdname(mddev),
6525                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6526                         / STRIPE_SIZE)*4);
6527                 return 0;
6528         }
6529         return 1;
6530 }
6531
6532 static int check_reshape(struct mddev *mddev)
6533 {
6534         struct r5conf *conf = mddev->private;
6535
6536         if (mddev->delta_disks == 0 &&
6537             mddev->new_layout == mddev->layout &&
6538             mddev->new_chunk_sectors == mddev->chunk_sectors)
6539                 return 0; /* nothing to do */
6540         if (has_failed(conf))
6541                 return -EINVAL;
6542         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6543                 /* We might be able to shrink, but the devices must
6544                  * be made bigger first.
6545                  * For raid6, 4 is the minimum size.
6546                  * Otherwise 2 is the minimum
6547                  */
6548                 int min = 2;
6549                 if (mddev->level == 6)
6550                         min = 4;
6551                 if (mddev->raid_disks + mddev->delta_disks < min)
6552                         return -EINVAL;
6553         }
6554
6555         if (!check_stripe_cache(mddev))
6556                 return -ENOSPC;
6557
6558         return resize_stripes(conf, (conf->previous_raid_disks
6559                                      + mddev->delta_disks));
6560 }
6561
6562 static int raid5_start_reshape(struct mddev *mddev)
6563 {
6564         struct r5conf *conf = mddev->private;
6565         struct md_rdev *rdev;
6566         int spares = 0;
6567         unsigned long flags;
6568
6569         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6570                 return -EBUSY;
6571
6572         if (!check_stripe_cache(mddev))
6573                 return -ENOSPC;
6574
6575         if (has_failed(conf))
6576                 return -EINVAL;
6577
6578         rdev_for_each(rdev, mddev) {
6579                 if (!test_bit(In_sync, &rdev->flags)
6580                     && !test_bit(Faulty, &rdev->flags))
6581                         spares++;
6582         }
6583
6584         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6585                 /* Not enough devices even to make a degraded array
6586                  * of that size
6587                  */
6588                 return -EINVAL;
6589
6590         /* Refuse to reduce size of the array.  Any reductions in
6591          * array size must be through explicit setting of array_size
6592          * attribute.
6593          */
6594         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6595             < mddev->array_sectors) {
6596                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6597                        "before number of disks\n", mdname(mddev));
6598                 return -EINVAL;
6599         }
6600
6601         atomic_set(&conf->reshape_stripes, 0);
6602         spin_lock_irq(&conf->device_lock);
6603         write_seqcount_begin(&conf->gen_lock);
6604         conf->previous_raid_disks = conf->raid_disks;
6605         conf->raid_disks += mddev->delta_disks;
6606         conf->prev_chunk_sectors = conf->chunk_sectors;
6607         conf->chunk_sectors = mddev->new_chunk_sectors;
6608         conf->prev_algo = conf->algorithm;
6609         conf->algorithm = mddev->new_layout;
6610         conf->generation++;
6611         /* Code that selects data_offset needs to see the generation update
6612          * if reshape_progress has been set - so a memory barrier needed.
6613          */
6614         smp_mb();
6615         if (mddev->reshape_backwards)
6616                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6617         else
6618                 conf->reshape_progress = 0;
6619         conf->reshape_safe = conf->reshape_progress;
6620         write_seqcount_end(&conf->gen_lock);
6621         spin_unlock_irq(&conf->device_lock);
6622
6623         /* Now make sure any requests that proceeded on the assumption
6624          * the reshape wasn't running - like Discard or Read - have
6625          * completed.
6626          */
6627         mddev_suspend(mddev);
6628         mddev_resume(mddev);
6629
6630         /* Add some new drives, as many as will fit.
6631          * We know there are enough to make the newly sized array work.
6632          * Don't add devices if we are reducing the number of
6633          * devices in the array.  This is because it is not possible
6634          * to correctly record the "partially reconstructed" state of
6635          * such devices during the reshape and confusion could result.
6636          */
6637         if (mddev->delta_disks >= 0) {
6638                 rdev_for_each(rdev, mddev)
6639                         if (rdev->raid_disk < 0 &&
6640                             !test_bit(Faulty, &rdev->flags)) {
6641                                 if (raid5_add_disk(mddev, rdev) == 0) {
6642                                         if (rdev->raid_disk
6643                                             >= conf->previous_raid_disks)
6644                                                 set_bit(In_sync, &rdev->flags);
6645                                         else
6646                                                 rdev->recovery_offset = 0;
6647
6648                                         if (sysfs_link_rdev(mddev, rdev))
6649                                                 /* Failure here is OK */;
6650                                 }
6651                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6652                                    && !test_bit(Faulty, &rdev->flags)) {
6653                                 /* This is a spare that was manually added */
6654                                 set_bit(In_sync, &rdev->flags);
6655                         }
6656
6657                 /* When a reshape changes the number of devices,
6658                  * ->degraded is measured against the larger of the
6659                  * pre and post number of devices.
6660                  */
6661                 spin_lock_irqsave(&conf->device_lock, flags);
6662                 mddev->degraded = calc_degraded(conf);
6663                 spin_unlock_irqrestore(&conf->device_lock, flags);
6664         }
6665         mddev->raid_disks = conf->raid_disks;
6666         mddev->reshape_position = conf->reshape_progress;
6667         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6668
6669         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6670         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6671         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6672         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6673         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6674                                                 "reshape");
6675         if (!mddev->sync_thread) {
6676                 mddev->recovery = 0;
6677                 spin_lock_irq(&conf->device_lock);
6678                 write_seqcount_begin(&conf->gen_lock);
6679                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6680                 mddev->new_chunk_sectors =
6681                         conf->chunk_sectors = conf->prev_chunk_sectors;
6682                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6683                 rdev_for_each(rdev, mddev)
6684                         rdev->new_data_offset = rdev->data_offset;
6685                 smp_wmb();
6686                 conf->generation --;
6687                 conf->reshape_progress = MaxSector;
6688                 mddev->reshape_position = MaxSector;
6689                 write_seqcount_end(&conf->gen_lock);
6690                 spin_unlock_irq(&conf->device_lock);
6691                 return -EAGAIN;
6692         }
6693         conf->reshape_checkpoint = jiffies;
6694         md_wakeup_thread(mddev->sync_thread);
6695         md_new_event(mddev);
6696         return 0;
6697 }
6698
6699 /* This is called from the reshape thread and should make any
6700  * changes needed in 'conf'
6701  */
6702 static void end_reshape(struct r5conf *conf)
6703 {
6704
6705         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6706                 struct md_rdev *rdev;
6707
6708                 spin_lock_irq(&conf->device_lock);
6709                 conf->previous_raid_disks = conf->raid_disks;
6710                 rdev_for_each(rdev, conf->mddev)
6711                         rdev->data_offset = rdev->new_data_offset;
6712                 smp_wmb();
6713                 conf->reshape_progress = MaxSector;
6714                 spin_unlock_irq(&conf->device_lock);
6715                 wake_up(&conf->wait_for_overlap);
6716
6717                 /* read-ahead size must cover two whole stripes, which is
6718                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6719                  */
6720                 if (conf->mddev->queue) {
6721                         int data_disks = conf->raid_disks - conf->max_degraded;
6722                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6723                                                    / PAGE_SIZE);
6724                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6725                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6726                 }
6727         }
6728 }
6729
6730 /* This is called from the raid5d thread with mddev_lock held.
6731  * It makes config changes to the device.
6732  */
6733 static void raid5_finish_reshape(struct mddev *mddev)
6734 {
6735         struct r5conf *conf = mddev->private;
6736
6737         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6738
6739                 if (mddev->delta_disks > 0) {
6740                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6741                         set_capacity(mddev->gendisk, mddev->array_sectors);
6742                         revalidate_disk(mddev->gendisk);
6743                 } else {
6744                         int d;
6745                         spin_lock_irq(&conf->device_lock);
6746                         mddev->degraded = calc_degraded(conf);
6747                         spin_unlock_irq(&conf->device_lock);
6748                         for (d = conf->raid_disks ;
6749                              d < conf->raid_disks - mddev->delta_disks;
6750                              d++) {
6751                                 struct md_rdev *rdev = conf->disks[d].rdev;
6752                                 if (rdev)
6753                                         clear_bit(In_sync, &rdev->flags);
6754                                 rdev = conf->disks[d].replacement;
6755                                 if (rdev)
6756                                         clear_bit(In_sync, &rdev->flags);
6757                         }
6758                 }
6759                 mddev->layout = conf->algorithm;
6760                 mddev->chunk_sectors = conf->chunk_sectors;
6761                 mddev->reshape_position = MaxSector;
6762                 mddev->delta_disks = 0;
6763                 mddev->reshape_backwards = 0;
6764         }
6765 }
6766
6767 static void raid5_quiesce(struct mddev *mddev, int state)
6768 {
6769         struct r5conf *conf = mddev->private;
6770
6771         switch(state) {
6772         case 2: /* resume for a suspend */
6773                 wake_up(&conf->wait_for_overlap);
6774                 break;
6775
6776         case 1: /* stop all writes */
6777                 lock_all_device_hash_locks_irq(conf);
6778                 /* '2' tells resync/reshape to pause so that all
6779                  * active stripes can drain
6780                  */
6781                 conf->quiesce = 2;
6782                 wait_event_cmd(conf->wait_for_stripe,
6783                                     atomic_read(&conf->active_stripes) == 0 &&
6784                                     atomic_read(&conf->active_aligned_reads) == 0,
6785                                     unlock_all_device_hash_locks_irq(conf),
6786                                     lock_all_device_hash_locks_irq(conf));
6787                 conf->quiesce = 1;
6788                 unlock_all_device_hash_locks_irq(conf);
6789                 /* allow reshape to continue */
6790                 wake_up(&conf->wait_for_overlap);
6791                 break;
6792
6793         case 0: /* re-enable writes */
6794                 lock_all_device_hash_locks_irq(conf);
6795                 conf->quiesce = 0;
6796                 wake_up(&conf->wait_for_stripe);
6797                 wake_up(&conf->wait_for_overlap);
6798                 unlock_all_device_hash_locks_irq(conf);
6799                 break;
6800         }
6801 }
6802
6803 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6804 {
6805         struct r0conf *raid0_conf = mddev->private;
6806         sector_t sectors;
6807
6808         /* for raid0 takeover only one zone is supported */
6809         if (raid0_conf->nr_strip_zones > 1) {
6810                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6811                        mdname(mddev));
6812                 return ERR_PTR(-EINVAL);
6813         }
6814
6815         sectors = raid0_conf->strip_zone[0].zone_end;
6816         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6817         mddev->dev_sectors = sectors;
6818         mddev->new_level = level;
6819         mddev->new_layout = ALGORITHM_PARITY_N;
6820         mddev->new_chunk_sectors = mddev->chunk_sectors;
6821         mddev->raid_disks += 1;
6822         mddev->delta_disks = 1;
6823         /* make sure it will be not marked as dirty */
6824         mddev->recovery_cp = MaxSector;
6825
6826         return setup_conf(mddev);
6827 }
6828
6829 static void *raid5_takeover_raid1(struct mddev *mddev)
6830 {
6831         int chunksect;
6832
6833         if (mddev->raid_disks != 2 ||
6834             mddev->degraded > 1)
6835                 return ERR_PTR(-EINVAL);
6836
6837         /* Should check if there are write-behind devices? */
6838
6839         chunksect = 64*2; /* 64K by default */
6840
6841         /* The array must be an exact multiple of chunksize */
6842         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6843                 chunksect >>= 1;
6844
6845         if ((chunksect<<9) < STRIPE_SIZE)
6846                 /* array size does not allow a suitable chunk size */
6847                 return ERR_PTR(-EINVAL);
6848
6849         mddev->new_level = 5;
6850         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6851         mddev->new_chunk_sectors = chunksect;
6852
6853         return setup_conf(mddev);
6854 }
6855
6856 static void *raid5_takeover_raid6(struct mddev *mddev)
6857 {
6858         int new_layout;
6859
6860         switch (mddev->layout) {
6861         case ALGORITHM_LEFT_ASYMMETRIC_6:
6862                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6863                 break;
6864         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6865                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6866                 break;
6867         case ALGORITHM_LEFT_SYMMETRIC_6:
6868                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6869                 break;
6870         case ALGORITHM_RIGHT_SYMMETRIC_6:
6871                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6872                 break;
6873         case ALGORITHM_PARITY_0_6:
6874                 new_layout = ALGORITHM_PARITY_0;
6875                 break;
6876         case ALGORITHM_PARITY_N:
6877                 new_layout = ALGORITHM_PARITY_N;
6878                 break;
6879         default:
6880                 return ERR_PTR(-EINVAL);
6881         }
6882         mddev->new_level = 5;
6883         mddev->new_layout = new_layout;
6884         mddev->delta_disks = -1;
6885         mddev->raid_disks -= 1;
6886         return setup_conf(mddev);
6887 }
6888
6889 static int raid5_check_reshape(struct mddev *mddev)
6890 {
6891         /* For a 2-drive array, the layout and chunk size can be changed
6892          * immediately as not restriping is needed.
6893          * For larger arrays we record the new value - after validation
6894          * to be used by a reshape pass.
6895          */
6896         struct r5conf *conf = mddev->private;
6897         int new_chunk = mddev->new_chunk_sectors;
6898
6899         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6900                 return -EINVAL;
6901         if (new_chunk > 0) {
6902                 if (!is_power_of_2(new_chunk))
6903                         return -EINVAL;
6904                 if (new_chunk < (PAGE_SIZE>>9))
6905                         return -EINVAL;
6906                 if (mddev->array_sectors & (new_chunk-1))
6907                         /* not factor of array size */
6908                         return -EINVAL;
6909         }
6910
6911         /* They look valid */
6912
6913         if (mddev->raid_disks == 2) {
6914                 /* can make the change immediately */
6915                 if (mddev->new_layout >= 0) {
6916                         conf->algorithm = mddev->new_layout;
6917                         mddev->layout = mddev->new_layout;
6918                 }
6919                 if (new_chunk > 0) {
6920                         conf->chunk_sectors = new_chunk ;
6921                         mddev->chunk_sectors = new_chunk;
6922                 }
6923                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6924                 md_wakeup_thread(mddev->thread);
6925         }
6926         return check_reshape(mddev);
6927 }
6928
6929 static int raid6_check_reshape(struct mddev *mddev)
6930 {
6931         int new_chunk = mddev->new_chunk_sectors;
6932
6933         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6934                 return -EINVAL;
6935         if (new_chunk > 0) {
6936                 if (!is_power_of_2(new_chunk))
6937                         return -EINVAL;
6938                 if (new_chunk < (PAGE_SIZE >> 9))
6939                         return -EINVAL;
6940                 if (mddev->array_sectors & (new_chunk-1))
6941                         /* not factor of array size */
6942                         return -EINVAL;
6943         }
6944
6945         /* They look valid */
6946         return check_reshape(mddev);
6947 }
6948
6949 static void *raid5_takeover(struct mddev *mddev)
6950 {
6951         /* raid5 can take over:
6952          *  raid0 - if there is only one strip zone - make it a raid4 layout
6953          *  raid1 - if there are two drives.  We need to know the chunk size
6954          *  raid4 - trivial - just use a raid4 layout.
6955          *  raid6 - Providing it is a *_6 layout
6956          */
6957         if (mddev->level == 0)
6958                 return raid45_takeover_raid0(mddev, 5);
6959         if (mddev->level == 1)
6960                 return raid5_takeover_raid1(mddev);
6961         if (mddev->level == 4) {
6962                 mddev->new_layout = ALGORITHM_PARITY_N;
6963                 mddev->new_level = 5;
6964                 return setup_conf(mddev);
6965         }
6966         if (mddev->level == 6)
6967                 return raid5_takeover_raid6(mddev);
6968
6969         return ERR_PTR(-EINVAL);
6970 }
6971
6972 static void *raid4_takeover(struct mddev *mddev)
6973 {
6974         /* raid4 can take over:
6975          *  raid0 - if there is only one strip zone
6976          *  raid5 - if layout is right
6977          */
6978         if (mddev->level == 0)
6979                 return raid45_takeover_raid0(mddev, 4);
6980         if (mddev->level == 5 &&
6981             mddev->layout == ALGORITHM_PARITY_N) {
6982                 mddev->new_layout = 0;
6983                 mddev->new_level = 4;
6984                 return setup_conf(mddev);
6985         }
6986         return ERR_PTR(-EINVAL);
6987 }
6988
6989 static struct md_personality raid5_personality;
6990
6991 static void *raid6_takeover(struct mddev *mddev)
6992 {
6993         /* Currently can only take over a raid5.  We map the
6994          * personality to an equivalent raid6 personality
6995          * with the Q block at the end.
6996          */
6997         int new_layout;
6998
6999         if (mddev->pers != &raid5_personality)
7000                 return ERR_PTR(-EINVAL);
7001         if (mddev->degraded > 1)
7002                 return ERR_PTR(-EINVAL);
7003         if (mddev->raid_disks > 253)
7004                 return ERR_PTR(-EINVAL);
7005         if (mddev->raid_disks < 3)
7006                 return ERR_PTR(-EINVAL);
7007
7008         switch (mddev->layout) {
7009         case ALGORITHM_LEFT_ASYMMETRIC:
7010                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7011                 break;
7012         case ALGORITHM_RIGHT_ASYMMETRIC:
7013                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7014                 break;
7015         case ALGORITHM_LEFT_SYMMETRIC:
7016                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7017                 break;
7018         case ALGORITHM_RIGHT_SYMMETRIC:
7019                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7020                 break;
7021         case ALGORITHM_PARITY_0:
7022                 new_layout = ALGORITHM_PARITY_0_6;
7023                 break;
7024         case ALGORITHM_PARITY_N:
7025                 new_layout = ALGORITHM_PARITY_N;
7026                 break;
7027         default:
7028                 return ERR_PTR(-EINVAL);
7029         }
7030         mddev->new_level = 6;
7031         mddev->new_layout = new_layout;
7032         mddev->delta_disks = 1;
7033         mddev->raid_disks += 1;
7034         return setup_conf(mddev);
7035 }
7036
7037 static struct md_personality raid6_personality =
7038 {
7039         .name           = "raid6",
7040         .level          = 6,
7041         .owner          = THIS_MODULE,
7042         .make_request   = make_request,
7043         .run            = run,
7044         .stop           = stop,
7045         .status         = status,
7046         .error_handler  = error,
7047         .hot_add_disk   = raid5_add_disk,
7048         .hot_remove_disk= raid5_remove_disk,
7049         .spare_active   = raid5_spare_active,
7050         .sync_request   = sync_request,
7051         .resize         = raid5_resize,
7052         .size           = raid5_size,
7053         .check_reshape  = raid6_check_reshape,
7054         .start_reshape  = raid5_start_reshape,
7055         .finish_reshape = raid5_finish_reshape,
7056         .quiesce        = raid5_quiesce,
7057         .takeover       = raid6_takeover,
7058 };
7059 static struct md_personality raid5_personality =
7060 {
7061         .name           = "raid5",
7062         .level          = 5,
7063         .owner          = THIS_MODULE,
7064         .make_request   = make_request,
7065         .run            = run,
7066         .stop           = stop,
7067         .status         = status,
7068         .error_handler  = error,
7069         .hot_add_disk   = raid5_add_disk,
7070         .hot_remove_disk= raid5_remove_disk,
7071         .spare_active   = raid5_spare_active,
7072         .sync_request   = sync_request,
7073         .resize         = raid5_resize,
7074         .size           = raid5_size,
7075         .check_reshape  = raid5_check_reshape,
7076         .start_reshape  = raid5_start_reshape,
7077         .finish_reshape = raid5_finish_reshape,
7078         .quiesce        = raid5_quiesce,
7079         .takeover       = raid5_takeover,
7080 };
7081
7082 static struct md_personality raid4_personality =
7083 {
7084         .name           = "raid4",
7085         .level          = 4,
7086         .owner          = THIS_MODULE,
7087         .make_request   = make_request,
7088         .run            = run,
7089         .stop           = stop,
7090         .status         = status,
7091         .error_handler  = error,
7092         .hot_add_disk   = raid5_add_disk,
7093         .hot_remove_disk= raid5_remove_disk,
7094         .spare_active   = raid5_spare_active,
7095         .sync_request   = sync_request,
7096         .resize         = raid5_resize,
7097         .size           = raid5_size,
7098         .check_reshape  = raid5_check_reshape,
7099         .start_reshape  = raid5_start_reshape,
7100         .finish_reshape = raid5_finish_reshape,
7101         .quiesce        = raid5_quiesce,
7102         .takeover       = raid4_takeover,
7103 };
7104
7105 static int __init raid5_init(void)
7106 {
7107         raid5_wq = alloc_workqueue("raid5wq",
7108                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7109         if (!raid5_wq)
7110                 return -ENOMEM;
7111         register_md_personality(&raid6_personality);
7112         register_md_personality(&raid5_personality);
7113         register_md_personality(&raid4_personality);
7114         return 0;
7115 }
7116
7117 static void raid5_exit(void)
7118 {
7119         unregister_md_personality(&raid6_personality);
7120         unregister_md_personality(&raid5_personality);
7121         unregister_md_personality(&raid4_personality);
7122         destroy_workqueue(raid5_wq);
7123 }
7124
7125 module_init(raid5_init);
7126 module_exit(raid5_exit);
7127 MODULE_LICENSE("GPL");
7128 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7129 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7130 MODULE_ALIAS("md-raid5");
7131 MODULE_ALIAS("md-raid4");
7132 MODULE_ALIAS("md-level-5");
7133 MODULE_ALIAS("md-level-4");
7134 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7135 MODULE_ALIAS("md-raid6");
7136 MODULE_ALIAS("md-level-6");
7137
7138 /* This used to be two separate modules, they were: */
7139 MODULE_ALIAS("raid5");
7140 MODULE_ALIAS("raid6");