md/raid5: avoid races when changing cache size.
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         unsigned long do_wakeup = 0;
348         int i = 0;
349         unsigned long flags;
350
351         if (hash == NR_STRIPE_HASH_LOCKS) {
352                 size = NR_STRIPE_HASH_LOCKS;
353                 hash = NR_STRIPE_HASH_LOCKS - 1;
354         } else
355                 size = 1;
356         while (size) {
357                 struct list_head *list = &temp_inactive_list[size - 1];
358
359                 /*
360                  * We don't hold any lock here yet, get_active_stripe() might
361                  * remove stripes from the list
362                  */
363                 if (!list_empty_careful(list)) {
364                         spin_lock_irqsave(conf->hash_locks + hash, flags);
365                         if (list_empty(conf->inactive_list + hash) &&
366                             !list_empty(list))
367                                 atomic_dec(&conf->empty_inactive_list_nr);
368                         list_splice_tail_init(list, conf->inactive_list + hash);
369                         do_wakeup |= 1 << hash;
370                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371                 }
372                 size--;
373                 hash--;
374         }
375
376         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377                 if (do_wakeup & (1 << i))
378                         wake_up(&conf->wait_for_stripe[i]);
379         }
380
381         if (do_wakeup) {
382                 if (atomic_read(&conf->active_stripes) == 0)
383                         wake_up(&conf->wait_for_quiescent);
384                 if (conf->retry_read_aligned)
385                         md_wakeup_thread(conf->mddev->thread);
386         }
387 }
388
389 /* should hold conf->device_lock already */
390 static int release_stripe_list(struct r5conf *conf,
391                                struct list_head *temp_inactive_list)
392 {
393         struct stripe_head *sh;
394         int count = 0;
395         struct llist_node *head;
396
397         head = llist_del_all(&conf->released_stripes);
398         head = llist_reverse_order(head);
399         while (head) {
400                 int hash;
401
402                 sh = llist_entry(head, struct stripe_head, release_list);
403                 head = llist_next(head);
404                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405                 smp_mb();
406                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407                 /*
408                  * Don't worry the bit is set here, because if the bit is set
409                  * again, the count is always > 1. This is true for
410                  * STRIPE_ON_UNPLUG_LIST bit too.
411                  */
412                 hash = sh->hash_lock_index;
413                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
414                 count++;
415         }
416
417         return count;
418 }
419
420 static void release_stripe(struct stripe_head *sh)
421 {
422         struct r5conf *conf = sh->raid_conf;
423         unsigned long flags;
424         struct list_head list;
425         int hash;
426         bool wakeup;
427
428         /* Avoid release_list until the last reference.
429          */
430         if (atomic_add_unless(&sh->count, -1, 1))
431                 return;
432
433         if (unlikely(!conf->mddev->thread) ||
434                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
435                 goto slow_path;
436         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437         if (wakeup)
438                 md_wakeup_thread(conf->mddev->thread);
439         return;
440 slow_path:
441         local_irq_save(flags);
442         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444                 INIT_LIST_HEAD(&list);
445                 hash = sh->hash_lock_index;
446                 do_release_stripe(conf, sh, &list);
447                 spin_unlock(&conf->device_lock);
448                 release_inactive_stripe_list(conf, &list, hash);
449         }
450         local_irq_restore(flags);
451 }
452
453 static inline void remove_hash(struct stripe_head *sh)
454 {
455         pr_debug("remove_hash(), stripe %llu\n",
456                 (unsigned long long)sh->sector);
457
458         hlist_del_init(&sh->hash);
459 }
460
461 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
462 {
463         struct hlist_head *hp = stripe_hash(conf, sh->sector);
464
465         pr_debug("insert_hash(), stripe %llu\n",
466                 (unsigned long long)sh->sector);
467
468         hlist_add_head(&sh->hash, hp);
469 }
470
471 /* find an idle stripe, make sure it is unhashed, and return it. */
472 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
473 {
474         struct stripe_head *sh = NULL;
475         struct list_head *first;
476
477         if (list_empty(conf->inactive_list + hash))
478                 goto out;
479         first = (conf->inactive_list + hash)->next;
480         sh = list_entry(first, struct stripe_head, lru);
481         list_del_init(first);
482         remove_hash(sh);
483         atomic_inc(&conf->active_stripes);
484         BUG_ON(hash != sh->hash_lock_index);
485         if (list_empty(conf->inactive_list + hash))
486                 atomic_inc(&conf->empty_inactive_list_nr);
487 out:
488         return sh;
489 }
490
491 static void shrink_buffers(struct stripe_head *sh)
492 {
493         struct page *p;
494         int i;
495         int num = sh->raid_conf->pool_size;
496
497         for (i = 0; i < num ; i++) {
498                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
499                 p = sh->dev[i].page;
500                 if (!p)
501                         continue;
502                 sh->dev[i].page = NULL;
503                 put_page(p);
504         }
505 }
506
507 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
508 {
509         int i;
510         int num = sh->raid_conf->pool_size;
511
512         for (i = 0; i < num; i++) {
513                 struct page *page;
514
515                 if (!(page = alloc_page(gfp))) {
516                         return 1;
517                 }
518                 sh->dev[i].page = page;
519                 sh->dev[i].orig_page = page;
520         }
521         return 0;
522 }
523
524 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526                             struct stripe_head *sh);
527
528 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
529 {
530         struct r5conf *conf = sh->raid_conf;
531         int i, seq;
532
533         BUG_ON(atomic_read(&sh->count) != 0);
534         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535         BUG_ON(stripe_operations_active(sh));
536         BUG_ON(sh->batch_head);
537
538         pr_debug("init_stripe called, stripe %llu\n",
539                 (unsigned long long)sector);
540 retry:
541         seq = read_seqcount_begin(&conf->gen_lock);
542         sh->generation = conf->generation - previous;
543         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
544         sh->sector = sector;
545         stripe_set_idx(sector, conf, previous, sh);
546         sh->state = 0;
547
548         for (i = sh->disks; i--; ) {
549                 struct r5dev *dev = &sh->dev[i];
550
551                 if (dev->toread || dev->read || dev->towrite || dev->written ||
552                     test_bit(R5_LOCKED, &dev->flags)) {
553                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
554                                (unsigned long long)sh->sector, i, dev->toread,
555                                dev->read, dev->towrite, dev->written,
556                                test_bit(R5_LOCKED, &dev->flags));
557                         WARN_ON(1);
558                 }
559                 dev->flags = 0;
560                 raid5_build_block(sh, i, previous);
561         }
562         if (read_seqcount_retry(&conf->gen_lock, seq))
563                 goto retry;
564         sh->overwrite_disks = 0;
565         insert_hash(conf, sh);
566         sh->cpu = smp_processor_id();
567         set_bit(STRIPE_BATCH_READY, &sh->state);
568 }
569
570 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571                                          short generation)
572 {
573         struct stripe_head *sh;
574
575         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577                 if (sh->sector == sector && sh->generation == generation)
578                         return sh;
579         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
580         return NULL;
581 }
582
583 /*
584  * Need to check if array has failed when deciding whether to:
585  *  - start an array
586  *  - remove non-faulty devices
587  *  - add a spare
588  *  - allow a reshape
589  * This determination is simple when no reshape is happening.
590  * However if there is a reshape, we need to carefully check
591  * both the before and after sections.
592  * This is because some failed devices may only affect one
593  * of the two sections, and some non-in_sync devices may
594  * be insync in the section most affected by failed devices.
595  */
596 static int calc_degraded(struct r5conf *conf)
597 {
598         int degraded, degraded2;
599         int i;
600
601         rcu_read_lock();
602         degraded = 0;
603         for (i = 0; i < conf->previous_raid_disks; i++) {
604                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605                 if (rdev && test_bit(Faulty, &rdev->flags))
606                         rdev = rcu_dereference(conf->disks[i].replacement);
607                 if (!rdev || test_bit(Faulty, &rdev->flags))
608                         degraded++;
609                 else if (test_bit(In_sync, &rdev->flags))
610                         ;
611                 else
612                         /* not in-sync or faulty.
613                          * If the reshape increases the number of devices,
614                          * this is being recovered by the reshape, so
615                          * this 'previous' section is not in_sync.
616                          * If the number of devices is being reduced however,
617                          * the device can only be part of the array if
618                          * we are reverting a reshape, so this section will
619                          * be in-sync.
620                          */
621                         if (conf->raid_disks >= conf->previous_raid_disks)
622                                 degraded++;
623         }
624         rcu_read_unlock();
625         if (conf->raid_disks == conf->previous_raid_disks)
626                 return degraded;
627         rcu_read_lock();
628         degraded2 = 0;
629         for (i = 0; i < conf->raid_disks; i++) {
630                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631                 if (rdev && test_bit(Faulty, &rdev->flags))
632                         rdev = rcu_dereference(conf->disks[i].replacement);
633                 if (!rdev || test_bit(Faulty, &rdev->flags))
634                         degraded2++;
635                 else if (test_bit(In_sync, &rdev->flags))
636                         ;
637                 else
638                         /* not in-sync or faulty.
639                          * If reshape increases the number of devices, this
640                          * section has already been recovered, else it
641                          * almost certainly hasn't.
642                          */
643                         if (conf->raid_disks <= conf->previous_raid_disks)
644                                 degraded2++;
645         }
646         rcu_read_unlock();
647         if (degraded2 > degraded)
648                 return degraded2;
649         return degraded;
650 }
651
652 static int has_failed(struct r5conf *conf)
653 {
654         int degraded;
655
656         if (conf->mddev->reshape_position == MaxSector)
657                 return conf->mddev->degraded > conf->max_degraded;
658
659         degraded = calc_degraded(conf);
660         if (degraded > conf->max_degraded)
661                 return 1;
662         return 0;
663 }
664
665 static struct stripe_head *
666 get_active_stripe(struct r5conf *conf, sector_t sector,
667                   int previous, int noblock, int noquiesce)
668 {
669         struct stripe_head *sh;
670         int hash = stripe_hash_locks_hash(sector);
671
672         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
673
674         spin_lock_irq(conf->hash_locks + hash);
675
676         do {
677                 wait_event_lock_irq(conf->wait_for_quiescent,
678                                     conf->quiesce == 0 || noquiesce,
679                                     *(conf->hash_locks + hash));
680                 sh = __find_stripe(conf, sector, conf->generation - previous);
681                 if (!sh) {
682                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683                                 sh = get_free_stripe(conf, hash);
684                                 if (!sh && !test_bit(R5_DID_ALLOC,
685                                                      &conf->cache_state))
686                                         set_bit(R5_ALLOC_MORE,
687                                                 &conf->cache_state);
688                         }
689                         if (noblock && sh == NULL)
690                                 break;
691                         if (!sh) {
692                                 set_bit(R5_INACTIVE_BLOCKED,
693                                         &conf->cache_state);
694                                 wait_event_exclusive_cmd(
695                                         conf->wait_for_stripe[hash],
696                                         !list_empty(conf->inactive_list + hash) &&
697                                         (atomic_read(&conf->active_stripes)
698                                          < (conf->max_nr_stripes * 3 / 4)
699                                          || !test_bit(R5_INACTIVE_BLOCKED,
700                                                       &conf->cache_state)),
701                                         spin_unlock_irq(conf->hash_locks + hash),
702                                         spin_lock_irq(conf->hash_locks + hash));
703                                 clear_bit(R5_INACTIVE_BLOCKED,
704                                           &conf->cache_state);
705                         } else {
706                                 init_stripe(sh, sector, previous);
707                                 atomic_inc(&sh->count);
708                         }
709                 } else if (!atomic_inc_not_zero(&sh->count)) {
710                         spin_lock(&conf->device_lock);
711                         if (!atomic_read(&sh->count)) {
712                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
713                                         atomic_inc(&conf->active_stripes);
714                                 BUG_ON(list_empty(&sh->lru) &&
715                                        !test_bit(STRIPE_EXPANDING, &sh->state));
716                                 list_del_init(&sh->lru);
717                                 if (sh->group) {
718                                         sh->group->stripes_cnt--;
719                                         sh->group = NULL;
720                                 }
721                         }
722                         atomic_inc(&sh->count);
723                         spin_unlock(&conf->device_lock);
724                 }
725         } while (sh == NULL);
726
727         if (!list_empty(conf->inactive_list + hash))
728                 wake_up(&conf->wait_for_stripe[hash]);
729
730         spin_unlock_irq(conf->hash_locks + hash);
731         return sh;
732 }
733
734 static bool is_full_stripe_write(struct stripe_head *sh)
735 {
736         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738 }
739
740 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741 {
742         local_irq_disable();
743         if (sh1 > sh2) {
744                 spin_lock(&sh2->stripe_lock);
745                 spin_lock_nested(&sh1->stripe_lock, 1);
746         } else {
747                 spin_lock(&sh1->stripe_lock);
748                 spin_lock_nested(&sh2->stripe_lock, 1);
749         }
750 }
751
752 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753 {
754         spin_unlock(&sh1->stripe_lock);
755         spin_unlock(&sh2->stripe_lock);
756         local_irq_enable();
757 }
758
759 /* Only freshly new full stripe normal write stripe can be added to a batch list */
760 static bool stripe_can_batch(struct stripe_head *sh)
761 {
762         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764                 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770         struct stripe_head *head;
771         sector_t head_sector, tmp_sec;
772         int hash;
773         int dd_idx;
774
775         if (!stripe_can_batch(sh))
776                 return;
777         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778         tmp_sec = sh->sector;
779         if (!sector_div(tmp_sec, conf->chunk_sectors))
780                 return;
781         head_sector = sh->sector - STRIPE_SECTORS;
782
783         hash = stripe_hash_locks_hash(head_sector);
784         spin_lock_irq(conf->hash_locks + hash);
785         head = __find_stripe(conf, head_sector, conf->generation);
786         if (head && !atomic_inc_not_zero(&head->count)) {
787                 spin_lock(&conf->device_lock);
788                 if (!atomic_read(&head->count)) {
789                         if (!test_bit(STRIPE_HANDLE, &head->state))
790                                 atomic_inc(&conf->active_stripes);
791                         BUG_ON(list_empty(&head->lru) &&
792                                !test_bit(STRIPE_EXPANDING, &head->state));
793                         list_del_init(&head->lru);
794                         if (head->group) {
795                                 head->group->stripes_cnt--;
796                                 head->group = NULL;
797                         }
798                 }
799                 atomic_inc(&head->count);
800                 spin_unlock(&conf->device_lock);
801         }
802         spin_unlock_irq(conf->hash_locks + hash);
803
804         if (!head)
805                 return;
806         if (!stripe_can_batch(head))
807                 goto out;
808
809         lock_two_stripes(head, sh);
810         /* clear_batch_ready clear the flag */
811         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812                 goto unlock_out;
813
814         if (sh->batch_head)
815                 goto unlock_out;
816
817         dd_idx = 0;
818         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819                 dd_idx++;
820         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821                 goto unlock_out;
822
823         if (head->batch_head) {
824                 spin_lock(&head->batch_head->batch_lock);
825                 /* This batch list is already running */
826                 if (!stripe_can_batch(head)) {
827                         spin_unlock(&head->batch_head->batch_lock);
828                         goto unlock_out;
829                 }
830
831                 /*
832                  * at this point, head's BATCH_READY could be cleared, but we
833                  * can still add the stripe to batch list
834                  */
835                 list_add(&sh->batch_list, &head->batch_list);
836                 spin_unlock(&head->batch_head->batch_lock);
837
838                 sh->batch_head = head->batch_head;
839         } else {
840                 head->batch_head = head;
841                 sh->batch_head = head->batch_head;
842                 spin_lock(&head->batch_lock);
843                 list_add_tail(&sh->batch_list, &head->batch_list);
844                 spin_unlock(&head->batch_lock);
845         }
846
847         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848                 if (atomic_dec_return(&conf->preread_active_stripes)
849                     < IO_THRESHOLD)
850                         md_wakeup_thread(conf->mddev->thread);
851
852         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853                 int seq = sh->bm_seq;
854                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855                     sh->batch_head->bm_seq > seq)
856                         seq = sh->batch_head->bm_seq;
857                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858                 sh->batch_head->bm_seq = seq;
859         }
860
861         atomic_inc(&sh->count);
862 unlock_out:
863         unlock_two_stripes(head, sh);
864 out:
865         release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869  * in this stripe_head.
870  */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873         sector_t progress = conf->reshape_progress;
874         /* Need a memory barrier to make sure we see the value
875          * of conf->generation, or ->data_offset that was set before
876          * reshape_progress was updated.
877          */
878         smp_rmb();
879         if (progress == MaxSector)
880                 return 0;
881         if (sh->generation == conf->generation - 1)
882                 return 0;
883         /* We are in a reshape, and this is a new-generation stripe,
884          * so use new_data_offset.
885          */
886         return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi, int error);
891 static void
892 raid5_end_write_request(struct bio *bi, int error);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896         struct r5conf *conf = sh->raid_conf;
897         int i, disks = sh->disks;
898         struct stripe_head *head_sh = sh;
899
900         might_sleep();
901
902         for (i = disks; i--; ) {
903                 int rw;
904                 int replace_only = 0;
905                 struct bio *bi, *rbi;
906                 struct md_rdev *rdev, *rrdev = NULL;
907
908                 sh = head_sh;
909                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911                                 rw = WRITE_FUA;
912                         else
913                                 rw = WRITE;
914                         if (test_bit(R5_Discard, &sh->dev[i].flags))
915                                 rw |= REQ_DISCARD;
916                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917                         rw = READ;
918                 else if (test_and_clear_bit(R5_WantReplace,
919                                             &sh->dev[i].flags)) {
920                         rw = WRITE;
921                         replace_only = 1;
922                 } else
923                         continue;
924                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925                         rw |= REQ_SYNC;
926
927 again:
928                 bi = &sh->dev[i].req;
929                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931                 rcu_read_lock();
932                 rrdev = rcu_dereference(conf->disks[i].replacement);
933                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934                 rdev = rcu_dereference(conf->disks[i].rdev);
935                 if (!rdev) {
936                         rdev = rrdev;
937                         rrdev = NULL;
938                 }
939                 if (rw & WRITE) {
940                         if (replace_only)
941                                 rdev = NULL;
942                         if (rdev == rrdev)
943                                 /* We raced and saw duplicates */
944                                 rrdev = NULL;
945                 } else {
946                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947                                 rdev = rrdev;
948                         rrdev = NULL;
949                 }
950
951                 if (rdev && test_bit(Faulty, &rdev->flags))
952                         rdev = NULL;
953                 if (rdev)
954                         atomic_inc(&rdev->nr_pending);
955                 if (rrdev && test_bit(Faulty, &rrdev->flags))
956                         rrdev = NULL;
957                 if (rrdev)
958                         atomic_inc(&rrdev->nr_pending);
959                 rcu_read_unlock();
960
961                 /* We have already checked bad blocks for reads.  Now
962                  * need to check for writes.  We never accept write errors
963                  * on the replacement, so we don't to check rrdev.
964                  */
965                 while ((rw & WRITE) && rdev &&
966                        test_bit(WriteErrorSeen, &rdev->flags)) {
967                         sector_t first_bad;
968                         int bad_sectors;
969                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970                                               &first_bad, &bad_sectors);
971                         if (!bad)
972                                 break;
973
974                         if (bad < 0) {
975                                 set_bit(BlockedBadBlocks, &rdev->flags);
976                                 if (!conf->mddev->external &&
977                                     conf->mddev->flags) {
978                                         /* It is very unlikely, but we might
979                                          * still need to write out the
980                                          * bad block log - better give it
981                                          * a chance*/
982                                         md_check_recovery(conf->mddev);
983                                 }
984                                 /*
985                                  * Because md_wait_for_blocked_rdev
986                                  * will dec nr_pending, we must
987                                  * increment it first.
988                                  */
989                                 atomic_inc(&rdev->nr_pending);
990                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
991                         } else {
992                                 /* Acknowledged bad block - skip the write */
993                                 rdev_dec_pending(rdev, conf->mddev);
994                                 rdev = NULL;
995                         }
996                 }
997
998                 if (rdev) {
999                         if (s->syncing || s->expanding || s->expanded
1000                             || s->replacing)
1001                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003                         set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005                         bio_reset(bi);
1006                         bi->bi_bdev = rdev->bdev;
1007                         bi->bi_rw = rw;
1008                         bi->bi_end_io = (rw & WRITE)
1009                                 ? raid5_end_write_request
1010                                 : raid5_end_read_request;
1011                         bi->bi_private = sh;
1012
1013                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014                                 __func__, (unsigned long long)sh->sector,
1015                                 bi->bi_rw, i);
1016                         atomic_inc(&sh->count);
1017                         if (sh != head_sh)
1018                                 atomic_inc(&head_sh->count);
1019                         if (use_new_offset(conf, sh))
1020                                 bi->bi_iter.bi_sector = (sh->sector
1021                                                  + rdev->new_data_offset);
1022                         else
1023                                 bi->bi_iter.bi_sector = (sh->sector
1024                                                  + rdev->data_offset);
1025                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026                                 bi->bi_rw |= REQ_NOMERGE;
1027
1028                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1031                         bi->bi_vcnt = 1;
1032                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033                         bi->bi_io_vec[0].bv_offset = 0;
1034                         bi->bi_iter.bi_size = STRIPE_SIZE;
1035                         /*
1036                          * If this is discard request, set bi_vcnt 0. We don't
1037                          * want to confuse SCSI because SCSI will replace payload
1038                          */
1039                         if (rw & REQ_DISCARD)
1040                                 bi->bi_vcnt = 0;
1041                         if (rrdev)
1042                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044                         if (conf->mddev->gendisk)
1045                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046                                                       bi, disk_devt(conf->mddev->gendisk),
1047                                                       sh->dev[i].sector);
1048                         generic_make_request(bi);
1049                 }
1050                 if (rrdev) {
1051                         if (s->syncing || s->expanding || s->expanded
1052                             || s->replacing)
1053                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055                         set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057                         bio_reset(rbi);
1058                         rbi->bi_bdev = rrdev->bdev;
1059                         rbi->bi_rw = rw;
1060                         BUG_ON(!(rw & WRITE));
1061                         rbi->bi_end_io = raid5_end_write_request;
1062                         rbi->bi_private = sh;
1063
1064                         pr_debug("%s: for %llu schedule op %ld on "
1065                                  "replacement disc %d\n",
1066                                 __func__, (unsigned long long)sh->sector,
1067                                 rbi->bi_rw, i);
1068                         atomic_inc(&sh->count);
1069                         if (sh != head_sh)
1070                                 atomic_inc(&head_sh->count);
1071                         if (use_new_offset(conf, sh))
1072                                 rbi->bi_iter.bi_sector = (sh->sector
1073                                                   + rrdev->new_data_offset);
1074                         else
1075                                 rbi->bi_iter.bi_sector = (sh->sector
1076                                                   + rrdev->data_offset);
1077                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080                         rbi->bi_vcnt = 1;
1081                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082                         rbi->bi_io_vec[0].bv_offset = 0;
1083                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1084                         /*
1085                          * If this is discard request, set bi_vcnt 0. We don't
1086                          * want to confuse SCSI because SCSI will replace payload
1087                          */
1088                         if (rw & REQ_DISCARD)
1089                                 rbi->bi_vcnt = 0;
1090                         if (conf->mddev->gendisk)
1091                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092                                                       rbi, disk_devt(conf->mddev->gendisk),
1093                                                       sh->dev[i].sector);
1094                         generic_make_request(rbi);
1095                 }
1096                 if (!rdev && !rrdev) {
1097                         if (rw & WRITE)
1098                                 set_bit(STRIPE_DEGRADED, &sh->state);
1099                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1100                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1101                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102                         set_bit(STRIPE_HANDLE, &sh->state);
1103                 }
1104
1105                 if (!head_sh->batch_head)
1106                         continue;
1107                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108                                       batch_list);
1109                 if (sh != head_sh)
1110                         goto again;
1111         }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116         sector_t sector, struct dma_async_tx_descriptor *tx,
1117         struct stripe_head *sh)
1118 {
1119         struct bio_vec bvl;
1120         struct bvec_iter iter;
1121         struct page *bio_page;
1122         int page_offset;
1123         struct async_submit_ctl submit;
1124         enum async_tx_flags flags = 0;
1125
1126         if (bio->bi_iter.bi_sector >= sector)
1127                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128         else
1129                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131         if (frombio)
1132                 flags |= ASYNC_TX_FENCE;
1133         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135         bio_for_each_segment(bvl, bio, iter) {
1136                 int len = bvl.bv_len;
1137                 int clen;
1138                 int b_offset = 0;
1139
1140                 if (page_offset < 0) {
1141                         b_offset = -page_offset;
1142                         page_offset += b_offset;
1143                         len -= b_offset;
1144                 }
1145
1146                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147                         clen = STRIPE_SIZE - page_offset;
1148                 else
1149                         clen = len;
1150
1151                 if (clen > 0) {
1152                         b_offset += bvl.bv_offset;
1153                         bio_page = bvl.bv_page;
1154                         if (frombio) {
1155                                 if (sh->raid_conf->skip_copy &&
1156                                     b_offset == 0 && page_offset == 0 &&
1157                                     clen == STRIPE_SIZE)
1158                                         *page = bio_page;
1159                                 else
1160                                         tx = async_memcpy(*page, bio_page, page_offset,
1161                                                   b_offset, clen, &submit);
1162                         } else
1163                                 tx = async_memcpy(bio_page, *page, b_offset,
1164                                                   page_offset, clen, &submit);
1165                 }
1166                 /* chain the operations */
1167                 submit.depend_tx = tx;
1168
1169                 if (clen < len) /* hit end of page */
1170                         break;
1171                 page_offset +=  len;
1172         }
1173
1174         return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179         struct stripe_head *sh = stripe_head_ref;
1180         struct bio *return_bi = NULL;
1181         int i;
1182
1183         pr_debug("%s: stripe %llu\n", __func__,
1184                 (unsigned long long)sh->sector);
1185
1186         /* clear completed biofills */
1187         for (i = sh->disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189
1190                 /* acknowledge completion of a biofill operation */
1191                 /* and check if we need to reply to a read request,
1192                  * new R5_Wantfill requests are held off until
1193                  * !STRIPE_BIOFILL_RUN
1194                  */
1195                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196                         struct bio *rbi, *rbi2;
1197
1198                         BUG_ON(!dev->read);
1199                         rbi = dev->read;
1200                         dev->read = NULL;
1201                         while (rbi && rbi->bi_iter.bi_sector <
1202                                 dev->sector + STRIPE_SECTORS) {
1203                                 rbi2 = r5_next_bio(rbi, dev->sector);
1204                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1205                                         rbi->bi_next = return_bi;
1206                                         return_bi = rbi;
1207                                 }
1208                                 rbi = rbi2;
1209                         }
1210                 }
1211         }
1212         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214         return_io(return_bi);
1215
1216         set_bit(STRIPE_HANDLE, &sh->state);
1217         release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222         struct dma_async_tx_descriptor *tx = NULL;
1223         struct async_submit_ctl submit;
1224         int i;
1225
1226         BUG_ON(sh->batch_head);
1227         pr_debug("%s: stripe %llu\n", __func__,
1228                 (unsigned long long)sh->sector);
1229
1230         for (i = sh->disks; i--; ) {
1231                 struct r5dev *dev = &sh->dev[i];
1232                 if (test_bit(R5_Wantfill, &dev->flags)) {
1233                         struct bio *rbi;
1234                         spin_lock_irq(&sh->stripe_lock);
1235                         dev->read = rbi = dev->toread;
1236                         dev->toread = NULL;
1237                         spin_unlock_irq(&sh->stripe_lock);
1238                         while (rbi && rbi->bi_iter.bi_sector <
1239                                 dev->sector + STRIPE_SECTORS) {
1240                                 tx = async_copy_data(0, rbi, &dev->page,
1241                                         dev->sector, tx, sh);
1242                                 rbi = r5_next_bio(rbi, dev->sector);
1243                         }
1244                 }
1245         }
1246
1247         atomic_inc(&sh->count);
1248         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249         async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254         struct r5dev *tgt;
1255
1256         if (target < 0)
1257                 return;
1258
1259         tgt = &sh->dev[target];
1260         set_bit(R5_UPTODATE, &tgt->flags);
1261         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262         clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267         struct stripe_head *sh = stripe_head_ref;
1268
1269         pr_debug("%s: stripe %llu\n", __func__,
1270                 (unsigned long long)sh->sector);
1271
1272         /* mark the computed target(s) as uptodate */
1273         mark_target_uptodate(sh, sh->ops.target);
1274         mark_target_uptodate(sh, sh->ops.target2);
1275
1276         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277         if (sh->check_state == check_state_compute_run)
1278                 sh->check_state = check_state_compute_result;
1279         set_bit(STRIPE_HANDLE, &sh->state);
1280         release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285                                  struct raid5_percpu *percpu, int i)
1286 {
1287         void *addr;
1288
1289         addr = flex_array_get(percpu->scribble, i);
1290         return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296         void *addr;
1297
1298         addr = flex_array_get(percpu->scribble, i);
1299         return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305         int disks = sh->disks;
1306         struct page **xor_srcs = to_addr_page(percpu, 0);
1307         int target = sh->ops.target;
1308         struct r5dev *tgt = &sh->dev[target];
1309         struct page *xor_dest = tgt->page;
1310         int count = 0;
1311         struct dma_async_tx_descriptor *tx;
1312         struct async_submit_ctl submit;
1313         int i;
1314
1315         BUG_ON(sh->batch_head);
1316
1317         pr_debug("%s: stripe %llu block: %d\n",
1318                 __func__, (unsigned long long)sh->sector, target);
1319         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321         for (i = disks; i--; )
1322                 if (i != target)
1323                         xor_srcs[count++] = sh->dev[i].page;
1324
1325         atomic_inc(&sh->count);
1326
1327         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329         if (unlikely(count == 1))
1330                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331         else
1332                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334         return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338  * @srcs - (struct page *) array of size sh->disks
1339  * @sh - stripe_head to parse
1340  *
1341  * Populates srcs in proper layout order for the stripe and returns the
1342  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1343  * destination buffer is recorded in srcs[count] and the Q destination
1344  * is recorded in srcs[count+1]].
1345  */
1346 static int set_syndrome_sources(struct page **srcs,
1347                                 struct stripe_head *sh,
1348                                 int srctype)
1349 {
1350         int disks = sh->disks;
1351         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352         int d0_idx = raid6_d0(sh);
1353         int count;
1354         int i;
1355
1356         for (i = 0; i < disks; i++)
1357                 srcs[i] = NULL;
1358
1359         count = 0;
1360         i = d0_idx;
1361         do {
1362                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363                 struct r5dev *dev = &sh->dev[i];
1364
1365                 if (i == sh->qd_idx || i == sh->pd_idx ||
1366                     (srctype == SYNDROME_SRC_ALL) ||
1367                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368                      test_bit(R5_Wantdrain, &dev->flags)) ||
1369                     (srctype == SYNDROME_SRC_WRITTEN &&
1370                      dev->written))
1371                         srcs[slot] = sh->dev[i].page;
1372                 i = raid6_next_disk(i, disks);
1373         } while (i != d0_idx);
1374
1375         return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381         int disks = sh->disks;
1382         struct page **blocks = to_addr_page(percpu, 0);
1383         int target;
1384         int qd_idx = sh->qd_idx;
1385         struct dma_async_tx_descriptor *tx;
1386         struct async_submit_ctl submit;
1387         struct r5dev *tgt;
1388         struct page *dest;
1389         int i;
1390         int count;
1391
1392         BUG_ON(sh->batch_head);
1393         if (sh->ops.target < 0)
1394                 target = sh->ops.target2;
1395         else if (sh->ops.target2 < 0)
1396                 target = sh->ops.target;
1397         else
1398                 /* we should only have one valid target */
1399                 BUG();
1400         BUG_ON(target < 0);
1401         pr_debug("%s: stripe %llu block: %d\n",
1402                 __func__, (unsigned long long)sh->sector, target);
1403
1404         tgt = &sh->dev[target];
1405         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406         dest = tgt->page;
1407
1408         atomic_inc(&sh->count);
1409
1410         if (target == qd_idx) {
1411                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412                 blocks[count] = NULL; /* regenerating p is not necessary */
1413                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415                                   ops_complete_compute, sh,
1416                                   to_addr_conv(sh, percpu, 0));
1417                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418         } else {
1419                 /* Compute any data- or p-drive using XOR */
1420                 count = 0;
1421                 for (i = disks; i-- ; ) {
1422                         if (i == target || i == qd_idx)
1423                                 continue;
1424                         blocks[count++] = sh->dev[i].page;
1425                 }
1426
1427                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428                                   NULL, ops_complete_compute, sh,
1429                                   to_addr_conv(sh, percpu, 0));
1430                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431         }
1432
1433         return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439         int i, count, disks = sh->disks;
1440         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441         int d0_idx = raid6_d0(sh);
1442         int faila = -1, failb = -1;
1443         int target = sh->ops.target;
1444         int target2 = sh->ops.target2;
1445         struct r5dev *tgt = &sh->dev[target];
1446         struct r5dev *tgt2 = &sh->dev[target2];
1447         struct dma_async_tx_descriptor *tx;
1448         struct page **blocks = to_addr_page(percpu, 0);
1449         struct async_submit_ctl submit;
1450
1451         BUG_ON(sh->batch_head);
1452         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453                  __func__, (unsigned long long)sh->sector, target, target2);
1454         BUG_ON(target < 0 || target2 < 0);
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458         /* we need to open-code set_syndrome_sources to handle the
1459          * slot number conversion for 'faila' and 'failb'
1460          */
1461         for (i = 0; i < disks ; i++)
1462                 blocks[i] = NULL;
1463         count = 0;
1464         i = d0_idx;
1465         do {
1466                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468                 blocks[slot] = sh->dev[i].page;
1469
1470                 if (i == target)
1471                         faila = slot;
1472                 if (i == target2)
1473                         failb = slot;
1474                 i = raid6_next_disk(i, disks);
1475         } while (i != d0_idx);
1476
1477         BUG_ON(faila == failb);
1478         if (failb < faila)
1479                 swap(faila, failb);
1480         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481                  __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483         atomic_inc(&sh->count);
1484
1485         if (failb == syndrome_disks+1) {
1486                 /* Q disk is one of the missing disks */
1487                 if (faila == syndrome_disks) {
1488                         /* Missing P+Q, just recompute */
1489                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490                                           ops_complete_compute, sh,
1491                                           to_addr_conv(sh, percpu, 0));
1492                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493                                                   STRIPE_SIZE, &submit);
1494                 } else {
1495                         struct page *dest;
1496                         int data_target;
1497                         int qd_idx = sh->qd_idx;
1498
1499                         /* Missing D+Q: recompute D from P, then recompute Q */
1500                         if (target == qd_idx)
1501                                 data_target = target2;
1502                         else
1503                                 data_target = target;
1504
1505                         count = 0;
1506                         for (i = disks; i-- ; ) {
1507                                 if (i == data_target || i == qd_idx)
1508                                         continue;
1509                                 blocks[count++] = sh->dev[i].page;
1510                         }
1511                         dest = sh->dev[data_target].page;
1512                         init_async_submit(&submit,
1513                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514                                           NULL, NULL, NULL,
1515                                           to_addr_conv(sh, percpu, 0));
1516                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517                                        &submit);
1518
1519                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521                                           ops_complete_compute, sh,
1522                                           to_addr_conv(sh, percpu, 0));
1523                         return async_gen_syndrome(blocks, 0, count+2,
1524                                                   STRIPE_SIZE, &submit);
1525                 }
1526         } else {
1527                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528                                   ops_complete_compute, sh,
1529                                   to_addr_conv(sh, percpu, 0));
1530                 if (failb == syndrome_disks) {
1531                         /* We're missing D+P. */
1532                         return async_raid6_datap_recov(syndrome_disks+2,
1533                                                        STRIPE_SIZE, faila,
1534                                                        blocks, &submit);
1535                 } else {
1536                         /* We're missing D+D. */
1537                         return async_raid6_2data_recov(syndrome_disks+2,
1538                                                        STRIPE_SIZE, faila, failb,
1539                                                        blocks, &submit);
1540                 }
1541         }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546         struct stripe_head *sh = stripe_head_ref;
1547
1548         pr_debug("%s: stripe %llu\n", __func__,
1549                 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554                 struct dma_async_tx_descriptor *tx)
1555 {
1556         int disks = sh->disks;
1557         struct page **xor_srcs = to_addr_page(percpu, 0);
1558         int count = 0, pd_idx = sh->pd_idx, i;
1559         struct async_submit_ctl submit;
1560
1561         /* existing parity data subtracted */
1562         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564         BUG_ON(sh->batch_head);
1565         pr_debug("%s: stripe %llu\n", __func__,
1566                 (unsigned long long)sh->sector);
1567
1568         for (i = disks; i--; ) {
1569                 struct r5dev *dev = &sh->dev[i];
1570                 /* Only process blocks that are known to be uptodate */
1571                 if (test_bit(R5_Wantdrain, &dev->flags))
1572                         xor_srcs[count++] = dev->page;
1573         }
1574
1575         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579         return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584                 struct dma_async_tx_descriptor *tx)
1585 {
1586         struct page **blocks = to_addr_page(percpu, 0);
1587         int count;
1588         struct async_submit_ctl submit;
1589
1590         pr_debug("%s: stripe %llu\n", __func__,
1591                 (unsigned long long)sh->sector);
1592
1593         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598
1599         return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605         int disks = sh->disks;
1606         int i;
1607         struct stripe_head *head_sh = sh;
1608
1609         pr_debug("%s: stripe %llu\n", __func__,
1610                 (unsigned long long)sh->sector);
1611
1612         for (i = disks; i--; ) {
1613                 struct r5dev *dev;
1614                 struct bio *chosen;
1615
1616                 sh = head_sh;
1617                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618                         struct bio *wbi;
1619
1620 again:
1621                         dev = &sh->dev[i];
1622                         spin_lock_irq(&sh->stripe_lock);
1623                         chosen = dev->towrite;
1624                         dev->towrite = NULL;
1625                         sh->overwrite_disks = 0;
1626                         BUG_ON(dev->written);
1627                         wbi = dev->written = chosen;
1628                         spin_unlock_irq(&sh->stripe_lock);
1629                         WARN_ON(dev->page != dev->orig_page);
1630
1631                         while (wbi && wbi->bi_iter.bi_sector <
1632                                 dev->sector + STRIPE_SECTORS) {
1633                                 if (wbi->bi_rw & REQ_FUA)
1634                                         set_bit(R5_WantFUA, &dev->flags);
1635                                 if (wbi->bi_rw & REQ_SYNC)
1636                                         set_bit(R5_SyncIO, &dev->flags);
1637                                 if (wbi->bi_rw & REQ_DISCARD)
1638                                         set_bit(R5_Discard, &dev->flags);
1639                                 else {
1640                                         tx = async_copy_data(1, wbi, &dev->page,
1641                                                 dev->sector, tx, sh);
1642                                         if (dev->page != dev->orig_page) {
1643                                                 set_bit(R5_SkipCopy, &dev->flags);
1644                                                 clear_bit(R5_UPTODATE, &dev->flags);
1645                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1646                                         }
1647                                 }
1648                                 wbi = r5_next_bio(wbi, dev->sector);
1649                         }
1650
1651                         if (head_sh->batch_head) {
1652                                 sh = list_first_entry(&sh->batch_list,
1653                                                       struct stripe_head,
1654                                                       batch_list);
1655                                 if (sh == head_sh)
1656                                         continue;
1657                                 goto again;
1658                         }
1659                 }
1660         }
1661
1662         return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667         struct stripe_head *sh = stripe_head_ref;
1668         int disks = sh->disks;
1669         int pd_idx = sh->pd_idx;
1670         int qd_idx = sh->qd_idx;
1671         int i;
1672         bool fua = false, sync = false, discard = false;
1673
1674         pr_debug("%s: stripe %llu\n", __func__,
1675                 (unsigned long long)sh->sector);
1676
1677         for (i = disks; i--; ) {
1678                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681         }
1682
1683         for (i = disks; i--; ) {
1684                 struct r5dev *dev = &sh->dev[i];
1685
1686                 if (dev->written || i == pd_idx || i == qd_idx) {
1687                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688                                 set_bit(R5_UPTODATE, &dev->flags);
1689                         if (fua)
1690                                 set_bit(R5_WantFUA, &dev->flags);
1691                         if (sync)
1692                                 set_bit(R5_SyncIO, &dev->flags);
1693                 }
1694         }
1695
1696         if (sh->reconstruct_state == reconstruct_state_drain_run)
1697                 sh->reconstruct_state = reconstruct_state_drain_result;
1698         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700         else {
1701                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702                 sh->reconstruct_state = reconstruct_state_result;
1703         }
1704
1705         set_bit(STRIPE_HANDLE, &sh->state);
1706         release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711                      struct dma_async_tx_descriptor *tx)
1712 {
1713         int disks = sh->disks;
1714         struct page **xor_srcs;
1715         struct async_submit_ctl submit;
1716         int count, pd_idx = sh->pd_idx, i;
1717         struct page *xor_dest;
1718         int prexor = 0;
1719         unsigned long flags;
1720         int j = 0;
1721         struct stripe_head *head_sh = sh;
1722         int last_stripe;
1723
1724         pr_debug("%s: stripe %llu\n", __func__,
1725                 (unsigned long long)sh->sector);
1726
1727         for (i = 0; i < sh->disks; i++) {
1728                 if (pd_idx == i)
1729                         continue;
1730                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731                         break;
1732         }
1733         if (i >= sh->disks) {
1734                 atomic_inc(&sh->count);
1735                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736                 ops_complete_reconstruct(sh);
1737                 return;
1738         }
1739 again:
1740         count = 0;
1741         xor_srcs = to_addr_page(percpu, j);
1742         /* check if prexor is active which means only process blocks
1743          * that are part of a read-modify-write (written)
1744          */
1745         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746                 prexor = 1;
1747                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748                 for (i = disks; i--; ) {
1749                         struct r5dev *dev = &sh->dev[i];
1750                         if (head_sh->dev[i].written)
1751                                 xor_srcs[count++] = dev->page;
1752                 }
1753         } else {
1754                 xor_dest = sh->dev[pd_idx].page;
1755                 for (i = disks; i--; ) {
1756                         struct r5dev *dev = &sh->dev[i];
1757                         if (i != pd_idx)
1758                                 xor_srcs[count++] = dev->page;
1759                 }
1760         }
1761
1762         /* 1/ if we prexor'd then the dest is reused as a source
1763          * 2/ if we did not prexor then we are redoing the parity
1764          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765          * for the synchronous xor case
1766          */
1767         last_stripe = !head_sh->batch_head ||
1768                 list_first_entry(&sh->batch_list,
1769                                  struct stripe_head, batch_list) == head_sh;
1770         if (last_stripe) {
1771                 flags = ASYNC_TX_ACK |
1772                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774                 atomic_inc(&head_sh->count);
1775                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776                                   to_addr_conv(sh, percpu, j));
1777         } else {
1778                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779                 init_async_submit(&submit, flags, tx, NULL, NULL,
1780                                   to_addr_conv(sh, percpu, j));
1781         }
1782
1783         if (unlikely(count == 1))
1784                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785         else
1786                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787         if (!last_stripe) {
1788                 j++;
1789                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790                                       batch_list);
1791                 goto again;
1792         }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797                      struct dma_async_tx_descriptor *tx)
1798 {
1799         struct async_submit_ctl submit;
1800         struct page **blocks;
1801         int count, i, j = 0;
1802         struct stripe_head *head_sh = sh;
1803         int last_stripe;
1804         int synflags;
1805         unsigned long txflags;
1806
1807         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809         for (i = 0; i < sh->disks; i++) {
1810                 if (sh->pd_idx == i || sh->qd_idx == i)
1811                         continue;
1812                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813                         break;
1814         }
1815         if (i >= sh->disks) {
1816                 atomic_inc(&sh->count);
1817                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819                 ops_complete_reconstruct(sh);
1820                 return;
1821         }
1822
1823 again:
1824         blocks = to_addr_page(percpu, j);
1825
1826         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827                 synflags = SYNDROME_SRC_WRITTEN;
1828                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829         } else {
1830                 synflags = SYNDROME_SRC_ALL;
1831                 txflags = ASYNC_TX_ACK;
1832         }
1833
1834         count = set_syndrome_sources(blocks, sh, synflags);
1835         last_stripe = !head_sh->batch_head ||
1836                 list_first_entry(&sh->batch_list,
1837                                  struct stripe_head, batch_list) == head_sh;
1838
1839         if (last_stripe) {
1840                 atomic_inc(&head_sh->count);
1841                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842                                   head_sh, to_addr_conv(sh, percpu, j));
1843         } else
1844                 init_async_submit(&submit, 0, tx, NULL, NULL,
1845                                   to_addr_conv(sh, percpu, j));
1846         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847         if (!last_stripe) {
1848                 j++;
1849                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850                                       batch_list);
1851                 goto again;
1852         }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857         struct stripe_head *sh = stripe_head_ref;
1858
1859         pr_debug("%s: stripe %llu\n", __func__,
1860                 (unsigned long long)sh->sector);
1861
1862         sh->check_state = check_state_check_result;
1863         set_bit(STRIPE_HANDLE, &sh->state);
1864         release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869         int disks = sh->disks;
1870         int pd_idx = sh->pd_idx;
1871         int qd_idx = sh->qd_idx;
1872         struct page *xor_dest;
1873         struct page **xor_srcs = to_addr_page(percpu, 0);
1874         struct dma_async_tx_descriptor *tx;
1875         struct async_submit_ctl submit;
1876         int count;
1877         int i;
1878
1879         pr_debug("%s: stripe %llu\n", __func__,
1880                 (unsigned long long)sh->sector);
1881
1882         BUG_ON(sh->batch_head);
1883         count = 0;
1884         xor_dest = sh->dev[pd_idx].page;
1885         xor_srcs[count++] = xor_dest;
1886         for (i = disks; i--; ) {
1887                 if (i == pd_idx || i == qd_idx)
1888                         continue;
1889                 xor_srcs[count++] = sh->dev[i].page;
1890         }
1891
1892         init_async_submit(&submit, 0, NULL, NULL, NULL,
1893                           to_addr_conv(sh, percpu, 0));
1894         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895                            &sh->ops.zero_sum_result, &submit);
1896
1897         atomic_inc(&sh->count);
1898         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899         tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904         struct page **srcs = to_addr_page(percpu, 0);
1905         struct async_submit_ctl submit;
1906         int count;
1907
1908         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909                 (unsigned long long)sh->sector, checkp);
1910
1911         BUG_ON(sh->batch_head);
1912         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913         if (!checkp)
1914                 srcs[count] = NULL;
1915
1916         atomic_inc(&sh->count);
1917         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918                           sh, to_addr_conv(sh, percpu, 0));
1919         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925         int overlap_clear = 0, i, disks = sh->disks;
1926         struct dma_async_tx_descriptor *tx = NULL;
1927         struct r5conf *conf = sh->raid_conf;
1928         int level = conf->level;
1929         struct raid5_percpu *percpu;
1930         unsigned long cpu;
1931
1932         cpu = get_cpu();
1933         percpu = per_cpu_ptr(conf->percpu, cpu);
1934         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935                 ops_run_biofill(sh);
1936                 overlap_clear++;
1937         }
1938
1939         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940                 if (level < 6)
1941                         tx = ops_run_compute5(sh, percpu);
1942                 else {
1943                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944                                 tx = ops_run_compute6_1(sh, percpu);
1945                         else
1946                                 tx = ops_run_compute6_2(sh, percpu);
1947                 }
1948                 /* terminate the chain if reconstruct is not set to be run */
1949                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950                         async_tx_ack(tx);
1951         }
1952
1953         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954                 if (level < 6)
1955                         tx = ops_run_prexor5(sh, percpu, tx);
1956                 else
1957                         tx = ops_run_prexor6(sh, percpu, tx);
1958         }
1959
1960         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961                 tx = ops_run_biodrain(sh, tx);
1962                 overlap_clear++;
1963         }
1964
1965         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966                 if (level < 6)
1967                         ops_run_reconstruct5(sh, percpu, tx);
1968                 else
1969                         ops_run_reconstruct6(sh, percpu, tx);
1970         }
1971
1972         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973                 if (sh->check_state == check_state_run)
1974                         ops_run_check_p(sh, percpu);
1975                 else if (sh->check_state == check_state_run_q)
1976                         ops_run_check_pq(sh, percpu, 0);
1977                 else if (sh->check_state == check_state_run_pq)
1978                         ops_run_check_pq(sh, percpu, 1);
1979                 else
1980                         BUG();
1981         }
1982
1983         if (overlap_clear && !sh->batch_head)
1984                 for (i = disks; i--; ) {
1985                         struct r5dev *dev = &sh->dev[i];
1986                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987                                 wake_up(&sh->raid_conf->wait_for_overlap);
1988                 }
1989         put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994         struct stripe_head *sh;
1995
1996         sh = kmem_cache_zalloc(sc, gfp);
1997         if (sh) {
1998                 spin_lock_init(&sh->stripe_lock);
1999                 spin_lock_init(&sh->batch_lock);
2000                 INIT_LIST_HEAD(&sh->batch_list);
2001                 INIT_LIST_HEAD(&sh->lru);
2002                 atomic_set(&sh->count, 1);
2003         }
2004         return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008         struct stripe_head *sh;
2009
2010         sh = alloc_stripe(conf->slab_cache, gfp);
2011         if (!sh)
2012                 return 0;
2013
2014         sh->raid_conf = conf;
2015
2016         if (grow_buffers(sh, gfp)) {
2017                 shrink_buffers(sh);
2018                 kmem_cache_free(conf->slab_cache, sh);
2019                 return 0;
2020         }
2021         sh->hash_lock_index =
2022                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023         /* we just created an active stripe so... */
2024         atomic_inc(&conf->active_stripes);
2025
2026         release_stripe(sh);
2027         conf->max_nr_stripes++;
2028         return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033         struct kmem_cache *sc;
2034         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036         if (conf->mddev->gendisk)
2037                 sprintf(conf->cache_name[0],
2038                         "raid%d-%s", conf->level, mdname(conf->mddev));
2039         else
2040                 sprintf(conf->cache_name[0],
2041                         "raid%d-%p", conf->level, conf->mddev);
2042         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044         conf->active_name = 0;
2045         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047                                0, 0, NULL);
2048         if (!sc)
2049                 return 1;
2050         conf->slab_cache = sc;
2051         conf->pool_size = devs;
2052         while (num--)
2053                 if (!grow_one_stripe(conf, GFP_KERNEL))
2054                         return 1;
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * scribble_len - return the required size of the scribble region
2061  * @num - total number of disks in the array
2062  *
2063  * The size must be enough to contain:
2064  * 1/ a struct page pointer for each device in the array +2
2065  * 2/ room to convert each entry in (1) to its corresponding dma
2066  *    (dma_map_page()) or page (page_address()) address.
2067  *
2068  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069  * calculate over all devices (not just the data blocks), using zeros in place
2070  * of the P and Q blocks.
2071  */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074         struct flex_array *ret;
2075         size_t len;
2076
2077         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078         ret = flex_array_alloc(len, cnt, flags);
2079         if (!ret)
2080                 return NULL;
2081         /* always prealloc all elements, so no locking is required */
2082         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083                 flex_array_free(ret);
2084                 return NULL;
2085         }
2086         return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091         unsigned long cpu;
2092         int err = 0;
2093
2094         mddev_suspend(conf->mddev);
2095         get_online_cpus();
2096         for_each_present_cpu(cpu) {
2097                 struct raid5_percpu *percpu;
2098                 struct flex_array *scribble;
2099
2100                 percpu = per_cpu_ptr(conf->percpu, cpu);
2101                 scribble = scribble_alloc(new_disks,
2102                                           new_sectors / STRIPE_SECTORS,
2103                                           GFP_NOIO);
2104
2105                 if (scribble) {
2106                         flex_array_free(percpu->scribble);
2107                         percpu->scribble = scribble;
2108                 } else {
2109                         err = -ENOMEM;
2110                         break;
2111                 }
2112         }
2113         put_online_cpus();
2114         mddev_resume(conf->mddev);
2115         return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120         /* Make all the stripes able to hold 'newsize' devices.
2121          * New slots in each stripe get 'page' set to a new page.
2122          *
2123          * This happens in stages:
2124          * 1/ create a new kmem_cache and allocate the required number of
2125          *    stripe_heads.
2126          * 2/ gather all the old stripe_heads and transfer the pages across
2127          *    to the new stripe_heads.  This will have the side effect of
2128          *    freezing the array as once all stripe_heads have been collected,
2129          *    no IO will be possible.  Old stripe heads are freed once their
2130          *    pages have been transferred over, and the old kmem_cache is
2131          *    freed when all stripes are done.
2132          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2133          *    we simple return a failre status - no need to clean anything up.
2134          * 4/ allocate new pages for the new slots in the new stripe_heads.
2135          *    If this fails, we don't bother trying the shrink the
2136          *    stripe_heads down again, we just leave them as they are.
2137          *    As each stripe_head is processed the new one is released into
2138          *    active service.
2139          *
2140          * Once step2 is started, we cannot afford to wait for a write,
2141          * so we use GFP_NOIO allocations.
2142          */
2143         struct stripe_head *osh, *nsh;
2144         LIST_HEAD(newstripes);
2145         struct disk_info *ndisks;
2146         int err;
2147         struct kmem_cache *sc;
2148         int i;
2149         int hash, cnt;
2150
2151         if (newsize <= conf->pool_size)
2152                 return 0; /* never bother to shrink */
2153
2154         err = md_allow_write(conf->mddev);
2155         if (err)
2156                 return err;
2157
2158         /* Step 1 */
2159         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161                                0, 0, NULL);
2162         if (!sc)
2163                 return -ENOMEM;
2164
2165         /* Need to ensure auto-resizing doesn't interfere */
2166         mutex_lock(&conf->cache_size_mutex);
2167
2168         for (i = conf->max_nr_stripes; i; i--) {
2169                 nsh = alloc_stripe(sc, GFP_KERNEL);
2170                 if (!nsh)
2171                         break;
2172
2173                 nsh->raid_conf = conf;
2174                 list_add(&nsh->lru, &newstripes);
2175         }
2176         if (i) {
2177                 /* didn't get enough, give up */
2178                 while (!list_empty(&newstripes)) {
2179                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180                         list_del(&nsh->lru);
2181                         kmem_cache_free(sc, nsh);
2182                 }
2183                 kmem_cache_destroy(sc);
2184                 mutex_unlock(&conf->cache_size_mutex);
2185                 return -ENOMEM;
2186         }
2187         /* Step 2 - Must use GFP_NOIO now.
2188          * OK, we have enough stripes, start collecting inactive
2189          * stripes and copying them over
2190          */
2191         hash = 0;
2192         cnt = 0;
2193         list_for_each_entry(nsh, &newstripes, lru) {
2194                 lock_device_hash_lock(conf, hash);
2195                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196                                     !list_empty(conf->inactive_list + hash),
2197                                     unlock_device_hash_lock(conf, hash),
2198                                     lock_device_hash_lock(conf, hash));
2199                 osh = get_free_stripe(conf, hash);
2200                 unlock_device_hash_lock(conf, hash);
2201
2202                 for(i=0; i<conf->pool_size; i++) {
2203                         nsh->dev[i].page = osh->dev[i].page;
2204                         nsh->dev[i].orig_page = osh->dev[i].page;
2205                 }
2206                 nsh->hash_lock_index = hash;
2207                 kmem_cache_free(conf->slab_cache, osh);
2208                 cnt++;
2209                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211                         hash++;
2212                         cnt = 0;
2213                 }
2214         }
2215         kmem_cache_destroy(conf->slab_cache);
2216
2217         /* Step 3.
2218          * At this point, we are holding all the stripes so the array
2219          * is completely stalled, so now is a good time to resize
2220          * conf->disks and the scribble region
2221          */
2222         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223         if (ndisks) {
2224                 for (i=0; i<conf->raid_disks; i++)
2225                         ndisks[i] = conf->disks[i];
2226                 kfree(conf->disks);
2227                 conf->disks = ndisks;
2228         } else
2229                 err = -ENOMEM;
2230
2231         mutex_unlock(&conf->cache_size_mutex);
2232         /* Step 4, return new stripes to service */
2233         while(!list_empty(&newstripes)) {
2234                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235                 list_del_init(&nsh->lru);
2236
2237                 for (i=conf->raid_disks; i < newsize; i++)
2238                         if (nsh->dev[i].page == NULL) {
2239                                 struct page *p = alloc_page(GFP_NOIO);
2240                                 nsh->dev[i].page = p;
2241                                 nsh->dev[i].orig_page = p;
2242                                 if (!p)
2243                                         err = -ENOMEM;
2244                         }
2245                 release_stripe(nsh);
2246         }
2247         /* critical section pass, GFP_NOIO no longer needed */
2248
2249         conf->slab_cache = sc;
2250         conf->active_name = 1-conf->active_name;
2251         if (!err)
2252                 conf->pool_size = newsize;
2253         return err;
2254 }
2255
2256 static int drop_one_stripe(struct r5conf *conf)
2257 {
2258         struct stripe_head *sh;
2259         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2260
2261         spin_lock_irq(conf->hash_locks + hash);
2262         sh = get_free_stripe(conf, hash);
2263         spin_unlock_irq(conf->hash_locks + hash);
2264         if (!sh)
2265                 return 0;
2266         BUG_ON(atomic_read(&sh->count));
2267         shrink_buffers(sh);
2268         kmem_cache_free(conf->slab_cache, sh);
2269         atomic_dec(&conf->active_stripes);
2270         conf->max_nr_stripes--;
2271         return 1;
2272 }
2273
2274 static void shrink_stripes(struct r5conf *conf)
2275 {
2276         while (conf->max_nr_stripes &&
2277                drop_one_stripe(conf))
2278                 ;
2279
2280         if (conf->slab_cache)
2281                 kmem_cache_destroy(conf->slab_cache);
2282         conf->slab_cache = NULL;
2283 }
2284
2285 static void raid5_end_read_request(struct bio * bi, int error)
2286 {
2287         struct stripe_head *sh = bi->bi_private;
2288         struct r5conf *conf = sh->raid_conf;
2289         int disks = sh->disks, i;
2290         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2291         char b[BDEVNAME_SIZE];
2292         struct md_rdev *rdev = NULL;
2293         sector_t s;
2294
2295         for (i=0 ; i<disks; i++)
2296                 if (bi == &sh->dev[i].req)
2297                         break;
2298
2299         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2300                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2301                 uptodate);
2302         if (i == disks) {
2303                 BUG();
2304                 return;
2305         }
2306         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2307                 /* If replacement finished while this request was outstanding,
2308                  * 'replacement' might be NULL already.
2309                  * In that case it moved down to 'rdev'.
2310                  * rdev is not removed until all requests are finished.
2311                  */
2312                 rdev = conf->disks[i].replacement;
2313         if (!rdev)
2314                 rdev = conf->disks[i].rdev;
2315
2316         if (use_new_offset(conf, sh))
2317                 s = sh->sector + rdev->new_data_offset;
2318         else
2319                 s = sh->sector + rdev->data_offset;
2320         if (uptodate) {
2321                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2322                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2323                         /* Note that this cannot happen on a
2324                          * replacement device.  We just fail those on
2325                          * any error
2326                          */
2327                         printk_ratelimited(
2328                                 KERN_INFO
2329                                 "md/raid:%s: read error corrected"
2330                                 " (%lu sectors at %llu on %s)\n",
2331                                 mdname(conf->mddev), STRIPE_SECTORS,
2332                                 (unsigned long long)s,
2333                                 bdevname(rdev->bdev, b));
2334                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2335                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2336                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2337                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2338                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2339
2340                 if (atomic_read(&rdev->read_errors))
2341                         atomic_set(&rdev->read_errors, 0);
2342         } else {
2343                 const char *bdn = bdevname(rdev->bdev, b);
2344                 int retry = 0;
2345                 int set_bad = 0;
2346
2347                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2348                 atomic_inc(&rdev->read_errors);
2349                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2350                         printk_ratelimited(
2351                                 KERN_WARNING
2352                                 "md/raid:%s: read error on replacement device "
2353                                 "(sector %llu on %s).\n",
2354                                 mdname(conf->mddev),
2355                                 (unsigned long long)s,
2356                                 bdn);
2357                 else if (conf->mddev->degraded >= conf->max_degraded) {
2358                         set_bad = 1;
2359                         printk_ratelimited(
2360                                 KERN_WARNING
2361                                 "md/raid:%s: read error not correctable "
2362                                 "(sector %llu on %s).\n",
2363                                 mdname(conf->mddev),
2364                                 (unsigned long long)s,
2365                                 bdn);
2366                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2367                         /* Oh, no!!! */
2368                         set_bad = 1;
2369                         printk_ratelimited(
2370                                 KERN_WARNING
2371                                 "md/raid:%s: read error NOT corrected!! "
2372                                 "(sector %llu on %s).\n",
2373                                 mdname(conf->mddev),
2374                                 (unsigned long long)s,
2375                                 bdn);
2376                 } else if (atomic_read(&rdev->read_errors)
2377                          > conf->max_nr_stripes)
2378                         printk(KERN_WARNING
2379                                "md/raid:%s: Too many read errors, failing device %s.\n",
2380                                mdname(conf->mddev), bdn);
2381                 else
2382                         retry = 1;
2383                 if (set_bad && test_bit(In_sync, &rdev->flags)
2384                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2385                         retry = 1;
2386                 if (retry)
2387                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2388                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2389                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390                         } else
2391                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2392                 else {
2393                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2394                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2395                         if (!(set_bad
2396                               && test_bit(In_sync, &rdev->flags)
2397                               && rdev_set_badblocks(
2398                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2399                                 md_error(conf->mddev, rdev);
2400                 }
2401         }
2402         rdev_dec_pending(rdev, conf->mddev);
2403         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2404         set_bit(STRIPE_HANDLE, &sh->state);
2405         release_stripe(sh);
2406 }
2407
2408 static void raid5_end_write_request(struct bio *bi, int error)
2409 {
2410         struct stripe_head *sh = bi->bi_private;
2411         struct r5conf *conf = sh->raid_conf;
2412         int disks = sh->disks, i;
2413         struct md_rdev *uninitialized_var(rdev);
2414         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2415         sector_t first_bad;
2416         int bad_sectors;
2417         int replacement = 0;
2418
2419         for (i = 0 ; i < disks; i++) {
2420                 if (bi == &sh->dev[i].req) {
2421                         rdev = conf->disks[i].rdev;
2422                         break;
2423                 }
2424                 if (bi == &sh->dev[i].rreq) {
2425                         rdev = conf->disks[i].replacement;
2426                         if (rdev)
2427                                 replacement = 1;
2428                         else
2429                                 /* rdev was removed and 'replacement'
2430                                  * replaced it.  rdev is not removed
2431                                  * until all requests are finished.
2432                                  */
2433                                 rdev = conf->disks[i].rdev;
2434                         break;
2435                 }
2436         }
2437         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2438                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2439                 uptodate);
2440         if (i == disks) {
2441                 BUG();
2442                 return;
2443         }
2444
2445         if (replacement) {
2446                 if (!uptodate)
2447                         md_error(conf->mddev, rdev);
2448                 else if (is_badblock(rdev, sh->sector,
2449                                      STRIPE_SECTORS,
2450                                      &first_bad, &bad_sectors))
2451                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2452         } else {
2453                 if (!uptodate) {
2454                         set_bit(STRIPE_DEGRADED, &sh->state);
2455                         set_bit(WriteErrorSeen, &rdev->flags);
2456                         set_bit(R5_WriteError, &sh->dev[i].flags);
2457                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2458                                 set_bit(MD_RECOVERY_NEEDED,
2459                                         &rdev->mddev->recovery);
2460                 } else if (is_badblock(rdev, sh->sector,
2461                                        STRIPE_SECTORS,
2462                                        &first_bad, &bad_sectors)) {
2463                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2464                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2465                                 /* That was a successful write so make
2466                                  * sure it looks like we already did
2467                                  * a re-write.
2468                                  */
2469                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2470                 }
2471         }
2472         rdev_dec_pending(rdev, conf->mddev);
2473
2474         if (sh->batch_head && !uptodate && !replacement)
2475                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2476
2477         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2478                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2479         set_bit(STRIPE_HANDLE, &sh->state);
2480         release_stripe(sh);
2481
2482         if (sh->batch_head && sh != sh->batch_head)
2483                 release_stripe(sh->batch_head);
2484 }
2485
2486 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2487
2488 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2489 {
2490         struct r5dev *dev = &sh->dev[i];
2491
2492         bio_init(&dev->req);
2493         dev->req.bi_io_vec = &dev->vec;
2494         dev->req.bi_max_vecs = 1;
2495         dev->req.bi_private = sh;
2496
2497         bio_init(&dev->rreq);
2498         dev->rreq.bi_io_vec = &dev->rvec;
2499         dev->rreq.bi_max_vecs = 1;
2500         dev->rreq.bi_private = sh;
2501
2502         dev->flags = 0;
2503         dev->sector = compute_blocknr(sh, i, previous);
2504 }
2505
2506 static void error(struct mddev *mddev, struct md_rdev *rdev)
2507 {
2508         char b[BDEVNAME_SIZE];
2509         struct r5conf *conf = mddev->private;
2510         unsigned long flags;
2511         pr_debug("raid456: error called\n");
2512
2513         spin_lock_irqsave(&conf->device_lock, flags);
2514         clear_bit(In_sync, &rdev->flags);
2515         mddev->degraded = calc_degraded(conf);
2516         spin_unlock_irqrestore(&conf->device_lock, flags);
2517         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2518
2519         set_bit(Blocked, &rdev->flags);
2520         set_bit(Faulty, &rdev->flags);
2521         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2522         printk(KERN_ALERT
2523                "md/raid:%s: Disk failure on %s, disabling device.\n"
2524                "md/raid:%s: Operation continuing on %d devices.\n",
2525                mdname(mddev),
2526                bdevname(rdev->bdev, b),
2527                mdname(mddev),
2528                conf->raid_disks - mddev->degraded);
2529 }
2530
2531 /*
2532  * Input: a 'big' sector number,
2533  * Output: index of the data and parity disk, and the sector # in them.
2534  */
2535 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2536                                      int previous, int *dd_idx,
2537                                      struct stripe_head *sh)
2538 {
2539         sector_t stripe, stripe2;
2540         sector_t chunk_number;
2541         unsigned int chunk_offset;
2542         int pd_idx, qd_idx;
2543         int ddf_layout = 0;
2544         sector_t new_sector;
2545         int algorithm = previous ? conf->prev_algo
2546                                  : conf->algorithm;
2547         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2548                                          : conf->chunk_sectors;
2549         int raid_disks = previous ? conf->previous_raid_disks
2550                                   : conf->raid_disks;
2551         int data_disks = raid_disks - conf->max_degraded;
2552
2553         /* First compute the information on this sector */
2554
2555         /*
2556          * Compute the chunk number and the sector offset inside the chunk
2557          */
2558         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2559         chunk_number = r_sector;
2560
2561         /*
2562          * Compute the stripe number
2563          */
2564         stripe = chunk_number;
2565         *dd_idx = sector_div(stripe, data_disks);
2566         stripe2 = stripe;
2567         /*
2568          * Select the parity disk based on the user selected algorithm.
2569          */
2570         pd_idx = qd_idx = -1;
2571         switch(conf->level) {
2572         case 4:
2573                 pd_idx = data_disks;
2574                 break;
2575         case 5:
2576                 switch (algorithm) {
2577                 case ALGORITHM_LEFT_ASYMMETRIC:
2578                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2579                         if (*dd_idx >= pd_idx)
2580                                 (*dd_idx)++;
2581                         break;
2582                 case ALGORITHM_RIGHT_ASYMMETRIC:
2583                         pd_idx = sector_div(stripe2, raid_disks);
2584                         if (*dd_idx >= pd_idx)
2585                                 (*dd_idx)++;
2586                         break;
2587                 case ALGORITHM_LEFT_SYMMETRIC:
2588                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2589                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2590                         break;
2591                 case ALGORITHM_RIGHT_SYMMETRIC:
2592                         pd_idx = sector_div(stripe2, raid_disks);
2593                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2594                         break;
2595                 case ALGORITHM_PARITY_0:
2596                         pd_idx = 0;
2597                         (*dd_idx)++;
2598                         break;
2599                 case ALGORITHM_PARITY_N:
2600                         pd_idx = data_disks;
2601                         break;
2602                 default:
2603                         BUG();
2604                 }
2605                 break;
2606         case 6:
2607
2608                 switch (algorithm) {
2609                 case ALGORITHM_LEFT_ASYMMETRIC:
2610                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2611                         qd_idx = pd_idx + 1;
2612                         if (pd_idx == raid_disks-1) {
2613                                 (*dd_idx)++;    /* Q D D D P */
2614                                 qd_idx = 0;
2615                         } else if (*dd_idx >= pd_idx)
2616                                 (*dd_idx) += 2; /* D D P Q D */
2617                         break;
2618                 case ALGORITHM_RIGHT_ASYMMETRIC:
2619                         pd_idx = sector_div(stripe2, raid_disks);
2620                         qd_idx = pd_idx + 1;
2621                         if (pd_idx == raid_disks-1) {
2622                                 (*dd_idx)++;    /* Q D D D P */
2623                                 qd_idx = 0;
2624                         } else if (*dd_idx >= pd_idx)
2625                                 (*dd_idx) += 2; /* D D P Q D */
2626                         break;
2627                 case ALGORITHM_LEFT_SYMMETRIC:
2628                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2629                         qd_idx = (pd_idx + 1) % raid_disks;
2630                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631                         break;
2632                 case ALGORITHM_RIGHT_SYMMETRIC:
2633                         pd_idx = sector_div(stripe2, raid_disks);
2634                         qd_idx = (pd_idx + 1) % raid_disks;
2635                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2636                         break;
2637
2638                 case ALGORITHM_PARITY_0:
2639                         pd_idx = 0;
2640                         qd_idx = 1;
2641                         (*dd_idx) += 2;
2642                         break;
2643                 case ALGORITHM_PARITY_N:
2644                         pd_idx = data_disks;
2645                         qd_idx = data_disks + 1;
2646                         break;
2647
2648                 case ALGORITHM_ROTATING_ZERO_RESTART:
2649                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2650                          * of blocks for computing Q is different.
2651                          */
2652                         pd_idx = sector_div(stripe2, raid_disks);
2653                         qd_idx = pd_idx + 1;
2654                         if (pd_idx == raid_disks-1) {
2655                                 (*dd_idx)++;    /* Q D D D P */
2656                                 qd_idx = 0;
2657                         } else if (*dd_idx >= pd_idx)
2658                                 (*dd_idx) += 2; /* D D P Q D */
2659                         ddf_layout = 1;
2660                         break;
2661
2662                 case ALGORITHM_ROTATING_N_RESTART:
2663                         /* Same a left_asymmetric, by first stripe is
2664                          * D D D P Q  rather than
2665                          * Q D D D P
2666                          */
2667                         stripe2 += 1;
2668                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2669                         qd_idx = pd_idx + 1;
2670                         if (pd_idx == raid_disks-1) {
2671                                 (*dd_idx)++;    /* Q D D D P */
2672                                 qd_idx = 0;
2673                         } else if (*dd_idx >= pd_idx)
2674                                 (*dd_idx) += 2; /* D D P Q D */
2675                         ddf_layout = 1;
2676                         break;
2677
2678                 case ALGORITHM_ROTATING_N_CONTINUE:
2679                         /* Same as left_symmetric but Q is before P */
2680                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2681                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2682                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2683                         ddf_layout = 1;
2684                         break;
2685
2686                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2687                         /* RAID5 left_asymmetric, with Q on last device */
2688                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2689                         if (*dd_idx >= pd_idx)
2690                                 (*dd_idx)++;
2691                         qd_idx = raid_disks - 1;
2692                         break;
2693
2694                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2695                         pd_idx = sector_div(stripe2, raid_disks-1);
2696                         if (*dd_idx >= pd_idx)
2697                                 (*dd_idx)++;
2698                         qd_idx = raid_disks - 1;
2699                         break;
2700
2701                 case ALGORITHM_LEFT_SYMMETRIC_6:
2702                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2703                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2704                         qd_idx = raid_disks - 1;
2705                         break;
2706
2707                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2708                         pd_idx = sector_div(stripe2, raid_disks-1);
2709                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2710                         qd_idx = raid_disks - 1;
2711                         break;
2712
2713                 case ALGORITHM_PARITY_0_6:
2714                         pd_idx = 0;
2715                         (*dd_idx)++;
2716                         qd_idx = raid_disks - 1;
2717                         break;
2718
2719                 default:
2720                         BUG();
2721                 }
2722                 break;
2723         }
2724
2725         if (sh) {
2726                 sh->pd_idx = pd_idx;
2727                 sh->qd_idx = qd_idx;
2728                 sh->ddf_layout = ddf_layout;
2729         }
2730         /*
2731          * Finally, compute the new sector number
2732          */
2733         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2734         return new_sector;
2735 }
2736
2737 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2738 {
2739         struct r5conf *conf = sh->raid_conf;
2740         int raid_disks = sh->disks;
2741         int data_disks = raid_disks - conf->max_degraded;
2742         sector_t new_sector = sh->sector, check;
2743         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2744                                          : conf->chunk_sectors;
2745         int algorithm = previous ? conf->prev_algo
2746                                  : conf->algorithm;
2747         sector_t stripe;
2748         int chunk_offset;
2749         sector_t chunk_number;
2750         int dummy1, dd_idx = i;
2751         sector_t r_sector;
2752         struct stripe_head sh2;
2753
2754         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2755         stripe = new_sector;
2756
2757         if (i == sh->pd_idx)
2758                 return 0;
2759         switch(conf->level) {
2760         case 4: break;
2761         case 5:
2762                 switch (algorithm) {
2763                 case ALGORITHM_LEFT_ASYMMETRIC:
2764                 case ALGORITHM_RIGHT_ASYMMETRIC:
2765                         if (i > sh->pd_idx)
2766                                 i--;
2767                         break;
2768                 case ALGORITHM_LEFT_SYMMETRIC:
2769                 case ALGORITHM_RIGHT_SYMMETRIC:
2770                         if (i < sh->pd_idx)
2771                                 i += raid_disks;
2772                         i -= (sh->pd_idx + 1);
2773                         break;
2774                 case ALGORITHM_PARITY_0:
2775                         i -= 1;
2776                         break;
2777                 case ALGORITHM_PARITY_N:
2778                         break;
2779                 default:
2780                         BUG();
2781                 }
2782                 break;
2783         case 6:
2784                 if (i == sh->qd_idx)
2785                         return 0; /* It is the Q disk */
2786                 switch (algorithm) {
2787                 case ALGORITHM_LEFT_ASYMMETRIC:
2788                 case ALGORITHM_RIGHT_ASYMMETRIC:
2789                 case ALGORITHM_ROTATING_ZERO_RESTART:
2790                 case ALGORITHM_ROTATING_N_RESTART:
2791                         if (sh->pd_idx == raid_disks-1)
2792                                 i--;    /* Q D D D P */
2793                         else if (i > sh->pd_idx)
2794                                 i -= 2; /* D D P Q D */
2795                         break;
2796                 case ALGORITHM_LEFT_SYMMETRIC:
2797                 case ALGORITHM_RIGHT_SYMMETRIC:
2798                         if (sh->pd_idx == raid_disks-1)
2799                                 i--; /* Q D D D P */
2800                         else {
2801                                 /* D D P Q D */
2802                                 if (i < sh->pd_idx)
2803                                         i += raid_disks;
2804                                 i -= (sh->pd_idx + 2);
2805                         }
2806                         break;
2807                 case ALGORITHM_PARITY_0:
2808                         i -= 2;
2809                         break;
2810                 case ALGORITHM_PARITY_N:
2811                         break;
2812                 case ALGORITHM_ROTATING_N_CONTINUE:
2813                         /* Like left_symmetric, but P is before Q */
2814                         if (sh->pd_idx == 0)
2815                                 i--;    /* P D D D Q */
2816                         else {
2817                                 /* D D Q P D */
2818                                 if (i < sh->pd_idx)
2819                                         i += raid_disks;
2820                                 i -= (sh->pd_idx + 1);
2821                         }
2822                         break;
2823                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2824                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2825                         if (i > sh->pd_idx)
2826                                 i--;
2827                         break;
2828                 case ALGORITHM_LEFT_SYMMETRIC_6:
2829                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2830                         if (i < sh->pd_idx)
2831                                 i += data_disks + 1;
2832                         i -= (sh->pd_idx + 1);
2833                         break;
2834                 case ALGORITHM_PARITY_0_6:
2835                         i -= 1;
2836                         break;
2837                 default:
2838                         BUG();
2839                 }
2840                 break;
2841         }
2842
2843         chunk_number = stripe * data_disks + i;
2844         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2845
2846         check = raid5_compute_sector(conf, r_sector,
2847                                      previous, &dummy1, &sh2);
2848         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2849                 || sh2.qd_idx != sh->qd_idx) {
2850                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2851                        mdname(conf->mddev));
2852                 return 0;
2853         }
2854         return r_sector;
2855 }
2856
2857 static void
2858 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2859                          int rcw, int expand)
2860 {
2861         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2862         struct r5conf *conf = sh->raid_conf;
2863         int level = conf->level;
2864
2865         if (rcw) {
2866
2867                 for (i = disks; i--; ) {
2868                         struct r5dev *dev = &sh->dev[i];
2869
2870                         if (dev->towrite) {
2871                                 set_bit(R5_LOCKED, &dev->flags);
2872                                 set_bit(R5_Wantdrain, &dev->flags);
2873                                 if (!expand)
2874                                         clear_bit(R5_UPTODATE, &dev->flags);
2875                                 s->locked++;
2876                         }
2877                 }
2878                 /* if we are not expanding this is a proper write request, and
2879                  * there will be bios with new data to be drained into the
2880                  * stripe cache
2881                  */
2882                 if (!expand) {
2883                         if (!s->locked)
2884                                 /* False alarm, nothing to do */
2885                                 return;
2886                         sh->reconstruct_state = reconstruct_state_drain_run;
2887                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2888                 } else
2889                         sh->reconstruct_state = reconstruct_state_run;
2890
2891                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2892
2893                 if (s->locked + conf->max_degraded == disks)
2894                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2895                                 atomic_inc(&conf->pending_full_writes);
2896         } else {
2897                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2898                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2899                 BUG_ON(level == 6 &&
2900                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2901                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2902
2903                 for (i = disks; i--; ) {
2904                         struct r5dev *dev = &sh->dev[i];
2905                         if (i == pd_idx || i == qd_idx)
2906                                 continue;
2907
2908                         if (dev->towrite &&
2909                             (test_bit(R5_UPTODATE, &dev->flags) ||
2910                              test_bit(R5_Wantcompute, &dev->flags))) {
2911                                 set_bit(R5_Wantdrain, &dev->flags);
2912                                 set_bit(R5_LOCKED, &dev->flags);
2913                                 clear_bit(R5_UPTODATE, &dev->flags);
2914                                 s->locked++;
2915                         }
2916                 }
2917                 if (!s->locked)
2918                         /* False alarm - nothing to do */
2919                         return;
2920                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2921                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2922                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2923                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2924         }
2925
2926         /* keep the parity disk(s) locked while asynchronous operations
2927          * are in flight
2928          */
2929         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2930         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2931         s->locked++;
2932
2933         if (level == 6) {
2934                 int qd_idx = sh->qd_idx;
2935                 struct r5dev *dev = &sh->dev[qd_idx];
2936
2937                 set_bit(R5_LOCKED, &dev->flags);
2938                 clear_bit(R5_UPTODATE, &dev->flags);
2939                 s->locked++;
2940         }
2941
2942         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2943                 __func__, (unsigned long long)sh->sector,
2944                 s->locked, s->ops_request);
2945 }
2946
2947 /*
2948  * Each stripe/dev can have one or more bion attached.
2949  * toread/towrite point to the first in a chain.
2950  * The bi_next chain must be in order.
2951  */
2952 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2953                           int forwrite, int previous)
2954 {
2955         struct bio **bip;
2956         struct r5conf *conf = sh->raid_conf;
2957         int firstwrite=0;
2958
2959         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2960                 (unsigned long long)bi->bi_iter.bi_sector,
2961                 (unsigned long long)sh->sector);
2962
2963         /*
2964          * If several bio share a stripe. The bio bi_phys_segments acts as a
2965          * reference count to avoid race. The reference count should already be
2966          * increased before this function is called (for example, in
2967          * make_request()), so other bio sharing this stripe will not free the
2968          * stripe. If a stripe is owned by one stripe, the stripe lock will
2969          * protect it.
2970          */
2971         spin_lock_irq(&sh->stripe_lock);
2972         /* Don't allow new IO added to stripes in batch list */
2973         if (sh->batch_head)
2974                 goto overlap;
2975         if (forwrite) {
2976                 bip = &sh->dev[dd_idx].towrite;
2977                 if (*bip == NULL)
2978                         firstwrite = 1;
2979         } else
2980                 bip = &sh->dev[dd_idx].toread;
2981         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2982                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2983                         goto overlap;
2984                 bip = & (*bip)->bi_next;
2985         }
2986         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2987                 goto overlap;
2988
2989         if (!forwrite || previous)
2990                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2991
2992         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2993         if (*bip)
2994                 bi->bi_next = *bip;
2995         *bip = bi;
2996         raid5_inc_bi_active_stripes(bi);
2997
2998         if (forwrite) {
2999                 /* check if page is covered */
3000                 sector_t sector = sh->dev[dd_idx].sector;
3001                 for (bi=sh->dev[dd_idx].towrite;
3002                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3003                              bi && bi->bi_iter.bi_sector <= sector;
3004                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3005                         if (bio_end_sector(bi) >= sector)
3006                                 sector = bio_end_sector(bi);
3007                 }
3008                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3009                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3010                                 sh->overwrite_disks++;
3011         }
3012
3013         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3014                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3015                 (unsigned long long)sh->sector, dd_idx);
3016
3017         if (conf->mddev->bitmap && firstwrite) {
3018                 /* Cannot hold spinlock over bitmap_startwrite,
3019                  * but must ensure this isn't added to a batch until
3020                  * we have added to the bitmap and set bm_seq.
3021                  * So set STRIPE_BITMAP_PENDING to prevent
3022                  * batching.
3023                  * If multiple add_stripe_bio() calls race here they
3024                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3025                  * to complete "bitmap_startwrite" gets to set
3026                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3027                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3028                  * any more.
3029                  */
3030                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031                 spin_unlock_irq(&sh->stripe_lock);
3032                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3033                                   STRIPE_SECTORS, 0);
3034                 spin_lock_irq(&sh->stripe_lock);
3035                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3036                 if (!sh->batch_head) {
3037                         sh->bm_seq = conf->seq_flush+1;
3038                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3039                 }
3040         }
3041         spin_unlock_irq(&sh->stripe_lock);
3042
3043         if (stripe_can_batch(sh))
3044                 stripe_add_to_batch_list(conf, sh);
3045         return 1;
3046
3047  overlap:
3048         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3049         spin_unlock_irq(&sh->stripe_lock);
3050         return 0;
3051 }
3052
3053 static void end_reshape(struct r5conf *conf);
3054
3055 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3056                             struct stripe_head *sh)
3057 {
3058         int sectors_per_chunk =
3059                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3060         int dd_idx;
3061         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3062         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3063
3064         raid5_compute_sector(conf,
3065                              stripe * (disks - conf->max_degraded)
3066                              *sectors_per_chunk + chunk_offset,
3067                              previous,
3068                              &dd_idx, sh);
3069 }
3070
3071 static void
3072 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3073                                 struct stripe_head_state *s, int disks,
3074                                 struct bio **return_bi)
3075 {
3076         int i;
3077         BUG_ON(sh->batch_head);
3078         for (i = disks; i--; ) {
3079                 struct bio *bi;
3080                 int bitmap_end = 0;
3081
3082                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3083                         struct md_rdev *rdev;
3084                         rcu_read_lock();
3085                         rdev = rcu_dereference(conf->disks[i].rdev);
3086                         if (rdev && test_bit(In_sync, &rdev->flags))
3087                                 atomic_inc(&rdev->nr_pending);
3088                         else
3089                                 rdev = NULL;
3090                         rcu_read_unlock();
3091                         if (rdev) {
3092                                 if (!rdev_set_badblocks(
3093                                             rdev,
3094                                             sh->sector,
3095                                             STRIPE_SECTORS, 0))
3096                                         md_error(conf->mddev, rdev);
3097                                 rdev_dec_pending(rdev, conf->mddev);
3098                         }
3099                 }
3100                 spin_lock_irq(&sh->stripe_lock);
3101                 /* fail all writes first */
3102                 bi = sh->dev[i].towrite;
3103                 sh->dev[i].towrite = NULL;
3104                 sh->overwrite_disks = 0;
3105                 spin_unlock_irq(&sh->stripe_lock);
3106                 if (bi)
3107                         bitmap_end = 1;
3108
3109                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3110                         wake_up(&conf->wait_for_overlap);
3111
3112                 while (bi && bi->bi_iter.bi_sector <
3113                         sh->dev[i].sector + STRIPE_SECTORS) {
3114                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3115                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3116                         if (!raid5_dec_bi_active_stripes(bi)) {
3117                                 md_write_end(conf->mddev);
3118                                 bi->bi_next = *return_bi;
3119                                 *return_bi = bi;
3120                         }
3121                         bi = nextbi;
3122                 }
3123                 if (bitmap_end)
3124                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3125                                 STRIPE_SECTORS, 0, 0);
3126                 bitmap_end = 0;
3127                 /* and fail all 'written' */
3128                 bi = sh->dev[i].written;
3129                 sh->dev[i].written = NULL;
3130                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3131                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3132                         sh->dev[i].page = sh->dev[i].orig_page;
3133                 }
3134
3135                 if (bi) bitmap_end = 1;
3136                 while (bi && bi->bi_iter.bi_sector <
3137                        sh->dev[i].sector + STRIPE_SECTORS) {
3138                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3139                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3140                         if (!raid5_dec_bi_active_stripes(bi)) {
3141                                 md_write_end(conf->mddev);
3142                                 bi->bi_next = *return_bi;
3143                                 *return_bi = bi;
3144                         }
3145                         bi = bi2;
3146                 }
3147
3148                 /* fail any reads if this device is non-operational and
3149                  * the data has not reached the cache yet.
3150                  */
3151                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3152                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3154                         spin_lock_irq(&sh->stripe_lock);
3155                         bi = sh->dev[i].toread;
3156                         sh->dev[i].toread = NULL;
3157                         spin_unlock_irq(&sh->stripe_lock);
3158                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159                                 wake_up(&conf->wait_for_overlap);
3160                         while (bi && bi->bi_iter.bi_sector <
3161                                sh->dev[i].sector + STRIPE_SECTORS) {
3162                                 struct bio *nextbi =
3163                                         r5_next_bio(bi, sh->dev[i].sector);
3164                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3165                                 if (!raid5_dec_bi_active_stripes(bi)) {
3166                                         bi->bi_next = *return_bi;
3167                                         *return_bi = bi;
3168                                 }
3169                                 bi = nextbi;
3170                         }
3171                 }
3172                 if (bitmap_end)
3173                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3174                                         STRIPE_SECTORS, 0, 0);
3175                 /* If we were in the middle of a write the parity block might
3176                  * still be locked - so just clear all R5_LOCKED flags
3177                  */
3178                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3179         }
3180
3181         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3182                 if (atomic_dec_and_test(&conf->pending_full_writes))
3183                         md_wakeup_thread(conf->mddev->thread);
3184 }
3185
3186 static void
3187 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3188                    struct stripe_head_state *s)
3189 {
3190         int abort = 0;
3191         int i;
3192
3193         BUG_ON(sh->batch_head);
3194         clear_bit(STRIPE_SYNCING, &sh->state);
3195         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3196                 wake_up(&conf->wait_for_overlap);
3197         s->syncing = 0;
3198         s->replacing = 0;
3199         /* There is nothing more to do for sync/check/repair.
3200          * Don't even need to abort as that is handled elsewhere
3201          * if needed, and not always wanted e.g. if there is a known
3202          * bad block here.
3203          * For recover/replace we need to record a bad block on all
3204          * non-sync devices, or abort the recovery
3205          */
3206         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3207                 /* During recovery devices cannot be removed, so
3208                  * locking and refcounting of rdevs is not needed
3209                  */
3210                 for (i = 0; i < conf->raid_disks; i++) {
3211                         struct md_rdev *rdev = conf->disks[i].rdev;
3212                         if (rdev
3213                             && !test_bit(Faulty, &rdev->flags)
3214                             && !test_bit(In_sync, &rdev->flags)
3215                             && !rdev_set_badblocks(rdev, sh->sector,
3216                                                    STRIPE_SECTORS, 0))
3217                                 abort = 1;
3218                         rdev = conf->disks[i].replacement;
3219                         if (rdev
3220                             && !test_bit(Faulty, &rdev->flags)
3221                             && !test_bit(In_sync, &rdev->flags)
3222                             && !rdev_set_badblocks(rdev, sh->sector,
3223                                                    STRIPE_SECTORS, 0))
3224                                 abort = 1;
3225                 }
3226                 if (abort)
3227                         conf->recovery_disabled =
3228                                 conf->mddev->recovery_disabled;
3229         }
3230         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3231 }
3232
3233 static int want_replace(struct stripe_head *sh, int disk_idx)
3234 {
3235         struct md_rdev *rdev;
3236         int rv = 0;
3237         /* Doing recovery so rcu locking not required */
3238         rdev = sh->raid_conf->disks[disk_idx].replacement;
3239         if (rdev
3240             && !test_bit(Faulty, &rdev->flags)
3241             && !test_bit(In_sync, &rdev->flags)
3242             && (rdev->recovery_offset <= sh->sector
3243                 || rdev->mddev->recovery_cp <= sh->sector))
3244                 rv = 1;
3245
3246         return rv;
3247 }
3248
3249 /* fetch_block - checks the given member device to see if its data needs
3250  * to be read or computed to satisfy a request.
3251  *
3252  * Returns 1 when no more member devices need to be checked, otherwise returns
3253  * 0 to tell the loop in handle_stripe_fill to continue
3254  */
3255
3256 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3257                            int disk_idx, int disks)
3258 {
3259         struct r5dev *dev = &sh->dev[disk_idx];
3260         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3261                                   &sh->dev[s->failed_num[1]] };
3262         int i;
3263
3264
3265         if (test_bit(R5_LOCKED, &dev->flags) ||
3266             test_bit(R5_UPTODATE, &dev->flags))
3267                 /* No point reading this as we already have it or have
3268                  * decided to get it.
3269                  */
3270                 return 0;
3271
3272         if (dev->toread ||
3273             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3274                 /* We need this block to directly satisfy a request */
3275                 return 1;
3276
3277         if (s->syncing || s->expanding ||
3278             (s->replacing && want_replace(sh, disk_idx)))
3279                 /* When syncing, or expanding we read everything.
3280                  * When replacing, we need the replaced block.
3281                  */
3282                 return 1;
3283
3284         if ((s->failed >= 1 && fdev[0]->toread) ||
3285             (s->failed >= 2 && fdev[1]->toread))
3286                 /* If we want to read from a failed device, then
3287                  * we need to actually read every other device.
3288                  */
3289                 return 1;
3290
3291         /* Sometimes neither read-modify-write nor reconstruct-write
3292          * cycles can work.  In those cases we read every block we
3293          * can.  Then the parity-update is certain to have enough to
3294          * work with.
3295          * This can only be a problem when we need to write something,
3296          * and some device has failed.  If either of those tests
3297          * fail we need look no further.
3298          */
3299         if (!s->failed || !s->to_write)
3300                 return 0;
3301
3302         if (test_bit(R5_Insync, &dev->flags) &&
3303             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3304                 /* Pre-reads at not permitted until after short delay
3305                  * to gather multiple requests.  However if this
3306                  * device is no Insync, the block could only be be computed
3307                  * and there is no need to delay that.
3308                  */
3309                 return 0;
3310
3311         for (i = 0; i < s->failed; i++) {
3312                 if (fdev[i]->towrite &&
3313                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3314                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3315                         /* If we have a partial write to a failed
3316                          * device, then we will need to reconstruct
3317                          * the content of that device, so all other
3318                          * devices must be read.
3319                          */
3320                         return 1;
3321         }
3322
3323         /* If we are forced to do a reconstruct-write, either because
3324          * the current RAID6 implementation only supports that, or
3325          * or because parity cannot be trusted and we are currently
3326          * recovering it, there is extra need to be careful.
3327          * If one of the devices that we would need to read, because
3328          * it is not being overwritten (and maybe not written at all)
3329          * is missing/faulty, then we need to read everything we can.
3330          */
3331         if (sh->raid_conf->level != 6 &&
3332             sh->sector < sh->raid_conf->mddev->recovery_cp)
3333                 /* reconstruct-write isn't being forced */
3334                 return 0;
3335         for (i = 0; i < s->failed; i++) {
3336                 if (s->failed_num[i] != sh->pd_idx &&
3337                     s->failed_num[i] != sh->qd_idx &&
3338                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3339                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3340                         return 1;
3341         }
3342
3343         return 0;
3344 }
3345
3346 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3347                        int disk_idx, int disks)
3348 {
3349         struct r5dev *dev = &sh->dev[disk_idx];
3350
3351         /* is the data in this block needed, and can we get it? */
3352         if (need_this_block(sh, s, disk_idx, disks)) {
3353                 /* we would like to get this block, possibly by computing it,
3354                  * otherwise read it if the backing disk is insync
3355                  */
3356                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3357                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3358                 BUG_ON(sh->batch_head);
3359                 if ((s->uptodate == disks - 1) &&
3360                     (s->failed && (disk_idx == s->failed_num[0] ||
3361                                    disk_idx == s->failed_num[1]))) {
3362                         /* have disk failed, and we're requested to fetch it;
3363                          * do compute it
3364                          */
3365                         pr_debug("Computing stripe %llu block %d\n",
3366                                (unsigned long long)sh->sector, disk_idx);
3367                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3368                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3369                         set_bit(R5_Wantcompute, &dev->flags);
3370                         sh->ops.target = disk_idx;
3371                         sh->ops.target2 = -1; /* no 2nd target */
3372                         s->req_compute = 1;
3373                         /* Careful: from this point on 'uptodate' is in the eye
3374                          * of raid_run_ops which services 'compute' operations
3375                          * before writes. R5_Wantcompute flags a block that will
3376                          * be R5_UPTODATE by the time it is needed for a
3377                          * subsequent operation.
3378                          */
3379                         s->uptodate++;
3380                         return 1;
3381                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3382                         /* Computing 2-failure is *very* expensive; only
3383                          * do it if failed >= 2
3384                          */
3385                         int other;
3386                         for (other = disks; other--; ) {
3387                                 if (other == disk_idx)
3388                                         continue;
3389                                 if (!test_bit(R5_UPTODATE,
3390                                       &sh->dev[other].flags))
3391                                         break;
3392                         }
3393                         BUG_ON(other < 0);
3394                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3395                                (unsigned long long)sh->sector,
3396                                disk_idx, other);
3397                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3398                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3399                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3400                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3401                         sh->ops.target = disk_idx;
3402                         sh->ops.target2 = other;
3403                         s->uptodate += 2;
3404                         s->req_compute = 1;
3405                         return 1;
3406                 } else if (test_bit(R5_Insync, &dev->flags)) {
3407                         set_bit(R5_LOCKED, &dev->flags);
3408                         set_bit(R5_Wantread, &dev->flags);
3409                         s->locked++;
3410                         pr_debug("Reading block %d (sync=%d)\n",
3411                                 disk_idx, s->syncing);
3412                 }
3413         }
3414
3415         return 0;
3416 }
3417
3418 /**
3419  * handle_stripe_fill - read or compute data to satisfy pending requests.
3420  */
3421 static void handle_stripe_fill(struct stripe_head *sh,
3422                                struct stripe_head_state *s,
3423                                int disks)
3424 {
3425         int i;
3426
3427         /* look for blocks to read/compute, skip this if a compute
3428          * is already in flight, or if the stripe contents are in the
3429          * midst of changing due to a write
3430          */
3431         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3432             !sh->reconstruct_state)
3433                 for (i = disks; i--; )
3434                         if (fetch_block(sh, s, i, disks))
3435                                 break;
3436         set_bit(STRIPE_HANDLE, &sh->state);
3437 }
3438
3439 static void break_stripe_batch_list(struct stripe_head *head_sh,
3440                                     unsigned long handle_flags);
3441 /* handle_stripe_clean_event
3442  * any written block on an uptodate or failed drive can be returned.
3443  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3444  * never LOCKED, so we don't need to test 'failed' directly.
3445  */
3446 static void handle_stripe_clean_event(struct r5conf *conf,
3447         struct stripe_head *sh, int disks, struct bio **return_bi)
3448 {
3449         int i;
3450         struct r5dev *dev;
3451         int discard_pending = 0;
3452         struct stripe_head *head_sh = sh;
3453         bool do_endio = false;
3454
3455         for (i = disks; i--; )
3456                 if (sh->dev[i].written) {
3457                         dev = &sh->dev[i];
3458                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3459                             (test_bit(R5_UPTODATE, &dev->flags) ||
3460                              test_bit(R5_Discard, &dev->flags) ||
3461                              test_bit(R5_SkipCopy, &dev->flags))) {
3462                                 /* We can return any write requests */
3463                                 struct bio *wbi, *wbi2;
3464                                 pr_debug("Return write for disc %d\n", i);
3465                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3466                                         clear_bit(R5_UPTODATE, &dev->flags);
3467                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3468                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3469                                 }
3470                                 do_endio = true;
3471
3472 returnbi:
3473                                 dev->page = dev->orig_page;
3474                                 wbi = dev->written;
3475                                 dev->written = NULL;
3476                                 while (wbi && wbi->bi_iter.bi_sector <
3477                                         dev->sector + STRIPE_SECTORS) {
3478                                         wbi2 = r5_next_bio(wbi, dev->sector);
3479                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3480                                                 md_write_end(conf->mddev);
3481                                                 wbi->bi_next = *return_bi;
3482                                                 *return_bi = wbi;
3483                                         }
3484                                         wbi = wbi2;
3485                                 }
3486                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3487                                                 STRIPE_SECTORS,
3488                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3489                                                 0);
3490                                 if (head_sh->batch_head) {
3491                                         sh = list_first_entry(&sh->batch_list,
3492                                                               struct stripe_head,
3493                                                               batch_list);
3494                                         if (sh != head_sh) {
3495                                                 dev = &sh->dev[i];
3496                                                 goto returnbi;
3497                                         }
3498                                 }
3499                                 sh = head_sh;
3500                                 dev = &sh->dev[i];
3501                         } else if (test_bit(R5_Discard, &dev->flags))
3502                                 discard_pending = 1;
3503                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3504                         WARN_ON(dev->page != dev->orig_page);
3505                 }
3506         if (!discard_pending &&
3507             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3508                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3509                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3510                 if (sh->qd_idx >= 0) {
3511                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3512                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3513                 }
3514                 /* now that discard is done we can proceed with any sync */
3515                 clear_bit(STRIPE_DISCARD, &sh->state);
3516                 /*
3517                  * SCSI discard will change some bio fields and the stripe has
3518                  * no updated data, so remove it from hash list and the stripe
3519                  * will be reinitialized
3520                  */
3521                 spin_lock_irq(&conf->device_lock);
3522 unhash:
3523                 remove_hash(sh);
3524                 if (head_sh->batch_head) {
3525                         sh = list_first_entry(&sh->batch_list,
3526                                               struct stripe_head, batch_list);
3527                         if (sh != head_sh)
3528                                         goto unhash;
3529                 }
3530                 spin_unlock_irq(&conf->device_lock);
3531                 sh = head_sh;
3532
3533                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3534                         set_bit(STRIPE_HANDLE, &sh->state);
3535
3536         }
3537
3538         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3539                 if (atomic_dec_and_test(&conf->pending_full_writes))
3540                         md_wakeup_thread(conf->mddev->thread);
3541
3542         if (head_sh->batch_head && do_endio)
3543                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3544 }
3545
3546 static void handle_stripe_dirtying(struct r5conf *conf,
3547                                    struct stripe_head *sh,
3548                                    struct stripe_head_state *s,
3549                                    int disks)
3550 {
3551         int rmw = 0, rcw = 0, i;
3552         sector_t recovery_cp = conf->mddev->recovery_cp;
3553
3554         /* Check whether resync is now happening or should start.
3555          * If yes, then the array is dirty (after unclean shutdown or
3556          * initial creation), so parity in some stripes might be inconsistent.
3557          * In this case, we need to always do reconstruct-write, to ensure
3558          * that in case of drive failure or read-error correction, we
3559          * generate correct data from the parity.
3560          */
3561         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3562             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3563              s->failed == 0)) {
3564                 /* Calculate the real rcw later - for now make it
3565                  * look like rcw is cheaper
3566                  */
3567                 rcw = 1; rmw = 2;
3568                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3569                          conf->rmw_level, (unsigned long long)recovery_cp,
3570                          (unsigned long long)sh->sector);
3571         } else for (i = disks; i--; ) {
3572                 /* would I have to read this buffer for read_modify_write */
3573                 struct r5dev *dev = &sh->dev[i];
3574                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3575                     !test_bit(R5_LOCKED, &dev->flags) &&
3576                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3577                       test_bit(R5_Wantcompute, &dev->flags))) {
3578                         if (test_bit(R5_Insync, &dev->flags))
3579                                 rmw++;
3580                         else
3581                                 rmw += 2*disks;  /* cannot read it */
3582                 }
3583                 /* Would I have to read this buffer for reconstruct_write */
3584                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3585                     i != sh->pd_idx && i != sh->qd_idx &&
3586                     !test_bit(R5_LOCKED, &dev->flags) &&
3587                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3588                     test_bit(R5_Wantcompute, &dev->flags))) {
3589                         if (test_bit(R5_Insync, &dev->flags))
3590                                 rcw++;
3591                         else
3592                                 rcw += 2*disks;
3593                 }
3594         }
3595         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3596                 (unsigned long long)sh->sector, rmw, rcw);
3597         set_bit(STRIPE_HANDLE, &sh->state);
3598         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3599                 /* prefer read-modify-write, but need to get some data */
3600                 if (conf->mddev->queue)
3601                         blk_add_trace_msg(conf->mddev->queue,
3602                                           "raid5 rmw %llu %d",
3603                                           (unsigned long long)sh->sector, rmw);
3604                 for (i = disks; i--; ) {
3605                         struct r5dev *dev = &sh->dev[i];
3606                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3607                             !test_bit(R5_LOCKED, &dev->flags) &&
3608                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3609                             test_bit(R5_Wantcompute, &dev->flags)) &&
3610                             test_bit(R5_Insync, &dev->flags)) {
3611                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3612                                              &sh->state)) {
3613                                         pr_debug("Read_old block %d for r-m-w\n",
3614                                                  i);
3615                                         set_bit(R5_LOCKED, &dev->flags);
3616                                         set_bit(R5_Wantread, &dev->flags);
3617                                         s->locked++;
3618                                 } else {
3619                                         set_bit(STRIPE_DELAYED, &sh->state);
3620                                         set_bit(STRIPE_HANDLE, &sh->state);
3621                                 }
3622                         }
3623                 }
3624         }
3625         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3626                 /* want reconstruct write, but need to get some data */
3627                 int qread =0;
3628                 rcw = 0;
3629                 for (i = disks; i--; ) {
3630                         struct r5dev *dev = &sh->dev[i];
3631                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3632                             i != sh->pd_idx && i != sh->qd_idx &&
3633                             !test_bit(R5_LOCKED, &dev->flags) &&
3634                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3635                               test_bit(R5_Wantcompute, &dev->flags))) {
3636                                 rcw++;
3637                                 if (test_bit(R5_Insync, &dev->flags) &&
3638                                     test_bit(STRIPE_PREREAD_ACTIVE,
3639                                              &sh->state)) {
3640                                         pr_debug("Read_old block "
3641                                                 "%d for Reconstruct\n", i);
3642                                         set_bit(R5_LOCKED, &dev->flags);
3643                                         set_bit(R5_Wantread, &dev->flags);
3644                                         s->locked++;
3645                                         qread++;
3646                                 } else {
3647                                         set_bit(STRIPE_DELAYED, &sh->state);
3648                                         set_bit(STRIPE_HANDLE, &sh->state);
3649                                 }
3650                         }
3651                 }
3652                 if (rcw && conf->mddev->queue)
3653                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3654                                           (unsigned long long)sh->sector,
3655                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3656         }
3657
3658         if (rcw > disks && rmw > disks &&
3659             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3660                 set_bit(STRIPE_DELAYED, &sh->state);
3661
3662         /* now if nothing is locked, and if we have enough data,
3663          * we can start a write request
3664          */
3665         /* since handle_stripe can be called at any time we need to handle the
3666          * case where a compute block operation has been submitted and then a
3667          * subsequent call wants to start a write request.  raid_run_ops only
3668          * handles the case where compute block and reconstruct are requested
3669          * simultaneously.  If this is not the case then new writes need to be
3670          * held off until the compute completes.
3671          */
3672         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3673             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3674             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3675                 schedule_reconstruction(sh, s, rcw == 0, 0);
3676 }
3677
3678 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3679                                 struct stripe_head_state *s, int disks)
3680 {
3681         struct r5dev *dev = NULL;
3682
3683         BUG_ON(sh->batch_head);
3684         set_bit(STRIPE_HANDLE, &sh->state);
3685
3686         switch (sh->check_state) {
3687         case check_state_idle:
3688                 /* start a new check operation if there are no failures */
3689                 if (s->failed == 0) {
3690                         BUG_ON(s->uptodate != disks);
3691                         sh->check_state = check_state_run;
3692                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3693                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3694                         s->uptodate--;
3695                         break;
3696                 }
3697                 dev = &sh->dev[s->failed_num[0]];
3698                 /* fall through */
3699         case check_state_compute_result:
3700                 sh->check_state = check_state_idle;
3701                 if (!dev)
3702                         dev = &sh->dev[sh->pd_idx];
3703
3704                 /* check that a write has not made the stripe insync */
3705                 if (test_bit(STRIPE_INSYNC, &sh->state))
3706                         break;
3707
3708                 /* either failed parity check, or recovery is happening */
3709                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3710                 BUG_ON(s->uptodate != disks);
3711
3712                 set_bit(R5_LOCKED, &dev->flags);
3713                 s->locked++;
3714                 set_bit(R5_Wantwrite, &dev->flags);
3715
3716                 clear_bit(STRIPE_DEGRADED, &sh->state);
3717                 set_bit(STRIPE_INSYNC, &sh->state);
3718                 break;
3719         case check_state_run:
3720                 break; /* we will be called again upon completion */
3721         case check_state_check_result:
3722                 sh->check_state = check_state_idle;
3723
3724                 /* if a failure occurred during the check operation, leave
3725                  * STRIPE_INSYNC not set and let the stripe be handled again
3726                  */
3727                 if (s->failed)
3728                         break;
3729
3730                 /* handle a successful check operation, if parity is correct
3731                  * we are done.  Otherwise update the mismatch count and repair
3732                  * parity if !MD_RECOVERY_CHECK
3733                  */
3734                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3735                         /* parity is correct (on disc,
3736                          * not in buffer any more)
3737                          */
3738                         set_bit(STRIPE_INSYNC, &sh->state);
3739                 else {
3740                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3741                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3742                                 /* don't try to repair!! */
3743                                 set_bit(STRIPE_INSYNC, &sh->state);
3744                         else {
3745                                 sh->check_state = check_state_compute_run;
3746                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3747                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3748                                 set_bit(R5_Wantcompute,
3749                                         &sh->dev[sh->pd_idx].flags);
3750                                 sh->ops.target = sh->pd_idx;
3751                                 sh->ops.target2 = -1;
3752                                 s->uptodate++;
3753                         }
3754                 }
3755                 break;
3756         case check_state_compute_run:
3757                 break;
3758         default:
3759                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3760                        __func__, sh->check_state,
3761                        (unsigned long long) sh->sector);
3762                 BUG();
3763         }
3764 }
3765
3766 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3767                                   struct stripe_head_state *s,
3768                                   int disks)
3769 {
3770         int pd_idx = sh->pd_idx;
3771         int qd_idx = sh->qd_idx;
3772         struct r5dev *dev;
3773
3774         BUG_ON(sh->batch_head);
3775         set_bit(STRIPE_HANDLE, &sh->state);
3776
3777         BUG_ON(s->failed > 2);
3778
3779         /* Want to check and possibly repair P and Q.
3780          * However there could be one 'failed' device, in which
3781          * case we can only check one of them, possibly using the
3782          * other to generate missing data
3783          */
3784
3785         switch (sh->check_state) {
3786         case check_state_idle:
3787                 /* start a new check operation if there are < 2 failures */
3788                 if (s->failed == s->q_failed) {
3789                         /* The only possible failed device holds Q, so it
3790                          * makes sense to check P (If anything else were failed,
3791                          * we would have used P to recreate it).
3792                          */
3793                         sh->check_state = check_state_run;
3794                 }
3795                 if (!s->q_failed && s->failed < 2) {
3796                         /* Q is not failed, and we didn't use it to generate
3797                          * anything, so it makes sense to check it
3798                          */
3799                         if (sh->check_state == check_state_run)
3800                                 sh->check_state = check_state_run_pq;
3801                         else
3802                                 sh->check_state = check_state_run_q;
3803                 }
3804
3805                 /* discard potentially stale zero_sum_result */
3806                 sh->ops.zero_sum_result = 0;
3807
3808                 if (sh->check_state == check_state_run) {
3809                         /* async_xor_zero_sum destroys the contents of P */
3810                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3811                         s->uptodate--;
3812                 }
3813                 if (sh->check_state >= check_state_run &&
3814                     sh->check_state <= check_state_run_pq) {
3815                         /* async_syndrome_zero_sum preserves P and Q, so
3816                          * no need to mark them !uptodate here
3817                          */
3818                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3819                         break;
3820                 }
3821
3822                 /* we have 2-disk failure */
3823                 BUG_ON(s->failed != 2);
3824                 /* fall through */
3825         case check_state_compute_result:
3826                 sh->check_state = check_state_idle;
3827
3828                 /* check that a write has not made the stripe insync */
3829                 if (test_bit(STRIPE_INSYNC, &sh->state))
3830                         break;
3831
3832                 /* now write out any block on a failed drive,
3833                  * or P or Q if they were recomputed
3834                  */
3835                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3836                 if (s->failed == 2) {
3837                         dev = &sh->dev[s->failed_num[1]];
3838                         s->locked++;
3839                         set_bit(R5_LOCKED, &dev->flags);
3840                         set_bit(R5_Wantwrite, &dev->flags);
3841                 }
3842                 if (s->failed >= 1) {
3843                         dev = &sh->dev[s->failed_num[0]];
3844                         s->locked++;
3845                         set_bit(R5_LOCKED, &dev->flags);
3846                         set_bit(R5_Wantwrite, &dev->flags);
3847                 }
3848                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3849                         dev = &sh->dev[pd_idx];
3850                         s->locked++;
3851                         set_bit(R5_LOCKED, &dev->flags);
3852                         set_bit(R5_Wantwrite, &dev->flags);
3853                 }
3854                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3855                         dev = &sh->dev[qd_idx];
3856                         s->locked++;
3857                         set_bit(R5_LOCKED, &dev->flags);
3858                         set_bit(R5_Wantwrite, &dev->flags);
3859                 }
3860                 clear_bit(STRIPE_DEGRADED, &sh->state);
3861
3862                 set_bit(STRIPE_INSYNC, &sh->state);
3863                 break;
3864         case check_state_run:
3865         case check_state_run_q:
3866         case check_state_run_pq:
3867                 break; /* we will be called again upon completion */
3868         case check_state_check_result:
3869                 sh->check_state = check_state_idle;
3870
3871                 /* handle a successful check operation, if parity is correct
3872                  * we are done.  Otherwise update the mismatch count and repair
3873                  * parity if !MD_RECOVERY_CHECK
3874                  */
3875                 if (sh->ops.zero_sum_result == 0) {
3876                         /* both parities are correct */
3877                         if (!s->failed)
3878                                 set_bit(STRIPE_INSYNC, &sh->state);
3879                         else {
3880                                 /* in contrast to the raid5 case we can validate
3881                                  * parity, but still have a failure to write
3882                                  * back
3883                                  */
3884                                 sh->check_state = check_state_compute_result;
3885                                 /* Returning at this point means that we may go
3886                                  * off and bring p and/or q uptodate again so
3887                                  * we make sure to check zero_sum_result again
3888                                  * to verify if p or q need writeback
3889                                  */
3890                         }
3891                 } else {
3892                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3893                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3894                                 /* don't try to repair!! */
3895                                 set_bit(STRIPE_INSYNC, &sh->state);
3896                         else {
3897                                 int *target = &sh->ops.target;
3898
3899                                 sh->ops.target = -1;
3900                                 sh->ops.target2 = -1;
3901                                 sh->check_state = check_state_compute_run;
3902                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3903                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3904                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3905                                         set_bit(R5_Wantcompute,
3906                                                 &sh->dev[pd_idx].flags);
3907                                         *target = pd_idx;
3908                                         target = &sh->ops.target2;
3909                                         s->uptodate++;
3910                                 }
3911                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3912                                         set_bit(R5_Wantcompute,
3913                                                 &sh->dev[qd_idx].flags);
3914                                         *target = qd_idx;
3915                                         s->uptodate++;
3916                                 }
3917                         }
3918                 }
3919                 break;
3920         case check_state_compute_run:
3921                 break;
3922         default:
3923                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3924                        __func__, sh->check_state,
3925                        (unsigned long long) sh->sector);
3926                 BUG();
3927         }
3928 }
3929
3930 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3931 {
3932         int i;
3933
3934         /* We have read all the blocks in this stripe and now we need to
3935          * copy some of them into a target stripe for expand.
3936          */
3937         struct dma_async_tx_descriptor *tx = NULL;
3938         BUG_ON(sh->batch_head);
3939         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3940         for (i = 0; i < sh->disks; i++)
3941                 if (i != sh->pd_idx && i != sh->qd_idx) {
3942                         int dd_idx, j;
3943                         struct stripe_head *sh2;
3944                         struct async_submit_ctl submit;
3945
3946                         sector_t bn = compute_blocknr(sh, i, 1);
3947                         sector_t s = raid5_compute_sector(conf, bn, 0,
3948                                                           &dd_idx, NULL);
3949                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3950                         if (sh2 == NULL)
3951                                 /* so far only the early blocks of this stripe
3952                                  * have been requested.  When later blocks
3953                                  * get requested, we will try again
3954                                  */
3955                                 continue;
3956                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3957                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3958                                 /* must have already done this block */
3959                                 release_stripe(sh2);
3960                                 continue;
3961                         }
3962
3963                         /* place all the copies on one channel */
3964                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3965                         tx = async_memcpy(sh2->dev[dd_idx].page,
3966                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3967                                           &submit);
3968
3969                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3970                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3971                         for (j = 0; j < conf->raid_disks; j++)
3972                                 if (j != sh2->pd_idx &&
3973                                     j != sh2->qd_idx &&
3974                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3975                                         break;
3976                         if (j == conf->raid_disks) {
3977                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3978                                 set_bit(STRIPE_HANDLE, &sh2->state);
3979                         }
3980                         release_stripe(sh2);
3981
3982                 }
3983         /* done submitting copies, wait for them to complete */
3984         async_tx_quiesce(&tx);
3985 }
3986
3987 /*
3988  * handle_stripe - do things to a stripe.
3989  *
3990  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3991  * state of various bits to see what needs to be done.
3992  * Possible results:
3993  *    return some read requests which now have data
3994  *    return some write requests which are safely on storage
3995  *    schedule a read on some buffers
3996  *    schedule a write of some buffers
3997  *    return confirmation of parity correctness
3998  *
3999  */
4000
4001 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4002 {
4003         struct r5conf *conf = sh->raid_conf;
4004         int disks = sh->disks;
4005         struct r5dev *dev;
4006         int i;
4007         int do_recovery = 0;
4008
4009         memset(s, 0, sizeof(*s));
4010
4011         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4012         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4013         s->failed_num[0] = -1;
4014         s->failed_num[1] = -1;
4015
4016         /* Now to look around and see what can be done */
4017         rcu_read_lock();
4018         for (i=disks; i--; ) {
4019                 struct md_rdev *rdev;
4020                 sector_t first_bad;
4021                 int bad_sectors;
4022                 int is_bad = 0;
4023
4024                 dev = &sh->dev[i];
4025
4026                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4027                          i, dev->flags,
4028                          dev->toread, dev->towrite, dev->written);
4029                 /* maybe we can reply to a read
4030                  *
4031                  * new wantfill requests are only permitted while
4032                  * ops_complete_biofill is guaranteed to be inactive
4033                  */
4034                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4035                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4036                         set_bit(R5_Wantfill, &dev->flags);
4037
4038                 /* now count some things */
4039                 if (test_bit(R5_LOCKED, &dev->flags))
4040                         s->locked++;
4041                 if (test_bit(R5_UPTODATE, &dev->flags))
4042                         s->uptodate++;
4043                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4044                         s->compute++;
4045                         BUG_ON(s->compute > 2);
4046                 }
4047
4048                 if (test_bit(R5_Wantfill, &dev->flags))
4049                         s->to_fill++;
4050                 else if (dev->toread)
4051                         s->to_read++;
4052                 if (dev->towrite) {
4053                         s->to_write++;
4054                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4055                                 s->non_overwrite++;
4056                 }
4057                 if (dev->written)
4058                         s->written++;
4059                 /* Prefer to use the replacement for reads, but only
4060                  * if it is recovered enough and has no bad blocks.
4061                  */
4062                 rdev = rcu_dereference(conf->disks[i].replacement);
4063                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4064                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4065                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4066                                  &first_bad, &bad_sectors))
4067                         set_bit(R5_ReadRepl, &dev->flags);
4068                 else {
4069                         if (rdev)
4070                                 set_bit(R5_NeedReplace, &dev->flags);
4071                         rdev = rcu_dereference(conf->disks[i].rdev);
4072                         clear_bit(R5_ReadRepl, &dev->flags);
4073                 }
4074                 if (rdev && test_bit(Faulty, &rdev->flags))
4075                         rdev = NULL;
4076                 if (rdev) {
4077                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4078                                              &first_bad, &bad_sectors);
4079                         if (s->blocked_rdev == NULL
4080                             && (test_bit(Blocked, &rdev->flags)
4081                                 || is_bad < 0)) {
4082                                 if (is_bad < 0)
4083                                         set_bit(BlockedBadBlocks,
4084                                                 &rdev->flags);
4085                                 s->blocked_rdev = rdev;
4086                                 atomic_inc(&rdev->nr_pending);
4087                         }
4088                 }
4089                 clear_bit(R5_Insync, &dev->flags);
4090                 if (!rdev)
4091                         /* Not in-sync */;
4092                 else if (is_bad) {
4093                         /* also not in-sync */
4094                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4095                             test_bit(R5_UPTODATE, &dev->flags)) {
4096                                 /* treat as in-sync, but with a read error
4097                                  * which we can now try to correct
4098                                  */
4099                                 set_bit(R5_Insync, &dev->flags);
4100                                 set_bit(R5_ReadError, &dev->flags);
4101                         }
4102                 } else if (test_bit(In_sync, &rdev->flags))
4103                         set_bit(R5_Insync, &dev->flags);
4104                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4105                         /* in sync if before recovery_offset */
4106                         set_bit(R5_Insync, &dev->flags);
4107                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4108                          test_bit(R5_Expanded, &dev->flags))
4109                         /* If we've reshaped into here, we assume it is Insync.
4110                          * We will shortly update recovery_offset to make
4111                          * it official.
4112                          */
4113                         set_bit(R5_Insync, &dev->flags);
4114
4115                 if (test_bit(R5_WriteError, &dev->flags)) {
4116                         /* This flag does not apply to '.replacement'
4117                          * only to .rdev, so make sure to check that*/
4118                         struct md_rdev *rdev2 = rcu_dereference(
4119                                 conf->disks[i].rdev);
4120                         if (rdev2 == rdev)
4121                                 clear_bit(R5_Insync, &dev->flags);
4122                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4123                                 s->handle_bad_blocks = 1;
4124                                 atomic_inc(&rdev2->nr_pending);
4125                         } else
4126                                 clear_bit(R5_WriteError, &dev->flags);
4127                 }
4128                 if (test_bit(R5_MadeGood, &dev->flags)) {
4129                         /* This flag does not apply to '.replacement'
4130                          * only to .rdev, so make sure to check that*/
4131                         struct md_rdev *rdev2 = rcu_dereference(
4132                                 conf->disks[i].rdev);
4133                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4134                                 s->handle_bad_blocks = 1;
4135                                 atomic_inc(&rdev2->nr_pending);
4136                         } else
4137                                 clear_bit(R5_MadeGood, &dev->flags);
4138                 }
4139                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4140                         struct md_rdev *rdev2 = rcu_dereference(
4141                                 conf->disks[i].replacement);
4142                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4143                                 s->handle_bad_blocks = 1;
4144                                 atomic_inc(&rdev2->nr_pending);
4145                         } else
4146                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4147                 }
4148                 if (!test_bit(R5_Insync, &dev->flags)) {
4149                         /* The ReadError flag will just be confusing now */
4150                         clear_bit(R5_ReadError, &dev->flags);
4151                         clear_bit(R5_ReWrite, &dev->flags);
4152                 }
4153                 if (test_bit(R5_ReadError, &dev->flags))
4154                         clear_bit(R5_Insync, &dev->flags);
4155                 if (!test_bit(R5_Insync, &dev->flags)) {
4156                         if (s->failed < 2)
4157                                 s->failed_num[s->failed] = i;
4158                         s->failed++;
4159                         if (rdev && !test_bit(Faulty, &rdev->flags))
4160                                 do_recovery = 1;
4161                 }
4162         }
4163         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4164                 /* If there is a failed device being replaced,
4165                  *     we must be recovering.
4166                  * else if we are after recovery_cp, we must be syncing
4167                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4168                  * else we can only be replacing
4169                  * sync and recovery both need to read all devices, and so
4170                  * use the same flag.
4171                  */
4172                 if (do_recovery ||
4173                     sh->sector >= conf->mddev->recovery_cp ||
4174                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4175                         s->syncing = 1;
4176                 else
4177                         s->replacing = 1;
4178         }
4179         rcu_read_unlock();
4180 }
4181
4182 static int clear_batch_ready(struct stripe_head *sh)
4183 {
4184         /* Return '1' if this is a member of batch, or
4185          * '0' if it is a lone stripe or a head which can now be
4186          * handled.
4187          */
4188         struct stripe_head *tmp;
4189         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4190                 return (sh->batch_head && sh->batch_head != sh);
4191         spin_lock(&sh->stripe_lock);
4192         if (!sh->batch_head) {
4193                 spin_unlock(&sh->stripe_lock);
4194                 return 0;
4195         }
4196
4197         /*
4198          * this stripe could be added to a batch list before we check
4199          * BATCH_READY, skips it
4200          */
4201         if (sh->batch_head != sh) {
4202                 spin_unlock(&sh->stripe_lock);
4203                 return 1;
4204         }
4205         spin_lock(&sh->batch_lock);
4206         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4207                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4208         spin_unlock(&sh->batch_lock);
4209         spin_unlock(&sh->stripe_lock);
4210
4211         /*
4212          * BATCH_READY is cleared, no new stripes can be added.
4213          * batch_list can be accessed without lock
4214          */
4215         return 0;
4216 }
4217
4218 static void break_stripe_batch_list(struct stripe_head *head_sh,
4219                                     unsigned long handle_flags)
4220 {
4221         struct stripe_head *sh, *next;
4222         int i;
4223         int do_wakeup = 0;
4224
4225         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4226
4227                 list_del_init(&sh->batch_list);
4228
4229                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4230                                           (1 << STRIPE_SYNCING) |
4231                                           (1 << STRIPE_REPLACED) |
4232                                           (1 << STRIPE_PREREAD_ACTIVE) |
4233                                           (1 << STRIPE_DELAYED) |
4234                                           (1 << STRIPE_BIT_DELAY) |
4235                                           (1 << STRIPE_FULL_WRITE) |
4236                                           (1 << STRIPE_BIOFILL_RUN) |
4237                                           (1 << STRIPE_COMPUTE_RUN)  |
4238                                           (1 << STRIPE_OPS_REQ_PENDING) |
4239                                           (1 << STRIPE_DISCARD) |
4240                                           (1 << STRIPE_BATCH_READY) |
4241                                           (1 << STRIPE_BATCH_ERR) |
4242                                           (1 << STRIPE_BITMAP_PENDING)));
4243                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4244                                               (1 << STRIPE_REPLACED)));
4245
4246                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4247                                             (1 << STRIPE_DEGRADED)),
4248                               head_sh->state & (1 << STRIPE_INSYNC));
4249
4250                 sh->check_state = head_sh->check_state;
4251                 sh->reconstruct_state = head_sh->reconstruct_state;
4252                 for (i = 0; i < sh->disks; i++) {
4253                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4254                                 do_wakeup = 1;
4255                         sh->dev[i].flags = head_sh->dev[i].flags &
4256                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4257                 }
4258                 spin_lock_irq(&sh->stripe_lock);
4259                 sh->batch_head = NULL;
4260                 spin_unlock_irq(&sh->stripe_lock);
4261                 if (handle_flags == 0 ||
4262                     sh->state & handle_flags)
4263                         set_bit(STRIPE_HANDLE, &sh->state);
4264                 release_stripe(sh);
4265         }
4266         spin_lock_irq(&head_sh->stripe_lock);
4267         head_sh->batch_head = NULL;
4268         spin_unlock_irq(&head_sh->stripe_lock);
4269         for (i = 0; i < head_sh->disks; i++)
4270                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4271                         do_wakeup = 1;
4272         if (head_sh->state & handle_flags)
4273                 set_bit(STRIPE_HANDLE, &head_sh->state);
4274
4275         if (do_wakeup)
4276                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4277 }
4278
4279 static void handle_stripe(struct stripe_head *sh)
4280 {
4281         struct stripe_head_state s;
4282         struct r5conf *conf = sh->raid_conf;
4283         int i;
4284         int prexor;
4285         int disks = sh->disks;
4286         struct r5dev *pdev, *qdev;
4287
4288         clear_bit(STRIPE_HANDLE, &sh->state);
4289         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4290                 /* already being handled, ensure it gets handled
4291                  * again when current action finishes */
4292                 set_bit(STRIPE_HANDLE, &sh->state);
4293                 return;
4294         }
4295
4296         if (clear_batch_ready(sh) ) {
4297                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4298                 return;
4299         }
4300
4301         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4302                 break_stripe_batch_list(sh, 0);
4303
4304         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4305                 spin_lock(&sh->stripe_lock);
4306                 /* Cannot process 'sync' concurrently with 'discard' */
4307                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4308                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4309                         set_bit(STRIPE_SYNCING, &sh->state);
4310                         clear_bit(STRIPE_INSYNC, &sh->state);
4311                         clear_bit(STRIPE_REPLACED, &sh->state);
4312                 }
4313                 spin_unlock(&sh->stripe_lock);
4314         }
4315         clear_bit(STRIPE_DELAYED, &sh->state);
4316
4317         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4318                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4319                (unsigned long long)sh->sector, sh->state,
4320                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4321                sh->check_state, sh->reconstruct_state);
4322
4323         analyse_stripe(sh, &s);
4324
4325         if (s.handle_bad_blocks) {
4326                 set_bit(STRIPE_HANDLE, &sh->state);
4327                 goto finish;
4328         }
4329
4330         if (unlikely(s.blocked_rdev)) {
4331                 if (s.syncing || s.expanding || s.expanded ||
4332                     s.replacing || s.to_write || s.written) {
4333                         set_bit(STRIPE_HANDLE, &sh->state);
4334                         goto finish;
4335                 }
4336                 /* There is nothing for the blocked_rdev to block */
4337                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4338                 s.blocked_rdev = NULL;
4339         }
4340
4341         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4342                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4343                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4344         }
4345
4346         pr_debug("locked=%d uptodate=%d to_read=%d"
4347                " to_write=%d failed=%d failed_num=%d,%d\n",
4348                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4349                s.failed_num[0], s.failed_num[1]);
4350         /* check if the array has lost more than max_degraded devices and,
4351          * if so, some requests might need to be failed.
4352          */
4353         if (s.failed > conf->max_degraded) {
4354                 sh->check_state = 0;
4355                 sh->reconstruct_state = 0;
4356                 break_stripe_batch_list(sh, 0);
4357                 if (s.to_read+s.to_write+s.written)
4358                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4359                 if (s.syncing + s.replacing)
4360                         handle_failed_sync(conf, sh, &s);
4361         }
4362
4363         /* Now we check to see if any write operations have recently
4364          * completed
4365          */
4366         prexor = 0;
4367         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4368                 prexor = 1;
4369         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4370             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4371                 sh->reconstruct_state = reconstruct_state_idle;
4372
4373                 /* All the 'written' buffers and the parity block are ready to
4374                  * be written back to disk
4375                  */
4376                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4377                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4378                 BUG_ON(sh->qd_idx >= 0 &&
4379                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4380                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4381                 for (i = disks; i--; ) {
4382                         struct r5dev *dev = &sh->dev[i];
4383                         if (test_bit(R5_LOCKED, &dev->flags) &&
4384                                 (i == sh->pd_idx || i == sh->qd_idx ||
4385                                  dev->written)) {
4386                                 pr_debug("Writing block %d\n", i);
4387                                 set_bit(R5_Wantwrite, &dev->flags);
4388                                 if (prexor)
4389                                         continue;
4390                                 if (s.failed > 1)
4391                                         continue;
4392                                 if (!test_bit(R5_Insync, &dev->flags) ||
4393                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4394                                      s.failed == 0))
4395                                         set_bit(STRIPE_INSYNC, &sh->state);
4396                         }
4397                 }
4398                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4399                         s.dec_preread_active = 1;
4400         }
4401
4402         /*
4403          * might be able to return some write requests if the parity blocks
4404          * are safe, or on a failed drive
4405          */
4406         pdev = &sh->dev[sh->pd_idx];
4407         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4408                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4409         qdev = &sh->dev[sh->qd_idx];
4410         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4411                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4412                 || conf->level < 6;
4413
4414         if (s.written &&
4415             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4416                              && !test_bit(R5_LOCKED, &pdev->flags)
4417                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4418                                  test_bit(R5_Discard, &pdev->flags))))) &&
4419             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4420                              && !test_bit(R5_LOCKED, &qdev->flags)
4421                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4422                                  test_bit(R5_Discard, &qdev->flags))))))
4423                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4424
4425         /* Now we might consider reading some blocks, either to check/generate
4426          * parity, or to satisfy requests
4427          * or to load a block that is being partially written.
4428          */
4429         if (s.to_read || s.non_overwrite
4430             || (conf->level == 6 && s.to_write && s.failed)
4431             || (s.syncing && (s.uptodate + s.compute < disks))
4432             || s.replacing
4433             || s.expanding)
4434                 handle_stripe_fill(sh, &s, disks);
4435
4436         /* Now to consider new write requests and what else, if anything
4437          * should be read.  We do not handle new writes when:
4438          * 1/ A 'write' operation (copy+xor) is already in flight.
4439          * 2/ A 'check' operation is in flight, as it may clobber the parity
4440          *    block.
4441          */
4442         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4443                 handle_stripe_dirtying(conf, sh, &s, disks);
4444
4445         /* maybe we need to check and possibly fix the parity for this stripe
4446          * Any reads will already have been scheduled, so we just see if enough
4447          * data is available.  The parity check is held off while parity
4448          * dependent operations are in flight.
4449          */
4450         if (sh->check_state ||
4451             (s.syncing && s.locked == 0 &&
4452              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4453              !test_bit(STRIPE_INSYNC, &sh->state))) {
4454                 if (conf->level == 6)
4455                         handle_parity_checks6(conf, sh, &s, disks);
4456                 else
4457                         handle_parity_checks5(conf, sh, &s, disks);
4458         }
4459
4460         if ((s.replacing || s.syncing) && s.locked == 0
4461             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4462             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4463                 /* Write out to replacement devices where possible */
4464                 for (i = 0; i < conf->raid_disks; i++)
4465                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4466                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4467                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4468                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4469                                 s.locked++;
4470                         }
4471                 if (s.replacing)
4472                         set_bit(STRIPE_INSYNC, &sh->state);
4473                 set_bit(STRIPE_REPLACED, &sh->state);
4474         }
4475         if ((s.syncing || s.replacing) && s.locked == 0 &&
4476             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4477             test_bit(STRIPE_INSYNC, &sh->state)) {
4478                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4479                 clear_bit(STRIPE_SYNCING, &sh->state);
4480                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4481                         wake_up(&conf->wait_for_overlap);
4482         }
4483
4484         /* If the failed drives are just a ReadError, then we might need
4485          * to progress the repair/check process
4486          */
4487         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4488                 for (i = 0; i < s.failed; i++) {
4489                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4490                         if (test_bit(R5_ReadError, &dev->flags)
4491                             && !test_bit(R5_LOCKED, &dev->flags)
4492                             && test_bit(R5_UPTODATE, &dev->flags)
4493                                 ) {
4494                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4495                                         set_bit(R5_Wantwrite, &dev->flags);
4496                                         set_bit(R5_ReWrite, &dev->flags);
4497                                         set_bit(R5_LOCKED, &dev->flags);
4498                                         s.locked++;
4499                                 } else {
4500                                         /* let's read it back */
4501                                         set_bit(R5_Wantread, &dev->flags);
4502                                         set_bit(R5_LOCKED, &dev->flags);
4503                                         s.locked++;
4504                                 }
4505                         }
4506                 }
4507
4508         /* Finish reconstruct operations initiated by the expansion process */
4509         if (sh->reconstruct_state == reconstruct_state_result) {
4510                 struct stripe_head *sh_src
4511                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4512                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4513                         /* sh cannot be written until sh_src has been read.
4514                          * so arrange for sh to be delayed a little
4515                          */
4516                         set_bit(STRIPE_DELAYED, &sh->state);
4517                         set_bit(STRIPE_HANDLE, &sh->state);
4518                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4519                                               &sh_src->state))
4520                                 atomic_inc(&conf->preread_active_stripes);
4521                         release_stripe(sh_src);
4522                         goto finish;
4523                 }
4524                 if (sh_src)
4525                         release_stripe(sh_src);
4526
4527                 sh->reconstruct_state = reconstruct_state_idle;
4528                 clear_bit(STRIPE_EXPANDING, &sh->state);
4529                 for (i = conf->raid_disks; i--; ) {
4530                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4531                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4532                         s.locked++;
4533                 }
4534         }
4535
4536         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4537             !sh->reconstruct_state) {
4538                 /* Need to write out all blocks after computing parity */
4539                 sh->disks = conf->raid_disks;
4540                 stripe_set_idx(sh->sector, conf, 0, sh);
4541                 schedule_reconstruction(sh, &s, 1, 1);
4542         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4543                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4544                 atomic_dec(&conf->reshape_stripes);
4545                 wake_up(&conf->wait_for_overlap);
4546                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4547         }
4548
4549         if (s.expanding && s.locked == 0 &&
4550             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4551                 handle_stripe_expansion(conf, sh);
4552
4553 finish:
4554         /* wait for this device to become unblocked */
4555         if (unlikely(s.blocked_rdev)) {
4556                 if (conf->mddev->external)
4557                         md_wait_for_blocked_rdev(s.blocked_rdev,
4558                                                  conf->mddev);
4559                 else
4560                         /* Internal metadata will immediately
4561                          * be written by raid5d, so we don't
4562                          * need to wait here.
4563                          */
4564                         rdev_dec_pending(s.blocked_rdev,
4565                                          conf->mddev);
4566         }
4567
4568         if (s.handle_bad_blocks)
4569                 for (i = disks; i--; ) {
4570                         struct md_rdev *rdev;
4571                         struct r5dev *dev = &sh->dev[i];
4572                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4573                                 /* We own a safe reference to the rdev */
4574                                 rdev = conf->disks[i].rdev;
4575                                 if (!rdev_set_badblocks(rdev, sh->sector,
4576                                                         STRIPE_SECTORS, 0))
4577                                         md_error(conf->mddev, rdev);
4578                                 rdev_dec_pending(rdev, conf->mddev);
4579                         }
4580                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4581                                 rdev = conf->disks[i].rdev;
4582                                 rdev_clear_badblocks(rdev, sh->sector,
4583                                                      STRIPE_SECTORS, 0);
4584                                 rdev_dec_pending(rdev, conf->mddev);
4585                         }
4586                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4587                                 rdev = conf->disks[i].replacement;
4588                                 if (!rdev)
4589                                         /* rdev have been moved down */
4590                                         rdev = conf->disks[i].rdev;
4591                                 rdev_clear_badblocks(rdev, sh->sector,
4592                                                      STRIPE_SECTORS, 0);
4593                                 rdev_dec_pending(rdev, conf->mddev);
4594                         }
4595                 }
4596
4597         if (s.ops_request)
4598                 raid_run_ops(sh, s.ops_request);
4599
4600         ops_run_io(sh, &s);
4601
4602         if (s.dec_preread_active) {
4603                 /* We delay this until after ops_run_io so that if make_request
4604                  * is waiting on a flush, it won't continue until the writes
4605                  * have actually been submitted.
4606                  */
4607                 atomic_dec(&conf->preread_active_stripes);
4608                 if (atomic_read(&conf->preread_active_stripes) <
4609                     IO_THRESHOLD)
4610                         md_wakeup_thread(conf->mddev->thread);
4611         }
4612
4613         return_io(s.return_bi);
4614
4615         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4616 }
4617
4618 static void raid5_activate_delayed(struct r5conf *conf)
4619 {
4620         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4621                 while (!list_empty(&conf->delayed_list)) {
4622                         struct list_head *l = conf->delayed_list.next;
4623                         struct stripe_head *sh;
4624                         sh = list_entry(l, struct stripe_head, lru);
4625                         list_del_init(l);
4626                         clear_bit(STRIPE_DELAYED, &sh->state);
4627                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4628                                 atomic_inc(&conf->preread_active_stripes);
4629                         list_add_tail(&sh->lru, &conf->hold_list);
4630                         raid5_wakeup_stripe_thread(sh);
4631                 }
4632         }
4633 }
4634
4635 static void activate_bit_delay(struct r5conf *conf,
4636         struct list_head *temp_inactive_list)
4637 {
4638         /* device_lock is held */
4639         struct list_head head;
4640         list_add(&head, &conf->bitmap_list);
4641         list_del_init(&conf->bitmap_list);
4642         while (!list_empty(&head)) {
4643                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4644                 int hash;
4645                 list_del_init(&sh->lru);
4646                 atomic_inc(&sh->count);
4647                 hash = sh->hash_lock_index;
4648                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4649         }
4650 }
4651
4652 static int raid5_congested(struct mddev *mddev, int bits)
4653 {
4654         struct r5conf *conf = mddev->private;
4655
4656         /* No difference between reads and writes.  Just check
4657          * how busy the stripe_cache is
4658          */
4659
4660         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4661                 return 1;
4662         if (conf->quiesce)
4663                 return 1;
4664         if (atomic_read(&conf->empty_inactive_list_nr))
4665                 return 1;
4666
4667         return 0;
4668 }
4669
4670 /* We want read requests to align with chunks where possible,
4671  * but write requests don't need to.
4672  */
4673 static int raid5_mergeable_bvec(struct mddev *mddev,
4674                                 struct bvec_merge_data *bvm,
4675                                 struct bio_vec *biovec)
4676 {
4677         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4678         int max;
4679         unsigned int chunk_sectors = mddev->chunk_sectors;
4680         unsigned int bio_sectors = bvm->bi_size >> 9;
4681
4682         /*
4683          * always allow writes to be mergeable, read as well if array
4684          * is degraded as we'll go through stripe cache anyway.
4685          */
4686         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4687                 return biovec->bv_len;
4688
4689         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4690                 chunk_sectors = mddev->new_chunk_sectors;
4691         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4692         if (max < 0) max = 0;
4693         if (max <= biovec->bv_len && bio_sectors == 0)
4694                 return biovec->bv_len;
4695         else
4696                 return max;
4697 }
4698
4699 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4700 {
4701         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4702         unsigned int chunk_sectors = mddev->chunk_sectors;
4703         unsigned int bio_sectors = bio_sectors(bio);
4704
4705         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4706                 chunk_sectors = mddev->new_chunk_sectors;
4707         return  chunk_sectors >=
4708                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4709 }
4710
4711 /*
4712  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4713  *  later sampled by raid5d.
4714  */
4715 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4716 {
4717         unsigned long flags;
4718
4719         spin_lock_irqsave(&conf->device_lock, flags);
4720
4721         bi->bi_next = conf->retry_read_aligned_list;
4722         conf->retry_read_aligned_list = bi;
4723
4724         spin_unlock_irqrestore(&conf->device_lock, flags);
4725         md_wakeup_thread(conf->mddev->thread);
4726 }
4727
4728 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4729 {
4730         struct bio *bi;
4731
4732         bi = conf->retry_read_aligned;
4733         if (bi) {
4734                 conf->retry_read_aligned = NULL;
4735                 return bi;
4736         }
4737         bi = conf->retry_read_aligned_list;
4738         if(bi) {
4739                 conf->retry_read_aligned_list = bi->bi_next;
4740                 bi->bi_next = NULL;
4741                 /*
4742                  * this sets the active strip count to 1 and the processed
4743                  * strip count to zero (upper 8 bits)
4744                  */
4745                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4746         }
4747
4748         return bi;
4749 }
4750
4751 /*
4752  *  The "raid5_align_endio" should check if the read succeeded and if it
4753  *  did, call bio_endio on the original bio (having bio_put the new bio
4754  *  first).
4755  *  If the read failed..
4756  */
4757 static void raid5_align_endio(struct bio *bi, int error)
4758 {
4759         struct bio* raid_bi  = bi->bi_private;
4760         struct mddev *mddev;
4761         struct r5conf *conf;
4762         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4763         struct md_rdev *rdev;
4764
4765         bio_put(bi);
4766
4767         rdev = (void*)raid_bi->bi_next;
4768         raid_bi->bi_next = NULL;
4769         mddev = rdev->mddev;
4770         conf = mddev->private;
4771
4772         rdev_dec_pending(rdev, conf->mddev);
4773
4774         if (!error && uptodate) {
4775                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4776                                          raid_bi, 0);
4777                 bio_endio(raid_bi, 0);
4778                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4779                         wake_up(&conf->wait_for_quiescent);
4780                 return;
4781         }
4782
4783         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4784
4785         add_bio_to_retry(raid_bi, conf);
4786 }
4787
4788 static int bio_fits_rdev(struct bio *bi)
4789 {
4790         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4791
4792         if (bio_sectors(bi) > queue_max_sectors(q))
4793                 return 0;
4794         blk_recount_segments(q, bi);
4795         if (bi->bi_phys_segments > queue_max_segments(q))
4796                 return 0;
4797
4798         if (q->merge_bvec_fn)
4799                 /* it's too hard to apply the merge_bvec_fn at this stage,
4800                  * just just give up
4801                  */
4802                 return 0;
4803
4804         return 1;
4805 }
4806
4807 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4808 {
4809         struct r5conf *conf = mddev->private;
4810         int dd_idx;
4811         struct bio* align_bi;
4812         struct md_rdev *rdev;
4813         sector_t end_sector;
4814
4815         if (!in_chunk_boundary(mddev, raid_bio)) {
4816                 pr_debug("chunk_aligned_read : non aligned\n");
4817                 return 0;
4818         }
4819         /*
4820          * use bio_clone_mddev to make a copy of the bio
4821          */
4822         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4823         if (!align_bi)
4824                 return 0;
4825         /*
4826          *   set bi_end_io to a new function, and set bi_private to the
4827          *     original bio.
4828          */
4829         align_bi->bi_end_io  = raid5_align_endio;
4830         align_bi->bi_private = raid_bio;
4831         /*
4832          *      compute position
4833          */
4834         align_bi->bi_iter.bi_sector =
4835                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4836                                      0, &dd_idx, NULL);
4837
4838         end_sector = bio_end_sector(align_bi);
4839         rcu_read_lock();
4840         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4841         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4842             rdev->recovery_offset < end_sector) {
4843                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4844                 if (rdev &&
4845                     (test_bit(Faulty, &rdev->flags) ||
4846                     !(test_bit(In_sync, &rdev->flags) ||
4847                       rdev->recovery_offset >= end_sector)))
4848                         rdev = NULL;
4849         }
4850         if (rdev) {
4851                 sector_t first_bad;
4852                 int bad_sectors;
4853
4854                 atomic_inc(&rdev->nr_pending);
4855                 rcu_read_unlock();
4856                 raid_bio->bi_next = (void*)rdev;
4857                 align_bi->bi_bdev =  rdev->bdev;
4858                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4859
4860                 if (!bio_fits_rdev(align_bi) ||
4861                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4862                                 bio_sectors(align_bi),
4863                                 &first_bad, &bad_sectors)) {
4864                         /* too big in some way, or has a known bad block */
4865                         bio_put(align_bi);
4866                         rdev_dec_pending(rdev, mddev);
4867                         return 0;
4868                 }
4869
4870                 /* No reshape active, so we can trust rdev->data_offset */
4871                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4872
4873                 spin_lock_irq(&conf->device_lock);
4874                 wait_event_lock_irq(conf->wait_for_quiescent,
4875                                     conf->quiesce == 0,
4876                                     conf->device_lock);
4877                 atomic_inc(&conf->active_aligned_reads);
4878                 spin_unlock_irq(&conf->device_lock);
4879
4880                 if (mddev->gendisk)
4881                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4882                                               align_bi, disk_devt(mddev->gendisk),
4883                                               raid_bio->bi_iter.bi_sector);
4884                 generic_make_request(align_bi);
4885                 return 1;
4886         } else {
4887                 rcu_read_unlock();
4888                 bio_put(align_bi);
4889                 return 0;
4890         }
4891 }
4892
4893 /* __get_priority_stripe - get the next stripe to process
4894  *
4895  * Full stripe writes are allowed to pass preread active stripes up until
4896  * the bypass_threshold is exceeded.  In general the bypass_count
4897  * increments when the handle_list is handled before the hold_list; however, it
4898  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4899  * stripe with in flight i/o.  The bypass_count will be reset when the
4900  * head of the hold_list has changed, i.e. the head was promoted to the
4901  * handle_list.
4902  */
4903 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4904 {
4905         struct stripe_head *sh = NULL, *tmp;
4906         struct list_head *handle_list = NULL;
4907         struct r5worker_group *wg = NULL;
4908
4909         if (conf->worker_cnt_per_group == 0) {
4910                 handle_list = &conf->handle_list;
4911         } else if (group != ANY_GROUP) {
4912                 handle_list = &conf->worker_groups[group].handle_list;
4913                 wg = &conf->worker_groups[group];
4914         } else {
4915                 int i;
4916                 for (i = 0; i < conf->group_cnt; i++) {
4917                         handle_list = &conf->worker_groups[i].handle_list;
4918                         wg = &conf->worker_groups[i];
4919                         if (!list_empty(handle_list))
4920                                 break;
4921                 }
4922         }
4923
4924         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4925                   __func__,
4926                   list_empty(handle_list) ? "empty" : "busy",
4927                   list_empty(&conf->hold_list) ? "empty" : "busy",
4928                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4929
4930         if (!list_empty(handle_list)) {
4931                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4932
4933                 if (list_empty(&conf->hold_list))
4934                         conf->bypass_count = 0;
4935                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4936                         if (conf->hold_list.next == conf->last_hold)
4937                                 conf->bypass_count++;
4938                         else {
4939                                 conf->last_hold = conf->hold_list.next;
4940                                 conf->bypass_count -= conf->bypass_threshold;
4941                                 if (conf->bypass_count < 0)
4942                                         conf->bypass_count = 0;
4943                         }
4944                 }
4945         } else if (!list_empty(&conf->hold_list) &&
4946                    ((conf->bypass_threshold &&
4947                      conf->bypass_count > conf->bypass_threshold) ||
4948                     atomic_read(&conf->pending_full_writes) == 0)) {
4949
4950                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4951                         if (conf->worker_cnt_per_group == 0 ||
4952                             group == ANY_GROUP ||
4953                             !cpu_online(tmp->cpu) ||
4954                             cpu_to_group(tmp->cpu) == group) {
4955                                 sh = tmp;
4956                                 break;
4957                         }
4958                 }
4959
4960                 if (sh) {
4961                         conf->bypass_count -= conf->bypass_threshold;
4962                         if (conf->bypass_count < 0)
4963                                 conf->bypass_count = 0;
4964                 }
4965                 wg = NULL;
4966         }
4967
4968         if (!sh)
4969                 return NULL;
4970
4971         if (wg) {
4972                 wg->stripes_cnt--;
4973                 sh->group = NULL;
4974         }
4975         list_del_init(&sh->lru);
4976         BUG_ON(atomic_inc_return(&sh->count) != 1);
4977         return sh;
4978 }
4979
4980 struct raid5_plug_cb {
4981         struct blk_plug_cb      cb;
4982         struct list_head        list;
4983         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4984 };
4985
4986 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4987 {
4988         struct raid5_plug_cb *cb = container_of(
4989                 blk_cb, struct raid5_plug_cb, cb);
4990         struct stripe_head *sh;
4991         struct mddev *mddev = cb->cb.data;
4992         struct r5conf *conf = mddev->private;
4993         int cnt = 0;
4994         int hash;
4995
4996         if (cb->list.next && !list_empty(&cb->list)) {
4997                 spin_lock_irq(&conf->device_lock);
4998                 while (!list_empty(&cb->list)) {
4999                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5000                         list_del_init(&sh->lru);
5001                         /*
5002                          * avoid race release_stripe_plug() sees
5003                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5004                          * is still in our list
5005                          */
5006                         smp_mb__before_atomic();
5007                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5008                         /*
5009                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5010                          * case, the count is always > 1 here
5011                          */
5012                         hash = sh->hash_lock_index;
5013                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5014                         cnt++;
5015                 }
5016                 spin_unlock_irq(&conf->device_lock);
5017         }
5018         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5019                                      NR_STRIPE_HASH_LOCKS);
5020         if (mddev->queue)
5021                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5022         kfree(cb);
5023 }
5024
5025 static void release_stripe_plug(struct mddev *mddev,
5026                                 struct stripe_head *sh)
5027 {
5028         struct blk_plug_cb *blk_cb = blk_check_plugged(
5029                 raid5_unplug, mddev,
5030                 sizeof(struct raid5_plug_cb));
5031         struct raid5_plug_cb *cb;
5032
5033         if (!blk_cb) {
5034                 release_stripe(sh);
5035                 return;
5036         }
5037
5038         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5039
5040         if (cb->list.next == NULL) {
5041                 int i;
5042                 INIT_LIST_HEAD(&cb->list);
5043                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5044                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5045         }
5046
5047         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5048                 list_add_tail(&sh->lru, &cb->list);
5049         else
5050                 release_stripe(sh);
5051 }
5052
5053 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5054 {
5055         struct r5conf *conf = mddev->private;
5056         sector_t logical_sector, last_sector;
5057         struct stripe_head *sh;
5058         int remaining;
5059         int stripe_sectors;
5060
5061         if (mddev->reshape_position != MaxSector)
5062                 /* Skip discard while reshape is happening */
5063                 return;
5064
5065         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5066         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5067
5068         bi->bi_next = NULL;
5069         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5070
5071         stripe_sectors = conf->chunk_sectors *
5072                 (conf->raid_disks - conf->max_degraded);
5073         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5074                                                stripe_sectors);
5075         sector_div(last_sector, stripe_sectors);
5076
5077         logical_sector *= conf->chunk_sectors;
5078         last_sector *= conf->chunk_sectors;
5079
5080         for (; logical_sector < last_sector;
5081              logical_sector += STRIPE_SECTORS) {
5082                 DEFINE_WAIT(w);
5083                 int d;
5084         again:
5085                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5086                 prepare_to_wait(&conf->wait_for_overlap, &w,
5087                                 TASK_UNINTERRUPTIBLE);
5088                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5089                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5090                         release_stripe(sh);
5091                         schedule();
5092                         goto again;
5093                 }
5094                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5095                 spin_lock_irq(&sh->stripe_lock);
5096                 for (d = 0; d < conf->raid_disks; d++) {
5097                         if (d == sh->pd_idx || d == sh->qd_idx)
5098                                 continue;
5099                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5100                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5101                                 spin_unlock_irq(&sh->stripe_lock);
5102                                 release_stripe(sh);
5103                                 schedule();
5104                                 goto again;
5105                         }
5106                 }
5107                 set_bit(STRIPE_DISCARD, &sh->state);
5108                 finish_wait(&conf->wait_for_overlap, &w);
5109                 sh->overwrite_disks = 0;
5110                 for (d = 0; d < conf->raid_disks; d++) {
5111                         if (d == sh->pd_idx || d == sh->qd_idx)
5112                                 continue;
5113                         sh->dev[d].towrite = bi;
5114                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5115                         raid5_inc_bi_active_stripes(bi);
5116                         sh->overwrite_disks++;
5117                 }
5118                 spin_unlock_irq(&sh->stripe_lock);
5119                 if (conf->mddev->bitmap) {
5120                         for (d = 0;
5121                              d < conf->raid_disks - conf->max_degraded;
5122                              d++)
5123                                 bitmap_startwrite(mddev->bitmap,
5124                                                   sh->sector,
5125                                                   STRIPE_SECTORS,
5126                                                   0);
5127                         sh->bm_seq = conf->seq_flush + 1;
5128                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5129                 }
5130
5131                 set_bit(STRIPE_HANDLE, &sh->state);
5132                 clear_bit(STRIPE_DELAYED, &sh->state);
5133                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5134                         atomic_inc(&conf->preread_active_stripes);
5135                 release_stripe_plug(mddev, sh);
5136         }
5137
5138         remaining = raid5_dec_bi_active_stripes(bi);
5139         if (remaining == 0) {
5140                 md_write_end(mddev);
5141                 bio_endio(bi, 0);
5142         }
5143 }
5144
5145 static void make_request(struct mddev *mddev, struct bio * bi)
5146 {
5147         struct r5conf *conf = mddev->private;
5148         int dd_idx;
5149         sector_t new_sector;
5150         sector_t logical_sector, last_sector;
5151         struct stripe_head *sh;
5152         const int rw = bio_data_dir(bi);
5153         int remaining;
5154         DEFINE_WAIT(w);
5155         bool do_prepare;
5156
5157         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5158                 md_flush_request(mddev, bi);
5159                 return;
5160         }
5161
5162         md_write_start(mddev, bi);
5163
5164         /*
5165          * If array is degraded, better not do chunk aligned read because
5166          * later we might have to read it again in order to reconstruct
5167          * data on failed drives.
5168          */
5169         if (rw == READ && mddev->degraded == 0 &&
5170              mddev->reshape_position == MaxSector &&
5171              chunk_aligned_read(mddev,bi))
5172                 return;
5173
5174         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5175                 make_discard_request(mddev, bi);
5176                 return;
5177         }
5178
5179         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5180         last_sector = bio_end_sector(bi);
5181         bi->bi_next = NULL;
5182         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5183
5184         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5185         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5186                 int previous;
5187                 int seq;
5188
5189                 do_prepare = false;
5190         retry:
5191                 seq = read_seqcount_begin(&conf->gen_lock);
5192                 previous = 0;
5193                 if (do_prepare)
5194                         prepare_to_wait(&conf->wait_for_overlap, &w,
5195                                 TASK_UNINTERRUPTIBLE);
5196                 if (unlikely(conf->reshape_progress != MaxSector)) {
5197                         /* spinlock is needed as reshape_progress may be
5198                          * 64bit on a 32bit platform, and so it might be
5199                          * possible to see a half-updated value
5200                          * Of course reshape_progress could change after
5201                          * the lock is dropped, so once we get a reference
5202                          * to the stripe that we think it is, we will have
5203                          * to check again.
5204                          */
5205                         spin_lock_irq(&conf->device_lock);
5206                         if (mddev->reshape_backwards
5207                             ? logical_sector < conf->reshape_progress
5208                             : logical_sector >= conf->reshape_progress) {
5209                                 previous = 1;
5210                         } else {
5211                                 if (mddev->reshape_backwards
5212                                     ? logical_sector < conf->reshape_safe
5213                                     : logical_sector >= conf->reshape_safe) {
5214                                         spin_unlock_irq(&conf->device_lock);
5215                                         schedule();
5216                                         do_prepare = true;
5217                                         goto retry;
5218                                 }
5219                         }
5220                         spin_unlock_irq(&conf->device_lock);
5221                 }
5222
5223                 new_sector = raid5_compute_sector(conf, logical_sector,
5224                                                   previous,
5225                                                   &dd_idx, NULL);
5226                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5227                         (unsigned long long)new_sector,
5228                         (unsigned long long)logical_sector);
5229
5230                 sh = get_active_stripe(conf, new_sector, previous,
5231                                        (bi->bi_rw&RWA_MASK), 0);
5232                 if (sh) {
5233                         if (unlikely(previous)) {
5234                                 /* expansion might have moved on while waiting for a
5235                                  * stripe, so we must do the range check again.
5236                                  * Expansion could still move past after this
5237                                  * test, but as we are holding a reference to
5238                                  * 'sh', we know that if that happens,
5239                                  *  STRIPE_EXPANDING will get set and the expansion
5240                                  * won't proceed until we finish with the stripe.
5241                                  */
5242                                 int must_retry = 0;
5243                                 spin_lock_irq(&conf->device_lock);
5244                                 if (mddev->reshape_backwards
5245                                     ? logical_sector >= conf->reshape_progress
5246                                     : logical_sector < conf->reshape_progress)
5247                                         /* mismatch, need to try again */
5248                                         must_retry = 1;
5249                                 spin_unlock_irq(&conf->device_lock);
5250                                 if (must_retry) {
5251                                         release_stripe(sh);
5252                                         schedule();
5253                                         do_prepare = true;
5254                                         goto retry;
5255                                 }
5256                         }
5257                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5258                                 /* Might have got the wrong stripe_head
5259                                  * by accident
5260                                  */
5261                                 release_stripe(sh);
5262                                 goto retry;
5263                         }
5264
5265                         if (rw == WRITE &&
5266                             logical_sector >= mddev->suspend_lo &&
5267                             logical_sector < mddev->suspend_hi) {
5268                                 release_stripe(sh);
5269                                 /* As the suspend_* range is controlled by
5270                                  * userspace, we want an interruptible
5271                                  * wait.
5272                                  */
5273                                 flush_signals(current);
5274                                 prepare_to_wait(&conf->wait_for_overlap,
5275                                                 &w, TASK_INTERRUPTIBLE);
5276                                 if (logical_sector >= mddev->suspend_lo &&
5277                                     logical_sector < mddev->suspend_hi) {
5278                                         schedule();
5279                                         do_prepare = true;
5280                                 }
5281                                 goto retry;
5282                         }
5283
5284                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5285                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5286                                 /* Stripe is busy expanding or
5287                                  * add failed due to overlap.  Flush everything
5288                                  * and wait a while
5289                                  */
5290                                 md_wakeup_thread(mddev->thread);
5291                                 release_stripe(sh);
5292                                 schedule();
5293                                 do_prepare = true;
5294                                 goto retry;
5295                         }
5296                         set_bit(STRIPE_HANDLE, &sh->state);
5297                         clear_bit(STRIPE_DELAYED, &sh->state);
5298                         if ((!sh->batch_head || sh == sh->batch_head) &&
5299                             (bi->bi_rw & REQ_SYNC) &&
5300                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5301                                 atomic_inc(&conf->preread_active_stripes);
5302                         release_stripe_plug(mddev, sh);
5303                 } else {
5304                         /* cannot get stripe for read-ahead, just give-up */
5305                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5306                         break;
5307                 }
5308         }
5309         finish_wait(&conf->wait_for_overlap, &w);
5310
5311         remaining = raid5_dec_bi_active_stripes(bi);
5312         if (remaining == 0) {
5313
5314                 if ( rw == WRITE )
5315                         md_write_end(mddev);
5316
5317                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5318                                          bi, 0);
5319                 bio_endio(bi, 0);
5320         }
5321 }
5322
5323 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5324
5325 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5326 {
5327         /* reshaping is quite different to recovery/resync so it is
5328          * handled quite separately ... here.
5329          *
5330          * On each call to sync_request, we gather one chunk worth of
5331          * destination stripes and flag them as expanding.
5332          * Then we find all the source stripes and request reads.
5333          * As the reads complete, handle_stripe will copy the data
5334          * into the destination stripe and release that stripe.
5335          */
5336         struct r5conf *conf = mddev->private;
5337         struct stripe_head *sh;
5338         sector_t first_sector, last_sector;
5339         int raid_disks = conf->previous_raid_disks;
5340         int data_disks = raid_disks - conf->max_degraded;
5341         int new_data_disks = conf->raid_disks - conf->max_degraded;
5342         int i;
5343         int dd_idx;
5344         sector_t writepos, readpos, safepos;
5345         sector_t stripe_addr;
5346         int reshape_sectors;
5347         struct list_head stripes;
5348
5349         if (sector_nr == 0) {
5350                 /* If restarting in the middle, skip the initial sectors */
5351                 if (mddev->reshape_backwards &&
5352                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5353                         sector_nr = raid5_size(mddev, 0, 0)
5354                                 - conf->reshape_progress;
5355                 } else if (!mddev->reshape_backwards &&
5356                            conf->reshape_progress > 0)
5357                         sector_nr = conf->reshape_progress;
5358                 sector_div(sector_nr, new_data_disks);
5359                 if (sector_nr) {
5360                         mddev->curr_resync_completed = sector_nr;
5361                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5362                         *skipped = 1;
5363                         return sector_nr;
5364                 }
5365         }
5366
5367         /* We need to process a full chunk at a time.
5368          * If old and new chunk sizes differ, we need to process the
5369          * largest of these
5370          */
5371         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5372                 reshape_sectors = mddev->new_chunk_sectors;
5373         else
5374                 reshape_sectors = mddev->chunk_sectors;
5375
5376         /* We update the metadata at least every 10 seconds, or when
5377          * the data about to be copied would over-write the source of
5378          * the data at the front of the range.  i.e. one new_stripe
5379          * along from reshape_progress new_maps to after where
5380          * reshape_safe old_maps to
5381          */
5382         writepos = conf->reshape_progress;
5383         sector_div(writepos, new_data_disks);
5384         readpos = conf->reshape_progress;
5385         sector_div(readpos, data_disks);
5386         safepos = conf->reshape_safe;
5387         sector_div(safepos, data_disks);
5388         if (mddev->reshape_backwards) {
5389                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5390                 readpos += reshape_sectors;
5391                 safepos += reshape_sectors;
5392         } else {
5393                 writepos += reshape_sectors;
5394                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5395                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5396         }
5397
5398         /* Having calculated the 'writepos' possibly use it
5399          * to set 'stripe_addr' which is where we will write to.
5400          */
5401         if (mddev->reshape_backwards) {
5402                 BUG_ON(conf->reshape_progress == 0);
5403                 stripe_addr = writepos;
5404                 BUG_ON((mddev->dev_sectors &
5405                         ~((sector_t)reshape_sectors - 1))
5406                        - reshape_sectors - stripe_addr
5407                        != sector_nr);
5408         } else {
5409                 BUG_ON(writepos != sector_nr + reshape_sectors);
5410                 stripe_addr = sector_nr;
5411         }
5412
5413         /* 'writepos' is the most advanced device address we might write.
5414          * 'readpos' is the least advanced device address we might read.
5415          * 'safepos' is the least address recorded in the metadata as having
5416          *     been reshaped.
5417          * If there is a min_offset_diff, these are adjusted either by
5418          * increasing the safepos/readpos if diff is negative, or
5419          * increasing writepos if diff is positive.
5420          * If 'readpos' is then behind 'writepos', there is no way that we can
5421          * ensure safety in the face of a crash - that must be done by userspace
5422          * making a backup of the data.  So in that case there is no particular
5423          * rush to update metadata.
5424          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5425          * update the metadata to advance 'safepos' to match 'readpos' so that
5426          * we can be safe in the event of a crash.
5427          * So we insist on updating metadata if safepos is behind writepos and
5428          * readpos is beyond writepos.
5429          * In any case, update the metadata every 10 seconds.
5430          * Maybe that number should be configurable, but I'm not sure it is
5431          * worth it.... maybe it could be a multiple of safemode_delay???
5432          */
5433         if (conf->min_offset_diff < 0) {
5434                 safepos += -conf->min_offset_diff;
5435                 readpos += -conf->min_offset_diff;
5436         } else
5437                 writepos += conf->min_offset_diff;
5438
5439         if ((mddev->reshape_backwards
5440              ? (safepos > writepos && readpos < writepos)
5441              : (safepos < writepos && readpos > writepos)) ||
5442             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5443                 /* Cannot proceed until we've updated the superblock... */
5444                 wait_event(conf->wait_for_overlap,
5445                            atomic_read(&conf->reshape_stripes)==0
5446                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5447                 if (atomic_read(&conf->reshape_stripes) != 0)
5448                         return 0;
5449                 mddev->reshape_position = conf->reshape_progress;
5450                 mddev->curr_resync_completed = sector_nr;
5451                 conf->reshape_checkpoint = jiffies;
5452                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5453                 md_wakeup_thread(mddev->thread);
5454                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5455                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5456                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5457                         return 0;
5458                 spin_lock_irq(&conf->device_lock);
5459                 conf->reshape_safe = mddev->reshape_position;
5460                 spin_unlock_irq(&conf->device_lock);
5461                 wake_up(&conf->wait_for_overlap);
5462                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5463         }
5464
5465         INIT_LIST_HEAD(&stripes);
5466         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5467                 int j;
5468                 int skipped_disk = 0;
5469                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5470                 set_bit(STRIPE_EXPANDING, &sh->state);
5471                 atomic_inc(&conf->reshape_stripes);
5472                 /* If any of this stripe is beyond the end of the old
5473                  * array, then we need to zero those blocks
5474                  */
5475                 for (j=sh->disks; j--;) {
5476                         sector_t s;
5477                         if (j == sh->pd_idx)
5478                                 continue;
5479                         if (conf->level == 6 &&
5480                             j == sh->qd_idx)
5481                                 continue;
5482                         s = compute_blocknr(sh, j, 0);
5483                         if (s < raid5_size(mddev, 0, 0)) {
5484                                 skipped_disk = 1;
5485                                 continue;
5486                         }
5487                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5488                         set_bit(R5_Expanded, &sh->dev[j].flags);
5489                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5490                 }
5491                 if (!skipped_disk) {
5492                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5493                         set_bit(STRIPE_HANDLE, &sh->state);
5494                 }
5495                 list_add(&sh->lru, &stripes);
5496         }
5497         spin_lock_irq(&conf->device_lock);
5498         if (mddev->reshape_backwards)
5499                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5500         else
5501                 conf->reshape_progress += reshape_sectors * new_data_disks;
5502         spin_unlock_irq(&conf->device_lock);
5503         /* Ok, those stripe are ready. We can start scheduling
5504          * reads on the source stripes.
5505          * The source stripes are determined by mapping the first and last
5506          * block on the destination stripes.
5507          */
5508         first_sector =
5509                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5510                                      1, &dd_idx, NULL);
5511         last_sector =
5512                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5513                                             * new_data_disks - 1),
5514                                      1, &dd_idx, NULL);
5515         if (last_sector >= mddev->dev_sectors)
5516                 last_sector = mddev->dev_sectors - 1;
5517         while (first_sector <= last_sector) {
5518                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5519                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5520                 set_bit(STRIPE_HANDLE, &sh->state);
5521                 release_stripe(sh);
5522                 first_sector += STRIPE_SECTORS;
5523         }
5524         /* Now that the sources are clearly marked, we can release
5525          * the destination stripes
5526          */
5527         while (!list_empty(&stripes)) {
5528                 sh = list_entry(stripes.next, struct stripe_head, lru);
5529                 list_del_init(&sh->lru);
5530                 release_stripe(sh);
5531         }
5532         /* If this takes us to the resync_max point where we have to pause,
5533          * then we need to write out the superblock.
5534          */
5535         sector_nr += reshape_sectors;
5536         if ((sector_nr - mddev->curr_resync_completed) * 2
5537             >= mddev->resync_max - mddev->curr_resync_completed) {
5538                 /* Cannot proceed until we've updated the superblock... */
5539                 wait_event(conf->wait_for_overlap,
5540                            atomic_read(&conf->reshape_stripes) == 0
5541                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5542                 if (atomic_read(&conf->reshape_stripes) != 0)
5543                         goto ret;
5544                 mddev->reshape_position = conf->reshape_progress;
5545                 mddev->curr_resync_completed = sector_nr;
5546                 conf->reshape_checkpoint = jiffies;
5547                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5548                 md_wakeup_thread(mddev->thread);
5549                 wait_event(mddev->sb_wait,
5550                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5551                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5552                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5553                         goto ret;
5554                 spin_lock_irq(&conf->device_lock);
5555                 conf->reshape_safe = mddev->reshape_position;
5556                 spin_unlock_irq(&conf->device_lock);
5557                 wake_up(&conf->wait_for_overlap);
5558                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5559         }
5560 ret:
5561         return reshape_sectors;
5562 }
5563
5564 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5565 {
5566         struct r5conf *conf = mddev->private;
5567         struct stripe_head *sh;
5568         sector_t max_sector = mddev->dev_sectors;
5569         sector_t sync_blocks;
5570         int still_degraded = 0;
5571         int i;
5572
5573         if (sector_nr >= max_sector) {
5574                 /* just being told to finish up .. nothing much to do */
5575
5576                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5577                         end_reshape(conf);
5578                         return 0;
5579                 }
5580
5581                 if (mddev->curr_resync < max_sector) /* aborted */
5582                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5583                                         &sync_blocks, 1);
5584                 else /* completed sync */
5585                         conf->fullsync = 0;
5586                 bitmap_close_sync(mddev->bitmap);
5587
5588                 return 0;
5589         }
5590
5591         /* Allow raid5_quiesce to complete */
5592         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5593
5594         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5595                 return reshape_request(mddev, sector_nr, skipped);
5596
5597         /* No need to check resync_max as we never do more than one
5598          * stripe, and as resync_max will always be on a chunk boundary,
5599          * if the check in md_do_sync didn't fire, there is no chance
5600          * of overstepping resync_max here
5601          */
5602
5603         /* if there is too many failed drives and we are trying
5604          * to resync, then assert that we are finished, because there is
5605          * nothing we can do.
5606          */
5607         if (mddev->degraded >= conf->max_degraded &&
5608             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5609                 sector_t rv = mddev->dev_sectors - sector_nr;
5610                 *skipped = 1;
5611                 return rv;
5612         }
5613         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5614             !conf->fullsync &&
5615             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5616             sync_blocks >= STRIPE_SECTORS) {
5617                 /* we can skip this block, and probably more */
5618                 sync_blocks /= STRIPE_SECTORS;
5619                 *skipped = 1;
5620                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5621         }
5622
5623         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5624
5625         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5626         if (sh == NULL) {
5627                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5628                 /* make sure we don't swamp the stripe cache if someone else
5629                  * is trying to get access
5630                  */
5631                 schedule_timeout_uninterruptible(1);
5632         }
5633         /* Need to check if array will still be degraded after recovery/resync
5634          * Note in case of > 1 drive failures it's possible we're rebuilding
5635          * one drive while leaving another faulty drive in array.
5636          */
5637         rcu_read_lock();
5638         for (i = 0; i < conf->raid_disks; i++) {
5639                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5640
5641                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5642                         still_degraded = 1;
5643         }
5644         rcu_read_unlock();
5645
5646         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5647
5648         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5649         set_bit(STRIPE_HANDLE, &sh->state);
5650
5651         release_stripe(sh);
5652
5653         return STRIPE_SECTORS;
5654 }
5655
5656 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5657 {
5658         /* We may not be able to submit a whole bio at once as there
5659          * may not be enough stripe_heads available.
5660          * We cannot pre-allocate enough stripe_heads as we may need
5661          * more than exist in the cache (if we allow ever large chunks).
5662          * So we do one stripe head at a time and record in
5663          * ->bi_hw_segments how many have been done.
5664          *
5665          * We *know* that this entire raid_bio is in one chunk, so
5666          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5667          */
5668         struct stripe_head *sh;
5669         int dd_idx;
5670         sector_t sector, logical_sector, last_sector;
5671         int scnt = 0;
5672         int remaining;
5673         int handled = 0;
5674
5675         logical_sector = raid_bio->bi_iter.bi_sector &
5676                 ~((sector_t)STRIPE_SECTORS-1);
5677         sector = raid5_compute_sector(conf, logical_sector,
5678                                       0, &dd_idx, NULL);
5679         last_sector = bio_end_sector(raid_bio);
5680
5681         for (; logical_sector < last_sector;
5682              logical_sector += STRIPE_SECTORS,
5683                      sector += STRIPE_SECTORS,
5684                      scnt++) {
5685
5686                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5687                         /* already done this stripe */
5688                         continue;
5689
5690                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5691
5692                 if (!sh) {
5693                         /* failed to get a stripe - must wait */
5694                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5695                         conf->retry_read_aligned = raid_bio;
5696                         return handled;
5697                 }
5698
5699                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5700                         release_stripe(sh);
5701                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5702                         conf->retry_read_aligned = raid_bio;
5703                         return handled;
5704                 }
5705
5706                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5707                 handle_stripe(sh);
5708                 release_stripe(sh);
5709                 handled++;
5710         }
5711         remaining = raid5_dec_bi_active_stripes(raid_bio);
5712         if (remaining == 0) {
5713                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5714                                          raid_bio, 0);
5715                 bio_endio(raid_bio, 0);
5716         }
5717         if (atomic_dec_and_test(&conf->active_aligned_reads))
5718                 wake_up(&conf->wait_for_quiescent);
5719         return handled;
5720 }
5721
5722 static int handle_active_stripes(struct r5conf *conf, int group,
5723                                  struct r5worker *worker,
5724                                  struct list_head *temp_inactive_list)
5725 {
5726         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5727         int i, batch_size = 0, hash;
5728         bool release_inactive = false;
5729
5730         while (batch_size < MAX_STRIPE_BATCH &&
5731                         (sh = __get_priority_stripe(conf, group)) != NULL)
5732                 batch[batch_size++] = sh;
5733
5734         if (batch_size == 0) {
5735                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5736                         if (!list_empty(temp_inactive_list + i))
5737                                 break;
5738                 if (i == NR_STRIPE_HASH_LOCKS)
5739                         return batch_size;
5740                 release_inactive = true;
5741         }
5742         spin_unlock_irq(&conf->device_lock);
5743
5744         release_inactive_stripe_list(conf, temp_inactive_list,
5745                                      NR_STRIPE_HASH_LOCKS);
5746
5747         if (release_inactive) {
5748                 spin_lock_irq(&conf->device_lock);
5749                 return 0;
5750         }
5751
5752         for (i = 0; i < batch_size; i++)
5753                 handle_stripe(batch[i]);
5754
5755         cond_resched();
5756
5757         spin_lock_irq(&conf->device_lock);
5758         for (i = 0; i < batch_size; i++) {
5759                 hash = batch[i]->hash_lock_index;
5760                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5761         }
5762         return batch_size;
5763 }
5764
5765 static void raid5_do_work(struct work_struct *work)
5766 {
5767         struct r5worker *worker = container_of(work, struct r5worker, work);
5768         struct r5worker_group *group = worker->group;
5769         struct r5conf *conf = group->conf;
5770         int group_id = group - conf->worker_groups;
5771         int handled;
5772         struct blk_plug plug;
5773
5774         pr_debug("+++ raid5worker active\n");
5775
5776         blk_start_plug(&plug);
5777         handled = 0;
5778         spin_lock_irq(&conf->device_lock);
5779         while (1) {
5780                 int batch_size, released;
5781
5782                 released = release_stripe_list(conf, worker->temp_inactive_list);
5783
5784                 batch_size = handle_active_stripes(conf, group_id, worker,
5785                                                    worker->temp_inactive_list);
5786                 worker->working = false;
5787                 if (!batch_size && !released)
5788                         break;
5789                 handled += batch_size;
5790         }
5791         pr_debug("%d stripes handled\n", handled);
5792
5793         spin_unlock_irq(&conf->device_lock);
5794         blk_finish_plug(&plug);
5795
5796         pr_debug("--- raid5worker inactive\n");
5797 }
5798
5799 /*
5800  * This is our raid5 kernel thread.
5801  *
5802  * We scan the hash table for stripes which can be handled now.
5803  * During the scan, completed stripes are saved for us by the interrupt
5804  * handler, so that they will not have to wait for our next wakeup.
5805  */
5806 static void raid5d(struct md_thread *thread)
5807 {
5808         struct mddev *mddev = thread->mddev;
5809         struct r5conf *conf = mddev->private;
5810         int handled;
5811         struct blk_plug plug;
5812
5813         pr_debug("+++ raid5d active\n");
5814
5815         md_check_recovery(mddev);
5816
5817         blk_start_plug(&plug);
5818         handled = 0;
5819         spin_lock_irq(&conf->device_lock);
5820         while (1) {
5821                 struct bio *bio;
5822                 int batch_size, released;
5823
5824                 released = release_stripe_list(conf, conf->temp_inactive_list);
5825                 if (released)
5826                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5827
5828                 if (
5829                     !list_empty(&conf->bitmap_list)) {
5830                         /* Now is a good time to flush some bitmap updates */
5831                         conf->seq_flush++;
5832                         spin_unlock_irq(&conf->device_lock);
5833                         bitmap_unplug(mddev->bitmap);
5834                         spin_lock_irq(&conf->device_lock);
5835                         conf->seq_write = conf->seq_flush;
5836                         activate_bit_delay(conf, conf->temp_inactive_list);
5837                 }
5838                 raid5_activate_delayed(conf);
5839
5840                 while ((bio = remove_bio_from_retry(conf))) {
5841                         int ok;
5842                         spin_unlock_irq(&conf->device_lock);
5843                         ok = retry_aligned_read(conf, bio);
5844                         spin_lock_irq(&conf->device_lock);
5845                         if (!ok)
5846                                 break;
5847                         handled++;
5848                 }
5849
5850                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5851                                                    conf->temp_inactive_list);
5852                 if (!batch_size && !released)
5853                         break;
5854                 handled += batch_size;
5855
5856                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5857                         spin_unlock_irq(&conf->device_lock);
5858                         md_check_recovery(mddev);
5859                         spin_lock_irq(&conf->device_lock);
5860                 }
5861         }
5862         pr_debug("%d stripes handled\n", handled);
5863
5864         spin_unlock_irq(&conf->device_lock);
5865         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5866             mutex_trylock(&conf->cache_size_mutex)) {
5867                 grow_one_stripe(conf, __GFP_NOWARN);
5868                 /* Set flag even if allocation failed.  This helps
5869                  * slow down allocation requests when mem is short
5870                  */
5871                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5872                 mutex_unlock(&conf->cache_size_mutex);
5873         }
5874
5875         async_tx_issue_pending_all();
5876         blk_finish_plug(&plug);
5877
5878         pr_debug("--- raid5d inactive\n");
5879 }
5880
5881 static ssize_t
5882 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5883 {
5884         struct r5conf *conf;
5885         int ret = 0;
5886         spin_lock(&mddev->lock);
5887         conf = mddev->private;
5888         if (conf)
5889                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5890         spin_unlock(&mddev->lock);
5891         return ret;
5892 }
5893
5894 int
5895 raid5_set_cache_size(struct mddev *mddev, int size)
5896 {
5897         struct r5conf *conf = mddev->private;
5898         int err;
5899
5900         if (size <= 16 || size > 32768)
5901                 return -EINVAL;
5902
5903         conf->min_nr_stripes = size;
5904         mutex_lock(&conf->cache_size_mutex);
5905         while (size < conf->max_nr_stripes &&
5906                drop_one_stripe(conf))
5907                 ;
5908         mutex_unlock(&conf->cache_size_mutex);
5909
5910
5911         err = md_allow_write(mddev);
5912         if (err)
5913                 return err;
5914
5915         mutex_lock(&conf->cache_size_mutex);
5916         while (size > conf->max_nr_stripes)
5917                 if (!grow_one_stripe(conf, GFP_KERNEL))
5918                         break;
5919         mutex_unlock(&conf->cache_size_mutex);
5920
5921         return 0;
5922 }
5923 EXPORT_SYMBOL(raid5_set_cache_size);
5924
5925 static ssize_t
5926 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5927 {
5928         struct r5conf *conf;
5929         unsigned long new;
5930         int err;
5931
5932         if (len >= PAGE_SIZE)
5933                 return -EINVAL;
5934         if (kstrtoul(page, 10, &new))
5935                 return -EINVAL;
5936         err = mddev_lock(mddev);
5937         if (err)
5938                 return err;
5939         conf = mddev->private;
5940         if (!conf)
5941                 err = -ENODEV;
5942         else
5943                 err = raid5_set_cache_size(mddev, new);
5944         mddev_unlock(mddev);
5945
5946         return err ?: len;
5947 }
5948
5949 static struct md_sysfs_entry
5950 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5951                                 raid5_show_stripe_cache_size,
5952                                 raid5_store_stripe_cache_size);
5953
5954 static ssize_t
5955 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5956 {
5957         struct r5conf *conf = mddev->private;
5958         if (conf)
5959                 return sprintf(page, "%d\n", conf->rmw_level);
5960         else
5961                 return 0;
5962 }
5963
5964 static ssize_t
5965 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5966 {
5967         struct r5conf *conf = mddev->private;
5968         unsigned long new;
5969
5970         if (!conf)
5971                 return -ENODEV;
5972
5973         if (len >= PAGE_SIZE)
5974                 return -EINVAL;
5975
5976         if (kstrtoul(page, 10, &new))
5977                 return -EINVAL;
5978
5979         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5980                 return -EINVAL;
5981
5982         if (new != PARITY_DISABLE_RMW &&
5983             new != PARITY_ENABLE_RMW &&
5984             new != PARITY_PREFER_RMW)
5985                 return -EINVAL;
5986
5987         conf->rmw_level = new;
5988         return len;
5989 }
5990
5991 static struct md_sysfs_entry
5992 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5993                          raid5_show_rmw_level,
5994                          raid5_store_rmw_level);
5995
5996
5997 static ssize_t
5998 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5999 {
6000         struct r5conf *conf;
6001         int ret = 0;
6002         spin_lock(&mddev->lock);
6003         conf = mddev->private;
6004         if (conf)
6005                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6006         spin_unlock(&mddev->lock);
6007         return ret;
6008 }
6009
6010 static ssize_t
6011 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6012 {
6013         struct r5conf *conf;
6014         unsigned long new;
6015         int err;
6016
6017         if (len >= PAGE_SIZE)
6018                 return -EINVAL;
6019         if (kstrtoul(page, 10, &new))
6020                 return -EINVAL;
6021
6022         err = mddev_lock(mddev);
6023         if (err)
6024                 return err;
6025         conf = mddev->private;
6026         if (!conf)
6027                 err = -ENODEV;
6028         else if (new > conf->min_nr_stripes)
6029                 err = -EINVAL;
6030         else
6031                 conf->bypass_threshold = new;
6032         mddev_unlock(mddev);
6033         return err ?: len;
6034 }
6035
6036 static struct md_sysfs_entry
6037 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6038                                         S_IRUGO | S_IWUSR,
6039                                         raid5_show_preread_threshold,
6040                                         raid5_store_preread_threshold);
6041
6042 static ssize_t
6043 raid5_show_skip_copy(struct mddev *mddev, char *page)
6044 {
6045         struct r5conf *conf;
6046         int ret = 0;
6047         spin_lock(&mddev->lock);
6048         conf = mddev->private;
6049         if (conf)
6050                 ret = sprintf(page, "%d\n", conf->skip_copy);
6051         spin_unlock(&mddev->lock);
6052         return ret;
6053 }
6054
6055 static ssize_t
6056 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6057 {
6058         struct r5conf *conf;
6059         unsigned long new;
6060         int err;
6061
6062         if (len >= PAGE_SIZE)
6063                 return -EINVAL;
6064         if (kstrtoul(page, 10, &new))
6065                 return -EINVAL;
6066         new = !!new;
6067
6068         err = mddev_lock(mddev);
6069         if (err)
6070                 return err;
6071         conf = mddev->private;
6072         if (!conf)
6073                 err = -ENODEV;
6074         else if (new != conf->skip_copy) {
6075                 mddev_suspend(mddev);
6076                 conf->skip_copy = new;
6077                 if (new)
6078                         mddev->queue->backing_dev_info.capabilities |=
6079                                 BDI_CAP_STABLE_WRITES;
6080                 else
6081                         mddev->queue->backing_dev_info.capabilities &=
6082                                 ~BDI_CAP_STABLE_WRITES;
6083                 mddev_resume(mddev);
6084         }
6085         mddev_unlock(mddev);
6086         return err ?: len;
6087 }
6088
6089 static struct md_sysfs_entry
6090 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6091                                         raid5_show_skip_copy,
6092                                         raid5_store_skip_copy);
6093
6094 static ssize_t
6095 stripe_cache_active_show(struct mddev *mddev, char *page)
6096 {
6097         struct r5conf *conf = mddev->private;
6098         if (conf)
6099                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6100         else
6101                 return 0;
6102 }
6103
6104 static struct md_sysfs_entry
6105 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6106
6107 static ssize_t
6108 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6109 {
6110         struct r5conf *conf;
6111         int ret = 0;
6112         spin_lock(&mddev->lock);
6113         conf = mddev->private;
6114         if (conf)
6115                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6116         spin_unlock(&mddev->lock);
6117         return ret;
6118 }
6119
6120 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6121                                int *group_cnt,
6122                                int *worker_cnt_per_group,
6123                                struct r5worker_group **worker_groups);
6124 static ssize_t
6125 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6126 {
6127         struct r5conf *conf;
6128         unsigned long new;
6129         int err;
6130         struct r5worker_group *new_groups, *old_groups;
6131         int group_cnt, worker_cnt_per_group;
6132
6133         if (len >= PAGE_SIZE)
6134                 return -EINVAL;
6135         if (kstrtoul(page, 10, &new))
6136                 return -EINVAL;
6137
6138         err = mddev_lock(mddev);
6139         if (err)
6140                 return err;
6141         conf = mddev->private;
6142         if (!conf)
6143                 err = -ENODEV;
6144         else if (new != conf->worker_cnt_per_group) {
6145                 mddev_suspend(mddev);
6146
6147                 old_groups = conf->worker_groups;
6148                 if (old_groups)
6149                         flush_workqueue(raid5_wq);
6150
6151                 err = alloc_thread_groups(conf, new,
6152                                           &group_cnt, &worker_cnt_per_group,
6153                                           &new_groups);
6154                 if (!err) {
6155                         spin_lock_irq(&conf->device_lock);
6156                         conf->group_cnt = group_cnt;
6157                         conf->worker_cnt_per_group = worker_cnt_per_group;
6158                         conf->worker_groups = new_groups;
6159                         spin_unlock_irq(&conf->device_lock);
6160
6161                         if (old_groups)
6162                                 kfree(old_groups[0].workers);
6163                         kfree(old_groups);
6164                 }
6165                 mddev_resume(mddev);
6166         }
6167         mddev_unlock(mddev);
6168
6169         return err ?: len;
6170 }
6171
6172 static struct md_sysfs_entry
6173 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6174                                 raid5_show_group_thread_cnt,
6175                                 raid5_store_group_thread_cnt);
6176
6177 static struct attribute *raid5_attrs[] =  {
6178         &raid5_stripecache_size.attr,
6179         &raid5_stripecache_active.attr,
6180         &raid5_preread_bypass_threshold.attr,
6181         &raid5_group_thread_cnt.attr,
6182         &raid5_skip_copy.attr,
6183         &raid5_rmw_level.attr,
6184         NULL,
6185 };
6186 static struct attribute_group raid5_attrs_group = {
6187         .name = NULL,
6188         .attrs = raid5_attrs,
6189 };
6190
6191 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6192                                int *group_cnt,
6193                                int *worker_cnt_per_group,
6194                                struct r5worker_group **worker_groups)
6195 {
6196         int i, j, k;
6197         ssize_t size;
6198         struct r5worker *workers;
6199
6200         *worker_cnt_per_group = cnt;
6201         if (cnt == 0) {
6202                 *group_cnt = 0;
6203                 *worker_groups = NULL;
6204                 return 0;
6205         }
6206         *group_cnt = num_possible_nodes();
6207         size = sizeof(struct r5worker) * cnt;
6208         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6209         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6210                                 *group_cnt, GFP_NOIO);
6211         if (!*worker_groups || !workers) {
6212                 kfree(workers);
6213                 kfree(*worker_groups);
6214                 return -ENOMEM;
6215         }
6216
6217         for (i = 0; i < *group_cnt; i++) {
6218                 struct r5worker_group *group;
6219
6220                 group = &(*worker_groups)[i];
6221                 INIT_LIST_HEAD(&group->handle_list);
6222                 group->conf = conf;
6223                 group->workers = workers + i * cnt;
6224
6225                 for (j = 0; j < cnt; j++) {
6226                         struct r5worker *worker = group->workers + j;
6227                         worker->group = group;
6228                         INIT_WORK(&worker->work, raid5_do_work);
6229
6230                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6231                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6232                 }
6233         }
6234
6235         return 0;
6236 }
6237
6238 static void free_thread_groups(struct r5conf *conf)
6239 {
6240         if (conf->worker_groups)
6241                 kfree(conf->worker_groups[0].workers);
6242         kfree(conf->worker_groups);
6243         conf->worker_groups = NULL;
6244 }
6245
6246 static sector_t
6247 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6248 {
6249         struct r5conf *conf = mddev->private;
6250
6251         if (!sectors)
6252                 sectors = mddev->dev_sectors;
6253         if (!raid_disks)
6254                 /* size is defined by the smallest of previous and new size */
6255                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6256
6257         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6258         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6259         return sectors * (raid_disks - conf->max_degraded);
6260 }
6261
6262 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6263 {
6264         safe_put_page(percpu->spare_page);
6265         if (percpu->scribble)
6266                 flex_array_free(percpu->scribble);
6267         percpu->spare_page = NULL;
6268         percpu->scribble = NULL;
6269 }
6270
6271 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6272 {
6273         if (conf->level == 6 && !percpu->spare_page)
6274                 percpu->spare_page = alloc_page(GFP_KERNEL);
6275         if (!percpu->scribble)
6276                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6277                                                       conf->previous_raid_disks),
6278                                                   max(conf->chunk_sectors,
6279                                                       conf->prev_chunk_sectors)
6280                                                    / STRIPE_SECTORS,
6281                                                   GFP_KERNEL);
6282
6283         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6284                 free_scratch_buffer(conf, percpu);
6285                 return -ENOMEM;
6286         }
6287
6288         return 0;
6289 }
6290
6291 static void raid5_free_percpu(struct r5conf *conf)
6292 {
6293         unsigned long cpu;
6294
6295         if (!conf->percpu)
6296                 return;
6297
6298 #ifdef CONFIG_HOTPLUG_CPU
6299         unregister_cpu_notifier(&conf->cpu_notify);
6300 #endif
6301
6302         get_online_cpus();
6303         for_each_possible_cpu(cpu)
6304                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6305         put_online_cpus();
6306
6307         free_percpu(conf->percpu);
6308 }
6309
6310 static void free_conf(struct r5conf *conf)
6311 {
6312         if (conf->shrinker.seeks)
6313                 unregister_shrinker(&conf->shrinker);
6314         free_thread_groups(conf);
6315         shrink_stripes(conf);
6316         raid5_free_percpu(conf);
6317         kfree(conf->disks);
6318         kfree(conf->stripe_hashtbl);
6319         kfree(conf);
6320 }
6321
6322 #ifdef CONFIG_HOTPLUG_CPU
6323 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6324                               void *hcpu)
6325 {
6326         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6327         long cpu = (long)hcpu;
6328         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6329
6330         switch (action) {
6331         case CPU_UP_PREPARE:
6332         case CPU_UP_PREPARE_FROZEN:
6333                 if (alloc_scratch_buffer(conf, percpu)) {
6334                         pr_err("%s: failed memory allocation for cpu%ld\n",
6335                                __func__, cpu);
6336                         return notifier_from_errno(-ENOMEM);
6337                 }
6338                 break;
6339         case CPU_DEAD:
6340         case CPU_DEAD_FROZEN:
6341                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6342                 break;
6343         default:
6344                 break;
6345         }
6346         return NOTIFY_OK;
6347 }
6348 #endif
6349
6350 static int raid5_alloc_percpu(struct r5conf *conf)
6351 {
6352         unsigned long cpu;
6353         int err = 0;
6354
6355         conf->percpu = alloc_percpu(struct raid5_percpu);
6356         if (!conf->percpu)
6357                 return -ENOMEM;
6358
6359 #ifdef CONFIG_HOTPLUG_CPU
6360         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6361         conf->cpu_notify.priority = 0;
6362         err = register_cpu_notifier(&conf->cpu_notify);
6363         if (err)
6364                 return err;
6365 #endif
6366
6367         get_online_cpus();
6368         for_each_present_cpu(cpu) {
6369                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6370                 if (err) {
6371                         pr_err("%s: failed memory allocation for cpu%ld\n",
6372                                __func__, cpu);
6373                         break;
6374                 }
6375         }
6376         put_online_cpus();
6377
6378         return err;
6379 }
6380
6381 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6382                                       struct shrink_control *sc)
6383 {
6384         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6385         unsigned long ret = SHRINK_STOP;
6386
6387         if (mutex_trylock(&conf->cache_size_mutex)) {
6388                 ret= 0;
6389                 while (ret < sc->nr_to_scan) {
6390                         if (drop_one_stripe(conf) == 0) {
6391                                 ret = SHRINK_STOP;
6392                                 break;
6393                         }
6394                         ret++;
6395                 }
6396                 mutex_unlock(&conf->cache_size_mutex);
6397         }
6398         return ret;
6399 }
6400
6401 static unsigned long raid5_cache_count(struct shrinker *shrink,
6402                                        struct shrink_control *sc)
6403 {
6404         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6405
6406         if (conf->max_nr_stripes < conf->min_nr_stripes)
6407                 /* unlikely, but not impossible */
6408                 return 0;
6409         return conf->max_nr_stripes - conf->min_nr_stripes;
6410 }
6411
6412 static struct r5conf *setup_conf(struct mddev *mddev)
6413 {
6414         struct r5conf *conf;
6415         int raid_disk, memory, max_disks;
6416         struct md_rdev *rdev;
6417         struct disk_info *disk;
6418         char pers_name[6];
6419         int i;
6420         int group_cnt, worker_cnt_per_group;
6421         struct r5worker_group *new_group;
6422
6423         if (mddev->new_level != 5
6424             && mddev->new_level != 4
6425             && mddev->new_level != 6) {
6426                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6427                        mdname(mddev), mddev->new_level);
6428                 return ERR_PTR(-EIO);
6429         }
6430         if ((mddev->new_level == 5
6431              && !algorithm_valid_raid5(mddev->new_layout)) ||
6432             (mddev->new_level == 6
6433              && !algorithm_valid_raid6(mddev->new_layout))) {
6434                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6435                        mdname(mddev), mddev->new_layout);
6436                 return ERR_PTR(-EIO);
6437         }
6438         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6439                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6440                        mdname(mddev), mddev->raid_disks);
6441                 return ERR_PTR(-EINVAL);
6442         }
6443
6444         if (!mddev->new_chunk_sectors ||
6445             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6446             !is_power_of_2(mddev->new_chunk_sectors)) {
6447                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6448                        mdname(mddev), mddev->new_chunk_sectors << 9);
6449                 return ERR_PTR(-EINVAL);
6450         }
6451
6452         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6453         if (conf == NULL)
6454                 goto abort;
6455         /* Don't enable multi-threading by default*/
6456         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6457                                  &new_group)) {
6458                 conf->group_cnt = group_cnt;
6459                 conf->worker_cnt_per_group = worker_cnt_per_group;
6460                 conf->worker_groups = new_group;
6461         } else
6462                 goto abort;
6463         spin_lock_init(&conf->device_lock);
6464         seqcount_init(&conf->gen_lock);
6465         mutex_init(&conf->cache_size_mutex);
6466         init_waitqueue_head(&conf->wait_for_quiescent);
6467         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6468                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6469         }
6470         init_waitqueue_head(&conf->wait_for_overlap);
6471         INIT_LIST_HEAD(&conf->handle_list);
6472         INIT_LIST_HEAD(&conf->hold_list);
6473         INIT_LIST_HEAD(&conf->delayed_list);
6474         INIT_LIST_HEAD(&conf->bitmap_list);
6475         init_llist_head(&conf->released_stripes);
6476         atomic_set(&conf->active_stripes, 0);
6477         atomic_set(&conf->preread_active_stripes, 0);
6478         atomic_set(&conf->active_aligned_reads, 0);
6479         conf->bypass_threshold = BYPASS_THRESHOLD;
6480         conf->recovery_disabled = mddev->recovery_disabled - 1;
6481
6482         conf->raid_disks = mddev->raid_disks;
6483         if (mddev->reshape_position == MaxSector)
6484                 conf->previous_raid_disks = mddev->raid_disks;
6485         else
6486                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6487         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6488
6489         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6490                               GFP_KERNEL);
6491         if (!conf->disks)
6492                 goto abort;
6493
6494         conf->mddev = mddev;
6495
6496         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6497                 goto abort;
6498
6499         /* We init hash_locks[0] separately to that it can be used
6500          * as the reference lock in the spin_lock_nest_lock() call
6501          * in lock_all_device_hash_locks_irq in order to convince
6502          * lockdep that we know what we are doing.
6503          */
6504         spin_lock_init(conf->hash_locks);
6505         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6506                 spin_lock_init(conf->hash_locks + i);
6507
6508         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6509                 INIT_LIST_HEAD(conf->inactive_list + i);
6510
6511         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6512                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6513
6514         conf->level = mddev->new_level;
6515         conf->chunk_sectors = mddev->new_chunk_sectors;
6516         if (raid5_alloc_percpu(conf) != 0)
6517                 goto abort;
6518
6519         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6520
6521         rdev_for_each(rdev, mddev) {
6522                 raid_disk = rdev->raid_disk;
6523                 if (raid_disk >= max_disks
6524                     || raid_disk < 0)
6525                         continue;
6526                 disk = conf->disks + raid_disk;
6527
6528                 if (test_bit(Replacement, &rdev->flags)) {
6529                         if (disk->replacement)
6530                                 goto abort;
6531                         disk->replacement = rdev;
6532                 } else {
6533                         if (disk->rdev)
6534                                 goto abort;
6535                         disk->rdev = rdev;
6536                 }
6537
6538                 if (test_bit(In_sync, &rdev->flags)) {
6539                         char b[BDEVNAME_SIZE];
6540                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6541                                " disk %d\n",
6542                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6543                 } else if (rdev->saved_raid_disk != raid_disk)
6544                         /* Cannot rely on bitmap to complete recovery */
6545                         conf->fullsync = 1;
6546         }
6547
6548         conf->level = mddev->new_level;
6549         if (conf->level == 6) {
6550                 conf->max_degraded = 2;
6551                 if (raid6_call.xor_syndrome)
6552                         conf->rmw_level = PARITY_ENABLE_RMW;
6553                 else
6554                         conf->rmw_level = PARITY_DISABLE_RMW;
6555         } else {
6556                 conf->max_degraded = 1;
6557                 conf->rmw_level = PARITY_ENABLE_RMW;
6558         }
6559         conf->algorithm = mddev->new_layout;
6560         conf->reshape_progress = mddev->reshape_position;
6561         if (conf->reshape_progress != MaxSector) {
6562                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6563                 conf->prev_algo = mddev->layout;
6564         }
6565
6566         conf->min_nr_stripes = NR_STRIPES;
6567         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6568                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6569         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6570         if (grow_stripes(conf, conf->min_nr_stripes)) {
6571                 printk(KERN_ERR
6572                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6573                        mdname(mddev), memory);
6574                 goto abort;
6575         } else
6576                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6577                        mdname(mddev), memory);
6578         /*
6579          * Losing a stripe head costs more than the time to refill it,
6580          * it reduces the queue depth and so can hurt throughput.
6581          * So set it rather large, scaled by number of devices.
6582          */
6583         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6584         conf->shrinker.scan_objects = raid5_cache_scan;
6585         conf->shrinker.count_objects = raid5_cache_count;
6586         conf->shrinker.batch = 128;
6587         conf->shrinker.flags = 0;
6588         register_shrinker(&conf->shrinker);
6589
6590         sprintf(pers_name, "raid%d", mddev->new_level);
6591         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6592         if (!conf->thread) {
6593                 printk(KERN_ERR
6594                        "md/raid:%s: couldn't allocate thread.\n",
6595                        mdname(mddev));
6596                 goto abort;
6597         }
6598
6599         return conf;
6600
6601  abort:
6602         if (conf) {
6603                 free_conf(conf);
6604                 return ERR_PTR(-EIO);
6605         } else
6606                 return ERR_PTR(-ENOMEM);
6607 }
6608
6609 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6610 {
6611         switch (algo) {
6612         case ALGORITHM_PARITY_0:
6613                 if (raid_disk < max_degraded)
6614                         return 1;
6615                 break;
6616         case ALGORITHM_PARITY_N:
6617                 if (raid_disk >= raid_disks - max_degraded)
6618                         return 1;
6619                 break;
6620         case ALGORITHM_PARITY_0_6:
6621                 if (raid_disk == 0 ||
6622                     raid_disk == raid_disks - 1)
6623                         return 1;
6624                 break;
6625         case ALGORITHM_LEFT_ASYMMETRIC_6:
6626         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6627         case ALGORITHM_LEFT_SYMMETRIC_6:
6628         case ALGORITHM_RIGHT_SYMMETRIC_6:
6629                 if (raid_disk == raid_disks - 1)
6630                         return 1;
6631         }
6632         return 0;
6633 }
6634
6635 static int run(struct mddev *mddev)
6636 {
6637         struct r5conf *conf;
6638         int working_disks = 0;
6639         int dirty_parity_disks = 0;
6640         struct md_rdev *rdev;
6641         sector_t reshape_offset = 0;
6642         int i;
6643         long long min_offset_diff = 0;
6644         int first = 1;
6645
6646         if (mddev->recovery_cp != MaxSector)
6647                 printk(KERN_NOTICE "md/raid:%s: not clean"
6648                        " -- starting background reconstruction\n",
6649                        mdname(mddev));
6650
6651         rdev_for_each(rdev, mddev) {
6652                 long long diff;
6653                 if (rdev->raid_disk < 0)
6654                         continue;
6655                 diff = (rdev->new_data_offset - rdev->data_offset);
6656                 if (first) {
6657                         min_offset_diff = diff;
6658                         first = 0;
6659                 } else if (mddev->reshape_backwards &&
6660                          diff < min_offset_diff)
6661                         min_offset_diff = diff;
6662                 else if (!mddev->reshape_backwards &&
6663                          diff > min_offset_diff)
6664                         min_offset_diff = diff;
6665         }
6666
6667         if (mddev->reshape_position != MaxSector) {
6668                 /* Check that we can continue the reshape.
6669                  * Difficulties arise if the stripe we would write to
6670                  * next is at or after the stripe we would read from next.
6671                  * For a reshape that changes the number of devices, this
6672                  * is only possible for a very short time, and mdadm makes
6673                  * sure that time appears to have past before assembling
6674                  * the array.  So we fail if that time hasn't passed.
6675                  * For a reshape that keeps the number of devices the same
6676                  * mdadm must be monitoring the reshape can keeping the
6677                  * critical areas read-only and backed up.  It will start
6678                  * the array in read-only mode, so we check for that.
6679                  */
6680                 sector_t here_new, here_old;
6681                 int old_disks;
6682                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6683
6684                 if (mddev->new_level != mddev->level) {
6685                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6686                                "required - aborting.\n",
6687                                mdname(mddev));
6688                         return -EINVAL;
6689                 }
6690                 old_disks = mddev->raid_disks - mddev->delta_disks;
6691                 /* reshape_position must be on a new-stripe boundary, and one
6692                  * further up in new geometry must map after here in old
6693                  * geometry.
6694                  */
6695                 here_new = mddev->reshape_position;
6696                 if (sector_div(here_new, mddev->new_chunk_sectors *
6697                                (mddev->raid_disks - max_degraded))) {
6698                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6699                                "on a stripe boundary\n", mdname(mddev));
6700                         return -EINVAL;
6701                 }
6702                 reshape_offset = here_new * mddev->new_chunk_sectors;
6703                 /* here_new is the stripe we will write to */
6704                 here_old = mddev->reshape_position;
6705                 sector_div(here_old, mddev->chunk_sectors *
6706                            (old_disks-max_degraded));
6707                 /* here_old is the first stripe that we might need to read
6708                  * from */
6709                 if (mddev->delta_disks == 0) {
6710                         if ((here_new * mddev->new_chunk_sectors !=
6711                              here_old * mddev->chunk_sectors)) {
6712                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6713                                        " confused - aborting\n", mdname(mddev));
6714                                 return -EINVAL;
6715                         }
6716                         /* We cannot be sure it is safe to start an in-place
6717                          * reshape.  It is only safe if user-space is monitoring
6718                          * and taking constant backups.
6719                          * mdadm always starts a situation like this in
6720                          * readonly mode so it can take control before
6721                          * allowing any writes.  So just check for that.
6722                          */
6723                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6724                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6725                                 /* not really in-place - so OK */;
6726                         else if (mddev->ro == 0) {
6727                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6728                                        "must be started in read-only mode "
6729                                        "- aborting\n",
6730                                        mdname(mddev));
6731                                 return -EINVAL;
6732                         }
6733                 } else if (mddev->reshape_backwards
6734                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6735                        here_old * mddev->chunk_sectors)
6736                     : (here_new * mddev->new_chunk_sectors >=
6737                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6738                         /* Reading from the same stripe as writing to - bad */
6739                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6740                                "auto-recovery - aborting.\n",
6741                                mdname(mddev));
6742                         return -EINVAL;
6743                 }
6744                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6745                        mdname(mddev));
6746                 /* OK, we should be able to continue; */
6747         } else {
6748                 BUG_ON(mddev->level != mddev->new_level);
6749                 BUG_ON(mddev->layout != mddev->new_layout);
6750                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6751                 BUG_ON(mddev->delta_disks != 0);
6752         }
6753
6754         if (mddev->private == NULL)
6755                 conf = setup_conf(mddev);
6756         else
6757                 conf = mddev->private;
6758
6759         if (IS_ERR(conf))
6760                 return PTR_ERR(conf);
6761
6762         conf->min_offset_diff = min_offset_diff;
6763         mddev->thread = conf->thread;
6764         conf->thread = NULL;
6765         mddev->private = conf;
6766
6767         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6768              i++) {
6769                 rdev = conf->disks[i].rdev;
6770                 if (!rdev && conf->disks[i].replacement) {
6771                         /* The replacement is all we have yet */
6772                         rdev = conf->disks[i].replacement;
6773                         conf->disks[i].replacement = NULL;
6774                         clear_bit(Replacement, &rdev->flags);
6775                         conf->disks[i].rdev = rdev;
6776                 }
6777                 if (!rdev)
6778                         continue;
6779                 if (conf->disks[i].replacement &&
6780                     conf->reshape_progress != MaxSector) {
6781                         /* replacements and reshape simply do not mix. */
6782                         printk(KERN_ERR "md: cannot handle concurrent "
6783                                "replacement and reshape.\n");
6784                         goto abort;
6785                 }
6786                 if (test_bit(In_sync, &rdev->flags)) {
6787                         working_disks++;
6788                         continue;
6789                 }
6790                 /* This disc is not fully in-sync.  However if it
6791                  * just stored parity (beyond the recovery_offset),
6792                  * when we don't need to be concerned about the
6793                  * array being dirty.
6794                  * When reshape goes 'backwards', we never have
6795                  * partially completed devices, so we only need
6796                  * to worry about reshape going forwards.
6797                  */
6798                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6799                 if (mddev->major_version == 0 &&
6800                     mddev->minor_version > 90)
6801                         rdev->recovery_offset = reshape_offset;
6802
6803                 if (rdev->recovery_offset < reshape_offset) {
6804                         /* We need to check old and new layout */
6805                         if (!only_parity(rdev->raid_disk,
6806                                          conf->algorithm,
6807                                          conf->raid_disks,
6808                                          conf->max_degraded))
6809                                 continue;
6810                 }
6811                 if (!only_parity(rdev->raid_disk,
6812                                  conf->prev_algo,
6813                                  conf->previous_raid_disks,
6814                                  conf->max_degraded))
6815                         continue;
6816                 dirty_parity_disks++;
6817         }
6818
6819         /*
6820          * 0 for a fully functional array, 1 or 2 for a degraded array.
6821          */
6822         mddev->degraded = calc_degraded(conf);
6823
6824         if (has_failed(conf)) {
6825                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6826                         " (%d/%d failed)\n",
6827                         mdname(mddev), mddev->degraded, conf->raid_disks);
6828                 goto abort;
6829         }
6830
6831         /* device size must be a multiple of chunk size */
6832         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6833         mddev->resync_max_sectors = mddev->dev_sectors;
6834
6835         if (mddev->degraded > dirty_parity_disks &&
6836             mddev->recovery_cp != MaxSector) {
6837                 if (mddev->ok_start_degraded)
6838                         printk(KERN_WARNING
6839                                "md/raid:%s: starting dirty degraded array"
6840                                " - data corruption possible.\n",
6841                                mdname(mddev));
6842                 else {
6843                         printk(KERN_ERR
6844                                "md/raid:%s: cannot start dirty degraded array.\n",
6845                                mdname(mddev));
6846                         goto abort;
6847                 }
6848         }
6849
6850         if (mddev->degraded == 0)
6851                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6852                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6853                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6854                        mddev->new_layout);
6855         else
6856                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6857                        " out of %d devices, algorithm %d\n",
6858                        mdname(mddev), conf->level,
6859                        mddev->raid_disks - mddev->degraded,
6860                        mddev->raid_disks, mddev->new_layout);
6861
6862         print_raid5_conf(conf);
6863
6864         if (conf->reshape_progress != MaxSector) {
6865                 conf->reshape_safe = conf->reshape_progress;
6866                 atomic_set(&conf->reshape_stripes, 0);
6867                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6868                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6869                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6870                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6871                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6872                                                         "reshape");
6873         }
6874
6875         /* Ok, everything is just fine now */
6876         if (mddev->to_remove == &raid5_attrs_group)
6877                 mddev->to_remove = NULL;
6878         else if (mddev->kobj.sd &&
6879             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6880                 printk(KERN_WARNING
6881                        "raid5: failed to create sysfs attributes for %s\n",
6882                        mdname(mddev));
6883         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6884
6885         if (mddev->queue) {
6886                 int chunk_size;
6887                 bool discard_supported = true;
6888                 /* read-ahead size must cover two whole stripes, which
6889                  * is 2 * (datadisks) * chunksize where 'n' is the
6890                  * number of raid devices
6891                  */
6892                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6893                 int stripe = data_disks *
6894                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6895                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6896                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6897
6898                 chunk_size = mddev->chunk_sectors << 9;
6899                 blk_queue_io_min(mddev->queue, chunk_size);
6900                 blk_queue_io_opt(mddev->queue, chunk_size *
6901                                  (conf->raid_disks - conf->max_degraded));
6902                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6903                 /*
6904                  * We can only discard a whole stripe. It doesn't make sense to
6905                  * discard data disk but write parity disk
6906                  */
6907                 stripe = stripe * PAGE_SIZE;
6908                 /* Round up to power of 2, as discard handling
6909                  * currently assumes that */
6910                 while ((stripe-1) & stripe)
6911                         stripe = (stripe | (stripe-1)) + 1;
6912                 mddev->queue->limits.discard_alignment = stripe;
6913                 mddev->queue->limits.discard_granularity = stripe;
6914                 /*
6915                  * unaligned part of discard request will be ignored, so can't
6916                  * guarantee discard_zeroes_data
6917                  */
6918                 mddev->queue->limits.discard_zeroes_data = 0;
6919
6920                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6921
6922                 rdev_for_each(rdev, mddev) {
6923                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6924                                           rdev->data_offset << 9);
6925                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6926                                           rdev->new_data_offset << 9);
6927                         /*
6928                          * discard_zeroes_data is required, otherwise data
6929                          * could be lost. Consider a scenario: discard a stripe
6930                          * (the stripe could be inconsistent if
6931                          * discard_zeroes_data is 0); write one disk of the
6932                          * stripe (the stripe could be inconsistent again
6933                          * depending on which disks are used to calculate
6934                          * parity); the disk is broken; The stripe data of this
6935                          * disk is lost.
6936                          */
6937                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6938                             !bdev_get_queue(rdev->bdev)->
6939                                                 limits.discard_zeroes_data)
6940                                 discard_supported = false;
6941                         /* Unfortunately, discard_zeroes_data is not currently
6942                          * a guarantee - just a hint.  So we only allow DISCARD
6943                          * if the sysadmin has confirmed that only safe devices
6944                          * are in use by setting a module parameter.
6945                          */
6946                         if (!devices_handle_discard_safely) {
6947                                 if (discard_supported) {
6948                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6949                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6950                                 }
6951                                 discard_supported = false;
6952                         }
6953                 }
6954
6955                 if (discard_supported &&
6956                    mddev->queue->limits.max_discard_sectors >= stripe &&
6957                    mddev->queue->limits.discard_granularity >= stripe)
6958                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6959                                                 mddev->queue);
6960                 else
6961                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6962                                                 mddev->queue);
6963         }
6964
6965         return 0;
6966 abort:
6967         md_unregister_thread(&mddev->thread);
6968         print_raid5_conf(conf);
6969         free_conf(conf);
6970         mddev->private = NULL;
6971         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6972         return -EIO;
6973 }
6974
6975 static void raid5_free(struct mddev *mddev, void *priv)
6976 {
6977         struct r5conf *conf = priv;
6978
6979         free_conf(conf);
6980         mddev->to_remove = &raid5_attrs_group;
6981 }
6982
6983 static void status(struct seq_file *seq, struct mddev *mddev)
6984 {
6985         struct r5conf *conf = mddev->private;
6986         int i;
6987
6988         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6989                 mddev->chunk_sectors / 2, mddev->layout);
6990         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6991         for (i = 0; i < conf->raid_disks; i++)
6992                 seq_printf (seq, "%s",
6993                                conf->disks[i].rdev &&
6994                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6995         seq_printf (seq, "]");
6996 }
6997
6998 static void print_raid5_conf (struct r5conf *conf)
6999 {
7000         int i;
7001         struct disk_info *tmp;
7002
7003         printk(KERN_DEBUG "RAID conf printout:\n");
7004         if (!conf) {
7005                 printk("(conf==NULL)\n");
7006                 return;
7007         }
7008         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7009                conf->raid_disks,
7010                conf->raid_disks - conf->mddev->degraded);
7011
7012         for (i = 0; i < conf->raid_disks; i++) {
7013                 char b[BDEVNAME_SIZE];
7014                 tmp = conf->disks + i;
7015                 if (tmp->rdev)
7016                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7017                                i, !test_bit(Faulty, &tmp->rdev->flags),
7018                                bdevname(tmp->rdev->bdev, b));
7019         }
7020 }
7021
7022 static int raid5_spare_active(struct mddev *mddev)
7023 {
7024         int i;
7025         struct r5conf *conf = mddev->private;
7026         struct disk_info *tmp;
7027         int count = 0;
7028         unsigned long flags;
7029
7030         for (i = 0; i < conf->raid_disks; i++) {
7031                 tmp = conf->disks + i;
7032                 if (tmp->replacement
7033                     && tmp->replacement->recovery_offset == MaxSector
7034                     && !test_bit(Faulty, &tmp->replacement->flags)
7035                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7036                         /* Replacement has just become active. */
7037                         if (!tmp->rdev
7038                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7039                                 count++;
7040                         if (tmp->rdev) {
7041                                 /* Replaced device not technically faulty,
7042                                  * but we need to be sure it gets removed
7043                                  * and never re-added.
7044                                  */
7045                                 set_bit(Faulty, &tmp->rdev->flags);
7046                                 sysfs_notify_dirent_safe(
7047                                         tmp->rdev->sysfs_state);
7048                         }
7049                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7050                 } else if (tmp->rdev
7051                     && tmp->rdev->recovery_offset == MaxSector
7052                     && !test_bit(Faulty, &tmp->rdev->flags)
7053                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7054                         count++;
7055                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7056                 }
7057         }
7058         spin_lock_irqsave(&conf->device_lock, flags);
7059         mddev->degraded = calc_degraded(conf);
7060         spin_unlock_irqrestore(&conf->device_lock, flags);
7061         print_raid5_conf(conf);
7062         return count;
7063 }
7064
7065 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7066 {
7067         struct r5conf *conf = mddev->private;
7068         int err = 0;
7069         int number = rdev->raid_disk;
7070         struct md_rdev **rdevp;
7071         struct disk_info *p = conf->disks + number;
7072
7073         print_raid5_conf(conf);
7074         if (rdev == p->rdev)
7075                 rdevp = &p->rdev;
7076         else if (rdev == p->replacement)
7077                 rdevp = &p->replacement;
7078         else
7079                 return 0;
7080
7081         if (number >= conf->raid_disks &&
7082             conf->reshape_progress == MaxSector)
7083                 clear_bit(In_sync, &rdev->flags);
7084
7085         if (test_bit(In_sync, &rdev->flags) ||
7086             atomic_read(&rdev->nr_pending)) {
7087                 err = -EBUSY;
7088                 goto abort;
7089         }
7090         /* Only remove non-faulty devices if recovery
7091          * isn't possible.
7092          */
7093         if (!test_bit(Faulty, &rdev->flags) &&
7094             mddev->recovery_disabled != conf->recovery_disabled &&
7095             !has_failed(conf) &&
7096             (!p->replacement || p->replacement == rdev) &&
7097             number < conf->raid_disks) {
7098                 err = -EBUSY;
7099                 goto abort;
7100         }
7101         *rdevp = NULL;
7102         synchronize_rcu();
7103         if (atomic_read(&rdev->nr_pending)) {
7104                 /* lost the race, try later */
7105                 err = -EBUSY;
7106                 *rdevp = rdev;
7107         } else if (p->replacement) {
7108                 /* We must have just cleared 'rdev' */
7109                 p->rdev = p->replacement;
7110                 clear_bit(Replacement, &p->replacement->flags);
7111                 smp_mb(); /* Make sure other CPUs may see both as identical
7112                            * but will never see neither - if they are careful
7113                            */
7114                 p->replacement = NULL;
7115                 clear_bit(WantReplacement, &rdev->flags);
7116         } else
7117                 /* We might have just removed the Replacement as faulty-
7118                  * clear the bit just in case
7119                  */
7120                 clear_bit(WantReplacement, &rdev->flags);
7121 abort:
7122
7123         print_raid5_conf(conf);
7124         return err;
7125 }
7126
7127 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7128 {
7129         struct r5conf *conf = mddev->private;
7130         int err = -EEXIST;
7131         int disk;
7132         struct disk_info *p;
7133         int first = 0;
7134         int last = conf->raid_disks - 1;
7135
7136         if (mddev->recovery_disabled == conf->recovery_disabled)
7137                 return -EBUSY;
7138
7139         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7140                 /* no point adding a device */
7141                 return -EINVAL;
7142
7143         if (rdev->raid_disk >= 0)
7144                 first = last = rdev->raid_disk;
7145
7146         /*
7147          * find the disk ... but prefer rdev->saved_raid_disk
7148          * if possible.
7149          */
7150         if (rdev->saved_raid_disk >= 0 &&
7151             rdev->saved_raid_disk >= first &&
7152             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7153                 first = rdev->saved_raid_disk;
7154
7155         for (disk = first; disk <= last; disk++) {
7156                 p = conf->disks + disk;
7157                 if (p->rdev == NULL) {
7158                         clear_bit(In_sync, &rdev->flags);
7159                         rdev->raid_disk = disk;
7160                         err = 0;
7161                         if (rdev->saved_raid_disk != disk)
7162                                 conf->fullsync = 1;
7163                         rcu_assign_pointer(p->rdev, rdev);
7164                         goto out;
7165                 }
7166         }
7167         for (disk = first; disk <= last; disk++) {
7168                 p = conf->disks + disk;
7169                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7170                     p->replacement == NULL) {
7171                         clear_bit(In_sync, &rdev->flags);
7172                         set_bit(Replacement, &rdev->flags);
7173                         rdev->raid_disk = disk;
7174                         err = 0;
7175                         conf->fullsync = 1;
7176                         rcu_assign_pointer(p->replacement, rdev);
7177                         break;
7178                 }
7179         }
7180 out:
7181         print_raid5_conf(conf);
7182         return err;
7183 }
7184
7185 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7186 {
7187         /* no resync is happening, and there is enough space
7188          * on all devices, so we can resize.
7189          * We need to make sure resync covers any new space.
7190          * If the array is shrinking we should possibly wait until
7191          * any io in the removed space completes, but it hardly seems
7192          * worth it.
7193          */
7194         sector_t newsize;
7195         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7196         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7197         if (mddev->external_size &&
7198             mddev->array_sectors > newsize)
7199                 return -EINVAL;
7200         if (mddev->bitmap) {
7201                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7202                 if (ret)
7203                         return ret;
7204         }
7205         md_set_array_sectors(mddev, newsize);
7206         set_capacity(mddev->gendisk, mddev->array_sectors);
7207         revalidate_disk(mddev->gendisk);
7208         if (sectors > mddev->dev_sectors &&
7209             mddev->recovery_cp > mddev->dev_sectors) {
7210                 mddev->recovery_cp = mddev->dev_sectors;
7211                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7212         }
7213         mddev->dev_sectors = sectors;
7214         mddev->resync_max_sectors = sectors;
7215         return 0;
7216 }
7217
7218 static int check_stripe_cache(struct mddev *mddev)
7219 {
7220         /* Can only proceed if there are plenty of stripe_heads.
7221          * We need a minimum of one full stripe,, and for sensible progress
7222          * it is best to have about 4 times that.
7223          * If we require 4 times, then the default 256 4K stripe_heads will
7224          * allow for chunk sizes up to 256K, which is probably OK.
7225          * If the chunk size is greater, user-space should request more
7226          * stripe_heads first.
7227          */
7228         struct r5conf *conf = mddev->private;
7229         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7230             > conf->min_nr_stripes ||
7231             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7232             > conf->min_nr_stripes) {
7233                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7234                        mdname(mddev),
7235                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7236                         / STRIPE_SIZE)*4);
7237                 return 0;
7238         }
7239         return 1;
7240 }
7241
7242 static int check_reshape(struct mddev *mddev)
7243 {
7244         struct r5conf *conf = mddev->private;
7245
7246         if (mddev->delta_disks == 0 &&
7247             mddev->new_layout == mddev->layout &&
7248             mddev->new_chunk_sectors == mddev->chunk_sectors)
7249                 return 0; /* nothing to do */
7250         if (has_failed(conf))
7251                 return -EINVAL;
7252         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7253                 /* We might be able to shrink, but the devices must
7254                  * be made bigger first.
7255                  * For raid6, 4 is the minimum size.
7256                  * Otherwise 2 is the minimum
7257                  */
7258                 int min = 2;
7259                 if (mddev->level == 6)
7260                         min = 4;
7261                 if (mddev->raid_disks + mddev->delta_disks < min)
7262                         return -EINVAL;
7263         }
7264
7265         if (!check_stripe_cache(mddev))
7266                 return -ENOSPC;
7267
7268         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7269             mddev->delta_disks > 0)
7270                 if (resize_chunks(conf,
7271                                   conf->previous_raid_disks
7272                                   + max(0, mddev->delta_disks),
7273                                   max(mddev->new_chunk_sectors,
7274                                       mddev->chunk_sectors)
7275                             ) < 0)
7276                         return -ENOMEM;
7277         return resize_stripes(conf, (conf->previous_raid_disks
7278                                      + mddev->delta_disks));
7279 }
7280
7281 static int raid5_start_reshape(struct mddev *mddev)
7282 {
7283         struct r5conf *conf = mddev->private;
7284         struct md_rdev *rdev;
7285         int spares = 0;
7286         unsigned long flags;
7287
7288         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7289                 return -EBUSY;
7290
7291         if (!check_stripe_cache(mddev))
7292                 return -ENOSPC;
7293
7294         if (has_failed(conf))
7295                 return -EINVAL;
7296
7297         rdev_for_each(rdev, mddev) {
7298                 if (!test_bit(In_sync, &rdev->flags)
7299                     && !test_bit(Faulty, &rdev->flags))
7300                         spares++;
7301         }
7302
7303         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7304                 /* Not enough devices even to make a degraded array
7305                  * of that size
7306                  */
7307                 return -EINVAL;
7308
7309         /* Refuse to reduce size of the array.  Any reductions in
7310          * array size must be through explicit setting of array_size
7311          * attribute.
7312          */
7313         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7314             < mddev->array_sectors) {
7315                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7316                        "before number of disks\n", mdname(mddev));
7317                 return -EINVAL;
7318         }
7319
7320         atomic_set(&conf->reshape_stripes, 0);
7321         spin_lock_irq(&conf->device_lock);
7322         write_seqcount_begin(&conf->gen_lock);
7323         conf->previous_raid_disks = conf->raid_disks;
7324         conf->raid_disks += mddev->delta_disks;
7325         conf->prev_chunk_sectors = conf->chunk_sectors;
7326         conf->chunk_sectors = mddev->new_chunk_sectors;
7327         conf->prev_algo = conf->algorithm;
7328         conf->algorithm = mddev->new_layout;
7329         conf->generation++;
7330         /* Code that selects data_offset needs to see the generation update
7331          * if reshape_progress has been set - so a memory barrier needed.
7332          */
7333         smp_mb();
7334         if (mddev->reshape_backwards)
7335                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7336         else
7337                 conf->reshape_progress = 0;
7338         conf->reshape_safe = conf->reshape_progress;
7339         write_seqcount_end(&conf->gen_lock);
7340         spin_unlock_irq(&conf->device_lock);
7341
7342         /* Now make sure any requests that proceeded on the assumption
7343          * the reshape wasn't running - like Discard or Read - have
7344          * completed.
7345          */
7346         mddev_suspend(mddev);
7347         mddev_resume(mddev);
7348
7349         /* Add some new drives, as many as will fit.
7350          * We know there are enough to make the newly sized array work.
7351          * Don't add devices if we are reducing the number of
7352          * devices in the array.  This is because it is not possible
7353          * to correctly record the "partially reconstructed" state of
7354          * such devices during the reshape and confusion could result.
7355          */
7356         if (mddev->delta_disks >= 0) {
7357                 rdev_for_each(rdev, mddev)
7358                         if (rdev->raid_disk < 0 &&
7359                             !test_bit(Faulty, &rdev->flags)) {
7360                                 if (raid5_add_disk(mddev, rdev) == 0) {
7361                                         if (rdev->raid_disk
7362                                             >= conf->previous_raid_disks)
7363                                                 set_bit(In_sync, &rdev->flags);
7364                                         else
7365                                                 rdev->recovery_offset = 0;
7366
7367                                         if (sysfs_link_rdev(mddev, rdev))
7368                                                 /* Failure here is OK */;
7369                                 }
7370                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7371                                    && !test_bit(Faulty, &rdev->flags)) {
7372                                 /* This is a spare that was manually added */
7373                                 set_bit(In_sync, &rdev->flags);
7374                         }
7375
7376                 /* When a reshape changes the number of devices,
7377                  * ->degraded is measured against the larger of the
7378                  * pre and post number of devices.
7379                  */
7380                 spin_lock_irqsave(&conf->device_lock, flags);
7381                 mddev->degraded = calc_degraded(conf);
7382                 spin_unlock_irqrestore(&conf->device_lock, flags);
7383         }
7384         mddev->raid_disks = conf->raid_disks;
7385         mddev->reshape_position = conf->reshape_progress;
7386         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7387
7388         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7389         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7390         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7391         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7392         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7393         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7394                                                 "reshape");
7395         if (!mddev->sync_thread) {
7396                 mddev->recovery = 0;
7397                 spin_lock_irq(&conf->device_lock);
7398                 write_seqcount_begin(&conf->gen_lock);
7399                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7400                 mddev->new_chunk_sectors =
7401                         conf->chunk_sectors = conf->prev_chunk_sectors;
7402                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7403                 rdev_for_each(rdev, mddev)
7404                         rdev->new_data_offset = rdev->data_offset;
7405                 smp_wmb();
7406                 conf->generation --;
7407                 conf->reshape_progress = MaxSector;
7408                 mddev->reshape_position = MaxSector;
7409                 write_seqcount_end(&conf->gen_lock);
7410                 spin_unlock_irq(&conf->device_lock);
7411                 return -EAGAIN;
7412         }
7413         conf->reshape_checkpoint = jiffies;
7414         md_wakeup_thread(mddev->sync_thread);
7415         md_new_event(mddev);
7416         return 0;
7417 }
7418
7419 /* This is called from the reshape thread and should make any
7420  * changes needed in 'conf'
7421  */
7422 static void end_reshape(struct r5conf *conf)
7423 {
7424
7425         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7426                 struct md_rdev *rdev;
7427
7428                 spin_lock_irq(&conf->device_lock);
7429                 conf->previous_raid_disks = conf->raid_disks;
7430                 rdev_for_each(rdev, conf->mddev)
7431                         rdev->data_offset = rdev->new_data_offset;
7432                 smp_wmb();
7433                 conf->reshape_progress = MaxSector;
7434                 spin_unlock_irq(&conf->device_lock);
7435                 wake_up(&conf->wait_for_overlap);
7436
7437                 /* read-ahead size must cover two whole stripes, which is
7438                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7439                  */
7440                 if (conf->mddev->queue) {
7441                         int data_disks = conf->raid_disks - conf->max_degraded;
7442                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7443                                                    / PAGE_SIZE);
7444                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7445                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7446                 }
7447         }
7448 }
7449
7450 /* This is called from the raid5d thread with mddev_lock held.
7451  * It makes config changes to the device.
7452  */
7453 static void raid5_finish_reshape(struct mddev *mddev)
7454 {
7455         struct r5conf *conf = mddev->private;
7456
7457         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7458
7459                 if (mddev->delta_disks > 0) {
7460                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7461                         set_capacity(mddev->gendisk, mddev->array_sectors);
7462                         revalidate_disk(mddev->gendisk);
7463                 } else {
7464                         int d;
7465                         spin_lock_irq(&conf->device_lock);
7466                         mddev->degraded = calc_degraded(conf);
7467                         spin_unlock_irq(&conf->device_lock);
7468                         for (d = conf->raid_disks ;
7469                              d < conf->raid_disks - mddev->delta_disks;
7470                              d++) {
7471                                 struct md_rdev *rdev = conf->disks[d].rdev;
7472                                 if (rdev)
7473                                         clear_bit(In_sync, &rdev->flags);
7474                                 rdev = conf->disks[d].replacement;
7475                                 if (rdev)
7476                                         clear_bit(In_sync, &rdev->flags);
7477                         }
7478                 }
7479                 mddev->layout = conf->algorithm;
7480                 mddev->chunk_sectors = conf->chunk_sectors;
7481                 mddev->reshape_position = MaxSector;
7482                 mddev->delta_disks = 0;
7483                 mddev->reshape_backwards = 0;
7484         }
7485 }
7486
7487 static void raid5_quiesce(struct mddev *mddev, int state)
7488 {
7489         struct r5conf *conf = mddev->private;
7490
7491         switch(state) {
7492         case 2: /* resume for a suspend */
7493                 wake_up(&conf->wait_for_overlap);
7494                 break;
7495
7496         case 1: /* stop all writes */
7497                 lock_all_device_hash_locks_irq(conf);
7498                 /* '2' tells resync/reshape to pause so that all
7499                  * active stripes can drain
7500                  */
7501                 conf->quiesce = 2;
7502                 wait_event_cmd(conf->wait_for_quiescent,
7503                                     atomic_read(&conf->active_stripes) == 0 &&
7504                                     atomic_read(&conf->active_aligned_reads) == 0,
7505                                     unlock_all_device_hash_locks_irq(conf),
7506                                     lock_all_device_hash_locks_irq(conf));
7507                 conf->quiesce = 1;
7508                 unlock_all_device_hash_locks_irq(conf);
7509                 /* allow reshape to continue */
7510                 wake_up(&conf->wait_for_overlap);
7511                 break;
7512
7513         case 0: /* re-enable writes */
7514                 lock_all_device_hash_locks_irq(conf);
7515                 conf->quiesce = 0;
7516                 wake_up(&conf->wait_for_quiescent);
7517                 wake_up(&conf->wait_for_overlap);
7518                 unlock_all_device_hash_locks_irq(conf);
7519                 break;
7520         }
7521 }
7522
7523 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7524 {
7525         struct r0conf *raid0_conf = mddev->private;
7526         sector_t sectors;
7527
7528         /* for raid0 takeover only one zone is supported */
7529         if (raid0_conf->nr_strip_zones > 1) {
7530                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7531                        mdname(mddev));
7532                 return ERR_PTR(-EINVAL);
7533         }
7534
7535         sectors = raid0_conf->strip_zone[0].zone_end;
7536         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7537         mddev->dev_sectors = sectors;
7538         mddev->new_level = level;
7539         mddev->new_layout = ALGORITHM_PARITY_N;
7540         mddev->new_chunk_sectors = mddev->chunk_sectors;
7541         mddev->raid_disks += 1;
7542         mddev->delta_disks = 1;
7543         /* make sure it will be not marked as dirty */
7544         mddev->recovery_cp = MaxSector;
7545
7546         return setup_conf(mddev);
7547 }
7548
7549 static void *raid5_takeover_raid1(struct mddev *mddev)
7550 {
7551         int chunksect;
7552
7553         if (mddev->raid_disks != 2 ||
7554             mddev->degraded > 1)
7555                 return ERR_PTR(-EINVAL);
7556
7557         /* Should check if there are write-behind devices? */
7558
7559         chunksect = 64*2; /* 64K by default */
7560
7561         /* The array must be an exact multiple of chunksize */
7562         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7563                 chunksect >>= 1;
7564
7565         if ((chunksect<<9) < STRIPE_SIZE)
7566                 /* array size does not allow a suitable chunk size */
7567                 return ERR_PTR(-EINVAL);
7568
7569         mddev->new_level = 5;
7570         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7571         mddev->new_chunk_sectors = chunksect;
7572
7573         return setup_conf(mddev);
7574 }
7575
7576 static void *raid5_takeover_raid6(struct mddev *mddev)
7577 {
7578         int new_layout;
7579
7580         switch (mddev->layout) {
7581         case ALGORITHM_LEFT_ASYMMETRIC_6:
7582                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7583                 break;
7584         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7585                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7586                 break;
7587         case ALGORITHM_LEFT_SYMMETRIC_6:
7588                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7589                 break;
7590         case ALGORITHM_RIGHT_SYMMETRIC_6:
7591                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7592                 break;
7593         case ALGORITHM_PARITY_0_6:
7594                 new_layout = ALGORITHM_PARITY_0;
7595                 break;
7596         case ALGORITHM_PARITY_N:
7597                 new_layout = ALGORITHM_PARITY_N;
7598                 break;
7599         default:
7600                 return ERR_PTR(-EINVAL);
7601         }
7602         mddev->new_level = 5;
7603         mddev->new_layout = new_layout;
7604         mddev->delta_disks = -1;
7605         mddev->raid_disks -= 1;
7606         return setup_conf(mddev);
7607 }
7608
7609 static int raid5_check_reshape(struct mddev *mddev)
7610 {
7611         /* For a 2-drive array, the layout and chunk size can be changed
7612          * immediately as not restriping is needed.
7613          * For larger arrays we record the new value - after validation
7614          * to be used by a reshape pass.
7615          */
7616         struct r5conf *conf = mddev->private;
7617         int new_chunk = mddev->new_chunk_sectors;
7618
7619         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7620                 return -EINVAL;
7621         if (new_chunk > 0) {
7622                 if (!is_power_of_2(new_chunk))
7623                         return -EINVAL;
7624                 if (new_chunk < (PAGE_SIZE>>9))
7625                         return -EINVAL;
7626                 if (mddev->array_sectors & (new_chunk-1))
7627                         /* not factor of array size */
7628                         return -EINVAL;
7629         }
7630
7631         /* They look valid */
7632
7633         if (mddev->raid_disks == 2) {
7634                 /* can make the change immediately */
7635                 if (mddev->new_layout >= 0) {
7636                         conf->algorithm = mddev->new_layout;
7637                         mddev->layout = mddev->new_layout;
7638                 }
7639                 if (new_chunk > 0) {
7640                         conf->chunk_sectors = new_chunk ;
7641                         mddev->chunk_sectors = new_chunk;
7642                 }
7643                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7644                 md_wakeup_thread(mddev->thread);
7645         }
7646         return check_reshape(mddev);
7647 }
7648
7649 static int raid6_check_reshape(struct mddev *mddev)
7650 {
7651         int new_chunk = mddev->new_chunk_sectors;
7652
7653         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7654                 return -EINVAL;
7655         if (new_chunk > 0) {
7656                 if (!is_power_of_2(new_chunk))
7657                         return -EINVAL;
7658                 if (new_chunk < (PAGE_SIZE >> 9))
7659                         return -EINVAL;
7660                 if (mddev->array_sectors & (new_chunk-1))
7661                         /* not factor of array size */
7662                         return -EINVAL;
7663         }
7664
7665         /* They look valid */
7666         return check_reshape(mddev);
7667 }
7668
7669 static void *raid5_takeover(struct mddev *mddev)
7670 {
7671         /* raid5 can take over:
7672          *  raid0 - if there is only one strip zone - make it a raid4 layout
7673          *  raid1 - if there are two drives.  We need to know the chunk size
7674          *  raid4 - trivial - just use a raid4 layout.
7675          *  raid6 - Providing it is a *_6 layout
7676          */
7677         if (mddev->level == 0)
7678                 return raid45_takeover_raid0(mddev, 5);
7679         if (mddev->level == 1)
7680                 return raid5_takeover_raid1(mddev);
7681         if (mddev->level == 4) {
7682                 mddev->new_layout = ALGORITHM_PARITY_N;
7683                 mddev->new_level = 5;
7684                 return setup_conf(mddev);
7685         }
7686         if (mddev->level == 6)
7687                 return raid5_takeover_raid6(mddev);
7688
7689         return ERR_PTR(-EINVAL);
7690 }
7691
7692 static void *raid4_takeover(struct mddev *mddev)
7693 {
7694         /* raid4 can take over:
7695          *  raid0 - if there is only one strip zone
7696          *  raid5 - if layout is right
7697          */
7698         if (mddev->level == 0)
7699                 return raid45_takeover_raid0(mddev, 4);
7700         if (mddev->level == 5 &&
7701             mddev->layout == ALGORITHM_PARITY_N) {
7702                 mddev->new_layout = 0;
7703                 mddev->new_level = 4;
7704                 return setup_conf(mddev);
7705         }
7706         return ERR_PTR(-EINVAL);
7707 }
7708
7709 static struct md_personality raid5_personality;
7710
7711 static void *raid6_takeover(struct mddev *mddev)
7712 {
7713         /* Currently can only take over a raid5.  We map the
7714          * personality to an equivalent raid6 personality
7715          * with the Q block at the end.
7716          */
7717         int new_layout;
7718
7719         if (mddev->pers != &raid5_personality)
7720                 return ERR_PTR(-EINVAL);
7721         if (mddev->degraded > 1)
7722                 return ERR_PTR(-EINVAL);
7723         if (mddev->raid_disks > 253)
7724                 return ERR_PTR(-EINVAL);
7725         if (mddev->raid_disks < 3)
7726                 return ERR_PTR(-EINVAL);
7727
7728         switch (mddev->layout) {
7729         case ALGORITHM_LEFT_ASYMMETRIC:
7730                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7731                 break;
7732         case ALGORITHM_RIGHT_ASYMMETRIC:
7733                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7734                 break;
7735         case ALGORITHM_LEFT_SYMMETRIC:
7736                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7737                 break;
7738         case ALGORITHM_RIGHT_SYMMETRIC:
7739                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7740                 break;
7741         case ALGORITHM_PARITY_0:
7742                 new_layout = ALGORITHM_PARITY_0_6;
7743                 break;
7744         case ALGORITHM_PARITY_N:
7745                 new_layout = ALGORITHM_PARITY_N;
7746                 break;
7747         default:
7748                 return ERR_PTR(-EINVAL);
7749         }
7750         mddev->new_level = 6;
7751         mddev->new_layout = new_layout;
7752         mddev->delta_disks = 1;
7753         mddev->raid_disks += 1;
7754         return setup_conf(mddev);
7755 }
7756
7757 static struct md_personality raid6_personality =
7758 {
7759         .name           = "raid6",
7760         .level          = 6,
7761         .owner          = THIS_MODULE,
7762         .make_request   = make_request,
7763         .run            = run,
7764         .free           = raid5_free,
7765         .status         = status,
7766         .error_handler  = error,
7767         .hot_add_disk   = raid5_add_disk,
7768         .hot_remove_disk= raid5_remove_disk,
7769         .spare_active   = raid5_spare_active,
7770         .sync_request   = sync_request,
7771         .resize         = raid5_resize,
7772         .size           = raid5_size,
7773         .check_reshape  = raid6_check_reshape,
7774         .start_reshape  = raid5_start_reshape,
7775         .finish_reshape = raid5_finish_reshape,
7776         .quiesce        = raid5_quiesce,
7777         .takeover       = raid6_takeover,
7778         .congested      = raid5_congested,
7779         .mergeable_bvec = raid5_mergeable_bvec,
7780 };
7781 static struct md_personality raid5_personality =
7782 {
7783         .name           = "raid5",
7784         .level          = 5,
7785         .owner          = THIS_MODULE,
7786         .make_request   = make_request,
7787         .run            = run,
7788         .free           = raid5_free,
7789         .status         = status,
7790         .error_handler  = error,
7791         .hot_add_disk   = raid5_add_disk,
7792         .hot_remove_disk= raid5_remove_disk,
7793         .spare_active   = raid5_spare_active,
7794         .sync_request   = sync_request,
7795         .resize         = raid5_resize,
7796         .size           = raid5_size,
7797         .check_reshape  = raid5_check_reshape,
7798         .start_reshape  = raid5_start_reshape,
7799         .finish_reshape = raid5_finish_reshape,
7800         .quiesce        = raid5_quiesce,
7801         .takeover       = raid5_takeover,
7802         .congested      = raid5_congested,
7803         .mergeable_bvec = raid5_mergeable_bvec,
7804 };
7805
7806 static struct md_personality raid4_personality =
7807 {
7808         .name           = "raid4",
7809         .level          = 4,
7810         .owner          = THIS_MODULE,
7811         .make_request   = make_request,
7812         .run            = run,
7813         .free           = raid5_free,
7814         .status         = status,
7815         .error_handler  = error,
7816         .hot_add_disk   = raid5_add_disk,
7817         .hot_remove_disk= raid5_remove_disk,
7818         .spare_active   = raid5_spare_active,
7819         .sync_request   = sync_request,
7820         .resize         = raid5_resize,
7821         .size           = raid5_size,
7822         .check_reshape  = raid5_check_reshape,
7823         .start_reshape  = raid5_start_reshape,
7824         .finish_reshape = raid5_finish_reshape,
7825         .quiesce        = raid5_quiesce,
7826         .takeover       = raid4_takeover,
7827         .congested      = raid5_congested,
7828         .mergeable_bvec = raid5_mergeable_bvec,
7829 };
7830
7831 static int __init raid5_init(void)
7832 {
7833         raid5_wq = alloc_workqueue("raid5wq",
7834                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7835         if (!raid5_wq)
7836                 return -ENOMEM;
7837         register_md_personality(&raid6_personality);
7838         register_md_personality(&raid5_personality);
7839         register_md_personality(&raid4_personality);
7840         return 0;
7841 }
7842
7843 static void raid5_exit(void)
7844 {
7845         unregister_md_personality(&raid6_personality);
7846         unregister_md_personality(&raid5_personality);
7847         unregister_md_personality(&raid4_personality);
7848         destroy_workqueue(raid5_wq);
7849 }
7850
7851 module_init(raid5_init);
7852 module_exit(raid5_exit);
7853 MODULE_LICENSE("GPL");
7854 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7855 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7856 MODULE_ALIAS("md-raid5");
7857 MODULE_ALIAS("md-raid4");
7858 MODULE_ALIAS("md-level-5");
7859 MODULE_ALIAS("md-level-4");
7860 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7861 MODULE_ALIAS("md-raid6");
7862 MODULE_ALIAS("md-level-6");
7863
7864 /* This used to be two separate modules, they were: */
7865 MODULE_ALIAS("raid5");
7866 MODULE_ALIAS("raid6");